
ERRATA

Page 28. line 7 The sentence should read as follows: "But among these Bayesian

criteria. BIC has the most general asymptotic properties in the sense that it satisfies

the properties of a consistent criterion."

Page 31, line 1. The sentence should read as follows: "One major limitation of

Hocking's criterion is that it is not applicable for nonstochastic regressors."

Page 40, line 8. Read / '</„,„ for / ' < / .

Page 47, line 12. The sentence should read as follows: "Once an equilibrium state has

been achieved for a given temperature, the temperature is reduced as defined in step 5

and the process started again taking values of the last iteration of the algorithm as the

initial values."

Page 182, line 5. The sentence should read as follows: "Our goal is to choose the

penalty in such a wayjrtiat none of the competing models is unknowingly favoured

over the others."

Page 241, lines 4-3 from bottom should read as follows: "This implies that the

optimal penalty depends not only on the sample size and the number of free

parameters, but also on the competing data generating processes.1"

Page 242, last dot point should read as follows: "The difference between the largest

and the smallest MAPCS obtained using the SAO technique is very small, which

implies that for equi-dimensional competing alternative models, the MAPCS is

insensitive to the starting parameter values of the SAO technique."

Page 244, line 4. Read MAPCS for MACPS.
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ABSTRACT

This thesis is concerned with mode! selection in the context of the linear regression

model and the construction of an appropriate procedure to find the best model trom a

set of alternative competing models. Of the many available techniques, the

information criteria (1C) based model selection technique is the most widely used.

There are man\ 1C available in the literature. But from the literature, it is observed

that none of the existing criteria perform well m all situations. So from the user's

point of \iew. which criteria one should use to select the best model for a particular

data set is a question that is unresolved. The aim o\ this thesis is to answer this

question b\ de\eloping an \C puModure. which performs better on average in all

situations than the best of the existing criteria.

In Chapter 2. we re\iew the relevant literature on model selection. We begin with Ihe

literature on model selection based on error sum of squares rules and then review

commonly used 1C based model selection procedures. We discuss the advantages and

drawbacks of the existing criteria, which motivate us to develop a new technique, the

performance of which is better on average in all situations than the existing criteria.

We also review the simulated annealing optimisation (SAO) technique and its use in

econometrics.



Abstract

A new and more efficient technique for selecting the best combination of parameter

drawings and number of replications for estimating the average probability of correct

selection (APCS) of the true model via simulation is presented in Chapter 3. A

generalised form of penalty functions of six existing JC is also presented. In this

chapter, we also propose a new method of model selection. Simulation results show

that the mean APCS (MAPCS) obtained from this proposed method is always higher

than that of the best of the ev«siina IC.

The application o\ the SAO technique to maximise the MAPCS for an additive

penalty and the maximised log-likehhoou: and for a multiplicative penalty and mean

squared error, is discussed in Chapter 4. From the simulation results, we observe that

the MAPCS obtained from the SAO technique with both types o\ penalties are

always higher than those of the best o\ the existing IC. We also see that for the same

model, the relative penalty varies from data set to data set; r.nd for a particular data

set. the relative penalties are different for those competing models with the same

number of parameters. This implies that the penalties are not only a function of //, the

sample size, and k. the number of free parameters, but also the data generating

process, this is in contrast to existing penalty functions that are a function of n and k

only. Another interesting outcome of these simulation experiments is that exactly the

same MAPCS is obtained from different sets of relative penalties, which implies that

there may not be a unique form of penalty function.

vui



Abstract

In Chapter 5 we investigate the use of the additive and multiplicative penalty with the

SAO technique described in Chapter 4 for the special case of equi-dimcnsional

alternative competing models. From the results of the simulation experiments, it is

apparent that in all situations the MAPCS obtained using the SAO technique is

hiuher than those of the existing criteria. Another notable outcome is that although

the relative penalties are zero for the existing criteria when models are equi-

dimensional. the relative penalties that maximise the MAPCS using the SAO

technique are different from zero.

In Chaptei 6 we develop a method based on the SAO to select the best model in such

a way that all the competing models have an equal chance on average of being

selected. We apply the SAO technique to minimise the standard deviation (SD)

among the A PCS for selecting the best model. The simulation results show that for

most of the cases with competing models of different dimensions, the variation

among the APCS is zero or close to zero, which indicates that the APCS are equal or

nearly equal. But. generall) the MAPCS is lower than that of the best of the existing

criteria. Por equi-dimcnsional competing models, the MAPCS obtained using the

SAO technique is generally higher than those of the existing criteria with zero or

close to zero variation among the APCS. Therefore, for equi-dimensional competing

alternative models, the application oi' the SAO technique to minimise the variation

among the APCS seems to be the best way of selecting the best model without

favouring one model over another.

IX

.
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CHAPTER J

INTRODUCTION

1.1 BACKGROUND OF MODELLING AND MODEL
SELECTION

In any modelling, a real-world problem is analysed and, as a result of the analysis, a

model that approximates the real situation is developed. According, to Pearce (1992),

"A model is a formal or informal framework of analysis which seeks to abstract from

the complexities of the real world those characteristics o\' an economic system which

are crucial for an understanding of the behavioural, institutional, and technical

relationships which underlie the system". Harvey (1981) asserted five characteristics

of a good model, namely parsimony, identifiability, goodness of fit, theoretical

consistency, and predictive power. Proper specification of the econometric model

plays an important role in the selection of the best model from a set of alternative

models. Several researchers have stressed the importance of misspecification tests in

econometric model building process. For example, Malinvaud (1981) contended that

cconomctricians should place special emphasis on the testing of model specification.

In formulating a regression model, misspecification error may arise from (i) omitted

variables, (ii) incorrect functional form, (iii) autocorrelation, (iv) heteroseedastieity,
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(v) lack of regression parameter consistency, (vi) non-normality of disturbances and

(viii) invalid assumptions about the exogeneity of one or more regressors. There are a

large number o' i-ests designed to detect these misspecifications and many of these

tests are available in modern computer packages which are very comprehensive, for

example see Microfit (Pesaran and Pesaran 1987) and SHAZAM (White. 1978).

There is a lot of literature on the topic of misspecification tests. Examples are,

Eastwood and Godfrey (1992). Ramsey (1969), Durbin and Watson (1951), O' Hagan

and McCabe (1975). Discussions of these are beyond the scope of this thesis.

The level of sophistication of a model depends on a number of things, including the

I mathematical backsiround of the modellers, the nature of the problem, the available

\ information including reliable data and so on. In econometrics and applied statistics,

; we generally deal with sample data and usually want to draw inferences about the

relationship of the variables in the population from which the sample data have been

drawn. Because modelling is concerned with the population, we should expect that

any model we develop on the bi.>,is of a sample will provide an approximation of the

relationship for the population. Generally, it is possible to develop many different

r models for a particular data set and set of variables, and we need to make a choice as

to which one of these models is the best approximation of the population,

substantively interprelable and as simple (parsimonious) as possible. For example, if

I
" the models with and without higher-order interaction terms fit the data well, the
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gs. simpler models are usually preferable, because higher-order interaction terms are
•k.

Zf generally difficult to interpret.

- Data play a vital role in the econometric model building process. Without good.

" consistent and reliable data, even the most sophisticated and mathematically sound

models fail to represent the phenomenon of interest. In selecting the best

representative model for a particular data set, one must keep in mind the purpose of

the model, the availability and accuracy of data, ease of model application, and

( accuracv of the selected model. Models with different subsets of variables produce
I
r
&. very different results, raisins questions about which one is the best representative
I
f* model for a particular set of variables. The selection of the best model for a particular

C data set and set of variables is an important issue in econometrics and statistics for
i
| the puipose of valid estimation, inference and prediction. The process of choosing a

model from a set of alternative models using the available data and set of variables, is

known as model selection. In regression analysis, model selection is the process of

selecting a subset of independent variables which best explain changes in the

dependent variable.

r
' Econometric modelling usually involves the estimation of a range of models, then the

i

choice of a model that best fits the available data. There are several selection

techniques available in the literature to choose the best desirable model using the

available data. These selection techniques can be grouped into the following four

3
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major classes: (i) hypothesis testing based procedures, (11) Bayesian criteria, (ni) the

use of residual sum of squares, and (ivj information criteria (1C). Hypothesis testing

based procedures involve the use of a series of pairwise hypothesis tests to select the

final model. Several researchers have proposed various testing procedures for model

selection, see for example, Gaver and Geisel (1974). Atkinson and Fedorov (1975).

Learner (1978). White (1982a, 1982b, 1983, 1990). MacKinnon (1983). Davidson

and MacKinnon (1984). Bunke and Droge (1985), Linhait and Zuchini (19S6).

McAleer (1987). Grassa (1989), Brownstone (1990). Potscher (1991), and Maddala

(J992). Unfortunately, this method of model selection has many limitations as

mentioned by Granger ei al. (1995). At each step, one model is chosen as the null

hypothesis and can be unfairly favoured because the probability of wrongly rejecting

it is set to a small value like 0.05 or 0.01. This can be particularly troublesome in

situations where the test being used is not particularly powerful and therefore a

choice of the null hypothesis model is the most likely outcome. There is also the well

known problem of pre-tcst bias (see for example Wallace, 1977, and Giles and Giles,

1993). Finally different researchers working on the same model selection problem

could easily end up with different final models purely because they perfoimed the

tests in a different order or used different significance levels. In Bayesian criteria the

penalised posterior probability is maximised using Bayes theorem. It is a well

established concept in model selection and it uses posterior odds ratios for the

comparison of the model. DeGroot (1970) gave a detailed description of Bayesian

criteria.
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The .available methods that use residual sum of squares tor regression model

selection include the use of the coefficient of multiple determination (R~) and

adjusted coefficient of determination (R~) proposed by Tneil (1961). Mallows*

(1964) C, criterion. Amemiya's (1980) PC criterion (see for example. Judge ct at.

(1985. 1988)). Nowadays C * PC are regarded as 1C and these IC are related to

the IC proposed by Rothman's (1968) J and Hocking's (1976) 5;> and are based on

minimising the mean square enor of prediction. Zhang's (1992) final prediction error

(FPE) criterion and Rahman's (1998) generalised model selection criterion for linear

regression are also based on residual sum of squares and used as IC. R~ is a

nondecreasing function of the number of explanatory variables and generally is

inadequate to pick out the best model. Thus, R', which is R' adjusted for the

residual degrees of freedom was defined to overcome this problem. Unfortunately, it

does not penalise the loss of degrees of freedom sufficiently. Dhrymes (1970)

mentioned that if the puipose of the selected model is prediction, then this technique

is not suitable as R~produces an unnecessarily large prediction error. As there are

several problems with using hypothesis testing and residual sum of squares based

model selection techniques, nowadays IC based model selection procedures are

frequently used by researchers to select the best model for a particular data set.

An IC based technique is the most widely accepted class of model selection

procedures and is based on choosing the model with the largest maximised log-
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likelihood function minus a penalty which is an increasing function of the number of

free parameters included in the model. Examples of these procedures include

Akaike's (1973, 1974) IC (AIC). Schwarz's (1978) Bayesian IC (BIC) and Hannan

and Quinn's (1979) procedure denoted HQ. Fox (1995) has also demonstrated how a

number of other model selection procedures, particularly those developed for

choosing from a set of linear regression models, can be thought of in the IC

framework. Those of interest in this thesis include Theil's (1961) R2 criterion

denoted by RBAR. Mallows' (1964) Cp procedure denoted MCP, Schmidt's (1975)

generalised cross-validation (GCV) procedure and Hocking's (1976) Sr, criterion

denoted by HOC. As Granger el al. (1995) and others have noted, the IC approach

has the advantages that (i) no pailicular model is favoured because it has been chosen

to be a null hypothesis, (ii) the order of computation is irrelevant, (iii) pretesting bias

is not an issue, (iv> if the IC procedure is asymptotically consistent, the correct model

is chosen with probability one asymptotically, and (v) there is no need to choose an

arbitrary level of significance although there is the related issue of which penalty

function is appropriate.

The latter is a major issue, which has featured in the literature. There is currently

little agreement about what the form of the penalty function should be. The early

literature focused on asymptotic arguments to justify various choices of penalty

functions, see for example Akaike (1973), Schwarz (1978), and Hannan and Quinn

(1979). Since then we have seen a number of Monte Carlo studies of the small
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sample properties of different model selection procedures which have shown a

number of problems. They suggest shal asymptotic properties are no guarantee of

acceptable small sample properties. For example, Grose and Kmg (1994). in the

context of choosing between first-order auioregressive and first-order moving

average disturbances in the linear regression moT~J., have shown that a particular

model can be unfairly favoured because of the function** form of its log-likelihood

function. They a'Jso found that the presence of nuisance parameters can adversely

affect the probabilities of correct selection.

There are clear parallels between the hypothesis testing literature and the model

selection literature, although it does appear that the latter lags the former. The

computer revolution has meant that we can now ask what kind oi' testing procedures

would we like to use rather than what kind of testing procedure is convenient to use

(see for example King, 1987). We should be asking similar questions for model

selection, in the context of finite samples. We now regularly use simulation, a

numerical technique for conducting experiments on a digital computer, to find

critical values for hypothesis tests. Can we use similar methods to find penalty values

for \C procedures that are in some sense optimal?

The penally function of almost all existing 1C is a function of /?, the number of

observations and /:, the number of free parameters. Thus a change of data set and sets

of independent variables do not have any impact on the penalty function provided n

7
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and k remain unchanged. Another problem of existing IC is that none of these

performs well in all situations. For example. BlC generally favour the model with the

smallest number of parameters, while Rz favours the model with the largest number

of parameters. The performance of HQ is in between BlC and R2. Thus, from the

user's point of view, it is very difficult to choose an IC for selecting the best model

for a particular data set and set of independent variables.

In this thesis we investigate a new approach to IC model selection in the context of

the classic;;! problem of choosing between different linear regression models. We use

the idea of a data-oriented penalty function, which was first introduced by Rao and

Wu (1989). for the model selection problem in the linear regression models. For the

selection of AR time series models. Chen ct al. (1993) used the same idea for finding

penalties. For the model selection problem in the context of classical regression

model using the general information criteria (GIC). Bai el al. (1999) also applied the

idea of data-oriented penalties. Here, we also use the same idea, but our approach

involves the use of a simulation method to estimate probabilities of correct selection

and choosing penalties that optimise these probabilities on average. Maximising

simulated probabilities can be a difficult optimisation problem. We use a relatively

new optimisation algorithm called simulated annealin£ \ wercome any difficulties

in this regard. The main feature of this optimisation algorithm is that it can find the

global maximum/minimum in the presence of local maximum/minimum, and it is a

8
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very robust algorithm (Goffe i't al. (1994)). A detailed descnption of this

optimisation technique is given in Section 2.4 of Chapter 2.

A similar ap'^nch to model selection has been investigated by Kwek and King

(i997a. 1997b) and Kwek (2000) in the context of selecting between different

conditional heteroscedastic processes. Billah and King (2000a. 2000b) have also

considered a similar method for choosing between different time-senes processes for

linear regression disturbances. Each of these studies has involved choosing between

vanance-covariance matrix functions with restricted parameter spaces. In. this thesis

we consider model selection of different mean processes with unrestricted parameter

spaces.

The specific aims oi' this thesis are to:

(i) develop a generalised form of some well used \C (A1C, B1C HOC. HQ. GCV),

(ii) derive a method of model selection which performs better than all the existing

criteria in all situations,

(iii) to investigate the use of multiplicative penalties with mean squared error to

select the best model,

(iv) investigate the performance of the simulated annealing optimisation (SAO)

technique to find the penalty for selecting the best model using additive and

multiplicative penalties,

J
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(v) study the performance oi additive and multiplicative penalties with the SAO

technique using the idea of controlling the probability of correct selection, and

(vi) make recommendations for the use of appropriate methods of model selection,

all in the context of the linear regression model.

1.2 OUTLINE OF THE THESIS

In Chapter 2, we present a survey o\' the relevant literature in the (field of model

selection. The use of sum of s^. \red errors for selecting the best model is discussed

in Section 2.2. The idea ol" multiplicative penalties is introduced and the technique of

using multiplicative penalties for selecting the best model is also discussed. In

Section 2.3. we review widely used 1C procedures. The major advantages and

disadvantages of using IC for model selection purposes are also discussed, in

addition, this section contains some directions lor overcoming these problems of

model selection. SAO is introduced in Section 2.4. which also contains a literature

survey of the use of SAO in econometrics.

A generalised form of six widely used IC is given in Chapter 3. A new method of

selecting the true model on the basis of the maximum average probability of correct

selection of mode's is introduced in Section 3.2. In Section 3.3.1, we propose a new

method of data generating processes for simulation experiments for selecting a model

from a set of competing alternative models in linear regression settings. In Section

3.3.i. lt j s s | l o w n through the Monte Carlo technique ti at for a fixed number of

10
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simulations qN. where q is the number of parameter drawings and N is the number o:f

replications, greatest accuracy is obtained by setting N=\. In this chapter, we propose

five new 1C and the performance of these IC are evaluated in Section 3.3.3 via Monte

Carlo experiments.

In Chapter 4, we introduce the application of the SAO technique to selecting the best

model irom a set of competing alternative models. The idea of an additive penalty for

the maximised log-likelihood and a multiplicative penalty for the mean squared error

is introduced in Sections 4.2 and 4.3. respectively. Simulation experiments were

conducted to evaluate the performance of these penalties compared to those of

existing criteria. The experimental design of these simulations is outlined in Section

4.4 am \suhs are presented in Section 4.5.

In Chapter 5 we investigate selection between competing models with an equal

number of parameters, which is a special case of Chapter 4. where the models have

different numbers of parameters. For the existing 1C. the effect of the penalty

function is cancelled out in selecting the best model from a set of equi-dimensional

competing models, because the penalty functions of the existing critena are functions

of k, the number of free parameters and ;/ the sample size. In this situation, selection

of the best model depends only on the maximised log-likelihood. The objective of

this chapter is to investigate the performance of the SAO technique for finding

optimum penalties, when the competing models are equi-dimensional. Section 5.2

11
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contains a description of the Monte Carlo simulation experiments and Section 5.3

presents the results of these simulation experiments.

In Chapter 6, we discuss the issue of finding penalties that make the average

probability of correct selection (APCS) equal. We propose a method of minimisation

of variation among the APCS in Section 6.2. We apply the SAO technique to

implement our proposed method to find the penalties for selecting the models with

the constraint that the variation among the APCS is as minimal as possible. The

standard deviation among the APCS is used as a measure of variation. Section 6.3

gives a description of the Monte Carlo experiments and discussion of the results,

when the competing models have an unequal number of parameters. Section 6.4 is

similar to Section 6.3, but the competing models have an equal number of

[parameters.

Chapter 7 is the final chapter of this thesis. In this chapter we summarise the findinus

of our research work, make some concluding remarks and make some suggestions for

future research in the area of model selection.

L3 COMPUTATIONS

We used GAUSS System Version 3.2.18 (Apfoch Systems Inc.) on a Pentium II

personal computer with 64MB RAM for all simulation experiments used for

12
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generating results for this thesis. We also used SPSS 9.0 for Windows and Microsoft

Excel 97 for some of our computations.

13
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CHAPTER 2

LITERATURE SURVEY OF MODEL SELECTION AND
THE SIMULATED ANNEALING OPTIMISATION

TECHNIQUE

2.1 INTRODUCTION

In econometrics we are often forced to ask the data to choose a model for us from a

set of alternative models. There is a lot of literature on this problem with a range of

methods or strategies being suggested as possible solutions. A sequence of pairwise

tests is one of the techniques often used to select the best model. Unfortunately this

technique has several drawbacks, which were discussed in Chapter 1. Akaike (1974)

pointed out that the use of hypothesis testing is not a proper method of statistical

model selection. Granger ct al. (1995) contend that model selection should be based

on well-thought-out mode! selection procedures rather than a series of classical

pairwise tests and information criteria (IC) based model selection procedures provide

a good framework. These procedures overcome most of the disadvantages of

pairwise tests of hypotheses, which were discussed in the previous chapter. The

puipose of the first two sections of this chapter is to survey the relevant literature on

model selection based on residual sum of squares and IC procedures.
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An 10 based mode! selection procedure depends on maximised log-likelihood

functions and a penalty function, and the model with the largest penalised log-

likelihood value among the competing models is selected as the best model.

Unfortunately there is little agreement about the form of penalty function and none of

the existing IC procedures perform well in all situations. In this thesis we propose a

simulation based technique to estimate probabilities of correct selection and choosing

penalties that optimise these probabilities on average. Our objective function is made

up of averaged probabilities which in turn have been estimated by the Monte Carlo

method; it is therefore a step function (details are discussed in Section 3.2 of Chapter

3). These types of functions are difficult to optimise using standard numerical

iterative methods. They have many plateaux, which will cause standard optimisation

techniques great difficulties. Most of the standard iterative algorithms fail to find the

global maximum ov minimum for these types of objective functions. From the work

of Kirkpatnek el al. (1983). Romeo ci al. (1984). Whi:c (1984) and Goffe et al.

(1994). it does seem that the simulated annealing optimisation (SAO) algorithm

peiforrns well at finding the global maxima in the presence of local maxima and for

functions like ours which have plateaux and other ill-behaviour. The algorithm works

well because it accepts both uphill and downhill moves in a random but systematic

manner thus allowing the algorithm to by-pass local maxima/minima and plateaux. In

Section 2.3 we will provide a brief literature review of this optimisation technique

used in econometrics. In the final section we will make some concluding remarks.

15
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2.2 USE OF RESIDUAL SUM OF SQUARES FOR MODEL
SELECTION

The purpose of this section is to survey the relevant literature on model selection,

which use residual sum of squares. The available methods in the literature that use

residual sum of squares for model selection are the coefficient of multiple

determination and the adjusted coefficient of determination suggested by Theil

(1961). Mallows' (1964) C;, criterion and Amemiyas (1980) PC criterion.

Nowadays C;l and PC are regarded as 1C and these 1C are related to the IC proposed

by Rothman (1968) denoted J r and Hocking (1976) known as Sr. Zhang's (1992)

final prediction error (FPH) criterion and Rahman's (1998) generalised model

selection criterion arc also based o^ the residual sum of squares.

The coefficient of multiple determination denoted by R~ was (the first criterion used

in econometrices and other areas for model selection purposes. It is also used as a

goodness of fit statistic for selecting a model. The interpretation of R1 is, the

proportion of the variation in the dependent variable that is explained by the

independent variables in the model and its value lies between zero and one. In the

linear regression model

j u , (2.1)

] where y is an nx 1 vector of observations on the dependent variable, X is an fixk'

matrix with a column vector of ones in its fiiM column and in the remaining U' 1)

gr

16
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columns ( A * - l ) non-stochastic variables (i.e., there are (k'-l) non-constant

regressors), u is an ;?x 1 vector o r random disturbances following N(0.cr"I)and p

is a vector of k' parameters. R~ is defined as

X(y,-v>2

SSR_

TSS
(2.2)

where SSR is the sum of squares due to the regression. TSS is the total sum of

squares, v; is the estimated value of y. based on the ordinary least square method,

and y is the mean value o\~ y,. (t = 1.2 / ; ) . It is clear that by simply adding new

independen! variables to (2.1), the value of R~ will increase and never decrease, and

R~ —> 1 as k" —>;;. This can be demonstrated in the following way. Suppose we

have a model which regresses a variable y, on the A° variables v,,.v, .v c . This

model is equivalent to the mode' which regresses y on the A'° + l variables

A | , L , . . , , j , t l , subject to the restnction that the coefficient on A.C } is zero. So the

R2 value from the latter model is either greater than or equal to (if and only if the

estimated coefficient of .v^^ is identically zero) the earlier model. Hence the R~

criterion for selecting the true inodel is inadequate as the model with a larger number

of un. ,'ssary independent variables will produce a larger R: value. To overcome

this deficiency of A':, Theil (1961) suggested an adjusted R2 denoted by R~,

defined by

17
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RSS

~~ " '" . (2.3)

I n-l
ir

I This adjusted coefficient of multiple determination is adjusted for the residual

I decrees of freedom. Since R2 = 1 , so R'can be expressed as a function of R2

I TSS

at follows:

g- — j /j_y^-'\ n 4)
n-k'

As mentioned earlier, with the inclusion of an additional variable, R~ cannot fall, but

R~ may fail as it takes account of the residual degrees of freedom. Actually R2 is

R~ with a penalty for the additional regressors. Dhrymes (1970) showed that the

value of /Pwill increase by adding an additional regressor if the r-value of the

coefficient of this added regressor is greater than unity in absolute value. He

analytically showed that

1 - ^ n~k'

( / i - i t -
(2.5)

where R\ and R'c are the values of the coefficient of determination of the models
k k - 1

with k° and (A° — 1) non-constant regressors, respectively and ^c is the value of the

square of the /-statistics for the kM> regression coefficient of the model with A:0 non-

constant regressors.

18
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From this equation it is clear that R2
: will increase for the added k !h non-constant

rearessor if : < 1, which is only true when r > 1. Accordms to Theil
(n-k - l ) + r. " *

(1971), the model selected on the basis of largest R~ value 'on average" is the

correct model.

One of the main problems of R' is that it does not penalise the loss of degrees of

r.eedom sufficiently. For example, suppose the number of regressors in the model is

large with all relevant regressors along with some irrelevant regressors in the model.

In this situation the estimated value of the residual variance is unbiased, but R2lends

to select the model with a large number of regressors. Another problem with R~ is

its poor predictive performance. According to Schmidt (1973, 1975), if the model

contains variables of the true model with some irrelevant variables, then the R2

criterion tends to fail to identify the true model. Dhrymes (1970) also mentioned that

R~produces unnecessarily large prediction errors, so this technique may not be

appropriate if the selected model is used for prediction purposes.

If it can be assumed that the behavior of the regressors in the future is the same as in

the sample, then the mean squared error may be shown to be approximately equal to

2(k'-l)cr2 RSS,
J I J

n n
+ - , (2.6)
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where RSS, is the residual sum of squares, (k' - I ) is the number of non-constant

regressors included in the /"' model and a' is the unknown population error

variance. Mallows' Cp criterion and Amemiya's PC criterion differ only in the

r>cc
estimated value of this cr . Mallows' C, criterion uses ^ as an estimate of

' n-k +1

a1 . where RSS is the residual sum of squares obtained from the complete model

using all (k"-\) non-constant regressors. while the estimated value of cr in

RSS,
Amemiya's PC criterion is ; . where RSS is the residual sum of squares

k + 1

* t *

obtained from the model using only (it, -1) regressors and kt <k . So these two

criteria can be written as follows:

K .vs.. (2.7,C, K .vs . .
n - k + 1

2{k'~l)RSS n + k'-l
PC = '- : -+RSS = i RSS . (2.8)

n-k +1 ' n-k +1

In Amemiya's PC criterion it is assumed that the model with (k* -1 ) non-constant

regressors is the conect model and the model with (k" -1) non-constant regressors

? includes a number of irrelevant regressors. Maddala (1992) argued that it is not a

>
i reasonable assumption that every one of the models is the true model to estimate cr,

j rather the asymptotic estimate of a2 used in Cf) is more reasonable.
I

20
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According to Gorman and Toman (1966), Mallows' C,, for the multiple linear

regression model with known variance o" can be written as follows:

RSS
C = — ^ — ( « - 2 ( / t , - l ) ) . (2.9)

where /?SS, is the residual sum of squares, n is the sample size and (kt -1) is the

number of non-constant regressors for the /"' model.

Under the assumption that the regressors follow a multivariate normal distribution.

Hocking (1976) derived the .V;) criterion by minimising the conditional mean squared

error of prediction, which can be written as:

n~k' + \
5,, = - '.- RSS,. (2.10)

n-k.

The basic difference between Mallows' C., Amcmiya's PC and Hocking's S/t

criterion is that the former two depend on the assumption of non-stochastic

regressors, whereas the latter depends on the assumption of stochastic regressors.

Both Mallows' C;, and Amemiya's PC reduce to Hocking's Sr criterion for

stochastic regressors (Kinal and Lahiri (1984)).

Zhang (1992) mentioned that all the existing criteria can be shown to be

asymptotically equivalent to minimising (with respect to K;° )

21
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(ifl (i) + rjki. 0<k] < U \ - 1 ) . ( I l l )

where RSS(k ) is the residual sum of squares when only the first k regressors are

entered in the jrh model and r\ represent the penalty for over fitting. This criterion is

called the final prediction error (FPE) criterion. According t.o Zhang, A1C. Cf, and

BIC arc special cases o\' the above criterion. When ?}* = 2 . (2.11) corresponds to A1C

and C;,; and (2.11) corresponds to BIC w hen r\ - In n .

It was mentioned earlier that with the inclusion of an additional variable into an

existing model, the value of R~ increases, which means that the value of the residual

sum of squares decreases. So there is a tendency to select the model with an

unnecessarily large number oi~ independent variables ;i we use the smallest residual

sum of squares as the criteria ior model selection. Hence we need some adjustment to

the residual sum ol squares, which can be done with the help of a penalty function.

Let us assume </; (multiplicative penalty) is the penalty function for the / ' ' model.

Then the model with smallest Jl (multiplicative information criteria for the/ ' 1

model) will be selected, where Rahman (1998) defined Jf as follows:

J, = RSSltir (2.12)

Jj is called the penalised sum of squares error and model j will be accepted over all

other models / if

iv 22
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J<J . Vi = l. 2 ( . / - I ) . (./ + D m. (2.13)

Rahman (1998) gave the functional form of a possible qf as follows:

q, ={n-k,r(u:)'
! . (2.14)

where ax and <;, are arbitrary constants, and kt is the number of free parameters

included in the model under consideration.

Analytically he showed that all the existing criteria are a special case of this new

2k .

criterion in the linear regression setting. For example, if at = e " then ./, is

k,
approximately equivalent to Akaike's inlormat on criterion (A1C) and ii q - —

n

then J, is approximately equivalent to Schwartz's Bayesian information criterion

(B1C).

He also mentioned that by choosing appropriate values of at and a^, it is possible to

develop an infinite number of new criteria which will perform well in a range of

situations. But the problem with this penalty function is setting the values of ax and

a2 for a particular data set. Also the penalty function is a function of n, the sample

size, and k; the number of free parameters; ;wid independent of data values, i.e. for

the same set of competing models, a change of data sets or regressors does not have

any impact on the penalty function. To overcome these problems, we redefine the
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multiplicative information criteria using mean squared error, which is discussed in

Chapter 4.

2.3 INFORMATION CRITERIA BASED MODEL SELECTION

The purpose of this section is to review the relevant literature on information criteria

(IC) based model selection. An IC model selection procedure is based on choosing

the model w ith the largest maximised log-likelihood minus a penalty term. There are

a number of penalty 1 unctions available in the literature. All of them are a function of

the number of free parameters in the model and many include the sample size. But

from the user's point of view, which one is the best for a particular data and set of

models is a question to be answered as there is little agreement about what the eonect

answer to this question is. Among the available IC. A1C. proposed by Akaike (1973).

is the most widely used and popu'.tr criterion in economics and econometrics (see for

example. Hurvich and Tsai (1991), Mills and Prasad (1992). Fox (1995) and Hughes

(1997)). Therefore, we begin our review with A1C. followed by the BIC model

selection criterion proposed by Schwarz (1978) which assumes a prior distribution of

the parameter of the proposed model. In addition to these two widely used criteria,

we will look at the literature on some other criteria, which include Schmidt's (1975)

Generalized Cross Validation (GCV) criterion, Hannan and Quinn's (1979) criterion,

(HQ), Hocking's (1976) criterion (HOC), and JIC, recently proposed by Rahman and

King (1999).
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Akaike's Information Cntcnon (AlC) grew out of Akaikes <1973. 1974) research on

selecting the best order of an autoregressive process. It gives a measure of the

distance between estimated model and 'he true data generating process using

Kullback Leibler's (1951) information theory. AIC was derived under the

assumption that the true distribution can be described by the given model when its

parameters arc suitably adiusted. Several authors define AIC in different forms, but

the most popular one for am general model selection purpose can be written as the

penalised log-likelihood form

A I C . = I.,iOl)-kl. (2.15)

where 1,(0,) is the maximised log-likelihood function and 6} is the maximum

likelihood estimator of 0t, the vector of A, free parameters included in the model

M( , j'• = 1, 2 m. AIC selects the model for which AIC, is the maximum among

the m models.

The mean expected log-likelihood can be used as a measure of the goodness of fit of

a model, which is defined as the mean of the expected log-likelihood of the

maximum likelihood. The larger the mean expected log-likelihood, the better the fit

of the model. When there are several models whose values of the maximum log-

likelihood function are the same or approximately the same then one should choose

the model with the smallest number of parameters, which is called the principle of

parsimony. AIC was developed to measure these two properties of the model, though
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it is successful at measuring the first property rather then the second. Hurvich and

Tsai (1989) concluded from their Monte Carlo study that AlC tends to overfit the

data for very small samples. Sugiuro (1978) proposed a finite sample correction of

AlC for the case of data generated from a normal distribution. To overcome the

overfitting problem of AlC. Hurvich and Tsai (1989) derived a bias corrected version

of AlC for regression and autoregressive time series models which they called AlC,.

and expressed it as:

AIC - AlC . +
(ki -4 na-,+2)

n-k-2
(2.16)

This modification of AlC is useful when the sample size is small relative to the

dimension of the model and is asymptotically efficient if the true model has infinite

dimensions. The simulation results of Hurvich and Tsai (1993) demonstrate that in

small samples. AIC\ is superior in terms of bias and strongly outperforms AlC for the

models that contain more unknown parameters than the univariate AR models.

A generalised form of AlC was suggested by Bhansali and Downham (1977) and is

(2.17)

where y is a constant and greater than one. They argued that this generalisation will

help to improve the problem of overfitting and if y increases gradually as n increases,

then it will be a consistent criterion, which is discussed below.
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Consistency is an important asymptotic property of a model selection criterion. It

requires the model selection criterion to be able to select the true model from a set of

models with probability tending to one as the sample size tends to infinity, assuming

that true model is contained in the choice set of models. Shibata (1976). who

introduced the idea of consistency, recognised that AIC is not a consistent cntenon.

Nishii (1988) developed a techniqie to test the consistency of a cntenon, which is

briefly discussed below.

Let \C be the information cntenon for the / ' ' model and defined as

lC, = A ( t f , ) - ^ = /-<(rV>-MV (2.18)

where p is the penalty for the _/"' model and Dn is a function of n.

B\ Theorem 4 of Nishii (1988). IC, will be strongly consistent if / ) , satisfies the

following two conditions:

(i) r, = l i m — - 0 and (ii) <\ = lim—'-*—•= +°° ;
" *" // - " '" In In /i

and IC, will be weakly consistent if D satisfies the conditions

(i) i\ = l im—- = 0 and (ii) c\ = limI)n =

If we apply this to AIC, it is transparent that AIC is not consistent as the penalty

function for AIC is independent of /;, the sample size. Some other researchers have
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also shown that AIC is not consistent (see for example. Atkinson (1980). Hannan

(1982). Shibata. (1986). and Koehler and Murphree (1988)).

Akaike's 1973 and 1974 research work was extended by Schwarz (1978), who gave a

Bayesian solution to the problem. As it is based on the Bayesian approach, it has

become known as the Bayesian information Criterion (B1C). During 1978 two more

Rave ;ian criterion were proposed by Sawa (1978) :md Learner (1978). But among

<hcse Bayesian criteria. BIC has the most general asymptotic properties. Rissanen

(1978) ;ilso proposed an 1C based on the Bayesian approach, which is the same as

BIC. In a similar way to AIC. BIC can be expressed in the penalised log-likelihood

form as follows:

BIC, = A ,« ) , ) - —In/». (2.19)

BIC assumes a proper prior distribution of the parameters of the proposed model and

selects the model with the highest asymptotic posterior probability. So the use of

Schwarz's criterion may be difficult if the proper prior distribution of the parameters

is not clearly defined (Akaike, 1981). The criterion developed by Rissanen (1978,

1986, 198', 1988) on the basis of the minimum description length (MDL) overcomes

this problem of BIC.

Hannan and Quinn (1979) derived a criterion for selection of the order of an

autoregressive model, i.e. to determine the most desirable lag-length, which is known
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as the Hannan and Quinn (HQ) criterion. This criterion is less commonly used, but is

ideal for the comparison of AIC and BIC. because it shares the property of both AIC

and BIC. The criterion can be written in penalised log-likelihood form as

; = Z,,(0,)-*,lnlnn. (2.20)

They recognised that BIC is a consistent criterion and the characteristics of HQ are

similar to those of 3IC with the exception that in small samples, the two criteria are

likely to select different models. Fox (1995) noted that this criterion shares a property

of both AIC and BIC in that its marginal penalty is constant as k l increases for fixed

n. Many researchers showed that this is a consistent criterion, see for example Nishii

(1988), Hannan and Quinn (1979). and Atkinson (1981).

The variable selection criterion proposed by Mallows (1964) has been widely used in

many social sciences including economics and econometrics. As new and more

efficient methods became available for variable and model selection purposes, the

acceptance of this criterion has decreased. The penalised log-likelihood form of this

criterion henceforth will be denoted as MCP to distinguish it from C defined in

Section 2.2. It has the following form:

(2.21)
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where k' is the dimension of the largest model which nests all possible models. This

is a consistent criterion (see. Atkinson (1981) and Nishii (1988)). In Mallows'

criterion, the variance estimate is obtained from a regression model which includes

the entire set of regressors. An alternative estimate of the variance has been

suggested using only the number of regressors in the model under consideration,

which results in a new criterion proposed by Roihman (1968) and can be expressed in

the following penalised log-likelihood form.

/ ' , J.l I ~> ' -> ' - • -

The same criterion was suggested by Akaike (1969) and A me mi y a (1972. 1980).

Akaike called it the Final Prediction Criterion (FPC), while Amemiya called it the

Prediction Criterion (PC).

Hocking (1976) suj. csted a model selection criterion denoted by Sr. The penalised

log-likelihood form of this criterion can be given by

= Li(bl) + ^\n(n-kJ)+~\n(n-ki-\). (2.23)

This criterion was thoroughly reviewed by Thompson (1978). and was given an

alternative justification by Breiman and Freedman (1983). In his paper, Thompson

(1978) gave the derivation and justification of this criterion along with C, and . / , .
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1
One major limitation of Hocking's criterion is it is not applicable for nonstochastic

regressors.

Cross-validation is a statistical tool, which uses the technique of splitting data into

two sets. The first set is used to develop the model called the model building set.

while the second set is used to evaluate the reasonableness and predictive ability of

the selected model. This technique was suggested by Schmidt (1971, 1974, 1975),

Allen (1971. 1974). Stone (1974) and Geisser (1974, 1975). Schmidt called it the

cross-validation score SSPE (Sum of Squared Predictive Error), while Allen called it

PRESS (Predictive Sum of Squares). Typically this technique involves deleting an

observation from the sample, then fitting the model using the reduced sample, which

is used to predict the deleted observation. This is repeated for each observation in the

sample and the model with the smallest mean squared enor of prediction is selected

as the best model. The direct computation of the CV is burdensome. Schmidt (1971)

and Allen (1971) gave a formula to compute CV directly, but this criterion is

different in nature from the other model selection criterion. Craven and Wahba

(1979) gave a generalised form of CV and called it Generalised Cross Validation

(GCV), which is an approximation of CV and is a comparable form to the other

criteria. Nishii (1988) showed that GCV is not a consistent criterion. According to

Fox (1995), the penalised log-likelihood form of the GCV criterion can be written as

(2.24)
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Fox (1995) expressed TheiTs (1961) R' criterion in the following penalised log-

likelihood form for model selection purpose and we will henceforth denote it as

RBAR to distinguish it from Rz and R~ defined in Section 2.2.

RBAR, = / . , (0 ;) + "ln(/ i-A-,) . (2.25)

Rahman and King (1997) derived an analytical formula for finding the probability of

correct selection of the true model from a set of competing alternative regression

models. They observed that for samples of size at least 8 and when the model with

the lowest number of rcgrcssors is true then the probabilities of correct section

obtained from A1C. BIC and RBAR satisfy the inequality B1C>A1C>RBAR. On the

other hand, when the model with the highest number of regressors is true then the

picture is exactly reverse, i.e. the probabilities of correct selection are

RBAR>A1C>BIC. This behaviour oi BIC and RBAR motivated them to develop a

new criterion on the basis of the simple average of the penalty functions of BIC and

RBAR. They called it the joint information criterion (JIC) (Rahman and King (1999))

which can be expressed as the following penalised log-likelihood form.

(2.26)

They showed that it is a strongly consistent criterion, which performs well in a range

of situations and therefore is a very competitive model selection criterion. In their
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paper, they mentioned that the probability of correct selection is directly related to the

sample size but inversely related to the error variance.

The small sample performance of AIC and B1C was studied by Lutkephol (1984). He

concluded that for both small and large samples, the performance of AIC is better

than BIC in one-step-ahead forecasting for selecting AR(1) and MA(1) models, but

worse in five-step-ahead forecasting. Meese and Gewcke (1984) also compared the

forecasting ability of AIC and BIC along with three other criteria and concluded that

AIC performed the best in most of the cases. Schwarz. (1978) reported thai for large

samples, the performance of BIC differs markedly from that of AIC with respect to

selecting the correct model. For selecting the best model from a large set of models.

Kohn (1983) found that BIC consistently chooses a mode! with the smaller

dimension. From the research results o\ Hurvich and Tsai (1991), it is clear that for

small samples the modified version of AIC, A1C( ., performs significantly better than

AIC and BIC and marginally better than these criteria for moderately small samples.

In, another research paper. Hurvich and Tsai (1990) reported that under certain

conditions, AIC is likely to perform better than BIC in small samples. Crato and Ray

(1996) conducted a large-scale simulation study to compare the performance of AIC,

AIC and BIC, and concluded that for pure fractional noise, the performance of BIC

is better than the other two criteria. In order to compare the performance of AIC,

AIC, , BIC, HQ, MLD and RBAR, Mills and Prasad (1992) conducted simulation

experiments in determining the correct data generating process in autoregressive and
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linear regression models. From their simulation results, they discovered that the

performance of AIC, is better in small samples and with an increase in sample size,

the relative performance of AJC, gradually becomes worse. AIC tends to over

parameterise the model. They concluded that from a user's point of view. BiC should

be the criterion to be used for selecting the correct model. From the simulation study

of Schmidt and Tscherning (1993). it was concluded that among AIC, . BIC and HQ.

t!ie performance of AIC( is the best and HQ is the worst in selecting time-series

AR1MA models. More detailed discussion of llic above mentioned information

criteria can also be found in Hughes (1997), who derived an AlC-type criteria using

KL information in the presence of one-sided information on the parameters under

dispute. He pointed out that AIC out performs BIC if the larger model is the true

model. On the other hand, the reverse picture is observed if the model with smaller

number o\' parameters is the true model. From a simulation study. Kwek (2000)

found that in small samples, the performance o\~ RBAR is the best and BIC is the

worst procedure for selecting the correct model among autorcgressivc conditional

heteroscedastic (ARCH) models and generalised ARCH (GARCH) models.

Stone (1977) and Nishii (1986) noted that CV is asymptotically equivalent to AIC.

From the simulation results of Holmes and Hutton (1989), it is apparent that if there

is a weak relationship between the dependent and independent variables, then the

RBAR criterion performs better in terms of selecting the true model. But if the

relationship is strong then AIC, BIC, HQ and PC choose the correct model with high
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probabilities and in this situation the performance of B1C is the best, while the

performance of RBAR is the worst. For selecting the best predictive model from a

class of linear regression models. Shao (1993) showed that CV is asymptotically

equivalent to A1C and MCP in terms of consistency. Shibata (1981) showed that A1C

is asymptotically equivalent to MCP. For the variable selection problem in the linear

regression model, Thompson (1978) recommended Mallows' MCP criterion for fixed

regressors. while for random regressors his preferred criterion is Hocking's HOC.

The penalty function of all the above mentioned criteria in the penalised log-

likelihood form is a function of the number of free parameters involved in the model

under consideration and often the sample size. It implies that for a fixed sample size

and a particular set of models, changes oi the data set do not have anv impact on the

penalty function. This motivates researchers to find data oriented penalty functions,

so that a change of data set will also change the penalty value in numerical terms. As

far as we know, for model selection in linear regression settings, Rao and Wu (1989)

first introduced the idea of a flexible penalty function based on data in linear

regression models. They analytically showed that the criterion proposed by them on

the basis of a flexible penalty function is strongly consistent without making any

distributional assumptions. They argued that the performance of this type of criteria

is better than the criteria based on the fixed penalties. Chen et al. (1993) used a data

oriented penalty function for selecting AR models for time series. Bai et al. (1999)

extended the work of Rao and Wu (1989) for selecting linear regression models using
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General Information Criterion (GIC). They argued that the fixed choice of penalties

may not be good in all situations. They showed that the data-oriented penalties

guarantee strong consistency and have some advantages over fixed penalties.

It is well known that the performance of the existing criteria vanes from situation to

situation and none of the criteria performs well in all situations. Some criteria favour

the model with the smallest number of parameters, while others favour the model

with the largest number of parameters. For example. B1C always favours ihe model

with the smallest number of parameters among competing models, while RBAR

favours the model with the largest number of parameters. As a result, the average

probabilities of correct selection vary from model to model. Ideally a model selection

criterion should select the true model without favouring one model over others. So

the idea of making the probabilities of conect selection equal has evolved. This is

called controlling the probability of correct selection.

King el al. (1995) proposed an algorithm, which makes the probability of correct

selection equal. They proposeJ two approaches. Their first approach is based on the

idea of a common model. But the problem with this approach is that there may not

always be a common model and there is no fixed rule for finding the probabilities

when the competing models are nested. Their second approach is based on

representative fixed points and they proposed two techniques for selecting
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representative fixed points. The first entirely depends on the judgment of the user so

for the same data set and models, the conclusions of different reseaichers may vary.

Forbes ci al. (1995) proposed three techniques for controlling the probability of

correct selection of one model over the other. Their firsi two methods are for the

variable selection purpose and the final one is for general model selection, but the

problem with this approach is that the penalties that control the probability of correct

selection are approximate penalties. Hossain (1998) proposed an empirical based

information criterion called C1C. which is based on King et al. 's (1995) algorithm for

controlling probabilities of correct selection and the bootstrap sampling method. He

applied CIC to selecting the correct model from a set of linear, log-linear and Box-

Cox transformation models. From his stud)', it is observed *hat the performance of

CIC is better than the existing JC lor selecting the correct model.

On the topic of finding empirical penalty functions, related work has been done by

Kwek (2000) for selecting conditional heteroscedaslic (CH) and autoregressive

conditional heteroscedastic (ARCH) models, while Billah (2001) used the same

technique for selecting appropriate time series models including exponential

smoothing models. In her study. Kwek concluded that CH information criterion and

the optimal small sample procedures proposed by her outpeiform all other existing 1C

for selecting ARCH and GARCH models in small samples. She suggested that BIC

should not be used for selecting CH models, because it has been built without
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considering the one sided information used in the estimation of CH models. From the

simulation results, she concluded that among th<' existing criteria, in small samples

the performance of RBAR is the best for selecting ARCH and GARCH models

followed by AIC, and BIC is the worst performing criterion. But in large samples,

A1C performed relatively better than RBAR. The well known tendency of BIC to

under fit and the tendency of AIC to over fit in linear regression models was also

observed in the results of her experiments. She mentioned that although BIC has the

strongest consistency property, it under fits the model in small samples and as a

result, the performance of BIC is the worst in selecting both ARCH and GARCH

models. This indicates that the efficiency of an IC is not guaranteed by its consistency

property.

In order to see the performance of the widely used existing IC procedures for

selecting exponential smoothing models on the basis of mean average probability of

correct selection (MAPCS), Billah (2001) conducted a Monte Carlo simulation study.

From his study he found that the performance of BIC is the best followed by HQ and

MCP is the worst at selecting exponential smoothing models He proposed two

penalty estimation methods (PEM), PEM-GS and PEM-SA on the basis of

maximising the MAPCS for the model selection problem for the linear regression

model with different ARMA error processes. From his simulation study, he

concluded that for small samples the newly proposed methods consistently perform

better than the existing IC. He also did simulation experiments for selecting models
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on the basis of the model's forecasting accuracy, and concluded that the model

selection methods proposed by him were better than available IC methods.

2.4 SIMLLATED ANNEALING OPTIMISATION TECHNIQUE

In any model building process, the modeller needs to estimate the model parameters.

There are some methods of estimation, for example the least squares method, where

the parameters can be estimated directly. But. there are many methods, for example

non-linear least squares, maximum likelihood and the generalised method of

moments, where the estimation process is totally dependent on a numerical

optimisation technique, which attempts to iterate to the desired solution. Several

iterative search algorithms are available in the literature. For example, trr Gauss-

Newton method and Newton-Rapson method. All iterative methods use the following

lour steps to find the best estimates of the parameters (SAS (1992)):

(i) The modeller has to provide initial starting values for the parameter estimates,

(ii) the algorithm selects updated values for the parameter estimates such that the

error sum of squares/log-likelihood for the updated values is less/greater than the

error sum of squares/log-likelihood for the initial starting values,

(iii) the algonthm continues to select updated values for the parameter estimates that

reduce the error sum of squares/increase the log-likelihood, and

(iv) the algorithm stops when a convergence criterion is met.
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For all iterative methods, providing good initial values can be important, because the

solution found will depend on the initial starting value. Unfortunately, for many

problems there is no way to find a starting value that guarantees the global optimum.

Bad starting values can increase computer lime and could prevent the procedure from

finding the correct estimates of the parameters, which is one of the drawbacks of

these methods. Another problem is 'Jhat for some of these methods, e.g. the Newton-

Rapson method, both first and second derivatives are necessary and in some

situations these derivatives do not exist. Most of the existing iterative algorithms

assume that the functional form of the objective function is approximately quadratic

and the function has one optimum. Unfortunately, some functions violate these

assumptions also. For multiextrema functions, these iterative methods cannot get

away from a local extrema and converge only to one of the local extrema, subject to

the starting value of the parameter. This is the major drawback of these iterative

methods and in this situation, researchers typically try to find the global optimum by

using different arbitrary starting values (see Cramer (1986) and Finch et a\. (1989)).

Even if the algorithm of these methods converges, it does not guarantee that the

estimated value is the global optimum. Most of the popular packages, for example

SAS, RATS and TSP, used for econometric and statistical analysis use these

methods. To overcome these problems, one solution would be to introduce a global

optimisation method that can avoid local maximum or minimum, and can find the

optimum value of the parameters from the entire parameter space. The task of a
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global optimisation method is to find absolutely the best set of parameter values to

optimise an objective function.

There are a number oi different ways of finding the global optimum of a function.

The earliest methods were associated with the grid search technique and the function

is evaluated at equi-spaced points throughout the parameter space. Although this

method is typically successful at finding the global optimum of a complicated

function, the computational time of this method is too high for a refined search

(Billah and King (2000b)). Global optimisation techniques were developed to

overcome the problems of grid search and the conventional existing iterative

methods. The numerical optimisation techniques have several advantages over the

grid search method. There are several numerical global optimisation techniques

available in the literature and specific optimisation methods have been developed for

many ciasses of optimisation problems. A comprehensive list includes, i) Mixed

Integer Programming, ii) Interval Methods, iii) Clustering Methods, iv) Evolutionary

Algorithms, v) Hybrid Methods, vi) Statistical Methods, vii) Tabu Search and viii)

Simulated Annealing. Gray et al. (1997) did a comprehensive survey of these

methods and the description of them is available on the internet site

http://www.es.sadia.gov/opt/survey/main.html. There are several global optimisation

programs available to solve different types of optimisation problems. For example,

ASA-CalTech Adaptive Simulated Annealing for finding the global optimum of a

continuous non-convex function over a multidimensional interval, CURVI-Bound
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f Constrained Global Optimisation, for solving constrained and unconstrained

I t nonlinear optimisation problems; and SIMANN-Simulated Annealing, which

5 implements the continuous simulated annealing optimisation algorithm described in

Corona et al. (1987). A review of the available global optimisation programs was

done by Pinter (1996) and is available on the internet site

http://mat.gsia.cum.edu/pinter.fil.

Selection of a global optimisation method depends on the nature of the problem. The

objective function we have to optimise is a step function. From the literature it is

apparent that SAO performs well at finding the global maxima in the presence of

local maxima and for functions like ours which have plateaux and other ill-behaviour

(see Kirkpatrick et al. (1983), Romeo et al. (1984). White (1984) and Goffe et al.

(1994)). A comprehensive discussion of the theoretical and practical details of SAO

is given in Aarts et al. (1997). Simulated annealing is one of the numerical

optimisation techniques, which is a probabilistic method for finding the global

maximum or minimum of a function that may possess several local maxima or

minima (Kirkpatrick et al. (1983) and Cemy (1985)). Annealing is a heat-treating

process that is applied to glass, metals or materials and involves slowly cooling them

to obtain a strong crystalline structure. The basic idea of SAO comes from the theory

of thermodynamics and it is a numerical optimisation technique based on a Monte

Carlo approach for finding the global optimum of an objective function in the

presence of several local optimum. The main advantage of SAO is its ability to move
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i

from the region of a local optima to the region of a global optimum. Another

advantage of this optimisation technique is. like the conventional algorithms, it

assumes very little about the function and can handle the optimisation problem very

efficiently and it is explicitly designed for functions with multiple optima (Corana ct

al. (1987); Goffer al.( 1994)).

There are several SAO algorithms available in the literature. An early one was

introduced for the search of optima of discrete vanables called combinatorial SAO

(Lawler (1976) and Papadimitriou and Steiglitz (1982)). The combinatorial SAO

algorithm has been used successfully in computer and circuit design (Kirkpatrick et

al. 1983 and Wang ct al. (1988)), image processing (Carnevali ct al. (1985)), re-

construction of pollycrystalline structures (Telly ct al. (1987)), neural networks

(Wasserman and Schwarz (1988)), and pollution control (Derwent (1988)). Other

SAO algorithms arc for example, adaptive random search (Pronzato ct al. (1984)),

fast SAO (Szu and Hartly (1987)), down hill simplex with annealing (Vetterling ct al.

(1994)) and direct search SAO (Ali ct al. (1997)). The implementation of a SAO

algorithm involves the application of the Metropolis algorithm (Metropolis ct al.

(1953)), which is the heart of the SAO technique.

The combinatorial SAO algorithm was modified by Vanderbilt and Louie (1984),

Bohachevsky ct al. (1986) and Corana ct al. (1987) to optimise functions of

continuous variables. Among these, the Corana ct al. (1987) implementation of SAO
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appears to be the best in terms of combination of ease of use and robustness (Goffe el

al. (1994)). Goffe el al. (1994) tested the effectiveness of the SAO technique against

some well known optimisation algorithms, namely, the Nelder and Mead simplex

method and a general purpose global optimiser using Adaptive Random Search

(ARS). From their test results it was observed that SAO never failed to reach the

minimum of the function and is the best of the three methods with respect to

reliability followed by simplex method. ARS is the least reliable of the three

methods.

Goffe et al. (1994) compared the Corana el al. (1987) implementation of SAO with

three multivariable optimisation algorithms in the IMSL library on four econometric

models of four different natures. The first model was an example of multiple minima,

which contains only two parameters (Judge el al. (1985, pp.956-957)) and the second

was a rational expectations exchange rate model with 14 parameters. The third model

was an efficiency study of the banking industry using a translog cost frontier system

with 62 parameters and the fourth fits a neural network to a chaotic time series with

35 parameters. On the Judge el al. function, SAO correctly differentiated between the

loca; and the global minima and finds the global optima, while the conventional

algorithms failed. All conventional algorithms failed to find the optimum of the

second model and did not offer any reason for their failure, but SAO was able to

identify the reason. After correcting the problem, SAO found the optimum easily, but

conventional algorithms were successful only 21% of the time. N.'.we of the
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conventional algonthms was able to find the optimum of the third model, while SAO

did it easily. In the case of the fourth model, SAO found a much better optimum than

did any of the conventional algorithms. They concluded that if SAO was not able to

find the global optimum, then the nature of the function makes it impossible for any

other method to find the global optimum.

Let (p = ((px(p, cpit)' be an /; x 1 parameter vector to be estimated each ranging in a

finite continuous interval and f((p)be the bounded function to be maximised. The

implementation of the Corana et al. (1987) SAO algorithm requires the step length

vector for <p say v and the temperature T. For maximising a function the following

steps are required for implementing Corana et al. (1987) algorithm.

Step 1 (Initialisation)

Let the initial values for <p, v and T be </?„, v0 and 7,',, respectively. Let the value

of the objective function at the initial parameter vector (p0 be /0 . Also set (po)i=(p()

and /t(/)/ = / 0 . where opt stands for optimum.

Step 2 (Selection of new point)

Randomly select another point (p' in the parameter space within a neighbourhood of

the original parameter value using the following equation.
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^ • = ^ + n - . (2.27)

where r is a random number generated in the range [-1.1] by a pseudorandom number

generator and v is the i'h component of the step vector v . If (p lies outside the

definition domain of f((p) then a new point is randomly generated until a point is

found inside the definition domain.

Step 3 (Accept or reject the point ami use oj Metropolis criterion)

Let the value of the objective function at this new point be / ' = f(<p'). If / ' > /„,„

(uphill move) then accept the new point and set (po/)l = <p" and fo/tl = / ' . If f^f,

then accept or reject the point with acceptance probability p. computed using the

Metropolis criterion as follows:

[^-_M. (2.28)

This computed value of p is then compared with a pseudorandom number /?', which

is generated from the uniform distribution in the range |0 , l ] . If p'< p, the point is

accepted (downhill move) otherwise it is rejected. In the case of acceptance the

values of <pm and fopl are updated by (p' and / ' , respectively, and in case of

rejection, there is no change in (popl and fo()l. Lower temperatures and larger

differences in the function values are the two factors that decrease the probability of a

down hill move.

46



Chapter 2 U*er.Mure Survey

Step 4 (Adjustment of step length vector v )

As mentioned by Corana et a!. (1987), both a higher number of acceptances or higher

number of rejections wastes computational effort. On the contrary, 50% of moves

accepted and 50% rejected indicates that the algonthm is running well. To make this

the case, after TV, steps through all elements of cp, the step length vector v is

adjusted so that 50% of all moves are accepted. The objective of doing so is to

sample the function widely. If more than 60% of the points are accepted for <pt, then

ihe relevant elements of v are enlarged by the factor 1 + 2.5c( (ai I N( - 0.6), where ai

is the number of points accepted and r is the /'" element of the vector that controls

step variation. The element is declined by, 1 +25i\(0A-al I Ns), if less than 40% of

the points are accepted. Once an equilibrium state has been achieved for a given

temperature, the temperature is reduced to a new temperature as defined in step 5 and

the process stained again taking values of the last iteration of the algonthm as the

initial values.

Step 5 (Temperature reduction)

After Nr times ( Nr, is the number set by the user for temperature reduction test)

through the steps 1 to 4, the temperature, 7", is reduced. The new temperature is

given by

T=rrT, (2.29)

where rT is the temperature reduction coefficient which lies between 0 and 1.
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Step 6 (Terminaling criterion)

The last Nr ( Nr is a number set by the user for successive temperature reductions to

test for termination) values of the largest function vt lues from the end of each

temperature reduction are recorded and compared with the most recent value. The

algorithm will terminate if all of these Nt differences from the most recent value are

less than the terminating criterion f, a very small number.

Goffe et al. (1994) introduced four extensions of the Corana et al. algorithm. The

first modification allows the researcher to test if SAO has indeed found the global

optima; the second modification allows the researcher to restrict the search area to a

sunset of the parameter space. The third extension permits the researcher to

determine a critical initial parameter for the algorithm and the final one directs the

selection of the initial temperature, an essential parameter that controls the robustness

of the algorithm. This allows the researcher to minimise the execution time of the

algorithm.

The simulated annealing algorithm has several potential advantages over

conventional optimisation algorithms. First, it can distinguish between different local

maxima and can escape from local maxima by moving both uphill and downhill. The

algorithm makes very few assumptions regarding the function to be maximised. It is

robust with respect to non-quadratic surfaces so the function need not be

approximately quadratic; and even need not be differentiate (see Corana et al.
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(1987)). Second, a very large element in the step length vector of SAO indicates that

the function is very flat in that parameter, which is valuable information for the

researcher about the function. Third, SAO can identify corner solutions because u

can snuggle up to a comer for functions that do not exist at that comer. The final and

the most important advantage of SAO is that it can optimise functions that are very

complex or impossible to optimise. Simulated annealing requires high computational

power, which is the only drawback of this method. However, recent developments

with respect to computer power largely eliminates this problem. As compared to

other global optimisation methods, SAO has many advantages. These include the

relative ease of implenientalion, applicability to almost any problem and the ability to

provide reasonably good solutions for most problems. Depending on the problem to

which it is applied, SAO appears to be competitive v\ith mun\ of the best heuristic

methods (Johnson e\ a\. (1997)). In this thesis we use SAO to estimate penalties th..t

maximise the average probability of correct selection of linear regression models in

small samples.

2.5. CONCLUDING REMARKS

The main puqwse of this chapter was to review different model selection procedures.

This chapter also contains a review of relevant literature on the global optimisation

technique SAO and its applications in econometrics. Several researchers have argued

that a sequence of pairwise tests has several drawbacks, so may not be appropriate for

the puipose of model selection. We reviewed the literature of two alternative
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methods, mode! selection based on residual sum of squares and model selection

based on IC.

There are several model selection procedures available in the literature which are

based on residual sum of squares. We discussed the following: coefficient of multiple

determination and adjusted coefficient of determination by Theil (1961). Mallows'

(1964) C criterion. Amerniya's (1980) PC criterion, Rothman's (1968) Jp and

Hocking's (1976) Slt. Zhang s (1992) final prediction error (FPE) criterion and

Rahman's (1998) generalised model selection criteria are also based on residual sum

of squares. The advantages and disadvantages of residua! sum of squares based

mode! selection was also discussed. In Chapter 4 a new information criterion based

on residual mean square will be proposed for model selection.

Nowadays IC based model selection procedures are widely accepted for model

selection purposes in different areas of research. There are several IC procedures

available in the literature. We selected some of the widely used IC procedures, for

example, A1C, proposed by Akaike (1973), BIC proposed by Schwarz (1978),

Schmidt's (1975) Generalized Cross Validation criterion (GCV), Hannan and

Quinn's (1979) criterion (HQ), Hocking's (1976) criterion (HOC), and JIC, proposed

by Rahman and King (1999). We discussed some of the main features of these

procedures mainly in relation to selection of linear regression models.
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The final section of this chapter contains some background on global optimisation

techniques with particular emphasis on the SAO technique. This section aiso contains

a review of the literature on SAO and its application in econometrics. From the

literature, it is apparent that for finding the global optimum of any function which has

several local optima, SAO is nearly always successful in contrast to the outcomes

from standard iterative methods.
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CHAPTER 3

IMPROVED PENALTY FUNCTIONS FOR
INFORMATION CRITERIA BASED MODEL

SELECTION1

3.1 INTRODUCTION

One of the principal decision making problems faced by applied statisticians and

econometricians is that of choosing an appropriate mode! from a number of

competing models for a particular data set. This proN 'm can be solved in several

ways. One, and probably the most popular way, is to use an information criterion (IC)

to make the choice. In general, an IC model selection procedure is based on choosing

the model with the largest maximised log-likelihood function minus a penalty

function which depend '->»v ih? number of parameters and in most cases the sampie

size. At present, a number of model selection criteria that fall into this category are

available. They include AIC. PIC, GCV, HQ, RBAR and HOC. These criteria were

discussed in Chapter 2. Many of these procedures were originally developed with

particular types of models in mind, and not necessarily as IC procedures. Fox (1995)

1 A paper based on some of the findings reported in this chapter and Chapter 4 has been accepted for
publication in Computer Aided Econometrics, edited by D.E.A Giles, see King and Bose (2002).



Chapter 3 Improved Penalty Functions for IC Based Model Selection

expressed these procedures in this framework by finding their implied penalty

functions in the context of choos;n£ between different linear regression models.

A small number of researchers have conducted Monte Carlo studies comparing

various subsets of the above criteria in a variety of different settings; see for example

Bora-Senta and Kounias (1986), Hurvich and Tsai (1989. 1991), Mills and Prasad

(1992) and Hughes (1997). The general conclusion one draws from these and other

studies is that no one procedure dominates: for models with fewer parameters. BIC

does well but at the expense of selecting larger models when these are indeed the true

model. A1C and RBAR, on the other hand, favour larger models with lower relative

probabilities of selecting smaller models when these models are true. HQ is

somewhere between these two extremes, not being as harsh as BIC nor as generous

as A1C and RBAR on larger models when they arc true.

As noted by Potsehcr (1991), maximizing an IC is equivalent to testing each model

against all other models by means of a standard likelihood ratio test and selecting that

model which is accepted against all others. The choice of penalty function determines

the values of the critical values of the tests. In hypothesis testing, when critical values

are changed, this either increases the probability of » Type i error while decreasing

the probability of a Type II error, or vice versa. Clearly, in the context of model

selection, a change in penalty function induces similar changes in the probabilities of
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various types of errors. Therefore it is not surprising that no one IC procedure

dominates all other procedures.

We are then left with the question of which IC procedure to use in practice. Given

that many of the above procedures have an asymptotic justification, it is far from

clear which procedure shouid be favoured in small samples. In this chapter, we

outline an alternative approach for calculating a penalty function based on (i) treating

all models equally: (ii) calculating the average probability of correct selection for a

given model using a Bayesian prior distribution to weigh different parameter values;

and (iii) optimizing the mean of these average probabilities of correct selection. In

related work, similar ideas have been proposed for IC model selection procedures in

the context of selecting ARCH and ARCH type models by Kwek and King (1998),

selecting a structural break -:i a linear regression by A/am and King (1998) and

selecting an ARMA time scries model by Billah and King (1998). A major problem

in this work has been the high computational cost involved in finding the penalties.

The approach outlined in this chapter is much more manageable in this regard.

The plan of this chapter is as follows. A new model selection technique is outlined in

Section 2. In Section 3, we outline and discuss two sets of Monte Carlo experiments.

The purpose of the first set of experiments is to investigate what is the most

appropriate combination of the number of parameter drawings {q) and the number of

replications (N) for a fixed total qN when estimating the average probability of
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correct selection of the true model using simulation methods. The second set of

experiments is conducted to compare the performance of our new approach with

selected existing criteria in the context of selecting the true mode! in the classical

linear regression setting. In Section 3.3.1. we discuss the data generating process

used to conduct Monte Carlo simulation expenments. Section 3.3.2 contains an

outline of the expenments and discussions of results for the first set of expenments.

The outline of the experiments, results and discussions of the second set of

experiments are presented in Section 3.3.3. Section 3.4, the final section, contains

some concluding remarks.

3.2 PROPOSED TECHNIQUE

We are interested in selecting a modi i from m alternative models, Mu M, . . .,

Mm , for a given data set. Let the model M,, j = 1, 2 m, be represented by

y = f(XreruJ). (3.1)

where y is an n x 1 vector of observations on the dependent variable. 01 is a vector of

k} free parameters, X, is an nxk] matnx, k' = (k, - l ) . and u, is an nx 1 vector of

random disturbances distributed as N(0,rr^I). X ; contains a column vector of ones

in its first column and ( £ * - l ) vector o,jf observations on non-stochastic variables

(e.g., in linear regression model there are (A* -1) non-constant regressors) in the

remaining [k] -1)columns. Let the log-likelihood function for the model M be
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L}{9,) and the maximised value of L\Q,) be L^O . ) . where 6, is the maximum

likelihood estimator of <9;. Let pt denote the penalty for model M t. In almost all IC

based mode! selection procedures, the model with the largest / , is selected, where

/ , is given by

(3.2)

This /j is called the penalised log-likelihood. Following Fox (1995), the penalised

log-likelihood forms of AIC, BIC. HQ. RBAR, GCV and HOC are given by.

AIC, = Ll(Ol)-kr

BIC - L.(O.)- — \n(n),

H Q I = L , ( 0 ) - k

R B A R y - L l ( O i ) + - - \ n ( n - k i )

GCV =/.,(0 '
n

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

and

(3.8)

The penalty functions of AIC, BIC and HQ for the j"' model can be written in the

general form
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(3.9)

where A, is a known function of n and

A, = 1 forAlC.

= — In n for B1C. and
i

= ln(lnn)forHQ.

Also the penalty function of GCV for the /" model can be written as

n\x\n- n\n(n — k ) . Since n\nn is constant for a particular selection problem, a

criterion with penalty function n\nn -n\r\(n-k ) is equivalent to one with penalty

function - « The penalty function of HOC can be written as

— ln(/i - k,) — ln(/» - kj - 1) which approaches -n ln(// - k ,) as /» —» °°. Hencethe

penalty functions of RP-AR, GCV and HOC (asymptotically) for the / model can

be written in the common form

where A2 is J known constant depending on the ciiterion and

- forRBAR,
i

= ~ n for GCV, and

= - // for HOC (asymptotically).

(3.10)
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Thus the penalty function of any of these six listed cntena for the /"' model is either

of the form A, k! or / -In (77 - k;) . These can be generalised to /.. k, + /Lln( n-k ,).

Here A, and /., may be functions of sample size n.

We know that the performances of different model selection cntena vary 'rom

situation to situation. For example, in the context oi selecting the true model from a

set of linear regression models. Rahman and King (1997) observed that for a sample

size of at least 13. and when the model with the lowest number of regressors is true,

then the performance of B1C is better than that of GCV. which is better than that of

A1C, and which in mm is better than that of the RBAR criterion in terms of

probability of correctly selecting the model. On the other hand, when the sample size

is at least 13. and the mode! with the highest number of regressors is true, then the

performances of BIC. GCV. A1C and the RBAR criteria arc exactly reversed. The

performances of different model selection criteria also vary from data set to data set.

Therefore, the question arises as to which IC procedure should be used for a

particular data set and group o\~ competing models. Is there one we can have

confidence in for all situations?

Given that we have seen that the penalty functions of six of the main IC procedures

can be generalised to

kj +A.2\r\{n-kJ), (3.11)
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then the choice of procedure (at least out of these six procedures) just involves a

choice of Ax and /L values for this penalty function. Clearly we \xould like to make

the best choice of /., and /L values for a particular sample size and set of models to

be chosjn from. Also we should not restrict At and A, to the six sets of values

implied by the above six procedures, but allow A] and A, to be chosen to suit our

particular circumstances.

The penalty function (3.11) is obtained by adding the penalty functions (3.9) and

(3.10). We can define another penalty function by multiplying ihe penalty functions

(3.9) and (3.10) as,

k,). (3.12)

In equation (3.9). A] is a function of;/ the sample size and kl is the number of free

parameters in the / ' ' model. Instead of kt. if we consider a fractional power of k;.

then we can define a new penalty function as.

/>, = V y • (3.13)

The question then is, how do we find optimal values of /I, and A, for our proposed

penalty functions? Our suggestion is as follows. For each model under consideration

and for a given choice of penalty values, we estimate the average probability of

correctly selecting this model when it is indeed the true model. For the same penalty
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set, we then average these probabilities of correct selection (thus treating all models

equally). Al and A, are then chosen to maximise this average.

In order to understand more closely what is involved, let CS denote the event of

correct selection and P(CS |M r # , , / . , . / ! , ) denote the ~ . ""'ability of correct selection

when the model M; is true with parameter vector 0 . and /., and / : are used in

(3.11).

Therefore.

, /L) (sav).

) > '

M, .0 . A . . /

A . / ,-./ = 1.2

•; - 1 ^ {

) m]

then the average probability ol'conecl selection when the model My is true will be

(3.14)

where ^'(^j) is the prior density function of the vector of parameters 0r Thus the

mean of average probability of conect selection will be

m

which involves the unknown constants A, and A
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For our approach to be operational, we need a method of estimating (3.14). Given

that g{0,) is a joint density function, the Monte Carlo estimate of (3.14) can be found

by first taking a large sample of drawings from #(#,) which we will denote by 0;{i).

1 "
/ = 1. 2 q, and then calculating - Y P(CS| M ,.G \I)J>X.AA .

This then requires us to estimate P(CS\M rOi(i),A,,A,)j for given M., 0;(/). A,.

/ I . , which can be achieved by a straightforward Monte Carlo simulation of N

replications. After some experimentation with a range of settings, we find that for y

fixed total number of simulations qN. good results are achieved by using only one

replication {N - 1) in the estimation of p(cSjM,.6>,(/),/l,,/l,), and the maximum

number of drawings of 0) from *'(#,) • Results of these simulation experiments are

reported in the Section 3.3.2.

Unfortunately, the problem of maximizing our estimate of (3.14) with respect to /I,

and A, requires considerable computational effort. We suggest that foe each of the m

models, q random drawings of 0/ are obtained from #(#,) and then model (3.1) is

used to generate q y vectors. For each y vector the likelihood functions of each of

the models are then maximised, and the maximised values are stored. This is

repeated for each model so that in total n file of nrq maximised likelihoods is
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senerated. This can then be used to estimate (3.14) for different values of A, and /..

In our stuc q = 2000 and N~ 1.

3.3 THE MONTE CARLO STUDIES

In this section we describe two sets of simulation experiments. The purpose of the

first set of experiments is to find the best combination of A7, the nu..«ber of

replications, and q, the number of parameter drawings, for a simulation experiment.

The second set of experiments was conducted to evaluate the performance of the

new iy proposed criteria against the existing IC listed above. The plan oi' this section

is as follows. In Section 3.3.1, we describe the data generating process used for ihe

simulation experiment- Section 3.3.2 is dcotcd to the first set of experiments while

in Section 3..>.3, we describe 'he second set of experiments.

3.3.1 DATA GENERATING PROCESS

Suppose we have n observations on each variable, then the /''' model can be written

in matrix notation as

(3.15)

where y is / jx 1 X ; is / J X A * , fi] is k'f x l vector of coefficients and u / i s a n ? / x 1

disturbance vector »'Jis'ribuied as N(0 ,<r ' I ) .
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We used different designs for the simulation experiments. In each case, the random

vector y is generated for a set of randomly selected values of ft. and cr~ obtained

from the prior distribution suggested by Zellncr (J9"7!), namely the inverted gamma

distribution for cr~t and multivariate normal distribution for /?( . That is. the values of

/3, and cr are randomly and independently chosen from independent multivanate

normal and inverted gamma distributions, respectively. Therefore, to generate

random vectors y and for estimating (3.14). the following steps were followed.

Step 1: We randomly selected a value of cr~ for the /" model from an inverted

gamma distribution, as follows.

A random sample of size (n~k:) is drawn from the N(O,1) distribution, where A* is

the number of regressors including the constant in the /'"' model. Let the sample

values be ~,.:, - ,• . Then we compute y1 . = Y " : * which is distributed as a

chi-squared variable with {n-k't) degrees of freedom. Finally a value of a] is

obtained by using the formula cr =(n-k")s:—r—• v/here s1 is an arbitrary

positive value held constant for the experiment.
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Step 2: We randomly selected a vector of parameters /?,=(/?„./?, ftr J for

the j " model in the following way.

We drew a random sample of size k] from the N(0.1) distribution. Let the sample

values be vv.. w\ \v .. Then

where VV; =(vv,,vt\.....»•,.) and a, is a randomly selected value of the error

standard deviation obtained by applying step 1 again for another arbitrary positive

value say s,~ and <T( IS independent o\ cr',.

The arbitrary values of s; in step 1 and s' are used to generate data. These values arc-

chosen by a trial and error method, so that the expected probability of correct

selection is a middle level of probability (say 0.5) for small sample for a particular

simulation experiment. (Low average probabilities and high average probabilities are

of less interest.)

Step 3: To generate the dependent random vector y for the / model, we drew a

random sample of size n from the N(0,l) distribution and let the sample values be

VJPV ,2,---,V7 ; J . Then we obtained y by using the following formula
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where v . = (v , , v ; , v ; n j .

Step 4: Using the generated random vector y . we fit all the plausible models in the

set and found the maximised log-likelihood value say L\fi ,<r,) for the / ' ' model,

. , u ' u
where /?, = (X' ,X,) X ' y . r r = - ^ - ana u , = > X Ji,. If p, is the penalty

function for the / ' ' model, then the information criterion i'or the j " ' modei will be

11~ L ((5,,(7,)- pt . We computed / , for all ./ in the set and ranked them.

Evidently if / ; > / , for all / = 1, 2 <J- 1), ( /4 / ) ///, !hcn we have coneet
i
s
I seleclion of the /''' model.
r.

I Step 5: We repeated steps 1 to 4 q times, replicated N times for a fixed number <y/V
• /

t

| (we used qN = 2000 for our simulation experiments) and calculated the Monte Carlo
I
| probabilities of correct selection by using the r<lative frequency definition oi
ii
I probability

Steps 1 to 5 are used for finding the probability of correct selection under any

information criterion just by replacing p] by the penalty function of that criterion in

step 4. In the case of a penalty ;-; involving unknown constants Ax and A2 we find

the Monte Carlo probabilities of correct selection for all feasible values of /I, ;
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A.. Then we identify those values of x, and x , for which the mean of the expected

probability of correct selection is a maximum. This was done for the second set of

experiments for our proposed method.

3 3 . 2 CHOICE OF V AND q

In this section, we investigate different choices of V. the number of replications, and

q. the number of parameter drawings, via simulation experiments, which involve

selecting a model from a set of competing alternative models in linear regression

sei ngs. The a "~ is to find the best choice of ' and q values for fixed qN. In

Subsection 3.3.2.1, we outline the simulation experiments conducted for this

purpose. The results of these simulation experiments are presented in Subsection

3.3.2.2.

3.3.2.1 Ol 1 LINK OF THE SIMULATION EXPERIMENTS

We conducted the simulation experiments with two sets of data and one set of

models as follows in order to find the optimal values of </ and N.

•>ata set 1: .v1( is Australian retail trade quailerly data from 1959(1) to 1982(4) and

v:/ is the same series lagged one quarter. We have used duly from Australian Bureau

of Statistics. Here we set .vc
: - 55 and .v̂  = 6.
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s~ and sf, are arbitrary positive values held eonstant for the experiment. The reasons

for choosing these values were discussed in Section 3.3.1.

Data set 2: ,v,, is the real per capita GDP and v,, is the investment of a country. We

used the annual data from Summers and Heston (1991) revised version 5.6 and

World Bank world tables. Here we set s~ = 2.5 and s: = 0.002.

Model Set: We used the following four linear regression models for our evaluation.

W,: v, //„ ~ INfO.rr; ). (3.16)

v, = /? 1 , i M,, - lN(0.rr.): (3.17)

M,, ~IN(0.rr-;): (3.18)

A/v v, = * , , /? , , + / / , , . M,. ~ lN(0 , r r ; ) ; (3.19)

where y( is the /" observation of the dependent variable, .v. is the /" observation

of the /''' regressor. ft /{) is a constant for the /"' model, /?/( (/ = 1. 2. 3 & 5; and / = 1

& 2) is a scalar regression coefficient associated with the /"' model and regressor

xlt; and utl is a random disturbance term that is independently normally distributed

with zero mean and variance
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Consequently we have two designs for our simulation experiments. Design 3.1 is the

combination of data set 1 and our model set. and Desien 3.2 is the combination of

data set 2 and our model set.

We generated the daia using the technique described in Section 3.3.1. The sample

sizes used for the simulation study were n ~ 20. 50 and 96 for Design 3.1. and n = 20,

50 and 100 for Design 3.2. For the simulation experiments, we used the f

fifteen combinations of N and a so that qN is equal to 2000.

N !20O0 1000

L_

50 40 20'
I

sT
„

Si 101 201 4() | 5 0 ! 100; 2(H)i 2 5 0 ! 4<K) 5(M) KKK) 2000

Because our aim is to find the combination of q and N values that gives the greatest

accuracy in estimating mean probability of correct selection, we repeated the whole

experiment 20 times in order to calculate the standard deviation of the estimated

mean probabilities of correct selection. Then we computed the average of this mean

probability of correct selection over the competing models <,nere we have four

competing models). We also computed the average of the standard deviations of

mean probability of correct selection over the competing models to see the trend of

this standard deviation as q changes. We used average standard deviation averaged

over the range of competing models (AvSD) as a measure of the efficiency and the

coefficient of variation (CV) as a measure of reliability of the estimated mean
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probability of correct selection of the true model. That combination of q and N,

where both ASD and CV are the lowest, will be judged to be the best combination to

estimate ihe mean probability of correct selection. We also found the mathematical

relationship between ASD and q, an<j estimated the value of q for the simulation

experiment where ASD is the minimum.

3.3.2.2 RESULTS AND DISCUSSIONS

The results of these simulation experiments are presented in Tables 3.1 and 3.2. From

these tables, it is evident that with an increase in q, the value of ASD decreases. For

both the designs and for all sample sizes, the highest estimated mean probability of

correct selection averaged over four models (AAPCS) under each criteria is obtained

when the parameter is generated once and replicated 2000 times. But lor this

combination of q (= 1) and N (= 2000), the ASD is also the highest compared to all

other combinations ol q and N. for all cited criteria and sample sizes considered for

the experiment. The CVs obtained for this combination of v and N are also the

highest (minimum i0% and maximum 33'/<) compared to all othei combinations of q

and N, for all cited criteria, sample sizes and for both the designs. This indicates that

the estimated mean probability of correct selection obtained from a single drawing

and replicated 2000 times is not efficient and reliable. In almost all cases, the lowest

ASD is obtained when the parameter is generated 2000 times and replicated once

with the estimated AAPCS being very close to those obtained from the combination

q - 1 and N = 2000. For this combination of q and N, the CVs are also the lowest
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(minimum Vic and maximum 2.59*) for ail cited criteria, sample sizes and for both

the designs. This means that the estimated average probability of correct selection

obtained from the maximum number of drawings of parameters and replicated once,

is more efficient, less variable and more reliable than that of a single drawing of the

parameters replicated the maximum number of times.

To find the mathematical relationship between ASD and q, we first plotted the data

and got the impression that the relationship between q and ASD may be represented

by the following mathematical model:

ASD= A'q\'. (3.20)

where A' and H are parameters and v, is a random disturbance term. Model (3.20)

may be w <tten in the follow ing log linear form:

ln(ASD)= A~ (3.21)

where A - In A'. \\ = In v', and v, is IN(0.<T(
:, ).

We estimated tins model for both the designs and for all sample sizes under all cited

criteria. We let A and B be the estimated values of A and B, respectively. It is

observed that A and B are highly significant and the adjusted coefficients of

determination {R~) are also high and highly significant (Table 3.3) for both the

designs and all sample sizes under all cited criteria. But for the sample sizes 20 and

50 under all cited criteria ami for both the designs, there is strong evidence of
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significant positive autocorrelation in t!he residuals, as the calculated values of the

Durbin-Watson (DW) test statistic are always less than their respective tabulated

lower bounds of the critical values, suggesting the possibility of functional

misspecification. So to establish a more accurate relationship between ASD and q for

all the sample sizes and designs, we tested several alternative models. From these test

results, we came to the conclusion that the following model explains the relationship

satisfactorily for all sample sizes, under all cited criteria and for both the designs:

( + u,, (3.22)

where ut is IN(0.<r :).

We estimated the values of a, h and c for all cited criteria and sample sizes for both

designs. We let a. b and c be the estimated values of a, b and c, respectively. By

differentiating the right hand side of (3.22) with respect to ln(</), and equaling it to

zero, and using the estimated values of /? and c. we can find q , the estimated value of

q, for which the value of ln(ASD) and hence ASD is the minimum. This value turns

out to be

i>
q-e"^-. (3.23)

The estimated values of a, h and c with their respective significant levels and q are

given in Tables 3.4 and 3.5 for Designs 3.1 and 3.2, respectively.
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From Tables 3.4 and 3.5, it is observed that the adjusted ccxfficient of determination

( R 2 ) is always highly significant ( R2 > 0.97 for Design 3.1 and R: > 0.95 for Design

3.2), and the estimated coefficients are highly significant, but none of the DW

statistics are significant for all combinations of data sets and sample sizes. This

indicates that the relationship between ASD and q is satisfactonly represented by the

mathematical model (3.22). and the estimated coefficients are also efficient. For all

sample sizes and for both the data sets except for n - 20 of Design 3.2, q, the

estimated value o l q , produces the minimum ASD and q is alwavs higher than that

of the value of qN (2000). This provides further proof that generating the parameter

vector the maximum number of times (here 2000 times) and replicating only once (N

= 1), is the best way to obtain an efficient estimate of mean probability of correct

selection for a fixed number </A'.

3.3.3 PERFORMANCE OF THE PROPOSED CRITERIA

This section describes the models and designs used to examine the performance of

the proposed method over the listed existing IC. We defined five penalty functions in

(3.9), (3.10), (3.12), (3.13) and (3.11), and their corresponding IC, named N1C1, .

N1C2,, N1C3 ;, NJC4, and NlC5,,forthe ./"' model are,

^ L(6))-A]kJ, (3.24)

= L(6J)-Ax\x\(n-k]), (3.25)

f^W^inOi-*,), (3.26)
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N1C5, = L(0,) -\kxkj + A, ln(n - A;,)].

(3.27)

(3.28)

We compare the performance of these newly proposed IC with the listed existing IC

in a classical linear regression setting.

3.3.3.1 MODELS FOk THE MONTE CARLO STUDIES

The following four linear regression models, along with the four models described in

Subsection 3.3.2.1, were used in the study to examine the performance of the

proposed IC compared to the listed existing IC.

+w4 f.
4f

M4 / ~

V, =

V, =

'l A . + X*PbZ + "

V2, A i + * j , Pn + "

l,At! + A2, A : + * * K l •
8

(3.29)

(3.30)

(3.31)

(3.32)

where y, is the /''' observation on the dependent variable, xtl is the /"' observation

on the /''' regressor, 0 0 is a constant for /''' model, fi (/ = 4, 6, 7 & 8; and / = 1,2,

& 3) is a scalar regression coefficient associated with /'" model and regressor .v(, ;

and u is a random disturbance tenn following the normal distribution with mean

zero and variance cr~.
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3.33.2 THE DESIGNS FOR THE SIMULATION EXPERIMENTS

We have three sets of data and two sets of competing models, one with four

competing models and the other with eight competing models. Altogether we have

six designs. Design 3.2 to Design 3.7. for the simulation experiments. A description

of Design 3.2 was given in the Subsection 3.3.2.1. A brief description of the

remaining five designs is given below.

Design 3.3: xu and A\, are randomly and independently generated values from the

N(O,1) distribution. Here we consider four non-nested models M,, M,, My and M5

given by (3.16), (3.17), (3.18) and (3.19) with .v; = .s; = 1 for samples of sizes 20, 50

and 100.

Design 3.4: A,, , A1(, and A,, are randomly and independently generated values from

the N(0,l) distribution. Here we consider eight non-nested models M,, M-,, M3,

Af4, Ms, Mb, M7 and M8 given by (3.16), (3.17), (3.18), (3.29), (3.19), (3.30),

(3.31) and (3.32), respectively, with sj = \,; =0.1 for samples of sizes 20, 50 and

100.

Design 3.5: This is an extension of Design 3.2 to more models using one extra

variable xh as the price level consumption of the t'h country. Here we consider eight

non-nested models M,, M2, M,, M4, M5, Af6, M1 and M8 given by (3.16),
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(3.17). (3.18), (3.29). (3.19). (3.30), (3.31) and (3.32), respectively, with

s; = 25 and s; = 0.02 for samples of sizes 20. 50 and 100.

Design 3.6: Australian cross-section data for 1961 and 1976 was classified according

to eight categories of sex/marital status and eight categories of age. xu is the

household population and .\\, is the number of households whose head belongs to the

given population category. We have used the data from Williams and Sams (1981).

Here we consider four non-nested models M,, M,, M, and M5 given by (3.16),

(3.17), (3.18) and (3.19), respectively with .v; = 0.1 and .•>.; = 0.02 for samples of sizes

20, 50 and 100.

Design 3.7: This is an extension of Design 3.6 to more models using one extra

variable x^ as the household headship ratio which is the proportion of people in any

givers population category. Here we consider eight non-nested models A/,, A/,, M3,

A/4, M5, Mb, M7 and MH given by (3.16), (3.17), (3.18), (3.29), (3.19). (3.30),

(3.31) and (3.32), respectively, with .v; = 0.1 and .v̂  = 0.15 for samples of sizes 20, 50

and 100.

We estimated the probabilities of correct selection for A1C, BIC, HQ, GCV, RBAR,

HOC, NIC1, N1C2, N1C3, NIC4 and N1C5 from 2000 drawing of parameters for each

design separately.
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3 .3 .33 RESULTS AND DISCUSSION

Tables 3.6, 3.7, 3.8, 3.9, 3.10 and 3.11 contain the probabilities of correct selection of

the true model for each of the Designs 3.2. 3.3, 3.4, 3.5. 3.6 and 3.7. respectively,

under different criteria, namely AIC. BIC, HQ. GCV. RBAR. HOC. N1C1. NIC2.

N1C3, NIC4 and NIC5. The mean average probability of correct selection (MAPCS)

and the standard deviation among the average probabilities of correct selection

(APCS) for selecting various models within a particular design under each critena are

also provided. A criterion with maximum mean average probability of correct

selection end minimum variation among the probabilities of correctly selecting the

true model for a fixed sample size is, always the moM desirable.

Several interesting phenomena are apparent in the tabies. The performance of the

selected existing criteria varies from data set to data set. Even for a particular data

set, the performance of the selected criteria vanes from sample si/.e to sample size.

The probabilities of correct selection gradually increase as the sample size n

increases for all designs under consideration, which is desirable. The variation among

the probabilities of correct selection for selecting various models within a particular

design under any criteria decreases as the sample size increases for all designs.

Among the six existing criteria that we have considered, for nine out of 18 (six

designs and three sample sizes) experiments, the MAPCS are the highest for AIC

followed by BIC, for which eight experiments produce the highest MAPCS. But in
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most of the experiments, the variation among the probabilities of correct selection is

the lowest for RBAR.

In terms of correctly choosing the true model, the new proposed criteria N1C1. NIC2.

NIC3, NIC4 and N1C5 perform better than all the l;sted existing catena for all

designs and for all sample sizes. Among the new proposed criteria, the performances

of NIC4 and N1C5 are marginally better than those of the remaining three proposed

criteria, but the performances of N1C4 and NIC5 are very similar for all designs and

sample sizes. The penalties that maximise the MAPCS obtained from the new criteria

are different from those of the existing criteria. The variation among the APCS

obtained using proposed criteria is higher for some designs and lower lor other

designs. Because of the existing criteria. A1C and B1C are the most widely used, and

thus we will compare the lowest MAPCS (LMAPCS). obtained from the proposed

criteria with AIC's and BICs MAPCS. We choose the lowest MAPCS, so that our

proposed IC are not favoured in the comparison.

For Design 3.2, with n = 50 and 100, the highest MAPCS is obtained from N1C4, and

NIC5 produces the highest MAPCS for sample size 20. Among the new criteria, for n

= 20 and 100, N1C2, and, for n = 50, N1C1 produces the lowest MAPCS, which are

higher than the corresponding highest MAPCS obtained from the existing criteria.

B1C produces the highest MAPCS among the existing criteria for n = 20 and 50,

while for n - 100, HQ produces the highest MAPCS among the existing criteria.
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There are 3.9. 2.9 and 3.6 percent increases in LMAPCS over that of A1C observed

for sample sizes 20. 50 and 100, respectively. These increases are 1, 0.6 and 1.4

percent over the MAPCS of BIC for n - 20. 50 and 100. respectively. The variation

among the APCS obtained from the proposed criteria is higher than that of all the

existing criteria for n = 20, and lower than that of BIC for n = 50 and 100.

For Design 3.3. the highest MAPCS is obtained from N1C5 for n = 50 and 100, and

both NIC4 and N1C5 produces the highest MAPCS for the sample size 20. Among

the new criteria, the lowest MAPCS is obtained from N1C3 and N1C2 for n = 20 and

50. respectively, while both NIC3 and N1C2 produce the lowest MAPCS for the

sample size 100. The lowest MAPCS obtained from the new criteria for different

sample sizes are higher than the corresponding highest MAPCS obtained from the

existing criteria. Among the existing criteria. A1C, BIC and GCV choose the true

model with the highest MAPCS for n = 20, 50 and 100. respectively. There are 1.1,

0.3 and 0.3 percent improvements of LMAPCS over thai of A1C observed for n - 20,

50 and 100, respectively. These improvements over BIC are 8.8, 7.1 and 6.9 percent,

respectively. For n = 20 and 50, the variations among the APCS for the proposed

criteria are lower than those of all cited existing criteria except RBAR. But for

sample size 100, the variations among the APCS obtained from the proposed criteria

are lower than those of BIC and HQ and higher than those of the other criteria.
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For Design 3.4, the highest MAPCS is obtained from N1C4 for sample sizes 20 and

50. while both NIC4 and NIC5 produce the highest MAPCS for sample size 100.

Among the new criteria. N1C3. NIC2 and N1C1 produces the lowest MAPCS for n =

20. 50 and 100. respectively, which are higher than the corresponding h-ghest

MAPCS obtained from the existing criteria. For all sample sizes, among the existing

criteria the highest MAPCS is obtained from A1C. There is 0.8 percent increase in

LMAPCS over that of A1C for n = 20, and for M = 50 and 100. LMAPCS are very

similar to those of A1C. But these increases over the MAPCS of BIC are 9. 9.5 and

9.4 percent for sample sizes 20. f;0 and 100. respectively. The variation among the

APCS under the new criteria is always lower than that of all existing criteria except

RBAR for n = 20 and 50. For n = 100, the proposed criteria produced lower

variations compared to BIC and HQ, and higher than those of RABR. and in other

cases the results are very similar to those of existing criteria.

For Design 3.5, NIC4 produces the highest MAPCS for n = 50 and 100, while for

sample size 20, the highest MAPCS is obtained from N1C5. Among the new criteria

for all sample sizes, the lowest MAPCS is obtained from N1C2, which are higher

than the corresponding largest MAPCS obtained from the existing criteria. For all

sample sizes among the existing criteria, BIC produces the highest MAPCS, which

also has the highest variation among the APCS. The increase in MAPCS that results

from using the worst of the new IC over A1C are 11.7, 14.2 and 17.1 percent for n =

20, 50 and 100, respectively. The increase of LMAPCS over that of BIC are 2.4, 1.1
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and 0.4 percent for n - 20. 50 and 100. respectively. For all cases, the variations

among the APCS obtained frorn the proposed technique are higher than those of

existing criteria except for n = 100. where RBAR has the highest variation among the

APCS.

For Design 3.6. and sample sizes 2.0 and 50. the highest MAPCS is obtained from

NIC5. while N1C4 produces the highest MAPCS for n - 100. For all sample sizes

among the new criteria, the lowest MAPCS is obtained from NJC3. Among the

existing criteria, the highest M A P C S for sample si/.es 20 and 50 is obtained from

RBAR with the lowest variation among the APCS, while A1C produces the highest

MAPCS for n = 1(X) with the second highest variation among the APCS. There are

2.3. 1.6 and 0.7 percent increases of the LMAPCS over those of A1C and 9.1, 14.8

and 11.9 percent increases over those of BlC observed for n = 20, 50 and 100.

respectively. For all sample si/es. the variations among the APCS obtained from the

new criteria are always lower than those of the existing criteria.

For Design 3.7 and all sample si?.es, the highest MAPCS is obtained from N1C4.

Among the new criteria, the lowest MAPCS is obtained from NIC2 and NlCl for

sample sizes 20 and 100, respectively, while both NlCl and N1C2 produce the lowest

MAPCS among the new criteria for sample size 50. For all sample sizes, among the

existing criteria, the highest MAPCS is ohtained from A1C. There are 1.1, 0.4, and

0.5 percent increases of the LMAPCS observed for the new technique over those of
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AIC for n - 20. 50 and 100. respectively. These increases over the MAPCS of BIC

are 6.5. 13, and 13.8 percent for n = 20. 50 and 100. respectively. The variations

among the APCS obtained from new method are lower than those of all listed

existing criteria except REAR.

3.4 CONCLUDING REMARKS

The main purpose of this chapter was to introduce a ne\ method for selecting the

true model from a set of competing alternative models, that performs better on

average compared to existing IC. The general form of the penalty functions of AIC.

BIC and HQ for the/ ' 1 model is p. = x, *, and that for HBAR, GCV and HOC is

p: = x,ln(/i - k . ) . The penalty functions of all six of these IC can be generalised to a

single penalty function p} - Al k: +A2\n{n-kl). For the listed existing criteria,

Ay and A, are determined by the sample size n. For example if A1, =1 and A, = 0 ,

the penalty is the AIC penalty, if A, = 0 and A: = — . it is the RBAR penalty. In

our proposed method, we did not restrict A, and A, to these six sets of values but

allowed A1, and Az to take any values that maximise the MAPCS. Another two

penalty functions are also defined as pt = Aik]\n(n-kl) and p ~ kxk*: . We

investigated the performance of the new method with these proposed penalties over

the listed existing criteria in a linear regression setting.
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We conducted simulation experiments to investigate how the efficiency of the

estimated AAPCS increases with increases in the number of parameter drawings (q)

for a simulation experiment with a fixed number of overall simulations, namely qN.

where N is the number of simulations conducted for each drawing of the parameters.

The average standard deviation averaged over the number of competing models

(ASD) was used as a measure of efficiency and CV as a measure of reliability of the

estimated AAPCS. From the simulation experiments, it was apparent that the number

of parameter drawings for a simulation experiment and ASD is negatively correlated.

For all cited cntena and for all sample sizes, the ASD and CV are the highest when q

= 1 and N - 2000, which indicates that when q - 1, the AAPCS has the greatest

variability and unreliability. With an increase in q. the value of ASD and CV

decreases and in almost all cases the lowest ASD and CV is obtained when q - 2000,

the maximum value of q, thus indicating that the AAPCS obtained using maximum q

is more efficient and reliable.

Our regression results indicate that the relationship between ASD and q is well

represented by the model ln(ASD) = a+b \x\(q) +r(ln(</))~ + ut. The estimated value

of q, where ASD is the minimum, is always higher than the maximum value of qN

(here 2000) used for our simulation experiment except for n - 20 in Design 3.2. This

means that maximum number of parameter drawings with single replication is the

best way to obtain an efficient estimate of mean probability of correct selection for a

fixed qN. At this combination of q and N, the CV is also the lowest in almost all
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cases, indicating thai the estimated mean probability of correct selection of the true

model obtained using the maximum number of parameter drawings is more reliable.

We conducted a second set of simulation expenments to investigate the performance

of our proposed new criteria over the existing listed criteria. The simulation results

demonstrate that the performance of the proposed criteria always dominates the

existing criteria in terms of MAPCS of the true model. Also, in general, the

variations among the APCS obtained from new IC are smaller than those of all the

listed existing IC except RBAR. From the simulation results, it is revealed that the

performances of the six listed existing model selection criteria, vary from situation to

situation and from data set to data set. Even lor a particular data set. the performance

of the selected criteria vanes from sample size to sample size. In all designs under

study, the MAPCS increases as the sample sizes increases. Within a particular design

under any criteria, the variation among the APCS decreases as the sample size

increases. Among the listed existing criteria in most cases, RBAR produces the

lowest variation among the APCS. Although none of the existing criteria performs

well in all situations in terms of MAPCS, the performance of all proposed new

criteria are always better than the best of the existing listed criteria.

The peifoiTnances of all new proposed IC are very similar, though NIC4 and NIC5

perform better ihan the others. The estimation of two parameters is required for N1C4

and N1C5, and this can be time consuming. The improvements of MAPCS obtained
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by NIC4 and N1C5 over NICl, NIC2 and NIC3 are not significant. So considering the

computational time and improvement in MAPCS, we recommend the use of any one

of the criteria NICl. NIC2 and NIC3.
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Table 3.1 Average over 4 models of mean over 20 iterations of estimated mean probabilities of correct selection and their standard

deviations for these 20 iterations averaged over 4 models for Design 3.1.

00

Number of
beta

drawings

1

2
4

8
10
20
40
50

100
200
250
400
500

1000
2000

1

2
4

8
10
20
40

50
100
200
250
400
500

1000
2000

AIC
Average
of average

0.4564
0.4334
0.4229
0.4294

0.4295
0.4295
0.4316
0.4307
0.4307
0.4318
0.4307

0.4350
0.4328
0.4314

0.4329

0.6769
0.6649
0.6648
0.6614

0.6806
0.6758
0.6628
0.6730
0.6741
0.6724
0 6706
0.6711
0.6750
0.6726
0.6704

Average
SD

0.1527
0.1072
0.0904

0.0601
0.0453
0.0343
0.0287
0.0288
0.0196
0.0140
0.0154
0.0137

0.0139
0.0111
0.0111

0.2022
0.1462
0.1060
0.0776
0.0685
0.0409
0.0297
00258
0.0260
0.0157
0.0147
0.0154
0.0143
0.0129
G.0109

BIC
Average
of average

0.4553
0.4264
0.4167

0.4223
0.4225
0.4224

0.4251
0.4247

0.4238
0.4265
0.4254
0.4292
0.4274
0.4259
0.4263

0.7040
0.6952
0.7025
0.7213
0.7164
0.7126
0.6962
0.7085
0.7105
0.7086
0.7045
0.7066
0.7125
0.7094
0.7074

Average

0.1647
0.1133
0.0947

0.0638
0.0467

0.0373
0.0292
0.0333
0.0214

0.0150
C0142
0.0126
0.0138
0.0107
0.0099

0 2571
0.1744
0.1311
00941
0.0817
0.0495
0.0354

0.0296
0.0292
00184
0.0177
0.0150
0.0138
0.0118
0.0099

GCV
Average
of average

0.4581
0.4338

0.4228
O.<3O3
0.4299

0.4291
0.4316
04308
0.4313
0.4321
04313
0.4350
0.4333
0.4312
0.4330

0.6803
0.6685
0.6686
0.6853
06845
0.6800
0.6665
0.6768
0.6783
0.6766
0.6745
0.6748
0.6791
0.6767
0.6745

Average
SD

0.1565
0.1095
r-. 320
.,.0617
0.0463
00350
0.0294

0.0300
0.0203
0.0142
0.0157
0.0141

0.0139
0.0113
0.0107

0 2060
0.1482
0.1077

0.0790
0.0695
0.0416
0.0299
0.0261
0.0258
0.0161
0.0145
0.0154
0.0143
1.0130
0.0109

HOC
Average
of average

Average
SD

HQ
Average
of average

Sample size = 20

0.4586 0.1577 0.4580
0.4335 0.1103 0.4336
0.4226 0.0926 0.4229
0.4302 0.0620 0.4303
0.4294 0.0464 0.4296

04287 0.0353 0.4289

0.4315 0.0298 0.4313
0.4305 0.0300 0.4307
0.4312 00206 0.4313
0.4322 0.0139 0.4322
0.4311 0.0148 0.4312
0.4350 0 0140 0.4349
0.4330 0.0138 0.4332
04312 00111 04312
0.43?9 00105 0.4330

Sample size = 50
0.6811 0.2068 0.6979
0 6693 0 1486 0.6883
0.6698 0.1083 0.6905
0.6863 0.0793 0.7080
0.6857 0.0697 0.7059
0.6810 0.0417 0.7008
0.6674 0.0299 0.6867
0.6775 0.0263 0 6976
0.6795 0.0256 0.6997
0.6776 0.0162 0.6976
0.6756 0.0144 0.6948
0.6759 0.0153 0.6965
0.6801 0.0140 0.7010
0.6777 0.0130 0.6983

0.6755 0.0109 0 6955

Average
SD

0.1563
0.1097

0.0920
0.0616
0.0459
0.0351
0.0293
0.0299
0.0205
0.0142
00150
0.0142
0.0139

0.0113
00105

0.2303
0.1609
0.1182
0.0870
0.0750
0.0447
00323
00277
00271
0.0174

0.0162
0.0154
0.0140
0.0127
0.0104

RBAR
Average
of average

0.4337
0.4187
0.4079

0.4123
0.4131
0.4129

0.4158
0.4122
0.4156
0.4137
0.4136
0.4158
0.4152
0.4134
0.4171

0.6004

0 5890
0.5853
0.5998
0.5999
0.5947
0.5857
0.5935
0.5959
05931
05919
0.5928
0.5943
0.5929
0.5905

Average
SD

0.1232
0.0898
0.0779
0.0494
0.0397

0.0289
0.0259
0.0253
0.0169
0.0137
0.0150
0.0137
0 0107

0.0111
00127

0.1457

0.1112
0.0785
0.0570
0.0532
0.0314
0.0235
0.0228
00221
0.0150
0.0128
00146
0.0126
0.0127

0.0109

MCP
Average
of average

0.4567
0.4336

0.4230
0.4296
0.4296
0.4295
0.4316
0.4309
0.4306
0.4319
0.4307
0.4350
0.4332
0.4313
0.4331

0.677'0

06651
0.6649
06815
06808
0.6760
0.6630
0.6731

0.6743
06725
06708
0.6712
0.6752
06729
0.6705

Average
SD

0.1532
0.1074

0.0905
0.0604

0.0456
0.0343
0.0286

0.0290
0.0200
0.0139

0.0153
0 0139
0.0139
0.0112
00108

0.2023
0.1463
0 1060
0.0777

0.0685
00410
0.0297
0.0259

002(51
0.0157

0.0148
0 0133
0.0143
0.0130
00109

JIC
Average
of average

0.4572
0.4335
0.4230
0.4299
0.4297

0.4296
0.4316

04311
0.4308
0.4322
0.4308
0 4348
0.4330
0.4315
0.4330

0 6932
0.6822
0.6840
0.7010
0.6994

0.6945
0.6805
06910
06935
0.6914

06883
0.6896
0.6945
0.6920
0 6886

Average
SD

0.1537
0.1080
0.0908
0.0609
00456
00344
0.0285
00292
00199
00141
0.0152
0.0138
0.0136

00110
00109

02215
0 1565
0 1144
0.0842
00728
00431
00319
00277

0.0262
00164

00160
0 0160
00137

00122
0.0103

ftj^^



Table 3.1 Average over 4 models of mean over 20 iterations of estimated mean probabilities of correct selection and their standard
deviations for these 20 iterations averaged over 4 models for Design 3.1 (continued).

oo

Number of
beta
drawings

1

2
4
8

10
20
40
50

100
200

250
400
500

1000
2000

AIC
A verage
of average

0.8340
0.7996
0.8222
0.8113
0.8168
0.8171
0.8149

0.8105
0.8146
0.8120
0.8144
0.8124
0.8115
0 8120
0.8116

Average
SD

0.0801
0.0943
0.0544
0.0430
0.0323
0.0236
0.0221
0.0173
0.0140
0.0131
0.0120
0.0103
0.0109
0.0094

0.0091

BIC
Average
of average

0.9359
0.8830
0.9129
0.9015
0.9095
0.9079
0.9027

0.9002
0.9060
0.9021
0.9056
0.9037
0.9029
0.9019
0.9021

Average
SD

0.1002
0.1226
0.0719
0.0569
0.0398
0.0286
0.0271

0.0208
0.0155
0.0138
0.0122
0.0094
0.0087
0.0071
0.0067

GCV
Average
of average

0.8376
0.8029
0.8258
0.8146
0.8202
0.8207
0.8187

0.8142
0.8183
0.8156
0.8179

0.8159
0.8153
0.8156
0.8151

Average
SD

0.0809
0.0953
0.0551
0.0433
0.0325
0.0240
0.0221

0.0172
0.0141

0.0133
0.0119
0.0103
0.0112
0.0092
0.0089

HOC
Average j Average
of average ] SD

Sample size =

0.8336 0.0811
0.8038 0.0953
0.8267 0.0552
0.8156 0.0433
0.8211 0.0326
0.8215 0.0240
0.8197 0.0221
0.8152 0.0171
0.8192 0.0141
0.8165 0.0132
0.8187 0.0120
0.8167 0.0104

08161 0.0112
0.8165 0.0092
0.8160 0.0089

HQ
Average
of average

96

0.8973
0.8549

0.8807
0.8686
0.8761
0.8741
0.8716
0.8679
0.8728
0.8694

08728
0.8707

0.8693
0.8697

0.8693

Average
SD

0.0922
0.1097

0.0635
0.0504
0.0362
0.0259
0.0247

0.0186
0.0148
0.0138
00125
0 0099

0.0095
0.0087
0.0077

RBAR
Average
of average

0.7058
0.681C
0.6988
0.6919
0.6941
0.6940
0.6939
0.6868
0.6909
0.6900
0.6929
0.6927
0.6894
0.6901
0.6896

Average
SD

0.0608
0.0707

0.0388
0.0332
0.0262
0.0203
0.0176
0.0151
00137

0.0119
0.0111
0.0103

0.0112
0.0106
0.0098

MCP
Average
of average

0.8341
0.7997

0.8222
0.8114
0.8169
0.8172
0.8150
0.8106
0.8147
08121

0.8145
08124
0.8116
0.8120
0.8117

Average
SD

0,0800
0.0943

0.0545
0.0430
0.0323
0.0236
0.0221
0.0172
00140

00131
0.0120
0.0102
00109
0.0094

0.0090

JIC
Average
of average

0.8865
0.8459
0.8707
0.8588
0.8658
0.8647
0.8620
0.8580
08627

0.8600
0.8631
0.8609
08596
08599
0.8598

Average
SD

0.0900
0.1064
0.0612
0.0491
0.0352
0.0256
0.0241
0.0181
0.0147

0.0135

0.0126
0.0097
00099
0 0093
0.0078



Table 3.2 Average over 4 models of mean over 20 iterations of estimated mean probabilities of correct selection and their standard
deviations for these 20 iterations averaged over 4 models for Design 3.2.

00

Number of
beta

drawings

1

2
4
8

10
20
40
50

100
200
250
400
500

1000
2000

1

2
4

8
10

20
40
50

100

200
250
400

500
1000
2000

A I C
Average
of average

0.5006
0.4859
0.4904
0.4926
0.4938
0.4918
0.4931
0.4880
0.4922
0.4917
0.4931
0.4916
0.4916
0.4943
0.4909

0.5448
0.5316
0.5451
0.5537

0.5421
0.5505
0.5492
0.5497
0.5471
0.5520
0.5480
0.5460
0.5491
0.5470
0.5489

Average
SD

0.0633
0.0630
0.0306
0.0223
0.0225
0.0165
0.0160
0.0148
0.0136
0.0105
0.0116
0.0114
0.0118
0.0108
0.0102

0.0952
0.0744

0.0676
0.0368
0.0357

0.0265
0.0190
0.0198
0.0164
0.0118
0.0132
0.0103
0.0108
0.0113
0.0099

BIC
Average
of average

0.5180
0.5007
0.5073
0.5093
0.5103
0.5071
0.5096
0.5049

0.5085
0.5080
0.5104
0 5077
0.5087
0.5089
0.5088

0.5568
O.c.^32
0.5584
0.5670
0.5549
0.5637
0.5608
0.5626
0.5602
0.5666
0.5616
0.5593
0.5613
0.5629
0.5620

Average
SD

0.0618
0.0655
0.0282
0.0218
0.0203
0.0164

0.0148
0.0144
0.0107
0.0099
0.0101
0.0089
0.0092
0.0090
0.0083

0.0924
0.0749

0.0670
0.0339
0.0307
0.0247

0.0163
0.0185
0.0140
0.0102
0.0103
0.0084

0.0088
0.0088
0.0067

GCV
Average
of average

0.5061
0.4906
0.4950
0.4973
0.4989
0.4960
0.4974
0.4924

0.4971
0.4969
0.4980
0.4958
0.4964
0.4981
0.4959

0.5463
0.5331
0.5471
0.5555
0.5440
0.5522

0.5511
0.5519
05488
0.5542
0.5494
0.5479
0.5510
0.5491
0.5507

Average
SD

0.0634

0.0640
0.0298
0.0228
0.0218
0.0162
0,0167
0.0149
0.0' 31
00103
00117

0.0108
0.0115
0.0105
0.0092

00956
0 0748
0 0680
0.0369
0.0360
0 0269
0.0191
0.0196
0.0166
0.0120
0.0132
0.0103
0.0108
0.0112
0 0097

HOC
Average
of average

Average
SD

Sample size =

0.5075 0.0632
0.4915 0.0643
0.4961 0.0293
0.4987 0.0228
0.5000 0.0218
0.4969 0.0163
0.4992 0.0165
0.4940 0.0149

0.4982 0 0129
0.4982 0.0099
0.4994 0.0111

0.4969 0.0105
0.4978 0 0114
0.4995 0.0104
0.4973 0.0088

Sample size =

0.5465 0 0956

0.5333 0.0750
0.5477 0.0679

0.5558 0.0369
0.5445 00358
0.5529 00268
0.5516 0.0191
05526 00196
0.5492 0.0166
0.5544 00121
0.5499 0.0135
05485 0.0103
0.5512 0.0105
0.5496 0.0111
0.5512 0.0096

HQ
Average
of average

20

0.5061
0.4909
0.4949
0.4971
0.4983
0.4962
0.4975
0.4926
0.4970

0.4969
0.4982
0.4957

0.4964
0.4984

0.4960

50
0.5566
0.5420
0.5570
0.5654

0.5535
0.5629
0.5603

0.5620
05594
0.5645
0 5607

05581
0.5607
0.5600

0.5609

Average
SD

0.0634

0.0639
0.0299
0.0227
0.0216
0.0161
0.0168
0.0148
0.0132
0.0104
0.0115
0.0107

0.0115
0.0104

0.0093

0.0974

00770
0.0699
0.0378

0.0351
0.0258
0.0180

00193
0.0163
0.0107
00133
0.0099
0.0100
00115
00082

RBAR
Average
of average

0.4605
0.4493
0.4514
0.4550
0.4544
0.4525

0.4543
0.4493
0.4541

0.4518
0.4559
0.4524

0.4537
0.4563
0.4517

0 5004

0.4862
04972
0.5038
0.4970
0.5026
0.5017

0.5000
0 4994
0 5039
0 5005
0.4984
0.5015
0.4993
0.4992

Average
SD

0.0564
0.0509
0.0303
0.0220
0.0216
0.0153
0.0146
0.0154

0.0130
0.0114
0.0105
0.0111
0.0113
0.0107
0.0094

0 0809

00615
0.0544
0.0324

00319
0.0233
0.0182

00186
0.0146
0.0113
0.0128
0.0114
0.0105
0.0125
0.0108

MCP
Average
of average

0.5011
0.4863
0.4910
0.4932
0.4944
0.4924

0.4935
0.4885
0.4928

0.4923
0.4936
0.4920
0.4920
0.4949
0.4914

05449
05317
05452
0 5537

0 5421
05504

05493
05499
0.5472
05520
0 5481
0.5461
05492
0.5471

05491

Average
SD

0.0632
00631
0.0306
0.0224
0.0225
0.0166
0.0162
00147

0.0136

0.0102
0.0119
0.0113
00116
00107

00101

0.0952
0.0744

0.0676
0.0368
00356
00266
00191
0 0199
00165
0.0119
00132
0 0103
0 0108
0.0113

0.0099

JIC
Average
of average

0.5019
0.4869
0.4919
0.4938
0.4951
0.4934
0.4942
0.4890
0.4937

0.4933
0.4943
0.4931
04926
04953
04920

05536
0.5397

05545
05632

05513
0.5599
05578
05593
0.5562
0.5621
05575
0.5557

0.5579
05571
0.5585

Average
SD

0.0632
0.0633
0 0305
0.0224
00224
0.0164
00164
0.0149
0.0134

0.0103
0.0120
0.0111
0.0117
00106
0.0099

0 0976

00765
0.0689
0 0370

00358
00264

00183
0 0200
0.0165
0 0115
00136
00098
00101
00110
00082



Table 3.2 Average over 4 models of mean over 20 iterations of estimated mean probabilities of correct selection and their standard
deviations for these 20 iterations averaged over 4 models for Design 3.2 (continued).

00

Number of
beta
drawings

1

2
4
8

10
20
40
50

100
200
250
400
500

1000
2000

AIC
Average
of average

0.6066
0.6126
0.6028
0.6039
0.6170
0.6224
0.6162
0.6207
0.6190
0.6171

0.6173
0.6171
0.6190
0.6192
0.6185

Average
SD

0.1313
0.0938
0.0599
0.0530
0.0484

0.0412
0.0274

0.0260
0.0216
0.0148
0.0161
0.0129
0.0125
0.0097

0.0111

BIC
Average
of average

0.6212
0.6195
0.6129
0.6143

0.6319
0.6341
0.6308
0.6329
0.6324
0.6320

0.6313

0.6323
0.6321

0.6330
0.6341

Average
SD

0.1449
0.1082
0.0626
0.0578
0.0493
0.0428
0.0261
0.0254

0.0195
0.0131
0.0131
0.0107
0.0104

0.0081
0.0071

GCV
Average
of average

0.6079

0.6141
0.6040
0.6053
0.6183
0.6235
0.6175
0.6219
0.6201
0.6184

0.6185
0.6184
0.6204
0.6204

0.6198

Average
SD

0.1323
0.0944

0.0601
0.0532
0.0486
0.0413
0.0272
0.0264

0.0216
0.0148
0.0159
0.0128
0.0125
0.0099

0.0113

HOC
Average
of average

Average
SD

HO
Average
of average

Sample size = 100
0.6083 0.1324
0.6143 0.0944
0.6045 0.0601
0.6056 0.0534
0.6186 0.0487

0.6238 0.0413
0.6178 0.0272
0.6223 0.0264
0.6204 00216
0.6187 0.0148
0.6190 0.0159
0.6188 0.0128
0.6208 0.0125
0.6207 0.0099
0.6202 0 0113

0.6255
0.6284
0.6194

0.6205
0.6358
0.6408
0.6356
0.6395
0.6373
0.6371
0.6361
0.6377

0.6381
0.6381
0.6382

Average
SD

0.1442
0.1034
0.0634

0.0569
0.0506
0.0439
0.0i:76
0.0267

0.0207
0.0137

0.0156
0.0124

0.0115
0.0095
0.0093

RBAR
Average
of average

05453
0.5516
0.5421
0.5443
0.5519
0.5565
0.5513
0.5558
0.5544
0.5507

0.5530
0.5514

0.5536
0.5548
0.5550

Average
SD

0.1036
0.0734

0.0493
0.0410
0.0408
0.0335
0.0220
0.0221
0.0171
0.0134
0.0143
0.0117

0.0121
0.0112
0.0120

MCP
Average
of average

0.6066
0.6126
0.6028
0.6039
0.6169
0.6224
0.6162
0 6208
0.6190
0.6171
0.6173
0.6171

0.6190
0.6192
0.6185

Average
SD

0.1314
0.0938
0.0599
0.0530
0.0485
0.0412
0.0274
0.0260
00217
0.0148
0.0161
0.0129

0.0126
0.0097
0.0111

JIC
Average I Aveiage
of average | SD

0.6235 0.142C
0.6271 01020
0.6182 00630

0.6193 0.0566
0.6334 00504

0.6393 0.0434
0.6337 0.0272
0.6379 0.0271
0.6359 00210
0.6349 0.0144
0.6345 0.0158

0.6353 0.0128
0.6369 0 0119

0.6361 00097
0 6361 0 0097



Table 3.3 The estimated models of the relationship between ASD and q under
different criteria

Sample size

20

50

96 for
Design 3.1
and
100 for
Design 3.2

Criteria

AIC
BIC
GCV
HOC
HQ
RBAR
MCP
JiC
AIC
BIC
GCV
HOC
HQ
RBAR
MCP
JIC
AIC
BIC
GCV
HOC
HQ
RBAR
MCP

IJlC 1

A
-2.081

-1.979

-2.049

-2.035

-20.47

-2.308

-2.076

-2.068

-1.788

-1.513

-1.768

-1.763

-V646

-2.141

-1.787

-1.681"

-2.537

-2.515

-2.524

-2.523

-2.329

-2.888

-2.537

•2.371

Design
A,

B
-0.365

-0.385

-0.369

-0.373

-0.370

-0.335

-0.366

-0.368

-0.403

-0.444

-0.406

-0.408

-0.424

-0.358

-0 403

-0.421 '

-0.328

-0.407

-0.331

-0.331

-0.369

-0.271

-0.239

-0 360

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3.1
Rz

.958

.970

.963

.964

.964

.932

.960

.961

.957

.979

.958

958

969

942

.957

.971"

.939

.974

.940

.941

.959

.904

.939

.955

i DW
0.552

0.768

0.571

0.575

0.549

0.713

0.540

0.558

0.581

0.706

0.552

0.546

0.560

0 603

0.580

0.607"

0.916

1.727 ns

0.932

0.927

1.254 ns

0.727

0.912

1.174ns

A
-3.086

-3.070

-3.069

-3.065

-3.072

-3178

-3.081

-3.078

•2.524

-2.508

-2.514

-2.513

-2.485

•2.744

-2524

-2.479"

-2.214

-2.043

-2.211

-2.210

-2.098

-2.518

-2.214

-2.-.18""

Design 3.2

I B
-0.239

-0.270

-0.-47

-0.252

-0.246

-0.228

-0.240

-0.242

-0.321

-0.362

-0.323

-0.324

-0.338

-0.282

-0.321

-0.337'"

-0.346

-0.407

-0.345

-0.345

-0.375

-0.303

-0.346

-0.368

! T-
0.832'"

0.868

0.850

0.855

0.848

0863

0.836

0.839

0.934

0953

0.938

0940

0935

0.908

0.935

0.946"

0.974

0.988

0.972

0.972

0.980

0944

0.974

0.980

DW
0.595

0.745

0.688

0.712

0.676

0.456

0.628

0.644

0.674

0.814

0.689

0.731

0.911

0.578

0.689

0.967"

1.297*"

1.697"s

1.231""

1.205n(1

1.363ns

0.624

1,299ns

1.346"6

*** Significant at 0.1 percent level
** Significant at 1 percent level
* Significant at 5 percent level
ns Not significant
nd No decision

q must he greater than or equal to

89



Table 3.4 The estimated models* of the relationship between ASD and q under
different criteria for Design 3.1.

Sample size

[20

50

96

Criteria

A1C
BIC
GCV
HOC
HQ
RBAR
MCP
JIC
AIC
BIC
GCV
HOC
HQ
RBAR
MCP
JIC
AIC
BIC
GCV
HOC
HQ
RBAR
MCP
JIC

a
-1.800

-1 754

-1.788

-1.778

-1.788

-1.979

-1.801

-1.796

-1.478

-1.280

-1.459

-1.451

-1.369

-1.807

-1.478

-1.406

-2.264

-2.029

-2.254

-2.254 "'

-2.120

-2.573

-2.263

-2.148

-0.594

-0.569

-0.582

-0.583

-0.582

-0.603

-0.590

-0.591

-0.565

-0.633

-0.659

-0.661

-0.649

-0.630

-0.655

-0 644

-0.551

-0.507

-0.551

-0.550

-0.539

-0.528

-0.552

-0.542

C

0.0301

0.0242

0.0280

0.0276

0.0278

0.0353

0.0295

0.0293

0.0333

0.0249

0.0333

0.0335

0.0297

0.0359

0.0332

0.0295

0.0293

0.0132"'

00290

0.0288

0.0225

0.0338

0.0294

0.0239

D -

0.988

0.987

0.989

0.988

0.989

0.979

0.988

0.989

0.987

0.993

0.987

0.987

0.991

0.989

0.987

0.991

0.972

0.977

0.972

0.973

0.974

0.969

0.972

0.973

DW q*
1709n s 19286

1.720"6 127542

1.691 ns 32626

1.571 "* 38623

1.593"8 35159

1.682"* 5121

1.665 ns 22026

1.665"5 23988

1.692 ns 4834

1.817ns 331321

1.583"5 19829

1.542"* 19258

1.622 ns 55599

1.898 "s 6466

1.695"5 19234

1.740 ns 55009

2.243r" 12121

2.159™ 218991934

2.251ns 13360

2.249nix 14025

2.211 "s 159178

2 495ns 2467

2.237ns 11941

2.257ns 84029

*** Significant at 0.1 percent level
** Significant at 1 percent level
* Significant at 5 percent level
ns Not significant
# Estimated value of q where ASD is the minimum

® ln(ASD) = a + b \n q + c(\n q)~
q must be greater than or equal to 1
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Table 3.5 The estimated models of the relatioiiship between ASD and q under
different criteria for l>esign 3.2.

Sample size
20

50

100

Criteria
AIC
BIC
GCV
HOC
HQ
RBAR
MCP
JIC
AIC
BIC
GCV
HOC
HQ
RBAR
MCP
JIC
AIC
BIC
GCV
HOC
HQ
RBAR
MCP
JIC

a
-2.681

-2.682

-2.693

-2.692

-2.692

-2.829

-2.682

-2.685

-2.212

-2.236

-2.211

-2.215

-2.186

-2.400

-2.215

-2.205

-2.035

-1926

-2.023

•2.022

-1.938

-2.243

-2.035

•1.955

*•>

b-0.568

-0.587

-0.554

-0.556

-0 556

-0.512

-0.566

-0.561

-0.575

-0.583

-0.570

-0.566

-0.582

-0.562

-0.573

-0.560

-0.491

-0.502

-0.499

-0.499

-0.505

-0.528

-0.491

-0.500

! c
0.0434

0.0417

0.0404

0.0400

0.0408

0.0375

0.0429

u 0421

0.0334

0.0292

0.0325

0.0319

0.0321

0.0369

0.0332

0.0294

0.0192

0.0125

0.0202

0.0202

0.0171

0.0295

0.0192

0.0174

T T-
0.962

0.964

0.955

0.955

0.957

C.973

0 961

0.956

0.981

0.981

0.982

0.982

0.974

0.981

0.981

0.978

0.987

0.992

0.986

0.987

0.989

0.986

0.987

0.990

DW
2.335'*

2.553"°

2.300ns

2.328 '*

2.302 ns

1.843"*

2.418 "s

2.364 ns

2.172 ns

2.513ns

2.205 "s

2.277 ns

2.417"s

2.219 ns

2.196 ns

2.528 ns

2.235 m

2 c,77 ns

2.123 ns

2 129"°

2.285 ns

1.449ns

2.244 "s

2.363 ns

695

1140

950

1043

910

922

733

783

5474

21653

6433

7126

8651

2029

5594

13682

357345

525573182

231303

231303

2587187

7701

357345

1737254

*

nd

Significant at 0.1 percent level
Significant at 1 percent level
Significant at 5 percent level

ns Not significant
No decisionNo decision
Estimated value of q where ASD is the minimum

® ln(ASD) - a+b\nq+c(\nq)z

q must be greater than or equal to 1
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Table 3.6 Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for samples of different sizes and under different criteria for Design 3.2.

Sample
size

20

50

Mode]

M,
M2

M.,
M?

Mean
SD
M,
M2

M,
Mi

Mean
SD

Average probabilities of correct selection with penalties (given in the parenthesis for new criteria only) under different criteria
r ~ N\C.4 r~A1C B1C HQ GCV RBAR HOC

0.6715
0.8100
0.2170
0.2945
0.4983
0.2874

0.8115
0.8850
0.1595
0.1940
0.5125
0.3891

0.7120
0.8260
0.2050
0.2720
0.5038
0.3110

0.7095
0.8315
0.2085
0.2635
0.5033
0.3134

0.4705
0.6785
0.2805
0.4385
0.4670
0.1636

0.7205
0.8365
0.2070
0.2565
0.5051
0.3198

0.7080
0.8255
0.3090
0.3580
0.5501
0.2555

0.9055
0.9435
0.2060
0.1945
0.5624
0.4185

0.8110
0.8910
0.2645
0.2735
0.5600
0.3376

0.7195
0.8365
0.3045
0.3430
0.5509
0.2670

0.4780
0.6690
0.3620
0.5000
0.5023
0.1266

0.7225
0.8370
0.3040
0.3405
0.5510
0 2687

M C I N\C2 NIC?

0.5745(1.8600)
0/9160(3.7200)
0 1335 (3.7200)
0 1505 (5.5800)
0.5186
0 4353

0.8605 (-95.3998)
0.9165 (-93.6480)
0.1425 (-93.6480)
0.1510 (-91.7961)
0.5176
0.4289

0.8765 (1.9728)
0.9140(3.8731)
0.1310 (3.8731)
0.1530(5.6948)
0.5186
0.A353

0.8750(1.8900)
0 9160(3.7539)
0.1330(3.7539)
0.1510(5.6081)
0.5188
0.4354

0 8570(1 6000)
0.9160(3.1900)
0.2445(3.1900)
0.2445 (4.7600)
0.5655
(5.3714

0.8570 (-299 6702)
0.9225 (-298.0825)
0.2445 (-298.0825)
0.2400 (-296.4614)
0.5660
0.3748

0.8705(1.6735) 0.8570
0.9235(3.3292) 0.9190
0.2315(3.3292) 0.2454
0.2375 (4.9667) 0.2445
0.5658 0.5665
0.3831 0.3721

(1.5900)
(3.1800)
(3.1800)
(4.7700)

0.8795 (-28.16439)
0.9165 (-26.34372)
0.1350 (-26 34372)
0.1510 (-24.49213)
0.S205
0.4362

0.8555 (•
0 9190(-
0.2460 (•
0.2445 (•
0.5663
0.3716

153.9669)
151.3924)
151.3924)
149.8008)

100
O
to

Mi
Mi
Mi
M,
Mean
SD

0.7175
0.8470
0.4145
0.4810
0.6150
0.2021

0.9370
0.9670
0.3325
0.2765
0.6283
0.3747

0.8455
0.9190
0.3900
0.3875
0.6355
0.2865

0.7255
0.8535
0.4140
0.4775
0.6176
0.2069

0.4770
0.6800
0.4185
0.6120
0.5469
0.1202

0.7265
0.8545
0.4130
0.4770
0.6178
0.2079

0.8610(1.6200)
0.9255 (3.2400)
0.3880 (3.2400)
C .3745 (4.8600)
0.S373
0 2968

0.8905 (-817.9313)
0.9430 (-816.1242)
0.3720 (-816.1242)
0.3425 (-814.2986)
0.C370
0.3240

0.8820(1.7462)
0.9365 (3.4846)
0.3770 (3.4846)
0.3545(5.2152)
0.6375
0.3147

0.8645
0.9255
0.3870
0.3745
0.6379
0.2980

(1.6800)
(3.3137)
(3.3137)
(4.9305)

P e n a l t i e s for N I C 1 . N I C 2 , N I C 3 , N I C 4 a n d N I C 5 a r e A , / ^ . A 2 !n(;i - k,), A , k ^ n d i - k, ). A , A.v'": a n d A , £ ( + A , ln(» - kt). r e s p e c t i v e l y .

0.8780 (
0.9365 (
0.3815 (
0.3550 (
0.6378
0.3123

339.0689)
337 3476)
337.3476)
335.6186)



Table 3.7 Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for samples of different sizes and under different criteria for Design 3.3.

o

Sample

size

20

50

100

Model

M,
M^
M,
M<
Mean
SD

M,
M;
M,
M<
Mean
SD
M,
M:
M,
M<

Mean
SD

Average probabilities
AIC

0.9080
0.6425
0.5935
0.4290
0.6433
0.1987
0.9265
0.7600
0.7145
0.5750
0.7440
0.1449

0.9330
0.7965
0.7880
0.7000
0.8044
0.0962

BIC

0.9685
0.5955
0.5395
0.3200
0.6059
0.2694
0.9950
0.6975
0.6460
0.4500
0.6971
0.2254

0.9985
0.7455
0.7135
0.5620
0.7549
0.1811

HQ
0.9200
0.6345
0.5885
0.4005
0.3359
0.2148
0.9715
0.7425
0.6855
0.5150
(J?-?86
C- ' 886
0.9805
0.7885
0.75S5
0.6425
0.7928
0.1402

of correct
GCV

0.9180
0.6420
0.5900
0.3920
0.6355
0.2170
0.9310
0.7595
0.7125
0.5685
0.7429
0 1494
0.9390
0.7970
0.7885
0.6980
0.8056
0.0996

selection
RBAR

0.7205
0.6645
0.6340
0.5495
0.6421
0.0714
0.7420
0.7375
0.7220
0.6895
0.7228
0.0238
0.7545
0.7750
0.7470
0.7790
0.7638
0.0156

with penalties (given in
HOC

0.9245
0.6365
0.59P5
0.3835
0.6343
0.2228
0.9330
0.7595
0.7135
0.5650
0.7428
0.1516
0 9400
0.7970
0.7875
0.6975
0.8055
0.1003

NIC1

0 8455 (0.7890)
0.6615(1.5780)
0.6155(1.5780)
0 4830 (2.3670)
0.6514
0.1499
0.9115(0.9100)
0.7590(1.8200)
0.7245 (1 8200)
0.5915(2.7300)
0.7466
0.1315
0.9460(1.0600)
0.7985(2.1200)
0.7875(2.1200)
0.6950(3.1800)
0.8068
0.1038

the parenthesis
NIC2

0.8305 (-40.6333)
0.6695 (-39.8871)
0.6230 (-39.8871)
0.4830 (-39.0983)
0.6515
0.1433
0.9075 (-169.294)
0.7600 (-168.397)
0.7275 (-168.397)
0.5915 (-167.481)
0.7466
0.1297
0.9545 (-510.058)
0.8000 (-508.931)
0.7850 (-508.931)
0.6870 (-507.793)
0.8066
0.1106

for new criteria <
NIC3

0.8575 (0.8539)
0.6555(1.6764)
0.6065(1.6764)
0 4820(1 4649)
0.6504
0.1562
0.9140(0.9340)
0.7590(1.8582)
0.7235(1.8582)
0.5915(2.7721)
0.7470
0.1326
0.9575(1.1488)
0.7975 (2.2925)
0.7845 (2.2925)
0.6870(3.4310)
0.8066
0.1120

»nly) under different
NK'4

0.8000 (0.4200)
0.6870(1.0931)
0.6415(1.0931)
0.4790(1 9128)
0.6519
01331
0.9170(0.7700)
0.7690(1.7087)
0.7270(1.7087)
0.5735 (2.7238)
0.7466
0 1413
0.9435 (0.9900)
0.8010 (2.0357)
0.7885 (2.0357)
0.6940(3.1034)
0 8068
0.1029

0.8460
0.6660
0.6180
0.4775
0.6519
0 1521
0.9110
0.7605
0.7265
0.5910
0.7473
0.1314
0 9460
0 7990
0.7875
0.6950
0.8069
0 1038

criteria
NIC.5

(-27.9966)
(-27.2075)
(-27.2075)
(-26.3889)

(-98.8614)
(-97.9556)
(-97.9556)
(-97.0388)

(-229.206)
(-228.148)
(-228.140)
(-227.086)

Penalties for N I C l . NIC2. NIC?. NIC4 and NIC5 are A-, \n(n - £,). A, k In(/i - k] ). A, k and X, k + A.., \r\in - k}), respectively.



Table 3.8 Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for samples of different sizes and under different criteria for Design 3.4.

so

Samp

lesize

20

50

100

Model

Mi
M2

M,
M,
Ms
M6

M7

Ms
Mean
SD
Mi

M2

M,
Mt

M,
Mf,

M7

M*
Mean
SD
M,
M2

M,
Mt

M<
Mr,
M 7

M8

Mean
SD

Average probabilities of correct
AIC

0.8630
0.5590
0.5780
0.6205
0.4005
0.3850
0.4290
0.3290
0.5205
0.1732

0.8900
0.7055
0.7450
0.7200
0.5745
0.5785
0.5805
0.5335
0.6659
0.1206

0.9040
0.7740
0.7840
0.7855
0.6605
0.6660
0.6420
0.6550
0.7339
0.0929

BIC
0.9545
0.5310
0.5415
0.6055
0.3265
0.3060
0.3505
0.2385
0.4818
0.2318

0.9920
0.6650
0.7195
0.6905
0.4580
0.4615
0.4690
0.4125
0.6085
0.1969

0.9960
0.7365
0.7540
0.7500
0.5350
0.5575
0.5260
0.5105
0.6707
0.1695

HO GCV

0.8915 0.8875
0.5560 0.5670
0.5745 0.5830
0.6230 0.6290
0.3845 0.3845
0.3710 0.3650
0.4100 0.4025
0.3135 0.2930
0.5155 0.5139
0.1882 0.1929

0.9570 0.8965
0.6990 0.7110
0.7495 0.7485
0.7285 0.7250
0.5280 0.57,5
0.5345 0.5710
0.5330 0.5730
0.4825 0.5200
0.6515 0.6646
0.1615 0.1272

0.9750 0.9080
0.7745 0.7775
0.7820 0.7845
0.7925 0 7880
0.6095 0.6590
0.6205 0.6630
0.5990 0.6400
0.5900 0.6495
0.7179 0.7337
0.1366 0.0958

selection
RBAK

0.6185
0.5330
0.5400
0.5680
0 4635
0.4520
0.4825
0.4280
0.5107
0.0650

0.6565
0.6200
0.6320
0.6300
0.6180
0.6145
0.6090
0.6310
0.6264
0.0148

0.6575
0 6645
0 6655
0.6590
0.6620
0.8710
0.6485
0.7360
0.6705
0.0273

with penalties (given in
HOC

0.8945
0.5650
0.5840
0.6265
0.3780
0.3595
0.3980
0.2845
0.5113
0.1976

0.8980
0.7100
0.7490
0.7250
0.5710
05690
0.5725
0.5175
0.6640
0.1284

0.9120
0.7765
0.7845
0.7880
0.6590
0.5630
0.6395
0.6475
0.7338
0.C971

NICI
0.7770 (0.8000)
0.5525(1.6000)
0.5780(1.6000)
0.6120(1.6000)
0.4290 (3.4000)
0.4210 (3.4000)
0.4580 (3.4000)
0.3730 (3.2000)
0.5251
0.1322

0.8770 (0.9500)
0 7055(1.9000)
0.7380(1.9000)
0.7175(1 9000)
0.5795 (3.8500)
0.5870 (3.8500)
0.5815(3.8500)
0.5440 (3.8000)
0.6663
0.1132

0.9040(1.'. \1B)
0.7690 (2.0164)
0.7860(2.0164)
0.7858(2.0164)
0.6619(3 0195)
0.6676(3.0195)
0.6422(3.0195)
0.6550(4.0167)
0.7339
0.0924

the parenthesis for new criteria
NIC2 NIC3

0.7590 (-41.2221) 0.8070 (0.8833)
0.5625 (-40.4652) 0.5465(1.7342)
0.5840 (-40.4652) 0.5735 (1.7342)
0.6175 (-40.4652) 0.6050 (1.7342)
0.4335 (-39.6650) 0.4235 (3.5499)
0.4245 (-39.6650) 0.4145(3.5499)
0.4635 (-39.6650) 0.4525 (3.5499)
0.3545 (-38.8162) 0.3760(3.3271)
0.5249 0.5248
0.1307 0.1408

0.8715 (-175.1319) 0.8805(0.9730)
0.7065 (-174.2041) 0.7035 (1.9356)
0.7405 (-174.2041) 0.7380(1.9356)
0.7180 (-174.2041) 0.7170(1.9356)
0.5810 (-173.2566) 0.5795(3.8876)
0.5885 (-173.2566) 0.5860(3.8876)
0.5830 (-173.2566) 0.5800(3.8876)
0.5405 (-173.2889) 0 5455(3.8286)
0.6662 0.6663
0.1121 0.1140

0.9030 (-450.3218) 0.9050(1.0109)
0.7760 (-449.3268) 0.7740(2.0174)
0.7855 (-449.3268) 0.7830(2.0174)
0.7865 (-449.3268) 0.7855(2.0174)
0.6610 (-448.3217) 0.6605(3.0193)
0.6660 (-448.3217) 0.6660(3.0193)
0.6420 (-448.3217) 0.6420 (3.0193)
0.6530 (-447.3061) 0.6555(4.0166)
0.7341 0.7339
0.0931 0.0930

only) under different criteria
NIC4

0.6875 (0.3500)
0.5885 (0.9763)
0.6110(0.9763)
0.6415(0.9763)
0.4390(1.7791)
0.4275(1.7791)
0.4720(1.7791)
0.3395 (3.7234)
0.5258
0.1228

0.8800(1.0900)
0.6940 (2.0482)
0.7285 (2.0482)
0.7120(2.0482)
0.5830 (3.9622)
0.5905 (3.9622)
0.5865 (3.9622)
0.5590 (3.8486)
0.6667
0.1089

0.8950 (0.8500)
0.7785(1.8094)
0.7895(1.8084)
0.7895(1.8094)
0.6620(3.8150)
0.6675(3.8150)
0.6435(3.8150)
0.6495 (3.8518)
0.7344
0.0918

NIC5

0.7710 (-31.6099)
0.5595 (-30.8360)
0.5830 (-30.8360)
0.6175 (-30.8360)
0.4315 (-30.0287)
0.4210 (-30.0287)
0.4620 (-30.0287)
0.3560 (-29.1840)
0.5252
0.1340

0.8730 (-136.0037)
0.7065 (-135.0720)
0.7395 (-135.0720)
0.7180 (-135.0720)
0.5815 (-134.1252)
0.5890 (-134.1252)
0.5830 (-134.1252)
0.5420 (-133.1625)
0.6666
0.1121

0.9050 (-123.3382)
0.7760 (-123.3341)
0.7845 (-123.3341)
0.7865 (-123.3341)
0.6610 (-121.3272)
0.6660 (-121.3272)
0.6420 (-121.3272)
0.6540 (-120.3174)
0.7344
0.0934

Penalties for NICI, NIC2, NIC3, NIC4 and NIC5 are \ kJ, X2 !n(/i - k,). X, ki ln(n - ks). A, */'•' and A, k} + X2 InOi - ty, respectively.
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Table 3.9 Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for samples of different sizes and under different criteria for Design 3.5.

Sample

size

20

50

100

Model

M,
M2

M,
M4

M,
M6

M7

Ms
Mean
SD
M,
M2

Ms
M4

M,
M6

My

MH

Mean
SD
Mi

M2

Ms
Mt

M<
Mfi

My

Mg

Mean
SD

Average probabilities of correct
AJC

0.5520
0.6440
0.3800
0.5685
0.4360
0.6990
0.4195
0.5180
0.5271
0.1116

0.5780
0.7030
0.4920
0.6625
0.5675
0.7705
0.5755
0.7080
06321
0.0932

0.6140
0.6975
0.5710
0.6945
0.6710
0.7930
0.6730
0.7800
0.6868
0.0749

BIC

0.7200
0.7830
0.4095
0.6315
0.4180
0 7475
0.3870
0.4520
0.5748
0.1723

0.8540
0.8885
0.5485
0.8360
0.5620
0.8685
0.5570
0.5945
0.7136
0.1596

0.9025
0.9460
0.6845
0.9010
0.6730
0.9125
0.7055
0.6825
0.8009
0.1236

HQ

0.5945
0.6820
0.3930
0.5985
0.4380
0.7135
0.4135
0.5040
0.5421
0.1230

0.7320
0.8115
0.5320
0.7550
0.5860
0.8240
0.5830
0.6595
0.6854
0.1113

0.7795
0.8410
0.6510
0.8175
0.6860
0.8570
0.7040
0.7315
0.7584
0.0765

GCV

0.5885
0.6970
0.4030
0.6150
0.4435
0.7315
0.41 '0
0.4855
0.5469
0.1291

0.5890
0.7215
0.5035
0.6810
0.5740
0.7840
0.5785
0.7005
0.6415
0.0942

0.6220
0.7075
0.5775
0.7025
0.67A0
0.8000
0.6755
0.7745
0.6917
0.0731

selection
RBAR

0.3115
0.4595
0.3090
0.4250
0.4330
0.6200
0.4205
0.6035
0.4478
0.1155

0.3165
0.4645
0.3660
0AT70
0.5210
0.6520
0.5495
0.7850
0.5114
0.1526

0.3390
0.4575
0.406G
0.4890
0.5935
0.6505
0.5735
0.8370
0.5433
0.1567

with penalties (given in
HOC

0.6015
0.7095
0.4060
0.6235
0.4425
0.7350
0.4125
0.4805
0.5514
0.1330

0.5975
0.7240
0.5040
0.6830
0.5745
0.7845
0.5785
0.6975
0.6429
0.0937

0 6235
0.7115
0.5775
0.7045
0.6740
0.R005
0.6750
0.7740
0.6926
0.0731

N1C1

0.8780 (3.3200)
0.9005 (4.6400)
0.3815(4.6400)
0.7505 (4.6400)
0.3530 (6.9600)
0.7665 (6.9600)
0.3290 (6.9600)
0.3605 (9.2800)
0.5899
0.2554

0.9310(3.4900)
0.9370 (4.9800)
0.5410(4.9800)
0.8725 (4.9800)
0.5330 (7.4700)
0.8805 (7.4700)
0.5290 (7.4700)
0.5510(9.9600)
0.7219
0.1974

0.9175(3.5000)
0.9570 (5.0000)
0.6860 (5.0000)
0.9105(5.0000)
0.6695 (7.5000)
0.9210(7.5000)
0.7000 (7.5000)
0.6715(10.000)
0.6041
0.1319

the parenthesis for new criteria <
N1C2 N1C3

0.8585 (-119.5442) 0.8830 (3.4733)
0.9005 (-117.3491) 0.8965(4.8558)
0.3930 (-117.3491) 0.3770 (4.8558)
0.7550 (-117.3491) 0.7455 (4.8558)
0.3545 (-1 15.0285) 0.3540 (7.1397)
0.7745 (-115.0285) 0.7630 (7.1397)
0.3315 (-115.0285) 0.3295 (7.1397)
0.3415 (-113.5671) 0.3725(9.3159)
0.5886 0.5901
0.2543 0.2536

0.9240 (-461.1807) 0.9365(3.6075)
0.9375 (-458.7373) 0.9425 (5.1874)
0.5460 (-458.7373) 0.5415(5.1874)
0.8730 (-458.7373) 0.8745(5.1874)
0.5325 {-456.2425) 0.5290 (7.7388)
0.8835 (-456.2425) 0.8805 (7.7388)
0.5300 (-456.2425) 0.5235 (7.7388)
0.5470 (-453.6940) 0.5495(10.261)
0.7217 0.7222
0.1966 0.2007

0.9170 (-1121.209) 0.9190(3.5273)
0.9570 (-1118.732) 0.9570 (5.0435)
0.6865 (-1118.732) 0.6845 (5.0435)
0.9105 (-1118.732) 0.9105 (5.0435)
0.6695 (-1116.229) 0.6695 (7.5483)
0.9215 (-1116.229) 0.9210(7.5483)
0.7005 (-1116.229) 0.6995 (7.5483)
0.6690 (-1113.701) 0.6715(10.042)
0.8039 0.8041
0.1321 0.1323

anly) under different criteria
NICi

0.8785 (3.2900)
0.9015(4.6119)
0.3820(4.6119)
0.7510 (4.6119)
0.3520 (6.9459)
0.7685 (6.9459)
0.3295 (6.9459)
0.3570 (9.2879)
0.5900
0.2564

0.9320 (3.4400)
0.9405(4.9481)
0.5435(4.9481)
0.8750(4.9481)
0.5295 (7.4826)
0.8835 (7.4826)
0.5265 (7.4826)
0.5470(10.034)
0.7222
0.1997

0.9145(3.2000)
0.9570(4.6188)
0.6905(4.6188)
0.9110(4.6188)
0.6705(7.1276)
0.9235(7.1276)
0 7010(7.1276)
0.6670 (9.6968)
0.8044
0.1317

NIC5

0.8780 (-9.6778)
0.9010 (-7.3615)
0.3820 (-7.3615)
0.7515 (-7.3615)
0.3525 (-5.0329)
0.7685 (-5.0329)
0.3300 (-5.0329)
0.3570 (-3.6904)
0.5901
0.2561

0.9320 (-126.5901)
0.9405 (-124.0696)
0.5430 (-124.0696)
0.8750 (-124.0696)
0.5295 (-121.5349)
0.8835 (-121.5349)
0.5265 (-121.5349)
0.5470 (-118.9852)
0.7221
0.1997

0.9245 (-103.3678)
0.9585 (-100.8143)
0.6855 (-100.8143)
0.9120 (-100.8143)
0.6645 (-98.25840)
0,9235 (-98.25840)
0.6980 (-98.25840)
0.6670 (-95.70000)
0.8042
0.1351

P e n a l t i e s fo r N I C 1 , N I C 2 , N I C 3 , N I C 4 a n d N I C 5 are A , k , A 2 ln(/? - k}). A , k \n(n - k, ) , A , k'1 a n d A , k] + A , \n(n - kt), r e s p e c t i v e l y .



Table 3.10 Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for samples of different sizes and under different criteria for Design 3.6.

Sample
size

20

50

100

Model

M,
M2

M,
M<
Mean
SD
•*//
M2

M,
M<
Mean
SD

Mi
M2

M<
M,
Mean
SD

Average probabilities of correct
AIC

0.9285
04815
0.4670
0.1185
0.4989
0.3320
0.9430
0.6765
0.5525
0.3120
0.6210
0.2626
0.9355
0.7660
0.6855
0.4845
0.7179
0.1873

BIC

0.9795
0.4300
0.3995
0.0625
0.4679
0.3796
0.9950
0.5885
0.4420
0.1730
0.5496
0.3432
0.9985
0.7000
0.5940
0.2905
0.6458
0.2923

HQ

0.9400
0.4760
0.4520
0.1040
0.4930
0.3431
0.9765
0.6475
0.5075
0.2385
0.5925
0.3071
0.9840
0.7425
0.6495
0.3870
0.6908
0.2467

GCV

0.9395
0.4805
0.4545
0.C955
0.4925
0.3459
0.9465
0.6745
0.5505
0.2985
0.6175
0.2694
0.9355
0.7690
0.6840
0.4795
0.7170
0.1897

selection
RBAR

0.7685
0.5265
0.5120
0 2330
0.5100
0.2190
0.7805
0.6680
0.5910
0.4525
0.6230
0.1378
0.7860
0.7345
0.6765
0.6050
0.7005
0.0778

with penalties (given in
HOC

0.9440
0.4745
0.4515
0.0915
0.4904
0.3496
0.9480
0.6735
0.5495
0.2975
0.6171
0.2704

0.9355
0.7690
0.6835
0.4785
0.7166
0.1901

NIC1

0.8950 (0.8200)
0.5020(1.6400)
0.4865(1.6400)
0.1630(3.4600)
0.5116
0.2996
0.8625 (O.OrTOO)
0.6805(1.3800)
0.5855(1.3800)
0.3975 (2.0700)
0.6315
0.1938
0.9040 (0.8200)
0.7690(1.6400)
0.6930(1.6400)
0.5255 (3.4600)
0.7229
0.1579

the parenthesis for new criteria <
NIC2 NIC3

0.8830 (-43.9888) 0.8945 (0.8539)
0.5070 (-43.1994) 0.4980(1.6764)
0.4910 (-43.1994) 0.4825(1.6764)
0.1615 (-41.3649) 0.1670(3.4649)
0.5106 0.5105
0.2949 0.2980
0.8580 (-128.4301) 0.8625 (0.7005)
0.6830 (-127.7496) 0.6790 (1.3936)
0.5890 (-127.7496) 0.5835 (1.3936)
0.3965 (-127.0549) 0.3980(2.0791)
0.6316 0.6308
0.1923 0.1936
0.9040 (-373.2047) 0.9040(0.8271)
0.7695 (-371.3824) 0.7685 (1.6506)
0.6940 (-371.3824) 0.6925 (1.6506)
0.5240 (-370.5516) 0.5255 (3.4703)
0.7229 0.7226
0.1585 0.1579

only) under different criteria
NIC4

0.P950 (. ,a:?oo)
0 . 5 0 2 0 i ••}.-•.CO)

0.4865 ( ' ')•: u)
0.1630 (3.4uOO)
0.5116
0.2996
0.8615 (0.7900)
0.6760(1.4742)
0.5805(1.4742)
0.4085(3.1234)
0.6316
0.1890
0.9170(1.0900)
0.7650(1.9784)
0.6865(1.9784)
0.5250 (3.8038)
0.7234
0.1632

NIC5

0.8915 (-13.3855)
0.5045 (-11.5776)
0.4875 (-11.5776)
0.1635 (-10.7561)
0.5118
0.2978
0.8625 (-40.3941)
0.6815 (-39.7076)
0.5880 (-39.7076)
0.3975 (-39.0166)
0.6324
0.1937

0.9040 (-243.2614)
0.7700 (-243.4433)
0.6940 (-243.4433)
0.5250 (-241.6197)
0.7233
0.1581

Penalties for N I C l . NIC2 , N I C 3 , NIC4 and NIC5 are klk-}, k2 ln(n - ks), X, k-i !n(« - k}). Kl k''2 and Xlk] + X2 \n(n - k,), respectively.



Table 3.11 Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for samples of different sizes and under different criteria for Design 3.7.

Sample
size

20

50

100

Model

M,
M2

M3

Mi

M,
M6

M7

M8

Mean
SD
M i

M2

M3

M4

M,
M 6

M 7

M 8

Mean
SD
Mi
M2

M3

M*
M,
M5

M7

Mg

Mean
SD

Average probabilities of correct
AIC

0.8935
0.7300
0.6945
0.2395
0.4425
0.1620
0.1225
0.0810
0.4207
0.3159

0.9045
0.8410
0.7610
0.3655
0.6455
0.3225
0.2330
0.1905
0.5329
0.2872

0.9175
0.8695
0.8235
0.5155
0.7345
0.4565
0.3775
0.3135
0.6260
0.2377

BIC

0.9690
0.7495
0.7095
0.1855
0.3720
0.1025
0.0700
0.0350
0.3991
0.3624

0.9870
0.8570
0 7575
0.2455
0.5665
0.1920
0.1110
0.0715
0.4735
0.3634

0.9955
0.8865
0.8430
0.3685
0.6620
0.3055
0.2195
0.1410
0.5527
0.3337

HQ

0.9110
0.7410
0.7035
0.2300
0.4265
0.1480
0.1065
0.0705
0.4171
0.3284

0.9550
0.8610
0.7720
0.3115
0.6275
0.2585
0.1765
0.1335
0.5119
0.3293

0.9770
0.8950
0.8495
0.4520
0.7150
0.3910
0.3005
0.2340
0.6018
02913

GCV

0.9110
0.7460
0.7095
0.2325
0.4225
0.1425
0.1025
0.0600
0.4158
0.3324

0.9105
0.8510
0.7665
0.3620
0.6450
0.3135
0.2260
0.1805
0.5319
0.2944

0.9200
0.8740
0.8260
0.5160
0.7335
0.4535
0.3740
0.3060
0.6254
0.2412

selection
RBAR

0.6945
0.6510
0.5860
0.2915
0.5025
0.2395
0.2025
0.1555
0.4154
0.2169

0.6785
0.7215
0.6665
0.4060
0.6430
0.4045
0.3265
0.3350
0,5227
0.1691

0.7190
0.7210
C.6980
0.5185
0.7040
0.5200
0.4640
0.4610
0.6007
0.1196

with penalties (given in
HOC

0.9165
0.7485
0.7105
0.2290
0.4180
0.1405
0.0985
0.0570
0.4148
0.3356

0.9125
0.8505
0.7685
0.3590
0.6430
0.3120
0.2260
0.1775
0.5311
0.2957

0.9215
0.8745
0.3265
0.5140
0.7335
0.4525
0.3735
0.3055
0.6252
0.2420

NIC1

0.8500 (0.8400)
0.7105(1.6800)
0.6710(1.6800)
0.2595(1.6800)
0.4670 (3.5200)
0.1885(3.5200)
0.1545 (3.5200)
0.1040 (3.3600)
0.4256
0.2888

0.8190(0.7500)
0.7935(1.5000)
0.7305(1.5000)
0.3960(1.5000)
0.6530 (3.2500)
0.3640 (3.2500)
0.2750 (3.2500)
0.2500 (3.0000)
0.5351
0.2382

0.8790 (0.8200)
0.8415(1.6400)
0.8015(1.6400)
0.5240(1.6400)
0.7360 (3.4600)
0.4795 (3.4600)
0.4105(3.4600)
0.3610(3.2800)
0.6291
0.2076

the parenthesis for new criteria
NIC2 NIC3

0.8100 (-40.63326) 0.8520(0.8833)
0.7105 (-39.88713) 0.7060(1.7342)
0.6580 (-39.88713) 0.6655 (1.7342)
0.2785 (-39.88713) 0.2560(1.7342)
0.4735 (-39.09834) 0.4670 (3.5489)
0.1995 (-39.09834) 0.1915(3.5499)
0.1655 (-39.09834) 0.1595 (3.5499)
0.1055 (-38.26172) 0.1200(3.3271)
0.4251 0.4272
0.2747 0.2847

0.8055 (-134.2678) 0.8255(0.7784)
0.7910 (-133.5564) 0.7955(1.5485)
0.7265 (-133.5564) 0.7310(1.5485)
0.4015 (-133.5564) 0.3915(1.5485)
0.6550(-133.8301) 0.6520(3.3101)
0.3690 (-133.8301) 0.3615 (3.3101)
0.2810 (-133.8301) 0.2725(3.3101)
0.2515 (-132.0881) 0.2495 (3.0629)
0.5351 0.5349
0.2330 0.2407

0.8755 (-367.6096) 0.8790 (fl R?71)
0.8415 (-366.7974) 0.8410(1.6506)
0.8015 (-366.7974) 0.8015(1.6506)
0.5265 (-366.7974) 0.5235 (1.6506)
0.7380 (-365.9769) 0.7355 (3.4703)
0.4795 (-365.9769) 0.4795 (3.4703)
0.4110 (-365.9769) 0.4105 (3.4703)
0.3600 (-365.1479) 0.3615(3.2863)
0.6292 0.6290
0.2071 0.2075

only) under different criteria
NIC4

0.8620(1.0800)
0.7050(1.9602)
0.6660(1.9602)
0.2530(1.9602)
0.4660(3.7781)
0.1910(3.7781)
0.1585(3.7781)
0.1185(3.5579)
0.4275
0.2874

0.8540(1.4400)
0.7800(3.2912)
0.7175(3.2912)
0.3735(3.2912)
0.6390 (3.0063)
0.3650 (3.0063)
0.2765 (3.0063)
0.2870 (3.6454)
0.5366
0.2358

0.9120(1.2800)
0.8495 (3.2597)
0.8105 (3.2597)
0.5080 (3.2597)
0.7335(3.1510)
0.4715(3 V510)
0.3960 ( '510)
0.3585 (? <'!93)
0.6299
0.2202

NIC 5

0.8300 (-9.98998)
0.7090 (-9.18534)
0.6680 (-9.18534)
0.2685 (-9.18534)
0.4715 (-8.36957)
0.1920 (-8.36957)
0.1615 (-8.36957)
0.1075 (-7.54132)
0.4260
0.2816

0.8180 (-13.9514)
0.7925 (-13.2092)
0.7295 (-13.2092)
0.3975 (-13.2092)
0.6530 (-11.4655)
0.3655 (-11.4655)
0.2785 (-11.4655)
0.2510 (-10.7202)
0.5357
0.2367

0.8770 (-146.5538)
0.8415 (-145.7389)
0.8005 (-145.7389)
0.5265 (-145.7389)
0.7360 (-144.9208)
0.4805 (-144.9208)
0.4130 (-144.9208)
0.3610 (-144.0991)
0.6295
0 2065

P e n a l t i e s f o r N I C 1 , N I C 2 , N I C 3 . N I C 4 a n d N I C 5 a r e / v , k ; . A . , i n O i - k,). A. , k} l n ( n - ks ) . k } kf'2 a n d k ] k ) + A . , l n ( / i - * , ) . r e s p e c t i v e l y .
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CHAPTER 4

MAXIMISATION OF MEAN AVERAGE PROBABILITY
OF CORRECT SELECTION USING ADDITIVE AND

MULTIPLICATIVE PENALTIES1

4.1 INTRODUCTION

In the previous chapter, we discussed some of the widely used information criteria to

select the best model from a set of competing alternative models. But one of the main

problems of existing criteria is that their performance varies from data set to data set

and none of the existing criteria performs well in all situations. So from a user's point

of view, which criteria one should use to select the best model for a particular data

set is a question that is unresolved. Also, there is no guarantee that an existing

criterion will select the true model with the highest average probability in all

situations.

In this chapter we investigate the problem of maximisation of mean average

probability of correct selection (MAPCS) of the model using additive and

1 A paper based on some of the findings reported in this chapter and Chapter 3 has been accepted for
publication in Computer Aided Econometrics, edited by D.E.A Giles, see King and Bose (2002).



Chapter 4 Maximisation oj MAPCS Using Additive and Multiplicative Penalties

multiplicative penalties. The theory of the use of APCS and the technique used to

estimate APCS were discussed in Section 3.2. We used the Simulated Annealing

Optimisation (SAO) technique to find penalties that maximise the MAPCS. Here we

are not imposing a particular functional form of the penalty; instead we give upper

and lower boundaries of the penalty, a set of starting values, and a temperature

reduction value. Then, we use the SAO technique (discussed in Section 2.4 of

Chapter 2) to find the penalties for the competing models, which maximise the

MAPCS of the true model. This chapter is divided into five sections. In Section 4.2,

we describe the technique of maximisation of APCS using additive penalties with

maximised log-likelihood functions. The maximisation of MAPCS using

multiplicative penalties applied lo each model's mean squared error is described in

Section 4.3. The designs of Monte Carlo experiments are given in Section 4.4.

Section 4.5 contains results and discussion, and some concluding remarks are

presented in the last section.

4.2 ADDITIVE PENALTY

Suppose we are interested in selecting a model from m alternative models, Mx< M:

. . ., Mm. for a given data set. Let the model M t, / = 1, 2 m, be represented by

(4.1)

where y is an HX 1 vector of observations on the dependent variable, X ; is an

nxk*t matrix, k* ~ (kj -1), /T is a vector of k* paramet :rt, and u ; is an nx 1

99



I

1

Chapter 4 Maximisation ofMAPCS Using Additive and Multiplicative Penalties

vector of random disturbances distributed asN(0.(j;I) . X, contains a column vector

of ones in its first column and observations on (A* - ! ) non-stochastic variables in

the remaining (k" -1) columns. Let the log-likelihood function for model M] be

L}(fi rcrj) and the maximized value of LJ(Pr<7]) be Lt(/3rcr-). where /31 and <7~

are the maximum likelihood estimates of/?; and o~r respectively. Then

•; + ln(27T) +
ncr~

(4.2)

The maximum of the log-likelihood, Li(/3rcr]). can be written as

(4.3)

_ ( y X , / ? V ( y X , / ? , )
where cr = is the maximum likelihood estimator ol <r~ and

f =(X'JXJ)~ X'y is the maximum likelihood estimator of/? ; .

Let Pj denote the penalty for model Mf. In almost all \C based model selection

procedures, the model with the largest I] is selected, where / ; is given by

/ , = L,(^,ff;)-/v (4.4)

This Ij is called the penalized maximised log-likelihood. Then the / ' ' model will be

selected if

100



Chapter 4 Maximisation of MAPCS Using Additive and Multiplicative Penalties

(4.5)

For all existing criteria. pl are a function of n. the sample size, and k,, the number of

parameters in the j ' h model. The functional form of p. for different existing criteria

was presented in Chapter 3. One of the main disadvantages of using these penalty

functions is; that they are independent of the data set. i.e. for a particular model, the

penalty remains the same for different data sets. To overcome this problem, we

suggest the use of the SAO technique to find the optimum penalty, which maximises

the MAPCS for the data set in hand. This approach does not involve a functional

form of penalty, instead it requires an arbitrary starting value of the penalty set with

appropriate upper and lower bounds of the penalties, and a temperature reduction

value. A detailed description and discussion of the advantages of this optimisation

technique was given in Section 2.4 of Chapter 2. The theory and the computational

techniques for calculating MAPCS were discussed in Section 3.2 of Chapter 3.

4.3 MULTIPLICATIVE PENALTY

Equation (4.3) can be written as a function of the residual sum of squares as follows:

n S]

— In-— + ln(2#) + 1 , (4.6)
2

where S" =(y-XjJ3J)'(y~Xj/3J) is the residual sum of squares for the /"' model.
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From this equation it is obvious that the selection of a model using the largest value

of (4.6) is equivalent to the selection of a model with the smallest value of 5 ; . But

one of the main problems in using the smallest 57
: is that the residual sum of squares

always decreases or remains constant (i.e.. never increases) with the inclusion of

additional regressors. So there is a tendency towards selecting models with a

needlessly large number of regressors. Hence in order to use residual sum of squares

for model selection purposes, we need some adjustment so that models with an

unnecessarily large number of parameters will not be favoured. This is achieved by

using a penalty function. Rahman (1998) defined the penalised error sum of squares

as follows:

(4.7)

where qt is called the multiplicative penalty and 3 ] is the penalised error sum of

squares. The model with the smallest 31 (multiplicative information criterion for the

/"' model) will be selected if

(4.8)

The functional form of a possible i\} is also given by Rahman (1998) as

(4.9)

where ai and a-, are arbitrary constants.
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He mentioned that all existing criteria can be expressed as a special case of this new

criterion in linear regression settings and he analytically showed how the widely used

cntena AIC. BIC, HQ. GCV, HOC, Mallows' Cfl and RBAR, were a special case of

this criterion. He also mentioned that by choosing the appropriate values of ai and

a, it is possible to develop an infinite number of new criteria, which will perform

well in a range of situations. But a problem with this penalty function is the need to

find the values of a, and a2 for a particular data set. Also the penalty function is a

function of w, the sample size, and kt, the number of free parameters, but is

independent of data values, i.e. for the same set of competing models, a change of

data sets does not have any impact on the penalty function. Another problem with

this penalty function is that, for a particular data set, like the existing additive 1C, the

same dimensional models have the same penalty. To overcome these problems, we

redefine the multiplicative information criteria J} for the /"' model as J*, where

J i ./
(4.10)

in which E~ =—~ is the mean squared error and qf = ( H - J t ; ) " ' ( « , ) " is the
/ / A.

multiplicative penalty.

Then, instead of searching for the values of </, and a2, we use the SAO technique to

find the value of g*, which maximises the MAPCS by minimising J* in equation

I 1
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(4.10). The advantage of using the mean squared error over the error sum of squares

is that we are taking account of the residual degrees of freedom.

4.4 THE DESIGNS OF THE MONTE CARLO STUDIES

In order to evaluate the performance of the additive and multiplicative penalties

discussed in Sections 4.2 and 4.3 and compare them to the performance of the

selected existing criteria, we conducted some simulation expenmei 's In these

experiments the assumed models are the same as used in Chapter 3. We use the same

technique as descnbed in Section 3.3 of the previous chapter for generating the data

and computing the APCS. The designs used for the experiments are as follows.

Design 4.1: A,, is the real per capita GDP of the t'h country and x,, is GDP as a

percent of USA GDP. We used the annual data from Summers and Heston (1991)

revised version 5.6 and World Bank world tables. Here we consider four non-nested

models Af,, M,, M, and Ms given by (3.16), (3.17), (3.18) and (3.19) with

s; = 0.1 and s; =0.5.

Design 4.2: xu is Australian retail trade quarterly data commencing the first quarter

of 1959 and x2l is the same series lagged one quarter. We have used the data from

the Australian Bureau of Statistics. Here we consider four non-nested models M,,

M2, M3 and M5 given by (3.16), (3.17), (3.18) and (3.19) with .v; = 55 and s; = 6.
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Design 4.3: xu and x^ are randomly and independently generated values from the

N(0.1) distribution. Here we consider four non-nested models M,, M , . M? and M<

given by (3.16). (3.17), (3.18) and (3.19) with .v; = 0.12 and .v; =0.08 .

Design 4.4: This is an extension of Design 4.1 to more models using one extra

variable x,, which is the price level of consumption of the /"'country. Here we

consider eight non-nested models M,, M , , M, . M 4 . M,. M(>. M7 and Af8 given

by (3.16), (3.17). (3.18). (3.29), (3.19), (3.30), (3.31) and (3.32), respectively, with

,v; = 0.35 a,id s; = 0.02 .

Design 4.5: This is an extension of Design 4.2. Here we add one more variable .v,,,

which is JC1( (in Design 4.2) lagged two quarters. Eight non-nested models, i.e. M,,

M : , My, M4 , M5, Mb, M7 and Mh , given by (3.16), (3.17), (3.18), (3.29), (3.19),

(3.30), (3.31) and (3.32). respectively, with ,v~ = 0.1 and s"~ = 0.15, we considered.

Design 4.6: This is an extension of Design 4.3 with xv randomly and independently

generated from the N(0,l) distribution. Here we consider eight non-nested models

M,, M2, M? , M4 , Ms, Mb, M1 and MK, given by (3.16), (3.17), (3.18), (3.29),

(3.19), (3.30), (3.31) and (3.32), respectively, with *; = 0.12 and s; = 0.08 .
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The sample sizes used for the Designs 4.1, 4.3, 4.4 and 4.6 are 20, 50 and 100: and

for Designs 4.2 and 4.5, sample sizes are 20, 50 and 96.

To apply the SAO technique with maximised log-likelin^'4 functions and additive

penalties, we experimented with the use of different sets of starting values, upper and

lower boundaries, and temperature reduction values, which are requirements of the

SAO technique. It is well known that among the existing criteria, AlC and B1C have

wider use in econometrics and physical sciences for model selection. So we used the

relative penalties2 of AlC and B1C as starting values of the penalties for the SAO

technique. In addition, we also used zero penalties as the starting values. One of the

conditions of the SAO technique is that the starting value of the parameter (here

penalties) cannot be outside the boundary values of the parameters. So when

selecting the boundaries of the penalties, we had to keep this condition in mind. We

considered the maximum number of free parameter (A) among the competing models,

the number of competing model (m). km and an arbitrary value of 10 as upper

boundaries with starting penalties relative AlC and zeros. For these starting values,

we used two types of lower boundaries, namely zeros and the negative of upper

boundaries. We used Aln(/?)/2, w;ln(/j)/2, an arbitrary value of 10 and km as upper

boundaries with starting penalties being, relative B1C. In this case we also have two

" Suppose we have four competing alternative models Mr M2. My and M4 with number

of free parameters A,, k2, A3 and A'4, respectively. Then the relative penalties of AlC for

the models M,, M2, M, and M4 are 0, A2 - A,, A3 - A, and A4 - A,, respectively.
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\ types of lower boundaries, namely zeros and the negative of k. m, 10 and km. When

| maximising the MAPCS using maximised log-!ikelihoods with additive penalties, we

I
used the following initial values for Designs 4.1, 4.2 and 4.3.

Three sets of starting values of the penalties were {0, 0, 0. 0},

- 1 ln(/j).—^ Jn(«).-^—ln(/7),—^ M/ipl , where kt.j= 1. 2. 3. 4, is the

number of free parameters m the j " model.

We used the eight boundary *;ets (0, 3), (0, 4) (0, 10), (0. 12). ( - 3. 3). ( - 4, 4), ( - 10,

10), and ( - 1 2 . 12) wilh the first and swond starting penalty sets, and the eight

boundary sets (0. 3ln(«)/2). (0, 21n(w)), (0, 10). (0. 12). ( - 3 . 31n(/;)/2K ( - 4 , 21n(w)),

( - 10, 10), ( - 12, 12^ with the third penalty. In all cases, we used four temperature

reduction values namely 0.1, 0.01, 0.001. and 0.0001; so. we have % combinations

of inii'Uti' acis of values ibrthe SAO technique to estimate APCS.

The starting values and boundary values for Designs 4.4, 4.5 and 4.6 (eight

I competing models) were also chosen considering the same reasons given for Designs

4.1, 4.2 and 4.3.
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The three sets of starting values for additive penalties for Designs 4.4, 4.5 and 4.6

are. { 0 , 0 , 0 . 0 , 0 . 0 , 0 . 0 } . {(it - 1)} and-M \n(n)\. where k,.j= 1 .2 .3 .4 .5 .6 ,

7, 8, is the number of free parameters in the / ' model.

We used the eight boundary sets (0, 4). (0. 8) (0, 10). (0, 32). ( - 4 , 4), ( - 8. 8). ( - 10.

10), and ( - 3 2 , 32), with the first and second starting penalty sets, and the eight

boundary sets (0, 10). (0, 32). (0. 21n(«)), (0. 41n(w)/2), ( - 10. 10), ( - 3 2 , 32). ( - 4 .

2\n(n)) and ( - 8 , 41n(n)) with the third penalty set. In all cases, we used four

temperature reduction values, namely 0.1, 0.01, 0.001. and 0.0001; so, we have 96

combinations of initial sets of values for the SAO technique to estimate the APCS.

In the case of multiplicative penalties, we have to multiply the mean squared enor by

the penalties selected in such a way that the MAPCS is maximised with the

minimisation of mean squared enor and the penalised value of mean squared enor

being non-negative. Considering these constraints, we have to select the starting and

boundary values of the penalties. Because the penalised mean squared error cannot be

negative and the mean squared enor is positive, the value of the penalties must be

positive. As mentioned earlier, AIC and BIC are widely used 1C, so we used AIC and

BIC as the starting values for the SAO technique. In addition, we used no penalty as

the starting value. Here we use zero as the lower boundary. The upper boundaries are
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k, m and some arbitrary value: and a combination of these. These boundaries were

selected so that the conditions required by the SAO technique were satisfied.

The three sets of starting values for multiplicative penalties for Designs 4.1, 4.2 and

4.3 are, {1, 1, 1, 1}, { i t , ,* , ,* , ,* ,} , and|^-ln(n),-^-ln(w),^ -^-ln(n) | , where

k] ,j — 1, 2, 3, 4, is the number of free parameters in the / ' ' model.

We used the six boundary sets, (0, 1). (0. 3), (0, 10), (0,12), (0, 20) and (0, 36), with

the first starting penalty set; the four boundary sets, (0, 10), (0, 12), (0, 27) and (0,

48), with the second starting penalty set; and the four boundary sets (0, 31n(/?)/2), (0,

31n(,/;)), (0, 41n(/;)) and (0, 51n(/?)), with the third starting penalty set. For each

combination of boundary and penalty sets, we used the same four temperature

reduction values used for the additive penalty. Thus we have 56 combinations of

initial sets of values.

The three sets of starting values of multiplicative penalties for Designs 4.4, 4.5 and

4.6 are, {1, 1, 1, 1, 1, 1, 1, 1}, {AvMv^-M'eA'M- a n d

1 2 9
, where A: , j

= 1, 2, 3, 4, 5, 6, 7, 8, is the number of free parameters in the j"' model.
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We used the five boundary sets (0. 1). (0, 4), (0, 8), (0, 20) and (0. 32) with the first

penalty set: the five boundary sets (0, 21n(»)), (0. 4), (0, 8), (0. 20) and (0, 32) with

the second penalty set; and the five boundary sets (0. 21n(/j)), (0, 4In(n)), (0. 81n(«))-

(0. 20) and (0. 32) with the third penalty set. For each combination of boundary and

penalty sets, we used the same four temperature reduction values used for the

additive penalty. This adds up to 60 combinations of initial sets of values.

4.5 MONTE CARLO RESULTS

The results of the simulation experiments for ihe SAO technique with additive and

multiplicative penalties are presented in Tables 4 .1a -c to Tables 4 .6a -c . In each

table there are three types o( penalties: Type 1 - additive, which are penalties of the

existing criteria; Type 2-additive, which use maximised log-likelihood with the

SAO technique; and Tvpc 3 - multiplicative, which use mean squared enor with the

SAO technique. There are eight Type 1 criteria, namely AIC, B1C, GCV, HOC, HQ

RBAR, MCP and J1C. The largest MAPCS, smallest variation among the APCS,

modal MAPCS and median MAPCS obtained from the SAO technique are used as

criteria under Type 2 and Type 3 penalties. A comparative study between Type 1 and

Type 2 penalties for all designs under consideration is given in Section 4.5.1. The

comparison between Type 1 and Type 3 penalties is presented in the Section 4.5.2

and in Section 4.5.3 we give a comparative study of Type 2 and Type 3 penalties.
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4.5.1 COMPARISON OF TYPE 1 AND TYPE 2 PENALTIES

"Hie average probabilities of choosing the true model along with MAPCS and the

penalties for Designs 4.1. 4.2. 4.3. 4.4. 4.5 and 4.6 are presented in Tables 4 .1a -c ,

4 .2a -c . 4 .3a-c . 4 .4a -c . 4 .5a -c and 4.6a- c. respectively.

The Monte Carlo experiments indicate that the application of the SAO technique has

a great effect on the performance of model selection in terms of APCS. For Designs

4.1, 4.2 and 4.3 and for all sample sizes under consideration, the MAPCS obtained

using Type 2 penalties is always greater than that of the largest MAPCS (here that of

B1C) among the listed existing 1C (Table 4.1a to Table 4.3c). Also the variation

among the APCS under Type 2 penalties is smaller tt in that of cited IC for all cases

of Design 4.1 and some cases of Design 4.2 and 4.3. For all designs and sample sizes,

in comparison to B1C, there is an increase «n APCS for the model with the largest

number of regressors ( M5) and a decrease in APCS for the model with the smallest

number of regressors (M, ) for the largest MAPCS obtained from the SAO

technique; but the picture is reversed in the case of the largest MAPCS obtained from

the existing IC (here that of B1C). The mode3 and median MAPCS obtained from the

SAO technique are very close to the largest MAPCS obtained from the SAO

technique and in some cases these are identical to the largest MAPCS. For Design

' We have 96 MAPCS for 96 combinations of initial parameter values for the SAO technique
applied to Type 2 penalties. We computed the mode and median of these 96 MAPCS.
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4.1, the MAPCS corresponding to the smallest standard deviation of APCS among

the competing models obtained from the SAO technique is very close to the largest

MAPCS for all sample sizes. For Designs 4.2 and 4.3, the gap between the largest

MAPCS and the APCS corresponding to the smallest standard deviation among the

MAPCS obtained from the SAO technique increases as the sample size increases, but

the value of standard deviation decreases with an increase in sample size. In general

it is observed that among the existing criteria, RBAR selects the true model with the

lowest MAPCS and the variation among its APCS is also the lowest. But this lowest

variation is generally higher than the corresponding smallest variation among the

APCS obtained from the SAO technique with higher MAPCS obtained from this

technique compared to RBAR.

The results obtained for Designs 4.4, 4.5 and 4.6 are very similar to those of Designs

4.1, 4.2 and 4.3 e\en though the number of competing models are double. For all

designs and sample sizes, the largest MAPCS obtained using Type 2 penalties are

always higher than that of BIC, the largest MAPCS among the existing listed 1C with

lower variation among the APCS compared to BIC (Table 4.4a to Table 4.6c). A

decrease in the APCS for the model with the lowest number of regressors ( M}) and

an increase in the APCS for the model with the highest number of regressors ( M8) is

observed compared to the corresponding APCS obtained from BIC, for all sample

sizes of Design A A, n = 20 of Design 4.5, and n = 50 and 100 of Design 4.6. For the

remaining sample sizes of Designs 4.5 and 4.6, the APCS for the model with the

.
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lowest number of regressors and the model with the highest number of regressors are

increasing compared to B1C. For all sample sizes and designs, the mode and median

MAPCS obtained from the SAO technique are very close to the largest MAPCS

obtained from the SAO technique and some cases these are identical to the largest

MAPCS obtained from the SAO technique. An increase in the difference between the

largest MAPCS and the MAPCS corresponding to the smallest standard deviation

among the APCS is observed with an increase in sample size, but the numerical

value of the standard deviation decreases as the sample size increases. Among the

existing criteria, RBAR chooses the true model with the lowest MAPCS and in some

cases the variation among the APCS is also the lowest. But this lowest variation

among the PCS is always higher than the smallest variation among the APCS

obtained from the SAO technique with larger MAPCS compared to RBAR.

The number of competing models in Designs 4.1, 4.2 and 4.3 arc the same; and we

used three different sets of data to test the performance of the application of the SAO

technique with additive penalties. The relative penalty for a particular model under

the existing criteria remains the same for Designs 4.!, 4.2 and 4.3 as the existing

penalties are a function of n, the sample size, and k, the number of free parameters.

But for the same set of starting values, boundary values and temperature reduction

factors, the relative penalty obtained using the SAO technique for the Designs 4.1,

4.2 and 4.3 are different. For example, for sample size 20, starting value (0, 0, 0, 0),

boundary (0,10), and temperature reduction factor 0.1, the relative penalties for
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models M,, M2, M? and M5 thai maximise the MAPCS are (0, 7.6894, 0.5024,

8.0203), (0, 1.6146, 1.3136, 3.7060) and (0. 2.1953. 1.8668. 3.5430) for Designs 4.1.

4.2 and 4.3, respectively. It indicates that the penalties do not depend only on n and k.

but also the data generating process. It is also notable that although the models M,

and M-. have the same number of parameters and the penalties of these models under

the existing criteria are the same, while the penalties are different under the SAO

technique. Another notable finding from the simulation experiments using Type 2

penalties is that for a particular data set and a set of competing models, exactly the

same MAPCS and the same variation among the APCS is obtained from different

sets of relative penalties. For example, for Design 4.1 and sample size 50, the largest

APCS and SD among the APCS are 0.6290 and 0.1687, respectively. These MAPCS

and SD values are obtained from 21 different relative penalty sets, e.g. (0, 8.9402,

1.2482, 9.2081). (0. 11.4229. 1.2439, 11.6918), (0, 17.5325, 1.2462, 17.8005). This

result implies that there is no unique set of penalties for a particular data set to

maximise the MAPCS. Further it is probable that there may be no unique functional

form for the penalties for a panicular data set. A similar picture is also observed for

Designs 4.4, 4.5 and 4.6.

4.5.2 COMPARISON OF TYPE 1 AND TYPE 3 PENALTIES

Here we compare the MAPCS and variation among the APCS obtained using the

Type 1 penalties, which are existing penalties, and the Type 3 penalties

(multiplicative), which are those obtained using the SAO technique applied to
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penalised mean squared error. The results of the expenments are presented in Tables

4.1 a - c 4.2a - c, 4.3a - c, 4.4a - c. 4.5a - c and 4.6a - c.

The simulation results demonstrate that in 100 percent of the cases under

consideration for Designs 4.1, 4.2, and 4.3 and for all sa> -i sizes, the MAPCS

obtained using the SAO technique with multiplicative penalties (Type 3 penalties) is

greater than that of the largest MAPCS among the cited criteria (here B1C). It i:, also

evident from the simulation results that in 100% of the cases for Design 4.1, the

variation among the APCS is also lower than the variation for the largest MAPCS

among the cited criteria. But in the case of Designs 4.2 and 4.3. the variation among

the APCS is comparatively higher than that of the existing cnteria. For Design 4.1

with n = 20, all sample sizes o\ Design 4.2 and sample sizes 20 and 100 of Design

4.3, the mode4 and the median MAPCS coincide with the largest MAPCS obtained

from Type 3 penahies. In other cases, the mode and the median MAPCS are very

similar to the largest MAPCS obtained using Type 3 penalties. The MAPCS

corresponding to the smallest standard deviation among the APCS is very close to the

largest MAPCS. The varia'.ion among the APCS increases as the sample size

increases for Designs 4.2 and 4.3, but the reverse picture is observed for Design 4.1.

we have 56 MAPCS for 56 combinations of initial parameter values for the SAO technique
applied to Type 3 penalties. We computed the mode and median of these 56 MAPCS.
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The results obtained from Designs 4.4, 4.5 and 4.6 are very similar to the results

obtained from Designs 4.1, 4.2 and 4.3 although the number of competing models is

doubie in Designs 4.4, 4.5 and 4.6. In 100 percent of the cases, the MAPCS obtained

using Type 3 penalties is greater than the corresponding largest MAPCS obtained

from the existing IC, for n - 20 and 50 of Design 4.4, for all sample sizes of Design

4.5, and n - 20 of Design 4.6. For the remaining designs and sample sizes, in more

than 95 percent of the cases, the MAPCS obtained from Type 3 penalties is higher

than the corresponding largest MAPCS obtained from the existing IC. For all sample

sizes of Design 4.4, and n = 20 of Design 4.5, an increase of APCS in the model with

the largest number of regressors ( MH) and a decrease of APCS in the model with the

smallest number of regressors ( Mx) is observed, compared to the largest MAPCS

from the existing IC. The reverse picture is observed for the remaining sample sizes

of Design 4.5 and all sample sizes of Design 4.6. For all designs and sample sizes,

the mode5 and median MAPCS are very close to the largest MAPCS obtained from

Type 3 penalties and in some of the cases these are identical. The MAPCS

conesponding to the smallest variation among the APCS is very close to the largest

MAPCS obtained using Type 3 penalties.

As for additive penalties, in the case of multiplicative penalties we find, for the same

set of starting values, boundary and temperature reduction factors, the relative

5We have 60 MAPCS for 60 combinations of initial parameter values for the SAO technique
applied to Type 3 penalties. We computed the mode and median of these 60 MAPCS.

116



Chapter 4 Maximisation of MAPCS Using Additive and Multiplicative Penalties

pe.,«*:. obtained '•.' s% the SAO technique fos' Designs 4.1. 4.2 and 4.3 are different.

For example. K.» n = 20. starting penalties (1, 1, 1, 1), boundary (0. 3), and

temperature reduction factor 0.1. the relolive penalties for models M,. M,. M, and

M, that maximise the MAPCS are (1. 3.1681, 0.9959. 0.30906 \ (1. 1.1P.7, 1.0804.

1.2957) and (1. 1.1806. 1.1412. 1.2887) for Designs 4.1. 4.2 and 4.3, respectively.

Like Type 2 penalties, for the same d:mefssional model, the penalties are different

under the SAO technique although the penalties of these models under the existing

criteria are the same. Another remarkable finding from the simulatic experiments is

that for a particular data set and set of competing models, exactly the same MAPCS

and same variation among the APCS is obtained from different sets of relative

penalties for the SAO technique. For example, for Design 4.1 and sample size 100.

the APCS 0.7331 and SD 0.2021 is obtained from 12 combinations of initial

parameter values for the SAO technique. But the relative penalties that maximise this

MAPCS. are different e.g. (1.000, 3.5512, 1.0257, 3.5727). and (1.000, 1.6630.

1.0257, 1.6731). It confirms the finding concerning Type 2 penalties, that there is no

unique set of penalties that maximise the MAPCS. A similar picture is also observed

for Designs 4.4, 4.5 and 4.6.

4.5.3 COMPARISON OH TYPE 2 AND TYPE 3 PENALTIES

The Monte Carlo experiments indicate that the results obtained from additive

penalties used with maximised log-likelihood functions (Type 2) and from

multiplicative p^rialtics used with mear- squared error (Type 3), are very simiiar for
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all designs and sample sizes under consideration. It implies that there is no

significant effect of the form of penalties on the MAPCS of the model. So. from the

user's point of view, one can use either of the penalties with the SAO technique to

select the true model from a set of competing alternative models in linear regression

settings.

4.6 CONCLUDING REMARKS

In this chapter, we introduced the application o\' the SAO technique to mode!

selection. We used two types of penalty with the SAO technique to maximise the

MAPCS. namely additive penalties applied to maximised log-likelihood functions

and multiplicative penalties applied to mean squared error. The employment of this

technique has a great effect on the performance of model selection procedures with

respect to the selection of the true model in terms of MAPCS. Simulation results

show that the MAPCS obtained using the SAO technique is always higher than that

of the existing criteria for all designs and sample sizes. Also, the variation among

APCS obtained from the SAO technique decreases or remains very close to that of

existing criteria. In some experimental designs, an exceptional improvement in the

APCS for the model with the highest number of regressors is observed. In t! •

cases, a drastic reduction of the variation among the APCS is also observed.

The simulation results demonstrate that the optimal penalty for a particular model

does not depend only on the sample size and the number of free parameters, but also
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on the data generating process. The results for the SAO technique indicate that

exactly the same MAPCS and variation among the APCS for a particular data set and

a set of competing models can be obtained with different sets of penalties. It means

that there is no unique set of penalties which maximise the MAPCS. We found from

our simulation results that for the same dimensional model, the penalties obtained

using the SAO technique vary from data set to data set although they are the same in

the case of existing criteria. Billah and King (1998) conducted simulation

experiments for linear regression models with white noise. AR(1), AR(2) and MA(1)

disturbances to estimate the penalties which maximise the MAPCS of the model. It is

also apparent from their simulation results that although the AR(1) and MA(1>

disturbance models have th" same number of parameters, the penalties that maximise

"{he MAPCS are different Thus, in the context of selecting the best model from a set

of models with equal number of parameters, the idea of penalising their

corresponding maximised log-likelihood or mean squared error functions is

inevitable in order to maximise the MAPCS. In the next chapter, we will discuss this

issue of model selection.

Our simulation results indicate that the application of the multiplicative penalty to

mean squared error and the additive penalty to the maximised log-likelihood function

have very similar effects on the selection of the true model among a set of competing

alternative models. So from the user's point of view, one can use either of these

techniques for model selection purposes.
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Chapter 4 Maximisation of MAPCS Using Additive and Multiplicative Penalties

In this chapter, it has been asserted that the application of the SAO technique to

additive penalties applied to maximised log-likelihoods and multiplicative penalties

I applied to mean squared error, can be used to select the true model with highei APCS

compared to existing criteria. It would seem that the numerical evidence from our

simulation experiments is a good reason to recommend the use of the SAO technique

for model selection purposes with either additive penalties applied to maximised lr>r>-

Hkelihoods or multiplicative penalties applied to mean squared error.
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Table 4.1a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 20 for Design 41 together with relative penalty values and input values of SAO technique.

Type of
penalty

Additive:
Existing criteria
(Type 1)

Additive:
Using log-
likelihood with
SAO technique
(Type 2)

Multiplicative.
Using mean
squared error
with SAO
technique
(Type 3)

Criteria

AlC
BIC
GCV
HOC
HQ
RBAR
MCP
JIC
Largest
MAPCS
Smallest
SD among
A PCS
Modal
MAPCo
Median
MAPCS
Largest
MAPCS
Smallest
SD among
A PCS
Modal
MAPCS
Median
MAPCS

Average

Ml !
0.6800
0.8225
07125
0.7195
0.7135
0.4710
0 6810
0.6850
0.6245

0 5535

0.6255

0.6490

0.6485

0.5845

0.6485

0.6480

probabilities of correct selection of

M: |
0.8060
0.8815
0.8305
0.8395
0.8205
0.6790
0.8080
0.8105
0.5435

0 5440

05435

0.5460

0.5400

0.5460

0.5400

C 5400

M, |
0.1580
C.1150
0.1495
0.1450
0.1455
0.2195
0.1565
0.1550
0.4550

0.4845

0.4535

0.4265

0.4325

0.4940

0.4325

0.4320

M< I
0.2220
0.1345
0.1865
0.1820
0.1960
0.3695
0.2155
0.2125
0.5080

0.5080

0 5080

0.5055

0.5120

0.5055

05120

05120

Mean !
0.4665
0.4884
0.4698
0.4715
0.4689
0.4347
0 4655
04657
0.5328

05225

0.5326

0.5318

05333

0.5325

0.5333

0.5330

model

SO
0.3244
0.4206
0.3521
0.3*93
0.3476
0.1928
03272
0.3305
0.0712

0 0^20

0.0«26

0.0R93

0.0412

0 0K93

0 0«93

1
1

1
1

1

>
I
1

m
 

C
M

 
co

5

3

2

3

1

Relative

r2 l
.0000
.4979
0813
.1123
0972
5407
0059
0193
.0759

6281

2473

1629

.1681

2897

1681

7426

1

1

1
1
1

0
1

1

0

0

0

0

0

0

0

0

penalties

/>,
0000
4979
0813
1123
0972
5407
0059
0193
4639

3685

4660

5032

9959

9852

9959

9959

2

2

2

2

2

1

2

2
C

O
 

C
M

 
00

5

3

2

3

1

f\
0000
9957
2245
2901
1944
1123
0220
0540
4040

9563

5757

4936

0205

2352

0906

6999

Input values for simulated annealing
Starting values of penalties

0

0

0

0

1

1

1

_£ 1

1.4979

1 0000

1.4979

1 4979

1 0000

1 0000

1 0000

2 0000

1.4979

1.0000

1.4979

1.4979

1 0000

1.0000

1.0000

2.0000

2.9957

2 0000

2.995?

2.9957

1.0000

1.0000

1.0000

3 0000

B
LB

-12

0

• 1 0

0

0

0

0

C

nindaries

i

12.0000

3.0000

10.0000

5.9915

3.0000

1.0000

3 0000

12.0000

TR1-"

0.0'/00

0.1000

0.0001

0.1000

0 1000

0.1000

0.1000

0.1000

* Additive penalty for model M, is zero and multiplicative penalty tor model M, is one
** TRF Temperature reduction factor



Table 4.1b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 50 for Design 4.1 together with relative penalty values and input values of SAO technique.

K)

Type of
penalty

Additive:
Existing criteria
(Type 1)

Additive:
I'Jng loe-
like»:hood with
SAO technique
(Type ?.)

Multiplicative:
Using mean
squared error
with SAO
technique
(Type 3)

Criteria

MC
IMC
GCV

HOC
HQ
RBAR
MCP
JIC
Largest
MAVCS
Smallest
SD among
APCS
Modal
MA PCS
Median
MAPCS
Largest
MAPCS
Smallest
SD among
APCS
Modal
MAPCS
Median
MAPCS

Average

Ml 1
0.7560
0.9260
0.7630
0 7670
0.8450
0.5145
0.7560

0.8175
0.8770

0.7765

0.8770

0.8745

0.8770

0.8730

0.8770

0.8770

probabilities of correct selection of model

M2 I
0.8230
0.9450
0.8320
0.8340
0.8865
0.6660
0.8240
0.8650
0.5170

0.5180

0.5170

0.5170

0.5290

05290

0.5290

0.5285

Af,
0.3165
0.2840

0.3155
0.3150
0.3085
0.3070
0.3165

03150
0.5935

0 6275

0.5935

0.5920

0 5930

05910

0.5930

0.5930

« 5 i
0.2080
0 0800
0.2010
0.1990
0.1430
0.3660
0 2075
0.1630
0.5285

0.5275

0.5285

05285

05145

0.5145

0.5145

05140

Mean |
0.5259
0.5587
0.5279
0.5287
0.5457
04634
0.5260
0.5401
06290

0.6124

0 6290

0 6280

0.6284

06269

0.6284

0.6281

SD
0 3088
04430
03161
03185
0 3^60

0.15C8
0 3093
0.3S37
0.1687

0.1201

0.1687

0.1676

0.1692

0 1674

0.1692

0.1694

1

1

1
1

1

0

1

8

2

8

5

1

i

1

2

Relative

[JL.
.0000
9S60
C310
0418
.3641
.5155
0009
2357
.9402

6381

9402

.4455

6936

•923

.6936

9855

1

1

1

1

1

0

1

1

1

0

1

1

1

1

1

1

penalties

r,
0000
9560
0310
0418
3641
5155
0009
2357
2482

8357

2482

2475

0293

0294

0293

0293

2
3

2

2
2
1

2
2
9

2

9

5

1

1

1

2

*

.0000
9120
.0936

1058
.7281
0418
.0035
4769
.2081

.9068

.2081

.7132

.6774

1309

6774

9570

0

0

0

0

1

1

i

Starting

•V/

.0000

.0000

0000

.0000

.0000

9560

0000

0000

0

0

0

0

1

r>

1

1

Input vnlues for simulated annealing
; values of penalties
" ,.
_hi I

.0000

.0000

.0000

.0000

.0000

9120

.0000

0000

0.0000

0.0000

0.0000

0.0000

1.0000

3 9120

1 0000

1 0000

.V,

0.0000

0 0000

0 0000

0.0000

1.0000

5 8680

1 0000

1 0000

Boundaries

^ 0

0

0

0

0

0

0

0

UB

12.0000

3.0000

12 0000

10.0000

1.0000

19 5601

1 0000

36 0000

TRF"

0.1000

0.0100

0.10C0

0.0100

0.1000

0.0010

0.1000

0.1000

* Add'tive penalty for model
* * TRF 1 errtperature reductk

i is zero and multiplicative penalty for model A-// is one
factor



Table 4.1c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 100 for Design 4.1 together with relative penalty values and input values of SAO technique.

123

Type of

penalty

Additive:
Existing criteria
(Type 1)

Additive:
Using log-
likelihood with
SAO "technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique
(Type 3)

Criteria

AIC
BIC
GCV

HOC
HQ
RBAR
MCP _j
JIC
Largest
MA PCS
Smallest
SD among
APCS
Modal
MAPCS
Median
MAPCS
Largest
MAPCS
Smallest
SD among
APCS
Modal
MAPCS
Median
MAPCS

Average probabilities of correct selection of model

M, j
0.7615
0.5495
0.7645
0.7665
G.8745
0.5380
0.7615
0.8585
0.9340

0.8450

0.9340

0.9340

0.9365

0.9365

0.9365

0.9365

0
0
0

C

0

0

0

0
0

0

0

0

0

0

0

0

.845Q
9580
.8520
8520
.9170
.6935
.8450
.9065
7990

7530

7990

7990

8040

7850

8035

7855

0
0
0

0

0

0

0

0

0

0

0

0

0

c

0

0

M
5215
5190
5225
5220
5305
4825
5215
5270
7380

7405

7375

7355

7355

7355

7355

7355

M,
0.4040
0.2095
0.3970
0 3970
0.2990
0 5435
0.4035
03210
0.4635

0.5040

0.4635

0.4635

04570

0.47^5

14570

0 4745

Mean
0.6330
0.6590
0 6340
0.6344
0.6552
0.5644
0.6329
0 6533
0.7336

0 7106

0 7335

0.7330

0 7332

07329

0.7331

0.7330

SD
0.2052
0.3631
0.2107
0 2112
0.2939
0 0904
0.2054
02784
0.1978

0 1454

0.1978

0.1978

02022

0.1923

0.2021

0 1924

2
1

1
i

0
1
1

15

2

7

6

3

1

1

Relative

P? I
0000
.3026
.0152
.0204
.5272
.5076
0002
.4051
.2409

3308

4871

.1524

2291

.7588

.6630

7747

1

2
1
1

1

0
1

1
1

1

1

1

1

1

1.

1.

penalties

P<
0000
3026
0152
0204
5272
5076
0002
4051
7396

1201

7373

7391

0257

1257

0257

0257

2
4

2

2

3
1

2

2
16

2

8

6

1

3

1

1

•

.0000
6052
.0409
0514
.0544
.0204
.0009
.8"! 28

.0419

9778

2880

.9534

2366

.7764

6731

7830

0

0

0

0

2

2

2

2

Input values for simulated annealing
Starting values of penalties

s,

0000

0000

0000

0000

3026

3026

3026

3026

s? I

0.0000

0 0000

0 0000

2.3026

4 6052

4 6052

4.6052

46052

s,

0 0000

0 0000

0.0000

2.3026

4 6052

46052

4B052

4 6052

| . V ,

0 0000

0 0000

0 0000

4 6052

6.9078

69078

69078

6.P078

Boundaries
TBT|

-12

0

0

-3

0

0

0

o

l.'B

12 0000

3.0000

10.0000

6.9078

23.0259

13.8155

6.9078

6.9078

TRF"

0.1000

00010

0.1000

0.1000

0.1000

0.0010

0.0001

0 1000

* Additive penalty for model Mt is zero and multiplicative penalty for model M, is one
** TRF Temperature reduction factor



Table 4.2a Average probabilities, mean average probabilities and standard devitations of average probabilities of correct selection of
models for sample size 20 for Design 4.2 together with relative penalty values and input values of SAO technique.

to

Type of

penalty

Additive:

Existing criteria

(Type 1)

Additive.

Using log-

likelihood with

SAO technique

(Type 2)

Multiplicative:

Using mean

squared error

with SAO

technique

(Type 3)

Criteria

AIC

BIC

Average probabilities of correct selection of model

M, M, Mean

GCV

HOC
HQ
RBAR
MCP

JIC
Largest
MAPCS
Smallest
SD among
A PCS

Modal
MAPCS
Median
MAPCS
Largest
MAPCS

Smallest
SD among
APCS
Modal
MAPCS

Median
MAPCS

0.6690
0.7970
0.6985
0.7095
0.7035
0.4505
0.6715
0.6765

0.6545
0.6850
0.6710
0.6745
0.6635
0.5775
0.6565
0.6580

0.3850
0.3485
0.3900
0.3885
0.3835
0.4190
0.3850
0.3870

0.2605
0.1700
0.2295
0.2245
0.2370
0.3785
0.2545
0 2490

0.4923
0.5001
0.4973
0.4992
0.4969
0.4564
04919
0 4926

SI)
0.2023"
0 2911
02265
0.2329
02242
0 0860
02059
0 2095

Relative penalties

0.8015

0.7940

0.8015

0.8015

0.7255 0 3975 0 1095 0 5085 0.3186

0.6075 0 3635 0.2465 0 5029 0 2455

1.0000

1 4979

1.0813

1.1123

1 0972

0.5407

1.0059

1 0193

1.0000

1 4979

1.0813

1.1123

1 0972

0 5407

1.0059

1.0193

2.0000

2.9957

2.2245

2.2901

2.1944

1 •• ;.?3

2.0^0

20540

0.7255 03975

0.7255 0.3975

0.1095 0.5085 0.3186

0 1095 0.5085 0.3186

0.8015

0.8015

0.8015

0.8015

0.7255 03975

0.7255 03975

-X-
0.1095 0 5085 0 3186 i

0.1095 0 5065 0.3186

0.7255 0.3975 0.1095 0 5085 0.3186

0.7255 0.3975 0 1095 0.5085 0.3186

* Additive penalty for model Mi is zero and multiplicative penalty for model M, is one

** TRF Temperature reduction factor

16079 1.3140

1 5974 1.3141

16079 131-*0

16079 13140

T.1125 T.0804

1.1125 1.0804

3.6832

Jnput values for simulated annealing
Starting values of penalties

"s, 'T s2 r s/ 1 ~~.v< JJTL__I!B

0.0000 0.0000 0.0000 0.0000

2 5162 I 0.0000 10000 1.0000 2 0000

36832

3 6832

0 0000 0.0000 0 0000 0 0000

0 0000 0.0000 0 0000 0 0000

1.2930

1.2930

1.1125 1.0804 1.2930

1.1125 1.0804 1 2930

1.49""̂  2 9957 2 9957 4 4930

14979 2 9957 2.9957 4 4936

V4979 2 9957 2 9957 4 4936

1.4979 2.9957 2.9957 4 4936

Boundaries

-12

0.

-12

-12

"o~

0

0

0

12

3

12

12

"u

14

14

14

0000

.0000

0000

0000

9787

9787

.9787

.9787

0

0

0

0

0

0.

0.

1000

0001

1000

1000

Tooo

1000

1000

1000

TRF

j l

Pat*



Table 4.2b Average probabilities, mean average probabilities and s ..ndard deviations of average probabilities of correct selection of
models for sample size 50 for Design 4.2 together with relative penalty values and input values of SAO technique.

Type of

penalty

Additive.

Exisiing criteria

(Type 1)

Additive:

Using log-

likelihood with

SAO technique

(Type 2)

Multiplicative:

Using mean

squared error

with SAO

technique

(Type 3)

Criteria

AIC

BIC
GCV

HOC
HQ
RBAR

MCP

JIC

Average probabilities of correct selection of model Relative penalties

M
0.7190

0.9095

0.7290

0.7325

0.8125

0.4900

0.7190

0.7830

Mean sr>
0.7780

0.8830

0.7920

0.7940

0.8335

0.6390

0.7785

0.8230

0.6655

0.7100

0.6715

0.6720

0.6925

0.5800

0.6660

C.6870

0.5925

0.4530

0.5840

0.5815

05315

06915

0.5915

0.5525

0 6887

0.7389

0.6941

0.6950

0.7175

06001

0.6887

07114

0.0789

0.2101

0.0884

0.0906

0.1387

0.0864

0.0795

0.1203

P, T" r,

Largest
MAPCS
Smallest
SD among
APCS

Modal
MAPCS

Median
MAPCS

Largest
MAPCS
Smallest
SD among
APCS

Modal
MAPCS

Median

MAPCS

0.9745

0.8690

0.9745

0.9745

0.8650 0.7185 0.4210 0.7448 0.2400

08165 0.6840 0.5460 0.7289 0.1446

1 0000

1.9560

1.0310

1 0418

1 3641

05155

1.0009

1 2357

1 0000

1.9560

1.0310

1.0418

1.3641

05155

1.0009

1.2357

2.0000

3.9120

20836

2.1058

2.7281

1.0418

2.0035

2 4769

0.8650 0.7185 0.4210

0.8650 07185 0.4210

0.7448 0.2400

0.7448 02400

3.3296 28476 5.2849

1.7732 16949

3 3296 2.8476 5.2849

3.3296 2.8476 5 2849

Input values for simulated annealing

Starting values of penalties

S, S,

0.0000 0.0000 0.0000 0.0000

29996 0.0000 0.0000 0.0000 0 0000

0.0000 0.0000 00000 0.0000

0 0000 0 0000 0 0000 0.0000

0.9745 0.8650 0.7185 0.4210

0.9635 0.8740 0.6785 0.4600

0.9745 0.8650 0.7185 0.4210

0.9745 0.8650 0.7185 0.4210

0.7448 0.2400 ;

0.7440 0.2236 !

j

0.7448 0.2400 j

i
0.7448 02400 I

1.1194 1.0978 1.1852

1.0922 1.0988 1.1551

1.1194 10978 1.1852

1.1194 10978 1.1852

10000 10000 10000 1.0000

1.0000 10000 10000 1.0000

1.0000 1.0000 10000 1.0000

1.0000 1.0000 1.0000 1.0000

Boundaries

LB

0

UB

12.0000

3.0000

0 12.0000

0 12.0000

0 3.0000

0 12.0000

0 3 0000

0 3.0000

TRF

0.1000

0.0010

0.1000

0.1000

0.1000

0 0001

0.1000

o.tooo

* Additive penalty for model Ml is zero and multiplicative penalty for model Ml is one

** TRF Temperature reduction factor



Table 4.2c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 96 for Design 4.2 together with relative penalty values and input values of SAO technique.

to

Type of
penalty

Additive:
Existing criteria
(Tvpe 1)

Additive:
Using log-
likelihood with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique
(Type 3)

Criteria

AFC
BIC
GCV
HOC
HQ
RBAR
MCP
JIC
Largest
MA PCS
Smallest
SD among
A PCS
Modal
MAPCS
Median
MAPCS
Largest
MAPCS
Smallest
SD among
A PCS
Modal
Nf >('S
Mecian
MAPCS

Average

M, |
0.7415
0.9390
0.7455
0.7480
0.8665
0.5290
0.7415
0.8375
0.9940

0.8650

0.9940

0.9940

0.9940

0.9970

0.9940

0.9940

probabilities of correct selection ol

M2 |
0.8155
0.9445
0.8195
0.8205
0.8905
0.6600
0.8155
0.8745
0.9530

0.8805

0.9530

0.9530

0.9530

0.9395

0.9530

0.9530

Mj i
0.8035
0.9160
0.8080
0.8085
0.8740
0.6610
0.8035
0.8595
0.9550

0.8820

0.9550

0.9550

0.9550

0 9480

0.9550

0.9550

M.i !
0.8830
0.8255
0.8815
0.8815
0.8595
0.9155
0.8830
0.8625
0.7920

0.8600

0.7920

0.7920

0.7920

0.8070

0.7920

0.7920

Mean
0.8109
0.9063
0.8136
0.8146
0.8726
0.6914
0.8109
0.8585
0.9235

0.8719

0.9235

0.9235

0.9235

0 9229

0.9235

0.9235

' model

SD
0.0580
0.0552
0.0557
0.0547
0.0133
0.1618
0.0580
0.0154
0.0897

0.0110

00897

0.0897

0.0897

00813

0.0897

0.0897

1

2
1

1

1

0
1

1

4

1

4

4

1

1

1

1

Relative penalties

Pi I
.0000
.2822
.0159
.0213
.5183
.5079
0003
.3951
.78C1

.5598

.7801

.7801

0931

1118

.0931

.0931

1.0000
2.2822
1.0159
1.0213
1.5183
0.5079
1.0003
1.3951
4.1070

1.4537

4.1070

4.1070

1.0778

1 0960

1.0778

1 0778

2
4

2
2

3
1

2

2
7

2

7

7

1

1

1

1

•

.0000

.5643

.0426

.0536

.0366
0213
.0009
.7928
.6732

9997

6732

.6732

.1-186

1569

.1486

1486

0

0

0

0

1

1

1

1

Input values for simulated annealing
Starting values of penalties

0000

0000

.0000

0000

0000

0000

0000

.0000

V

0.0000

0.0000

0.0000

0.0000

2.0000

2.0000

2.0000

2 0000

0.0OJ0

0 0000

0 0000

0.0000

2.0000

2.0000

2.0000

2.0000

0.0X0

0.0000

0.0000

0.0000

3.0000

30000

30000

30000

Boundaries
LB UB

-4

0

-4

-4

0

0

0

0

4.0000

3.0000

4.0000

4.0000

48.0000

48.0000

48.0000

48.0000

T R F "

0.1000

0.1000

0.1000

0.1000

0.0100

0.0001

0.0100

00100

* Additive penalty for model M, is zero and multiplicative penalty for model Mt is one
** TRF Temperature reduction factor



Table 4.3a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 20 for Design 4.3 together with relative penalty values and input values of SAO technique.

Type of
penalty

Additive:
Existing criteria
(Type 1)

Additive:
Using log-
likelihood with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique
(Type 3)

Criteria

AIC
BIC
GCV
HOC
HQ
RBAR

MCP
JIC
Largest
MAPCS
Smallest
SD among
A PCS
Modal
MAPCS
Median
MAPCS
Largest
MAPCS
Smallest
SD among
APCS
Modal
MAPCS
Median
MAPCS

Average probabilities of correct selection of model

M,
0.8355
0.7815
0.6650

6755
0.6695
0.4305
0.6400
0.6450
0.8740

0.8000

0.8740

0.8740

0.8740

0.8315

0.8740

0.8740

M7

0.5995
0.6210
0.6155
0.6165
0.6090
0.5365
0.6025
0.6065
0.5745

0.6100

0.5745

0.5745

0.5745

0.5915

0.5745

0.5745

M, |
0.5725
0.5750
0.5815
0.5825
0.5735
0.5320
0.5750
0.5750
0.5590

0 5330

0.5590

0.5590

0.5590

0.5590

0.5590

0.5590

M, |
0.5085
0.4205
0.4810
0.4740
0.4900
0.6100
0.5075
0.5050
0.4110

0.4590

0.4110

0.4110

0.4110

0.4330

0.4110

0.4110

Mean
0.5790
0.S995
0.5857
0.5871
0.5855
0.5272

0.5813
0.5829
0.6046

0.6005

0.6046

0 6046

0.6046

0.6038

0.6046

0.6046

SD
0.0536
0.1486
0.0778
0.0846
0.0750
0.0737

0.0559
0.0593
0.1941

0.1466

0.1941

0.1941

0.1941

0.1665

0.1941

0.1941

Relative

V
1.0000
1 4979

1.0813
1.1123
1 0972
0.54P'

*< .0059
1.0193
2.1992

1.505?

2.1992

2.1992

1.1806

1.1389

1.1806

1.1806

1
1

1
1
1

0
1

1

1

1

1

1

1

1

1

penalties'

0000
4979

0813
1123
0972
5407

0059
0193
8608

6540

8608

8608

1412

1221

1412

U12

2.0000
2.9957

2.2245
2.2901
2 1944

1.1123
2.0220
2.0540
3.6479

2.8529

3.6479

3 ~479

1 2887

1.2321

1.2887

1.2887

Input values for simulated annealing
Stalling values

Si

0.0000

0.0000

0.0000

0.0000

1.0000

1.0C00

1.0000

1.0000

s2 \

0.0000

0.0000

0.0000

0.0000

1.0000

2.0000

1.0000

1.0000

of penalties
.v, I

0.0000

0.0000

0.0000

0.0000

1.0000

2 0000

1.0000

1.0000

0.0000

0.0000

0 0000

0.0000

1.0000

30000

1.0000

1.0000

Boundaries
LB

0

0

0

0

0

0

0

0

UB

12.0000

3.0000

12.C000

12.0000

10.0000

48.0000

10.0000

10.0000

TRf;"

0.1000

0.0100

0.1000

0.1000

0.1000

0.0010

0.1000

0.1000

* Additive penalty for model
** TRF Temperature redur-f:<'

Mi is zero and multiplicative penalty for model A/, is one
in factor



Table 4.3b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 50 for Design 4.3 together with relative penalty vahies and input values of SAO technique.

00

Type of
penalty

Additive:
Existing criteria
(Type 1)

Additive:
Using log-
likelihood with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique
(Type 3)

Criteria

AIC
BIC
GCV
HOC
HQ
RBAR
MCP
JIC
Largest
MAPCS
Smallest
SD among
APCS
Modal
MAPCS
Median
MAPCS
Largest
MAPCS
Smallest
SD among
APCS
Modal
MAPCS
Median
MAPCS

Average

M, \
0.7050
0.8985
0.7140
0.7165
0.7945
0.4735
0.7050
0.7670
0.9060

0.8005

0.9060

0.9060

0.9065

0 9015

0.9070

0.9070

probabilities of correct selection of model

M2 |
0.7140
0.7660
0.7235
0.7265
0.7460
0.6145
0.7145
0.7395
0.7665

0.7780

0.7665

0.7665

0.7665

0.7630

0.7655

0.7655

Ms I
0.6610
0.6980
0.6720
0.6740
0.6875
0.5735
0.6615
0.6880
0.7035

0.7010

0.7035

0.7035

0.7035

0.7075

0.7035

0.7035

M5

0.6610
0.5605
0.6C65
0.6545
0.6140
0.7455
0.6605
0.6290
0.5560

0.5930

0.5560

0.5560

0.5560

3.5590

0.5560

0.5560

Mean |
0.6853
0.7308
0.6915
0.6929
0.7105
0.6018
0.6854
0.7059
0.7330

0.7181

0.7330

0.7330

0.7331

0.7328

0.7330

0.7330

SD
0.0282
0.1408
0.0323
0.0342
0.0778
0.1127
0.0284
0.0608
0.1452

0.0937

0.1452

0.1452

0.1454

0.1417

0.1455

0.1455

Relative penalties*

Pi
1.0000
1.9560
1.0310
1.0418
1.3641
0.5155
1.0009
1.2357
2.0229

1.3051

2.0229

2.0229

1.0624

1.0624

1.0626

1.0626

Ps I
1.0000
1.9560
1.0310
1.0418
1.3641
0.5155
1.0009
1.2357
1.9573

1.4416

1.9573

1.9573

1.0593

1.0568

1.0593

1.0593

P5
2.0000
3.9120
2.0836
2.1058
2.7281
1.0418
2.0035
2.4769
4.0287

2.9445

4.0287

4.0287

1.1271

1.1244

1.1272

1.1272

Input values for simulated
Starting values of penalties

s,

0.0000

0.0000

0.0000

0.0000

1.0000

1.0000

1.0000

1.0000

Si

0.0000

0.0000

0.0000

0.0000

2.0000

1.0000

2.0000

2.0000

Sj

0.0000

0.0000

0.0000

f;0000

2.0000

1.0000

2.0000

2.0000

0.0000

0.0000

0.0000

0.0000

3.0000

1.0000

3.0000

3.0000

annealing
Boundaries

LB

0

0

0

0

0

0

0

0

\ UB

10.0000

3.0000

10.0000

10.0000

10.0000

36 0000

12.0000

12 ;;ooo

TR1'"

0.1000

0.1000

0.1000

0.1000

0.1000

00001

0.0010

0.0010

* Additive penalty for model M
** TRF Temperature reduction

/ is zero and multiplicative penalty for model M, is one
factor



Table 4.3c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample sizs 100 for Design 4.3 together with relative penalty values and input values of SAO technique.

t o

Type of
penalty

Additive:
Existing criteria
(Type 1)

Additive:
Using log-
likelihood with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique
(Type 3)

Criteria

AIC
BIC
GCV
HOC

HO
RBAR
MCP
JIC
Largest
MAPCS
Smallest
SD among
APCS
Modal
MAPCS
Median
MAPCS
Largest
MAPCS
Smallest
SD among
APCS
Modai
MAPCS
Median
MAPCS

Average probabilities of correct selection of model

M, |
0.7025
0.9315
0.7090
0.7090
0.8450
0.4575
0.7025
0.8215
0.8905

0.8485

0.8905

0.8905

0.8950

0.8895

0.8950

0.8950

Mi !
0.7665
0.8325
0.7710
0.7710
0.8095
0.6440
0.7665
0.8010
0.8330

0.7945

0.8330

0.8330

0.8320

0.8160

0.8320

0.8320

M,
0.7125
0.7580
0.7170
0.7175
0.7605
0.6055
0.7125
0.7550
0.8165

0.7700

0.8160

0.8160

0.8175

0.8235

0.8175

0.3175

M,
0.7515
0.6375
0.7475
0.7470
0.6980
0.8275
0.7515
0.7090
0.6305

0.7065

0.6305

0.6305

0.6270

0.6400

0.6270

0.6270

Mean
0.7332
0.7899
0.7361
0.7361
0.7782
0.6336
0.7332
0.7716
0.7926

0.7799

0.7925

0.7925

0.7929

0.7923

0.7929

0.7929

SD
0 0306
0 1240
0 0286
00284
0 0637
0 1522
0 0306
0 0502
0 1126

00589

0 1126

0 1126

01156

0 1067

01156

0 1156

Relative penalties*

P2 I
1 0000
2.3026
1.0152
1.0204
1.5272
0.5076
1.0002
1.4051
2.1758

1.6293

2.1811

2.1811

1.0350

1.0366

1.0350

1.0350

P} |

1 0000
2.3026
1.0152
1.0204
1.5272
0.5076
1.0002
1 4051
1.5387

1.4306

1.5461

1.5461

1.0213

1.0193

1.0213

1.0213

Pi
2.0000
4.6052
2.0409
20514
3.0544
1.0204
2.0009
2.8128
42676

2.9826

4.2745

4.2745

1.0692

1.0655

1.0692

1.0692

0

0

0

0

1

1

1

1

Input values for simulated annealing
Starting values of pena
s,

.0000

0000

.0000

.0000

.0000

.0000

.0000

.0000

0.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1 0000

1.0000

O.OOOG

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

< 1000

hies

0.0000

2.0000

2.0000

2.0000

1.0000

1 0000

1.0000

1.0000

Boundaries

L lB T

0

0

-3

-3

0

0

0

0

UB

12.0000

3.0000

3.0000

3 0000

10.0000

12.0000

10 0000

10.0000

TRF"

.01000

0.0010

0.1000

0 1000

0 1000

0.0001

0.1000

0 1000

* Additive penalty for model M
** TRF Temperature reduction

is zero and multiplicative penalty for model M, is one
factor



Table 4.4a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 20 for Design 4.4 together with relative penalty values and input values of SAO technique.

Type of
penalty
Additive:
Existing criteria
(Type 1)

Additive.
Using log-
likelihood with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique
(Type 3)

Criteria

AIC
BIC
GCV
HOC
HQ
RBAR
MCP
JIC
Largest
MAPCS
Smallest
SD
among
APCS
Modal
MAPCS
Median
MAPCS
Largest
MAPCS
Smallest
SD
among
APCS"
Modal
MAPCS
Median
MAPCS

Average probabilities of correct selection of model
M, M4 Mean SD

0.5445

0.7240

0.5865

0.6000

0.5885

0 3175

0.5465

0.5550

0.6280

0.7735

0.6825

0.6S10

0.6630

0.4295

0.6340

0.6410

0.2395

0.2325

0.2485

0.2515

0.2400

0.2200

0.2415

0.2425

0.5015

0.5660

0.5325

0.5390

0.5205

0.3775

0.5055

0.5080

0.2985

0.2300

0.2765

0.2780

0.2825

0.3450

0.2955

0.2930

0.6275

0.6555

0.6440

0.6485

0.6295

0.5635

0.6290

0.6305

0.2335

0.1855

0.2250

0.2210

0.2265

0.2735

0.2320

0.2310

0.3330

0.2420

0.2915

0.2860

0.3140

0.4380

0.3280

0.3230

0.4257

0.4511

0.4359

0.4394

0.4331

0.3706

0.4265

0.4280

0.1681

0.2519

0.1935

0.1983

0.1852

0.1075

0.1706

0.1738

0.6815 0.7115 0.4390 0.5095 0.3670 0.5375 0.3600 0.3455 0 1433

0.5190 0.6290 0.4905 0.5150 0.4040 0.5270 0.3115 0.3915 0.4734 0.0992

0.6830 0.7120 0.4415 0.5045 0.3675 0.5375 0.3550 0.3455 0.4933 0.1441

0.6770 0.7015 0.4350 0.5070 0.3625 0.549C 0.3570 0.3490 0.4922 0.1416

0.6855 0.7110 0.4445 0.5230 0.3670 0.5375 0.3375 0.3455 0.4939

0.6835 0.6650 0.4420 0.5050 0.4235 0.5310 0.3555 0.3395 0.4931

0.6865 0.7075 0.4475 0.5230 0.3660 0.5285 0.3370 0.3515 0.4934

0.7825 0 6580 0.3725 0.4885 0.4405 0.5095 0.3485 0.3415 0.4927

0.1472

0.1295

0.1455

0.1570

Jtelative

1.0000

1.4979

1.0813

1.1123

1.0972

0.5407

1.0059

1.0193

1.0000

1.4979

1.0813

1.1123

1.0972

0.5407

1.0055

1.0193

1.0000

1.4979

1.0813

1.1123

1.0972

0.5407

1.0059

1.0193

2 0000

2.9957

22245

2.2901

2.1944

1.1123

PO22O

2.0540

2.0000

2.9957

22245

2.2901

2.1944

1.1123

2.0220

2.0540

4.7017 0.7324 1.5757 5.5869 6.5864

2 0000

2.9957

2.2245

2.2901

2.1944

1.1123

2.0220

_2-0540_

2.2801

3.0000

4 4936

34370

35417

3.2916

1 7185

30538

3.1061

"7.4196"

1.8258 0.4346 1.2583 2.5177 3.3279 2.0440 3 9924

4.1549 0.7339 1.6192 5.0393 6.0374 2.3214 6.8702

3.8050 0.7321 15763 4 6895 5 5458 2 2803 6.3889

1.5420 1.0195 1.1138 15910 1.7583 1.1374 1.7988

1.4543 1.0194 11142 1.4755 16746 11288 17131

1.6716 1.0193 1.1151 1.7249 1.9060 1.1389 1.9438

1.7006 1.0510 1.1533 1.7209 2.0067 1.1686 2 0464

* Additive penalty for model Mj is zero and multiplicative penalty for model Mi is one



Table 4.4a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 20 for Design 4.4 together with relative penalty values and input values of SAO technique (continued).

Type of
penalty

Additive:
Using log-
likelihood with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique

(1 ype 3)

Criteria

Largest
MA PCS
Smallest
SD
among
APCS
Modal
MAPCS
Median
MAPCS
Largeit
MAPCS
Smallest
SD
among
APCS
Modal
MAPCS
Median
MAPCS

s,
0.0000

0.0000

0.0000

0.0000

1.0000

1.0000

1.0000

1.4979

0.0000

1.0000

1.0000

0.0000

2.0000

1.0000

1 0000

2.9957

0.

1

1.

0.

2.

1.

*

2.

Input values for simulated annealing
Starting values of penalties

0000

0000

0000

0000

0000

0000

0000

9957

0.0000

1.0000

1.0000

0.0000

2.0000

1.0000

1.0000

2.9957

0.0000

2.0000

2.0000

0.0000

3.0000

1.0000

1.0000

4.4936

0.0000

2.0000

2.0000

0.0000

3.0000

1.0000

1.0000

4.4936

00000

2 0000

2 0000

00000

30000

1 0000

1 0000

4 4936

o.ocoo

3.0000

3.0000

0.0000

4.0000

1.0000

1.0000

5.9915

0

0

0

-4

0

0

0

0

Boundaries
LB ]
.0000

.0000

.0000

0000

.0000

.0000

0000

.0000

UB
8.0000

4.0000

8.0000

4 0000

8.0000

8.0000

20.0000

32.0000

TRF"

0.1000

0.0010

0.1000

0.0010

0.0001

0.0010

0.1000

0.1000

* * TRF Temperature reduction factor



Table 4.4b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 50 for Design 4.4 together with relative penalty values and input values of SAO technique.

Type of
penalty
Additive:
Existing criteria
(Type 1)

Additive:
Using log-
likelihood with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique

(Type 3)

Criteria

AIC
BIC
GCV
HOC
HQ
RBAR
MCP
JIC
Largest
MAPCS
Smallest
SD
among
ARCS
Modal
MAPCS
Median

JVfAPCS
Largest
MAPCS
Smallest
SD
among
APCS
Modal
MAPCS
Median
MAPCS

M,
0.5775
0.8535
0.5910
0.5965
0.7120
0.3215
0.5795
0.6730
0.7875

0.5950

0.7955

0.7845

0.7900

0.7355

0.7895

0.8410

-
0.6915
0.8860
0.7100
0.7165
0.7950
0.4665
0.6925
0.7605
0.7685

0.6810

0.7585

0.7660

0.7660

0.7560

0.7325

0.7540

Average probabilities of correct
Mi

0.3595
0.3410
0.3660
0.3675
0.3710
0.2890
0.3595
0.3725
0.5530

0.5380

0 5560

0.5505

0.5560

0.6030

0.5560

0.5205

Mi

0.6210
0.7820
0.6340
0.6365
0.7015
0.4230
0.6210
0.6805
0.7260

0.6675

0.7090

07245

0.7310

0.7180

0.7300

0.7095

0
0

0

0

0
0
0
0
0

0

0

0

0

0

0

0

M<
.3875
.3020
.3815
.3790
.3505
.3965
.3875
.3620
.5260

.5035

.5200

.5220

.5255

.5195

.5555

5190

Mf>

0.7475
0.8140
0.7605
0.7600
0.7900
0.6115
0.7485
0.7795
0.7060

07055

0.7165

0 7095

0.7050

0.7175

0.7065

0.7145

selection
I M-

0 3975
0 3325

0 3955
0 3950
0 3725
0 4105
0 3970
0 3840
0 4620

0 4875

0 4650

0 4565

0 4555

04675

0 4560

0.4500

of model
Ms [

0.4700
0.3125
0,4595
0.4565
0.4045
0 5760
0.4690
0.4260
0.4450

0.4905

04485

04465

04440

04485

0,4450

0.4480

Mean
0.5315
0.5779

0 5373
0.5384
0.5621
0.4368
05318
0 5548

05826

0.6211

0 6200

06218

0.6207

06214

0.6196

0
0

0
0
0
0
0
0
0

0

0

0

0

0

0

0

SD
1485
2755

1566
.1584

2036
1124
1491
1847
UQ2

0910

1387

1407

1419

1276

1346

1523

1
1

1
1

1

0
1
1

4

,

5

3

1

1

1

1

P:

.0000

.9560

.0310

.0418

.3641

.5155
0009
2357
9667

.7772

.4151

9549

5637

2183

2955

.9159

1

1
1
1
1

0
1
1

0

0

0

0

1

1

1

1

Pi

0000
9560

0310
.0418
3641

5155
.0009
2357
9045

.6178

9033

9037

0156

.0081

.0156

0226

1
1

1
1
1

0
1

1

2

1

2

2

1

1

1

1

Relative penalties

0000
9560
0310
.0418
3641

5155
0009
2357

4313

2365

7849

4215

080ft

0P04

0810

1129

20000
3.9120
2.0836
2.1058
2.7281

1.0418
2.0035
2.4769
5.7810

2.5019

62300

4.7714

1 5819

1.2324

1.3048

1.9381

2.0000
3.9120
2 0836
2.1058
27281
1.0418
2.0035
24769
7 7208

3.1335

77770

65256

1 7095

1.3074

1.4109

2.0563

2

3
2
2
2
1
2
2

2

3

3

1

1

1

1

/\-
0000

9120
0836
1058
7281
0418
0035
4769
5824

0651

8951

5734

1099

1060

109R

1425

|
3

5
3
3
4

1

3
3
8

3

8

7

1

1

1

2

Ps
0000
8680

1509
1929
0922

5795
0084

7238
7929

9976

8491

5972

7465

3357

4414

1007

Additive penalty for model Mi is zero and multiplicative penalty for model Mt is one



Table 4.4b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 50 for Design 4.4 together with relative penalty values and input values of SAO technique (continued).

u>

Type of
penalty

Additive:
Using log-
likelihood with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique

(Type 3)

Criteria

Largest
MA PCS
Smallest
SD
among
APCS
Modal
MAPCS
Median
MAPCS
Largest
MAPCS
Smallest
SD
among
APCS
Modal
MAPCS
Median
MAPCS

0

0

0

0

1

1

1

1

.0000

.0000

.0000

.0000

.0000

.9560

0000

9560

1

0

1

0

2

3

n
t-

3

S2

.0000

.0000

.0000

.0000

.0000

.9120

ocoo

.9120

1

0

1

0

2

3

2

3

Input values for simulated
Starting values of penalties

.0000

.0000

.0000

.0000

.0000

.9120

0000

9120

1.0000

0.0000

1.0000

0.0000

2.0000

3.9120

2 0000

39120

2.0000

0.0000

2.0000

0.0000

3.0000

5.8680

3 0000

5.8680

2.0000

0.0000

2.0000

0.0000

3 0000

5.8680

3.0000

5.8680

S-
2 0000

ooooo

2 0000

0 0000

3 0000

5 8680

3 0000

5 8680

annealing

T s,
3.0000

0.0000

3.0000

O.OOOC

4 0000

7.82^0

4 0000

78240

L
-8

0

-10

-4

0

0

0

0

Boundaries
B
0000

0000

0000

0000

0000

0000

0000

ooco

UB
8 0000

4.0000

10.0000

4.0000

20.0000

32 0000

8 0000

20 0000

TRF"

0.0010

0.0001

0 1000

00010

0.0001

00001

0.1000

0 0010

* * TRF Temperature reduction factor



Table 4.4c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 100 for Design 4.4 together with relative penalty values and input values of SAO technique.

U)

Type of penalty

Additive:
Existing criteria
(Type 1)

Additive:
Using log-
likelihood with
SAO technique
(Tvoe 2)

Multiplicative:
Using mean
squared error with
SAO technique
(Type 3)

Criteria

AIC
BIC
GCV
HOC
HQ
RBAR
MCP

JIC
Largest
MA PCS

Smallest
SD among
APCS

Modal
MAPCS
Median
MAPCS

Largest
MAPCS
Smallest
SD among
APCS
Modal
MAPCS

Average probabilities of correct selection of model
M M, M4 ~r M- Mean SD
0.5980

0.9100

0.6030

0.6050

0.7755

0.3435

0.5980

0.7450

0.7005

0.9230

0.7100

0.7110

0.8345

0.4670

0.7010

0.8160

0.4750

0.5005

0.4810

0.4820

0.5230

0.3640

0.4750

0.5215

0.6650

0.8325

0.6735

0.6750

0.7650

0.4550

06650

0.7460

0.5105

0.4215

0.5125

05130

0.4920

0.4860

0.5110

0.5030

0.7875

0.8740

0.7950

0.7970

0.8420

0.6520

0 7875

08285

0.5170

04630

05170

05175

05030

0.4860

0.5170

0.5090

632C

4610

6250

6245

5560

7355

6310

5700

0.6107

0 6732

06146

06156

0.6614

04986

06107

06549

Relative penalties

0.8955 0.8545 0.6525 0.7545 0.5735 0.7690 0.5975 0.6070

0.1070

02288

0.1090

0.1094

0.1560

0.1337J

0.1070!

0.1424

~6~123O

0.6770 0 7735 0.6115 0.7580 0.5480 0.7165 0 5820 0.6775 06680 0 0817

0.8925 0.8705 0.6560 0 7540 0.5690 0.7580 0 5980 0.6040

0.8755 0.8635 0.6440 0.7560 0.5650 0.7760 0.6210 05910

0.7127

0 7115

Median
MAPCS

0.8925 08640 0.6560 0.7540 0.5635 0.7810 0 5985 0 5930

0.8955 0.8590 0.6525 0.7540 05810 0.7235 0 5990 0 6060

0.8920 0.8650 0.6560 0 7540 0.5665 0 7585 0 5990 0 6035

0.8955 0.8645 0.6525 0.7540 0 5830 0 7215 0 5990 0 5935

07128

0.7088

0.7118

07079

0.1253

0.1224

l)T279j

01206|

1.0000
2.3026
1.0152
1 0204
1 5272
0 5076
1 0002
1 4051

T5854

10000
2.3026
1.0152
1.0204
1.5272
0 5076
1.0002
14051

T4b27

10000
2 3026
10152
1.0204
15272
0 5076
10007
14051

~3.3~9bir

2.0000

4 6055!

2 0409

2.05 U

3 0544

1 C204

2 0009

28128

8".8i 19

2 0000
4 6052
2 0409
2 0514
3 0544
10204
2 0009
28128

10 "4567"

2 0000
4 6052
2 0-109
2 0514
30544
1 0204

2.0009

2 8128

4.5752

3 0000

6 90/8

3 0772

3 0931

4 5815

1 5386

3 0021

4 2232

11 5769

16096 0 9039 12082 2 6533 3 2269 2 3071 3 9943

7 1941 13768 3 3912 8 4791 10 7632 4.5705 118838

25 9405 13755 2 5081 27 2264 28 9419 3 6079 30 1568

12124 10175 10594 \ 2Y.2 12709 10736 12888
I

27717 10180 10595 28115 3 0264 10737 3.0584

0.1245j 17619 1.0175 10592 17894 18618 10734 1 8S44

0 1228 2.1047 10181 10596 2 1350 2 3482 10739 2 3767

* Additiv; penalty for model M, is zero and multiplicative penalty for model Mi is one



Table 4.4c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 100 for Design 4.4 together with relative penalty values and input values of SAO technique (continued).

Type of
penalty

Additive:
Using iog-
likelihood with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique

(Type 3)

Criteria

Largest
MAPCS
Smallest
SD
among
APCS
Modal
MAPCS
Median
MAPCS
Largest
MAPCS
Smallest
SD
among
APCS
Modal
MAPCS
Median
MAPCS

0

0

0

0

1

1

1

2

sl
.0000

.0000

.0000

0000

0000

0000

0000

3026

2.3026

0.0000

0.0000

0.0000

2.0000

2 0000

1.0000

4.6052

2

0

0

0

2

IV
)

1

4

Input valu~5 for simulated
Starting values of penalties

S,
.3026

.0000

.0000

0000

0000

0000

0000

6052

2.3026

0.0000

0.0000

0.0000

2.0000

2.0000

1.0000

4 6052

4.6052

0.0000

0.0000

0.0000

3.0000

3 0000

1.0000

6.9078

s6
4.6052

O.OOCO

0.0000

00000

30000

3 0000

1 0000

69078

4 6052

0 0000

00000

o.oooo

3.0000

3.0000

1 0000

6 9078

annealing

6.9078

0.0000

0.0000

0 0000

4 0000

4.0000

1.0000

92103

Boundaries
LB
00000

0.0000

0.0000

•32 0000

0.0000

0.0000

0.0000

0 0000

18

4

32

32

8

9

1

20

B
4207

0000

0000

0000

0000

2103

0000

0000

TRF"

0.1000

00100

i

0.1000

0.1000

00001

00010

0.1000

0.0100

** TRF Temperature reduction factor



Table 4.5a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 20 for Design 4.5 together with relative penalty values and input values of SAO technique.

Type of
penalty
Additive:
Existing criteria
(Type 1)

Additive:
Using log-
likelihood with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique
(Type 3)

Criteria

AIC
BIC
GCV
HOC
HQ
RBAR
MCP
JIC
Largest
MAPCS
Smallest
SD
among
A PCS

Modal
MAPCS

Median
MAPCS
Largest
MAPCS
Smallest
SD
among
APCS
Modal
MAPCS
Median
MAPCS

M
Average probabilities of correct selection of mod<-l

M, Mean SD
0.5320
0.7105
0.5730
0.5880
0.5760
0.2990
O.">325
0.5385

0.3800
0.4060
0.3955
0.4000
0.3865
0.2990
0.3820
0.3840

0.2585
0.1905
0.2210
0.2160
0.2380
0.3590
02505
02465

0.6320 0.4095 0.4280 0 3425 0.2650 O2550 01870 ~O2361F

0.3635
0.3755
0.3745
0.3760
0.3630
0.3220
0.3640
0.3655

0.3470
0.3655
0.3625
0.3635
0.3555
0.2910
0.3460
0.3470

0 2760
0.2280
0.2670
0.2655
0.2675
0.3155
0 2740
02715

02625
0.2185
0.2590
0.2570
0.2585
0.3010
0.2615
0.2610

0 2560
02160
0 2475
0 2435
02470
0.2905
0 2525
0 2515

03344
0.3388
0.3375
0.3387
0.3365
0 3096
0.3329
0.3332
~O3437~

0.6255 0.410C 0.4115 0.3345 0.2685 0 2555 0.2465 0 1950

0.6245 04170 04170 0.3395 0.2650 0.2555 0 2345 0.1930

0.3490 0.3570 0.3645 0.3470 0.3625 0.3600 0 3430 0 3990

0.3490 0.3570 0.3645 0.3470 0.3625 0.3600 0.3430 0.3990

0.3490 0.3570 0.3645 0.3470 0.3625 0.3600 0 3430 0.3990

0.5935 0.4250 0.4380 0.4085 0.2140 0.2470 0.2230 0 1915

03434

0.3433

O36C3"

0.3603

0.3603

0.3426

0.0946
0.1^26
0.1156
0.1219
0.1131
0.0228
0.0965
0 0994

0.1444

0.5695 0.3850 0.4620 0 3745 0.2410 0.2810 0 2320 0 1955 0 3426 0 1290

0.1381

0.1405

"0.0V75"

00175

00175

0.1444

P,
Relative penalties

PTT~K
1.0000
1.4979
1.0813
1.1123
1.0972
0 5407
1.0059
1.0193

1.0000 1.0000 2 0000 2.0000 2 0000 3.0000

1.4979 1.4979 2 9957 2.9957 2 9957 4 4936

1.0813 1.0813 2.2245 2.2245 2.2245 3 4370

1.1123 1.1123 2.2901 2.2901 2 2901 3.5417

10972 10972 2 1944 2.1944 2 1944 3.2916

0 5407 0 5407 1.1123 11123 1.1123 17185

10059 1.0059 2 0220 2 0220 2.0220 3.0538

1 CM93 1^0]93_ 2.0540 2 0540 2.0540 3 1061

1.2311 fl016 f4259 2.4117 215093""""178040" ""37523'

1.2359 0 8975 11031 2 5051 2 2600 2 3944 3 8528

1.2383 1.1034 1 3851 2.4199 2 5278 2.4925 3 9504

1.2046 1.1027 1.3873 2 4320 2 5371 2 5755 4 0098

10000 1.0000 10000 10000 10000 10000 10000

1.0000 1.0000 10000 10000 10000 10000 10000

10000 10000 10000 10000 10000 10000 10000

1.0715 1.0559 1.0543 1 1881 1.1501 1.1555 1.2719

* Additive penalty for model Mt is zero and multiplicative penalty for model M, is one



Table 4.5a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 20 for Design 4.5 together with relative penalty values and input values of SAO technique (continued).

Type of
penalty

Additive:
Using log-
iikelihood with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique
(Type 3)

Criteria

Largest
MA PCS
Smallest
SD
amon^
APCS
Modal
MAPCS
Median
MAPCS
Largest
MAPCS
Smallest
SD
among
APCS
Modal
MAPCS
Median
MAPCS

Input values for simulated annealing
Starting values of penalties

S; S2 Sj S4 Ss S6 s\- S8

0.0000 1.0000 1.0000 1.0000 2.0000 2 0000 2.0000 3.0000

0.0000 1.0000 1.0000 1.0000 2.0000 2.0000 2.0000 3.0000

0.0000 1.0000 1.0000 10000 2.0000 2.0000 2.0000 3.0000

0.0000 1.4979 1.4979 1.4979 2.9957 2.9957 2.9957 4 4936

1.0000 1.0000 1.0000 1.0000 10000 1.0000 1.0000 10000

1.0000 10000 1.0000 1.0000 10000 10000 10000 10000

1.0000 1.0000 1.0000 10000 10000 10000 1.0000 10000

10000 2.0000 2 0000 2.0000 3.0000 3.0000 3 0000 4 0000

Boundaries
LB UB

-8.0000 8.0000

0.0000 8.0000

0.0000 4 0000

0.0000 119829

0.0000 1 0000

0 0000 1.0000

0.0000 1 0000

0.0000 80000

TRF"

00100

0.0100

0.0001

0.0001

0.1000

0.1000

0.1000

00010

** TRF Temperature reduction factor



Table 4.5b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 50 for Design 4.5 together with relative penalty values and input values of SAO technique.

Type of
penalty
Additive:
Existing criteria
(Type 1)

Additive:
Using log-
likelihood with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique
(Type 3)

Criteria

AIC
BIC
GCV
HOC
HQ
RBAR
MCP
JIC
Largest
MAPCS
Smallest
SD
among
APCS
Modal
MAPCS
Median
MAPCS
Largest
MAPCS
Smallest
SD
among
APCS
Modal
MAPCS

M,
Average probabilities of correct selection of model

M, M< M,\i Mean
0.6240
0.8770
0.6450
0.6505
0.7530
0.3620
0.6255
0.7145

0.5700
0.7125
0.5870
0.5900
0.6470
0.4010
0.5710
0.6290

0.5905
0.7325
0.6040
0.6050
0.6640
0.4220
0.5910
0.6460

0.5945
0.7300
0.6085
0.6130
06765
0.4090
0.5955
0.6505

0.5540
0.5280
0.5530
G.5530
0.5535
0.5010
0.5540
0.5535

5290 0
5115 0
5305 0
5315 0
5300 0
4765 0
5295 0
5300 0

5635
5400
5675
5685
5690
5230
5635
5675

0.5725
04565
0.5580
0.5575
0 5200
0.6650
0.5720
0.5365

0.9255 0.6885 0.7245 0.7180 0.5625 0.5330 0 5300 0 4530

0.5747
0.6360
05817
0 5836
0.6141
0.4699
0.5753
0 6034
~0.6419~"

0.0286
0.1467
00368
0.0385
0.0831
00958
00290
j}J)662_
"07i"519

1.0000
1.9560
1.0310
1.0418
1.3641
05155
1.0009

0.7720 0.6845 0.6485 0 6845 0.5685 0 4940 0.5335 0.5475 0.6166 0.0952

£.5078

0.9135 0.6940 0.7250 0.7275 0.5665 0 5320 05160 0 4580 0.6416

0.9135 0.6940 0.7250 0.7275 0.5665 0.5320 0.5160 0 4580 0 6416

0.1503

0.1503

Median
MAPCS

0.9260 0.6895 0 7230 0.7160 0.5610 0.5335 0 5320 0.4540 0.6419

0.9260 0.6895 0.7230 0 7160 0.5610 0.5335 0.5320 0 4540 0.6419

09275 0.6910 0.7225 0.7210 0.5640 0.5345 0.5130 0.4595 06416

0.9275 0.6910 0.7225 0.7210 0.5640 0 5345 05130 0.4595 06416

0.1515

0 1532

0.1532

/\
1 0000
1.9560
1.0310
1.0418
1.3641
0.5155
1.0009
1.2357
"273976

JiZLIKUl
1 0000
1 9560
1.0310
1 0418
1.3641
0.5155
1.0009
1.2357

2.4758

2.0000
3 9120
2.0836
2.1058
27281
1.0418
20035
2 4769
TT494

2 0000
3.9120
2.0836
2.1058
27281
1.0418
20035
2 4769
T2778"

ZZIE
0000
9120
0836
.1058
.7281
0418
.0035
47S9
.4728"

_ ('* -
3.0000
5 8680
3.1589
3.1929
40922
1.5795
3 0084
37238
*>599

12583 1.4758 1.4544 2 6422 2 9266 2 9284 3 9">98

22996 2 2637 2 2696 3.9580 4.1045 4 44R5 6 2200

2.2996 2 2887 2.2696 3 9580 4.1045 4 4485 6.2200

10786 10818 11330 11384 11465 12118

1.0R31 10786 1.0818 11330 1.1384 1.1465 12118

10831 1.0820 10821 11331 11387 11557 12130

10831 1.0820 10821 1.1331 1.1387 1.1557 12130

* Additive penalty for model M, is zero and multiplicative penalty for model M, is one



Table 4.5b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 50 for Design 4.5 together with relative penalty values and input values of SAO technique (continued).

Type of
penalty

Additive:
Using log-
likelihood with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique

(Type 3)

Criteria

Largest
MAPCS^
Smallest
SD
among
A PCS
Modal
MAPCS
Median
MAPCS
Largest
MAPCS
Smallest
SD
among
APCS
Modal
MAPCS
Median
MAPCS

s,
0.0000

0.0000

0.0000

0.0000

1.0000

1.0000

1.9560

1.9560

1

0

1

1

2

2

3.

3.

S2
9560

0000

0000

0000

0000

0000

9120

9120

Input values for simulated
Starting values of penalties

S.i
1.9560

0.0000

1.0000

1.0000

2.0000

2.0000

3.9120

3.9120

s4
1.9560

0.0000

1.0000

1.0000

2.0000

2.0000

3.9120

3.9120

s.<
3.9120

0.0000

2.0000

2.0000

3.0000

3.0000

5.8680

5.8680

3.9120

0.0000

2.0000

2.0000

3.0000

3.0000

5.8680

5.8680

3.9120

0.0000

2.0000

2.0000

3.0000

3.0000

5.8680

5.8680

annealing

Si
5.8680

0.0000

3.0000

3.0000

4.0000

4.0000

7.8240

7.8240

Boundaries
LB j

-10.0G00

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

LB
10.0000

4.0000

8.0000

8.0000

32.0000

32.0000

20.0000

20.0000

TRF"

0.0001

0 0010

0.0010

0.0010

0.1000

0.1000

0.0100

0.0100

** TRF Temperature reduction factor



Table 4.5c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 96 for Design 4.5 together with relative penalty values and input values of SAO technique.

Type of
penalty

Criteria Average probabilities of correct selection of model
M, M4 M7 Mean SD

Relative penalties
r i\ r- _!'*

3.0000
6.8465
3.0805
3.0971
4.5548
1.5402
3.0023
4_1934

Tf.4742

3 9997

11.4742

11 3691

"T23T3"

1.2245

1.2313

1.2247

O

Additive:
Existing criteria
(Type 1)

AIC
BIC
GCV
HOC
HO
RBAR
MCP
JIC

0.6895

0.9525

0.6990

0.7025

0.8525

0.3975

0.6895

0.8245

0.6565

0.8850

0.6660

0.6685

0.7895

0.4445

0.6575

0.7635

0.6860

0.8905

0.6935

0.6945

0.8130

0.4600

0.6860

0.7915

0.6630

0.8840

0.6715

0.6750

0.7945

0.4485

0.6635

0.7705

0.7480

0.8340

0.7535

0.7555

0.8065

0.6270

0.7480

0.8000

0.7490

0.8030

0.7535

0.7545

0.7845

0.6345

0.7490

0 7780

0.7210

0.8055

0.7235

0.7250

0.7780

0.6070

0.7210

0 7700

0.8735

0.8135

0.8720

0.8720

0.8460

0.9040

0.8735

0.8520

0.7233

0.8585

0.7291

0.7309

0.8081

0.5654

0.7235

0.7937

Additive:
Using log-
likelihood with
SAO technique
(Type 2)

Largest
MAPCS
Smallest
SD
among
APCS
Modal
MAPCS
Median
MAPCS

0.9970 0.9230 0.9395 0.9300 0.8380 0.8150 0.7870 0.7690 0.8748

0.9970 0.9240 0.9350 0.9310 0 8390 0.8140 0.7825 0.7745 0 8746

Multiplicative:
Using mean
squared error
with SAO
technique
(Type 3)

Largest
MAPCS
Smallest
SD
among
APCS

Modal
MAPCS
Median
MAPCS

0.9970 0.9225 0.9395 0.9305 0.8375 0.8150 0.7870 0.7695 0 8748

0.9970 0.9235 0.9350 0.9310 0.8395 0.8140 0.7825 0.7745 0 8746

0.9970 0.9225 0.9395 0.9305 0.8375 0.8150 0.7870 0.7695 0.8748

0.9970 0.9255 0.9345 0.9305 0.8400 0.8135 0.7825 0.7745 0.8747

0.0702
0.0531
0.0667
0.0657
0.0278
0.1658
C.0700
0.0308

1.0000
2.2822
1.0159
1.0213
1.5183
0.5079
1.0003
1.3951

1.0000
2.2822
1.0159
1.0213
1.5183
0.5079
1.0003
1.3951

1,0000
2.2822
1.0159
1.0213
1.5183
0.5079
1.0003
1.3951

2.0000
4.5643
2.0426
2.0536
3.0366
1.0213
2.0009

2.0000
4.5643
2.0426
2.0536
3.0366
1 0213
20009
2 7928

0.9970 0.9230 0.9395 0.9300 0.8380 08150 0.7870 0.7690 0.8748 0.0831

0.7145 0.8480 0.8470 0.8285 0.7920 0.7465 0.7720 0.8475 0.7995 0.0515

00831

00825

0 0830

0.0825

0.0830

0.0826

2.0000
4.5643
20426
2.0536
3.0366
1.0213
2.0009

4.4921 4.4030 4.5470 7.7022 7.5448 8.2879

0.8333 0.8190 0 8562 2.6041 2.7918 2.5156

44921 44030 4 5470 7.7022 7.5448 8 2879

4.4892 4 5413 4.5984 7.6989 7 6223 8.4281

10884 10856 1.0888 1.1513 1.1469 1.1645

10833 1 084S 1.0860 1.1455 1 1438 1.1636

1.0884 1.0856 1.0888 1.1513 1.1469 1.1645

1.0825 1.0854 1.0866 1.1457 1.1445 1.1642

* Additive penalty for model Ms is zero and multiplicative penalty for model Mt is one



Table 4.5c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 96 for Design 4.5 together with relative penalty values and input values of SAO technique (continued).

Type of
penalty

Additive:
Using log-
likelihood with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique

(I ype 3.)

Criteria

Largest
MAPCS
Smallest
SD
among
APCS
Modal
MAPCS
Median
MAPCS
Largest
MAPCS
Smallest
SD
among
APCS
Modal
MAPCS
Median
MAPCS

s,
0.0000

0.0000

0.0000

0.0000

1 0000

2.2822

1.0000

2.2822

Sz
0.0000

0.0000

0.0000

0.0000

2.0000

4.5643

2.0000

4.5643

Input values for simulated
Starting values (if penalties

0.0000

0.0000

0.0000

0.0000

2.0000

4.5643

2.0000

4.5643

s4
0.0000

0.0000

0.0000

0.0000

2.0000

4.5643

2.0000

4.5643

0.0000

0.0000

0.0000

0.0000

3 0000

6 8465

3.0000

6.8465

0.0000

0.0000

0.0000

0.0000

3 0000

6.8465

3.0000

6.8465

s?
0.0000

0.0000

0.0000

0.0000

3.0000

68465

3.0000

6.8465

annealing

Ss
0.0000

0.0000

0.0000

0 0000

4.0000

9.1287

4.0000

9.1287

Bound
LB |

-32.0000

0.0000

-32.0000

-10.0000

0.0000

00000

0.0000

0.0000

aries
LB

32.0000

4.0000

32.0000

10.0000

32.0000

9.1287

32 0000

36 5148

TRF"

0.1000

00010

0.1000

00010

0.1000

0.0100

0.1000

0.0010

TRF Temperature reduction factor



Table 4.6a Average probabilities,
models for sample size

Type of
penalty
Additive.
Existing criteria
(Type 1)

Additive:
Using log-
likelihood with
SAO technique
(Type 2)

Multiplicative.
Using mean
squared error
with SAO
technique

(Type 3)

* Additive penalt)

Criteria

AIC
BIC
GCV
HOC
HQ
RBAR
MCP
JIC
Largest
MAPCS
Smallest
SD
among
A PCS
Modal
MAPCS
Median
MAPCS
Largest
MAPCS
Smallest
SD
among
APCS

Modal
MAPCS
Median
MAPCS

/ for mode

M,
0.5310
0.7065
0.5655
0.5775
0.5690
0.3070
0.5325
0.5385
0.7615

0.5170

0.7520

0.7580

0.7575

0.7320

0.7575

0.7620

M2

0.3275
0.3285
0,3445
0.3460
0.3345
0.2810
0.3300
0.3295

0.4425

0.5160

0.4450

0.4515

0.4395

0.4735

0.4485

0.4550

mean average probabilities and standard deviations of
20 for Design 4.6 together with relative penalty values and

Average
I M}

0.5425
0.6260
0.5730
0.5835
0.5610
0.4020
0.5455
0.5500
0.6540

0.6735

0.6540

0.6545

0.6525

0.6540

0.6545

0.6440

probabilities of correct seSection
M4

0.5705
0.6865
0.6125
0.6195
0.6010
0.3940
0.5750
0.5815
0.6940

0.6520

0.5855

0.6625

0.6865

0.6485

0.6505

0.6790

M5

0.3325
0.2885
0.3255
0.3220
0.3280
0.3530
0.3335
03325

0.3435

0.3215

0.3450

0.3440

0.3450

03410

0.3420

0.3405

M6

0.3515
0.3190
0.3530
0.3525
0.3460
0.3840
0.3550
0.3555
0.3455

0.3730

0.3595

0.3720

03595

0.3875

0.3845

03570

M/ is zero and multiplicative penalty for model A/, i

M7

0.5650
0.5770
0.5775
0.5775
0 5660
0.5090
0.5680
0.5705
0.4360

0.3760

0 4355

0 4350

0 4345

0 4390

0 4390

0 4355

•> o n e

of model
Ms

03740
0.3025
0.3385
0.3330
0.3525
0.4890
0.3675
0 3630

0.3675

0.4835

0.3665

0.3605

0 3680

0.3635

0.3645

0.3655

Mean
0.4493
0.4793
0.4613
0.4639
0.4572
0.3899
0.4509
0.4526

0.5056

0.4891

0.5054

0.5047

0.5054

0 5049

0.5051

0.5048

0

0
0
0

0
0
0
0

0

0

0

0

0

0

0

0

SD
1116
1858
1302
1352
1258
0795
1129
1161
1702

1290

1648

1619

1662

1514

1584

1654

1

1
1
1

1
0
1.
1

1

0.

1

1

1

1

1.

average probabilities of correct
input values of SAO technique.

/':
0000
4979
0813
1123
0972
5407

0059
0193
1824

5890

1542

1451

0663

0490

0621

0621

1
1
1

1

1
0
;

1
1

1

1

1

1

1

1

1

P<
0000
4979
.0813
1123
0972
5407

QQ59
0193
8443

0991

8081

8474

1375

1374

1392

1527

1

1
1
1

1
0
•i

1
2

1

2

2

1

1

1

1

Relative penalties

0000
4979

0813
1123
0972
5407

0059
0193
5753

5113

5115

7002

2163

2344

2367

2386

2
2
2

2
2
1

2
2
3

2

3

3

1

1

1

1

' • ' J

0000
9957
2245
2901
1944
1123
0220
0540
1273

3820

0893

1285

2211

2211

2232

2374

2

2
2
2

2
1

2
2
3

2

3

3

1

1

1

1

l\
0000
9957
2245
2901
1944
1123
0220
0540
9067

5229

7540

8322

3005

2906

2958

3245

selection of

'V I
2.0000
2.9957
2.2245
2.2901
2.1914

1.1123
2 0220
20540
5.0477

35102

49743

5.1673

1.4708

1 4793

1 4826

1.4965

f's I
30000
4 4936
3.4370
3.5417

3 2916
1.7185

3 0538
3 1061
5 9209

3.9726

58478

60580

1.5086

1.5195

1 5228

1.5369



Table 4.6a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 20 for Design 4.6 together with relative penalty values and input values of SAO technique (continued).

Type of
penalty

Additive:
Using log-
likelihood with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique

(Type 3)

Criteria

Largest
MAPCS
Smallest
SD
among
APCS
Modal
MAPCS
Median
MAPCS
Largest
MAPCS
Smallest
SD
among
APCS
Modal
MAPCS
Median
MAPCS

S,
0.0000

0.0000

0.0000

0.0000

1.4979

1.0000

1.0000

1.0000

S:
0.0000

1.0000

0.0000

1.0000

2.9957

2.0000

1.0000

2.0000

I

0

1

0

1

2

2

1

2

Input values for simulated annealing
Starting values of penalties

S.
.0000

.0000

.0000

.0000

.9957

.0000

.0000

0000

•>4
0.0000

1.0000

0.0000

1.0000

2.9957

20000

1.0000

2.0000

s<
0.0000

2.0000

0.0000

2.0000

4.4936

30000

1.0000

3.0000

0.0000

2.0000

0.0000

2.0000

4.4936

3.0000

1.0000

3.0000

s-
0.0000

2 0000

0.0000

2 0000

4.4936

3 0000

1.0000

3 0000

, sA__^
0.0000

3 0000

00000

3 0000

5.9915

4 0000

1.0000

4 0000

Bound

LB i
00000

0.0000

-32.0000

0.0000

0.0000

0.0000

0.0000

0.0000

aries
I B

10 0000

4.0000

32.0000

10.0000

23.9659

32 0000

32.0000

20 0000

TRF"'

0.0010

0.0100

0.1000

0.0010

0.1000

0.0001

0 1000

0.0010

TRF Temperature reduction factor



Table 4.6b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 50 for Design 4.6 together with relative penalty values and input values of SAO technique.

Type of
penalty
Additive:
Existing criteria
(Type 1)

Additive:
Using iog-
likelihood with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique
(Type 3)

Criteria

AFC
BIC
GCV
HOC
HQ
RBAR
MCP
JIC
Largest
MAPCS
Smallest
SD
among
APCS
Modal
MAPCS
Median
MAPCS
Largest
MAPCS
Smallest
SD
among
APCS
Modal
MAPCS
Median
MAPCS

Average probabilities of correct selection of model
M, M, T M» Mean SD

0.5815

0.8675

0.5940

0.6010

0.7165

0.3105

0.5815

0.6750

0.4510

0.4735

0.4575

0.4600

0.4770

0.3460

0.4510

0.4665

0.6105

0.7660

0.6270

0.6295

0.6960

0.4265

0.6125

0.6695

0.5990

0.7895

0.6190

0.6225

0.7055

0.4105

0.5995

0.6735

0.4730

0.4165

0.4785

0.4790

0.4605

0.4730

0.4730

0 4655

0.4900

0.4375

0.4945

0.4925

0.4795

0.4705

0.4905

04910

0.8560 0.5595 0.7680 0.7210 0.4675 0.5220

0 6810

0 7155

0 6905

C 6895

0 6985

0 5695

0 6810

0 6950

"0 6500~

0.5505

0.4190

0.5400

0.5370

0.4955

0.6570

0.5500

05135

0.5546

0.6106

0.5626

0.5639

0.5911

0.4579

0.5549

0.5812

0.0787

0.1913

0.0828

0.0834

0.1213

0.1134

0.0789

0.1051

0.4485 0.6241 0 1486

0.6155 0.6325 0.7045 0.7010 0.4880 0.5030 0 5965 0.5635 0.6006 0.0808

0.8225 0.6085 0.7420 0.7125 0.4655 0.5320 0 6575 0.4480 0.6236 0.1347

0.8390 0.5735 0.7660 0.7255 0.4640 0.5195 0 6510 0.4490 0.6234 0.1450

0.8670 0.5625 0.7565 0.7215 0 4605 0.5230 0 6620 0.4390 0.6240

0.8025 0.5890 0.7080 0.7205 0.5020 0.5130 0 6520 0 4825 0.6212

0.8560 0.5600 0.7680 0.7200 0.4660 0.5215 0.6510 0.4490 0 6239

0.8190 0.6075 0.7405 0.7235 0.4690 0.5225 0 6660 0.4390 0.6234

0.1180

0.1487

0.1374

Relative penalties
>r~T' t'T'T 'V ~rTT

1.0000

1.9560

1.0310

1.0418

1.3641

0.5155

1.0009

1.2357

1.0000

1.9560

1.0310

1.0418

1.3641

0.5155

1.0009

1 2357

1.0000

1.9560

1.0310

1 0418

1.3641

0.5155

1 oooy
1.2357

2.0000

3.9120

2.0836

2.1058

2 7281

1.0418

2 0035

2.4769

2.0000

3.9120

2.0836

2.1058

2.7281

1.0418

2.0035

2.4769

2.0000

3.9120

2.0836

2.1058

2.7281

1.0418

2.0035

24769

14094 2.0569 3.0438 3 6339 4.3033 5 5823

1.1256

1.J257

3.0000

5.8680

3.1589

3.1929

4 0922

1.5795

3.0084

3 7238

7.1213

0.6797 1.3275 1.4290 2 4737 2 6022 3 1670 3 9984

2.3000 ,2.8629 3 7902 4.0360 5.3913 6 9278

20568 28626 3 6388 4.1367 5 4097 6 9457

1.0740 1.1055 1.1201 1.1384 1.1982 12514

1.0247 10638 1.0746 10915 1.1066 1.1479 11845

10364 1.0638 1.1064 11096 1.1393 11986 12476

1.0247 1.0722 1.0954 1.1134 1.1280 1.1867 12395

* Additive penalty for model M{ is zero and multiplicative penalty for model Mt is one



Table 4.6b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 50 for Design 4.6 together with relative penalty values and input values of SAO technique (continued).

Type of
penalty

Additive:
Using leg-
likelihood with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique
(Type 3)

Criteria

Largest
MAPCS
Smallest
SD
among
APCS
Modal
MAPCS
Median
MAPCS
Largest
MAPCS
Smallest
SD
among
APCS
Modal
MAPCS
Median
MAPCS

Input values for simulated annealing
Starting values of penalties

Si S2 S, S4 i .S< S6 | S7 S8

0.0000 1.9560 1.9560 1.9560 3.9120 3.9120 3.9120 5.8680

0.0000 1.0000 1.0000 1.0000 2.0000 2.0000 2.0000 3.0000

0.0000 1.9560 1.9560 1.9560 3.9120 3.9120 3 9120 5.8680

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 10000 10000

1.9560 3.9120 3.9120 3.9120 5.8680 5 8680 5 8680 7.8240

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 10000 1.0000

1.9560 3.9120 3.9120 3.9120 5.8680 5.8680 5 8680 7 8240

Boundaries
LB UB

-4.0000 7.8240

0.0000 4.0000

-10.0000 10.0000

0.0000 32.0000

0.0000 32.0000

0.0000 32 0000

0.0000 4.0000

0.0000 32.0000

T R F "

0.1000

00001

0.0001

0.1000

0.1000

00100

0.1000

0.1000

.. ,
** TRF Temperature reduction factor



Table 4.6c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 100 for Design 4.6 together with relative penalty values and input values of SAO technique.

Type of
penalty

Criteria
M

Average probabilities of correct selection of model
M, M4 M., Mean SD 2

lelative penalties

~T 1P,
Additive:
Existing criteria
(Type 1)

AIC
BIC
GCV
HOC
HQ
RBAR
MCP
JIC

0.5860

0.8865

0.5905

0.5925

0.7540

0.3105

0.5860

0.7285

0.5310

0.5E75

0.5385

0.5390

0.5855

0.3870

0.5310

0.5805

0.6470

0.8220

0.6515

0.6550

0.7570

0.4345

0.6470

0.7360

0.6660

0.8540

0.6755

0.6755

0.7785

0.4430

0.6670

0.7600

0.5245

0.4905

0.5265

0.5265

0.5295

0.4880

0.5245

0.5320

0.5740

0.5390

0.5770

0.5765

0.5825

0.5110

0.5740

0 5855

0.7245

0.7685

0.7300

0.7315

0.7590

06160

07245

0.7530

0.6465

0.5065

0.6390

0.6385

0.5840

07415

0.6435

0.5940

0.6124

0.6818

0.6161

06169

0 6663

04914

06126

0.6587

00700

0.1670

0.0702

0.0707

0.1043

0 1351

0.0701

0 0939

1.0000

2.3026

1.0152

1.0204

1.5272

0 5076

1 0002

1.4051

1.0000

2.3026

1.0152

1.0204

1.5272

0.5076

1.0002

1.4051

1.0000

2.3026

1.0152

1.0204

1.5272

0.5076

1.0002

1.4051

2 0000

4.6052

2 0409

20514

30544

1 0204

2.0009

2 8128

Additive:
Using log-
likelihood with
SAO technique
(Type 2)

Largest
MAPCS
Smallest
SD
among
APCS
Modal
MAPCS
Median
MAPCS

0.8700 0 6725 0.8025 0.7955 0.5630 0.6235 0.7065 0.5500 0.6979 0.1174

0.6715 0.6365 0.7400 0 7920 0.5590 0.5820 0 6535 0 6600 0.6618 0.0764

0.8490 0.6855 G.8055 0.8010 0 5630 0 6295 0.6955 0.5520 0.6376 0 1130

0 8705 0.6725 0.7970 0.7785 0.5585 0 6155 0.7265 0.5605 0 6974 0.1151

1.5503 2.3922 3.3009 4 0272

2 0000

4.6052

2 0409

2.0514

30544

1 0204

2.0009

28128

~4 7063

2.0000

4.6052

2 0409

20514

30544

1.0204

2.0009

2.8128

6 0731*

Multiplicative:
Using mean
squared error
with SAO
technique
(Type 3)

Largest
MAPCS
Smallest
SD
among
APCS

Modal
MAPCS
Median
MAPCS

0.8670 0.6725 0.8025 0.8120 0 5530 0 6175 0 7000 0 5490 0.6979

0.8665 0.6710 0.7995 0.8120 0.5560 0.6105 0 6825 0.5815 0 6974

0.8665 0.6710 0.7995 0.8120 0.5560 0.6105 0.6825 0 5815 0.6974

0.8975 C.6740 0.7985 0.7780 0.5660 0 6080 0 6650 0.5395 0.6908

01195

0.1159

0.1243

30000
6.9078
30772
3.0931
4.5815
1 5386
3.0021

j4 2232
7 6431

10279 13596 13104 2 4956 2 6699 3.1693 3 9985

1.4065 2.2542 3.0763 3.8907 4 4596 6.0289 7 5572

1.5488 2.3967 3 3606 4 0343 4 7452 5 5759 7.1319

1.0211 10385 10537 1.0621 1.0742 1.1066 1.1301

0.1159 j 10210 10385 1.0508 1.0621 1.0717 1.0993 1 1159

i

10210 10385 10508 10621 10717 1.0993 1.1159

10233 10441 11133 10675 11334 1.1755 12002

* Additive penalty for mode! M) is zero and multiplicative penalty for model Af, is one



Table 4.6c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 100 for Design 4.6 together with relative penalty values and input values of SAO technique (continued).

Type of
penalty

Additive:
Using log-
likelihood with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique

(1ype 3)

Criteria

Largest
MAPCS
Smallest
SD
among
A PCS
Modal
MAPCS
Median
MAPCS
Largest
MAPCS
Smallest
SD
among
APCS
Modal
MAPCS
Median
MAPCS

s,
0.0000

0.0000

0.0000

0.0000

2.3026

1.0000

1.0000

1.0000

s2
2.3026

1.0000

2.3026

1.0000

4.6052

2.0000

2.0000

2.0000

2

1

2

1

4

2

2

2

Input values for simulated annealing
Starting values of penalties

S,
.3026

.0000

.3026

.0000

.6052

.0000

.0000

.0000

s4
2.3026

1.0000

2.3026

1.0000

4.6052

2.0000

2.0000

2.0000

Si

4.6052

2.0000

4.6052

2.0000

6.9078

3.0000

3.0000

3.0000

s6
4.6052

2.0000

4.6052

2.0000

6.9078

3.0000

3.0000

3 0000

4.6052

2.0000

4.6052

2.0000

6.9078

3.0000

3.0000

3.0000

6.9078

3.0000

6.9076

3 0000

9.2103

4.0000

4.0000

4.0000

0

0

0

-8

0

0

0

0

Boundaries

0000

.0000

.0000

.0000

.0000

0000

.0000

.0000

UB
32.0000

4.0000

9.2103

8.0000

20.0000

8.0000

8.0000

4 0000

TRF"

0.1000

0.0100

0.0100

0.0001

0.1000

0 1000

0.1000

0.0001

TRF Temperature reduction factor



CHAPTER 5

MAXIMISATION OF MEAN AVERAGE PROBABILITY
OF CORRECT SELECTION FOR EQUI-DIMENSIONAL

COMPETING MODELS

5.1 INTRODUCTION

In Chapter 4. we applied the Simulated Annealing Optimisation (SAO) technique to

estimate the optimal penalties to select the best model from a set of competing

alternative models with an unequal number of regressors. with the objective oi'

maximising the mean average probability of correct selection (MAPCS). In this

chapter, we investigate the issue of model selection when the competing models have

an equal number of parameters. For the existing IC based model selection procedures

when the competing models have the same number of parameters, there is no need to

use a penally function because they result in the same penalty. In this situation, the

problem reduces to choosing the model with the largest maximised log- likelihood.

For model sr ; . v- > h' >i V competing models are white noise, first-order

autoregressivi •••"•'ti\' Vi r-w • vder moving average (MA(1)) and second-order

autoregressive {,\'Ui,V; «:hciiurbances in the linear regression model, Billah and King
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Chapter 5 Maximisation of MAPCS for Equi-dimensionaJ Competing Models

(1998) applied a grid search method for finding the optimal penalty. The results

obtained from their simulation experiments show that, though the AR(1) and MA(1)

disturbance models have the same number of parameters, the penalty values that

maximise the APCS are different. For selecting between AR(1) and MA(1)

disturbances in the linear regression model, Grose and King (1994) observed that the

MA(1) model is favoured because of the functional form of its log-likelihood. They

argued that for model selection in small samples, a penalty for differences in the

functional form of the log-likehhoods is needed to improve the probability of correct

selection (PCS) in addition to the penalty for the number of parameters in the model.

In other words, the penalty functions need to be able to take into account the form of

the log-likelihood functions.

The simulation results -we presented in the previous chapter indicate that for the

models with the same number of parameters, the penalties that maximise the MAPCS

of different data sets are different. Also for a particular data set, penalties for models

with same number of parameter are different. From the literature on model selection

and the simulation results we presented in the previous chapter, it is apparent that

penalty functions should depend not only on /?, the sample size, and k, the number of

free parameters, but also on the form of the log-likelihood function. Unfortunately all

the existing penally functions are functions of n and k but not of the form of the log-

likelihood function. This is the reason, when competing models are equi-

dimensional, that the penalty function has no effect. In our view, a good penalty

I
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function should be a function of the log-likelihood in addition to n and k. To

overcome the problem of the independence of penalty function from the data, here

we apply the SAO technique to find the penalties, which maximise the MAPCS of

the model, when the competing models have the same number of parameters to be

estimated. Here, instead of using a particular functional form of penalty, we use

appropriate upper and lower limits of penalties, and starting values of penalties. Then

we apply the SAO tecn.-tque to find the penalties, which maximise the MAPCS.

In this chapter we use both the additive and multiplicative penalties discussed in the

previous chapter to select the correct model, when the competing models have an

equal number of parameters. We use the SAO technique to maximise the MAPCS of

the models. A detailed description of this method of optimisation technique was

given in Section 2.4 of Chapter 2. The theory and computational technique of

MAPCS are discussed in Section 3.2 of Chapter 3.

The plan of the chapter is as follows. In Section 5.2, we outline the Monte Carlo

experiments. A variety of computer simulation results »xc presented in Section 5.3,

and Section 5.4 contains some concluding remarks.

5.2 THE DESIGNS OF THE MONTE CARLO STUDIES

The main objective of the simulation experiments of this chapter is to investigate the

performance of SAO technique to select the correct model from a set of equi-
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dimensional competing alternative models. Another objective is to see how the

penalties obtained using SAO technique differ from zero (in all existing IC the

penalties are zero when the competing models are equi-dimensional) when the

competing models have same number of parameters.

The following three sets of models and two sets of data were used to conduct Monte

Carlo experiments to examine the performance of the SAO technique with additive

and multiplicative penalties when competing models are equi-dimensional.

Data set 1: A,, is the real per capita GDP, A-( is the investment of a country, A,, is

the price level consumption and A4, is 1960 GDP as a percent of USA GDP of l%0.

We used the annual data from Summers and Heston (1991) revised version 5.6 and

World Bank tables.

Data set 2: We generated data from the normal distribution with standard deviation

4, 9, U and 17. Then, A , ,~ IN(0 , 42); A\, ~IN(O, 92); A,, ~IN(0, II2); and A 4 I ~ I N ( 0 ,

172).

We used three model sets for simulation experiments with the above two data sets.

Model set 1 is the single regressor model. Model set 2 and Model set 3 have two and

three independent variables, respectively.
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Model set 1.

2 : V, =

y,

Maximisatioft of MAPCS for Equi-dimensional Competing Models

u2,.

+w

" i , =

U2< =

= IN(O.cr

4/

(5.1)

(5.2)

(5.3)

(5.4)

Model set 2.

v, =

V, =

+ "•7 i

• A : , , P R I + W « ,

= 1N(0,<T;

= IN(0,<T:

(5.5)

(5.6)

(5.7)

(5.8)

Model set 3.

: V, = Ao(> + X2, A 0 2 + -^

y , ==

I2 : V, = /?1 2 0 + A

M,o, =

(5.9)

(5.10)

M l lf=IN(O,c7f.)' (5-11)

(5.12)

Here y, is the r''1 observation on the dependent variable, xlt is the /"'observation on

the i'h regressor, /90is a constant, / M s a scalar regression coefficient associated
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with the j ' h model.) = 1,2. .... 12 and xr is the t'h value of the i'h regressor. / = 1.

2, 3, 4: and u,, is a random disturbance term fol'owine a normal distribution with

mean zero and variance er~

We used the various combinations of data sets and model sets as designs. This gave

2x3 = 6 designs, as follows:

Design

5.1

5.2

5.3

5.4

5.5

5.6

Data set

1

1

->

1

~>

Model set

1

1

~>

">

3

We used the same data generating technique as described in Section 3.3.1 of Chapter

3 for these experiments using \ : = 50.0 and 15, and s~= 0.02, 0.05 and 0.1. The

sample sizes 20, 50 and 100 were used for the simulation experiments for all designs.

5.3 RESULTS OF THE SIMULATION EXPERIMENTS

The results of the Monte Carlo simulation experiments are presented in Tables

5.1a-c to 5.6a-c. There are three types of penalties in each table as mentioned in
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the previous chapter. The relative penalties for all existing cnteria (Type 1 penalties)

are zero and the APCS obtained form all the existing criteria are the same as the

competing models are equi-dimensional. We present a comparative study of Type 1

and Type 2 penalties (additive penalty with maximised log-likelihood and the SAO

technique) in Section 5.3.1. Section 5.3.2 contains the comparison of the simulation

results obtained from Type 1 and Type 3 penalties (multiplicative penalty with mean

squared error and the SAO technique). We compare the simulation results obtained

from the newly proposed Type 2 and Type 3 penalties in Section 5.3.3.

5.3.1 COMPARISON OF TYPE 1 AND TYPE 2 PENALTIES

There are several interesting and notable results from the simulation experiments. For

all designs and sample sizes under study, in 1(K) percent of the % combinations of

the initial parameter values for the SAO technique, the MAPCS obtained from the

simulation experiments using the SAO technique and Type 2 penalty for equi-

dimensional models are higher than those obtained using the existing criteria. The

variations among the APCS are always lower than those of the existing criteria for

single regressor models. For other models, the variations among the APCS of the true

models are generally higher than those of the existing criteria with an exception of

Design 5.5 for sample size 100. The relative penalties that maximise the MAPCS

using the SAO technique are not the same and are different from zero. An

exceptional improvement in MAPCS was observed for all sample sizes for Design

5.5. In general we see that tht model having the largest APCS from existing criteria,
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has the smallest APCS from the SAO technique and vice versa. It is evident from the

simulation results that the MAPCS obtained from the different combinations of the

initial parameter values for a particular sample size under any particular design are

very similar. It implies that the APCS is in general insensitive to the initial values of

the parameters of the SAO technique when the competing models are equi-

dimensional.

Tables 5 .1a-c and 5.2a-c contain the simulation results for Designs 5.1 and 5.2,

where the competing models have a single non-constant regressor. For these designs,

the gap between the largest1 MAPCS and the smallest MAPCS obtained from the

SAO technique is very small. The smallest MAPCS obtained from the SAO

technique for Design 5.1 are 11,14 and 17 percent higher than those of the MAPCS

obtained from the existing criteria for n = 20, 50 and 100, respectively. For Design

5.2, the smallest MAPCS obtained from the SAO technique are 5, 4 and 4 percent

higher than those of the existing criteria for n = 20, 50 and 100, respectively. For

both designs, the variation among the APCS obtained from Type 2 penalties is lower

than the variation obtained from the existing criteria. The decrease of variation

among the APCS obtained from the SAO technique over the existing criteria for

sample sizes 20, 50 and 100 is 27, 35 and 45 percent for Design 5.1 and 71, 56 and

73 percent for Design 5.2, respectively. The mode and the median MAPCS obtained

There are 96 MAPCS for 96 combinations of initial parameter values for Type 2 penalties obtained

using the SAO technique. We computed the largest, smallest, mode and median of these 96 MAPCS.
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from the SAO technique are identical to the largest MAPCS obtained from the SAO

technique for all sample sizes of Design 5.1 and sample size 20 of Design 5.2. For

the other sample sizes of Design 5.2. the mode and median MAPCS are very similar

to the largest MAPCS obtained from the SAO technique. For both designs and for all

sample sizes, the MAPCS corresponding to the smallest variation among the APCS

obtained from the SAO technique is very similar to the corresponding largest

MAPCS obtained from the SAO technique.

The simulation results of the competing models with two non-constant regressors of

Designs 5.3 and 5.4 are presented in Tables 5.3a-c to 5.4a-c. Like for the single

regressor models, for both designs, the differences between the largest MAPCS and

the smallest MAPCS is very small. The smallest MAPCS obtained from the SAO

technique are 16, 9 and 9 percent higher than those of the existing criteria for sample

sizes 20, 50 and 100, respectively for Design 5.3. The increases of MAPCS over the

existing criteria are 8, 10. and 10 percent for sample sizes 20, 50 and 100,

respectively, for Design 5.4. For both designs, the variations among the APCS are

comparatively larger than those obtained from existing criteria. The mode and

median MAPCS are very similar to the largest MAPCS and in some situations these

are identical to the largest MAPCS. For both designs, the MAPCS corresponding to

the smallest variation among the APCS are very similar to the largest MAPCS. This

implies that the performance of Type 3 and Type 4 penalties are similar and from a
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user's point of view, any of these may be used for selecting the best model when the

competing models are equi-dimensional.

The results of the simulation expenments for the three non-constant regressor models

of Designs 5.5 and 5.6 are presented in Tables 5.5a - c to Table 5.6a - c . The results

indicate that for both designs, for 100 percent of the combinations of the initial

parameter values for the SAO technique, the MAPCS is higher than that of the

existing criteria. An exceptional improvement of the MAPCS obtained from the SAO

technique over the existing criteria is observed for Design 5.5. For both designs, the

largest MAPCS and the smallest MAPCS obtained from the SAO technique are very

similar. The smallest MAPCS obtained from the SAO technique for the sample sizes

20, 50 and 100 are 56, 57 and 56 percent larger than that of the existing criteria for

Design 5.5. These increases in MAPCS lor Design 5.6 are 14, 12 and 9 percent for

the sample sizes 20, 50 and 100, respectively. For all designs and sample sizes, the

variation among the APCS is larger than that of the existing criteria with the

exception for Design 5.5 and n = 100, where the variation among the APCS is

smaller than that of the existing criteria. The mode and the median MAPCS are very

similar to the largest MAPCS for both designs and all sample sizes and in some cases

these are idsnt>r ' ;o the largest MAPCS. The MAPCS corresponding to the smallest

variation among the APCS are very close to the largest MAPCS for both designs.
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For all designs, exactly the same MAPCS and SD among the APCS is obtained from

different sets of relative penalties. For example, for Design 5.1 with n = 20. the

largest MAPCS is 0.6470 with a SD among the APCS of 0.2434. This MAPCS and

SD is obtained from 26 different relative penalty sets, two examples being (0, -

1.5532. -1.1620, -1.8220), and (0, -1.5495, -1.1575, -1.1879). This result confirms

the comment we made in the previous chapter, that there is no unique set of penalties

for a particular data set that maximises the MAPCS. It is also observed that for all

designs exactly the same MAPCS and SD are obtained from different sets of initial

values for the SAO technique. For example, as mentioned earlier, for Design 5.1 the

largest MAPCS with SD 0.2434 is obtained from 26 different penalties. These

penalties are obtained from 26 different initial sets of values for the SAO technique.

The smallest MAPCS obtained from the SAO technique for Design 5.1 and n = 20, is

0.6464 with a SD among the APCS of 0.2501. which is very close to the

corresponding largest MAPCS and SD. This means that when the competing models

have the same number of parameters, the SAO technique is largely insensitive to the

initial values of the SAO technique.

5.3.2 COMPARISON OF TYPE 1 AND TYPE 3 PENALTIES

In this section, we compare the MAPCS obtained from the application of the SAO

technique with mean squared error and multiplicative penalties, with those from the

existing criteria. The simulation results obtained from the designs considered are

presented in the second part of Tables 5.1 a - c to 5.6a - c.
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It is apparent from the simulation results that in 100 percent of the combinations of

the initial parameter values for the SAO technique with mean squared error for all

designs and sample sizes, the MAPCS obtained using the SAO technique are higher

than those of the MAPCS obtained from the existing criteria. For all designs and

sample sizes, the MAPCS obtained using the SAO technique with maximised log-

likelihood and additive penalties are very similar to the MAPCS obtained from the

SAO technique with mean squared error and multiplicative penalties. Sometimes the

largest, mode, median MAPCS and the MAPCS corresponding to the smallest

variation among the APCS, are all identical for Type 2 and Type 3 penalties. Thus for

all designs and sample sizes, the comparisons between Type 1 and Type 3 penalties

are very similar to the comparisons between Type 1 and Type 2 penalties discussed in

the previous section.

5.3.3 COMPARISON OF TYPE 2 AND TYPE 3 PENALTIES

The results obtained from the simulation experiments for Type 2 and Type 3

penalties indicate that MAPCS obtained from both types of penalties are very similar.

The largest MAPCS from the additive and multiplicative penalties are identical in 16

out of 18 experiments (six designs each with three sample sizes) and in the remaining

two experiments, the numerical values of the largest MAPCS are very close. The

modal MAPCS are identical in 12 out of 18 experiments and in the other experiments

the values are very close. A similar picture is observed for median MAPCS and the

MAPCS corresponding to the smallest variation among the APCS. The smallest
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MAPCS obtained from these two types of penalties are also very close. It implies that

to maximise the MAPCS of the true model from a set of competing alternative equi-

dimensional models, the effect of the form of the penalty is insignificant. Therefore,

either of the methods with the SAO technique can be used to maximise the MAPCS

of the true model from a set of competing equi-dimensional models.

5.4 CONCLUDING REMARKS

In this chapter, we investigated the performance of the SAO technique to select the

true model from a set of equi-dimcnsional competing alternative models. To compare

the performance of the technique with the existing criteria, we conducted simulation

experiments with two sets of data in three different sets for equi-dimensiona! models.

In 100 percent of the combinations of the initial parameter values for the SAO

technique, the MAPCS is higher than those of the existing criteria for all designs and

the sample sizes considered. The variation among the APCS oi~ the true model is

smaller compared to that of the existing criteria when the competing models have a

single regressor. In all other experiments, this variation is generally larger than those

of the existing criteria with the exception of Design 5.5 with sample size 100. An

exceptional increase (56%) of the Mr.PCS over the existing criteria is observed for

all sample sizes of Design 5.5.

The relative penalties are zero for the existing criteria, but in the new method the

relative penalties that maximise the MAPCS are different from zero. Also, for the
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same set of models, these penalties are different for different data sets. This finding

confirms our previous finding that the penalties should not only be functions of the

sample size and the number of free parameters, but also the form of the log-

likelihood function. Exactlv ^ MAPCS were obtained from different relative

penalties, which implies that there is no unique set of penalties that maximise the

MAPCS.

From the simulation results, it is observed thai the model having the largest MAPCS

for the existing criteria, has the smallest MAPCS from the SAO technique and vice

versa. It is apparent from the simulation results that for a particular sample size under

any particular design, the MAPCS obtained from different combinations of the initial

parameters are very similar. The difference between the largest and the smallest

MAPCS obtained from the SAO technique is very small for all designs and for all

sample sizes considered. This implies, for equi-dimensional competing alternative

models, that the APCS of the true model is generally insensitive to the starting

parameter values of the SAO technique. We may conclude from our simulation

results that for selecting the best model from a set of equi-dimensional competing

alternative models, the MAPCS obtained from the SAO technique will always be

higher than that of existing criteria. We also recommend the use of the SAO

technique to compute penalties for selecting the best model, when the competing

models are equi-dimensional.
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The results obtained from the simulation experiments indicate that the APCS

obtained using the SAO technique with maximised log-likelihood functions and

additive penalties, and mean squared error with multiplicative penalties, are very

similar. So fVom the user's point of view, one can use either technique to select the

true model from a set of competing alternative equi-dimensional models.

The performance of Type 2 and Type 3 penalties relative to the existing 1C for

selecting the true model from a set of equi-dimensional competing models, is

uniformly better in all the experiments we conducted. From the results of the

simulation experiments, it may be concluded that for the equi-dimensional competing

models, the application of the SAO technique with additive or multiplicative

per.£*'<es always guarantees the selection of the true model with higher MAPCS

compared to the existing criteria in all situations for linear regression settings. We

presented numerical evidence in favour ot using the SAO technique over the existing

IC to select the true model from a set of equi-dimensional competing alternative

models. Such evidence is the best grounds for using this technique to improve APCS

of the true model, instead of not using a penalty as the existing criteria effectively do

in this situation.
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Table 5.1a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 20 for Design 5.1 together with relative penalty values and input values of SAO technique.

Type of
penalty

Additive:
Existing criteria
(Type 1)

Additive:
Using log-
likelihood with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique
(Type 3)

Criteria

All are
same

Largest
MAPCS
Smallest
SDof
APCS
Modal
MAPCS
Median
MAPCS
Largest
MAPCS
Smallest
SDof
APCS
Modal
MAPCS
Median
MAPCS

Average probabilities of correct selection of
model

Mt j M2 M, M4 | Mean j SD
0.9845 0.3905 0.7200 0.2350 0.5825 0.3357

0.9725 0.3850 0.6395 0.5910 0.6470 0 2434

0.9685 0.3855 0.6395 0.5925 0.6465 0.2414

0.9725 0.3850 0.6395 0.5910 0.6470 0.2434

0.9725 0.3850 0.6395 0.5910 0.6470 0 2434

0.9725 0.3850 0.6395 0.5910 0.6470 0.2434

0.9730 C.3900 0.6110 0.6115 0.6464 0.2414

0.9725 0.3850 0.6395 0.5910 0.6470 0.2434

09725 0.3850 0.6395 0.5910 0.6470 0.2434

Rebtive penalties*

0 0000 O.OOOC 0 0000

-1 5532 -1.1620 -1.8220

•21418 -1.7502 -24104

-15532 -1.162G -1.822.0

-15532 -1.1620 -1.8220

08561 0.F903 0 8334

08563 0.9070 0.8335

0 8561 0.8903 0.8334

0 8561 0.8903 0.8334

Input values for simulated annealing
Starting values of penalties

.*/ .v2 .v, | ,s4

00000 0.0000 0.0000 0.0000

1.4979 1.4979 14979 1.4979

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

1.0000 1.0000 1.0000 1.0000

10000 2.0000 2 0000 3.0000

1.0000 1.0000 1.0000 10000

1.0000 1.0000 10000 1.0000

Boundaries
I.B I'B

0.0000 10.0000

0.0000 8.0000

0.0000 10.0000

0.0000 10 0000

0.0000 10.0000

0.0000 32.0000

0.0000 10.0000

0.0000 10.0000

TRF"

0 1000

0.0001

0.1000

0.1000

0.1000

00001

0.1000

0.1000

* Additive penalty for model Mi is zero and multiplicative penalty for model Mt is one
** TRF Temperature reduction factor



Table 5.1b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 50 for Design 5.1 together with relative penalty values and input values of SAO technique.

Type of
penalty

Additive:
Existing criteria
(Typel)

Additive:
Using log-
likelihood with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique
(Type 3)

Criteria

All are
same

Largest
MAPCS
Smallest
SDof
APCS
Modal
MAPCS
Median
MAPCS
Largest
MAPCS
Smallest
SDof
APCS
Modal
MAPCS
Median
MAPCS

Average probabilities of correct selection of
model

M, MA Mi J Mi Mean SD
0.9920 0.5000 0.8880 0.2065 0.6466 0.3618

0.9890 0.4225 0.7870 0.7610 0.7399 0.2348

0.9890 0.4S95 0.7860 0.7130 0.7394 0.2145

0.9890 0.4225 0.7870 0.7610 0.7399 0.2348

0.9890 0.4225 0.7870 0.7610 0.7399 0.2348

0.9890 0.4225 0.7870 0.7610 0.7399 0.2348

0.9890 0.4225 0.7870 0.7610 0.7399 0.2348

0.9890 0.4225 0.7870 0.7610 0.7399 0 2348

0.9890 0.4225 0.7870 0.7610 0.7399 0.2348

Relative penalties*

Pi I Pi P4
0.0000 0.0000 0.0000

-0.3541 0.8881 -0.8217

-0.5173 0.8542 -0 8258

-0.3541 0.8881 -0.8217

-0.3541 0.8881 -0.8217

0.9860 1.0362 0.9677

0 9860 10362 0.9677

0 9860 1.0362 0.9677

0 9860 1.0362 0.9677

Input values for simulated annealing
Starting values of penalties

S, | .V, | S., S4

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

1.0000 1.0000 1.0000 1.0000

1.0000 1.0000 10000 1.0000

1.0000 1.0000 1.0000 1.0000

1.0000 1.0000 1.0000 1.0000

Boundaries
LB UB

-8.0000 8.0000

0.0000 2.0000

-80000 8.0000

-80000 8.0000

0.0000 8 0000

0.0000 8.0000

0.0000 80000

0.0000 8.0000

T R F ^

0.1000

0.0010

0.1000

0.1000

0.1000

0.1000

0.1000

0.1000

* Additive penalty for model Mt is zero and multiplicative penalty for model Mi is one
** TRF Temperature reduction factor



Table 5.1c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 100 for Design 5.1 together with relative penalty values and input values of SAO technique.

Type of
penalty

Additive.
Existing criteria
(Typel)

Additive:
Using log-
likelihood with
SAO technique
(Type 2)

Multiplicative.
Using mean
squared error
with SAO
technique
(Type 3)

Criteria

All are
same

Largest
MAPCS
Smallest
SDof
APCS
Modal
MAPCS
Median
MAPCS
Largest
MAPCS
Smallest
SDof
APCS
Modal
MAPCS
Median
MAPCS

Average probabilities

M,
0.9970

0.9940

0.9940

0.9940

0.9940

0.9940

0.9940

0.9940

0.9940

0.6180

0.5270

0.5285

0.5270

0.5270

0.5270

0.5270

0.5270

0.5270

of correct selection of
model

0.9315

0.8585

0.8585

0.8585

0.8585

0.8585

0.8585

0.8585

0.8585

M4

0.2055

0.8425

0.8405

0.8425

0.8425

0.8425

0.8425

0.8425

0.8425

Mean
0.6880

0.8055

0.8054

0.8055

0.8055

0.8055

0.8055

0.8055

0.8055

SD
0.3617

0.1977

0.1969

0.1977

0.1977

0.1977

0.1977

0.1977

0.1977

0

-C

•0

-0

•0

0

0

0

0

Relative

Pi
.0000

8164

8678

8164

8164

9799

9799

9799

9799

0

0

0

0

0

1

1

1

1

penalties

P.<
.0000

.6215

.5861

.62^5

.6215

0085

.0085

0085

.0085

P4
0.0000

-1 4880

-1.5303

•1.4880

-1.4880

0.9669

0.9669

0.9669

0.9669

0

0

0

0

1

1

1

1

Starting

s,

0000

0000

0000

0000

0000

0000

0000

0000

0

1

0

0

1

1

1

1

Input values for simulated annealing
values of penalties

s2

0000

0000

0000

0000

0000

0000

0000

0000

0.0000

1.0000

0.0000

0.0000

1.0000

1.0000

1.0000

1.0000

0.0000

2.0000

0 0000

0.0000

1.0000

1.0000

1.0000

1.0000

Bound;
LB f

-80000

0.0000

-8.0000

-8.0000

0.0000

0.0000

0.0000

0.0000

uies
UB

8.0000

10.0000

8.0C00

8.0000

8.0000

8.0000

8.0000

8.0000

TRF"

0.1000

0.0100

0.1000

0.1000

0.1000

0.1000

0 1000

0 1000

* Additive penalty for model M-, is zero and multiplicative penalty for model M, is one
** TRF Temperature reduction factor



Table 5.2a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 20 for Design 5.2 together with relative penalty values and input values of SAO technique.

Type of

penalty

Additive:

Existing criteria

(Type 1)

Criteria

All are
same

Average probabilities of correct selection of

model

M, Mean SD
0.2690 0.4950 0.5085 0.6305 0.4758 0.1507

RelaHve penalties Input values for simulated annealing

P,
0 0000 0.0000 0.0000

Starting values of penalties

•V;

Boundaries

LB f 1!B
TRF

Additive:

Using log-

likelihood with

SAO technique

(Type 2)

Largest
MAPCS
Smallest
SDof
APCS

Modal
MAPCS

Median
MAPCS

0.5570 0.4770 0.4560 0.5110 0.5002 0.0441

0.5535 0.4760 0.4560 0.5150 0.50C1 0 0432

0.5570 0.4770 0.4560 0.5110 0.5002 0.0441

0.5570 0.4770 0.4560 0.5110 0.5002 0.0441

0 3764

0 3767

0 3764

0 3764

Multiplicative:

Using mean

squared error

with SAO

technique

(Type 3)

Largest
MAPCS
Smallest
SDof
APCS

Modal
MAPCS

Median
MAPCS

0.5570 0.4770 0.4560 0.5110 0.5002 0 0441 10384

0.5535 0.4760 0.4560 0.5150 0.5001 0.0432 1 0384

0.5570 0.4770 0.4560 0.5110 0.5002 0.0441 I 10384

0.5535 0.4760 0.4560 0.5150 0.5001 0.0432 • 1.0384

* Additive penalty for model;'// is zero and multiplicative penalty for model M\ is one

** TRF Temperature reduction factor

0.5043 0.9540

0.5043 0.9144

0.5043

0 5043

0.9540

0.9540

00000 0.0000 0.0000 0.0000

0.0000 1.0000 1.0000 2.0000

00000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

00000 8.0000

0.0000 8.0000

0.0000 8.0000

00000 8.0000

1.0517

1.0518

1 1001 ! 1.0000 1.0000 1.0000 1.0000
I

1.0957

1.0517 1.1001

1.0518 10957

1.0000 10000 1.0000 1.00'

1.0000 1.0000 10000 1.0000

10000 1.0000 10000 10000

0.0000 20000

0.0000 20.0000

00000 2.0000

0.0000 20 0000

0.1000

0.1000

0.1000

0.1000

"oTobcT

0.1000

0.1000

0.1000



Table 5.2b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 50 for Design 5.2 together with relative penalty values and input values of SAO technique.

ON
J

Type of
penalty

Additive:
Existing criteria
(Type 1)

Additive:
Using log-
likelihood with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique
(Type 3)

Criteria

All are
same

Largest
MAPCS
Smallest
SDof
APCS
Modal
MAPCS
Median
MAPCS
Largest
MAPCS
Smallest
SDof
APCS
Modal
MAPCS
Median
MAPCS

Average probabilities

M,
0.3360

0.6720

0.6465

0.6720

0.6685

0.6720

0.6510

0.6720

0.6720

M2

0.5725

0.5275

0.5235

0.5275

0.5265

0.5275

0.5235

0.5275

0.5275

of correct selection of
model

Ms
0.6275

0.5245

0.5420

0.5245

0.5285

0.5245

0.5420

0.5245

0.5245

M4

0.7180

0.6165

0.6265

0.6165

0.6165

0.6165

0.6220

0.6165

0.6165

Mean
0.5635

0.5851

0.5846

0.5851

0.5850

0.5851

0.5846

05851

0.5851

SD J
0.1631

00719

0.0609

0.0719

0.0697

0.0719

0.0615

0.0719

0.0719

0

0

0

0

0

1

1

1

Relative

p2

0000

5147

5123

5147

5143

0208

0207

0208

.0208

0

0

0

0

0

1

1

1

1

penalties

Pj
.0000

.8774

.7462

.8774

.8476

.0357

.0302

.0357

0357

0

1

0

1

1

1

1

1

1

P*
0000

.0103

8995

0103

0102

0412

0386

0412

0412

0

0

0

1

1

3

1

1

Starting

.0000

0000

0000

9560

0000

9120

0000

0000

0

1

0

1

1

3

1

1

Input values for simulated annealing
values of penalties
s2

0000

0000

0000

9560

0000

9120

0000

0000

5,

0.0000

1.0000

0.0000

1.9560

1.0000

3.9120

1.0000

1.0000

S4

0.0000

2.0000

0.0000

1.9560

1.0000

3.9120

1.0000

1 0000

Boundaries
LB UB

•10.0000

-2.0000

-10.0000

0.0000

0.0000

0.0000

0.0000

0.0000

10.0000

2.0000

10.0000

8.0000

1.0000

3.9120

1.0000

1.0000

TRF

0.1000

0.0010

0.1000

0.1000

0.1000

0.0010

0.1000

0.1000

* Additive penalty for model M, is zero and multiplicative penalty for model Mt is one
** TRF Temperature reduction factor



Table 5.2c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 100 for Design 5.2 together with relative penalty values and input values of SAO technique.

0 0

Type of
penalty

Additive:
Existing criteria
(Type 1)

Additive:
Using log-
likelihood with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique
(Type 3)

Criteria

All are
same

Largest
MAPCS
Smallest
SDof
APCS
Modal
MAPCS
Median
MAPCS
Largest
MAPCS
Smallest
SDof
APCS
Modal
MAPCS
Median
MAPCS

Average probabilities

Mi
0.4290

0.3890

0.6890

0.6890

0.6390

0.6890

0.6900

0.6890

0.6890

0.6575

0.6320

0.6320

(>. 6320

0.6320

0.6320

0.6320

0.6320

0.5320

of correct selection
model

0.7125

0.6620

0 6620

0.6620

0.6620

0.6620

0.6620

0.6620

0.6620

M4

0.8180

0.7370

0.7370

0.7370

0 7370

0.7370

0.7355

0.7370

0.7370

Mean
0.6542

0.6800

0 6800

0.6800

0.6800

0.6800

0.6799

0.6800

0 6800

0

0

0

0

0

0

0

0

0

of

SD I
1643

0446

0446

0446

0446

0446

0440

0446

0446

0

0

0

0

0

1

1

1

1

Relative

EL
.0000

4189

4189

4189

4189

.0084

0084

0084

.0084

0

0

0

0

0

1

1

1

1

penalties

P,
.0000

.6262

6262

.6262

6262

.0126

.0126

.0126

.0126

0

1

1

1

1

1

1

1

1

k

P4
.0000

.1782

.1782

1782

.1782

0239

.0242

0239

0239

0

0

0

0

1

1

1

1

Starting

s,

.0000

.0000

0000

0000

.0000

0000

0000

0000

0

0

0

0

1.

2

1

1.

Input values
values

A.

0000

0000

0000

0000

0000

0000

0000

0000

for simulated annealing
of penalties

S,

0.0000

0.0000

00000

00000

1.0000

2.0000

1.0000

1.0000

•v,

0.0000

0.0000

0.0000

00000

1.0000

3 0000

1 0000

1.0000

Boundaries
LB UB

0.0000

0.0000

0.0000

00000

0.0000

0.0000

0.0000

00000

10.0000

10.0000

10.0000

10.0000

1 0000

10.0000

1.0000

1.0000

TRF"

0.1000

0.1000

0.1000

0.1000

0.1000

00010

0.1000

0.1000

* Additive penalty for model M/ is zero and multiplicative penalty for model Mt is one
** TRF Temperature reduction factor
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Table 5.3a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 20 for Design 5.3 together with relative penalty values and input values of SAO technique.

Type of
penalty

Additive:
Existing criteria
(Type 1)

Additive:
Using log-
likelihood with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique
(Type 3)

Criteria

All are
same

Largest
MAPCS
Smallest
SDof
APCS
Modal
MAPCS
Median
MAPCS
Largest
MAPCS
Smallest
SDof
APCS
ModaJ
MAPCS
Median
MAPCS

Average probabilities

Mi

0.5270

0.2440

0.3310

0.2440

0.2800

0.2440

0.2800

0.2440

0.2440

M6

0.4030

0.3505

0.3215

0.3505

0.3510

0.3510

0.3510

0.3510

0.3265

of correct selection
model

My
0.3745

0.7285

0.7410

0.7285

0.7285

0.7280

0.7285

0.7280

0.7495

Ms

0.4785

0.7470

0 6680

0.7470

0.7095

0.7470

0.7095

0.7470

0.7485

Mean
0.4457

05175

0.5154

0.5175

0.5172

0.5175

0.5172

0.5175

0.5171

0

0

0

0

0

0

0

0

0

of

SD
0697

2581

2204

2581

2349

2579

2349

2579

2699

I

0

-3

-1

-3

-3

0

0.

0.

0

Relative penalties

0000

4352

8554

4352

4126

7101

7131

7101

7485

p7

0.0000

-3.7546

-2.23,4

-3.7546

-3.7303

0.6879

0.6907

0.6879

0.7209

0

-0

-0

-0

-0

0

0

0

0

i

ps

.0000

.5835

.3124

.5835

.4440

.9433

.9566

9433

9433

2

0

2

0

1

4

1

1

Starting

s<

9957

0000

9957

0000

0000

4936

0000

0000

2

1

2

1

2

4

2

2

Input values for simulated annealing
values of penalties

s6

9957

0000

9957

0000

0000

4936

0000

0000

s-

2.9957

1.0000

2.9957

1.0000

2.0000

4 4936

2 0000

2.0000

Ss

2.9957

2.0000

2.9957

2.0000

3 0000

4.4936

3.0000

3.0000

Boundaries
LB |

-4.0000

0.0000

-4.0000

-12.0000

0.0000

0.0000

0.0000

0.0000

UB

5.9915

3.0000

5.9915

12.0000

48.0000

149787

48.0000

27.0000

TRF"

0.0001

0.0001

0.0001

0.0100

0.1000

0.0010

0.1000

0.0010

I
* Additive penalty for model A/5 is zero and multiplicative penalty for model M< is one
** TRF Temperature reduction factor



Table 5.3b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 50 for Design 5.3 together with relative penalty values and input values r O technique.

Type of
penalty

Additive:
Existing criteria
(Typcl)

Additive:
Using log-
likelihood with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique
(Type 3)

Criteria

All are
same

Largest
MAPCS
Smallest
SDof
A PCS
Modal
MAPCS
Median
MAPCS
Largest
MAPCS
Smallest
SDof
APCS
Modal
MAPCS
Median
MAPCS

Average probabilities of correct selection of
model

Ms I M6 I M-;- Ms Mean | SD
0.5820 0.5045 0.4295 0.4845 0.50C1 0.0631

0.3945 0.3845 0.7400 0.7085 0.5569 0.1937

0.4210 0.3885 0.7345 0.6815 0 5564 0.1769

0.4190 0.3850 0.7450 0.6750 0.5560 0.1806

0.4190 0.3850 0.7450 0.6750 0.5560 0.1806

0.3945 0.3840 0.7405 0.7075 0.5566 0.1938

0.4130 0.3865 0.7485 0.6370 0.5463 0 1755

0.4195 0.3850 0.7445 0.6755 0.5561 0.1804

0.4150 0.3900 0.7425 0.6670 0.5536 0.1775

Relative penalties*

r6 \ P7 pa

00000 0.0000 0.0000

-14966 -1.8183 -0.2936

-1 4294 -1.7417 -0.2272

-2 0"'i 2 -2.3929 -0.2262

-2 0712 -2.3929 -0 2262

0 9403 0.9283 0 9883

0 6784 0.6697 0.9918

0 9238 0.9120 0.9910

0 8733 0.8624 0.9910

Input values for simulated annealing
Starting values of penalties

s , I •% | ,v7 ss

3.9120 3.9120 3.9120 3.9120

39120 3.9120 3.9120 3.9120

3 9120 3 9120 3.9120 3.9120

3.9120 3.9120 3.9120 3.9120

1.0000 10000 1.0000 1.0000

1.0000 1.0000 10000 10000

10000 1.0000 10000 1.0000

5.8680 5.8680 5.8680 5 8680

Boundaries
LB | UB

0.0000 12.0000

0.0000 7.8240

-12.0000 12.0000

-12.0000 12.0000

0.0000 1.0000

0.0000 12.0000

0.0000 1.0000

0.0000 3 8680

TRF

0.1000

0.1000

0.1000

0.1000

0.1000

0.0001

0.0001

00001

* Additive penalty for model M? is zero and multiplicative penalty for model Af< is one
** TRF Temperature reduction factor



Table 5.3c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 100 for Design 5.3 together with relative penalty values and input values of SAO technique.

Type of
penalty

Additive:
Existing criteria
(Type 1)

Additive.
Using log-
likelihood with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique
(Type 3)

Criteria

All are
same

Largest
MAPCS
Smallest
SDof
APCS
Modal
MAPCS
Median
MAPCS
Largest
MAPCS
Smallest
SDof
APCS
Modal
MAPCS
Median
MAPCS

Average probabilities of correct selection of
model

Ms M6 ! M7 MH Mean SD
0.6230 0.6085 0.4785 0.5005 0.5526 0.0737

0.4480 0.4490 0.8080 0.7330 0.6095 0.1884

0.4515 0.4490 0.8075 0.7290 0.6093 0.1864

0.4460 0.4500 0.8105 0.7300 0.6091 0.1889

0.4460 0.4500 0.8105 0.7300 0.6091 0.1889

0.4480 0.4490 0.8080 0.7330 0.6095 0.1884

0.4580 0.4405 0.7970 0.7250 0.6051 0.1825

0.4400 0.4500 0.8095 0.7370 0.6091 0.1919

0.4575 0.4445 0.8025 0.7235 0.6070 0.1831

Relative penalties*

P6 i Pi P*
0.0000 0.0000 0.0000

-1.9048 -2.32G2 -0.3119

-1.8037 -2.2247 -0.3028

-3.3369 -3 7578 -0 3118

-3.3369 -3.7578 -0.3118

0 9625 0.9544 0.9938

0.S825 0.9743 0 9942

0.9527 0.9447 0.9935

0.9757 0.9675 0.9942

Input values for simulated annealing
Starting values of penalties

Si i S6 Sj Ss

0.0000 0.0000 0.0000 0.0000

0.0000 1.0000 1.0000 2.0000

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

1.0000 2.0000 2.0000 3.0000

6.9078 6.9078 6.9078 6.9078

1.0000 1.0000 1.0000 1.0000

1.0000 1.0000 1.0000 1.0000

Boundaries
LB UB

0.0000 10.0000

0.0000 3.0000

•4.0000 4.0000

-4.0000 4.0000

0.0000 12.0000

0.0000 6.9078

0.0000 1.0000

0.0000 1.0000

T R ^

0.0100

0.0010

0.1000

0.1000

0.1000

0.0001

0.0100

0.0001

I
* Additive penalty for model Af? is zero and multiplicative penalty for model M<, is one
** TRF Temperature reduction factor



Table 5.4a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 20 for Design 5,4 together with relative peinalty values and input values of SAO technique.

Type of
penalty

Additive:
1 Existing criteria

(Typel)

Additive:
Using log-
likelihood with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique
(Type 3)

Criteria

All are
same

Largest
MA PCS
Smallest
SDof
A PCS
Modal
MAPCS
Median
MAPCS
Largest
MAPCS
Smallest
SDof
APCS
Modal
MAPCS
Median
MAPCS

Average probabilities of correct selection of
model

M5 I M6 j M; j M8 | Mean | SO
0.3790 0.4805 0.5250 0.3840 0.4421 0.0724

0.7265 0.3540 0.3700 0.4720 0 4806 0 1720

0.6180 0.5120 0.3185 0.4710 0.4799 0.1241

0.7135 0.3755 0.3765 0.4560 0.4804 0.1599

0.7135 0.3755 0.3765 0.4560 0.4804 0.1599

0.7265 0.3540 0.3700 0.4720 0.4806 0.1720

0.6805 0.4285 0.3400 0 4715 0.4801 0 1444

0.7135 0.3755 0.3775 0.4555 0.4805 0.1597

Relative penalties

0.0000 0.0000 0.000

0.7617 0.8956 0.4813

0 2655 0.894C 0 4780

0.6810 0.8592 0.5009

0.6810 08592 0 5009

1.079G 10936 10492

10513 1.0947 10502

10702 10894 1.0514

0.7135 0.3755 0.3775 0.4555 0.4805 0.1597 j 1.0702 1.0894 1.0514

1

Input values for simulated ^nnetding
Starting values of penalties

h s5 I T6 [ s7 T sa

0.0000 00000 0.0000 0.0000

00000 00000 00000 0.0000

2 9957 2«S57 2 9957 2.9957

2 9957 2.9957 2.9957 2 9957

1.0000 2.0000 2 0000 3 0000

1 0000 1 0000 1 0000 1 0000

1.0000 10000 10000 10000

1.0000 10000 10000 1.0000

Boundaries
LB ( UB

-12.0000 12.0000

-12.0000 12.0000

-120000 120000

-12 0000 12.0000

0.0000 48.0000

0.0000 20.0000

0.0000 20.0000

0.0000 20.0000

TRF

0.1000

0.0100

0.1000

9.1000

0.1000

0.0010

0.1000

0.1000

* Additive penalty for model M? is zero and multiplicative penalty for model Af< is one
** TPF Temperature reduction factor

HJ£^^V^£^^gK^£Jj^£^^^^|



Table 5.4b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 50 for Design 5.4 together with relative penalty values and input values of SAO technique.

Type of
penalty

Additive:
Existing criteria
(Type 1)

Additive:
Using log-
likelihood with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique
(Type 3)

Criteria | Average probabilities of correct selection of
I model

Relative penalties

All are
same

largest
MAPCS
Smallest
SDof
APCS
Modal
MAPCS
Median
MAPCS
Largest
MAPCS
Smallest
SDof
APCS
Modal
MAPCS
Median
MAPCS

MT Mean SD
0.4155 0.5910 0.6380 0.4610 0.5264 0.1052

0.7005 0.5455 0.4435 0.6305 0.5800 0.1109

0.6945 !.551O 0.4440 0 6300 0.5799 0.1079

0.7025 0.5400 0.4465 0.6300 0 5797 0.1109

0.7025 0.5400 0.446E 0.6300 0.5797 0.1109

0.7005 0.5450 0.4440 0 6305 0.5800 0.1107

0.6965 0.5500 0 4435 0.6295 0.5799 0 1089

.6. 1 i.

0.5450

0.5265

0 5604

0.5604

1.0220

1.0214

0.6965 0.5500 0.4435 0.6295 0.5799 0.1089 I I 0214

0.7330 0.5715 04195 0.5950 0.5797 0.1284 1.0213

* Additive penalty for model M< is zero and multiplicative penalty for model Mr is one
** TRF Temperature reduction factor

P-
0.0000 0.0000

0.9389

0.9389

1 0385

1.0381

P,
0.0000

0.9479 0.2884

0.9294 02819

02902

02902

1.0114

1.0115

1.0381 10115

1.0492 1.0^24

Input values for simulated annealing
Starting values of penalties

0.0000 0.0000 00000 0.0000

0.0000 1.0000 1.0000 2 0000

3 9120 3 9120 3 9120 3.9120

3.9120 3.9120 3.9120 3.9120

1.3000 10000 i.0000 10000

5 8680 5 8680 5 8680 5.8680

5.8680 5 8680 5.8680 53680

5.8680 58680 5 8680 5 8680

Boundaries

0.0000 10.0000

0.0000 3.0000

-12.0000 12.0000

-12.0000 12.0000

0.0000 10.0000

0.0000 19 5601

0.0000 19.5601

0.0000 46.9443

TRF

0.1000

0.1000

00010

0.0010

0.1000

0 1000

0 1000

01000



Table 5.4c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample tsize 100 for Design 5.4 together with relative penalty values and input values of SAO technique.

Type of
penalty

Additive:
Existing criteria
(Type 1)

Additive:
Using log-
likelibjod with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique
(Type 3)

Criteria

All are
same

Largest
MAPCS
Smallest
SDof
APCS
Modal
MAPCS
Median
MA PL 5
I arrest
MA'PCS
Smallest
SDof
APCS
Modal
MAPCS
Median
MAPCS

Average probabilities of correct selection of
model

Mj i M6 M7 ! Ms Mean SD
0.5130 0.6520 0.7370 0.5780 0.6200 0.0965

0.7805 0 6545 0.5480 0.7465 0.6824 0.1042

0.7675 0.6450 0.5590 0.7540 0 6814 0 0983

0.7795 0.6545 0.5495 0.7455 0.6823 0.1030

0.7795 0.6545 0.5495 0.7455 0.6823 0.1030

0.7805 0.6545 0.5480 0.7465 0.6824 0.1042

C.7805 0.6450 0.5705 0 7290 0.6813 0.0926

0.7795 0.6550 0.5485 0.7460 0.6823 0.1035

0.7795 0.6550 0.5485 0.7460 0.6823 0.1035

Relative penalties*

Po P; PS
0.0000 00000 0.0000

0.5510 1.2144 0.5141

0.5513 1.0794 0.4080

0.5467 1.2017 0.5117

05467 1.2017 05117

Input values for simulated annealing
Starting values of penalties

s, s6 s; ! sa

0.0000 1.0000 1.0000 2.0000

0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

00000 00000 0.0000 0.0000

1.0111 1.0246 1 f,103 : 69078 6.9078 6.9078 6.9078

1.0111 1.0219 10103

1.0110 1.0245 1.0103

10110 1.0245 1.0103

6.9078 6.9078 6.9078 6.9078

1.0000 2.0000 2.0000 3.0000

1 0000 2.0000 2.0000 3.0000

Boundaries
LB LIB

-10.0000 10.0000

0 0000 10.0000

0.0000 4.0000

0.0000 4.0000

0.0000 13 8155

00000 6.9078

0.0000 12.0000

0.0000 12.0000

["TRF""

0.1000

0.1000

0.1000

0.1000

0.1000

0.0001

0.1000

0.1000

* Additive penalty for model Mi is zero and multiplicative penalty for model Mi is one
** TRF Temperature reduction factor



Table 5.5a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 20 for Design 5.5 together with relative penalty values >.- id input values of SAO technique.

Type of

penalty

Additive:

Existing criteria

(Type 1)

Additive:

Using log-

likelihood with

SAO technique

(Type 2)

Criteria

All are
same

Average probabilities of correct selection of Relative penalties
model

M 1SL MLL Mean i SD 10
0.6410 0.3770 0.4550 0.3950 O.-i695 0.1205 0.0000 0.0000

JL.
0.0000

Largest ( 0 3690 0.S970 0.6530 0 9180 0 7343 C 2fj45 \ -5.2063 -0 7590 -2.2686

MAPCS
Smallest
SDof
A PCS

0.3725 0.9855 0.6625 0.9060 0.7316 0.2760

Modal
MAPCS

Median
MAPCS
Largest
MAPCS

Smallest
SDof
A PCS

3 9370 -0 7641 -2 0906

0.3690 0.6530 0 9180 0.7343 0.2845 5.2089 -0 7590 -2 2686

Input values for simulated r n.iealing

Starting values of penalties

In.. S,

0.0000 0 "'000 0.0000 0.0000

0 0000 0.0000 0 0000 0.0000

0 0000 0 0000 0 0000 0.0000

0.3695 0 9955 0.6530 0.9180 0 7340 0 2838

0.3690 0.9970 0.6530 0 9180 0.7343 0 2845

4 9027 0.7.95 -2.2689 I 4.4936 4 4936 4.4936 4 4936

0.3760 0.9970 0.6460 0.9165 0 7339 0 2819 i 0.5935 0 9310 0 8G12 1.0000 1 0G00 1.0000 10000

Multiplicative:
Using mean

squared erroi

with SAO

j technique

(Type 3;

L
* Additive penalty for model Mg is zero and multiplicative penalty tor model M<> is one

** TRr Temperature /eduction factor

t A r\f\r\r* A ^ * , I > A A0 5873 0 9270 0.7970 10000 1 C000 1.0000 1.0000

Modal j 0.369C 0.9170 0.6530 0 9180 0 7343 0.2G45 i 0.5873 0 9270 0.7970 1 OCO0 10000 1.0000 1.0000
MAPCS j ;
Medlar: ! 0.3690 0.9970 0 6530 0.91 .7343 0.2845 \ 0 5873 0 9270 0.7970 10000 10000 10000 1.0000
MAPCS !

Boundaries
IB 'I UB

0.0000 10.0000

0.0000 4.0000

0 0000 1n0000

0.0000 5.9915

ooooo TooocT

0.0000 10 0000

oocoo

ooooo

1.0000

1.0000

TRF

0.1000

0.1000

0.1000

0.0100

0.1000

0.1000

0.1000

0.1000



Table 5.5b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 50 for Design 5.5 together with relative penalty values and input values of SAO technique.

Type of
penalty

Additive:
Existing criteria
(Typel)

Additive:
Using log-
likelihood with
SAO technique
(Type 2)

Criteria

Al! are
same

Largest
MAPCS
Smallest
SDof
APCS
Modal
MAPCS

Multiplicative:
Using mean
squared error
with SAO
technique
(Type 3)

Median
MAPCS
Largest
MAPCS
Smallest
SDof
APCS

Average probabilities of correct selection of
model

M, Mu L Mean SD
0.7685 0.4010 0.4955 0.4365 0.5254 0.1667

0.5175 0.9990 0.8325 0.9490 0.8245 0.2162

0.5330 0.9935 0.8095 0.9600 0.8240 0.2099

0.5175 0.9990 0.8325 0.9490 0.8245 02162

0.5175 0.9990 0.8325 0.9490 0 8245 0.2162

Relative penalties

10 'it L
0.0000 0.0000 0.0000

-4.8874

-3 9153

•4 8874

-4.8874

Modal
MAPCS
Median
MAPCS

0 5175 0 9990 0.8325 0.9495 0.8246 0.2163 0 8220

0.5165 0 9935 0.8330 0.9540 0.8242 0 2162 0 8488

0.5175 0.9990 0.8325 0 9495 0.8246 0.2163 | 0.8220

0.5175 0.9990 0.8325 0.9495 0.8246 0.2163 0 8220

* Auditive penalty for rr •" ;I Mg is zero and multiplicative penalty for model Me, is one
** TRF Temperature reduction factor

-1.2190

-1.0541

-1 2190

•1.2190

0.9523

0.9523

09523

0.9523

-2.6135

-2.7323

-26135

-26135

0.9002

08981

0.9002

0.9002

Input values for simulated annealing
Starting values of penalties

U2-

0.0000 1.0000 1.0000 2.0000

0.0000 0.0000 0.0000 0.0000

0.0000 1.0000 1.0000 2.0000

0 0000 1.0000 1.0000 2.0000

Boundaries
LB L'B

1.0000 1.0000 1.0000 1.0000

10000 2 0000 2 0000 3 0000

1.0000 1.0000 1.0000 10000

10000 10000 10000 1.0000

0.0000 10.0000

0.0000 4.0000

0.0000 10.0000

0.0000 10.0000

0.0000 1.0000

0.0000 10 0000

0.0000 1.0000

0 0000 1.0000

TRF

0.0100

0.1000

00100

0.0100

"671000*

00001

0.1000

0 1000



Table 5.5c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 100 for Design 5.5 together with relative penalty values and input values of SAO technique.

Type of

penalty

Criteria Average probabilities of correct selection of

model

Rotative penalties

Mw Mu Mean SD JJ_ 12

Input values for simulated annealin

Starting values of penalties

lifi. S, S,y

Boundaries
_____ UB

TRF

Additive:

Existing criteria

(Type 1)

All arc
same

0.8505 0.4350 0 5005 0.4495 0.5589 0.1964 O.UuOO 0.0000 0.0000

Additive:

Using log-

likelihood w>th

SAO technique

(Type 2)

Largest
MA PCS

0.6480 0.9985 0.871C 0.9830 0.8751 0.1617 •5.3640

Smallest
SDof
APCS
Modal
MA PCS

Median
MAPCS

0.6530 0.9845 0.8785 0 9685 0.8711 0.1527 -3 4805

0.6480 0.9965 0.8710 0.9830 0.8751 0.1617 ! -5.3640

0.6480 0.9985 0.8710 0.9830 0.8751 0.1617 -5.3640

-1.2130

-1.2128

-1.2130

-1.2130

-3.0750

•2.5651

-3.0750

-30750

0.0000 0.0000 0.0000 0.0000

0.0000 1.0000 1.0000 2.0000

0.0000 0.0000 0.0000 0.0000

0.0000 00000 0.0000 0.0000

0.0000

0 0000

0.0000 10.0000

0.0000 4.0000

10.0000

10.0000

0.1000

0.0010

0.1000

0.1000

0.100b"

00100

0 1000

0.1000

Multiplicative:

Using mean

squared error

with SAO

technique

(Type 3)

Largest
MAPCS
Smallest
SDof
APCS

I Modal
MAPCS

Median

MAPCS

0.6480 0.9985 0.8710 0.9830 0.8751 0.1617 0 8978 0.9760 0.9403

0.6520 0.9985 0.8760 0.9715 0.8745 0 1574 0.8964 0.9760 0.9-474

0.6480 0.9985 0.8710 0.9830 0.875' 0.1617 ' 0 8978 0.9760 0.9403

0.6480 0.9985 0.8710 0.9830 0.8751 0.1617 0.8973 0.9760 0.9403

1.0000 10000 1.0000 1.0000

92103 9.2103 92103 92103

10000 1.0000 1.0000 1.0000

10000 10000 1.0000 1.0000

0.0000

0.0000

1.0000

92103

0.0000 1.0000

0.0000 1.0000

* Additive penalty for model Mi, is zero and multiplicative penalty for model Mi, is one

** TRF Temperature reduction factor



Table 5.6a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 20 for Design 5.6 together with relative penalty values and input values of SAO technique.

0 0

Type of
penalty

Additive:
Existing criteria
(Type i)

Additive.
Using log-
likeJihood with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique
(Type 3)

Criteria

All are
same

Largest
MAPCS
Smallest
SDof
A PCS
Modal
MAPCS
Median
MAPCS
Largest
MAPCS
Smallest
SDof
APCS
Modal
MAPCS
Median
MAPCS

Average probabilities of correct selection of
model

M9 M,6 ! Mn | .'• | Mean | SD
0.4295 0.6030 0.4520 0.4o30 0.4869 0 0787

0.8290 0.2640 0.5340 0.6330 0.5650 0.2351

0.8275 0.3400 0.4970 0.5915 0.56-10 0 2040

0.8290 0.2640 0.5340 0.6330 0.5650 0.2351

0.8265 0.2580 0.5360 0.6390 0.5649 0 2373

0.8290 0.2640 0.5340 0.6330 0.5650 0.2351

0.8370 0.3280 05140 0 5775 0.5641 0.2105

0.8290 0.2040 0.5340 0.6330 0 5650 0 2351

0.8265 0.2580 0.5360 0.6390 0 5649 0.2373

Relative penalties

Pio I Pu I Pu
0.0000 0.0000 00000

16520 0.6531 0.5078

1.2607 0.7286 0.5748

16520 0.6531 0.5078

1 6989 0.6420 0.4884

1.1796 1.0675 10521

1.1434 V0755 10657

1.1796 10675 1.0521

1.1851 1.0663 10500

Input values for simulated annealing
Starting values of penalties

Sg I Sl0 | Su S/2

00000 0.0000 0.0000 0.0000

0.0000 1 OO00 1.0000 2 0000

0.0000 0.0000 00000 0.0000

0.0000 10000 1.0000 2 0000

1.0000 2.0000 2.0000 3 0000

1.0000 10000 1.0000 1.0000

1.0000 2 0000 2.0000 3.0000

5 9915 R9915 5 9915 5 9915

Boundaries
LB i L'B

-40000 4.0000

-10 0000 10.0000

-4.0000 4.0000

-10.0000 10.0000

0.0000 10.0000

0.0000 10.0000

0.0000 10.0000

0 0000 11.9829

TRF"

0.1000

0.0100

0.1000

0.0010

' 0.1000

0.0010

0.1000

00010

* Additive penalty for model Mq is zero and multiplicative penalty for model MQ is one
** TRF Temperature reduction factor



Table 5.6b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 50 fwr Design 5.6 together with relative penalty values and input values of SAO technique.

Type of
penalty

Additive.
Existing criteria
(Typel)

Additive:
Using log-
ukelihood with
SAO technique
(Type 2)

Multiplicative:
Using mean
squared error
with SAO
technique
(Type 3)

Criteria

All are
same

Largest
MA PCS
Smallest
SDof
APCS
Modal
MA PCS
Median
MAPCS
J^argesl
MAPCS
Smallest
SDof
APCS
Modal
MAPCS
Median
MAPCS

Average probabilities of correct selection of
model

•W» ! Mw [ Mj, j MP Meai-. j SD
0.5360 0.6960 0.5555 0.5520 0.5849 0.0746

0.8325 0.4160 0.5895 0.7950 0.6583 0 1936

0.8285 0.4225 0.5925 0.7855 0.6573 0 1871

0.8340 0.4180 0.5835 0.7965 0.6580 0.1943

0.8340 0.4180 0.5835 0.7965 0.6580 0 1943

0.8325 0.4160 0.5895 0.7950 0.6583 0 1936

0.7900 0.445C 0.6430 0.7395 0.6544 0.1523

0.8325 0.4160 0.5895 0.7950 0.6583 0.1936

0.8325 0.4160 0.5895 0 7950 0.6583 0.1936

Relative penalties

Pio Pn \ Pn
0.0000 0.0000 0.0000

1.3174 0.5771 0.1042

12521 0 5440 0.1041

1.3200 06113 0.1041

13200 0.6113 0 1041

10541 1.0233 1.0042

1 0404 1.C113 1.0042

1 0541 1 0233 1 0042

1 0541 1.0233 1 0042

Input values for simulated annealing
Starting values of penalties

Sg I SJO Sjj Sn

0 0000 0 0000 0 0000 0.0000

5.8680 5.8680 5.8680 5.8680

0.0000 00000 0.0000 O.OOOU

00000 00000 00000 0.0000

10000 2.0000 2.0000 3.0000

10000 10000 1.0000 1.0000

1.0000 2.0000 2.0000 3.0000

1.0000 2 0000 2.0000 3.0000

Boundaries
LB | UB

•4.0000 4.0000

-10.0000 10.0000

•16.0000 16.0000

•16.0000 16.0000

0.0000 10.0000

0.0000 16.0000

0.0000 10 0000

0.0000 10.0000

T R T ^

0.1000

0.0010

0.0010

0.0010

0 1000

0.0100

0.1000

0.1000

* Additive penalty for model Mg is zero and multiplicative penally for model M9 is one
** TRF Temperature reduction factor



Table 5.6c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models for sample size 100 for Design 5.6 together with relative penalty values and input values of SAO technique.

oo
o

Type of

Additive:
Existing criteria
(Type 1)

Additive:
Using log-
likelihood with
SAO(f Unique
(Type 2,

Multiplicative:
Using mean
squared error
with SAO
technique
(Type 3)

Criteria

All are
same

Largest
MAPCS
Smallest
SDof
APCS
Modal
MAPCS
Median
MAPCS
Largest
MAPCS
Smallest
SDof
APCS
Modal
MAPCS
Median
MAPCS

Average probabilities

M9

0.6290

0.9270

0.8945

0.9270

0.9005

0.9270

0.8935

0.8990

0.8990

0.7505

0.5510

0.5670

0.5510

0.5090

0.5510

0.5670

0.5085

0.5085

of correct selection of
model

Mil
0.6785

0.7080

0.7345

0.7080

0.7440

0.7080

0.7350

0.7445

0.7445

M,2
0.6565

0.7890

0.7760

0.7890

0.8200

0.7890

0.7765

0.8210

0.8210

Mean
0.6786

0.7438

0.7430

0.7438

0.7434

0.7438

0.7430

0.7432

0 7432

SD
0.0520

0.1571

0.1355

0.1571

0.1(388

0.1571

0.1352

0.1687

0.1687

J
0

1

1

1

1

1

1

1

Relative

%
0000

4753

1706

4753

5228

.0300

0235

0308

0308

0

0

0

0

0

1

1

1

1

penalties

.0000

.8747

5862

.8747

5904

.0177

.0116

0116

0116

Pl2
0.0000

0.6798

0.4886

0.6798

0.4183

1.0137

1 0097

1.0082

1.0082

0

0

0

0

1

9

1

1

Starting

So

.0000

0000

.0000

0000

.0000

.2103

0000

.0000

0

0

0

0

1

9

1

1

Input values for simulated annealing
values of penalties

ho

0000

0000

0000

0000

0000

2103

0000

0000

0.0000

0.0000

0.0000

0.0000

1.0000

9.2103

1.0000

1.0000

S,2

0.0000

0.0000

0.0000

0.0000

1.0000

9.21 rJ3

1.0000

1.0000

Boundaries
LB

0.0000

0.0000

0 0000

0.0000

0.0000

0.0000

0.0000

0.0000

UB

10.0000

4.0000

10.0000

16.0000

10.0000

18.4207

10 0000

10.0000

TRF"-

0.1000

0.0100

0.1000

0.1000

0 1000

0.0100

0.0001

0.0001

* Additive penalty for model Mq is zero and multiplvcative penalty for model MQ is one
** TRF Temperature reduction factor



CHAPTER 6

EQUAL PROBABILITIES OF CORRECT SELECTION:
A CONSTRAINED MINIMISATION OF VARIATION

AMONG 1HE AVERAGE PROBABILITIES OF
CORRECT SELECTION

6.1 INTRODUCTION

In the previous three chapters, we mainly concentrated on the maximisation of the

mean average probability of correct selection (MAPCS), using our proposed

technique used in Chapter 3 and the SAO technique used in Chapter 4 and Chapter 5.

In Chapter 3, we presented the generalised form of the penalty function of six

existing 1C and a technique of maximisation of the MAPCS. In Chapter 4 and

Chapter 5, we presented two different types of penalties: additive penalties with

maximised log-likelihood and multiplicative penalties with mean squared error; and

applied the SAO technique to maximise the MAPCS. We conducted several

simulation experiments with different sets of data and competing models to evaluate

the performance of both types of penalties with the SAO technique. It was observed

that the MAPCS obtained from these techniques were alway; higher th ,n those of the

existing criteria. Unfortunately like the existing criteria, the average probabilities of

correct selection (APCS) for each model are uneven across differe.it models for both



Chapter 6 Equal Probabilities of Correct Selection

types of penalties, although in some cases the variation «mong the APCS is much

less than that of existing criteria. But a desirable property of a good model selection

procedure should be that it selects the best model without favouring one model over

the others, i.e. the APCS of each competing model when it is the true model should

be equal. Our goal is to choose the penalty in such a way that none of the competing

models is favoured over the others unknowingly. In the literature, this technique is

called controlling the probabilities of correct selection, (see for example Kins et al.

(1995) and Forbes a al. (1995)). This chapter is concerned with controlling the

APCS in linear regression settings.

Forbes el al. (1995) proposed three techniques for controlling the probability of

correct selection of one model over the others. They showed that for the variable

selection problem, the relative penalty of any two competing models can be

expressed as a function of the pcrcentile of the F distribution and they called this

penalty function F1C. Their second method is also for variable selection purposes and

is based on quasi-maximum likelihood functions. They showed thai in this case the

penalty function could be expressed approximately as a function of ax] random

variable. Their third method gives the penalties that aim to control the probability of

correct selection but arc approximate penalties for general model selection problems.

The problem with using the above methods is that the penalty function is fixed

(function of F distribution or x] distribution) for a particular sample size and

182



Chapter 6 Equal Probabilities of Correct Selection

number of free parameters, and the form of log-likelihood function has no impact on

its value. Also, when the models are equi-dimensional, the impact of these penalties

in selecting the true model is null. King ex al. (1995) proposed two approaches for

controiiing the probability of correct selection (PCS) of models and gave an

algorithm for calculating the penalties, which control the PCS. Their first approach is

based on the idea of a common model, but there are two problems with this approach.

Firstly, there may not be a common model among the competing models. Secondly,

when the competing models are nested, then there is no fixed rule for setting the

selection probabilities and it is left to the user's arbitrary choice. Obviously different

users may then come to different conclusions for the same data set and set of

competing models. Their second method is based on a representative fixed points

approach. They proposed two techniques for selecting representative fixed point

models. Their first technique entirely depends on the judgement of the user, while the

second technique depends on the idea of a common model, which may not exist in all

situations. They argued that it is possible to control probabilities of correct selection,

though their approach has some limitations as mentioned earlier. Our objective in

this chapter is to develop a technique of selecting the true model by controlling the

APCS in such a way that each competing model has an equal chance on average of

being selected.

The organisation of this chapter is as follows. In Section 6.2 we discuss the issue of

making the APCS equal and propose a new method of selecting penalties which
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makes the APCS equal when the number of parameters in the competing models are

unequal and equal. Section 6.3 contain;- the descriptions of the Monte Carlo

experiments and results of these experiments when competing models have an

unequal number of parameters. Section 6.4 contains the description of the simulation

experiments and the results of these experiments when competing models are equi-

dimensional. The final section contains some concluding remarks.

6.2 PROPOSED METHOD OF MINIMISATION OF
VARIATION AMONG THE APCS

In this section we propose a method of choosing the penalties in an 1C based model

selection procedure so that the variation among the APCS of each model is as small

as possible. Theoretically, our main objective is to make the APCS of each model

equal and it will happen if the variation among the APCS of models is zero.

Numerically if the variation among the APCS of each model is close to zero, it may

be believed that the estimated APCS of the models are nearly equal.

As noted in the previous chapter, in almost all IC based model selection procedures,

the j'1' model will be selected if

{L!(Pra))-p)>{Ll{jJl,&])-P).\/i,i = \.2 ( . / - I ) , (7 + 1) , . . . , m, (6 .1 )

or,

E]q] < E;q*,\li, i = 1,2,..., 0 -1) , 0 + 1) m, (6.2)
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where pj is the additive penalty. Li(f3r&
2
i) is the maximised log-likelihood

function. / ? ; anda~ are ihe maximum likelihood estimators of /?, andcr",

respectively. </* is the multiplicative penalty and E~ is the mean squared error for

the y model.

In equation (6.1), L,(/? ;.cr),Vy,y - 1, 2,.,., nu and in (6.2), £ ; , V/.y: = 1. 2 m. is

known. Our main objective is to find the penalties p and 4,«Vy\ / — ^ - m< m

such a way that the average probabilities of correctly choosing the /'"' model and the

/"models are equal, i.e.

APCS of t h e / " model = APCS of the /'" model. Vy * /. /../' = 1. 2 w,(6.3)

or approximately equal, i.e.

APCS of the/ '1 model = APCS of the /"' model. Vy * / , ij = 1. 2 w.(6.4)

In other words, equation (6.3) will be true if the variation among the APCS of the j"'

model, Vy,y = 1, 2 m, is zero and (6.4) will be true if the variation among the

APCS of the / ' ' model, \fj,j = 1, 2,..., m, is clc»e to zero. The literature on model

selection shows that for an IC based model selection procedure, none of the existing

penalties can satisfy these equations. This is because some IC favour the model with

the smallest number of parameters, while others favour the model with the largest

number of parameters, as a result the APCS of different models are uneven in all
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situations. For example, BIC always favours <jric model with the smallest number of

parameters, while RBAR favours the model with the largest number of parameters.

Also from our simulation studies, it is apparent that the APCS of different models

obtained from the existing criteria are far from equal. The MAPCS obtained from our

proposed additive and multiplicative penalties with the SAO technique in Chapter 4

and Chapter 5 are higher than those of the existing criteria. But the APCS of models

are generally unequal, though in some cases the variation among the APCS of

different models is much less compared to that for the existing IC. So, in Older to

select the true model without favouring one model over the others, we need a set of

penalties which satisfy equation (6.3) ideally or (6.4) to a reasonable extent. We used

standard deviation (SD) among the APCS oi the models as a measure of variation

and applied the SAO technique to find penalties for a particular data set and set of

competing models with the objective that the SD among the APCS of the models be

the minimum.

The APCS when the the /""' model, M . is true, is defined in Chapter 3 as

APCS, =E[p(CS|Mr^)] = J ^ ) ^ f ) ^ / . y = 1,2 #« ,

where #(#,) is the weighting density function of the vector of parameters 0r Thus

the mean of the average probability of correct selection will be

, ,0 7 ) ] JTAPCS,
MAPCS = ^ '~

m m
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Then the standard deviation (SD) among the APCS,. j = 1. 2 m. can be written

as

£(APCS -MAPCS)

SD(APCS) = E( APCS - MAPCS)* r-\

m

which is our objective function to be minimised. Jn Chapter 3 we explained how

APCS can be estimated using the Monte Carlo method with the objective that

MAPCS is maximised. Here we apply the same technique but instead of maximising

the MAPCS here we minimised the SD(APCS) among the APCS

We used additive penalties with maximised log-likelihood functions and

multiplicative penalties with mean squared error to compute penalties for a particular

data set, which satisfy equation (6.3) or (6.4).

6.3 MINIMISATION OF VARIATION AMONG THE APCS FOR
MODELS OF UNEQUAL NUMBER OF PARAMETERS

In this section, we have applied the method of minimisation o\ variation among the

APCS, discussed in Section 6.2 with the models of an unequal number of parameters

in the competing models in a linear regression setting. The purpose of this section is

to evaluate the performance of the method proposed in Section 6.2 over the existing

IC and the methods of maximising MAPCS discussed in the Section 4.2 and 4.3. We

conducted simulation experiments to provide numerical evidence of the performance

of the proposed method, and to compare this method with the existing IC and the
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methods discussed in Chapter 4. The designs for our simulation expenments are

discussed in Section 6.3.1. In Section 6.3.2 we compare the simulation results of this

proposed method with the results for the existing 1C and the methods discussed in the

Section 4.2 and 4.3.

6 J . I THE DESIGNS OF THE MONTE CARLO SIMULATION EXPERIMENTS

Simulation experiments were conducted to evaluate the performance of the technique

of minimisation of vanation among the APCS with the models of an unequal number

of parameters. The same designs used in Section 4.4 were used for the present

simulation experiments. The models used for the present study are also the same

models used in Chapter 3. The same data generating process discussed in Section

3.3.1 was also employed here. The initial parameter sets for the SAO technique for

this chapter are the same initial parameter -sets used with the additive and

multiplicative penalties in Chapter 4. The main reason for using the same models,

designs, data generating process and initial parameter values is to compare the results

of these simulation experiments with the simulation results of the methods discussed

in Chapter 4.

6.3.2 RESULTS OF THE MONTE CARLO EXPERIMENTS

The results of the simulation experiments are presented in two senes of tables, Tables

6.1a to 6.6a and Tables 6.1b to 6.6b. Each table represents three methods of

computing penalties. These are: method 1, existing 1C; method 2, maximistion of
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MAPCS; and method 3. minimisation of standard deviation <SD) among the APCS.

We called the penalties of method 1. Type I penalties. lr. method 2. we have two

types of penalties, the additive penalty with maximised log-hkehhood. and the

multiplicative penalty with mean squared error. In Chapter 4. we called these

penalties Type 2 and Type 3 penalties, respectively. In method 3. we also have two

types of penalties, additive penalties with maximised log-likelihood functions, and

multiplicative penalties with mean squared error. Let us cai'l these penalties Type 4

and Type 5 penalties, respectively. In Table 6.1a to 6.6a. we presented8 the largest

MAPCS obtained using the above mentioned five types ot penalties and. in Tables

6.1b to 6.6b, we presented the MAPCS corresponding to the smallest variation

among the APCS obtained using Type 1 to Type 5 penalties. Comparative studies of

Type 1 and Type 2 penalties. Type I and Type 3 penalties, and Type 2 and Type 3

penalties were given in Sections 4.5.J, 4.5.2 and 4.5.3 of Chapter 4, respectively.

Simulation results show that MACPS obtained using method 2 (Type 2 and Type 3

penalties) are always large with high variation among the APCS, as compared to

method 3 (Type 4 and Type 5 penalties). Therefore, here we will present a

comparative study of Type 1 and Type 4 penalties, Type 1 and Type 5 penalties, and

Type 4 and Type 5 penalties.

6.3.2.1 COMPARISON OK TYPE 1 AND TYPE 4 PENALTIES

The largest MAPCS obtained from Type 1 to Type 5 penalties along with APCS,

standard deviation (SD) among the APCS and the penalties for Designs 4.1 to 4.6 are
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presented in Table 6.1a to 6.6a. Tables 6.1b to 6.6b contain the APCS and MAPCS

with the smallest variation among the APCS along with SD and penalties obtained

from Type 1 to Type 5 penalties for Designs 4.1 to 4.6. respectively.

The simulation results show that, in six out of 18 experiments (six designs times

three sample sizes), the largest MAPCS obtained from Type 4 penalties is larger than

those of BIC (the largest MAPCS among the existing criteria for all designs and

sample sizes). The mean, maximum and minimum gain of the MAPCS from these

six experiments o\er B1C are 5.7, 9.2 and 2.7 percent, respectively (Table

6. la-6.6b) . In the remaining 12 experiments, the largest MAPCS are less than those

of BIC and the mean, maximum and minimum loss from these 12 experiments over

B1C are 6.0. 12.8 and 0.6 percent, respectively. It is well established that BIC always

favours models with a smaller number of parameters, so the APCS of the model with

the largest number of parameters is generally much less compared to the APCS of the

model with the smallest number of parameters. Consequently the variation among the

APCS is high for BIC and in all designs and sample sizes the variation among the

APCS obtained from Type 4 penalties is smaller than that of BIC. There are eight

experiments, where there is no variability among the APCS obtained from Type 4

penalties, i.e. the APCS of the models are exactly equal.

Simulation results show that in 72 percent (13 out of 18) experiments, the MAPCS

corresponding to the smallest variation among the APCS obtained from using Type 4

j
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penalties are higher than those of the MAPCS with the smallest vanation among the

APCS of the existing IC. In the other experiments, the numencull values of APCS are

very close to those of the existing IC (Tables 6.1b -6.6b) with t'ne smallest variation

among the APCS. Among the existing criteria. RBAR and A1C are the dominant

criteria, which produce the smallest vanation among the APCS. RBAR produces the

lowest variation among the APCS in eight experiments, while A1C produces the

Iciest variation among the APCS in seven experiments. Among the existing IC,

there is no experiment where the vanation among the APCS is zero, i.e. in the

existing criteria there are no expenmcnts which produce equal APCS. But in 89

percent (16 out of 18) of the experiments with a Type 4 penalty, the vanation among

the APCS is zero, i.e. the APCS oi the competing models are equal.

It is observed from the simulation results that the largest MAPCS obtained from the

existing IC are generally larger than those of the MAPCS corresponding to the

smallest variation among the APCS obtained from Type 4 penalties. But there are

three experiments with Type 4 penalties, where die MAPCS corresponding to the

smallest vanation among the APCS is higher than those of the largest MAPCS

obtained from the existing IC (here that of BIC). But in most of the experiments the

variation among the APCS is zero or very close to zero, when we consider the

MAPCS corresponding to the smallest variation among the APCS with Type 4

penalties. This means that the APCS obtained using the smallest variation among the

APCS with Type 4 penalties are equal. The average, maximum and minimum gains
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of MAPCS corresponding to the smallest variation among the APCS with Type 4

penalties over BIC from these three experiments are 3.7. 6.9 wd 1 * percent,

respectively. The mean, maximum and minimum .osses of MAPCS from the

remaining 15 experiments over BIC are 6.6, 12.0 and 1.2 percent, respectively. This

implies that, if we use the MAPCS corresponding to the smallest variation among the

APCS with a Type 4 penalty to select the true model, then on average there is a

chance of losing approximately six percent in MAPCS compared to the largest

MAPCS among the existing IC. But the big gain of using this technique is that none

of the models is unduly favoured and the APCS of models is equal, i.e. there is no

variation among the APCS of the competing models.

6.3.2.2 COMPARISON OF TYPE 1 AM) TYPE 5 PENALTIES

The MAPCS obtained from Type 5 penalties are also presented in Tables 6.1a- 6.6a

and Tables 6.1b-6.6b. From the simulation experiments, it is observed that in seven

out of 18 experiments the largest MAPCS obtained using Type 5 penalties are larger

than those of the largest MAPCS from the existing criteria (here that of BIC). The

mean, maximum and minimum gain of MAPCS obtained from using Type 5

penalties from these seven experiments over BIC are 5.2, 9.1 and 1.2 percent and the

losses of MAPCS obtained from using Type 5 penalties from the remaining eleven

experiments over BIC are 5.7, 11.6 and 1.0 percent, respectively. But in all

experiments, the variations among the APCS obtained from Type 5 penalties are

smaller than the variations among the APCS obtained from using BIC. It was
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observed in the previous section that all of the existing criteria produce some

variation in APCS. But there are five experiments with Type 5 penalties, where the

variations among the APCS are clo>.e to zero, i.e. the APCS of the competing models

are almost equal.

The simulation results demonstrate that in 56 percent of the experiments (ten out of

18), the MAPCS corresponding to the smallest variation among the APCS obtained

from Type 5 penalties are higher than those of the MAPCS with the smallest

variation among the APCS of the existing critena. As noted in the previous section,

among the existing critena, RBAR and AlC produce the smallest variation among the

APCS in 44 and 39 percent of the experiments, respectively. In 67 percent of the

experiments (12 out of 18), it is observed that there is no variation among the APCS.

i.e. APCS are equal, when we used Type 5 penalties and the smallest variation

among the APCS. But for the existing criteria, none of the experiments produces

equal APCS.

The simulation results demonstrate that the largest MAPCS obtained from the

existing IC are generally larger than those of the MAPCS obtained using Type 5

penalties. But in three experiments, the largest MAPCS obtained from Type 1

penalties are smaller than the MAPCS coiTesponding to the smallest variation among

the APCS obtained from using Type 5 penalties. The average, maximum and

minimum gains of MAPCS from these three experiments over B1C (the largest
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MAPCS among the existing IC) are 3.5. 7.0 and 1.2 percent, respectively. The mean,

maximum and minimum losses of MAPCS obtained from using Type 5 penalties

from the remaining 15 experiments are 6.1, 12.0 and 1.2 percent, respectively. But in

all experiments, the smallest variations among the APCS obtained from using Type 5

penalties are zero or close to zero, implying that the APCS are equal or close to

equal.

6.3.2.3 COMPARISON OF TYPE 4 AND TYPE 5 PENALTIES

From the simulation results we presented in Section 6.3.2.2, it is apparent that the

largest MAPCS obtained using Type 4 and Type 5 penalties arc very similar for all

designs and sample sizes. However, there are some exceptions where Type 5

penalties produced marginally higher MAPCS than those of Type 4 penalties. In

fourteen out of 18 experiments (three sample sizes across six designs), the variations

among the APCS arc higher when using Type 5 penalties compared to using Type 4

penalties, when we consider the largest MAPCS. But in 17 out of 18 experiments, the

variation among the APCS obtained from using Type 5 penalties is lower than that

obtained from the largest MAPCS of the existing criteria. The differences of

variation between Type 1 and Type 5 penalties are larger than those of Type 1 and

Type 4 penalties as the variation among APCS obtained from using Type 5 penalties

is higher than that when using Type 4 penalties.
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In 67 percent of the expenments (twelve out of 18). the MAPCS corresponding to the

smallest variation among the APCS of competing models obtained using Type 5

penalties are the same as those obtained from using Type 4 penalties. In other

experiments, the MAPCS obtained from using Type 5 penalties are very similar to

those obtained from using Type 4 penalties.

6.4 MINIMISATION OF VARIATION AMONG THE APCS FOR
MODELS OF EQUAL NUMBER OF PARAMETERS

In Section 6.3, we discussed the issue of minimisation of variation among the APCS

of the models, when the competing models have an unequal number of parameters. In

this section, we investigate the special case of an equal number of parameters among

the competing models. We consider this special case because for the existing 1C,

when the competing models have the same number of parameters, there is no need to

use any penalty because the pen-lties cancel out. Thus, the problem reduces to

selecting the mode! with the largest maximised log-likelihood because all existing

pena'ty functions are a function of sample size and number of free parameters. In

Chapter 5, we have shown that the application of the SAO technique with two

different types of penalties (additive with maximised log-likelihood and

multiplicative with mean squared error) has a great effect on selecting the true model

with higher MAPCS, when the competing models have an equal number of

parameters. It is also shown that the penalties which maximise the MAPCS are not

zero although the competing models have the same number of parameters. But like
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the existing criteria, the APCS of models obtained using the SAO technique with

these penalties are not equal and sometimes far from equal. So here we apply the idea

of Section 6.2 to find the MAPCS with the objective that the variation among the

APCS is as small as possible; essentially, our goal is to make the variation zero or

close to zero. We apply the SAO technique to find the penalties in such a way that

the SD among the APCS is the minimum. We compare these results with those

obtained using the methods discussed in Sections 4.2 and 4.3, and the existing cited

criteria are presented in Section 5.3 of Chapter 5.

The plan of this section is as follows. In Section 6.4.1, we discuss the design oi the

simulation experiments, while the simulation results are reported in Section 6.4.2.

6.4.1 THE DESIGNS OK THE MONTE CARLO SIMULATION EXPERIMENTS

The purpose of the simulation experiments of this section is to evaluate the

performance of the technique discussed in Section 6.2, when the competing models

have the same number of parameters to be estimated. The same designs used in

Chapter 5 are used here to compute the MAPCS with the objective of minimisation

of SD among the APCS. We used the same models, data generating processes and

the initial parameter values for the SAO technique used in Chapter 5 for our present

study. The reason for keeping everything the same for the simulation experiments, is

to compare the results of these experiments with those obtained using the methods

discussed in Chapter 5.

I
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6.4.2 RESULTS OF THE MONTE CARLO EXPERIMENTS

Like Section 6 3. this section also contains two series of tables. The series V contain

the largest MAPCS obtained using Type 1 to Type 5 penalties, while series 4b"

contain the MAPCS corresponding to the smallest variation among the APCS

obtained using Type 1 \o Type 5 penalties. The results of these experiments are

presented in Tables 6.7a to 6.12a and Tables 6.7b to 6.12b. respectively. In each

table, there are three methods and five penalty types as mentioned in Section 6.3.2. A

comparative study of Type 1 and Type 2 penalties. Type 1 and Type 3 penalties, and

Type 2 and Type 3 penalties was given in Sections 5.3.1. 5.3.2 and 5.3.3.

respectively. Simulation results show that MACPS obtained using Type 4 and Type 5

penalties are always smaller with zero or close to zero variation among the APCS

compared to Type 2 and Type 3 penalties, respectively. Therefore, in this section we

will present the comparative study of Type 1 and Type 4 penalties. Type 1 and Type

5 penalties, and Type 4 and Type 5 penalties.

6.4.2.1 COMPARISON OF TYPE 1 AND TYPE 4 PENALTIES

In this section, our concern is with competing models with an equal number of

parameters in linear regression settings. As mentioned earlier, in this situation the

MAPCS and APCS obtained from all the existing 1C are the same and the relative

penalties are zero. But the MAPCS with minimum SD among the APCS obtained

from using Type 4 penalties are different; and relative penalties are different from

zero in all designs and sample sizes. We mentioned earlier that the MAPCS obtained
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using Type 2 and Type 3 penalties are always higher than those obtained from using

Type 1 penalties, i.e. from the existing IC with sometimes higher variation among the

APCS compared to Type 1 penalties. Here the MAPCS obtained from using Type 4

penalties are also always higher than those for Type 1 penalties for all designs and

sample sizes and with smaller vanation among the APCS. But the MAPCS obtained

from using Type 4 penalties arc always less than those of Type 2 penalties with less

variation among the APCS. and in most cases the vanation among the APCS are zero

or close to zero, which implies that the APCS of different competing models are

equal.

i

For Design 5.1, in respect to all sample sizes and combinations of initial parameters,

the MAPCS obtained from Type 4 penalties are always higher than those of Type 1

penalties with less vanation among the APCS compared to the existing cntena

(Table 6.7a). The largest MAPCS obtained from using Type 4 penalties are 9.7. 13.1

and 15.1 percent higher than those of existing IC with 33.6. 44.8 and 54.5 percent

less variability among the APCS for the sample sizes 20. 50 and 100. respectively.

We mentioned earlier that all existing cntena are the same when selecting from the

competing models that have the same number of parameters, so the largest MAPCS

obtained from the existing IC, is the same as that obtained with the smallest variation

among the APCS. For /; = 20, 50 and 100, the MAPCS with the smallest variation

among the APCS obtained using Type 4 penalties are 6.4, 9.2 and 12.4 percent higher

than those of the existing criteria with 45.5, 54.5 and 59.6 percent less variability
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among the APCS (Table 6.7b). The gaps between the largest MAPCS and smallest

MAPCS obtained from using Type 4 penalties are small and the smallest MAPCS is

always higher than that of the existing 1C. For n = 20, 50 and 100, the smallest

MAPCS obtained using Type 4 penalties are 6.4, 9.2 and 12.4 percent higher than

those of the existing IC with 45.5. 54.1 and 59.6 less van ability ur.iong ifte APCS,

respectively.

For Design 5.2, the largest MAPCS obtained from using Type 4 penalties arc 3.2, 3.1

and 2.9 percent higher with 99.7, 96.0 arid 87.8 percent smaller variation among the

APCS than those of existing criteria for sample sizes 20, 50 and 100. respectively

(Table 6.8a). For n = 20, 50 and 100, the MAPCS with the smallest vanation among

the APCS obtained using Type 4 penalties are 4.0. 3 0 and 2.2 percent higher than

those of the existing criteria, respectively (Table 6.8b). For all sample sizes, there is

no vanation among the APCS, which implies that the APCS of the different models

are exactly equal. The MAPCS obtained from using Type 2 penalties and Type 3

penalties atv very close to those obtained from using Type 4 penalties. The smallest

MAPCS obtained using Type 4 penalties are 3.1, 3.0 and 1.5 percent higher than

those obtained from the existing criteria with no variation among the APCS for

sample sizes 20, 50 and 100, respectively.

For Design 5.3, the largest MAPCS obtained using Type 4 penalties for the sample

sizes 20, 50 and 100 are 14.0, 6.9 and 6.1 percent higher than those of the existing
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criteria, with 63.3, 82.1 and 77.2 percent less variability among the APCS than those

of the existing criteria, respectively (Table 6.9a). It is interesting to note that for all

sample sizes, the MAPCS obtained using Type 2 and Type 3 penalties are higher than

those obtained from using the existing cntena and are very close to those obtained

from using Type 4 penalties. But the variation among the APCS for Type 2 penalties

and Type 3 penalties are higher than those obtained from Type 1 penalties,- and even

higher than those obtained from using Type 4 penalties. The MAPCS with the

smallest vanation among the APCS obtained using Type 4 penalties are 10.6, 5.8 and

4.0 percent higher than those obtained from using Type 4 penalties for ;; = 20. 50 and

100, respectively (Table 6.9b). The vanation among the APCS obtained using Type 4

penalties is zero for n - 50 and almost zero for the other two sample sizes. This

implies that the APCS of the different models are equal. The MAPCS with the

smallest variation among the APCS obtained from using Type 2 and Type 3 penalties

are higher than those obtained from the existing cntena and close to those obtained

from using Type 4 penalties. But the variations among the APCS obtained using

Type 2 penalties and Type 3 penalties are always higher than those obtained from

using the existing criteria and are much higher than that obtained from using Type 4

penalties. In this design there are 13.55, 8.93 and 29.8 percent of the cases where

MAPCS is less than that of the existing criteria for n = 20. 50 and 100, respectively.

For Design 5.4, the largest MAPCS obtained using Type 4 penalties are 4.6, 5.9 and

7.0 percent higher than those obtained from the existing criteria (Table 6.11a). The
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variability among the APCS obtained from using Type 4 penalties are almost zero for

n - 20 and 50. and 74.5 percent less than that of the existing criteria for the sample

size 100. The largest MAPCS with the smallest variation among the APCS obtained

using Type 4 penalties are 4.5. 5.8 and 6.4 percent higher than those obtained from

the existing criteria (Table 6.10b). The variations among the APCS obtained using

Type 4 penalties are zero for all sample sizes, which indicates the APCS of the

different models are exactly equal. The MAPCS with smallest variation obtained

using Type 2 penalties and Type 3 penalties are higher than those obtained from the

existing criteria and are marginally higher than those obtained from using Type 4

penalties. But the variation among the APCS is the least for Type 4 penalties

compared to Type 2 penalties. Type 3 penalties and the existing criteria. The smallest

MAPCS obtained using Type 4 penaUies are 4.4. 5.8 and 6.0 percent higher than

those obtained using the existing criteria with 99.6. 100 and 94.8 percent less

variation among the APCS for sample sizes 20, 50 and 100. respectively.

For Design 5.5, the largest MAPCS and the MAPCS corresponding to the smallest

variation among the APCS obtained using Type 4 penalties are the same for all

sample sizes and are 20.0, 29.1 and 35.6 percent higher than those obtained from the

existing criteria for n = 20, 50 and 100, respectively (Tables 6.1 la and 6.1 lb). The

variations among the APCS obtained using Type 4 penalties are equal to zero for all

sample sizes, implying that the APCS of the models are equal. The MAPCS obtained

using Type 2 penalties and Type 3 penalties are bigger than those obtained from

.
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using Type 4 penalties, but the variation among the APCS obtained from using Type

2 penalties and Type 3 penalties are also large compared to those of Type 4 penalties.

The smallest MAPCS obtained using Type 4 penalties are 20.0. 28.3 and 35.3 percent

higher than those obtained using the existing criteria with 100, 98.2 and 98.9 percent

less variation among the APCS for sample sizes 20, 50 and 100, respectively.

Like for Design 5.5, for Design 5.6, the largest MAPCS and the MAPCS with the

smallest variation among the APCS obtained using Type 4 penalties are the same for

all sample sizes, and are 6.7. 5.1 and 3.8 percent higher than those obtained from the

existing criteria for n = 20, 50 and 100, respectively (Table 6.12a, 6.12b). The

variations among the APCS obtained using Type 4 penalties are equal to zero for all

sample sizes, which implies that the APCS oi' the different models are equal. The

MAPCS obtained using Type 2 and Type 3 penalties are larger than those obtained

from using Type 4 penalties, but the variation among the APCS obtained from Type

2 and Type 3 penalties are also large compared to those for Type 4 penalties. The

smallest MAPCS obtained using Type 4 penalties are 6.7, 5.0 and 3.7 percent higher

than those obtained using the existing criteria with 99.2, 100, 98.9 percent less

variation among the APCS for sample sizes 20, 50 and 100, respectively.

6.4.2.2 COMPARISON OF TYPE 4 AND TYPE 5 PENALTIES

In this section, we compare the MAPCS and the variation among the APCS of

models chosen using Type 4 penalties and Type 5 penalties. Simulation results
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Chapter 6 Equal Probabilities of Correct Selection

demonstrate that in 33 percent of the experiments, the largest MAPCS and the

variation among the APCS of models chosen using Type 4 penalties and Type 5

penalties are exactly equal and in other experiments these values are very close

(Tables 6.7a to 6.12b). In 67 percent of the experiments, the MAPCS obtained using

the smallest variation among the APCS and the variation among the APCS are

exactly equal and in the remaining experiments these values are very close. This

means that there is no significant effect of the type of penalties on the estimated

MAPCS of the model and the variation among the APCS of the competing models.

So either of the penalty types can be used with the SAO technique to estimate the

MAPCS to select the true model from a set of equi-dimensional competing

alternative models.

6.4.2.3 COMPARISON OF TYPE 1 AND TYPE 5 PENALTIES

It is apparent from the results of Section 6.4.2.2 that the MAPCS and the variation

among the APCS obtained using Type 4 and Type 5 penalties are similar for almost

all designs and sample sizes. So the comparison between Type 1 and Type 5 penalties

is very similar to the comparison between Type 1 and Type 4 penalties given in

Section 6.4.2.1.

6.5 CONCLUDING; U¥MhtlKS

The purpose of this <• . : ?cr '>•;•<••. f i develop a technique to select the correct model

from a set of competing init iat ive models of both unequal and equal numbers of
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parameters, in such a way that all competing models have an equal chance of being

selected. Here we applied the SAO technique to find the penalties to select the

correct model, with the objective that the variation among the APCS of the different

models is as small as possible. We used SD among the APCS as a measure of

variation and applied the SAO technique to find the minimum value of the SD, to

determine the penalties to select the correct model.

The results of the simulation experiments for competing models with an unequal

number of parameters show that in six out of 18 experiments, the MAPCS is on

average 5.7 percent higher than the largest MAPCS obtained using the existing

cni^ra (here BIC), while for the remaining experiments, MAPCS is on average 6.0

percent lower compared to that of the existing critena. But in all experiments the

variation among the APCS obtained fVcm Type 4 and Type 5 penalties are less than

that of BIC.

In 13 out of 18 experiments, the MAPCS corresponding to the smallest variation

among the APCS are higher than those obtained from the corresponding lowest

variation among the APCS in the existing \C (here RBAR and A1C). From the results

of the simulation experiments, it is evident that if the MAPCS corresponding to the

smallest variation among the APCS is used to select the best model, then, on average

MAPCS is approximately six percent lower than the largest MAPCS in the existing

IC (here, that of BIC). Generally, for the existing critena, the APCS of the competing
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models are far from equal, but the APCS obtained using Type 4 and Type 5 penalties

are often equal or close to equal, which is the best feature of this technique.

The simulation results demonstrate that for models with an equal number of

parameters in 100 percent of the combinations of initial parameter values for the

SAO technique, the MAPCS obtained from using Type 4 and Type 5 penalties are

higher than those of the existing 1C for ah designs with an exception of Design 5.3,

where these figures were on average 87 and 83 percent for Type 4 and Type 5

penalties, respectively. For all designs except for Design 5.3, and in 100 percent of

the combinations of initial parameter values for the SAO technique, the variations

among the APCS obtained from using Type 4 and Type 5 penalties are less than

those obtained from the existing criteria. For Design 5.3, these figures are on average

92 and 88 percent for Type 4 and Type 5 penalties, respectively. There are three

experiments with Type 4 penalties and four experiments with Type 5 penalties,

where the APCS are equal in 100 percent of the combinations of initial parameter

sets for the SAO technique.

It is apparent from the simulation results that for a particular sample size and design,

the MAPCS obtained from the diiTerent combinations of initial parameter values for

the SAO technique are very similar. In five out of six designs and for three different

sample sizes, the MAPCS and variation among the APCS obtained using different

initial parameter values are almost equal. This indicates that the MAPCS obtained
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from using Type 4 and Type 5 penalties are generally insensitive to the initial

parameter values of the SAO technique. From our simulation results, it may be

concluded that the MAPCS obtained from Type 4 and Type 5 penalties will always

be higher than tho»e of the existing criteria with no variation among the APCS or

variation among the APCS close to zero. This means that for equi-dimensional

competing alternative models, the application of the SAO technique with Type 4 or

Type 5 penalties is the best way of selecting the true model without favouring any of

the competing models.
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Table 6.1a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes
20,50 and 100 for Design 4.1 together with relative penalty values and input values of SAO technique.

Method

Existing IC
Maximisation
MAPCS
Minimisation
SD among
APCS

Existing IC
Maximisation
MAPCS
Minimisation
SD among
APCS

Existing IC
Maximisation
MAPCS
Minimisation
SD among
APCS

of

of

of

of

of

of

Penalty type

Type
Type
Type
Type
Type

Type
Type
Type
Type
Type

Type
Type
Type
Type

Type

1
2
3
4

5

I
2
3
4
5

1
2
3
4

5

(BIC)

(BIC)

(BIC)

Average probabilities

Mi

0.8225

0.6245

0.6485

0.5300

0.5315

0.9260

0.8770

0.8770

0.6765

0.6795

0.9495

0.9340

0.9365

0.7515

0.7415

M2

0.8815

0.5435

0.5400

0.5270

0.5245

0.9450

0.5170

0.5290

0.5185

0.5280

0.9580

0.7990

0.8040

0.6320

0.6305

of correct selection of
model

Mi I

0.1150

0.4550

0.4325

0.5300

0.5320

0.2840

0.5935

0.5930

0.7185

07150

0.5190

0.7380

0.7355

0.8375

0.8415

M , |

0.1345

0.5080

0.5120

0.5210

0.5230

0.0800

0.5285

0.5145

0.5270

0.5155

"2095

v. 4635

0.4570

0.5955

0.5980

Mean

0.4884

0.5328

0.5333

0.5270

0.5278

0.5587

0.6290

0.6284

0.6101

0.6095

0.6590

0.7336

0.7332

0 7041

0.7029

SD

0.4206

0.0712

0.0893

0.0042

0.0047

0.4430

0.1687

0.1692

0.1024

0.1025

0.3631

0.1978

0.2022

0.1111

0.1110

•

1

1

Relative penalties*

',

4979

13.0759

3

13

3

1

8

1

9

1

2

15

1

6

1

1681

8227

2600

9560

9402

6936

2764

1903

3026

2409

2291

5959

3866

r.
Sample

1.4979

0.4639

09959

0.3070

0.9768

Sample
1.9560

1.2482

1.0293

0.5157

1.0001

Sample
2.3026

1.7396

1.0257

0.6777

1.0031

size = 20
2.9957

13.4040

3.0906

14.1300

3.1741

size = 50
3.9120

92081

1.6774

9.5453

1.1788

0
1

0

1

0

1

0

1

size = 100
4.6052

16.0419

1.2366

6.9833

1.3831

0.

2.

0

1

Starting
•V/

0000

0000

0000

0000

0000

0000

0000

0000

0000

3026

0000

0000

1

1

1

2

0

1

1

2

0

4

2

2

Input values for simulated annealing
values of penalties [
.V, j

.4979

0000

4979

0000

.0000

0000

0000

.0000

0000

6052

3026

0000

.v,

1.4979

1.0000

1.4979

2.0000

0.0000

1.0000

1.0000

2.0000

0.0000

4.6052

2.3026

2.0000

•s.<

2.9957

1.0000

2.9957

3.0000

0.0000

1.0000

2.0000

3.0000

0.0000

6.9078

4.6052

30000

Bounci
LB

-12.0000

0.0000

•12.0000

0.0000

0.0000

0.0000

0.0000

0.0000

-12.0000

0.0000

-10.0000

0.0000

aries
UB__J

12.0000

3.0000

12.0000

12.0000

12.0000

1.0000

12.0000

16.0000

_ _ -

12.0000

23.0300

10 0000

12.0000

TRF"

0

0

0

0

0

0

0

0

0

0

0

0

0100

1000

0001

1000

1000

1000

0100

0100

1000

1000

0001

1000

* Additive penalty for model M{ is zero and multiplicative penalty for model A7y is one
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error



Table 6.1b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the smallest variation among the average probabilities of correct selection of models under different
methods for sample sizes 20, 50 and 100 for Design 4.1 together with relative penalty values and input values of SAO
technique.

too
oo

Method

Existing IC
Maximisation
MAPCS

Minimisation
SD among
APCS

Existing IC

Maximisation
MAPCS

Minimisation
SD among
APCS

Existing IC

Maximisation
MAPCS

Minimisation

SD among
APCS

of

of

of

of

of

of

Penalty type

Type
Type
Type

Type
Type

Type

Type

Type

Type
Type

Type

Type
Type

Type

Type

I (RBARj
2

3
4

5

I (RBARj

2
3

4

5

1 (RBAR)

2
3
4

5

Average probabilities

Ml \

0.4710
0.5535
0.5845
0.5220

0.5215

0.5145

0.7765
0.8730

0.5225
0.5205

0.5380

0.8450
0.9365

0.6095

0.6095

M2

0.6790
0.5440
0.5460
0.5220

0.5235

0.6660

0.5180

0.5290

0 5225
0.5205

0.6935

0.7530
0.7850

0.6095

0.6095

of correct selection of
model

Mi

0.2195
0.4845
0.4940

0.5225
0.5220

0.3070

0.6275

0.5910

0.5225
0.5205

0.4825

0.7405
0.7355

0.6095

0.6095

0.

0

0.

0

0.

0.

0.
0.

0.
0.

0.

0
0

0

0.

3695
5080
5055

5220
5240

3660

5275

5145

5225
5205

5435

5040
4745

6095

6095

Mean

0.4347
0.5225
0.5325

0.5221
0.5228

0.4634

0.6124

0.6269

0.5225
0.5205

0.5644

0.7106
0.7329

0.6095

0.6095

SD

0.1928
0.0320
0.0412

0.0002
0.0012

0.1608

0.1201
0.1674

o.oooc
0.0000

0.0904

0.1454

0.1923

0.0000

0.0000

Relative penalties*

r2

0.5407

2.6281
2.2897

3.7796
1.3312

0.5155

2.6381

1.1923

0.8311

1.0126

0.5076

2.3308

3.7588

0.9096

1.0081

P, 1
Sample
0.5407
0.3685
0.9852

0.3072

0 9768

Sample
0.5155

0.8357

1.0294

0.4552
0 9975

Sample
0.5076

1.1201
1.0257

0.5489

1.0009

size = 20
1.1123
2.9563

2.2352
4.0844

1.2960

size = 50
1.0418

2.9068

1.1809

1.1052

1.0025

size = 100
1.0204

2.9778
3.7764

1.2657

1.0050

Input values for simulated annealing
Starting values of penalties

Si

0.0000
1.0000
0.0000

1 0000

0.0000

1.9560

0.0000
1.0000

0.0000

2.3026

0.0000

1.0000

Sj I

1.0000
1 0000
1.0000
1.0000

0.0000

3.9120

0.0000
1.0000

0.0000

4.6052

0.0000

1 COOO

Sj

1.0000
1.0000

1.0000
1.0000

0.0000

3.9120

0.0000
1.0000

0.0000
4.6052

0.0000

1.0000

2.0000

1.0000

2.0000
1.0000

0.0000

5.8680

0.0000
1.0000

0.0000
6.9078

00000

1.0000

Boundaries
LB UB

0.0000
0.0000

-10.0000
0.0000

3.0000

1.0000
10.000

10.0000

0.0000

o.oooc
0.0000
0.0000

3.0000

19.5601

3.0000
1.0000

0.0000

0.0000

0.0000

0.0000

3.0000

13.8155

10 0000

1.0000

TRF*'

0

0

0

0

0

0

0
0

0

1000
1000

0010
1000

0100

0010

1000
1000

0010

0.0010
0

0

1000

1000

* Additive penalty for model M> is zero and multiplicative penalty tor model Mt is one
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error



Table 6.2a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes
20, 50 and 96 for Design 4.2 together with relative penalty values and input values of SAO technique.

to
O

Method

Existing IC
Maximisation
MAPCS
Minimisation
SD among
APCS

Existing IC
Maximisation
MAPCS
Minimisation
SD among
APCS

Existing IC
Maximisation
MAPCS
Minimisation
SD among
APCS

of

of

of

of

of

of

Penalty type

Type
Type
Type
Type
Type

Type
Type
Type
Type
Type

Type
Type
Type
Type

Type

1

2
3
4
5

1
2
3
4
5

1

2
3
4

5

(BIC)

(BIC)

(BIC)

Average probabilities

M, i

0.7970

0.8015

0.8015

0.4400

0.5320

0.9095

0.9745

0.9745

0.5530

0.6530

0.9390

0.9940

0.9940

0.8650

0.8650

M2

0.6850

0.7255

0.7255

0.4400

0.3830

0.8830

0 8650

0.8650

0.6530

0.6530

0.9445

0.9530

0.9530

0.8650

0.8650

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

of correct
mode

M}

.3485

.3975

3975

.4400

.5615

.7100

7185

7185

6555

6555

.9160

9550

.9550

.8650

8650

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

M<

1700

1095

1095

4400

3400

4530

4210

4210

6505

6505

8255

7920

7920

8645

8645

selection of

Mean

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

5001

5085

5085

4400

4541

7389

7448

7448

6530

6530

9063

9235

9235

8649

8649

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

SD

.2911

.3186

.3186

.0000

.1091

.2101

.2400

2400

.0020

.0020

0552

.0897

.0897

.0002

0002

1

1

1

0
1

1

3

1

0

1

2

4

1

1

1

Relative

Pi

.4979

.6079

.1125

.6965

0963

9560

.3296

.1194

9932

0193

2822

7801

0931

.6006

0230

penalties

PJ I
Sample
1

1

1

0

0

4979

3140

0804

4446

9898

Sample
1

2

1

0
1

9560

8476

0978

7299

0087

Sample
2

4

1

1

1

2822

1070

0778

4843

0206

/'<
size = 20

2.9957

3.6832

1.2930

0 9954

1.0629

size = 5<
3.9120

52849

1.1852

1 5666

1.0212

size = 9(
4.5643

7.6732

1 1486

29090

1.0401

0

1

0

1

0

1

0

1

0

1

0

1

Starting

s,

.0000

.4979

.0000

.4979

0000

0000

0000

9560

0000

0000

0000

0000

0

2

0

2

0

1

1

3

0

2

0

1

Inpul values For simulated annealing
values of penalties
.V,

.0000

.9957

.0000

.9957

0000

.0000

9560

.9120

.0000

.0000

.0000

0000

0

2

0

2

0

1

1

3

0

2

0

1

.V,

0000

9957

0000

9957

0000

0000

9560

9120

0000

0000

0000

0000

0

4

0

4

0

1

3

5

0

3

0

1

s,

0000

4936

0000

4936

0000

0000

9120

8680

0000

0000

0000

0000

Bounc
LB

-12.0000

0.0000

0.0000

0.0000

00000

00000

00000

0 0000

-4.0000

0.0000

-4 0000

0 0000

aries

12

14

10

4

12

3

5

19

4

48

4

1

LIB

0000

9790

0000

4940

0000

0000

8680

5600

oooo'
0000

0000

0000

TI

0

0

0

0

0

0

0

0

0

1000

1000

1000

0100

1000

1000

0001

0001

1000

0.0100

0

0

1000

1000

* Additive penalty for model Ms is zero and multiplicative penalty for model M, is one
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error
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Table 6.2b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the smallest variation among the average probabilities of correct selection of models under different
methods for sample sizes 20, 50 and 96 for Design 4.2 together with relative penalty values and input values of SAO technique.

Method

Existing IC
Maximisation
MAPCS
Minimisation
SD among
APCS

Existing IC
Maximisation
MAPCS
Minimisation
SD among
APCS

Existing IC
Maximisation
MAPCS
Minimisation
SD among
APCS

of

of

of

of

of

of

Penalty type

Type
Type
Type
Type
Type

Type
Type
Type
Type
Type

Type
Type
Type
Type
Type

1 (RBAR)
2
3
4
5

1 (AIC)
2
3
4
5

J (JIC)
2
3
4

5

Average probabilities

M, |

0.4505

0.7940

0.8015

0.4400

0.4400

0.7190

0.8690

0.9635
0.6520

0.6520

0.8375

0.8650
0.9970

0.8645

0.8645

M2

0.5775

0.6075

0.7255

0.4400

0.4400

0.7780

0.8165

0.8740
0.6520

0.6520

0.8745

0.8805
0.9395

0.8645

0.8645

of correct selection of
•nodel

M,

0.4190

0.3635

0.3975

0.4400

0.4400

0.6655

0.6840

0.6785
0.6520

0.6520

0.8595

0.8820
0.9480

0.8645

0.8645

Ms

0.3785

0 2465

0.1095

0.4400

0.4400

0.5925

0.5460

0.4600
0.6520

0.6520

0.8625

0.8600

0.8070
0.8645

0.8645

Mean

0.4564

0.5029

0.5085

0.4400

0.4400

0.6887

0.7289

0.7440
0.6520

0.6520

0.8585
0.8719

0.9229

0.8645

0.8645

SD

0.0860

0.2455

0.3186

0.0000

0.0000

0.0789
0.1446

0.2236
0.0000

0.0000

0.0154

0.0110

0.0813
0.0000

0.0000

0

1

1

0
1

1

1
1

0

1

1

1

1

1

1

Relative

/>,

.5407

.5974

.1125

.6965

.0158

.0000

7732

.0922

.9815

0188

.3951

5598
.1118

.5924

0229

penalties

P,

Sample
0

1

1

0

0

5407

3141
0804

4446

9905

Sample
1

1

1

0

1

0000

6949

0988
7386

0090

Sample
1

1
1

1

1

3951
4537

0960

4832

0205

P<
size = 20

1.1123

2.5162

1.2930

0.9954

0.9885

size = 50
2 0000

2.9996

1.1551
1.5528

1.0206

size = 96
2.7928

2 9997

1.1569
2 8994

1.0399

Input values for simulated annealing
Starting values of penalties
s, I

0.0000

1.4979

0.0000

1.0000

0.0000

1.0000
0.0000

1.0000

0.0000

1.0000
00000

1.0000

s2

1.0000
2.9957

0.0000

1.0000

0.0000

1.0000
0.0000

1.0000

0.0000
2.0000

0.0000

1.0000

1.0000
2.9957

0.0000

1.0000

0.0000
1.0000
0.0000

1.0000

0.0000
2.0000

0 0000

1.0000

2.0000

4.4936

0.0000

1.0000

0.0000
1.0000
0.0000

1.0000

0.0000
3.0000

0.0000

1.0000

Boundaries
LB UB

0.0000

0.0000

0.0000

0.0000

0.0000
0.0000
0.0000

0.0000

0.0000
0.0000

0.0000

0.0000

3.0000

14.9790

10.0000

1.0000

3.0000
12.0000

12.0000

1.0000

3.0000
48.0000

3.0000

3.0000

TRF"

0.0001

0.1000

0.1000
0.1000

0.0010
0.0001
0.1000

0.1000

0.1000
0.0001

0.1000

0.1000

* Additive penalty for model M, is zero and multiplicative penalty for model Mt is one
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error



Table 6.3a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes
20,50 and 100 for Design 4.3 together with relative penalty values and input values of SAO technique.

Method

Existing IC
Maximisation
MAPCS
Minimisation
SD among
APCS

Existing IC
Maximisation
MAPCS
Minimisation
SD among
APCS

Existing IC
Maximisation
MAPCS
Minimisation
SD among
APCS

of

of

of

of

of

of

Penalty type

Type 1
Type 2
Type 3
Type 4
Type 5

Typel
Type 2
Type 3
Type 4
Type 5

Type 1
Type 2
Type 3
Type 4
Type 5

(BIC)

(BIC)

(BIC)

Average probabilities

Mi

0.7815
0.8740

0.8740

0.5605

0.5605

0.8985

0.9C60
0.9065
0.6760

0.7510

0.9315

0.8905

0.8950
0.7465

0.7790

M2

0.6210
0.5745

0.5745

0.5605

0 5605

0.7660

0.7665
0.7665
0.6760

0.6510

0.8325

0.8330

0.8320
0.7455

0.7330

of correct selection of
model

Mi

0.5750
0.5590

0.5590

0.5605

0.5605

0.6980

0.7035
0.7035
0.6755

0.8270

0.7580
0.8165

0.8175
0.7465

0.8735

M<

0.4205
0.4110

0.4110
0.5605

0.5610

0.5605

0.5560
0.5560
0.6760

0.5465

0.6375

0.6305

0.6270
0.7465

0.6465

Mean

0.5995

0.6046

0.6046

0.5605

0.5606

0 7308
0.7330
07331
0.6759

0.6939

0.7899

0.7926

0.7929

0.7465

0.7580

SD

0.1486
0.1941
0.1941

00000

0.0003

0.1408
0.1452
0.1454

0.0003

0.1219

0.1240

0.1126
0.1156

0.0000

0.0946

1

2

1

0

1

1

2

1

1

1

2

2
1

1

1

Relative penalties*

P:

4979
.1992

.1806

8391

.0300

.9560

.0229
0624

0194

.1105

3026

.1758

.0350

.2720

.0514

/'< I
Sample
1.4979

1.8608
1.1412

0.7869

1.0249

Sample
1.9560
1.9573
1.0593
0.8441

1.0087

Sample
2.3026

1.5387

1.0213

1.0431

1.0058

/%
size = 20

2.9957

3.6479
1.2887

1.5818

1.0476

size = 50
3.9120

4.0287
1.1271

1 8413

1.1363

size = 100
4.6052

4.2676

1.0692

2.2346

1 0663

Input'values for simulated annealing
Starling values of penalties
•V;

0.0000

1.0000

0.0000

5.3469

0 0000
1.0000
0.0000

16.9521

0.0000

1.0000

0 0000

19.5147

0.0000

1.0000

0.0000

2.9957

0.0000
2.0000
1.9560

2.0000

0 0000

1.0000
0 0000

2.0000

•v, |

0.0000
1.0000

0.0000
2.9957

0.0000
2.0000

1.9560

2.0000

0.0000

1.0000

0.0000

2.0000

0.0000
1.0000

0 0000

44936

0.0000
3.0000
39120

3.0000

0.0000

1.0000

0.0000

3.0000

Boundaries
LB

0.0000

0.0000

0.0000

0.0000

0.0000
0.0000

0.0000
0.0000

0.0000

00000
0 0000

0.0000

UB

12.0000
10.0000

10.0000

8.9870

10.0000
10.0000

58680

27.0000

12.0000

10 0000

10.0000

27 0000

TRF**

0.1000
0.1000

0.1000

0.0001

0.1000
0 1000

0.0001
00001

01000
0.1000

0.1000

0.0010

* Additive penalty for model Mi is zero and multiplicative penalty tor model Mt is one
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error



Table 6.3b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the smallest variation among the average probabilities of correct selection of models under different
methods for sample sizes 20, 50 and 100 for Design 4.3 together with relative penalty values and input values of SAO
technique.

NJ

Method

Existing IC
Maximisation
MAPCS
Minimisation
SD among
APCS

Existing IC
Maximisation
MAPCS
Minimisation
SD among
APCS

Existing IC

Maximisation
MAPCS
Minimisation
SD among
APCS

of

of

of

of

of

of

Penalty type

Type
Type

Type
Type

Type
Type
Type
Type
Type

1 (A1C)
2
3
4

5

1 (AIC)
2
3
4
5

Type]
(HOC)
Type
Type
Type

Type

2 1
3
4

5

Average probabilities

0

0

0

:>

0

0

0

0

0

0

0

0

0

0

M, 1

.6355

.8000

.8315

.5605

.5605

.7050

.8005

.9015

.6755

.6755

.7090

.8485

.8895

.7465

7465

M2 !

0.5995

0.6100

0.5915

0.5605

0.5605

0.7140

0.7780

0.7630

0.6755

0.6755

0.7710

0.7945

0.8160

0.7465

0.7465

of correct
model

Mi

0.5725

0.5330

0.5590

0.5605

0.5605

0.6610

0.7010

0.7075

0.6755

0.6755

0.7175

0.7700

0.8235

0.7465

0.7465

0.5085

0.4590

0.4330

0.5605

0.5605

0.6610

0.5930

0.5590

0.6755

0.6755

0.7470

0.7065

0.6400

0.7465

0.7465

selection of

Mean

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

5790

6005

6038

5605

5605

6853

7181

.7328

6755

6755

7361

7799

7923

7465

7465

SD

0.0536

0.1466

0.1665

0.0000

0.0000

0.0282

0.0937

0.1417

0.0000

0.0000

0.0284

0.0589

0.1067

0.0000

0.0000

1

1

1

0

1

1

1

1

1

1

1

1
•4

1

1

Relative

.0000

.5052

.1389

8391

.0303

.0000

.3051

0624

.0207

.0202

0204

.6293

0366

.2720

.0157

penalties*

P,

Sample
1

1

1

0

1

0000

6540

1221

7869

0249

Sample
1

1

1

0

1

0000

4416

0568

8426

0132

Sample
1

1

1

1

1

0204

4306

0193

0431

0107

P<
size = 20

2.0000

2.8529

1.2321

1.5818

1.0481

size = 50
2.0000

2.9445

1.1244

1.8425

1.0325

5ize = l(M
20514

2 9826

1.0655

22346

1.0247

Input values for simulated annealing
Starting values

0.0000

1.0000

0.0000

0.9747

0.0000

1.0000

0 0000

0.9623

1

0 0000

1 0000

0.0000

0.9755

** !

0.0000

2.0000

0 0000

1.0000

00000

1.0000

0.0000

1.0000

1 0000

1 0000

0.0000

1.0000

of penalties
.v,

0.0000

2.0000

0.0000

1.0000

0.0000

1 0000

0.0000

1.0000

1 0000

1.0000

0.0000

1.0000

0.0000

3.0000

0.0000

1.0000

0.0000

1.0000

0.0000

1.0000

2.0000

1 0000

0.0000

1.0000

Boundaries
LB l!B

0.0000

0.0000

0.0000

0.0000

3.0000

48.G000

10.0000

10.0000

0.0000

0 0000

0.0000

00000

0.0000

0.0000

0.0000

0.0000

3.0000

36.0000

10.0000

1.0000

3.0000

12.0000

10 0000

1.0000

TRF**

0

0

0

0

0

0

0

0

0

0

0

0

0100

0010

1000

1000

1000

0001

1000

1000

0010

0001

1000

1000

* Additive penalty for mode! Mt is zero and multiplicative penalty for model Mi is one
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error



Table 6.4a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes
20, 50 and 100 for Design 4.4 together with relative penalty values and input values of SAO technique.

Method

Existing IC
Maximisation of
MAPCS
Minimisation of
SD among APCS

Existing IC
Maximisation of
MAPCS
Minimisation of
SD among APCS

Existing IC
Maximisation of
MAPCS
Minimisation of
SD among APCS

Penalty type

Type
Type
Type
Type
Type

Type
Type
Type
Type
Type

Type
Type
Type
Type
Type

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

(BIC)

(BIQ

(BIC)

M,

0.7240

0.6815

0.6855

0.4695

0.4675

0.8535

0.7875

0.7900

0.6620

0.5860

0.9100

0.8955

0.8925

0.7265

0.7300

Average p
Mi |

0.7735

0.7115

0.7110

0.5045

0.5065

0.8860

0.7685

0.7660

C.6215

0.5820

0 9230

0.8545

0.8640

0.6915

0.7000

M, j

0.2325

0.4390

0.4445

0.4695

0.4675

0.3410

0.5530

0.5560

0.6740

0.5875

0.5005

0.6525

0.6560

0.7325

0.7615

robabilities of correct
M4

0.5660

0.5095

0.5230

0.4630

0.4665

0.7820

0.7260
0.7310

0.5620

0.5940

0.8325

0.7545

0.7540

0.6795

0.6390

Af,

0.2300

0.3670

0.3670

0.5150

0.5515

0.3020

0.5260

0.5255

0 6290

0.5820

0.4215

0.5735
0.5635

0.6705

0.7030

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

M6

6555

5375

5375

4350

4080

8140

7060

7060

5520

5790

8740

7690

7810

6825

6600

selection
j M?

0.1855

0.3600

0.3375

0.4590

0.4655

0.3325

0.4620

0.4555

05505

0.6070

0.4630

0.5975
0.5985

0.6665

0.6245

of model
Ms Mean

Sample size
0.2420

0.3455

0.3455

0.4405

0.4060

0.4511

0.4939

0.4939

0.4695
0.4674

Sample size
0.3i25

0.4450

0.4440

05415

0.5595

0.5779

0.6218

06218

0.5991

0.5846

Sample size
04610

0.6070

0.5930

0.6820

0.6400

0.6732

0.7130

0.7128

06914

0.6822

SD

= 20
0.2519

0.1433

0.1472

0.0280

0.0477

= 50
0.2755

0.1402
0.1419

0.0538

00135

= 100
0.2288

0.1230
0.1279

0.0247

0.0490

1

4

1

4

2

1

4

1

5

1

2

7

1

6

1

/ ' :

.4979

.7017

.5420

.3512

.1299

.9560
9667

.5637

9632

5821

3026
5854

.2124

.5278

1216

1

0

1

0

0

1

0

1

0

0

2

1

1

0

1

p.

.4979

.7324

.0195

.3881

.9851

.9560

.9045

0156

.4816

9988

.3026

4027

.0175

.6945

0027

1

1

1

0

1

1

2

1

3

1

2

3

1

2

1

Relative penalties*
P4

.4979

.5757

.1138

.8700

0306

.9560

.4313

.0808

7861

0272

3026

3902
0594

5233
1164

2

5

1

4

2

3

5

1

6

1

4

8

1

7

1

P,

.9957

.5869

5910

.7285

.0844

.9120

.7810

.5819

.3914

.5767

,6052

8119

2312

.1803

1237

2

6

1

6

2

3

7

1

8

1

4

10

1

8

1

Pf,

.9957

.5864

7583

0333

5428

9120

7208

7095

6105

6408

6052

4567

2709

7208

2743

P7

2.9957

2.2801

1.1374

1.2931

1.0150

3.9120

35824

1.1099

43210

1 0259

4.6052

4.5752

1 0736

3.2896

1.1221

I
4

7

1

6

2

5

8

1

9

1

6

11

1

9

1

Ps

4936

4196

.7988

.4884

5092

.8680

7929

7465

1502

6409

9078

5769

2888

4218

2825

* Additive penalty for model Mi is zero and multiplicative penalty tor model M, is one
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error

L......j-.i.^-.^-.



Table 6.4a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes
20, 50 and 100 for Design 4.4 together with relative penalty values and input values of SAO technique (continued).

to

Method Penalty type Input values for simulated annealing
Starting values of penalties

Si S; Sj s4 I s< s, •V,

Bounc
LB

laries
I'B

TRF"

Sample size = 20
Existing IC
Maximisation
ofMAPCS
Minimisation of
SD among
APCS

Type I (BIC)
Type 2
Type 3
Type 4
Type 5

0 0000

1.0000

0.0000

1.0000

0.0000

2.0000

0.0000

2.0000

0.0000

2.0000

0.0000

2.0000

0.0CG0 0.0000 00000

2.0000 3.0000 3.0000

0.0000 0.0000 0.0000

2.0000 3.0000 3.0000

0.0000

3.0000

0.0000

3.0000

0.0000

4.0000

0.0000

4.0000

0.0000

0.0000

-10.0000

0.0000

8.0000

8.0000

10.0000

32.0000

0.1000

0.0001

0.0001

0.1000

Sample size = 50
Existing IC
Maximisation
ofMAPCS
Minimisation of
SD among
APCS

Type 1 (BIC)
Type 2
Type 3
Type 4
Type 5

0.0000

1.0000

0.0000

1.9560

1.0000

2.0000

1.9560

3.9120

1.0000

2.0000

1.9560

3.9120

1.0000 2.0000 2.0000

2.0000 3.0000 3.0000

1.9560 3.9120 3.9120

3.9120 5 8680 5.8680

2.0000

3.0000

3.9120

5.8680

3.0000

4.0000

5.8680

7.8240

-8.0000

0.0000

0.0000

0.0000

8.0000

20 0000

15.6481

20.0000

0.0010

0.0001

0.0001

0.1000

Sample si/e = 100
Existing IC
Maximisation
ofMAPCS
Minimisation of
SD among
APCS

Type J (BIC)
Type 2
Type 3
Type 4
Type 5

0.0000

1.0000

0.0000

1.0000

2.3026

2.0000

0.0000

1.0000

2.3026

2.0000

0.0000

1.0000

2.3026 4.6052 4.6052

2.0000 3.0000 3.0000

0.0000 0.0000 0.0000

1.0000 1.0000 1.0000

4.6052

30000

0.0000

1.0000

6.9078

4.0000

0.0000

1.0000

0.0000

00000

-8.0000

0 0000

184207

8.0000

8.0000

8.0000

0.1000

0.0001

0.0100

0.1000

** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error



Table 6.4b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the smaiiest variation among the average probabilities of correct selection of models under different
methods for sample sizes 20, 50 and 100 for Design 4.4 together with relative penalty values and input values of SAO
technique.

to

Method

Existing IC

Maximisation of
MAPCS
Minimisation of
SD among APCS

Existing IC

Maximisation of
MAPCS
Minimisation of
SD among A*>CS

Existing IC

Maximisation of
MAPCS
Minimisation of
SD among APCS

Penalty type

Type 1
(RBAR)
Type 2
Type 3
Type 4
Type 5

Type 1
(RBAR)
Type 2
Type 3
Type 4
Type 5

Type 1
(AIC/MCPj
Type 2
Type 3
Type 4
Type 5

M,

0.3175

0.5190

0.6835

0.4635

0.4625

0.3215

0.5950

0.7355

0.5710

0.5860

0.5980

0.6770

0.8955

0.6825

0.6625

Average
M2

0.4295

0.6290

0.6650

0.4640

0.4605

0.4665

0.6810

0.7560

0.5705

0.5820

0.7005

0.7735

0.8590

0.6855

0.6650

M,

0.2200

0.4905

0.4420

0.4630

0.4625

0.2890

0.5380

0.6030

0.5710

0.5875

0.4750

0.6115

0.6525

0.6825

0.6635

probabilities of correct

I Mt

0.3775

0.5150

0.5050

0.4630

0.4625

0.4230

0.6675

0.7180

0.5720

0 5940

0.6650

0.7580

0.7540

0.6830

0 6510

M< i
1

0.3450

0.4040

0.4235

0.4635

0.4605

0.3965

0.5035

0.5195

0.5705

0.5820

0.5105

0.5480

0.5810

0.6845

0.6640

M6

0.5635

0.5270

0.5310

0.4635

0.4585

0.6115

0.7055

0.7175

0.5690

0.5790

0.7875

0.7165

0.7235

0.6795

0.6765

selecfion
| M7 \

0.2735

0.3115

0.3555

0.4630

0.4665

0.4105

0.4875

0.4675

0.5740

0.6070

0.5170

0.5820

0.59W

0.6835

0.6510

of model
Ms Mean

Sample size
0 4380

0.3915

0.3395

0 4635

0.4590

0.3706

0.4734

0.4931

0.4634

0.4615

Sample size
0.5760

0.4905

0.4485

0 5695

0.5595

0.4368

0.5836

0.6207

0.5709

0.5846

Sample size
0.6320

0.6775

0 6060

0.6795

0.6895

0.6107

0.6680

0.7088

0.6826

0.6654

SD

= 20
0.1075

0.0992

0.1295

0.0004

0.0025

= 50
0.1124

0.0910

0.1276

00015

0.0135

= 100
0.1070

0.0817

0.1206

0.0021

0.0127

0.5407

1.8258

1.4543

4.7577

2.4383

0.5155

1.7772

1.2183

2.2709

1.5821

1.0000

1.6096

2.7717

2.9171

1.0260

P,

0.5407

0.4346

1.0194

0.3912

0.9849

0.5155

0.6178

1.0081

0.4778

0.9988

1.0000

0.9039

1.0180

0.7231

1.0036

0

1

1

0

1

0

1

1

1

1

1

1

1
1

1

Relative penalties*
/',

5407

.2583

.1142

8292

.0280

.5155

.2365

.0804

.2709

.0272

.0000

.2082

.0595

.5474

.0247

1.1123

2.5177

1.4755

5.1517

2.3949

1.0418

2.5019

1.2324

2.7072

1.5767

2.0000

2.6533

2.8115

3.5315

1.0281

* I
1.1123

3.3279

1.6746

5.8582

2.5728

1 0418

3.1335
1.3074

3.5602

1 6408

2.0000

3.2269

3.0264

5.4163

1.0546

1

2

1

1

1

!

2

1

1
1

2

2

1

2
1

.1123

.0440

.1288

2480

.0122

.0418

.0651

.1060

.7593

.0259

.0000

.3071

.0737

.2577

.0282

1.7185

3.9924

1.7131

63144

25341

1.5795

3.9976

1.3357

4.0740

1.6409

3.0000

39943

3.0584

6.1205

1.0578

* Additive penalty for model M, is zero and multiplicative penalty for model Mt is one
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error



Table 6.4b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the smallest variation among the average probabilities of correct selection of models under different
methods for sample sizes 20, 50 and 100 for Design 4.4 together with relative penalty values and input values of SAO technique
(continued).

to

Method Penalty type

S,

Input values for simulated annealing
Starting values of penalties

Si s4 s.< s6
c
*' 7

I S8 J

Boundaries
LB UB

TRF"

Sample size = 20
Existing IC

Maximisation
ofMAPCS
Minimisation of
SD among
APCS

Existing IC

Maximisation
of M.\PCS
Minimisation of
SD among
APCS

Existing IC

Maximisation
ofMAPCS
Minimisation of
SD among
APCS

Type 1
(RBAR)
Type 2
Type 3
Type 4
Type 5

Type 1
(RBAR)
Type 2
Type 3
Type 4
Type 5

Type i
iAIC/MCP)
Type 2
Type 3
Type 4
Type 5

0.0000

1.0000

0.0000

1.0000

0.0000

1.9560

0.0000

1.9560

1.0000

1.0000

0.0000

2.0000

0.0000

3.9120

0.0000

3.9120

1.0000

1.0000

0.0000

2.0000

0.0000

3.9120

0.0000

3.9120

1.0000

1.0000

0.0000

2.0000

0.0000

3.9120

0.0000

3.9120

2.0000 2.0000

1.0000 1.0000

0.0000 0.0000

3.0000 3.0000

2.0000

1.0000

00000

3.000C

Sample size = 50

0.0000 0.0000

5.8680 5.8680

0.0000 0.0000

5.8680 5.8680

o.oooe
5 8680

0.0000

5.8680

Sample size = 100

3.0000

1.0000

0.0000

4.0000

0.0000

7.8240

0.0000

7.8240

0.0000

1.0000

0.0000

1.0000

0.0000

20000

0.0000

1.0000

0.0000

2.0000

0.0000

1.0000

O.OCOO

2.0000

0.0000

1.0000

0.0000 0.0000

3.0000 3.0000

0.0000 0.0000

1.0000 1.0000

0.0000

3.0000

0.0000

1.0000

0.0000

4.0000

0.0000

1.0000

0.0000

n.oooo
-10.0000

0.0000

0 0000

0.0000

-3.0000

0 0000

4.0000

8.0000

10.0000

4.0000

4.0000

32.0000

3.0000

20.0000

0.0000

0.0000

0.0000

0.0000

4.0000

9.2103

10.0000

4.0000

0.0010

0.0010

0.1000

0.1 C00

0 0001

0.0001

0.0100

0.100C

0.0100

0.0010

0.1000

0.1000

** TRF Temperaiure reduction factor
Type 2 and Type 4 are additive penaities with maximised log-likelihood, function
Type 3 and Type 5 are multiplicative penalties with mean squared error



Table 6.5a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the largest mean average pr yb bilities of correct selection under different methods for sample sizes
20, 50 and 96 for Design 4.5 together with relative pcr.Fahy va'ues and inpi:t values of SAO technique.

KJ

Method

Existing IC
Maximisation of
MAPCS
Minimisation of
SD among APCS

Existing IC
Maximisation of

MAPCS
Minimisation of

SD amone APCS

Existing IC
Maximisation of

MAPCS
Minimisation of

SD among APCS

Penalty type

Type
Type
Type
Type
Type

Type
Type
Type
Type
Type

Type
Type
Type
Type
Type

1 (BIC)
2
3
4
5

1 (BIC)
2
3
4
5

1 (BIC)
2
3
4
5

M,

0.7105

0 6320

0.3490

0.3160

0.3490

0.8770

0.9255

0.9260

0.5730

0.5855

0.9525

0.9970

0.9970

0.8295

0.8495

Average probabilities of correct selection
M:

0.4060

0.4035

0.3570

0.3165

0.3570

0.7125

0.6885

0.6895

0.5725

0.5970

0.8850

0.9230

0 9225

0.8295

0.8375

M, \

0.3755

0.4280

0.3645

0.3175

0.3645

0.7325

0.7245

0.723G

0.5715

0.5695

0.8905

0.9395

0.9395

0.8295

0.9685

M4

0.3655

0.3425

C.3470

0.3165

0 3470

0.7300

0.7180

0.7160

0.577&

0.5960

0.8840

0.9300

0.9305

0.8285

0.8375

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

M<

2280

2650

3625

3155

3625

5280

5625

5610

5715

5510

8340

8380

8375

8530

8295

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Mt

2185

2550

.3600

.3160

3600

5115

5330

5335

5925

6615

8030

8150

8150

8260

8175

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

M7

.2150

.1870

3430

.3180

.3430

5400

5300

.5320

5595

5355

8055

7870

7870

8245

8105

of mode!
Ms Mean SD

Sample size = 20
0.1905

0.2305

0.3990

0.3160

0.3990

0.3388 0.1726

0.3437 0.1444

0 3603 0 0175

0.3165 0.0008

0.3603 0.0175

Sample size = 50
0.4565

0.4530

04540

0.5540

0.5155

0.6360 0.1467

0.6419 0.1519

06419 0.1515

0.5714 0.0115

05764 0.0451

Sample size = 96
0.8135

0.7690

0.7695

0.8160

0.7945

0.8585 0.0531

0.8748 0.0831

0.8748 0.0830

0.8296 0.0105

08431 0.0536

1

1

1

0

1

1

2

1

0

1

2

4

1

1

1

P;

.4979

.2311

.0000

.5810

.0000

.9560

.5078

.0831

.8052

.0089

.2822

4921

.0884

2863

0522

1

1

1

0

1

1.

2

1

0.

1.

2

4

1.

1.

1.

P:

4979

1016

0000

5883

0000

9560

3976

0786

9969

0391

2822

4030

0856

4084

0114

1

1

0

1

1

2

1

0

1

2

4

1

1

1

Relative penalties

P*

.4979

4259

.0000

.5312

.0000

9560

.4758

.OS 18

8544

0100

2822

5470

0888

2804

0528

/ \

2.9957

2.4117

1.0000

1 2147

1 0000

3.9120

4.1494

1.1330

1 9040

1.0595

4.E.643

7.7022

1.1513

3.0183

1.0853

/*«

2.9957

2.5093

1.0000

1.1881

1.0000

39120

42778

1.1384

1.6271

1.0138

4.5643

7.5448

1.1469

29921

1 0894

I 'V
2.9957

2.8040

1.0000

1.1350

1.0000

39120

4.4728

1.1465

1 9887

1 0659

45643

8.2879

1.1645

3.0599

1.0842

4

3

1

1

1

5

6

t

f's

.4936

7523

.0000

.9315

XK.VQ

8680

3899

.2118

3.0404

1

6

11

1

5

1

0939

8465

4742

2313

3840

1404

* Additive penalty for model Mt is zero and multiplicative penalty for model M, is one
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error



» t*S

Table 6.5a Average probabilities, mean average probabilities and standard deviations of average probp.hilities of correct selection of
models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes
20, 50 and 96 for Design 4.5 together with relative penalty values and input values of SAO technique (continued)

00

Method

Existing IC
Maximisation
ofMAPCS
Minimisation of
SD among
APCS

Existing IC
Maximisation
ofMAPCS
Minimisation of
SD among
APCS

Existing IC
Maximisation
ofMAPCS
Minimisation of
SD among
APCS

Penalty type

Type I (BIC)
Type 2
Type 3
Type 4
Type 5

Type 1 (BIC)
Type 2
Type 3
Type 4
TypeS

Type 1 (BIC)
Type 2
Type 3
Type 4
Type 5

s,

0.0000

1.0000

0.0000

1.0000

0.0000

1.0000

0.0000

1.9560

0.0000

1.0000

0.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.9560

2.0000

0.0000

39120

0.0000

2.0000

0.0000

2.0000

Input values for simulated annealing
Starting values of penalties

s.<

1.0000

1.0000

1.0000

1.0000

1.9560

2.0000

0.0000

3.9120

0.0000

2.0000

0.0000

2.0000

s4

1.0000

1.0000

1.0000

1.0000

1.9560

2.0000

0.0000

3.9120

0.0000

2.0000

0.0000

2.0000

Sample size = 2Q

2.0000 20000

1.0000 1.0000

2.0000 2.0000

1.0000 1.0000

2.0000

1 0000

20000

1.0000

Sample size = 50

39120 3.9120

3.0000 3.0000

0.0000 0 0000

5.8680 5.8680

3.9120

30000

00000

5 8680

Sample size = 96

0.0000 0.0000

3.0000 3.0000

0.0000 0.0000

30000 30000

0.0000

3.0000

0.0000

3.0000

s.

3.0000

1.0000

3.0000

1.0000

5.8680

4.0000

0.0000

78240

' 1
0.0000

4.0000

0.0000

4.0000

I

-8

0

0

0

-10

0

0

0

-32

0

0

0

Bounc
B

0000

0000

.0000

0000

0000

0000

0000
0000

0000

0000

.0000

.0000

.aries
I;B

8.0000

1.0000

24.0000

1.0000

10.0000

32.0000

24.0000

32.0000

32.0000

32.0000

10.0000

4.0000

TRf"

0 0100

0.1000

0.0001

0.0100

0.0001
0.1000

00100

00001

0.1000
0.1000

0.0001

0.0001

** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error



Table 6.5b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the smallest variation among the average probabilities of correct selection of models under different
methods for sample sizes 20, 50 and 96 for Design 4.5 together with relative penalty values and input values of SAO technique.

Method

Existing IC

Maximisation of
MAPCS
Minimisation of
SD among APCS

Existing IC
Maximisation of
MAPCS
Minimisation of
SD among APCS

Existing IC
Maximisation of
MAPCS
Minimisation of
SD among APCS

Penalty type

Type 1
(RBAR)
Type
Type
Type
Type

Type

Tyj>e
Type
Type
Type

Type
Type
Type
Type
Type

2

3
4
5

1 (AIC)
2

3
4

5

1 (HQ)
2
3

4

5

M, |

0.2990

0.5695

0.3490

0.3170

0.3490

0.6240

0.772P

0.9260

0.5670

0.5665

0.8525

0.7U5

0.9970

0.8245

0.8250

A verage p
M2

0.2990

0.3850

0.3570

0.3165

0.3385

0.5700

0.6845

0.6895

0.5670

0.5665

0.7895

0.8480

0.9235

0.8245

0.8250

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

M, |

3220

4C20

.3645

3165

.3335

.5905

.6485

.7230

.5670

.5665

.8130

.8470

.9350

8245

8250

robabilitres of correct selection

0

0

0

0

0

0

0

0

0

0

0

0

0

c
0

M4

2910

3745

3470

3165

3220

5945

6845

7160

5670

5665

7945

8285

9310

82-'5

8250

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

M< j

3155

2410

3625

3165

3370

5540

5685

5610

5665

5665

8065

7920

8395

8245

8250

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

M6 |

.3010

.2810

.3600

.3160

3255

.5290

4940

.5335

.5670

.5665

7845

.7465

.8140

8245

8250

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Mr

2905

2320

3430

3165

3415

5635

.5335

5320

5670

5865

7780

7720

7825

8245

8250

of model

Ms Mean SD

Sample size = 20
0.3590

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1955

3990

3160

3310

0

0

0

0

0

3096 0.0228

3426 0.1290

3603 0 0175

3164 0 0003

3347 0.0087

Sample size = 50
5725

5475

4540

5670

5665

0

0

0

0

0

5747 0.0286

6166 0.0952

6419 0.1515

5669 0.0002

5665 0.0000

Sample size = 96
8460

8475

7745

8245

8250

0

0

0

0

0

8081 00278

7995 0.0515

8746 0.0825

6245 0.0000

8250 0.0000

0

1

1

0

1

1

1

1

0

1

1

0

1

1

1

p: j

.5407

2359

.0000

.5806

.0016

.0000

2583

.0831

8048

.0116

.5183

.8333

.0833

2674

0161

0

0

1

0

1

1

1

1

0

1

1

0

1

1

1

p,

.5407

.8975

0000

5928

0020

0000

4758

0786

9248

0165

5183

8190

0845

4939

0204

0

1

1

0

1

1

1

1

0

1

1

0

1

1

1

Relative penalties*
P4 j

.5407

.1031

.0000

.5347

0020

0000

4544

0818

8805

.0146

5183

8562

0860

1999

0145

1

2

1

1

1

2

2

1

1

1

3

2

1

3

1

'< I
1123

5051

0000

2156

0020

0000

6422

1330

8094

0310

0366

6041

1455

2747

0480

1

2

1

1

1

2

2

1

1

1

3

2

1

2

1

Pr,

.1123

.2600

.0000

1892

0020

0000

.9266

1384

6973

0264

0366

7918

1438

8044

0380

1

2

1

1

1

2

2

1

1

1

3

2

1

2

1

P:

1123

3944

.0000

.1431

0020

0000

.9284

.1465

.8562

0330

0366

5156

.1636

9843

0416

1

3

1

1

1

3

3

1

2

1

4

3

1

5

1

Pi

.7185

8528

.0000

9356

0071

0000

9798

2118

8751

0530

5548

9997

2245

117?

0776

* Additive penalty for model M-, is zero and multiplicative penalty for model M, is one
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error



Table 6.5b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding; to the smallest variation among the probabilities of correct selection of models under different methods
for sample sizes 20, 50 and 96 for Design 4.5 together with relative penalty values and input values of SAO technique
(continued).

K

o

Method Penalty type Input values for simulated annealing
Starting values of penalties

Si
r s2 s. s< S, I 5 , ss

Bounc
LB

laries
UB

TRF**

Sample size = 20
Existing IC

Maximisation
of MAPCS
Minimisation of
SD among
APCS

Existing IC
Maximisation
of MAPCS
Minimisation of
SD among
APCS

Existing IC
Maximisation
of MAPCS
Minimisation of
SD among
APCS

Type 1
(RBAR)
Type 2
Type 3
Type 4
Type 5

Type 1 (AIC)
Type 2
Type 3
Type 4
Type 5

Type I (HQ)
Type 2
Type 3
Type 4
Type 5

0.0000

1.0000

0.0000

1.0000

0.0000

1.0000

0.0000

1.0000

1.0000

1.0000

1.4979

1.0000

0.0000

2.0000

0.0000

1 0000

1.0000

1.0000

1.4979

1.0000

0.0000

2.0000

0.0000

1.0000

1.0000

1.0000
1.4979

1.0000

0.0000

2.0000

0.0000

1.0000

2.0000

1.0000
29957

1.0000

2.0000 2 0000

10000 10000
2.9957 2.9957

1.0000 1.0000

Sample size = 50

0.0000

3.0000

0.0000

1 0000

0.0000 0 0000

3.0000 3.0000

0.0000 00000

1.0000 1.0000

Sample size = 96

3.0000

1.0000

4 4936

1.0000

00000

4.0000

0.0000

1.0000

0.0000

2.2822

0.0000

2.2822

0.0000

4.5643
1.0000

4.5643

0.0000

4.5643
1.0000

4.5643

0.0000

4.5643
1.0000

4.5643

0.0000

6.8465

2.0000

6.8465

0.0000 0.0000

6.8465 6.8465

2.0000 2.0000

6.8465 6.8465

0.0000
9.1287

3.00oO

9.1287

00000

0 0000

0.0000

0.0000

8 0000

1.0000

24 0000

40000

0 0000

00000

0.0000

0 0000

4 0000

32.0000

10 0000

4.0000

0.0000

0.0000

0.0000

0.0000

4 0000

9.1287

24.0000

18.2574

0.0100

0.1000

0.0010

0.1000

00010

0.1000

0.1000

i

0.0010
0.0100

0.1000
0.1000

** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error



Table 6.6a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the largest mean average probabilities of correct selection under different methods for sample sixes
20,50 and 100 for Design 4.6 together with relative penalty values and input values of SAO technique.

Method

Existing IC
Maximisation of
MAPCS
Minimisation of
SD among APCS

Existing IC
Maximisation of
MAPCS
Minimisation of
SD among APCS

Existing IC
Maximisation of
MAPCS
Minimisation of
SD among APCS

Penalty type

Type
Type
Type
Type
Type

Type
Type
Type
Type
Type

Type
Type
Type
Type
Type

1 (BIC)
2

3
4
5

1 (BIC)
2
3
4
5

1 (BIC)
2

3
4

5

M,

0.7065

0.7615

0.7575

0.4995

0.6090

0.8675

0.8560

0.8670

0.6620

0.6360

0.8865

0.8700

0.8670

0.7425

0.6520

Average p
M2

0.3285

0.4425

0.4395

0.5120

0.6605

0.4735

0.5595

0.5625

0.6610

0.7765

0.5875

0.6725

0.6725

0.7805

06525

M, |

0.6260

0.6540

0.6525

0.4950

0.4090

0.7660

0.7680

0.7565

0.6065

0.5450

0.8220

0.8025

0.8025

0.6490

0 6480

robabilities of correct

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

M4

.6865

.6940

6865

4705

4910

.7895

.7210

.7215

5970

5725

8540

.7955

8120

6740

.6555

• ' -

02885

0.3435

0.3450

0.5000

0.3900

0.4165

04675

0.4605

06130

0 5265

0.4905

0.5630

0.5630

0.6185

0.6465

Mf,

0.3190

0.3455

0.3595

0.4640

0.5030

0.4375

0 5220

0 5230

0.5830

0.5520

0 5390

0.6235

0.6175

0.6750

0.6555

selection

0 5770

0.4360

0.4345

0.4365

0.3660

0.7155

0.6500

0 6620

0.5600

0 5235

0.7685

0.7065

0.7000

0.6260

0.6530

of model
Ms Mean

Sample sizt
0.3025

0.3675

0.3680

0.4320

0.3655

0.4793
0.5056
0.5054

0.4762
04743

Sample size
04190
04485
0 4390
0.5405
0 5125

0.6106
0.6241

06240
0.6029
0 5806

Sample size
0 5065

0 5500

0.5490
0.6275

0.6555

0.6818

0.6979
06979

0.6741
06523

SD

= 20
0.1858

0.1702

0.1662

0.0304

0.1127

= 50
0.1913

0 1486

0.1524

0.0433

0.0882

= 100
0.1670

0.1174

0.1195

00588

00035

P:

1.4979

1.1824

i 1.0663

0.4758

0.9895

1 9560

1.4094

1.0369

06137

0 9960

2 3026

1.5503

1.0211

07452

1.0060

1.4979

1.8443

1.1375

1.1614

1.4499

1.9560

2 0569

1 0740

1 6517

1.1785

2 3026

2.3922

1.0385

3.3059

1.0175

1

2

1

2

1

1

3

1

2

1

2

3

1

3

1

Relative penalties
l\ ]

.4979

.5753

.2163

.0909

3265

.9560

0438

1055

9123

2707

.3026

.3009

0537

9003

.0261

2

3

1

1

1

3

3

1

2

1

4

1

4

1

9957

1273

2211

6428

4448

9120

6339

1201

2565

1832

f?052

.^72

0621

0792

0211

2

3

1

2

1

3

4

1

3

1

4

4

1

4

1

9957

9067

3005

5945

3128

9120

3033

1384

6126

2815

6052

7063

0742

6636

0315

2

5

1

3

1

3

5

1

5

1

4

6

1

6

1

''- I
9957

0477

4708

4191

7508

9120

5823

1982

1529

3926

6052

0731

1066

4081

0469

4

5

1

4

1

5

7

1

5

1

6

7

1

7

1

r*

.4936

.9209

.5086

.0634

7650

8680

1213

2514

9806

4092

9078

6431

1301

2420

0532

•* Additive penalty for model Mt is zero and multiplicative penalty for model M, is one
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error



Table 6.6a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes
20, 50 and 100 for Design 4.6 together with relative penalty values and input values of SAO technique (continued).

to
to

Method

Existing IC
Maximisation
ofMAPCS
Minimisation of
SD among
APCS

Existing IC
Maximisation
ofMAPCS
Minimisation of
SD among
APCS

Existing IC
Maximisation
ofMAPCS
Minimisation of
SD among
APCS

Penalty type

Type 1 (BIC)
Type 2
Type 3
Type 4
Type 5

Type 1 (BIC)
Type 2
Type 3
Type 4
Type 5

Type 1 (BIC)
Type 2
Type 3
Type 4
Type 5

S,

0.0000
1.4979

0.0000

1 4979

0.0000

1.0000

0.0000
1.0000

0.0000

2.3026

0.0000

1.0000

$2

0.0000
2.9957

1.4979

2.9957

1.9560

1.0000

0.0000

2.0000

2.3026

4.6052

0.0000

1.0000

Input values for simulated annealing
Starting values of penalties

s>

0.0000
2.9957

1.4979

2.9957

1.9560

1.0000

0.0000

2.0000

2.3026

4.6052

0.0000

1.0000

s4

00000
2.9957

1.4979

2.9957

1.9560

1.0000

0.0000

2,0000

2.3026

4.6052

0.0000

1.0000

S<

Sample size = 20

00000

4.4936

2.9957

4.4936

0.0000 0 0000

4.4936 4.4936

2.9957 29957

4.4936 4.4936

Sample size = 50

3.9120

1.0000

0 0000

3.0000

3.9120 3.9120

1.0000 1.0000

0.0000 0.0000

3.0000 3.0000

Sample size = 100

46052

69078

0.0000

1.0000

4 6052 4.6052

6.9078 69078

0.0000 0.0000

1.0000 1.0000

Ss

0.0000

5.9915

4.4936

5.9915

5.8680

1.0000

0.0000

4.0000

69078

9.2103

0.0000

1.0000

Boundaries
LB

0.0000

0.0000

-3.0000

0 0000

UB

10 0000

23.9659

4.4936

59915

-4.0000

0.0000

-8.0000

0 0000

0 0000

0.0000

-8.0000

0.0000

7.8240

32.0000

8.0000

20.0000

32.0000

20.0000

8 0000

8.0000

TRF"

00010

0.1000

0.0001

0.0010

0.1000

0.1000

0.0010

0.1000

0.1000

0.1000

0.0001

0.0100

** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error



Table 6.6b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the smallest variation among the average probabilities of correct selection of models under different
methods for sample sizes 20, 50 and 100 for Design 4.6 together with relative penalty values and input values of SAO
technique.

Method

Existing IC

Maximisation of
MAPCS
Minimisation of
SD among APCS

Existing IC
Maximisation of
MAPCS

Minimisation of
SD among APCS

Existing IC
Maximisation of
MAPCS
Minimisation of
SD among APCS

Penalty type

Type 1
(RBAR)
Type
Type
Type
Type

Type
Type
Type
Type
Type

Type
Type
Type
Type
Type

2

4
5

1 (AIC)
•y

3

4
5

I (AIC)
2
3
4
5

M,

0.3070

0.5170

0.7320

0.4570

0.4575

0.5815

0.C155

0.5770

0.5775

0.5860

0.6715

0.8665

0.6535

0.6515

Average p
M2

0.2810

0.5160

0.4735

0.4570

0.4575

0.4510

0.6325

0.5890

0.5770

0.5775

0.5310

0.6365

0.6710

0.6540

0.6490

M) j

0 4020

0.6735

0.6540

0.4570

0.4585

0.6105

0.7045

0.7080

0.5770

0.5775

0.6470

0.7400

0.7995

0.6540

0.6485

robabilities of correct

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

M4

.3940

.6520

6485

4570

.4575

5990

701C

7205

5770

.5775

.6660

.7920

8120

.6540

.6530

0

0

0

0

0

0

0

c
0

0

0

0

0

0

0

Af,

.3530

.3215

3410

.4570

.4580

.4730

.4880

.5020

.5755

.5770

.5245

.5590

.5560

.6540

.6470

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Mr,

.3840

.3730

.3875

.4570

4575

.4900

5030

5130

.5770

.5775

.5740

.5820

.6105

.6545

.6535

selection
| Mr

0.5090

0.3760

0 4390

0.4570

0.4570

0.6810

0 5965

0.65.20

0.5780

0.5780

0.7245

0.6535

0.6825

06540

0.6555

of

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

model
Ms Mean

Sample size
4890

4835

3635

4570

4560

0

0

0

0

0

3899

4891

5049

4570

4574

Sample size
5505

5635

4825

5785

5775

0

0

0

0

0

Sample
6465

6600

5815

6545

6555

0

0

0

0

0

5546

6006

6212

5771

5775

' size
6124

6618

8974

6541

6517

SD

= 20
0.0795

0.1290

0.1514

0.0000

0.0007

- 5 0
0.0787

00808

0.1180

0.0009

0.0003

= 100
0.0700

0.0764

0.1159

0.0003

0.0032

0

0

1

0

0

1

0

1

1

0

1

1

1

0

1

P;

.5407

.5890

.0490

.4777

.9937

0000

.6797

0247

.0042

.6204

0000

.0279

0210

.8088

.0061

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

/ ' ,

.5407

.0991

1374

.0568

.0523

.0000

3275

.0638

0302

2574

0000

.3596

.0385

3326

.0171

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Relative penalties'

.5407

.5113

2344

.2884

.0794

.0000

4290

0746

0351

3911

0000

.3104

0508

.9484

0264

1

2

1

1

1

2

2

1

1

1

2

2

1

2

1

P<

1123

.3820

2211

5328

0424

0000

4737

0915

0342

8771

0000

4956

0621

0225

0208

1

2

1

1

1

2

2

1

1

2

2

2

1

2

1

l\

1123

5229

2906

7&43

0723

0000

6022

1066

0418

0773

0000

6699

0717

7240

0316

1

3

1

2

1

2

3

1

1

2

2

3

1

3

1

.1123

.5102

.4793

.3599

.1359

.0000

1670

.1479
0707

.7711

0000

.1693

0993

.4613

.0463

l\<<

1.7185

3.9726

1.5195

2.9654

1.1356

3.0000

3.9984

1.1845

1.0788

3 5012

3.0000

3.9985

1.1159

4.2872

1 0526

* Additive penalty for model M, is zero and multiplicative penalty for model M, is one
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error



Table 6.6b Average probabilities, mean average probabilities and standard deviations of average probahilities of correct selection of
models corresponding to the smallest variation among the average probabilities of correct selection of models under different
methods for sample sizes 20, 50 and 100 for Design 4.6 together with relative penalty values and input values of SAO technique
(continued).

to

Method

Existing IC

Maximisation
ofMAPCS

Minimisation of
SD among
APCS

Existing IC

Maximisation
ofMAPCS

Minimisation of
SD among
APCS

Existing IC

Maximisation
of MAPCS

Minimisation of
SD among
APCS

Penalty type

Type 1
(RBAR)
Type 2

Type 3
Type 4

Type 5

Type J (A1C)

Type 2

Type 3

Type 4

Type 5

Type 1 (AIC)

Type 2

Type 3

Type 4

Type 5

s,

0.0000

1.0000

0.0000
1.0000

0.0000

1.9560

0.0000

1.0000

0.0000

1.0000

0.0000

1.0000

1

2
1

1

1

3

1

1

1

2

2

1

s.

0000

.0000

4979
.0000

0000

9120

.0000

.0000

.0000

.0000

.3026

.0000

Input values for simulated
Starting values

Ss

1.0000

2.0000

1.4979

1.0000

1.0000

3.9120

1 0000

1.0000

1.0000

2.0000

2.3026

1.0000

S4

1.0000

2.0000

1.4979

1.0000

1.0000

3.9120

1.0000

1.0000

1.0000

2.0000

2.3026

1.0000

of penalties

2.0000

3.0000
2.9957

1.0000

2.0000

5.8680

2.0000

1.0000

2.0000
3.0000

4.6052

1.0000

s6
Sample size

2.0000

3.0000

2.9957

1.0000

2

3

2

1

Sample size

2.0000

5.8680

2.0000

1.0000

2

5

2

1

Sample size ••

2.0000

3.0000

4.6052

1.0000

2

3

4

1

annealing

S-

= 20

0000

0000
9957

0000

= 50

0000

8680

0000

0000

= 100

0000

0000

6052

0000

3.0000

4.0000
4.4936

1.0000

3.0000

7.8240

3.0000

1.0000

3.0000

4.0000

6.9078

1.0000

Boundaries
LB

0.0000

0.0000
-24.0000

0.0000

\m

4.00001

32.0000
24 0000

4.0000

0 0000

0.0000

0.0000

0.0000

0.0000

0.0000

-3.0000

0.0000

4 0000

32.0000

24.0000

4.0000

4 0000

8 0000

6.9078

8.0000

TRF"

0.0100

0.0001
0.1000

0.1000

0.0001

0 0100

0.1000

0.0100

0.0100

, 0.1000

0.1000

0.1000

** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error



Table 6.7a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the largest mean average probabilities of correct selection under d'^erent methods lor sampte slies
20, 50 and 100 for Design 5.1 together with relative penalty values and input values of SAO : 4ique.

bJ

Method

Existing IC

Maximisation
MAPCS
Minimisation
SD among
APCS

* Existing IC

Maximisation
MAPCS
Minimisation
SD among
APCS

Existing IC

Maximisation
MAPCS
Minimisation
SD among
APCS

of

of

of

of

of

of

Penalty

Type J
(All are
Type
Type
Type
Type

2
3
4
5

Type i
(All are
Type
Type
Type
Type

2
3
4
5

Type 1
(All are
Type
Type
Type
Type

2
3
4
5

type

same)

same)

same)

Average probabilities

M,

0.9845

0.9725

0.9725

0.9705

0.9625

0.9920

0.9890

0.9890

0.9850

0.9860

0.9970

0 9940

0.9940

0.9935

0.9840

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

\f2 f

3905

3850

3850

4875

5050

5000

.4225

4225
5295

5060

6180

5270

5270

6420

6495

of correct
model

M, f

0.7200

0.6395

0.6395

0.5590

P.5575

0.8880

0.7870

0.7870

0.7865

0.8100

0.9315

0.8585

0.8585

0.8580

0.7755

M4

0.2350

0.5910

0.5910

0.5400

0.5240

0 2065

0.7610

0.7610

0.6240

06285

0 2055

0.8425

0.8425

0.6750

0.6925

selection of

Mean j

0

0
0

0

0

0

0

0

0

0

0

o
0

0

0

5825

6470

6470

6392

.6372

6466

.7399

7399

7313

7326

6880

8055

8C55

7921

7754

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

SD

3357

2434

2434

2229

.2179

3618

.2348

2348
1997

2101

3617

1977

1977

1645

1486

0

-1

0
-1

0

0

-0

0
-1

0

0

0

0

-1

0

Relative

r>,

0000

5532

8561

9068

.7226

0000

.3541

9860
2891

9620

0000

8164

9799

7682

8278

penalties

P.' I 1

Sample size
0

-1

0

-0

0

0000

1620

8903
8318

.8070

0

-1

0
-1

0

Sample size
0

0

1

0

1

0000

8881

0362

1305

0000

0

-0

0

-1

0

Sample size
0

0

1

0

0

0000

6215

0085

0366

3202

0

-1

0

-1

0

)
4

= 20
0000

8220)

8334

9929

7185

= 50
0000

8217

9677

4314

9550

0

\

0

1

0

1

0

3

= 100
0000

4880

9369

9579

8246

0

1

0

1

Input
Starting
s,

0000

.0000

.0000

0000

.0000

0000

0000

9120

0000

0000

0000

0000

0
1

0

1

0

1

0

3

0

1

0
1

values for simulated annealing
values of penalties

s:

0000

0000

0000

0000

0000

0000

0000

9120

0000

0000

0000

0000

0
1

0

1

0

1

0

3

0

1

0
1

•V'

0000

0000

0000

0000

0000

0000

0000

9120

0000

0000

0000

0000

0
1

0

1

Q

f

0

3

0

1

0

1

•V,

ooool
0000

0000

0000

0000

0000
0000

9120

0000

0000

0000

0000

I

0

0

0

0

-8

0

0

0

-8

0

0

0

tinundnries

7B-7

0000

0000

0000

0000

0000

0000
0000

0000

0000

0000

0000

0000

I

10

10

2

4

8

8

2

3

8

8

2

1

:B

0000

0000

0000

0000

0000

0000

0000

9120

0000

0000

0000

1'TRF"

0

0

0

0

0

0

0

1000

1000

0010

1000

1000

1000
0001

00010

\

0

0

0

1000

1000

1000

1000

* Additive penalty for model M, is zero and multiplicative penalty for model M\ is one
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error



Table 6.7b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the smallest variation among the average probabilities of correct selection of models under different
methods for sample sizes 20, 50 and 100 for Design 5.1 together with relative penalty values and input valies of SAO
technique.

to
OS

Method

Existing IC

Maximisation
MAPCS
Minimisation
SD among
APCS

Existing IC

Maximisation
MAPCS
Minimisation
SD among
APCS

Existing IC

Maximisation
MAPCS
Minimisation
SD among
APCS

of

of

of

of

of

of

Penalty

Type 1
(All are
Type
Type
Type
Type

2
3
4
5

Type 1
(All are
Type
Type
Type
Type

2
3
4
5

Type 1
(All are
Type
Type
Type
Type

2
3
4
5

type

same)

same)

same)

Average probabilities

Mi

0.9845

0.9685

0.9730
0.8925

0.9265

09920

0.9890

0.9890

0.9365

0.8125

0.9970

0.9940
0.9940

0.9785
0.9120

M2

0.3905

0.3855

0.3900
0.5060

0.5050

0.5000

0.4695

0.4225
0.5545

0.5750

0.6180

0.5285
0.5270

0.6495
0.6495

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

of correct selection of
model

Mi \

7200

6395

6110

5575

5575

8880

7860

7870
7000

6520

9315

8585
8585

7735
7515

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

M4

2350

5925

6115
5235

5250

2065

7130

7610
r>340

5960

2055

8405
8425

6925
6930

Mean

0.5825

0.6465
0.6464

0.6199

0.6285

0.6466

0.7394

0.7399

0.7062

06589

0.6880

0.8054
0.8055

0.7735
0.7515

SD

0.3357

0.2414
0.2414

0.1830

0.1998

0.3618

0.2145

0.2348

0.1646
0.1074

0.3617

0.1969
0.1977

0.1460
0.1149

Relative penalties

P;

0.0000

-2.1418
0.8563

-16.8792

0.3196

0.0000

-0.5173

0 9860

-18.2836

0.0832

0.0000

-0.8678
09799

-17.0655
U.1114

Sample
0.0000

-1.7502

0.9070
-15.7717

0.3572

Sample
0.0000

0.8542

1.0362
-14.5567

0.1030

Sample
0.0000

0.5861
1.0085

-11.6500

0.1270

Pi

size = 20
0.0000

-2.4104

0.8335
-16.9344

0.31-3

size = 50
0.0000

-0.8258

0.9677

-18.3989

0.0830

size = 100
0.0000

-1.5303
0.9669

-17.2541

0.1110

1

1

0

1

0

1

1

1

0

1

0

1

Starting
•Vy

.4979

.0000

.0000

.0000

0000

0000

9560

.0000

0000
0000

0000

0000

1

2

1

2

0

1

1

1

1

1

1

1

Input values for simulated annealing
values of penalties _,

.4979

.0000

.0000

.0000

0000

0000

9560

0000

0000
.0000

.0000

0000

1

2

1

2

0

1

1

1

1

1
•1
i

1

Si

4979
0000

0000

0000

0000

0000

9560
0000

0O00
0000

0000

0000

I .v4

1.4979

3.0000

2.0000

3.0000

0.0000

1.0000

1.9560
1.0000

2.0000
1.0000

2.0000

1.0000

Boundaries
r~ LB

0.0000
0.0000

-10.0000

0.0000

0.0000

0.0000

-10.0000

0.0000

0.0000
0.0000

-10.0000

0.0000

8.0000
32.0000

10.0000

16 0000

20 0000

8.0000

10.0000

12.0000

10.0000
8.0000

10.0000

4.0000

TRF"~

0.0001
0.0001

0.1000

00001

0.0010

0.1000

0.1000

0.0010

0.0100
0.1000

0.1000

0.0001

* Additive penalty for model Mi is zero and multiplicative penalty for model Mt is one
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error



Table 6.8a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes
20, 50 and 100 for Design 5.2 together with relative penalty values and input values of SAO technique.

to

Method

Existing IC

Maximisation
MAPCS
Minimisation
SD among
APCS

Existing IC

Maximisation
MAPCS
Minimisation
SD among
APCS

Existing IC

Maximisation
MAPCS
Minimisation
SD among
APCS

of

o f

of

of

of

of

Penalty

Type 1
(All are
Type
Type
Type

Tyr--

2

3
4

5

Type 1
(Ail are
Type
Type
Type
Type

2
3

4
5

Type 1
(All are
Type
Type
Type

Type

2
3
4

5

type

same)

same)

same)

Average

0

0

0

0

0

0

0

0

0

0

0

L
0

0

0

0

Vf; i

2690

5570

5570

4910

4885

3360

672C

6720

5765

5750

4290

6890

6890

6625

6640

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

probabilities

M2 I

4950

4770

.4770

.4905

.4910

5725

5275

5275

.5770

.5790

6575

.6320

.6320

.6680

.8570

of correct
model

0.5035

0.4560

0.4560

0.4905

0.4860

0.6275

0.5245

0.5245

0 5805

0.5695

0.7125

0 6620

0 6620

0.6595

0.6575

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

M4 |

6305

5110

5110

4915

5075

7180

6165

6165

5905

6030

8180

7370

7370

7030

7295

selection of

Mean i

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

4758

5002

5002

4909

4932

5635

5851

.5851

5811

5816

5542

6800

.6800

6733

677C

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

I
SD |

1507 |
i
j

0441 I

0441 j

0005*

0097;
I

1631';

j

0719;

0719
j

0065;

0148;

1643 ^

I
0446:

0446 :

02G1

0351

i

0

0

1

0

1

0

0

1

0

1

0

0

1

0
4

Relative

.0000

.3764

.0384

28?5

0281

0000

5147

0208

2412

.0093

0000

.4189

0084

2446

0057

penalties*

/'• I
Sample
0

0

1

0

1

0000

5043

0517

3017

0325

Sample
0

0

1

0000

8774

0357

04600
1 0204

Sample
0

0

1

0

1

0000

6262

0126

6109

0126

j
n

4
size = 20

0

c

1
1

0000

"^40

1001

0538

0960

size = 50
0

1

1

1

1

sire
0

1

1

1

1

0000

0103

0412

1378;

0418

= KM)
0000

1782

0239

4754}

0252

0

1

0

1

0

1

0

1

0

1

0

1

Si art ing

HJLA

0000

0000

0000

0000

ooco
0000

0000

0000

0000

0000

0000

0000

0

1

1

1

0

i

1

1

0

1

1

1

Input
values

•V; 1

.0000

.0000

.0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

v nines for simulatcc
of penalties

0

1

\

1

0

1

1

1

0

1

1

1

s,

0000

0000

0r n 0

0000

0000

0000

0000

0000

0000

0000

0000

0000

0

1

2

1

0

1

2

1

0

1

2

1

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

oooo

annealing
Bound

0

0

0

0

•10

0

^ -2

0

"o
0

•2

0

B

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

anes

UB

8.0000

2 0000

4.0000

1 0000

10.0000

1 0000

2.0000

1.0000

T

0

0

0

0

0

0

0

0

10.00001 0

1 0000

2.0000

1 0000

0

0

0

RI-"

1000

1000

0010

0010

1000

1000

0100

0001

1000

1000

0001

0010

: Auditive penalty for model M/ is zero -ind multiplicative penalty for mode! M, ss one
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Tvpe 3 and Type 5 are multiplicative penalties with mean squared error



Table 6.8b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the smallest variation among the average probabilities of correct selection of models under different
methods for sample sizes 20, 50 and 100 for Design 5.2 together with relative penalty values and input values of SAO
technique.

228

Method

Existing IC

Maximisation
MAPCS

Minimisation
SD among
APCS

Existing IC

Maximisation
MAPCS

Minimisation
SD among
APCS

Existing IC

Maximisation
MAPCS

Minimisation

SD among
APCS

of

of

of

of

or

of

Penalty type

Type 1
(All are same)

Type
Type

Type

T pe

2

3

4

5

Typ • l
(All are si
Type

Type

Type

Type

2
3
4

5

Type 1
(All are same)

Type

Type
Type

Type

2

3

4

5

Average

M,

0.2690

0.5535

0.5535
0.4905

0.4905

0.3360

0 6465
0.6510

0.5805
0.5805

0.4290

0.6890

0.6900

0.6685

0.6685

0

0

0
0

0

0

0
0

0
0

0

0
0

0

0

probabilities

M2 i

.4950

.4760

4760
4905

.4905

.5725

.5235

5235

.5805
5805

6575

.6320

.6320

.6685

.6685

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

of correct selection of
model

M,

5085

4560

4560

4905

4905

6275

5420
.5420

5805
5805

.7125

.6620

6620

6685

6685

0

0

c
0

0

0

0
0.

0
0.

0.

0.

0.

o.
0.

M4 I

6305

5150

5150

4905

4905

7180

6265
6220

5805
5805

8180

7370

7355

6685

6685

Mean j

04758

0.5001

05001
0.4905

0.4905

0.5635

0 5846
0.5846

05805
0.5805

0.6542

0.6800

0 6799

0.6685

0.6685

SD

0.1507

0 0432

00432

0 0000

0.0000

0.1631

00609
00615

0 0000

0.0000

0.1643

00446

0.0440

0 0000

0.0000

0

0

1

0
A

0

0

0

1

0

0
1

0

1

Relative penalties*

r:

.0000

3767

0384

.2896

0293

0000

5123
.0207

2323
0094

0000

4189
0084

.2444

0049

I P<
Sample

0.0000

0 5043

1.0518

0.3005

1.0306

vSample
0 0000

0.7452

1 0302

0 4600

1.0186

Sample«
0.0000

0.6262

1 0126

0.5668

1.0114

size
0

0
1

1
1

size
0

0
1

1

1

;ize
0

1

1

7

1

r4
= 20
0000 (

I
9144j 0

0957

0648

1125

1

0

1

= 50
0000 S

I
8995T 0

0386 3

2438 j " 0

0512 1

~ »* frf

0000'

1782
0242

0418

041S

0
1

0

1

Input values for simulated annealing
Starting values of penalties

0000

0000

0000

0000

0000
9120

0000

0000

0000

0000

0000

0000

•V; !

1 0000

1.0000

0 0000

1 0000

1 0000

39120

0 0000

1 0000

0.0000

2.0000

9 0000

1 0OUU

•V; _ ]

1.0000

1 0000

00000
1 0000

1 0000
39120

00000

1.0000

0.0000

2.0000

00000

1.0000

2 0000

1 0000

00000

1 0000

2 0000

39120

0 0000

1.0000

0.0000
3.0000

0.0000

1 0000

Boundaries
LB

0.0000
0.0000

0.0000
0 0000

•2.0000

0.0000

0.0000

0 0000

0.0000
0.0000

00000

0 0000

I'B

8.0000

20 0000

10.0000
10 0000

2 0000

39120

10.0000

10 0000

10 0000
10 0000

10 0000

10.0000

TRP*4

0

0

0

0

0

0
0

0

0

1000
1000

1000
1000

0010

0010
1000

1000

1000
0.0010

0

0

1000

1000

* Additive penalty for model M} is zero and multiplicative penalty for model Mt is one
** TRF Temperature reduction factor
Type ?: and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error



Table 6.9a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the largest mean average probabilities of correct selection under diff' ~vnt methods for sample sizes
20, 50 and 100 for Design 5.3 together with relative penalty values and input values of SAO teclu ijue.

to
ro

Method

Existing IC

Maximisation
MAPCS

Minimisation
SD among
APCS

Existing IC

Maximisation
MAPCS

Minimisation
SD among
APCS

Existing IC

i Maximisation
MAPCS

Minimisation

SD among
APCS

of

of

of

of

of

of

Penalty

Type 1
(All are
Type

Type

Type

Type

2

3
4

5

Type 1
(All are

Type

Type

Type

2
3
4

5

Type 1
(All are

Type
Type
Type

Type

2
3
4

5

type

same)

same)

same)

Average

0

0

0

&

Q

0

c
0

0

0

0

0

0

0

0

5270

2440
2440

4780
4820

5820

3945
3945

5245

5320

6230

4480
4480

5645

5605

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

probabilities

M6 \

.4030

.3505

.3510

.5260

.5295

.5045

.3845

.3840

.5485

.5065

.6085

4490
.4490

.6015

.6020

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

of correct
model

M7

.3745

7285
7280

.5325

.5200

.4295

.7400

.7405

.5395

.5040

.4785

8060
8080

5975

5975

Ms |

0.4785

07470
0.7470

0.4960
0 4985

04845

0 7085

0.7075

0.5265

0.5290

0.5005

0.7330
0.7330

0 5825

0.5795

selection of

Mean j

0 .4457

0.5175
0

0

0

0

0

0

0

0

0

0

0

0

0

5175

5081
5075

5001

5569

5566
5347

5179

5526

6095
6095

5865

5849

0

0

0

0

°

0

0

0

SD

0697

2581
2579

0256
0214

0631

1937

1938

0.0113

0

0

0

0

0

0

0147

0737

1884
18f4

0163

0189

Relative penalties*

coooo

-3.4352

0.7101

-35696

0 7650

0 0000

-1.4966
0 9403

-2 0280

0.9865

0.0000

-1.9048

09625
-3.7893

0.8527

r? I
Sample <

0.0000

-3.7546
0 6879

-3.5836

07646

size = 20
0.0000

-0.5835
0.9433

-0.0276

0 9973

Sample size = 50
0.0000

-1.8183
0 9283

-2 0545
0 9851

00000

-02936
0.9883

-0 0412

0 9985

Sample size = 1(K
0.0000

-2.3262
0.9544

-3.8600

0.8515

0 0000

-03119

0.9938

-0.0701

0.9986

2
1

0

1

3

1

0

1

1

0

1

4

1

Input
Starting

.s\ I

.9957

.0000

0000

0000

.9120

.0000
0000

.0000

.0000

0000
6052

.0000

2
2

1

2

3

1

1

1

0

2

4

2

valut

•*«

9957

0000

0000
0000

9120

0000

0000
0000

0000

0000
6052

0000

values fro simulated annealing
's oi penalties

2

2

1

2

3

1

1

1

n
2

4

2

s7

9957

0000

0000

0000

9120

0000
0000

0000

0000

0000
6052

0000

2

3

2

3

3

1

2

1

0

3

4

3

9957

0000

0000

0000

9120

0000
0000

0000

0000

0000

6052

0000

Boundaries
LB

-4.0000
0.0000

-3.0000

0.0000

0.0000
0 0000

0 0000

0 0000

0.0000

0.0000

0.0000

00000

UB

59915
48.0000

3.0000

12 0000

12 0000
1 0000

3.0000

30000

. . ._

10 0000

12.0000

6.9078

27.0000

0

0

0

0

0

0

0

0

0

0

0

0001
1000

0100

1000

1000
1000

0100
1000

0100

1000

1000

0.0010

* Additive penalty for model M< is zero and multiplicative penalty for model M< is one
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error



Table 6.9b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the smallest variation among the average probabilities of correct selection of models under different
methods for sample sizes 20, 50 and 100 for Design 5.3 together with relative penalty values and input values of SAO
technique.
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Method

Existing IC

Maximisation
MAPCS
Minimisation
SD among
APCS

Existing IC

Maxima <5ion
MAPCS
Minimisation
SD among
APCS

Existing IC

Maximisation
MAPCS
Minimisation
SD among
APCS

of

of

of

of

of

of

Penalty

Type 1
(All are
Type
Type
Type
Type

2
3
4
5

Type 1
(All are
Type
Type
Type
Type

2
•j

4

5

Type i
(All are
Type

LTyjpe
Type

Type

.\

3

4

5

type

same)

same)

same)

Average

0

0

0

o
0

0

c
0

0

0

Q

5270

3310

2800
4955
5000

5820

4210
4130

5290

5320

6230

4515
4580

5745

0.5735

C

0

0

0

C

0

0

0

0

0

0

0

0

0

u

probabilities

Mb \

4030

.32'5

3510

.4915

.4630

.5045

3885

.3865

.5290

.5065

.6085

.4490
4405

.5740

.5725

0

0

0

G
0

0

0

'

0

0

0

0

0

0

0

of correct
model

Mr !

3745

7410
.72, 5

4915
4740

4295

7345

7*85
.5290

5040

.4785

8075

7970

.5745

.5735

0

0

0

0

0

0

0

0

0

0

Mj

4785

6680

7095

4930

4950

4845

6815

6370
5290

5290

0.5005

0

0

0

7290

7250

5750

0.5750

\

0

0

0

0

0

0

0

0

c
0

0

0

0

c
0

selection of •

i:an j

4457

5154

5172

4929

4830

.C001

5564

5463

5290

5179

5526

6093

6051

5745

5736

0

0

0

0

0

c

0

0

0

0

0

0

0

0

0

i
SD |

0697 I
i

j
2204 ;

i

2349 j

0019;
1

0175 |

OSJTT

1769;
1755,

0000

0147^

0737:

1864;

1825
0004

0010

0

-1

0

•0

C

Relative

n

0000

1'-D4

7131

9078
9534

0.0000

• 1

0

-0

0

0

1

0

4294

6784
8352

9865

0000

8037

9825
-0.2432

0 9956

T

pen a

PT |

Sample
r;

2

0

-0

0

0000

? 3 U

6907

9223
9512

'•ties'

size
0

-0

0

-0

0

Sample size
0

• 1

0

-0

0

0000

7417

6697
8683

9851

Sample ?
0

•2

G

-0

0

0000

2247

9743

3146

994!

0

-0

0

-0

0

I7C

0

-0

0

-0

0

- ; •

<>' y j

3124

9566

0186
9984

= 50
0000

2272
9918
0384

9985

0
4

0
\

3

0

1

= 100
0000

3028
9942
0603

9988

0

Input values for
Starling
.S, |

0000
4936

.0000
0000

9120
0000
0000

0000

0000

9078
6052

9078

1

4

1

1

3
i

values

ooou
4936

0000
0000

9120
0000

1.0r00
1

1

6

4

6

0000

0000

9078
6052

9078

simulated annealing
of penalties ]

1

4
4
f

1

3

1

1

1

1

6
4

6

•*7 I

0000
4936

OOCO

0000

9120
0000
0000

0000

0000

9078
6052

9078

2

.1

i .

1

3

1

2

1

2

6

4

6

sa 7

.0000
4936

00Pn

0

0

n

.0000 0

i

.9120

.0000

.0000

0000

0

0

-4

0

oooo j 6
9078| 0

1. _ .6052

.9078

Boundaries I T
IB—

0000
0000

0000

ooco

0000
0000

0000

0000

0000

0000
0 0000

0 0000

3

14

3

3

7

12

A

3

6

9

13

B

0000
9787

0000
0000

8240
0000

0000

0000

0000

9078
2103

8155

0 0001
0.0010

0

0

0

0

0

0

0

0

1000

1000

1000
0001

0100

1000

0010

0001
0 0100

0 1000

* Additive penalty for model M< is zero and multiplicative pol i ty for model M<is one
"** TRF Temperature reduction factor
Type 2 and T)L»e 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error



Table 6.10a Average probabilities, mean average probabilities ul standard deviations of average probabilities of correct selection of
models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes
20, 50 and 100 for Design 5.4 together with relative penalty values and input values of SAO technique.

Method Penalty type Average probabilities of correct selection of
model

M, Mean SD

Existing IC

Maximisation of
MAPCS
Minimisation of
SD among
APCS

Type 1
(All are same)

0.3790 0.4805 0.5250 0 3840 0.4421 0 0724

Type 2
Type 3

0.7265

0 7265

0 3540

0.3540

0 3700

0.3700

0.4720

04720

0 4806

0.4806

0.1720

0.1720

Type 4
Type 5

j 0.4625

I 0.4625

0.4625

0.4625

0.4620

0 4620
04625
0 4625

04624
04624

Relative penalties

„__£-«•_

Input values for simulated annealing
Starting values of penalties [ Boundaries TRF
S< s-

Sample size = 20
0.0000 0.0000 0.0000

0.0003 ]

0.0003 !

0 7617 0 8956

1 0790 1.0936

0.1059 0 1544

1.0107 1 0156

04813 00000

1.0492 1 0000

Tollai I o"6c6(f
10028 i 1.0000

0 0000

2 0000

~i~oobo~
2 0000

0 0000

2 0000

TooocT
2 0000

0.0000

3.0000J
"i'.oooo"'
3 0000

-12.0000 120000

0.0000 48.0000

'"6.6666' "Tbooo
0 0000 16.0000

0.1000

0.1000

! Existing IC

Maximisation of
MAPCS
Minimisation of
SD among
APCS

Sample size = 50
Type 1 ! 0 4155
(All are same) :

0 5910 0.6380 0.4610 0 5264 0.1052 0 0000 0.0000 0.0000

Type
Type 3

0 7005 0.5455 0.4435 0 6305 0 5800 0.1109

0.7005 0.5450 0.4440 0.6305 0.5800 0.1107;

Type 4
Type 5

1 0.5560

C.5560

0 5575 0 5595 0 5565 0 5574 0.0015;

0 5575 0 5590 0.5575 0.5575 0 0012

0.5450 0.9479 0.2884 j

1.0220 1.0385 1 0114 j

O.2ioT~6.2874 CM 0431
10085 10117 1.0042

i

0 0000 0 0000

10000 10000

"6".6666" ooooo
5 8680 5 8680

0 0000

1.0000 10000

" o'.66b6~ 0.0600
5.8680 58680

0.0000 10.0000

0 0000 10.0000

66660 166666
00000 58680

Existing IC

Maximisation
MAPCS
Minimisation
SD among
APCS

of

of

Type 1
(All are same)
Type 2
Type 3
Type 4

Type 5

0

0

0

o
0

5130

7805

7805

6795

6825

0

0

0

0

0

.6520

6545

6545

6885

6890

0

0

0

0

0

.7370

.5480

.5480

.6360

6340

0

0

0
0

0

5780

7465

.7465

6500

6475

0

0

0

0

0

6200

6824

6824

6635

6633

0

0

0

0

0

.0965

1042

1042
0246

0267

_Sampto? size = KM)
00000 0.0000 '0.0000

05510 12144

1.0111 1.0246

T2110 6 6355"

10042 10134

0 5141 0 0000 10000

1 0103! 6 9078 6 9078

~6~44i 5"T"4~6052"4^605y

1.0095 10000 2 0000

10000 2 0000

69078 6.9078

T6052"~T6052

2 0000 3 0000

0.1000

0.1000

66661
0.0100

-10.0000 10 0000

0 0000 I-** 8155

6 6 6 6 0 6 §678
0 0000 10 0000

0.1000

0 1000

60061

0.1000

.J
* Additive penalty for mc>del M* is zero and multiplicative penalty for model M< is one
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type . ;re multiplicative penalties with mean squared error



Table 6.10b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the smallest variation among the average probabilities of correct selection of models under different
methods for sample sizes 20, 50 and 100 for Design 5.4 together with relative penalty values and input values of SAO
technique.

to

Method

Existing IC

Maximisation
MAPCS

Minimisation
SD among
APCS

Existing IC

Maximisation

MAPCS

Minimisation
SD among
APCS

Existing IC

Maximisation
MAPCS

Minimisation

SD among
APCS

of

of

of

of

of

of

Penalty

Type 1
(All are

Type

Type

Type

Type

2
3
4

5

Type i
(All are
Type

Type

Type

Type

2
3

4

5

Type 1
(All are

Type

Type
Type

Type

2
3
4
5

type

3ame)

same)

same)

Average probabilities

Ms

0.3790

0.6180

0.6805

0.4620

0.4620

0.4155

0.6945

0.6965

0.5570
0.5570

0.5130

0.7675

0.7805

0.6595

0.6595

M6

0.4805

0.5120

0.4285

0.4620

0.4620

0.5910

0.5510

0.5500

0.5570
0 5570

0.6520

0.6450
0.6450

0.6595

0.6595

of correct
model

MT

0.5250

0.3185

0.3400

0.4620

0.4620

0.6380

0.4440
0.4435

0.5570
0.5570

0.7370

0.5590

0.5705

0.6595

0 6595

0

0

0
0

0

0

0

0

0

0

0

0

0

0

M« i

3840

4710

4715
4620

4620

4610

6300
6295

5570
5570

5780

7540
7290

6595

6595

selection of

Mean

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

.4421

.4799

.4801

.4620

.4620

.5264

.5799

.5799

5570

5570

.6200

.6814

.6813

.6595

.6595

0

0

0
0

0

0

0

0

0

0

0

0
0

0

0

SD

.0724

.1241

.1444

.0000

.0000

.1052

.1079

.1089

0000

.0000

0965

.0983

.0926

.0000

.0000

G

1

0
1

0

0
1

0
1

o

0
1

0

1

Relative

r* I
0000

2655

0513
1057

0106

0000

5265
0214

2134

.0086

0000

5513
0111

2182

.0044

penalties*

P_ fa
Sample size =2f
0

0

1
0
1

0000

8940

0947

1537

0155

o.cooo

0.4780

1.0502
0.0284

1.0028

Sample size =5<
0

0
1

0

1

0000

9294

0381

2993

0120

Sample
0

1
1

0

1

0000

0794

0219

46k?.

0093

0.0000

0.2819

1.0115

0.1092
1.0044

Starting

N , I

0 0000

1.0000
0.0000

1.0000

0.0000
5 8680

0 0000

1 0000

size =100
0 0000

0.4080

1.0103

0.2743

1.0055

0 0000

6.9078

0.0000

1.0000

0
1

0
1

1

5

0

1

0
6

0

1

Input values for simulated annealing
values of penalties

sTl

G000

.0000

0000

0000

0000

8680

0000

.0000

0000

9078

0000

.0000

00000

1.0000

0 0000

1 0000

1.0000
5 8680

0 0000

1 0000

0.0000

6.9078
0.0000

1.0000

0 0000

1 0000

0.0000

1.0000

2 0000

5 8680

0 0000

1.0000

0.0000

6.9078

0.0000

1.0000

Boundaries

LB T

•12 0000

0 0000

0.0000

0.0000

00000

0.0000
n 0.0000

0 0000

0.0000

0.0000
0.0000

0 0000

IB

12.0000

20.0000

10.0000

1.0000

3.0000

19.5601

10.0000

1.0000

10.0000

6 9078
1Q.0000

1.0000

T

0

0

0

0

0

0

0

0

0

0

0

RF"

0100

0010

1000

1000

1000

1000
10(J0

.1000

0001
1000

.1000

* Additive penalty for model M< is zero and multiplicative penalty for model ,17 < is one
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error



Table 6.11a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes
20,50 and 100 for Design 5.5 together with relative penalty values and input values of SAO technique.

U)

Method

Existing IC

Maximisation
MAPCS

Minimisation
SD among
APCS

Existing IC

Maximisation
MAPCS

Minimisation
SD among
APCS

Existing IC

Maximisation
MAPCS

Minimisation

SD among
APCS

of

of

of

of

of

of

Penalty

Type 1
(All are

Type
Type

Type

Type

2
3
4
5

Type 1
(All are
Type

Type
Type

Type

2
3
4

5

Type 1
(All are

Type

Type
Type

Type

2

3
4

5

type

same)

same)

same)

Average

Mg [

0.6410

0.3690
0.369C
0.5635

0.5635

0.7685

0.5175

0.5175
0.6785

0 6785

08505

0.6480

0.6480
0.7580

0.7580

M

0

0
0

0

0

0

0

0

u

0

0

0

0
0

0

probabilities

i0__A

.3770

.9970
9970
5635

.5635

4010

.9990

.9990

.6785

.6785

.4350

.9985

.9985

.7580

.7580

of
model

Mu I

0.4650

0.6530
0.6530
0.5635
n 5635

04955

0.8325

G 8325
0.6785

0.6785

0 5005

0.8710

0.8710
0.7580

0.7580

M,

0

0
0

0

0

0

0

0

0

0

0

0

0
0

0

correct

2 I

3y50

9180

9180

5635

5635

4365

9490

9495

6785

6785

4495

983C

9830
7580

7580

selection of

Mean I

0

r.

0

0

0

0

0

0

0
0

0

0

0

0

0

4695

7343

7343
5635

5635

5254

8245

.8246

6785

6785

5589

8751

.8751

.7580

.7580

SD

0.1205

0.2845

0.2845
0.0000

0.0000

0.1667

0 2162

0.2163

0.0000

0.0000

0.1964

0.1617

0.1617
00000

0.0000

P/o

0

-5
0

-0

0

0

-4

0

-0

0

0

•5

0

-0

0

Relative penalties

0000

2089

.5873
2022
.9799

0000

8874

8220
1841
9927

0000

3640

8978
.3382

.9933

Pu I
Sample
0.0000

•07590
0 9270
-C.1329

0.9867

Sample
0.0000

-1.2190
0.9523

-0.2797
0.9889

Sample
0 0000

-1.2130
0 9760

-0.3997

0.9920

Pi:

0

-2

0
-0

0

size
0

-2

0

•0

0

size
0

-3
0

-0

0

• = 2(1
0000

2686
7970
2334

9769

' = 5(1
0000

6135

9002

3831
9848

= KM
0000

0750

9403
5470

9891

s9

0
1

0

0

0
1

0
0

)

0

1

0

0

Input values i por simulated annealing
Starting values of penalties

.0000

0000

0000
9975

0000

0000

0000

993<:

0000

.0000
0000

.9204

SjO 1

0.0000

1.0000
0.0000

1.0000

1 0000

1 0000

0 0000
1 0000

0 0000

1.0000
0.0000

1.0000

S/

0

1

0

1

1

1

0
1

0

1

0

1

0000

0000
0000

0000

0000

0000

0000
0000

0000
0000

0000

0000

S,.

0

1

0

1

2

1

0

1

0
1

0

1

>

0000

0000
0000
0000

0000

0000
0000

0000

0000
0000

0000

0000

0

0
0

0

0

0

0

0

0

0
0

0

Bound
LB

0000

.0000

.0000

.0000

.0000

.0000

0000
.0000

0000

.0000

.0000

.0000

aries
UB

10.0000

1.0000
10.0000

1 0000

10.0000

1.0000

10.0000

1.0000

10.0000

1.0000
10.0000

1.0000

TRF"

0

0

0

0

0

0

0
0

0

0

0

0

1000

1000
1000

1000

0100

1000

1000

1000

1000

1000

1000

1000

* Additive penalty for model Mg is zero and multiplicative penalty for model M<, is one
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error



Table 6.11b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the smallest variation among the average probabilities of correct selection of models under different
methods for sample sizes 20. 50 and 100 for Design 5.5 together with relative penalty values and input values of SAO
technique.

K )

Method

Existing IC

Maximisation
MAPCS

Minimisation
SD among
APCS

Existing IC

Maximisation
MAPCS

Minimisation
SD among
APCS

Existing IC

Maximisation
MAPCS

Minimisation

SD among
APCS

of

of

of

of

of

of

Penalty

Type 1
(All are

Type
Type

JType
Type

2
3
4

5

Type 1
(All are
Type
Type
Type
Type

2
3
4

5

Type 1
(All are

Type
Type
Type

Type

2

3
4

5

type

same)

same)

same)

Average probabilities

M9 j

0.6410

0.3725

0 3760

0.5635

0.5635

0.7685

0.5330
0.5165

0.6785

0.6785

0.8505

0 8530

0.6520

0.7580

0.7580

Mw j

0.3770

09855

0.9970

0 5635

0.5635

0.4010

0.9935
0.9935

0.6785

0.6785

0 4350

0.9845

0.9985

0.7580

0.7580

of correct
model

A'/;/

0.4650

0.6625

0.6460
0.5635

0.5635

0.4955

0.8095
0.8330

0.5785

0.6785

0.5005

0.8785
0.8760

0.7530

0.7580

M

0

0

0
0

0

0

0

0

0

0

0

0
0

0

0

I

3950

9060

9155

bo 35

5635

4365

9600
9540

6785

6785

4495

9685

9715
7580

7580

selection of

Mean

0

0

0

0

0

0

0

0

0

0

0

0
0

0

c

4695

.7316

.7339

.5635

.5635

.5254

8240
8242

.6785

6785

.5589

.8711

.8745

.7580

.7580

SD

0

0

0

0

0

0

0

0

0

0

0

0
0
0

0

^205

2760

2819
0000

0000

1667

2099
2162

0000

0000

1964

1527

1574

0000

0000

0

-3

0

-0

0

0

,
-3n
-0

0

0

-3
0

-0

0

Relative

0000

.9370

.5935
2022

9799

.0000

.9153
8488

1841

.9927

.0000

48C5
6964

3382

.9933

Pj

penalties'

Sample
0

-0

0

-0

0

0000

7641

9310

1329

9867

Sample
0

-1

0

-0

0

0000

0541
9523
2797

9889

Sample
0

-1

0

-0

0

0000

2128
9760
3997

9920

Pi:
size = 20

0.0000

-2.0906

0.8012
-0.2334

0.9769

size = 50
0.0000

-2.7323
08981

-0.3831

0.9848

*!7C = lOf

ooooo

-2 5651
0.9474

-0 5470

09891

S9

0

1

0

0

0

1

0

0

1

0
9

0

0

Input values for simulated annealing
Starting values of penalties

.0000

0000

0000

9975

oooo
.0000
0000

9932

.0000
2103

0000

9204

s,0

0.0000

1 0000

ooooo
1 0000

0.0000
2.0000
0.0000

1.0000

1 0000
92103

0.0000

1.0000

0.0000

1 0000

ooooo
1.0000

0.0000
2.0000

ooooo
1 0000

1.0000
92103

" 0000

; oooo

0.0000

1 0000

0.0000

1.0000

oooo(T
30000

ooooo
1 OOOO

2.0000

92103

ooooo
1 0000

Boundaries
LB

0.0000

0.0000

0.0000

ooooo

0.0000

ooooo
0.0000

ooooo

ooooo
ooooo
ooooo
ooooo

IB

4.0000

10 0000

10 0000

1.0000

4 0000

10.0000

10 0000

1 OOOO

4 0000

92103

10.0000

1 OOOO

T

0

0

0

0

0
0

0

0

0

0

0

0

RP"

.1000

.1000

.1000

1000

1000
0001

1000

1000

0010
0100

1000

1000

* Additive penalty for model Mq is zero and multiplicative penalty for model ,V/V is one
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised Jog-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error



Table 6.12a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of
models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes
20, 50 and 100 for Design 5.6 together with relative penalty values and input values of SAO technique.

to

Method

Existing IC

Maximisation
MAPCS
Minimisation
SD among
APCS

Existing IC

Maximisation
MAPCS

'\nimisation
SD among
APCS

Existing IC

Maximisation
MAPCS
Minimisation
SD among
APCS

of

of

of

of

of

of

Penalty

Type 1
(All are
Type
Type
Type
Type

2
3
4
5

Type 1
(All are
Type
Type
Type
Type

2
3
4
5

Type 1
(All are
Type
Type
Type
Type

2
3
4

5

type

same)

same)

same)

Average probabilities

0

0

o
0

0

0

0

0

0

0

0

0

0

0

0

4295

8290

8290

5195

5195

5360

8325
8325
6150

6145

6290

9270

9270

7045

7045

M10 i

0.6030

0.2640
0.2640

0.5195

0.5195

0.6960

0.4160
0.4160

0.6145

0.6140

0 7505

0.5510

0.5510

0.7045

0.7045

of correct selection of
model

0.4520

G.5340
0.5340

0.5195

0.5195

0.5555

0.5895
0.5895

0.6140

0.6145

0.6785

0.7080

0.7080
0.7045

0.7045

M,

0

; i
4630

06330
0

0

0

0

0

c
0

0

0

0

0

0

0

6330

5195

5195

5520

7950
7950

6145

6150

6565

7890

7890

7045

7045

Mean j

0.4869

0.5650
0 5650

0.5195

0.5195

0.5349

0.6583
06553

0.6145

0.6145

0.6786

0.7438

0.7438

0.7045

0.7045

SD

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0787

2351
2351

0000

0000

0746

1936
1936

0004
0004

0520

1571

1571

0000

0000

/a

0

1

1

0

1

G

1

1

0

1

0

1

1

0

1

Relative

.0000

6520
.1796

.1446

.0146

.0000

3174

.0541

.1459

.0058

.0000

.4753

.0300

.1476

.0029

penalties*

I P!<
Sample

0

0

1

0

1

0000

6531
0675

0096

0010

Sample
0

0

1

0

1

0000

5771

0233

0133
0005

Sample
0

0

1

0

1

0000

8747

0177

0514

0010

I'll
size

0

0

1

0

1

size
0

0

1

0

1

size
0

0

1

0

1

= 20
0000

5078
0521

0178

0018

= 50
0000

1042
0042

0150

0005

= 10(
0000

6798
0137

0328

0007

s,

0

1

0

1

0

1

0

1

\

0

1

0

1

Input values for simulated annealing
Starting values of penalties

.0000

.0000

.0000

.0000

0000
.0000

.0000

.0000

0000

.0000

.0000

.0000

\S,o '

0.0000
2.0000

0.0000

1.0000

00000
2.0000

0 0000

1.0000

0.0000

1.0000

0.0000

1 0000

*/

0

2

0

1

0

2

0

1

0

1

0

1

0000
0000

0000

0000

0000
0000

0000
0000

0000

0000

0000

0000

0

3

0

1

0

3

.0000

.0000

.0000

.0000

0000
.0000

0 0000
1

0

1

0

1

.0000

0000

.0000

.0000

.0000

-4

0

0

0

•4

0

0

0

0

0

0

0

Boundaries

0000

0000

0000

0000

0000

0000

0000
0000

0000

0000

0000

0000

4

10

10

1

4

10

4

10

10

L'B

0000

0000
0000

0000

0000

0000

0000
0000

0000 I

10.0000

10

1

0000

0000

TRF"

0.1000

0.1000
0.1000

0.1000

r olooo
i 0.1000

0.1000
0.0100

0.1000

0.1000

0.1000

0.1000

* Additive penalty for model Mg is zero and multiplicative penalty for model Mr, is one
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error



Table 6.12b Average probabilities, mean average probabilities and ster<ds»rd deviations of average probabilities of correct selection of
models corresponding to the smallest variation among the average probabilities of correct selection of models under different
methods for sample sizes 20, 50 and 100 for Design 5.6 together with relative penalty values and input values of SAO
technique.

Method

Existing IC

Maximisation
MAPCS

Minimisation
SD among
APCS

Existing IC

Maximisation
MAPCS
Minimisation
SD among
APCS

Existing IC

Maximisation
MAPCS

Minifni«ut";ofi

SD amor!
APCS

of

of

of

of

of

cf

Penalty

Type 1
(All are
Type

Type
Type

Type

2
3

4
5

Type 1
(All are

Type

Type
Type

Type

2

3
4

5

Type 1
(All are

Type

Type

Type

2
3

4

5

type

same)

same)

same)

Average probabilities

M9 1

0.4295

0.8275
0.8370

0.5195

0.5195

0.5360

0.8285

0.7900
0.6140

0.6140

0.6290

0.8945

0.8935

0.7045

0.7045

Mio \

0.6030

0 3400
0.3280

0.5195

0.5195

0.69SG

0.4225

0.4450
0 6140

0.6140

0.7505

0.5670

0.5670

0.7045

0.7045

of correct
model

0.4520

0.4970
0.5140

0.5195

0.5195

05555

0.5925

0.6430
0.6140

0.6140

0.6785

0.7345

0.7350

0.7045

0.7045

0.4630

0.5915
0.5775

0.5195

0.5195

0 5520

0.7855

0.7395
0.6140

0.6140

0.6565

0.7760

0.7765

0.7045

0.7045

selection of

Mean | SD

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

4869

5640
5641

5195

5195

5849

6573

6544
6140

6140

6786

7430

7430

7045

7045

0.0787

0 2040

0.2105

0.0000

0.0000

0.0746

0.1871

0.1523
0 0000

0.0000

0.0520

0.1355
0.1352

0.0000

0.0000

Relative penalties'

Pio

0.0000

1 2607

1 1434

0.1446

1.0146

0 0000

1 2521

1 0404

0 1453

1 0058

0.0000

1.1706

1.0235

0.1476

1.0029

Sample
00000

0.7286

1.0755

0.0096

1.0010

Sample
0.0000

0.5440

1.0113
0.0121

1.0005

Sample
0 0000

0.5862

1.0116
0.0514

1.0010

sire = 20
0.0000

0.5748

1.0657

0.0178

1.0018

size = 50
00000

0.1041

1.0042

0.0143

1.0006

size = 10(
0.0000

0 4886

1.0097

0.0328

1.0007

0

1

0

1

5

1

0

1

1

0
9

0

1

Starting

0000

.0000

0000

.0000

.8680

0000

.0000

0000

.0000

.2103

.0000

.0000

1

1

0

1

5

1

0

1

0
9

0

1

Input values for simulated annealing
values of penalties

.0000

.0000

0000

.0000

.8680

.0000

.0000

.0000

.0000

.2103

.0000

.0000

1.0000

1 0000

0.0000

1.0000

5.8680

1.0000

0 0000

1.0000

0.0000

9.2103

0.0000

1.0000

sl

2

1

0

1

5
1

0

1

0

9

0

1

0000

•0000

0000

0000

8680

nooo
0000

0000

0000

2103

0000

0000

Bound
LB |

-10 0000

0.0000

0.0000

0.0000

-10.0000

0.0000

0 0000

0.0000

0.0000

0.0000

0.0000

00000

arics
LIB

10.0000

10.0000
10 0000

1.0000

10.0000

16.0000

10.0000

1.0000

4.0000

18.4207

10.0000

1.0000

T

0

RF"

.0100

0.0010
0

0

0
0

0

0

0

0

0

0

.1000

.1000

.0010
0100

.1000

1000

.0100

,0100

.1000

.1000

_ ..
* \dditive penalty for model M9 is zero and multiplicative penalty for model Mo is one
** TRF Temperature reduction factor
Type 2 and Tyj •_ 4 are addvtive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error



CHAPTER 7

SUMMARY AND CONCLUSIONS

One of the important decision making problems in econometrics and statistics is to

choose an appropriate model to represent a particular duta set from a set of alternative

models. There are several ways of solving this problem and the most popular way is

the use of an information criteria (IC). In an IC based model selection procedure, the

model which has the largest maximised log-likelihood minus a penalty function is

chosen as the best model. Several IC based model selection procedures have been

proposed in the literature. The penalty function of all existing IC procedures depend

on the number of free parameters in the model and, in most of the cases, the sample

size. One of the main disadvantages of these IC procedures is that their performance

varies from data set to data set and none perform well in all situations. Some IC

procedures favour the model with the smallest number of parameters while others

favour the model with the largest number of parameters. One of the unresolved

questions is which criteria one should use to select the best model for a particular

data set. Also, the penalty functions used in these IC are independent of the data set.

Thus for the same set of models, a change oi data does not have any impact on the

penalty function. When the competing models have the same number ol parameters,



Chapter 7 Summary and Conclusions

there is no need to use a penalty function and the problem reduces to choosing the

model with the largest maximised log-likelihood, which is a weakness of this

approach. Thus, it is our belief that better handling of the penalty function will

improve the probability of selection of the correct model. The main aim of this thesis

is to investigate the ways in which the information in the data can be used to

calculate the penalty function, so that the mean average probability of correct

selection (MAPCS) is increased or optimised.

A survey of relevant literature on model selection was presented in Chapter 2. We

first reviewed the literature on model selection based on sum of squared errors and

then we surveyed model selection based on IC. It was argued that none of the existing

1C performs well in all situations, so a new technique of model selection, which

performs well on average in all situations was needed. Finally, we introduced the

SAO technique and reviewed its applications in econometrics.

The main purpose of Chapter 3 was twofold. First to introduce a new method for

computing penalties for selecting the best model from a set of competing models,

which assure the best average probability of correct selection. Another purpose was

to find the most efficient combination of the number of parameter drawings (q) and

replications (AO for estimating APCS via a simulation expeiiment for a fixed number

of total simulations, qN. We used the average standard deviation averaged over the
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number of competing models (ASD) as a measure of efficiency and coefficient of

variation (CV) as a measure of reliability of the estimated MAPCS.

We found that the relationship between ASD and q is well represented by the

regression model ln(ASD) = a+b \n(q) + c(\n{q))~, as the adjusted R2 are large

(>0.95), the estimated coefficients of the model are also highly significant and there

is no significant autocorrelation. The value of q, where the value of ASD is at a

minimum, is almost in all cases greater than the maximum value of qN (here 2000).

This implies that the maximum number of drawings of parameters produces the most

efficient estimate of the MAPCS. For this combination of <7 and N, the value of CV is

also the lowest.

We observed that the penalty functions of A1C, B1C, HQ, RBAR, GCV and HOC for

the /''' model can be generalised to a single penalty function

p =/}, A', +A:\n(n-kl). For the listed existing criteria, Ax and/I, are determined

by the sample size n. In our proposed method of computing penalties for IC based

model selection, we allowed /i,and/L to take any vulues that maximise the

estimated MAPCS. We proposed five IC, and for the ./'"' model the criteria are as

follows:
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21 = Lid,) - A,k ,]*(?! - k:),

N1C4, = L(0J)-Alk^ and

N1C5, = L(0,) - (A .,*, + /L ln(;» - A-,)).

We conducted simulation cxpenments to evaluate the peiformance of these proposed

IC compared to the performance of existing cited IC in linear regression model

settings.

The simulation results revealed that the performances of the six listed IC vary from

situation to situation and from data set to data set. Even for a particular dala set. the

performance of the selected criteria vanes from sample size to sample size. In all

designs under study, the MAPCS increases as the sample sizes increases. Within a

particular design under any criteria, the variation among ihe APCS decreases as the

sample size increases. In terms of MAPCS. none of the listed criteria performs well

in all situations. But for all designs and sample sizes, the MAPCS obtained using the

new method and the proposed IC are always higher than that of the largest MAPCS

obtained from the listed existing criteria. Also, in general, the variation among the

APCS is smaller than that of all the listed criteria except RBAR.

The performances of all new proposed IC are very similar, although the performances

of NIC4 and NIC5 are better than those of the others. The estimation of two
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parameters is required for N1C4 and NIC5 and this can be time consuming. The

improvements of MAPCS obtained from NJC4 and NIC5 over NIC I. NIC2 and MC3

are not significant. So considering the computational time and improvement of

MAPCS, NIC1. N1C2 and NIC3 seem to be better than NJC4 and NIC5 for selection

of linear regression models.

In Chapter 4 we introduced the application of the simulated annealing optimisation

(SAO) technique for penalty function calculation in linear regression settings. Two

types of penalties were used with the SAO technique to maximise the MAPCS.

These arc an additive penalty used with the maximised log-likelihood function and a

multiplicative penalty used with the mean squared error. We conducted simulation

experiments to compare the perfonnance of the existing IC procedures with the SAO

technique as a. method for finding penalty function values in terms of maximising the

MAPCS. Simulation results demonstrate that the MAPCS obtained using the SAO

technique with additive and multiplicative penalties are always higher than those of

the existing criteria. We found that the relative penalties that maximise the MAPCS

for a particular model are different for different data sets, Also for competing models

of the same dimension, the relative penalties that maximise the MAPCS are different,

but for the existing IC they are zero. This implies that the optimal penalty does not

depend only on the sample size and the number of free parameters, but also on the

data generating process. Simulation results show that the APCS obtained using a

multiplicative penalty with mean squared error arc very similar to those obtained
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using an additive penalty with maximised log-likelihood function. So. one can use

either of these techniques to select the best model.

In Chapter 5 we investigated the use of the SAO technique to select the best model

from a set of equi-dimensional alternative models. We conducted simulation

experiments to evaluate the performance of the SAO technique in selecting the best

model and used three types of penalties. The penalties are existing 1C (Type 1),

maximisation of MAPCS using additive penalties (Type 2) and multiplicative

penalties (Type 3).

From the simulation results we observed the follow inn:

The SAO technique with additive penalties always produced a larger MAPCS

than any of the existing criteria.

For the same set of equi-dimensional competing models the relative penalties that

maximise the MAPCS are different and non-zero for different data sets. In

contrast these are always equal to zero for the existing criteria.

Exactly the same MAPCS is obtained from the different sets of relative penalties,

which indicates that there is no unique set of penalties that maximises the

MAPCS.

The gap between the largest MAPCS and the smallest MAPCS obtained using the

SAO technique is very small, which indicates that the maximised MAPCS is
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insensitive to the initial parameter values for the SAO technique, when the

competing models have the same number of parameters.

The MAPCS obtained from additive and multiplicative penalties are very similar.

Therefore, from the user's point of view, one can use either of the penalty types

to select the best model.

In Chapter 6 we investigated an alternative approach of finding the penalties that

makes the APCS for each model equal or nearly equal based on the SAO technique.

We used the standard deviation (SD) among the APCS as a measure of variation and

applied the SAO technique to find the penalties for a particular data set and set of

competing models with the objective that the SD among the APCS of the different

model is a minimum. For the purpose oi comparison, we defined five types of

penalties. These are existing \C (Type 1). maximisation of MAPCS (Type 2. additive

and Type 3, multiplicative) and minimisation of variation among the APCS (Type 4,

additive and Type 5, multiplicative).

From the simulator, results we found that for models with an unequal number of

parameters, the MAPCS obtained from additive (Type 2) and multiplicative (Type 3)

penalties by minimising the variation among the APCS using SAO technique are

generally lower (around six percent) than those obtained from the existing criteria

(Type 1). But for most of the experiments, the MAPCS corresponding to the smallest

variation among the APCS is higher (2.9%-15.1%) than the corresponding MAPCS
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for the existing criteria. Generally, the APCS obtained from the existing criteria are

far from equai. but the APCS obtained using Type 4 and Type 5 penalties are often

equal or very close to equal.

For equi-dimensional competing models, the MACPS obtained from using Type 4

and Type 5 penalties are generally higher than those of the existing criteria. The

variation among the APCS obtained from Type 4 and Type .S penalties is always

lower than that of the existing criteria and in some experiments, the APCS were

equal for all combinations of the initial parameter sets used for the SAO technique.

From the simulation experiments it is observed that Type 4 and Type 5 penalties are

insensitive to the initial parameter sets for the SAO technique for selecting the best

model from a set of models of equal dimensions.

To find the best combination of the number o\ parameter drawings (q) and

replications (AO for estimating APCS via simulation experiments for a fixed total

number of simulations. qN, for selecting the best model with reliable MAPCS, we

recommend the method proposed in Chapter 3. The performance of the technique we

proposed to maximise the MAPCS for selecting the best model from a set of linear

regression models with an unequal or an equal number of parameters is better then

that of the existing criteria in all situations. The MAPCS obtained from our proposed

method of minimising the variance in the average probability of correct selection is

better than that of existing criteria most of the time, in particular the performance is
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always better when the competing models are equi-dimensior/al. So. for selecting the

best model from a set of competing linear regression mcxiels with an unequal number

of parameters, the method of maximisation of MAPCS proposed in Chapter 4 seems

to be the best method. But for equi-dimensional competing linear regression models

the technique of making APCS equal proposed in Chapter 6 is our recommended

method.

Finally, the results from our experiments raise several interesting questions, which

invite future research on the area of model selection. For example, our proposed

method of model selection for linear regression models assuming ideal conditions

can be extended for the models with hcieroscedastic errors, serially correlated errors,

non-normal error distributions and the models that violate some of the assumptions

of regression analysis to test the robustness of the methods. The performance of the

proposed methods can be tested for the selection of other types of models, which

have not been considered in this thesis, for example non-linear models and models

with lagged dependent variables. This technique may be used to select the best linear

forecasting models. All the existing model selection critena are likelihood based. For

non-likelihood based methods such as selection of regression models based on

generalised estimating equations (GEE), there is a lack of model selection criteria.

Recently Pan (2001) proposed a modification of AIC for selection of regression

models based on GEE and the use of a quasi-likelihood in place of the standard

likelihood in AIC. Our method of model selection with SAO and proposed penalty
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types could be examined as an alternative solution with the quasi-likelihood

replacing the likelihood function.
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