ERRATA

Page 28. line 7. The sentence should read as follows: "But among these Bayesian criteria. BIC has the most general asymplotic properties in the sense that it satisfies the properties of a consistent criterion."

Page 31, line 1. The sentence should read as follows: "One major limitation of Hocking's criterion is that it is not applicable for nonstochastic regressors."

Page 40. .ine 8. Read $f^{\prime} \leq f_{o p n}$ for $f^{\prime} \leq f_{1}$.

Page 47. line 12. The sentence should read as follows: "Once an equilibrium state has been achieved for a given temperature, the temperature is reduced as defined in step 5 and the process started again taking values of the last iteration of the algorithm as the imitial values."

Page 182, line 5. The sentence should read as follows: "Our goal is to choose the penalty in such a wayd hone of the competing models is unknowingly favoured over the others."

Page 241, lines $4-3$ from bottom should read as follows: "This implies that the optimal penalty depends not only on the sample size and the number of free parameters, but also on the competing data generating processes."

Page 242, last dot point should read as follows: "The difference between the largest and the smallest MAPCS obtained using the SAO technique is very small, which implics that for equi-dimensional competing altemative models, the MAPCS is insensitive to the starting parameter values of the SAO technique."

MONASH UNIVERSITY
THESIS ACCIEPTED IN SATISFACTION OF THE REQUIIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Under the copyright Act 1908. this thesis must be used only under the nomal conditions of scholarly fair dealing for the purposes of research. criticism or revien. In particular no results or conclusions should be extracted from it. nor should it be copied or closely paraphrased in whole or in pary wilhout the written consent of the author. Proper written actinowledgentent should he made for ans assistance obtained from this thesis

MODEL SELECTION: AN OPTIMAL APPROACH TO CONSTRUCTING A PENALTY FUNCTION IN

 SMALL SAMPLESA thesis submitted for the degree of Doctor of Philosophy in Fconometrics
by

GOPA1. KRISHNA BOSE
BSc(Hons) and MSc in Statistics (Dhaka, Bangladesh)
MSc in Computation (Manchester, The United Kingdom)

Department of Econometrics and Business Statistics
Faculty of Business and Economics
Monash University
Australia

May 2002

CONTENTS

Acknouledgments iv
Declaration V/
Abstract V11
List of Tables X
CHAPTER 1 INTRODLCTION 1
1.1 Background of Modelling and Model Selection I
1.2 Gutline of the Thesis 10
1.3 Computations 12
CHAPTER 2 LITERATLRESURVEYOF MODEL SELECTION AND THE SIMLIATED ANNEAIING OPTIMISATION TECHNIQUE 14
2.1 Introduction 14
2.2 Use of Residual Sum of Squares for Model Selection 16
2.3 Information Criteria Based Model Selection 24
2.4 Simulated Annealing Optimisation Technique 39
2.5 Concluding Remarks 49
CHAPTER 3 JMPROVED PRNALTY FUNCTIONS FOR INFORMATION CRITERIA BASED MOIDEL SELECTION 52
3.1 Introduction 52
3.2 Proposed Technique 55
3.3 The Monte Carlo Studies 62
3.3.1 Data Generating Process 62
3.3.2 Choice of N and q 66

Contents

3.3.2.1 Outline of the Simulation Experiments 66
3.3.2.2 Results and Discussions 69
3.3.3 Performance of the Proposed Criteria 72
3.3.3.1 Models for the Monte Carlo Studies 73
3.3.3.2 The Designs for the Simulation Experiments 74
3.3.3.3 Resulis and Discussion 76
3.4 Concluding Remarks 81
CHAPTER 4 MAXIMISATION OF MEAN AVERAGE PROBABILITY OF CORRECT SELECTION USING ADDITIVE AND MELTIPLICATIVE PENALTIES 98
4.1 Introduction 98
4.2 Additive Penalty 99
4.3 Multiplicative Penalty 101
4.4 The Designs of the Moute Carlo Studies 104
4.5 Monte Carlo Results 110
4.5.1 Comparison of Type 1 and Type 2 Penalties 111
4.5.2 Comparison of Type 1 and Type 3 Penaties 114
4.5.3 Comparison of Type 2 and Type 3 Penalties 117
4.6 Concluding Remarks 118
CHAPTER 5 MAXIMISATION OF MEAN AVERAGE PROBABILITY OF CORRECT SELECTION FOR EQUI-DIMENSIONAL COMPETING MODELS 148
5.1 Introduction 148
5.2 The Designs of the Monte Carto Studies 150
5.3 Results of the Simulation Experiments 153
5.3.1 Comparison of Type I and Type 2 Penalties 154
5.3.2 Comparison of Type 1 and Type 3 Penalties 158
5.3.3 Comparison of Type 2 and Type 3 Penalties 159
5.4 Concluding Remarks 160
CHAPTER 6 EQUAL PROBABILITIES OF CORRECT SELECTION: A CONSTRAINED MINIMISATION OF VARIATION AMONG THE AVERAGE PROBABILITIES OF CORRECT SEIECTION 181
6.1 Introduction 181
6.2 Proposed Method of Minimisation of Variation Among the APCS 184
6.3 Minimisation of Variation Among the APCS for Models of Unequal Number of Parameters 187
6.3.1 The Designs of the Monte Carlo Simulation Experiments 188
6.3.2 Results of the Monte Carlo Experiments 188
6.3.2.1 Comparison of Type 1 and Type 4 Penalties 189
6.3.2.2 Comparison of Type 1 and Type 5 Penalties 192
6.3.2.3 Comparison of Type 4 and Type 5 Penalties 194
6.4 Minimisation of Variation Among the APCS for Modets of Eyual Number of Parameters 195
6.4.1 The Designs of the Monte Carko Simulation Experiments 196
6.4.2 Results of the Monte Carlo Experiments 197
6.4.2.1 Comparison of Type 1 and Type 4 Penalties 197
6.4.2.2 Comparison of Type 4 and Type 5 Penalties 202
6.4.2.3 Comparison of Type 1 and Type 5 Penalties 203
6.5 Concluding Remarks 203
CHAPTER 7 SUMMARY AND CONCLUSIONS 237
REFERENCES 247

ACKNOWLEDGMENTS

I ursh to acknowledge my deep gratitude to my supervisor. Professor Maxwell L. King. for his guidance, consistent instructions, insightful comments and suggestions throughou the devclopment of this PhD thesis. Without his help and encouragement. this thesis could nor have theen uritten. I deeply appreciate his special attention to thess wming, which improved my writing skills as well as my presentation style of the tesearch results.

I would like to thanh Associate Professor Ralph D. Snyder for allowing me to work with him as a part-ume Rescarch Assistant for more than iwo and a half years of my Phis work.

1 very much appreciate the Monash Graduate Scholarship (MGS), which was awaided to me by Monash University and the Department of Econometrics and Business Statistics for employing me as a part-time Research Assistant and part-time Assistant Lecturer. The Department of Edacation. Training and Youth Affairs deserve thanks for their policy of HECS exemption for postgraduate research study.

My thanks are due to Ms. Inge Meldgaard for her technical assistance in various aspects of my computer needs during the period of this PhD work. I wish to thank

Mrs. Mary Englefield. Mrs. Philippa Geurens. and Ms. Julie Larsen for their kind cooperation and administrative help at all stages the development of this thesis.

I would like to thank my friends, relatives and well wishers for their moral support and encouragement throughout the development of this PhD thesis.

I must appreciate the patience moral support and understanding of my wife. Sharmila, who pratically took care of most of the important aspects of the well being of the whole family while 1 was involved in the PhD program. My thanks are due 10 my som. Shuvagata. and daughter. Shuhika, who sulsisted on less than their rightful share of attention for the period of my PhD research. Their sentimental attachment etrengthened my determination to complete my PhD thesis.

Finally, I dedicate this thesis to the memory of my late father Shama Kanta Bose. Who left us long ago, and my mother, Santi Rani Bose, whose profound love and blessing is the corner stone to all achievements in my life.

Above all, I am grateful to God Ramakrishna, without whose blessing, mercy and unceasing help, nothing could have been done by my own humble self.

DECLARATION

I hereby declare that this thesis contains no matertal which has theen accepted for the auand of ant wher degree or diploma at any unversity or equivalent instutuon: and that. W the best of my hoouledee and belief. this thesis contains no material prevously published or writen by another person. except where due reference is made in the text of the thesis.

Gopal Krishna Bose

Abstract

Thes thesis is concerned with model selection in the context of the linear regression model and the construction of an appropriate procedure to find the best model from a se of altemative competing models. Of the many analable techniques. the mfomation criteria (l () hased model selechon technique is the most widely used. There are many ic atalable on the literature. But from the literature. it is observed that none of the cainung contena perfom well in all situations. So from the wers prom of vicw, which ertitita one should use to select the best model for a particular data set is a questom that is umesolved. The am of this thesis is to answer this queston by developing an le patedure. Which performs better on arerage in all stuatams than the best of the existmy eriteria.

In (Chater 2. we seview the relevant literature on model selection. We begin with the literature on model selection based on error sum of squares rules and then review commonly used IC based model selection procedures. We discuss the advantages and drawheks of the exsting criteria. which motivate us to develop a new technique, the performance of whet is better on average in all situations than the exising criteria. We also teview the simulated annealing optimisation (SAO) technique and its use in econometrics.

A new and more efficient technique for selecting the best combination of parameter drawings and number of replications for estimating the average probability of correct selection (APCS) of the true model via simulation is presented in Chapter 3. A generalised form of penalty functions of six existing IC is also presented. In this chapler. we also propose a new method of model selection. Simulation results show that the mean APCS (MAPCS) ohtained from this proposed method is always higher than that of the best of the pxating IC.

The appleation of the SAO technique to maximise the MAPCS for an additive penalty and the maximised log-likehoori: and for a multiplicative penalty and mean squared eror. is discussed in Chapter 4. From the simulation results, we onserve that the MAPCS obtained from the SAO technique with both types of penalties are always higher than those of the best of the existing IC. We also see that for the same model. the relative pernalty varies from data set to data set: and for a particular data set. the relative penalties are different for those competing models with the same number of parameters. This implies that the penalties are not only a function of t, the sample size. and k. the number of free parameters. but also the data generating process, this is in contrast to existing penalty functions that are a function of n and k only. Another interesting outcome of these simulation experiments is that exactly the same MAPCS is obtained from different sets of relative penalties, which implies that there may not be a unique form of penalty function.

In Chapter 5 we investigate the use of the additive and multiplicative penalty with the SAO technique described in Chapter 4 for the special case of equi-dimensional alternative competing models. From the results of the simulation experiments. it is apparent that on all sttuations the MAPCS obtained using the SAO technique is higher than those of the existing enteria. Another notable outcome is that although the relatuve penathies are zero for the existing criteria when models are equidimensional. the relative penaltes that maximise the MAPCS using the SAO technique ate different from zere.

In Chapter 6 He develop a method based on the SAO to select the best model in such a way that all the competing models have an equal chance on average of being selected. We apply the SAO technique to mimmise the standard deviation (SD) anong the APCS for selecting the hest model. The simulation results show that for most of the cases with competing models of different dimensions, the variation among the APCS is zero or close to zero. which indicates that the APCS are equal or nearly cqual. But, generally the MAPCS is lower than that of the best of the existing erteria. For equi-dimensional competing models, the MAPCS obtained using the SAO technique is generally higher than those of the existing criteria with zero or close to zero variation among the APCS. Therefore, for equi-dimensional competing alternative models, the application of the SAO technique to minimise the variation among the APCS seems to he the best way of selecting the best model without favouring one model over another.

LIST OF TABLES

Abstract

Table 3.1 Alerage oner 4 models of mean 20 iterations of estimated mean probablities of correct selection and their standard devations for these 20 iterations averaged over 4 models for Design 3.1

Tahle 3.3 The estmated models of the retationship between ASD and q under different abteria.

I able 3.t The estimated models of the relationship between ASD and y under different criteria for Design 3.I.

Tathle 3.5 The estimated models of the relationship between ASD and q under different critera for Design 3.2.

Tathe 3.0 Average probabilities, mean average probabilities and standard deviations of average probabitities of cortect selection of models for samples of different sizes and under different criteria for Design 3.2.

Table 3.7 Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models

> for samples of different sizes and under different criteria for Design 3.3 .

Table 4.1b Average probabilities. mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 50 for Design 4.1 together with relative penalty values and input values of SAO technique.

Table 4.Ic Average probabilities. mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 100 for Design 4.1 together with relative penalty values and input values of $S A O$ technique.

Table 4.2a Average probabilities. mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 20 for Design 4.2 together with relative penalty values and inpur values of SAO technique.

Table 4.2b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 50 for Design 4.2 together with relative penalty values and input values of SAO technique.

Table 4.2c Average probabilties, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 96 for Design 4.2 together with relative penalty values and input values of SAO technique.

Table 4.3a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 20 for Design 4.3 together with relative penalty values and input values of SAO technique.

Table 4.3b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 50 for Design 4.3 together with relative penalty values and input values of SAO technique.

Table 4.3c Average probabilities. mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 100 for Design 4.3 together with relative penalty values and inpur values of SAO techniçue.

Table 4.4a Average probabilities. mean average probabilities and standard deviations of average probabilities of correci selection of models for sample size 20 for Design 4.4 together with relative penaly values and input values of SAO technique.

Table 4.4h Average prohabilities. mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 50 for Design 4.4 together with relative penally values and input values of SAO technique.

Table 4.5a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 20 for Design 4.5 together with relative penalty values and input values of SAO technique.

Table 4.5b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 50 for Design 4.5 together with relative penalty values and input values of SAO technique.

Table 4.5 c Average probatilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 96 for Design 4.5 together with relative penalty values and input values of SAO technique.

Table 4.6a

Table 4.6)

Table 4.6e Average probabilities. mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 100 for Design 4.6 together with relative penalty values and input values of $S \wedge O$ technique.

Table 5.1a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 20 for Design 5.1 together with relative penalty values and inpul values of SAO technique.

Table 5.1b Average probabilities. mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 50 for Desigi 5.1 together with relative penalty values and input values of SAO technique.

Table 5.1c Average probabilities. mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 100 for Design 5.1 logether with relative penalty values and inpuit values of SAO technique.

Table 5.2a Average probabilitics, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 20 for Design 5.2 together with relative penalty values and input values of SAO technique.

Table 5.2b Average probabilties, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 50 for Design 5.2 together with relative penalty values and inpui values of SAO technique.

Table 5.20 Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 100 for Design 5.2 together with relative penalty values and input values of SAO technique.

Table 5.3a Average probabilities, mean averege r habilities and standard deviations of average probabilities of correct selection of models for sample size 20 for Design 5.3 together with relative penalty values and input values of SAO technique.

Table 5.3b Average probab-ities. mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 50 for Design 5.3 together with relative penalty values and input values of $S A O$ technique.

Table 5.3 c Average probabilities. mean average probabilities and standard deviations of aveiage probabilities of correct selection of models for sample size 100 for Design 5.3 together with relative penalty values and input values of SAO technique.

Table 5.4a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 20 for Design 5.4 together with relative penalty values and input values of SAO technique.

Table 5.4b Average probabilities, mean ancrage probabilities and standard deviations of average probabilities of correct selection of models for sample size 50 for Design 5.4 together with relative penalty values and input values of SAO technique.

Table 5.4 c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 100 for Design 5.4 together with relative penalty values and input values of SAO technique.

Table 5.5a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 20 for Design 5.5 together with relative penalty values and input values of SAO technique.

Abstract

Table 5.5b Average probabilitues, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 50 for Design 5.5 together with relative penalty values and input values of SAO technique.

Table 5.5 c Average probabilities, mean average probabilities and standard deviations of avcrage probabilities of correct selection of models for sample size 100 for Design 5.5 together with relative penalty values and input values of SAO technique.

Table 5.6a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 20 for Design 5.6 together with reative penalty values and input values of SAO technique.

Table 5.66 Average probabilities, mean average probahilities and standard deviations of average probabilities of correct selection of models for sample size 50 for Design 5.0 together with relative penally values and input values of SAO techmicue.

Table 5.60 Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 100 for Design 5.6 together with relative penaliy values and input values of SAO technique.

Table 6.1a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of nosjeis corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes 20,50
and 100 for Design 4.1 together with relative penalty values and input values of SAO technique.

Table 6.1b Average probabilities. mean average probabilities and standard devations of average probabilities of correct selection of models corresponding to the smallest variation among the average probabilities of correct selection of models under different methods for sample sizes 20, 50 and 100 for Design 4.1 together with relative penalty values and input values of SAO technique.

Table 6.2a Average probabilities, mean average probahilities and standard deviations of average probabilities of correct selection of models corresponding to the largest mean average probatilities of comect selection under different methods for sample sizes 20. 50 and 96 for Design 4.2 logether with relative penally values and input values of SAO technique.

Table 6.2b Average probabilites, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the smailest variation among the average probatinities of correct sele:tion of models under different methods for sample sizes 20.50 and 96 for Design 4.2 together with relative penalty values and input values of SAO technique. 210

Table 6.3a Average probabilites, mean average probabilities and standard deviations of average probabilitics of correct selection of models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes 20,50

$$
\begin{aligned}
& \text { Id } 100 \text { for Design } 4.3 \text { together with relative penalty values and } \\
& \text { input values of SAO technique. }
\end{aligned}
$$

Table 6.3b Average probabilities. mean average probabilitics and standard deviations of average probabilities of correct selection of models corresponding to the smallest variation among the average probabilities of correct selection of models under different methods for sample sizes 20.50 and 100 for Design 4.3 together with relative penalty values and input values of SAO technique.

Table 6.4a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes 20,50 and 100 for Design 4.4 together with relative penally values and input talues of SAO technique.

Table 6.4b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the smallest vatiation among the average probabilities of correct selection of models under different methods for sample sizes 20, 50 and 100 for Design 4.4 together with relative penalty values and input values of $S A O$ technique.

Table $6.5 a \quad$ Average probabilities, mean average probabilities and standard deviations of average probabilitios of correct selection of models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes 20,50
and 96 for Design 4.5 together with relative penalty values and input values of SAO technique.

Table 6.5b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding is the smallest sariation among the average probabilities of correct selection of models under different methods for sample sizes 20, 50 and 96 for Design 4.5 1ogether with relative penaliy values and infit values of SAO technique.

Tabie 6.6a Average probabilities, mean average probabilities and standara deviations oì average probathitities of correct selection of mojels corresponding to the largest mean average protabilities of correct selection under different methods for sample sizes 20, 50 and 100 for Design 4.6 togethor with relative penally values and input valies of SAO tecinitque.

Table 6.6b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models correspording to the smallest variation among the average robabitutics of correct selection of models under different methods for sample sizes 20, 50 and 100 for Design 4.6 together with relative penaliy values and input values of SAO technique.

Table 6.7a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes 20, 50

Abstract

and 100 for Design 5.1 together with relative penalty values and input values of SAO technique.

Table 6.7b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models comesponding to the smallest variation among the average probabilities of correct selection of modets under different methods for sample sizes 20.50 and 100 for Design 5.1 together with relative penalty values and inpui values of SAO technique.

Table 6.8a	Average probabilities. mean average probabilities and standard
	deviations of average probabilities of correct selection of models
	corresponding to the largest mean average probabilities of
	correct selection under different methods for sample sizes 20. 50
	$\begin{array}{l}\text { and } 100 \text { for Design } 5.2 \text { together with relative penalty values and } \\ \text { input values of SAO technique. }\end{array}$

Table 0.8 b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the smallest variation among the average probabilities of correct selection of models under different methods for sample sizes 20, 50 and 100 for Design 5.2 together with relative penalty values and input values of SAO techiique. 228

Table 6.9 a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes 20, 50

Abstract

and 100 for Design 5.3 together with relative penalty values and input values of $S A \cap$ technique.

Table 6.9b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the smallest variation among the average probabilities of correct selection of models under different methods for sample sizes 20.50 and 100 for Design 5.3 together with relative penalty values and input values of SAO technique.

Table 6.10a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes 20. 50 and 100 for Design 5.4 together with relative penalty values and input values of SAO technique.

Table 6.10b Average probabilities. mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the smallest variation among the average probatilities of correct selection of models under different methods for sample sizes 20, 50 and 100 for Design 5.4 together with relative penalty values and input values of SAO technique. 232

Table 6.1 la Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes 20, 50
and 100 for Design 5.5 together with relative penalty values and input values of SAO techn.que.

Table 6.11b Average probabilities. mean average probabilities and standard deviations of average probibilities of correct selection of models corresponding to the smallest variation among the average probabilities of correct selection of models under different methods for sample sizes 20.50 and 100 for Design 5.5 together with relative penalty values and input values of SAO technique.

Tatie 6.12a Average probabilities. mean average probabilities and standard deviations of average probablities of correct selection of models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes 20.50 and 100 for Design 5.6 together with relative penally values and input values of SAO technique.

Table 6.12b Average probabilities, mean average probabilities and standard devbuions of average probabilities of correct selection of models comesponding to the smallest variation among the average probabilities of correct selection of models under different methods for sample sizes 20, 50 and 100 for Design 5.6 together with relative penalty values and input values of SAO technique. 236

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF MODELLING AND MODEL SELECTION

In any modelling, a real-world problem is analysed and, as a result of the analysis, a model that approximates the real situation is developed. According to Pearce (1992). "A model is a formal or informal framework of analysis which seeks to abstract from the complexities of the real world those characteristics of an economic system which are crucial for an understanding of the behavioural. institutional, and technical relationships which underlie the system". Harvey (1981) asserted five characteristics of a good model, namely parsimony, identifiability, goodness of fit, theoretical consistency, and predictive power. Proper specification of the econometric model plays an important role in the selection of the best model from a set of alternative models. Several researchers have stressed the importance of misspecification tests in cconometric model building process. For example, Malinvaud (1981) contended that cconometricians should place special emphasis on the testing of model specification. In formulating a regres ion model, misspecification error may arise from (i) omitted variables, (ii) incorrect functional form, (iii) autocorrelation, (iv) heteroscedasticity,
(1) lack of regression parameter consistency. (vi) non-normality of disturbances and (viii) invalid assumptions about the exogeneity of one or more regressors. There are a large number f sests designed to detect these misspecifications and many of these tests are available in modern computer packages which are very comprehensive, for example see Microfit (Pesaran and Pesaran 1987) and SHAZAM (White. 1978). There is a lot of herature on the topic of misspecification tests. Examples are. Eastwood and Godfrey (1992). Ramsey (1969). Durbin and Watson (1951). O'Hagan and McCabe (1975). Discussions of these are beyond the scope of this thesis.

The level of sophistication of a model depends on a number of things, including the mathematical background of the modellers, the nature of the problem, the available information including reliable data and so on. In econometrics and applied statistics. we generally deal with sample data and usually want to draw inferences about the relationship of the variables in the population from which the sample data have been drawn. Because modelling is concerned with the population. we should expect that any model we develop on the besis of a sample will provide an approximation of the relationship for the population. Generally, it is possible to develop many different models for a particular data set and set of variables, and we need to make a choice as to which one of these models is the best approximation of the population, substantively interpretable and as simple (parsimonious) as possible. For example, if the models with and without higher-order interaction terms fit the data well, the

Chapter 1

Introduction
simpler models are usualiy preferable, because higher-order interaction terms are generally difficult to interpret.

Data play a vital role in the econometric model buikding process. Without good. consistent and reliable data. even the most sophisticated and mathematically sound models fail to represent the phenomenon of interest. In selecting the best representative model for a particular data set, one must keep in mind the purpose of the model, the availability and accuracy of data. ease of model application. and accuracy of the selected model. Models with different subsets of variables produce very different results. raising questions about which one is the best representative model for a particular set of variables. The selection of the best model for a particular data set and set of variables is an important issue in econometrics and statistics for the purpose of valid estimation, inference and prediction. The process of choosing a model from a set of alternative models using the available data and set of variables, is known as madel selection. In regression analysis, model selection is the process of selecting a subset of independent variables which best explain changes in the dependent variable.

Econometric modelling usually involves the estimation of a range of models, then the choice of a model that best fits the available data. There are several selection techniques available in the literature to choose the best desirable model using the available data. These selection techniques can be grouped into the following four
major classes: (i) hypothesis testing based procedures, (ii) Bayesian criteria. (iii) the use of residual sum of squares, and (iv) information criteria (IC). Hypothesis testing based procedures involve the use of a series of pairwise hypothesis tests to select the final model. Several researchers have proposed various testing procedures for model selection, see for example, Gaver and Geisel (1974). Atkinson and Fedorov (1975), Leamer (1978). White (1982a, 1982h, 1983. 1990). MacKinnon (1983). Davidson and MacKinnon (1984). Bunke and Droge (1985). Linhart and Zuchini (1986). McAleer (1987). Grassa (1989). Brownstone (1990). Pötscher (1991). and Maddala (1992). Unfortunately, this method of model selection has many limitations as mentioned by Granger et al. (1995). At each step, one model is chosen as the null hypothesis and can be unfairly favoured because the probability of wrongly rejecting it is set to a small value like 0.05 or 0.01 . This can be particularly troublesome in situations where the test being used is not particularly powerful and therefore a choice of the null hypothesis model is the most likely outcome. There is also the well known problem of pre-1est bias (see for example Wallace, 1977, and Giles and Giles. 1993). Finally different researchers working on the same model selection problem could easily end up with different final models purely because they performed the tests in a different order or used different significance levels. In Bayesian criteria the penalised posterior probability is maximised using Bayes theorem. It is a well established concept in model selection and it uses posterior odds ratios for the comparison of the model. DeGroot (1970) gave a detailed description of Bayesian criteria.

The available methods that use residual sum of squares for regression model selection include the use of the coefficient of multiple determination (R^{2}) and adjusted coefficient of determination (\widetilde{R}^{2}) proposed by Theil (1961). Mallows (1964) C_{p} criterion. Amemiyàs (1980) $P C$ critetion (see for example. Judge at al. (1985. 1988)). Nowadays C, \quad i $P C$ are regarded as IC and these IC are related to the IC proposed by Rothman's (1968) J_{r}, and Hocking's (1976) S_{i}, and are based on minimising the mean square error of prediction. Zhang's (1992) final prediction error (FPE) criterion and Rahman's (1998) generalised model selection criterion for linear regression are also based en residual sum of squares and used as IC. R^{2} is a nondecreasing function of the number of explanatory variables and generally is inadequate to pick out the best model. Thus. \vec{R}^{2}, which is P^{2} adjusted for the residual degrees of freedom was defined to overcome this problem. Unfortunately, it does not penalise the loss of degrees of freedom sufficiently. Dhrymes (1970) mentioned that if the purpose of the selected model is prediction, then this technique is not suitable as \bar{R}^{2} produces an unnecessarily large prediction error. As there are several problems with using hypothesis testing and residual sum of squares based model selection techniques, nowadays IC based model selection procedures are frequently used by researchers to select the best model for a particular data set.

An IC based technique is the most widely accepted class of model selection procedures and is based on choosing the model with the largest maximised log.
likelihood function minus a penalty which is an increasing function of the number of free parameters included in the model. Examples of these procedures inciude Akaike’s (1973. 1974) IC (AlC). Schwarz's (1978) Bayesian IC (BIC) and Hannan and Quinn`s (1979) procedure denoted HQ. Fox (1995) has also demonstrated how a number of other model selection procedures. particularly those developed for choosing from a set of linear regression models, can be thought of in the IC framework. Those of interest in this thesis include Theil's (1961) \bar{R}^{2} criterion denoted by RBAR. Mallows' (1964) C_{p}, procedure denoted MCP. Schmidt's (1975) generalised cross-validation (GCV) procedure and Hocking's (1976) S_{p}, criterion denoted by HOC. As Granger a 1 al. (1995) and others have noted. the IC approach has the advantages that (i) no particular model is favoured because it has been chosen to be a null hypothesis, (ii) the order of computation is irrelevant, (iii) pretesting bias is not an issue. (iv) if the lC procedure is asymptotically consistent. the correct model is chosen with probability one asymptotically, and (v) there is no need to choose an arbitrary level of significance although there is the related issue of which penalty function is appropriate.

The latter is a major issue, which has featured in the literature. There is currently litle agreement about what the form of the penalty function should be. The early literature focused on asymptotic arguments to justify various choices of penalty functions, see for example Akaike (1973), Schwarz (1978), and Hannan and Quinn (1979). Since then we have seen a number of Monte Carlo studies of the small

Chapter 1

sample properties of different model selection procedures which have shown a rumber of problems. They sugzest that asymptotic properties are no guarantee of acceptable small sample properties. For example. Grose and King (1994). in the context of choosing between first-order atioregressive and first-order moving average disturbances in the linear regression man \therefore. have shown that a particular model can be unfairly favoured because of the function: form of its log-likelihood function. They atso found that the presence of nuisance parametes can adversely affect the probabilities of correct selection.

There are clear parallels between the hypothesis testing literature and the model selection literature, although it does appear that the latter lags the former. The computer revolution has meant that we can now ash what hind of testing procedures would we like to use rather than what kind of testing procedure is convenient to use (see for example King, 1987). We should be asking similar questions for model selection, in the context of finite samples. We now regulatly use simulation, a numerical techinique for conducting experiments on a digitai computer, to find critical values for hypothesis tests. Can we use similar methods to find penalty values for IC procedures that are in some sense optimal?

The penalty function of almost all existing IC is a function of n, the number of observations and k, the number of free parameters. Thus a change of data set and sets of independent variables do not have any impact on the penalty function providec n
and k remain unchanged. Another problem of existing 1 C is that none of these performs well in all situations. For example. BIC generally favour the model with the smallest number of parameters. while \bar{R}^{2} favours the model with the largest number of parameters. The performance of HQ is in between BIC and \bar{R}^{2}. Thus. from the Lser's point of view, it is very difficult to choose an IC for selecting the best model for a particular data set and set of independent variables.

In this thesis we investigate a new approach to IC model selection in the context of the classic:il problem of choosing between different linear regression models. We use the idea of a data-oriented penalty function. which was first introduced by Rao and Wu (1989). for the model selection problem in the linear regressien models. For the selection of AR time senes models. Chen et al. (1993) used the same idea for finding penalties. For the model selection problem in the context of classical regression model using the general information criteria (GIC). Bai et al. (1949) also applied the idea of data-oriented penalties. Here. We also use the same idea, but our approach involves the use of a simulation method to estimate probabilities of correct selection and choosing penalties that optimise these probabilities on average. Maximising simulated probabilities can be a difficult optimisation problem. We use a relatively new optımisation algorithm called simulated annealing: sercome any difficulties in this regard. The main feature of this optimisation algorithm is that it can find the global maximum $/$ minimum in the presence of local maximum $/$ minimum, and it is a
very robust algorithm (Gaffe it al. (1994)). A detailed description of this optimisation technique is given in Section 2.4 of Chapter 2.

A similar arn-iach to model selection has been investigated by Kwek and King (i997a. 1997b) and Kwek (2000) in the context of selecting between different conditional heteroscedastic processes. Billah and King (2000a. 2000b) have also considered a similar method for choosing between different time-series processes for linear regression disturbances. Each of these studies has involved choosing between variance-covariance matrix functions with restricted parameter spaces. In this thesis we consider model selection of different mean processes with unrestricted parameter spaces.

The specific aims of this thesis are to:
(i) develop a generalised form of some well used IC (AIC, BIC. HOC. HQ. GCV).
(ii) derive a method of model selection which performs better than all the existing criteria in all situations.
(iii) to investigate the use of multiplicative penalties with mean squared error to select the best model,
(iv) investigate the performance of the simulated annealing optimisation (SAO) technique to find the penalty for selecting the best model using additive and multiplicative penalties,
(v) study the performance oi additive and multiplicative penalties with the SAO technique using the idea of controlling the probability of correct selection. and (vi) make recommendations for the use of appropriate methods of model selection. all in the context of the linear regression model.

1.2 OUTLINE OF THE THESIS

In Chapter 2, we present at survey of the relevant literature in the tield of model selection. The use of sum of wared errors for selecting the best model is discussed in Sectiom 2.2. The idea of multiplicative penalties is introduced and the technique of using multiplicative penalties for selectiv: the best model is also discussed. In Section 2.3, we review widely used ic procedures. The major advantages and disadvantages of using IC for model selection purposes are also discussed. in addition, this section contains some directions for overcoming these problems of model selection. SAO is introduced in Sectron 2.4. which also contains a literature survey of the use of SAO in cionometric:

A generalised form of six videly used IC is given in Chapter 3. A new method of selecting the true model on the basis of the maximum average probability of conrect selection of mode's is introduced in Scction 3.2. In Section 3.3.1, we propose a new method of data generating processes for simulation experiments for selecting a model from a set of competing alternative models in linear regression settings. In Section 3.3. .. it is shown through the Monte Carlo technique It al for a fixed number of

Chapter I

simulations $q N$. where q is the number of parameter drawings and N is the number of replications, greatest accuracy is obtained by setting $N=1$. In this chapler. we propose: five new IC and the performance of these IC are evaluated in Section 3.3.3 via Monte Carlo experiments.

In Chapter 4, we introduce the application of the SAO technique to selecting the best model from a set of competing alternative models. The idea of an additive penalty for the maximised log-hkelihood and a multiplicative penalty for the mean squared error is introduced in Sections 4.2 and 4.3. respectively. Simulation experiments were conducted to evaluate the performance of these penalties compared to those of existing criteria. The experimental design of these simulations is outlined in Section 4.4 alm 'sults are presented in Section 4.5.

In Chapter 5 we investigate selection between competing models with an equal number of parameters, which is a special case of Chapter 4. where the models have different numbers of parameters. For the existing IC. the effect of the penalty function is cancelled out in selecting the best model from a set of equi-dimensional competing models, because the penalty functions of the existing criteria are functions of k, tite number of free parameters and n the sample size. In this situation, selection of the best model depends only on the maximised log-likelihood. The objective of this chapter is to investigate the performance of the SAO tectnique for finding optimum penalties, when the competing models are equi-dimensional. Section 5.2
contains a description of the Monte Carlo simulation experiments and Section 5.3 presents the results of these simulation experiments.

In Chapter 6, we discuss the issue of finding penalties that make the average probability of correct selection (APCS) equal. We propose a method of nimimisation of variation among the APCS in Section 6.2. We apply the SAO technique to implement our proposed method to find the penalties for selecting the models with the constraint that the variation among the APCS is as minimal as possible. The standard deviation among the APCS is used as a measure of variation. Section 6.3 gives a description of the Monte Carlo experiments and discussion of the results. when the competing models have an unequal number of parameters. Section 6.4 is similar to Section 6.3, hut the compentig medels have an equal number of parameters.

Chapter 7 is the final chapter of this thesis. In this chapter we summarise the findings of our research work. make some concluding remarks and make some suggestions for future research in the arca of model selection.

1.3 COMPUTATIONS

We used GAUSS System Version 3.2 .18 (Aptech Systems inc.) on a Pentium II personal computer with 64MB RAM for all simulation experiments used for
generating results for this thesis. We also used SPSS 9.0 for Windows and Microsoft Excel 97 for some of our computations.

CHAPTER 2

LITERATURE SURVEY OF MODEL SELECTION AND THE SIMULATED ANNEALING OPTIMISATION TECHNIQUE

2.1 INTRODUCTION

In econometrics we are often forced to ask the data to choose a model for us from a set of alternative models. There is a lot of hterature on this problem with a range of methods or strategies being suggested as possible solutions. A sequence of pairwise tests is one of the techniques often used to select the best model. Unfortunately this lechnique has several drawbacks, which were discussed in Chapter I. Akaike (1974) pointed out that the use of hypothesis lesting is not a proper method of statistical model selection. Granger at al. (1995) contend that model selection should be based on welf-thought-out model selection procedures rather than a series of classical pairwise tests and information criteria (IC) based model selection procedures provide a good framework. These procedures overcome most of the disadvantages of pairwise tests of hypotheses, which were discussed in the previous chapter. The purpose of the first two sections of this chapter is to survey the relevant literature on model selection based on residual sum of squares and IC procedures.

An 1C. based model selection procedure depends on maximised log-likelihood functions and a penally function, and the model with the largest penalised loglikelihood value among the competing models is selected as the best model. Unfortunately there is littie agreement about the formi of penalty function and none of the existing IC procedures perform wall in all situations. In this thesis we propose a simulation based technique to estımate probabilities of correct selection and choosing penalties that optimise these probatbilities on average. Our objective function is made up of averaged probabilities which in turn have been estimated by the Monte Carlo method; it is therefore a step function (details are discussed in Section 3.2 of Chapter 3). These types of functions are difficult to optimise using standard numerical iterative methods. They have many plateaux, which will cause standard optimisation techniques great difficulties. Most of the standard iterative algorithms fail to find the global maximum or minimum for these types of objective functions. From the work of Kirkpatrick of al. (1983). Romeo ot al. (1984). Whie (1984) and Goffe ot al. (1994), it does seem that the simulated annealing optimisation (SAO) algorithm performs well at finding the global maxima in the presence of local maxima and for functions like ours which have plateaux and other ill-behaviour. The algorithm works well because it accepts both uphill and downhill moves in a random but systematic manner thus allowing the algorithm to by-pass local maxima/minima and plateaux. In Section 2.3 we will provide a brief literature review of this optimisation technique used in econometrics. In the final section we will make some concluding remarks.

2.2 USE OF RESIDUAL SUM OF SQUARES FOR MODEL SELECTION

The purpose of this section is to survey the relevant literature on model selection, which use re-doal sum of squares. The avaitable methods in the literature that use residual sum of squares for model selection are the coefficient of multiple determination and the adjusted coefficient of determination suggested b; Theil (1961). Mallows (1904) C_{r} criterion and Amemiya's (1980) PC criterion. Nowadays C_{r} and $P C$ are regarded as IC and these IC are related to the IC proposed by Rothman (1968) denoted J_{r}, and Hocking (1976) known as S_{1}. Ztiang's (1592) final prediction error (FPE) criterion and Rahman's (1998) generalised model selection criterion are also based on the residual sum of squares.

The coefficient of multiple determination denoted by R^{2} was athe first criterion used in econometrices and other areas for model selection purposes. It is also used as a goodness of fir statistic for selecting a model. The interpretation of R^{2} is, the proportion of the variation in the dependent variable that is explained by the independent variables in the model and its value lies between zero and one. In the linear regression model

$$
\begin{equation*}
\mathbf{y}=\mathbf{X} \beta+\mathbf{u} \tag{2.1}
\end{equation*}
$$

where \mathbf{y} is an $n \times 1$ vector of observations on the dependent variable, \mathbf{X} is an $n \times k^{*}$ matrix with a column vector of ones in its firsicolumn and in the remaining a
columns $\left(k^{*}-1\right)$ non-stoctastic variables (i.e., there are $\left(k^{*}-1\right)$ non-constant regressors), \mathbf{u} is an $n \times 1$ vector ρ^{f} random disturbances following $\mathrm{N}\left(0, \sigma^{2} \mathbf{I}\right)$ and β is a vector of \dot{k}^{*} parameters. R^{2} is defined as

$$
\begin{equation*}
F^{2}=\frac{\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}=\frac{S S R}{T S S}, \tag{2.2}
\end{equation*}
$$

where SSR is the sum of squares due to the regression. $7 S S$ is the total sum of squares, \hat{y}_{i} is the estimated value of y based on the ordinary least square method. and \bar{y} is the mean value of $y_{,},(t=1,2 \ldots, n)$. It is clear that by simply adding new independent variables to (21), the value of R^{2} will increase and never decrease, and $R^{2} \rightarrow 1$ as $k^{*} \rightarrow n$. This can be demonstated in the following way. Suppose we have a model which regresses a variable y on the k variables $x_{1}, x_{2} \ldots \ldots x_{k}$. This model is equivalent to the mode? which regresses y on the $k^{5}+1$ variables $x_{1}, x_{2}, \ldots, x_{1^{*}+1}$, subject to the restaction that the cuefficient on $x_{i^{n}+1}$ is zero. So the R^{2} value from the latter model is either greater than or equal to (if and only if the estimated coefficient of $x_{R^{0}+1}$ is identically zero) the earlier model. Hence the R^{2} criterion for selecting the true model is inadequate as the model with a larger number of un. :ssary independent vanables will produce a larger n^{2} value. To overcome this deficiency of R^{2}, Theil (1961) suggested an adjusted R^{2} denoted by \bar{R}^{2}, defined by

$$
\begin{equation*}
\bar{R}^{2}=1-\frac{\frac{R S S}{n-k}}{\frac{T S S}{n-1}} \tag{2.3}
\end{equation*}
$$

This adjusted coefficient of multiple determination is adjusted for the residual degrees of freedom. Since $R^{2}=1-\frac{R S S}{T S S}$, so \widetilde{R}^{2} can be expressed as a function of R^{2} as follows:

$$
\begin{equation*}
\bar{R}^{2}=1-\frac{n-1}{n-k}\left(1-R^{2}\right) . \tag{2.4}
\end{equation*}
$$

As mentioned earlier, with the inclusion of an additional variable, R^{2} cannot fall, but \bar{R}^{2} may fall as it takes account of the residual degrees of freedom. Actually \bar{R}^{2} is R^{2} with a penalty for the additional regressors. Dhrymes (1970) showed that the value of \bar{R}^{2} will increase by adding an additional regressor if the t-value of the coefficient of this added regressor is greater than unity in absolute value. He analytically showed that

$$
\begin{equation*}
\frac{1-\bar{R}_{k}^{2}}{1-\bar{R}_{k}^{2}}=\frac{n-k^{c}}{(n-k-1)+i_{k^{c}}^{2}} \tag{2.5}
\end{equation*}
$$

where \bar{R}_{k}^{2} and \bar{R}_{k}^{2} are the values of the coefficient of determination of the models with k^{0} and $\left(k^{\vee}-1\right)$ non-constant regressors, respectively and $t_{k^{\circ}}^{2}$ is the value of the square of the r-statistics for the $k^{0 / 2}$ regression coefficient of the model with k° nonconstant regressors.

From this equation it is clear that \vec{R}_{i}^{2} will increase for the added $k^{\text {th }}$ non-constant regressor if $\frac{n-k^{2}}{(n-k-1)+t^{2}}<1$, which is only true when $t_{i}^{2}>1$. According to Theil (1971), the model selected on the basis of largest \vec{R}^{2} value 'on average' is the correct model.

One of the main problems of \bar{R}^{2} is that it does not penalise the loss of degrees of ireedom sufficiently. For example. suppose the number of regressors in the model is large with all relevant regressors along with some irrelevant regressors in the model. In this situation the estimated value of the residual variance is unbiased. but \bar{R}^{2} iends to select the model with a large number of regressors. Another probiem with \bar{R}^{*} is its poor predictive performance. According to Schmidt (1973, 1975), if the model contains variables of the true model with some itrelevant variables, then the \bar{R} : criterion tends to fail to idenify the true model. Dhrymes (1970) also mentioned that \bar{R}^{2} produces unnecessarily large prediction errors, so this technique may not be appropriate if the selected model is used for prediction purposes.

If it can be assumed that the behavior of the regressors in the future is the same as in the sample, then the mean squared error may be shown to be approximately equal to

$$
\begin{equation*}
\frac{2\left(k_{j}^{*}-1\right) \sigma^{2}}{n}+\frac{R S S_{j}}{n} \tag{2.6}
\end{equation*}
$$

where $R S S$, is the residual sum of squares. $\left(k^{*},-1\right)$ is the number of non-constant regressors included in the $j^{\text {th }}$ model and σ^{2} is the unknown population error variance. Mallows' C_{p}, criterion and Amemiya's $P C$ criterion differ only in the estimated value of this σ^{2}. Mallows C_{p}, critcrion uses $\frac{R S S}{n-k^{*}+1}$ as an estimate of σ^{2}, where $R S S$ is the residual sum of squares ontained from the complete model using all $\left(k^{*}-1\right)$ mon-constant regressors. while the estimated value of σ^{2} in Amemiyas $P C$ criterion is $\frac{R S S}{n-k_{j}+1}$, where $R S S$, is the residual sum of squares obtained from the model using only ($k_{i}^{*}-1$) regressors and $k_{i}^{*}<k^{*}$. So these two criteria can be written as follows:

$$
\begin{align*}
& C_{n}=\frac{2\left(k^{*}-1\right) R S S}{n-k+1}+R S S_{i} . \tag{2.7}\\
& P C=\frac{2\left(k_{1}^{*}-1\right) R S S_{1}}{n-k_{j}+1}+R S S_{3}=\frac{n+k_{1}-1}{n-k_{i}+1} R S S_{1} . \tag{2.8}
\end{align*}
$$

In Amemiya's PC criterion it is assumed that the model with $\left(k^{*},-1\right)$ non-constant regressors is the correct model and the model with $\left(k^{*}-1\right)$ non-constant regressors includes a number of inclevant regressors. Maddala (1992) argued that it is not a reasonable assumption that every one of the models is the true model to estimate σ^{2}, rather the asymptotic estimate of σ^{2} used in C_{p} is more reasonable.

Chapter 2

Literature Survey

According to Gorman and Teman (1966). Mallows C_{r} for the multiple linear regression model with known variance σ^{2} can be written as follows:

$$
\begin{equation*}
C_{n}=\frac{R S S_{1}}{\sigma^{2}}-\left(n-2\left(k_{i}^{*}-1\right)\right) . \tag{2.9}
\end{equation*}
$$

where $R S S$, is the residual sum of squares. n is the sample size and $\left(k_{,}^{*}-1\right)$ is the number of non-constant regressors for the $j^{\text {th }}$ model.

Under the assumption that the regressors follow a multivariate normal distribution. Hocking (1976) derived the $S_{\text {, criterion by minimising the conditional mean squared }}$ error of prediction, which can be written as:

$$
\begin{equation*}
S_{p}=\frac{n-k_{i}+1}{n-k} R S S_{1} . \tag{2.10}
\end{equation*}
$$

The basic difference between Mallows' C_{p}. Amemiva's $P C$ and Hocking's S_{p} criterion is that the former two depend on the assumption of non-stochastic regressors. whereas the latter depends on the assumption of stochastic regressors. Both Mallows' C_{p}, and Amemiyas $P C$ reduce to Hocking's S_{p}, criterion for stochastic regressors (Kinal and Lahiri (1984)).

Zhang (1992) mentioned that all the existing criteria can be shown to be asymptotically equivalent to minimising (with respect to $k_{j}^{\hat{k}}$)

$$
\begin{equation*}
C\left(k_{,}^{i}, \eta\right)=\operatorname{RSS}\left(k_{1}^{i}\right)+\eta k, 0<k, \leq(k,-1) . \tag{2.11}
\end{equation*}
$$

where $\operatorname{RSS}\left(k_{l}\right)$ is the residual sum of squares when only the first k regressors are cntered in the $j^{\text {th }}$ model and η represent the penalty for over fitting. This criterion is called the final prediction emtor (FPE) criterion. According to Zhang. AIC. C_{p}, and BIC are special cases of the athove criterion. When $\eta=2$ (2.11) corresponds to AK and C_{p}, and (2.11) corresponds to BIC when $\eta=\ln n$.

It was mentioned earlice that with the inclusion of an additional variable into an existing model, the value of R^{2} increases, which means that the value of the residual sum oi squares decreases. So there is a tendency to select the model with an untacessarily large number of independent variatles if we use the smallest residual sum of squares as the criteria tor model selection. Hence we need some adjustment to the residual sum of squares, which can be done with the help of a penally function. Let us assume $q_{\text {, }}$ (multiplicative penalty) is the penalty function for the $j^{\text {ith }}$ model. Then the model with smallest $J_{\text {, }}$ (multiplicative information criteria for the $j^{\text {th }}$ model) will be selected, where Rahman (1998) defined J, as follows:

$$
\begin{equation*}
J_{1}=R S S_{1} q_{1} . \tag{2.12}
\end{equation*}
$$

J, is called the penalised sum of squares error and model j will be accepted over all other models i if

$$
\begin{equation*}
J_{1}<J_{i} . \forall i=1.2 . \ldots .(j-1) .(j+1) \ldots m \tag{2.13}
\end{equation*}
$$

Rahman (1998) gave the functional form of a possible q, as follows:

$$
\begin{equation*}
q_{1}=\left(n-k_{1}\right)^{k_{1}}\left(a_{2}\right)^{n} . \tag{2.14}
\end{equation*}
$$

where a_{1} and a_{2} are arbitrary constants, and k, is the number of free parameters included in the model under consideration.

Analytically he showed that all the existing eriteria are a special case of this new criterion in the linear regression setting. For example, if $q_{1}=\sigma^{\prime \prime}$ then J, is approximately equivalent to Akaikes informaton criterion (AIC) and if $q_{:}=\frac{k}{n}$ then J, is approximately equivalent to Schwar1\%s Bayesian information criterion (BIC).

He also mentioned that by choosing appropriate values of a_{1} and a_{2}, it is possible to develop an infinite number of new criteria which will perform well in a range of situations. But the problem with this penalty function is setting the values of a_{1} and a_{2} for a particular data set. Also the penalty function is a function of n, the sample size, and k, the number of free parameters: and independent of data values, i.e. for the same set of competing models, a change of data sets or regressors does not have any impact on the penally function. To overcome these problems, we redefine the
multiplicative information critena using mean squared error. which is discussed in Chapter 4.

2.3 INFORMATION CRITERIA BASED MODEL SELECTION

The purpose of this section is to revieu the relevant literature on information criteria (IC) based model selection. An IC model selection procedure is based on choosing the model with the largest maximised log-likelihood minus a penally term. There are a number of penalty functions available in the literature. All of them are a function of the number of free parameters in the model and many include the sample size. But from the user's point of wiew. which one is the best for a particular data and set of models is a question to be antwered as there is little agreement about what the correct answer to this question is. Among the aralable IC. AIC. proposed by Akaike (1973). is the most widely used and poper ar criterion in economics and econometrics (see for example. Hurvich and Tsai (1991). Mills and Prasad (1992). Fox (1995) and Hughes (1997)). Therefore we begin our review with AIC. followed by the BIC model selection criterion proposed by Schwarz (1978) which assumes a prior distribution of the parameter of the proposed model. In addition to these two widely used criteria, we will look at the literature on some other criteria, which include Schmidts (1975) Gencralized Cross Validation (GCV) criterion, Hannan aßd Quinn's (1979) criterion, (HQ), Hocking's (1976) criterion (HOC), and JIC, recently proposed by Rahman and King (1999).

Akake's Information Criterion (AIC) grew out of Akankes (1973. 1974) research on selecting the thest order of an autoregressive process. It gives a measure of the distance betueen estimated model and the true data generating process using Kulbach-Lemblers (1951) information theory. AIC was derived under the assumption that the true distribution can be described by the given model when its parameters are sumably adjusted. Several authors define AlC in different forms, but the most popular one for ans general model selection purpose can be written as the penalised log-likelitood form

$$
\begin{equation*}
\mathrm{AIC}=1_{1}\left(\hat{\theta}_{1}\right)-h_{1} . \tag{2.15}
\end{equation*}
$$

Where $L,(\hat{\theta}$,) is the maximised log-fikelihood function and $\hat{\theta}$, is the maximum thehood estumator of θ_{1}, the vector of k, free parameters included in the model $M_{, ~}, j=1,2 \ldots, m$. AlC selects the model for which AlC, is the maximum among the models.

The mean expected log-likelihood can be used as a measure of the goodness of fit of a model, which is delined as the mean of the expected log-likelihood of the maximum likelihood. The larger the mean expected log-likelihood, the better the fit of the model. When there are several models whose values of the maximum loglikelihood function are the same or approximately the same then one should choose the model with the smallest number of parameters, which is called the principle of parsimony. AlC was developed to measure these two properties of the model, though
it is successful it measuring the first property rather then the second. Hurvich and Tsai (1989) concluded from their Monte Carlo study that AlC tends to overfit the data for very small samples. Sugiuro (1978; proposed a finite sample correction of AlC for the case of data generated from a normal distritution. To overcome the overfitting problem of AIC. Hurvich and Tsai (1989) derived a bias corrected version of AIC for regression and autoregressive time series models which they called AlC_{6} and expressed it as:

$$
\begin{equation*}
\mathrm{AlC}_{,}=\mathrm{AlC}+\frac{\left(k_{1}+1\right)\left(k_{i}+2\right)}{n-k_{i}-2} . \tag{2.16}
\end{equation*}
$$

This modification of AIC is useful when the sample size is small relative to the dimension of the model and is asymobicaly efficient if the true model has infinite dimensions. The simulation results of Hurvich and Tsai (1993) demonstrate that in small samples. $\mathrm{AIC}_{\text {c }}$ is superior in terms of bias and strongly outperforms AIC for the models that contain more unknown parameters than the univariate $A R$ models.

A generalised form of AIC was suggested by Bhansali and Downham (1977) and is

$$
\begin{equation*}
\operatorname{AlC}(\gamma)_{1}=L_{1}\left(\hat{\theta}_{1}\right)-\gamma k_{1} \tag{2.17}
\end{equation*}
$$

where γ is a constant and greater than one. They argued that this generalisation will help to improve the problem of overfilting and if γ increases gradually as n increases, then it will be a consistent criterion, which is discussed below.

Consistency is an important asymptotic property of a model selection criterion. It requires the model selection criterion to be able to select the true model from a set of models with probability tending to one as the sample size tends to infinity, assuming that truc model is contained in the choice set of models. Shibata (1976), who introduced the idea of consistency. recognised that AIC is not a consistent criterion. Nishii (1988) developed a technique to test the consistency of a criterion. which is briefly discussed below.

Let iC te the information criterion for the $j^{\text {th }}$ model and defined as

$$
\begin{equation*}
\mathbb{C},=L_{1}\left(\hat{\theta}_{i}\right)-D_{1}=L_{1}\left(\hat{\theta}_{1}\right)-k_{1} D_{n} \tag{2.18}
\end{equation*}
$$

where P_{1}, is the penalty for the $i^{\text {th }}$ model and $\left.I\right)_{n}$ is a function of n.
B) Theorem 4 of Nishii (1988). IC, will be strongly consistent if I, satisfies the following two conditions:

$$
\text { (i) } c_{1}=\lim _{n \rightarrow \infty} \frac{D_{n}}{n}-0 \text { and (ii) } c_{2}=\lim _{n \rightarrow \infty} \frac{D_{n}}{\ln \ln n}=+\infty \text {; }
$$

and IC, will be weakly consistent if D_{n} satisfies the conditions
(i) $c_{1}=\lim _{n \rightarrow \infty} \frac{D_{n}}{n}=0$ and (ii) $c_{2}=\lim _{n \rightarrow \infty} D_{n}=+\infty$.

If we apply this to AlC , it is transparent that AlC is not consistent as the penalty function for AIC is independent of n, the sample size. Some other researchers have
also shown that AIC is not consistent (see for example. Atkinson (1980). Hannan (1982). Shibata. (1986). and Koehler and Murphree (1988)).

Akaike's 1973 and 1974 research work was extended by Schwarz (1978). who gave a Bavesian solution to the problem. As it is based on the Bayesian approach, it has become known as the Bayesian information Criterion (BIC). During 1978 two more Rays, ian criterion were proposed by Sawa (1978) and Leamer (1978). But among these Bayesian criteria. BIC has the most general asymptotic properties. Rissanen (1978) :aso proposed an IC based on the Bayesian approach, which is the same as BIC. In a similar atay to AIC. BIC can be expressed in the penalised log-likelihood form as follous:

$$
\begin{equation*}
\mathrm{BIC},=L,\left(\hat{\theta}_{1}\right)-\frac{k_{1}}{2} \ln n \tag{2.19}
\end{equation*}
$$

BIC assumes a proper prior distribution of the parameters of the proposed model and selects the model with the highest asymptotic posterior probability. So the use of Schwarz's criterion may te difficult if the proper prior distribution of the parameters is not clearly defined (Ahaike, 1981). The criterion developed by Rissanen (1978, 1986, 198\%, 1988) on the basis of the minimem description length (MDL) overcomes this problem of BIC.

Hannan and Quinn (1979) derived a criterion for selection of the order of an autoregressive model, i.e. to determine the most desirable lag-length, which is known
as the Hannan and Quinn (HQ) criterion. This criterion is less commonly used, but is ideal for the comparison of AIC and BIC. because it shares the property of both AIC and BIC. The criterion can be written in penalised log-likelihood form as

$$
\begin{equation*}
\mathrm{HQ}=L_{1}\left(\hat{\theta}_{1}\right)-k, \ln \ln n . \tag{2.20}
\end{equation*}
$$

They recognised that BIC is a consistent criterion and the characteristics of HQ are similar to those of 3IC with the exception that in small samples, the two criteria are Ithely to select different models. Fox (1995) noted that this criterion shares a property of both AIC and BIC in that its marginal penalty is constant as k, increases for fixed n. Many researchers shewed that this is a consistent criterion, see for example Nishii (1988). Hannan and Quinn (1979). and Atkinson (1981).

The variable selection criterion proposed by Mallows (1964) has been widely used in many social sciences including economics and econometrics. As new and more efficient methods became available for variable and model selection purposes, the acceptance of this criterion has decreased. The penalised log-likelihood form of this criterion henceforth will be denoted as MCP to distinguish it from C_{p} defined in Section 2.2. It has the following form:

$$
\begin{equation*}
\mathrm{MCP}_{j}=L_{j}\left(\hat{\theta}_{j}\right)-\frac{n}{2} \ln \left(1+\frac{2 k_{j}}{n-k^{\circ}}\right), \tag{2.21}
\end{equation*}
$$

where k^{c} is the dimension of the largest model which nests all possible models. This is a consistent criterion (see. Athinson (1981) and Nishii (1988)). In Mallows ${ }^{\circ}$ criterion. the variance estimate is obtained from a regression model which includes the errire set of regressors. An alternative estimate of the variance has been suggested using only the number of regressors in the model under consideration. which results in a new criterion proposed by Roihman (1968) and can be expressed in the following penalised log-likelihood form.

$$
\begin{equation*}
J_{r_{1}}=L_{,}\left(\hat{\theta}_{i}\right)-\frac{n}{2} \ln \left(n+k_{i}\right)+\frac{n}{2} \ln \left(n-k_{i}\right) . \tag{2.22}
\end{equation*}
$$

The same eriterion was suggested by Akaike (1969) and Amemiva (1972, 1980). Akaike called it the Final Prediction Criterion (FPC), while Amemiya called it the Prediction Criterion (PC) .

Hocking (1976) suz, asted a model selection criterion denoted by S_{p}. The penalised log-likelihood form of this criterion can be given by

$$
\begin{equation*}
\mathrm{HOC}_{1}=L_{,}\left(\hat{\theta}_{i}\right)+\frac{n}{2} \ln \left(n-k_{j}\right)+\frac{n}{2} \ln \left(n-k_{,}-1\right) . \tag{2.23}
\end{equation*}
$$

This criterion was thoroughly reviewed by Thompson (1978), and was given an alternative justification by Breiman and Freedman (1983). In his paper, Thompson (1978) gave the derivation and justification of this criterion along with C_{p} and J_{p}.

One major limitation of Hocking's criterion is it is not applicable for nonstochastic regressors.

Cross-validation is a statistical tool. which uses the technique of splitting data into two sets. The first set is used to develop the model called the model building set. while the second set is used to evaluate the reasonableness and predictive ability of the selected model. This technique was suggested by Schmidt (1971, 1974, 1975). Allen (1971. 1974). Stone (1974) and Geisser (1974. 1975). Schmidt called it the cross-validation score SSPE (Sum of Squared Predictive Error), while Allen called it PRESS (Predictive Sum of Squares). Typically this technique involves deleting an observation from the sample, then fitting the model using the reduced sample, which is used to predict the deleted observation. This is repeated for each observation in the sample and the model with the smallest mean squared error of prediction is selected as the best model. The direct computation of the CV is burdensome. Schmidt (1971) and Allen (1971) gave a formula to compute CV directly, but this criterion is different in nature from the other model selection criterion. Craven and Wabba (1979) gave a generalised form of CV and called it Generalised Cross Validation (GCV), which is an approximation of CV and is a comparable form to the other criteria. Nishii (1988) showed that GCV is not a consistent criterion. According to Fox (1995), the penalised log-likelihood form of the GCV criterion can be written as

$$
\begin{equation*}
\mathrm{GCV},=L_{j}\left(\hat{\theta}_{j}\right)+n \ln \left(1-\frac{k_{j}}{2}\right) \tag{2.24}
\end{equation*}
$$

Fox (1995) expressed Theil's (1961) \bar{R}^{2} criterion in the following penalised loglikelihood form for model selection purpose and we will henceforth denote it as RBAR to distinguish it from R^{2} and \bar{R}^{2} defined in Section 2.2.

$$
\begin{equation*}
\operatorname{RBAR}=L_{i}\left(\hat{\theta}_{i}\right)+\frac{n}{2} \ln \left(n-k_{i}\right) \tag{2.25}
\end{equation*}
$$

Rahman and King (1997) derived an analytical formula for finding the probability of correct selection of the true model from a set of competing alternative regression models. They observed that for samples of size at least 8 and when the mode! with the lowest number of regres:ors is true then the probabilities of correct section ohtained from AIC . BIC and RBAR satisfy the inequality $\mathrm{BIC}>\mathrm{AlC}>\mathrm{RBAR}$. On the other hand, when the model with the highest number of regressors is true then the picture is exactly reverse, i.e. the probabilities of correct selection are RBAR $>\mathrm{AlC}>\mathrm{BIC}$. This behaviour of BIC and RBAR motivated them to develop a new criterion on the basis of the simple average of the penaity functions of BIC and RBAR. They called it the joint information criterion (JIC) (Rahman and King (1999)) which can be expressed as the following penalised log-likelihood form.

$$
\begin{equation*}
\mathrm{JC}_{3}=L_{j}\left(\hat{\theta}_{j}\right)-\frac{1}{4}\left(k_{j} \ln n-n \ln \left(1-\frac{k_{j}}{n}\right)\right) \tag{2.26}
\end{equation*}
$$

They showed that it is a strongly consistent criterion. which performs well in a range of situations and therefore is a very competitive model selection criterion. In their
paper, they mentioned that the probability of correct selection is directly related to the sample size but inversely related to the error variance.

The small sample performance of AIC and BIC was studied by Lütkephol (1984). He concluded that for both small and large samples. the performance of AIC is better than BIC in one-step-ahead forecasting for selecting $\operatorname{AR}(1)$ and $\mathrm{MA}(1)$ models, but worse in five-step-ahead forecasting. Meese and Geucke (1984) also compared the forecasting ability of AIC and BIC along with three other criteria and concluded that AlC performed the best in most of the cases. Schwarz (1978) reported thai for large samples, the performance of BIC differs markedly from that of AIC with respect to selecting the correct model. For selecting the hest model from a large set of models. Kohn (1983) found that BIC consistently chooses a model with the smaller dimension. From the research results of Hurvich and Tsai (1991). it is clear that for small samples the modified version of AIC. AIC. . performs significantly better than AIC and BIC and marginally better than these criteria for moderately small samples. In. another research paper. Hurvich and $\mathrm{Ts}_{\mathrm{s} \text { :i }}$ (1990) reported that under centain conditions. AIC is likely to perform better than BIC in small samples. Crato and Ray (1996) conducted a large-scale simulation study to compare the performance of AIC. $\mathrm{AlC}_{\text {, }}$ and BIC , and concluded that for pure fractional noise, the performance of BIC is better than the other two criteria. In order to compare the performance of AlC, AlC, , BIC, HQ, MLD and RBAR, Mills and Prasad (1992) conducted simulation experiments in determining the correct data generating process in autoregressive and

Chapter 2

linear regression models. From their simulation results. they discovered that the performance of AIC, is better in small samples and with an increase in sample size. the relative performance of AIC, gradually hecomes worse. AIC tends to over parameterise the model. They concluded that from a user's point of view. BIC should be the criterion to the used for selecting the correct model. From the simulation study of Schmidt and Tscherning (1993), it was concluded that among AIC. . BIC and HQ. the performance of AIC, is the best and HQ is the worst in selecting time-series ARIMA models. More detailed discussion of the above mentioned information criteria can also be found in Hughes (1997), who derived an AlC-type criteria using KL information in the presence of one-sided information on the parameters under dispute. He pointed out that AIC out performs BIC if the larger modet is the true model. On the other hand. the reverse picture is observed if the model with smaller number of parameters is the true model. From a simulation study, Kwek (2000) found that in small samples, the performance of RBAR is the bes and BIC is the worst procedure for selecting the correct model among autoregressive conditional heteroscedastic (ARCH) models and generalised ARCH (GARCH) models.

Stone (1977) and Nishii (1986) noted that CV is asymptotically equivalent to AIC. From the simulation results of Holmes and Hution (1989), it is apparent that if there is a weak relationship between the dependent and independent variables, then the RBAR criterion performs better in terms of selecting the true model. But if the relationship is strong then $\mathrm{AlC}, \mathrm{BlC}, \mathrm{HQ}$ and PC choose the correct model with high
probabilities and in this situation the performance of BIC is the best, while the performance of RBAR is the worst. For selecting the best prediciive model from a class of linear regression models. Shao (1993) showed that CV is asymptotically equivalent to AlC and $\mathrm{N}_{\mathrm{CP}} \mathrm{P}$ in terms of consistency. Shibata (1981) showed that AlC is asymptotically equivalent to MCP . For the variable selection problem in the linear regression model, Thompson (1978) recommended Mallows' MCP criterion for fixed regressors. while for random regressors his preferred criterion is Hocking's HOC.

The penalty function of all the above mentioned criteria in the penalised loglikelihood form is a function of the number of free parameters involved in the model under consideration and often the sample size. It implies that for a fixed sample size and a particular set of models, changes of the data set do not have any impact on the penalty function. This motivates researchers to find data oriented penalty functions. so that a change of data set will also change the penalty value in numerical terms. As far as we know, for model selection in linear regression settings. Rao and Wu (1989) first intronuced the idea of a flexible penalty function based on data in linear regression models. They analytically showed that the criterion proposed by them on the basis of a flexible penalty function is strongly consistent without making any distributional assumptions. They argued that the performance of this type of criteria is better than the criteria based on the fixed penalties. Chen et al. (1993) used a data oriented penalty function for selecting AR models for time scries. Bai el al. (1999) extended the work of Rao and $W u$ (1989) for selecting linear regression models using

Chapter 2

Literature Survey

General Information Criterion (GIC). They argued that the fixed choice of penalties may not be good in all situations. They showed that the data-oriented punalties guarantee strong consistency and have some advantages over fixed penalies.

It is well known that the performance of the existing criteria varies from situation to situation and none of the criteria performs well in all situations. Some criteria favour the model with the smallest number of parameters. while others favour the model with the largest number of parametrrs. For example. BIC always favours the model with the smallest number of parameters among competing models, while RBAR favours the model with the largest number of parameters. As a result, the average probabilities of correct selection vary from model to model. Ideally a model selection unterion should select the true model without favouring one model over others. So the idea of making the probabilities of correct selection equal has evolved. This is called controlling the probability of correct selection.

King ei al. (1995) proposed an algorthm, which makes the probability of correct selection equal. They propose i wo approaches. Their first approach is based on the idea of a common model. But the problem with this approach is that there may not always be a common model and there is no fixed rule for finding the probabilities when the competing models are nested. Their second approach is based on representative fixed points and they proposed two techniques for selecting

Chapter 2

representative fixed points. The first entirely depends on the judgment of the user so for the same data set and models. the conclusions of different reseathers may vary.

Forbes a al. (1995) proposed three techniques for controlling the probability of correct selection of one model over the other. Their first two methods are for the variable selection purpose and the final one is for general model selection. but the problem with this approach is that the penalties that control the probability of correct selection are approximate penalties. Hossain (1998) proposed an empirical based information criterion called ClC , which is based on King et al. 's (1995) algorithm for controlling probabilities of correct selection and the bootstrap samping method. He applied CIC to selecting the correct model from a set of linear. log-linear and BoxCox transformation models. From his study, it is observed that the performance of CIC is tetter than the existing IC for selecting the correct model.

On the topic of finding empirical penalty functions. retated work has been done by Kwek (2000) for selecting conditional heteroscedastic (CH) and autoregressive conditional heteroscedastic (ARCH) models, while Billah (2001) used the same technique for selecting appropriate time series models including exponential smoothing models. In her study. Kwek concluded that CH information criterion and the optimal small sample proccdures proposed by her outperform all other existing IC for selecting ARCH and GARCH models in small samples. She suggested that BIC should not be used for selecting CH models, because it has been built without
considering the one sided information used in the estimation of CH models. From the simulation results. she concluded that among the existing criteria. in small samples the peiformance of RBAR is the best for selecting ARCH and GARCH models followed by AIC, and BIC is the worst performing criterion. But in large samples, AlC performed relatively better than RBAR. The well known tendency of BIC to under fit and the tendency of AIC to over fit in linear regression models was also ohserved in the results of her experiments. She mentioned that although BIC has the strongest consistency property, it under fits the model in small samples and as a result, the performance of BIC is the worst in selecting toth ARCH and GARCH models. This indicates that the efficiency of an IC is not guaranteed by its consistency property.

In order to see the performance of the widely used existing IC procedures for selecting exponential smoothing models on the basis of mean average probability of correct sclection (MAPCS), Billah (2001) conducted a Monte Carto simulation study. From his study he found that the performance of BIC is the best followed by HQ and MCP is the worst at selecting exponential smoothing models. He proposed two penalty estimation methods (PEM). PEM-GS and PEM-SA on the basis of maximising the MAPCS for the model selection problem for the linear regression model with different ARMA error processes. From his simulation study, he concluded that for small samples the newly proposed methods consistently perform better than the existing IC. He also did simulation experiments for selecting models
on the basis of the model's forecasting accuracy. and concluded that the model selection methods proposed by him were better than availahle IC methods.

2.4 SIMULATED ANNEALING OPTIMISATION TECHNIQUF

In any model building process. the modeller needs to estimate the model parameters. There are some methods of estimation, for example the least squares method, where the parameters can be estimated directly. But, there are many methods, for example non-linear least squares. maximum likelihood and the generalised mettod of moments, where the estimation process is totally dependent on a numerical optimisation technique, which attempts to iterate to the desired solution. Several itcrative search algorithms are aralabic in the literature. For example, the GaussNeviton method and Newton-Rapson method. All iterative methods use the following four steps to find the best estimates of the parameters (SAS (1992)):
(i) The modeller has to provide initial starting values for the parameter estimates,
(ii) the algorithm selects updated values for the parameter estimates such that the error sum of squares/log-likelihood for the updated values is less/greater than the error sum of squares/log-likelihood for the initial starting values.
(iii) the algorithm continues to select updated values for the parameter estimates that reduce the error sum of squares/increase the log-likelihood, and
(iv) the algorithm stops when a convergence criterion is met.

For all iterative methods. providing good initial values can be important. because the solution found will depend on the initial starting value. Unfortunately, for many problems there is no way to find a starting value that guarantees the global optimum. Bad starting values can increase computer time and could prevent the procedure from finding the correct estimates of the parameters, which is one of the drawbacks of these methods. Another problem is ithat for some of these methods, e.g. the NewionRapson method, both first and second derivatives are necessary and in some situations these derivatives do not exist. Most of the existing iterative algorithms assume that the functional form of the objective function is approximately quadratic and the function has one optimum. Unfortunately. some functions violate these assumptions also. For multiextrema functions. these iterative methods cannot get away from a local extrema and converge only to one of the local extrema, subject to the starting value of the parameter. This is the mijor drawback of these iterative methods and in this situation, researchers typically try to find the global optimum by using different arbitrary starting values (see Cramer (1986) and Finch et al. (1989)). Even if the algorithm of these methods converges, it does not guarantee that the estimated value is the global optimum. Most of the popular packages, for example SAS, RATS and TSP, used for econometric and statistical analysis use these methods. To overcome these problems, one solution would be to introduce a global optimisation method that can avoid local maximum or minimum, and can find the optimum value of the parameters from the entire parameter space. The task of a

Chapter 2

Literature Survey
global optimisation method is to find absolutely the best set of parameter values to optimise an cbjective function.

There are a number of different ways of finding the global optimum of a function. The earliest methods were associated with the grid search technique and the function is evaluated at equi-spaced points throughout the parameter space. Although this method is typically successful at finding the global optimum of a complicated function, the computational time of this method is too high for a refined search (Billah and King (2000b)). Global optimisation techniques were developed to overcome the problems of grid search and the conventional existing iterative methods. The numerical optimistion techniques have several advantages over the grid search method. There are several numerical global optimisation techniques available in the literature and specific optimisation methods have been developed for many ciasses of optimisation problems. A comprehensive list includes, i) Mixed Integer Programming, ii) Interval Methods, iii) Clustering Methods, iv) Evolutionary Algorithms, v) Hybrid Mcthods, vi) Statistical Methods, vii) Tabu Search and viii) Simulated Annealing. Gray et al. (1997) did a comprehensive survey of these methods and the description of them is available on the intemet site http://www.cs.sadia.gov/opt/survey/main.html. There are several global optimisation programs available to solve different types of optimisation problems. For example, ASA-CalTech Adaptive Simulated Annealing for finding the global optimum of a continuous non-convex function over a multidimensional interval, CURVI-Bound

Constrained Global Optimisation. for solving constrained and unconstrained nonlinear optimisation problems: and SIMANN-Simulated Annealing, which implements the continuous simulated annealing optimisation algorithm described in Corona et al. (1987). A review of the available global optimisation programs was done by Pinter (1996) and is available on the internet site http://mat.gsia.cum.edu/pinter.fil.

Selection of a global optimisation method depends on the nature of the problem. The objective function we have to optimise is a step function. From the literature it is apparent that SAO performs well at finding the global maxima in the presence of local maxima and for functions like ours which have plateaux and other ill-behaviour (see Kirkpatrick et al. (1983). Romeo at al. (1984). White (1984) and Goffe al al. (1994)). A comprehensive discussion of the theoretical and practical details of SAO is given in Aarts et al. (1997). Simulated annealing is one of the numerical optimisation techniques, which is a probabilistic method for finding the global maximum or minimum of a function that may possess several iocal maxima or minima (Kirkpatrick ot al. (1983) and Cerny (1985)). Annealing is a heat-treating process that is applied to glass, metals or materials and involves slowly cooling them to obtain a strong crystalline structure. The basic idea of SAO comes from the theory of thermodynamics and it is a numerical optimisation technique based on a Monte Carlo approach for finding the global optimum of an objective function in the presence of several local optimum. The main advantage of SAO is its ability to move
from the region of a local optima to the region of a global optimum. Another advantage of this optimisation technique is. like the conventional algorithms. it assumes very little about the function and can handle the optimisation problem very efficiently and it is explicitly designed for functions with multiple optima (Corana ct al. (1987): Goffe et al. (1994)).

There are several SAO algorithms available in the literature. An early one was introduced for the search of optima of discrete variables called combinatorial SAO (Lawler (1976) and Papadimitriou and Steiglitz (1982)). The combinatorial SAO algorithm has been used successfully in computer and circuit design (Kirkpatrick et al. 1983 and Wang ot al. (1988)), image processing (Carnevali it al. (1985)), reconstruction of pollycrystalline structures (Telly at al. (1987)). neural networks (Wasserman and Schwarz (1988)), and pollution control (Derwent (1988)). Other SAO algorithms are for example, adaptive random search (Pronzato at al. (1984)), fast SAO (Szu and Hanty (1987)), down hill simplex with annealing (Vetterling er at. (1994)) and direct search SAO (Ali of al. (1997)). The implementation of a SAO algorithm involves the application of the Metropolis algorithm (Metropolis et al. (1953)), which is the heart of the SAO technique.

The combinatorial SAO algorithm was modified by Vanderbilt and Louie (1984), Bohachevsky et al. (1986) and Corana et al. (1987) to optimise functions of continuous variables. Among these, the Corana et al. (1987) implementation of SAO
appears to be the best in terms of combination of ease of use and robustness (Goffe at al. (1994)). Goffe et al. (1994) tested the effectuveness of the SAO technique against some well known optimisation algorithms. namely, the Nelder and Mead simplex method and a general purpose global oplimiser using Adaptive Random Search (ARS). From their test results it was observed that SAO never failed to reach the minimum of the function and is the best of the three methods with respect to reliability foilowed by simplex method. ARS is the least reliable of the three methods.

Goffe et al. (1994) compared the Corana et al. (1987) implementation of SAO with three multivariable optimisation algorithms in the IMSL library on four econometric models of four different natures. The first model was an example of multiple minima. which contains only two parameters (Judge ot al. (1985, pp.956-957)) and the second was a rational expectations exchange rate model with 14 parameters. The third model was an efficiency study of the banking industry using a translog cost frontier system with 62 parameters and the fournh fits a neural network to a chaotic time series with 35 parameters. On the Judge et al. function, SAO correctly differentiated between the locas and the global minima and finds the global optima, while the conventional algorithms failed. All conventional algorithms failed to find the optimum of the second model and did not offer any reason for their failure, but SAO was able to identify the reason. After correcting the problem, SAO found the optimum easily, but conventional algorithms were successful only 21% of the time. Nose of the

Chapter 2

conventional algorithms was able to find the optimum of the third model. while SAO did it easily. In the case of the fourth model. SAO found a much better optimum than did any of the conventional algorithms. They concluded that if SAO was not able to find the global optimum. then the nature of the function makes it impossible for any other method to find the global optimum.

Let $\varphi=\left(\varphi_{1}, \varphi_{2}, \varphi_{n}\right)^{\prime}$ be an $n \times 1$ parameter vector to be estimated each ranging in a finite continuous interval and $f(\varphi)$ be the bounded function to be maximised. The implementation of the Corana al al. (1987) SAO algorithm requires the step length vector for φ say \mathbf{v} and the iemperature T. For maximising a function the following steps are required for implementing Corana ef al. (1987) algorithm.

Stepl(Initialisation)

Let the initial values for φ, v and T be φ_{11}, v_{0} and T_{n}, respectively. Let the value of the objective function at the initial parameter vector φ_{0} be f_{0}. Also set $\varphi_{9, p n}=\varphi_{0}$ and $f_{a p r}=f_{0}$. where opt stands for optimum.

Step 2 (Selection of new point)

Randomly select another point φ in the parameter space within a neighbourhood of the original parameter vaiue using the following equation.

$$
\begin{equation*}
\varphi_{i}=\varphi_{1}+n_{i} . \tag{2.27}
\end{equation*}
$$

where r is a random number generated in the range $\{-1.1]$ by a pseudorandom number generator and v, is the $i^{\text {th }}$ component of the step vector v. If φ lies outside the definition domain of $f(\varphi)$ then a new point is randomly generated until a point is found inside the definition domain.

Step 3 (Accept or reject the point and hise of Metropolis criterion)

Let the value of the objective function at this new point be $f^{\circ}=f\left(\varphi^{\circ}\right)$. If $f^{\prime}>f_{4 q n}$ (uphill move) ther accept the new point and set $\varphi_{\text {,yp }}=\varphi^{\prime}$ and $f_{\text {op }}=f^{\prime}$. If $f^{\prime} \leq f$, then accept or reject the point with acceptance probability p. computed using the Metropolis cricrion as follows:

$$
\begin{equation*}
p=\exp \left(\frac{f-f_{r p p}}{T}\right) . \tag{2.28}
\end{equation*}
$$

This computed value of p is then compared with a pseudorandom number p, which is generated from the uniform distribution in the range $[0,1\}$. If $p<p$, the point is accepted (downhill move) otherwise it is rejected. In the case of acceptance the values of $\varphi_{o p n}$ and $f_{1, p n}$ are updated by φ^{\prime} and f^{\prime}, respectively, and in case of rejection, there is no change in $\varphi_{\text {apy }}$ and $f_{\text {op, }}$. Lower temperatures and larger differences in the function values are the two factors that decrease the probability of a down hill move.

Step 4 (Adjustment of step length vector \mathbf{v})

As mentioned by Corana et al. (1987), both a higher number of acceptances or higher number of rejections wastes computational effort. On the contrary, 50% of moves accepted and 50% rejected indicates that the algorithm is running well. To make this the case, after N, steps through all elements of φ, the step length vector \mathbf{v} is adjusted so that 50% of all moves are accepted. The objective of doing so is to sample the function widely. If more than 60% of the points are accepted for φ_{i}. then she relevant elements of \mathbf{v} are enlarged by the factor $1+2.5 c_{i}\left(a_{i} / N_{1}-0.6\right)$, where $a_{\text {, }}$ is the number of points accepted and c_{i} is the $i^{\text {th }}$ element of the vector that conirols step variation. The element is declined by, $1+25 ;\left(0.4-a_{1} / N_{3}\right)$, if less than 40% of the points are accepted. Once an equilibrium state has been achieved for a given temperature, the temperature is aduced to a new temperature as defined in step 5 and the process stated again faking values of the last iteration of the algorithm as the initial values.

Step. 5 (Temperature reduction)

After N_{T} times (N_{T}, is the number set by the user for temperature reduction test) through the steps 1 to 4 , the temperature, T, is reduced. The new temperature is given by

$$
\begin{equation*}
T=r_{T} T, \tag{2.29}
\end{equation*}
$$

where r_{T} is the temperature reduction coefficient which lies between 0 and I.

Chapter 2

Literature Survey

Step 6 (Terminating criterion)

The last N_{f} (N_{r} is a number set by the user for successive temperature reductions to test for termination) values of the largest function vilues from the end of each temperature reduction are recorded and compared with the most recent value. The algorithm will terminate if all of these N_{r} differences from the most recent value are less than the terminating criterion ε. a very small number.

Goffe et al. (1994) introduced four extensions of the Corana at al. algorithm. The first modification allows the rescarcher to test if SAO has indeed found the global optima: the second modification allows the researcher to restrict the search area to a sunset of the parameter space. The third extension permits the researcher to determine a critical initial parameter for the algorithm and the final one directs the selection of the initial temperature, an essential parameter that controls the robustness of the algorithm. This allows the researcher to minimise the execution time of the algorithm.

The simulated annealing algorithm has several potential advantages over conventional optimisation algorithms. First, it can distinguish between different local maxima and can escape from local maxima by moving both uphill and downhill. The algorithm makes very few assumptions regarding the function to be maximised. It is robust with respect to non-quadratic surfaces so the function need not be approximately quadratic: and even need not be differentiable (see Corana et al.
(1987)). Second. a very large element in the step length vector of SAO indicates that the function is very flat in that parmmeter, which is valuable information for the researcher about the function. Third. SAO can identify comer solutions because " can snuggle up to a corner for functions that do not exist at that comer. The final and the most important advantage of SAO is that it can optimise functions that are very complex or impossible to optimise. Simulated annealing requires high computational power. which is the only drawhack of this method. However. recent developments with respect to computer power largely eliminates this problem. As compared to other global optimisation methods. SAO has many advantages. These include the relative case of implementation, applicability to almost any problem and the ability to provide reasonably good solutions for most problems. Depending on the problem to which it is applied, SAO appears to be competitive with many of the best heuristic methods (Johnson et al. (1997)). In this thesis we use SAO to estimate penalies it .t maximise the average probability of correct selection of linear regression models in small samples.

2.5. CONCLUDING REMARKS

The main purpose of this chapter was to review different model selection procedures. This chapter also contains a review of relevant literature on the global optimisation technique SAO and its applications in econometrics. Several researchers have argued that a sequence of pairwise tests has several drawbacks, so may not be appropriate for the purpose of model selection. We reviewed the literature of two alternative
methods. mode! selection based on residual sum of squares and model selection based on IC.

There are several model selection procedures available in the literature which are based on residual sum of squares. We discussed the following: coefficient of multiple determination and a Jjusted coefficient of determination by Theil (1961). Mallows' (1964) C_{p} criterion. Amemiya's (1980) PC criterion, Rothman's (1968) J_{p}, and Hocking's (1976) S_{p}. Zhang's (1992) final prediction error (FPE) criterion and Rahman's (1998) generalised model selection criteria are also based on residual sum of squarcs. The advantages and disadvantages of residua! sum of squares based model selection was also discussed. In Chapter 4 a new information criterion based on residual mean square will be proposed for model selection.

Nowadays IC based model selection procedures are widely accepted for model selection purposes in different areas of rescarch. There are several If procedures avalable in the literature. We selected some of the widely used IC procedures, for example, AIC, proposed by Akaike (1973), BIC proposed by Schwarz (1978), Schmidt's (1975) Generalized Cross Validation criterion (GCV), Hannan and Quinn`s (1979) criterion (HQ), Hocking's (1976) criterion (HOC), and JIC, proposed by Rahman and King (1999). We discussed some of the main features of these procedures mainly in relation to selection of linear regression models.

The final section of this chapter contaias some background on global optimisation techniques with particular emphasis on the SAO technique. This section also contains a review of the literature on SAO and its application in econometrics. From the literature. it is apparent that for finding the global opimum of any function which has several local optima, SAO is nearly always successful in contrast to the outcomes from standard iterative methods.

CHAPTER 3

IMPROVED PENALTY FUNCTIONS FOR INFORMATION CRITERIA BASED MODEL SELECTION ${ }^{1}$

3.1 INTRODUCTION

One of the principal decision making postiems faced by applied statisticians and econometricians is that of choosing an appropriate reodel from a number of compeung models for a particular data set. This pert an can be solved in several ways. One, and probably the most popular way, is to use an information criterion (IC) to make the choice. In general, an IC roodel selection procedure is based on choosing the model with the largest maximised log-likelihood function minus a penalty function which depenta the number of parameters and in most cases the sample size. At present. a namber of model selection criteria that fall into this category are available. They include AIC. PIC, GCV, HQ, RBAR and HOC. These criteria were discussed in Chapier 2. Many of these procedures were originally developed with particular types of models in inind, and not necessarily as IC procedures. Fox (1995)

[^0]expressed these procedures in this framework by finding their implied penalty functions in the context of choosing between different linear regression models.

A small number of researchers have conducted Monte Carlo studies comparing various subsets of the above criteria in a variety of different settings: see for example Bora-Senta and Kounias (1986), Hurvich and Tsai (1989. 1991). Mills and Prasad (1992) and Hughes (1997). The general conclusion one draws from these and other studies is that no one procedure dom:nates: for modets with fewer parameters. BIC does well but at the expense of selecting larger modets when these are indeed the true model. AIC and RBAR. on the other hand, favour larger models with lower relative probabilities of selecting smaller models when these models are true. HQ is somewhere between these two extremes. not being as harsh as BIC nor as generous as AIC and RBAR on larger models when they are true.

As noted by Pötscher (1991), maximizing an IC is equivalent to testing each model against all other models by means of a standard likelihood ratio test and selecting that model which is accepted against all others. The choice of peralty function determines the values of the critical values of the tests. In hypothesis testing, when critical values are changed, this either increases the probability of a Type I error while decreasing the probability of a Type II error, or vice versa. Clearly, in the context of model selection, a change in penalty function induces similar changes in the probabilities of

Chapter 3

various types of errors. Therefore it is not surprising that no one JC procedure dominates all other procedures.

We are then left with the question of which IC procedure to use in practice. Given that many of the above procedures have an asymptotic justification, it is far from clear which procedure shouid be favoured in small samples. In this chapter. we outine an alternative approach for calculating a penalty function based on (i) treating all models equally: (ii) calculating the average probability of correct selection for a given model using a Bayesian prior distribution to weigh different parameter values: and (iii) optimizing the mean of these average probabilities of correct selection. In related work. similar ideas have treen proposed for IC model selection procedures in the context of selecting ARCH and ARCH type models by kwek and King (1998), selecting a structural break :a dinear regression by Aram and King (1998) and selecting an ARMA time series model by Billah and King (1998). A major problem in this work has been the high computational cost involved in finding the penalties. The approach outlined in this chapter is much more manageahle in this regard.

The plan of this chapter is as follows. A new model selection technique is outined in Section 2. In Section 3, we outline and discuss two sets of Monte Carlo experiments. The purpose of the first se! of experiments is to investigate what is the most appropriate combination of the number of parameter drawings (q) and the number of replications (N) fir a fixed total $g N$ when estimating the average probability of
correct selection of the true model using simulation methods. The second set of experiments is conducted to compare the performance of our new approach with selected existing criteria in the context of selecting the true model in the classical linear regression setting. In Section 3.3.1. we discuss the data generating process used to conduct Monte Carlo simulation experiments. Section 3.3.2 contains an outline of the experiments and discussions of results for the first set of experiments. The outline of the experiments. results and discussions of the second set of experiments are presented in Section 3.3.3. Section 3.4. the final section. contains some concluding remarks.

3.2 PROPOSED TECHNIQUE

We are interested in selecting a modi ifrom m alternative models. M_{1}, M_{2}, \ldots. M_{m}, for a given data set. Let the model $M, j=1,2 \ldots \ldots$, , be represented by

$$
\begin{equation*}
\mathbf{y}=f\left(\mathbf{X}_{j}, \boldsymbol{\theta}_{,}, \mathbf{u}_{j}\right) \tag{3.1}
\end{equation*}
$$

where y is an $n \times I$ vector of observations on the dependent variable. θ, is a vector of k, free parameters, \mathbf{X}, is an $n \times k^{\dot{c}}$, matrix, $\vec{k}_{\dot{\prime}}=(k,-1)$. and \mathbf{u}, is an $n \times 1$ vector of random disturbances distributed as $\mathrm{N}(0, \sigma, \mathbf{I})$. \mathbf{X}, contains a column vector of ones in its first column and $\left(k^{*},-1\right)$ vector of observations on non-stochastic variables (e.g., in linear regression model there are $\left(k_{j}^{*}-1\right)$ non-constant regressors) in the remaining $\left(k_{,}^{*}-1\right)$ columns. Let the log-likelihood function for the model M, be
$L_{,}\left(\theta_{1}\right)$ and the maximised value of $L_{i}\left(\theta_{,}\right)$be $L_{i}\left(\dot{\theta}_{i}\right)$. where $\dot{\theta}_{\text {, }}$ is the maximum likelihood estimator of $\theta_{\text {, }}$. Let r, denote the penalty for model \dot{M}, In almost all IC based mode! selection procedures, the model with the largest I, is selected. where I, is given by

$$
\begin{equation*}
I_{j}=L_{,}\left(\hat{\theta}_{r}\right)-p_{i} \tag{3.2}
\end{equation*}
$$

This I, is called the penalised log-likelihood. Following Fox (1995), the penalised log-likelihood forms of AIC. BIC. HQ. RBAR, GCV and HOC are given by.

$$
\begin{align*}
& \mathrm{AIC}_{1}=L_{1}\left(\hat{\theta}_{1}\right)-k_{1} \tag{3.3}\\
& \mathrm{BIC}_{1}=L_{i}\left(\hat{\theta}_{3}\right)-\frac{k_{1}}{2} \ln (n) \tag{3.4}\\
& \mathrm{HQ}_{1}=L_{1}\left(\hat{\theta}_{1}\right)-k_{1} \ln (\ln (n)) \tag{3.5}\\
& \mathrm{RBAR}_{3}=L_{1}\left(\hat{\theta}_{3}\right)+\frac{n}{2} \ln \left(n-k_{1}\right) . \tag{3.6}\\
& \mathrm{GCV}_{1}=L_{2}\left(\hat{\theta}_{3}\right)+n \ln \left(\frac{n-k_{1}}{n}\right) \tag{3.7}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{HOC}_{3}=L_{j}\left(\hat{\theta}_{3}\right)+\frac{n}{2} \ln \left\{\left(n-k_{j}\right)\left(n-k_{j}-1\right)\right\} . \tag{3.8}
\end{equation*}
$$

The penalty functions of AIC, BIC and HQ for the $j^{\text {th }}$ model can be written in the general form

$$
\begin{equation*}
p_{1}=\lambda_{1} k_{1} . \tag{3.9}
\end{equation*}
$$

where λ_{1} is a known function of n and

$$
\begin{aligned}
\lambda_{1} & =1 \text { for } \mathrm{AlC} . \\
& =\frac{1}{2} \ln n \text { for } \mathrm{BlC} . \text { and } \\
& =\ln (\ln n) \text { for } \mathrm{HQ} .
\end{aligned}
$$

Also the penalty function of GCV for the $j^{\text {ih }}$ model can be written as $n \ln n-n \ln (n-k$,$) . Since n \ln n$ is constant for a particular selection problem. a criterion with penalty function $n \ln n-n \ln \left(n-k_{1}\right)$ is cquivalent to one with penalty fenction $-n \ln (n-k$,$) . The penally function of H O C$ can be written as $-\frac{n}{2} \ln (n-k)-,\frac{n}{2} \ln (n-k,-1)$ which approaches $-n \ln (n-k$,$) as n \rightarrow \infty$. Hence the penalty functions of RPAR, GCV and HOC (asymptotically) for the $j^{\text {th }}$ model can be written in the common form

$$
\begin{equation*}
p_{1}=\lambda_{2} \ln \left(n-k_{1}\right), \tag{3.10}
\end{equation*}
$$

where λ_{2} is anown constant depending on the criterion and

$$
\begin{aligned}
\lambda_{2} & =-\frac{n}{2} \text { for RBAR. } \\
& =-n \text { for GCV, and } \\
& =-n \text { for HOC (asymptotically). }
\end{aligned}
$$

Thus the penalty function of any of these six listed criteria for the $j^{\text {th }}$ model is either of the form $\lambda_{1} k_{\text {, }}$ or $\lambda_{2} \ln \left(n-k_{i}\right)$. These can be generalised to $\lambda_{i} k_{i}+\lambda_{2} \ln \left(n-k_{i}\right)$. Here λ_{1} and λ_{2} may be functions of sample size n.

We know that the performances of different model selection criteria vary from situation to situation. For example. in the context of selecting the true model from a set of linear regression models. Rahman and King (1997) ohserved that for a sample size of at least 13. and when the model with the lowest number of regressors is true. then the performance of BIC is better than that of GCV, which is better than that of AIC, and which in turn is better than that of the RBAR criterion in terms of probability of correctly selecting the model. On the other hand, when the sample size is at least 13. and the model with the highest number of regessors is true, then the performances of BIC. GCV, AIC and the RBAR critera are exactly reversed. The performances of different model selection criteria also vary from data set to data set. Therefore, the question arises as to which IC procedure should ic used for a particular data set and group of competing models. Is there one we can have confidence in for all situations?

Given that we have seen that the penalty functions of six of the main IC procedures can be generalised to

$$
\begin{equation*}
p_{3}=\lambda_{1} k_{1}+\lambda_{2} \ln \left(n-k_{3}\right) \tag{3.11}
\end{equation*}
$$

then the choice of procedure (at least out of these six procedures) just involves a choice of λ_{1} ard λ_{2} values for this penalty function. Clearly we would like to make the best cherce of λ_{1} and λ_{2} values for a particular sample size and set of models to be chosen from. Also we should not restrict λ_{1} and λ_{2} to the six sets of values impled by the above six procedures, but allow λ_{1} and λ_{2} to be chosen to suit our yarticular circumstances.

The penalty function (3.11) is obtained by adding the penalty functions (3.9) and (3.10). We can define another penalty function by multiplying the penalty functions (3.9) and (3.10) as,

$$
\begin{equation*}
p_{1}=\hat{i}_{1} k_{1} \operatorname{lin}_{1}\left(n-k_{1}\right) \tag{3.12}
\end{equation*}
$$

In equation (3.9), λ_{1} is a function of n the sample stae and k, is the number of free parameters in the $j^{\text {th }}$ model. Instead of $k_{,}$, if we consider a fractional power of $k_{;}$. then we can define a new penalty function as.

$$
\begin{equation*}
p_{3}=\lambda_{1} k_{1}^{i_{2}} . \tag{3.13}
\end{equation*}
$$

The question then is, how do we find optimal values of λ_{1} and λ_{2} for our proposed penalty functions? Our suggestion is as follows. For each model under consideration and for a given choice of penalty values. we estimate the average probability of correctly selecting this model when it is indeed the true model. For the same penally
set, we then average these probabilities of correct selection (thus treating all models equally). λ_{1} and λ_{2} are then chosen to maximise this average.

In order to understand more closely what is involved. let CS denote the event of correct selection and $\left.\operatorname{P(CS} \mid M, \theta_{1}, \lambda_{1}, \lambda_{2}\right)$ denote the - 'ability of correct selection when the model M, is true with parameter vector θ_{2}, and λ_{1} and λ_{2} are used in (3.11).

Therefore.

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{CS} \mid M_{1}, \theta_{1}, \lambda_{1}, \lambda_{2}\right)=\mathrm{P}\left[\left(I,-I_{1}\right)>1 ; 1, M, \theta_{1}, \lambda_{1}, \lambda_{2}: i=1.2 \ldots .(j-1),(j+1), \ldots m\right] \\
& \left.=\mathrm{P}\left[\left(L_{1}\left(\hat{\theta}_{i}\right)-L_{i}, \hat{\theta}_{i}\right)\right)>\left(p_{1}-p_{1} \| M_{1}, \theta_{1}, \lambda_{1}, \lambda_{2}: i=1,2 \ldots(j) 1\right)(i+1) \ldots m\right] \\
& =\psi\left(\theta_{1}, \lambda_{1}, \lambda_{2}\right)(\text { say }) .
\end{aligned}
$$

then the average prohabiitity of correct selection when the model M, is true will be

$$
\begin{equation*}
\underset{\theta_{1}}{\mathrm{E}}\left[\mathrm{P}\left(\mathrm{CS} \mid M_{1}, \theta_{1}, \lambda_{1}, \lambda_{2}\right)\right]=\int \psi^{\prime}\left(\theta_{2}, \lambda_{1}, \lambda_{2}\right) g\left(\theta_{1}\right) d \theta_{i} \tag{3.14}
\end{equation*}
$$

where $g\left(\theta_{j}\right)$ is the prior density function of the vector of parameters $\theta_{,}$. Thus the mean of average probability of correct selection will be

$$
\frac{\sum_{j=1}^{m} \mathrm{E}\left[\mathrm{P}\left(\operatorname{CS} \mid M_{j}, \theta_{1}, \lambda_{1}, \lambda_{2}\right)\right]}{m}
$$

which involves the unknown constants λ_{1} and λ_{2}.

For our approach to be operational, we need a method of estimating (3.14). Given that $g\left(\theta_{i}\right)$ is a joint density function, the Monte Carlo estimate of (3.14) can be found by first taking a large sample of drawings from $g(\theta$,$) which we will denote by \theta_{i}(i)$. $i=1.2 \ldots . .4$ and then calculating $\frac{1}{q} \sum_{i=1}^{q} \mathrm{P}\left(\mathrm{CS} \mid M_{1}, \theta_{i}(i), \lambda_{1}, \lambda_{2}\right)$.

This then requires us to estimate $\mathrm{P}\left(\mathrm{CS} \mid M_{1}, \theta_{1}(i), \lambda_{1}, \lambda_{2}\right)$ for given $M_{;}, \theta_{1}(i), \lambda_{1}$. λ_{1}, which can the achieved by a straightforward Monte Cark simulation of N replications. After some experimentation with a range of setings, we find that for at fixed total number of simulations $q N$. good results are achieved by using only one replication ($N=1$) in the estimation of $\mathrm{P}\left(\operatorname{CS} \mid M, \theta,(i), \lambda_{1}, \lambda_{2}\right)$, and the maximum number of drawings of $\theta_{\text {, from }} x\left(\theta_{1}\right)$. Results of these simulation experiments are reported in the Section 3.3.2.

Unfortunately, the problem of maximizing our estimate of (3.14) with respect to λ_{1} and λ_{2} requires considerable computational effort. We suggest that foc each of the m models, q random drawings of θ_{1} are obtained from $g\left(\theta_{1}\right)$ and then model (3.1) is used to generate $q \mathbf{y}$ vectors. For each y vector the likelihood functions of each of the models are then maximised, and the maximised values are stored. This is repeated for each model so that in total a file of $m^{2} g$ maximised likelihoods is
generated. This can then be used to estimate (3.14) for different values of λ_{1} and λ_{2}. In our stuc. . $\quad \cdots \cdot d y=2000$ and $N=1$.

3.3 THE MONTE CARLO Si UDIES

In this section we describe two sets of simulation experiments. The purpose of the first set of experiments is to find the best combination of N, the nu...ber of replications. and q, the number of parameter drawings, for a simulation experiment. The second set of experiments was conducted to evaluate the periormance of the newly proposed criteria against the existing iC listed above. The plan of this section is as follows. In Section 3.3.1. we describe the data generating process used for the simulation experiment Section $3.3,2$ is de oted to the first set of experiments while in Section 3.3.3. we deseribe the second set of experiments.

3.3.1 Data generating process

Suppose we have n obscrvations on each variable. then the $j^{\text {th }}$ model can be written in matrix notation as

$$
\begin{equation*}
\mathbf{y}=\mathbf{X} \beta_{j}+\mathbf{u}_{j} . \tag{3.15}
\end{equation*}
$$

where \mathbf{y} is $n \times 1, \mathbf{y}_{\text {, }}$, is $n \times k_{j}^{*}, \beta$, is $\dot{k}_{i} \times 1$ vector of coefficients, and \mathbf{u}, is an $n \times 1$ disturbance vecton dis ributed as $\mathrm{N}\left(0, \sigma_{i} \mathbf{I}\right)$.

We used different designs for the smulation experiments. In each case. the random vector y is generated for a set of randomly selected values of β; and σ^{2}; obtained from the prior distribution suggested by Zellner (1971), namely the inveried gamma distribution for σ^{2}, and multivariate normal distribution for β. That is, the values of β, and σ^{2} are randomly and independently chosen from independent multivariate normal and inverted gamma distributions, respectively. Therefore, to generate random vectors y and for estimating (3.14) the following steps were followed.

Step 1: We randomly selected a value of σ^{2} for the $j^{\text {th }}$ model from an inverted gamma distribution. as follows.

A random sample of size ($n-k$, is is drawn from the $N(0,1)$ distribution, where k, is the number of regressors including the constant in the $j^{\text {thi }}$ model. Let the sample values be $z_{1} \bar{x}_{2} \ldots \ldots \bar{z}_{n} i_{i}$. Then we compute $\chi_{n}^{2}:=\sum_{i=1}^{m i_{i}^{2}}$, which is distributed as a chi-squared variable with $\left(n-\hat{k}_{1}\right)$ degrees of freedom. Finally a value of σ_{1}^{2} is obtained by using the formula $\sigma_{j}^{3}=\left(n-k_{0}\right) s_{r}^{2} \frac{1}{\chi_{n}^{2} ;}$. where s_{i}^{2} is an arbitrary positive value held constant for the experiment.

Step 2: We randomly sclected a vector of parameters $\beta_{i}=\left(\beta_{11}, \beta_{1} \ldots \beta_{1 \cdot t}\right)$ for the $j^{\text {th }}$ model in the following way.

We drew a random sample of size k° from the No. 1) distribuiion. Let the sample values he $w_{1} w_{2} \ldots \ldots w_{i}$. Then

$$
\beta_{3}=\mathbf{W}_{j} \tilde{\sigma}_{j}
$$

where $\boldsymbol{W}_{1}=\left(w_{1}, w_{2} \ldots \ldots w_{1}\right)$ and $\tilde{\boldsymbol{\sigma}}$, is a randomly selected value of the error standard deviation obtained by appiying step 1 again for another arbitrary positive value say s_{i}^{2} and $\tilde{\sigma}_{,}$is independent of σ_{i}^{2}.

The arbitrary values of s^{2} in step 1 and s_{i}^{2}, are used to generate data. These values are chosen by a trial and error method, so that the expected probability of correct selection is a middle level of probability (say 0.5) for small sample for a panticular simulation experiment. (low average probabilities and high average probabilities are of less interest.)

Step 3: To generate the dependent random vector y for the $j^{\text {th }}$ model, we drew a random sample of size n from the $\mathrm{N}(0,1)$ distribution and let the sample values be $v_{11}, v_{2}, \ldots, v_{m}$. Then we obtained \mathbf{y} by using the following formula

$$
\mathbf{y}=\mathbf{X}, \beta_{1}+\mathbf{v}_{j} \sigma_{1}
$$

where $v=\left(v_{1}, v_{2} \ldots \ldots v_{m}\right)^{\prime}$.

Step 4: Using the gencrated random vector y, we fit all the plausitle models in the set and found the maximesed log-likelihood value say $L,\left(\dot{\beta}, \cdot \dot{\sigma}\right.$,) for the $j^{\text {th }}$ model. where $\hat{\beta}_{j}=\left(\mathbf{X}^{\prime}, \mathbf{X},\right)^{-1} \mathbf{X}^{\prime}, \mathbf{y}, \hat{\sigma}^{2}=\frac{\mathbf{u}^{\prime} \mathbf{u}_{i}}{n}$ ano $\mathbf{u},=\mathbf{y} \cdot \mathbf{X}, \dot{\beta}_{1}$. If p_{i} is the penalty function for the $j^{\text {th }}$ model then the information criterion for the $j^{\text {th }}$ modet will be $I_{1}=L_{1}\left(\hat{\beta}_{1}, \hat{\sigma}_{1}\right)-p_{1}$. We computed $I_{\text {, for }}$, fll in the set and ranked them. Evidently if $l,>1$, for all $i=1,2 \ldots,(j-1)(j+),, \ldots$, , 1 , hen we have correct selection of the $j^{\text {th }}$ model.

Step 5: We repeated steps 1 to 4 g limes, replicated N times for a fixed nember a N (we used $q N=2000$ for our simulation experiments) and calculated the Monte Carlo probabilities of correct selection by using the rlative frequency detinition of probability.

Steps I to 5 are used for finding the probability of correct selection under any information criterion just by replacing p, by tie penalty function of that criterion in step 4. In the case of a penalty i_{i}, involving unknown constants λ_{1} and λ_{2} we find the Monte Carlo probabitities of correct selection for all feasible values of λ_{1} anc
λ_{2}. Then we identify those values of λ_{1} and λ_{2} for which the mean of the expected probability of correct selection is a maximum. This was done for the second set of experiments for our pronosed method.

3.3.2 CHOICE OF N AND q

In this section. we itiostigate different choices of X. the number of replications. and q. the number of paraneter drawings, via simulation experiments. which involve selecting a model from a set of competing alternative models in linear regression sei ngs. The a ${ }^{\prime \cdots}$ is to find the hest choice of ${ }^{\prime \prime}$ and q values for fixed $q N$. In Subsection 3.3.2.1, we outine the simulation experiments conducted for this purpose. The results of these simulation experiments are presented in Subsection 3.3.2.2.

3.3.2.1 OLTLINE OF THE SIMULATMON EXPERIMENTS

We conducted the simulation experiments with two sets of data and one set of models as follows in order to find the optimal values of q and N.

Wata set I: x_{1}, is Australian retail trade quarterly data from 1959(1) to 1982(4) and x_{2} is the same series lagged one quarter. We have used data from Australian Bureau of Statistics. Here we se! $s_{i}^{2}=55$ and $s_{b}^{2}=6$.
s_{r}^{2} and s_{b}^{2} are arbitrary positive values held constant for the experiment. The reasons for choosing these values were discussed in Section 3.3.1.

Data set 2: x_{11} is the real per capita GDP and x_{2}, is the investment of a country. We used the annual data from Summers and Heston (1991) revised versan 5.6 and World Bank world tahles. Here we set $s_{i}^{2}=2.5$ and $s_{i}^{2}=0.002$.

Model Set: We used the following four linear regression mode is for our evaluation.

$$
\begin{align*}
& M_{1}: \quad y_{1}=\beta_{10}+w_{1,}, \tag{3.16}\\
& u_{i}-\operatorname{Ni}\left(0 . \sigma_{i}\right) . \\
& M_{3}: \quad y=\beta_{n}+x_{y} / \beta_{: 2}+w_{2}, \tag{3.17}\\
& u_{z}-1 \mathrm{~N}\left(0 . \sigma_{i}^{\prime}\right): \\
& M_{3}: \quad y_{1}=\beta_{31}+x_{21} \beta_{3 i}+w_{3}, \tag{3.18}\\
& u_{3} \sim \operatorname{IN}\left(0, \sigma_{3}^{2}\right): \\
& M_{5}: \quad y_{t}=\beta_{51}+x_{1 /} \beta_{s_{1}}+x_{21} \beta_{52}+u_{5} . \tag{3.19}\\
& u_{51} \sim 1 N\left(0, \sigma_{2}^{\prime}\right):
\end{align*}
$$

where $y_{\text {, }}$ is the $t^{\text {th }}$ observation of the dependent variable. x_{i} is the $t^{\text {th }}$ observation of the $i^{\text {th }}$ regressor, β_{n} is a constan for the $j^{\text {th }}$ model, $\beta_{n}(j=1,2.3 \& 5 ;$ and $i=1$ \& 2) is a scalar regression coefficient associated with the $j^{\text {th }}$ model and regressor x_{n}; and u_{n} is a random disturbance term that is independently normally distributed with zero mean and variance σ_{i}^{2}.

Consequently we have two designs for our simulation experiments. Design 3.1 is the combination of data set 1 and our model set. and Design 2.2 is the combination of data set 2 and our model set.

We generated the data using the technique descrithed in Section 3.3.1. The sample sizes used for the simutation siudy were $n=20.50$ and 96 for Design 3.1. and $n=20$. 50 and 100 for Design 3.2. For the simulation experimemts. We used the follounge fifteen combinations of N and q so that $q N$ is equal to 2000 .

Because our aim is to find the combination of q and N values that geves the greatest accuracy in estimating matan probability of corret selection, we repated the whole experiment 20 times in order to calcul.ate the standard devation of the estimated mean probabilities of correct selection. Then we computed the average of this mean probability of correct selection over the competing models stere we have four competing models). We also computed the average of the standard deviations of mean probability of corred selection over the competing models to see the trend of this standard deviation as q changes. We used average standard deviation averaged over the range of competing models (ASD) as a measure of the efficiency and the coefficient of variation (CV) as a measure of reliability of the estimated mean
probability of correct selection of the true model. That combination of q and N. where both ASD and CV are the lowest, will be judged to ie the hest combination to estimate the mean probability of correct selection. We also found the mathematical relationship between A.SD and q. ard estimated the value of q for the simulation experiment where ASD is the minimum.

3.3.2.2 RESLLTS AND DISCL'SSIONS

The results of these simulation experiments are presented in Tables 3.1 and 3.2. From these tables. it is evident that with an increase in g, the value of ASD decreases. Foi both the designs and for all sample sizes. the hishest estimated mean probability of correct selection averaged over four models (AAPCS) under cach criteria is ohtaned when the parameter is generated once and replicated 2000 times. But for this combination of $q(=1)$ and $N(=2000)$, the ASD is also the highest compared to all other combinations of y and N, for all cited criteria and sample sizes considered for the experiment. The CVs obtained for this combination of \propto and N are also the highest (minimum 10% and maximum 33%) compared to all other comtinations of q and N. for all cited criteria, sample sizes and for both the designs. This indicates that the estimated mean probability of corret selection obtained from a single drawing and replicated 2000 times is not efficient and reliable. In almost all cases, the lowest ASD is obtained when the parameter is generated 2000 times and replicated once with the estimated AAPCS being very close to those obtained from the combination $q=1$ and $N=2000$. For this combination of q and N. the CVs are als the lowest
(minimum 1\% and maximum 2.5\%) for all cited criteria. sample sizes and for toth the designs. This means that the estimated average probability of correct selection obtained from the maximum number of drawings of parameters and replicated once, is more efficient, less variable and more reliable than that of a single drawing of the parameters replicated the maximum number of times.

To find the mathematical relationship between ASD and q. we first plotted the data and got the impression that the relationship between q and ASD may be represented by the following mathematical model:

$$
\begin{equation*}
\mathrm{ASD}=A^{*} q^{B} v_{1}^{*} \tag{3.20}
\end{equation*}
$$

Where 4° and B are parameters and i° s a random disturbance term. Model (3.20) may be x itlen in the following log linear form:

$$
\begin{equation*}
\ln (\mathrm{ASD})=A+B \ln (q)+v_{;} \tag{3.21}
\end{equation*}
$$

where $A=\ln A^{*} . v_{i}=\ln r_{i}^{*}$, and r, is $\operatorname{N}\left(0, \sigma_{0}^{2}\right)$.

We estimated this model for both the desigrs and for all sample sizes under all cited eriteria. We let \hat{A} and \hat{B} be the estimated values of A and B, respectively. It is observed that \hat{A} and \hat{B} are highly significant and the adjusted coefficients of determination (\vec{R}^{2}) are also high and highly significant (Table 3.3) for both the designs and all sample sizes under all cited criteria. But for the sample sizes 20 and 50 under all cited criteria and for both the designs, there is strong evidence of
significant positive autocorrelation in the residuals. as the calculated values of the Durbin-Watson (DW) test statistic are always less than their respective tabulated lower bourds of the critical values. suggesting the possibility of functional misspecification. So to establish a more accurate rehationship between ASD and q for all the sample sizes and designs, we tested several alternalive models. From these test results. we came to the conclusion that the following model explains the relationship satisfactorily for all sample sizes, under all cited criteria and for both the designs:

$$
\begin{equation*}
\ln (\mathrm{ASD})=a+b \ln (q)+c(\ln (q))^{2}+u_{r}, \tag{3.22}
\end{equation*}
$$

where u_{t} is $\operatorname{IN}\left(0 . \sigma^{2}\right)$.

We estimated the values of a, b and c for all cited creveria and sample sizes for both designs. We let \hat{a}, \hat{b} and \hat{c} be the estmated values of a, b and c, respectively. By differentiating the right hand side of (3.22) with respect to $\ln (4)$. and equating it to zero, and using the estimated values of b and c, we can find \hat{q}, the estimated value of 4. for which the value of $\ln (\mathrm{ASD})$ and hence ASD is the rinimum. This value turns out to be

$$
\begin{equation*}
\hat{q}=e^{\frac{\dot{b}}{2}} . \tag{3.23}
\end{equation*}
$$

The estimated values of a, b and c with their respective significant levels and \hat{g} are given in Tables 3.4 and 3.5 for Designs 3.1 and 3.2, respectively.

From Tables 3.4 and 3.5. it is observed that the adjusted corfficient of determination (\bar{R}^{2}) is always highly significant ($\bar{R}^{2}>0.97$ for Design 3.1 and $\bar{R}^{2}>0.95$ for Design 3.2). and the estimated coefficienis are highly significant, but none of the DW statistics are significant for all combinations of data sets and sample sizes. This indicates that the relationship between ASD and q is satisfactorily represented by the mathematical model (3.22) and the estimated coefficients are also efficient. For all sample sizes and for boit the data seis except for $n=20$ of Design 3.2, \hat{q}, the estimated value of q, produces the minimum ASD and \hat{q} is alwaws higher than that of the value of $q N(2000)$. This provides further proof that generating the parameter vector the maximum number of times (here $2(H) 0$ times) and replicating only once (N = 1), is the best way to obtars an efficient estimate of mean probability of correct selection for a fixer number 4 N .

3.3.3 PERFORMANCE OF THE PROPOSED CRITERIA

This section describes the models and designs used to examine the performance of the proposed method over the listed existing IC. We defined five penalty functions in (3.9), (3.10). (3.12). (3.13) and (3.11), and their corresponding IC, named NICl , $\mathrm{NIC} 2, \mathrm{NIC} 3, \mathrm{NIC4}$, and $\mathrm{NIC5}$, for the $j^{\text {th }}$ model are.

$$
\begin{align*}
& \mathrm{NICl}_{3}=L\left(\hat{\theta}_{3}\right)-\lambda_{1} k_{j} \tag{3.24}\\
& \mathrm{NIC}_{3}=L\left(\hat{\theta}_{3}\right)-\lambda_{1} \ln \left(n-k_{3}\right), \tag{3.25}\\
& \mathrm{NIC}_{3}=L\left(\hat{\theta}_{3}\right)-\lambda_{1} k_{1} \ln \left(n-k_{1}\right), \tag{3.26}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{NIC}_{j}=L\left(\hat{\theta}_{j}\right)-\lambda_{1} k_{j}^{\dot{\alpha}_{2}} \tag{3.27}\\
& \mathrm{NIC}_{j}=L\left(\hat{\theta}_{j}\right)-\left[\lambda_{1} k_{j}+\lambda_{2} \ln \left(n-k_{j}\right)\right] \tag{3.28}
\end{align*}
$$

We compare the performance of these newly proposed IC with the listed existing IC in a classical linear regression setting.

3.3.3.1 MODELS FOK THE MONTE CARLO STUDIES

The following four linear regression models. along with the four models described in Subsection 3.3.2.1, were used in the study to examine the performance of the proposed IC compared to the listed existing IC.
$M_{4}: \quad y_{t}=\beta_{41}+x_{31} \beta_{d 1}+u_{1 t}$,

$$
\begin{equation*}
u_{4} \sim \operatorname{IN}\left(0 . \sigma_{4}^{2}\right) \tag{3.29}
\end{equation*}
$$

$M_{6}: \quad y_{t}=\beta_{60}+x_{11} \beta_{61}+x_{3,} \beta_{62}+u_{61}$.
$u_{6 t} \sim \operatorname{lN}\left(0 . \sigma_{b}^{2}\right) ;$
$M_{7}: y_{1}=\beta_{70}+x_{21} \beta_{71}+x_{31} \beta_{72}+u_{7,}, \quad u_{7 t} \sim \operatorname{lN}\left(0, \sigma_{7}^{2}\right) ;$
$M_{\mathrm{k}}: \quad y_{t}=\beta_{80}+x_{\mathrm{tt}} \beta_{81}+x_{2 t} \beta_{82}+x_{31} \beta_{83}+u_{8 t} . \quad u_{\mathrm{xt}} \sim \operatorname{IN}\left(0 . \sigma_{8}^{2}\right) ;$
where y_{t} is the $t^{\text {th }}$ observation on the dependent variable, x_{u} is the $t^{\text {th }}$ observation on the $i^{\text {th }}$ regressor, $\beta_{j 0}$ is a constant for $j^{\text {th }}$ model, $\beta_{j i}(j=4,6,7 \& 8$; and $i=1,2$, \& 3) is a scalar regression coefficient associated with $j^{\text {th }}$ model and regressor $x_{i n}$; and u_{μ} is a random disturbance term following the normal distribution with mean zero and variance σ_{j}^{2}.

3.3.3.2 THE DESIGNS FOR THE SIMLLATION EXPERIMENTS

We have three sets of data and two sets of competing models, one with four competing models and the other with eight competing models. Altogether we have six designs. Design 3.2 to Design 3.7. for the simulation experiments. A description of Design 3.2 was given in the Subsection 3.3.2.1. A brief description of the remaining five designs is given below.

Design 3.3: x_{12} and x_{2} are randomly and independently generated values from the $\mathrm{N}(0,1)$ distribution. Here we consider four non-nested models M_{1}, M_{2}, M_{3} and M_{5} given by (3.16), (3.17). (3.18) and (3.19) with $s_{2}^{2}=s_{n}^{2}=1$ for samples of sizes 20,50 and 100 .

Design 3.4: x_{11}, x_{21}, and x_{31} are randomly and independently generated values from the $\mathrm{N}(0,1)$ distribution. Here we consider eight non-nested models M_{1}, M_{2}, M_{3}. $M_{4}, M_{5}, M_{6}, M_{7}$ and M_{8} given by (3.16), (3.17), (3.18), (3.29), (3.19), (3.30), (3.31) and (3.32), respectively, with $s_{t}^{2}=s_{b}^{2}=0.1$ for samples of sizes 20,50 and 100.

Design 3.5: This is an extension of Design 3.2 to more models using one extra variable $x_{3_{t}}$ as the price level consumption of the $t^{t h}$ country. Here we consider eight non-nested models $M_{1}, M_{2}, M_{3}, M_{4}, M_{5}, M_{6}, M_{7}$ and M_{8} given by (3.16),
(3.17). (3.18), (3.29), (3.19). (3.30), (3.31) and (3.32). respectively, with $s_{e}^{2}=2.5$ and $s_{b}^{=}=0.02$ for samples of sizes 20.50 and 100 .

Design 3.6: Australian cross-section data for 1961 and 1976 was classified according to eight categories of sex/marital status and eight catcgories of age. x_{11} is the nousehold population and x_{21} is the number of househoids whose head belongs to the given population category. We have used the data from Williams and Sams (1981). Here we consider four non-nested models $M_{1}, ~ M_{2}, ~ M_{3}$ and $M_{\text {s }}$ given by (3.16), (3.17). (3.18) and (3.19), respectively with $s_{i}^{2}=0.1$ and $s_{i}^{2}=0.02$ for samples of sizes 20, 50 and 100 .

Design 3.7: This is an extension of Design 3.6 to more models using one extra variable x_{3}, as the houschold headship ratio which is the proportion of people in any giver population category. Here we consider eight non-nested models M_{1}, M_{2}, M_{3}. $M_{4}, M_{5}, M_{6}, M_{7}$ and M_{k} given by (3.16), (3.17), (3.18), (3.29). (3.19), (3.30), (3.31) and (3.32), respectively, with $s_{c}^{2}=0.1$ and $s_{t b}^{2}=0.15$ for samples of sizes 20, 50 and 100 .

We estimated the probabilities of correct selection for AIC, BIC, HQ, GCV, RBAR, HOC, NIC1, NIC2, NIC3, NIC4 and NIC5 from 2000 drawing of parameters for each design separately.

3.3.3.7 RESULTS AND DISCUSSION

Tables 3.6.3.7, 3.8.3.9.3.10 and 3.11 contain the probabilities of correct selection of the true model for each of the Designs 3.2, 3.3,3.4, 3.5. 3.6 and 3.7. respectively. under different criteria, namely AIC. BIC. HQ. GCV. RBAR. HOC. NICI. NIC2. NIC3, NIC4 and NIC5. The mean average probability of correct selection (MAPCS) and the standard deviation among the average probabilities of correct selection (APCS) for selecting various modets within a particular design under each criteria are also provided. A criterion with maximum mean average probability of correct selection and minimum variation among the probabilities of correctly selecting the true model for a fixed sample size is, always the mo't desirable.

Several interesting phenomena are apparem in the tabies. The performance of the selected existing criteria varies from data set to data set. Even for a particular data set, the performance of the selected criteria varies from sample size to sample size. The probabilities of correat selection gradually increase as the sample size n increases for all designs under consideration, which is desirable. The variation among the probabilities of correct selection for selecting various models within a particular design under any criteria decreases as the sample size increases for all designs. Among the six existing criteria that we have considered. for nine out of 18 (six designs and three sample sizes) experiments, the MAPCS are the highest for AIC followed by BIC, for which eight experiments produce the highest MAPCS. But in

Chapter 3

most of the experiments. the variation among the probabilities of correct selection is the lowest for RBAR.

In terms of correctly choosing the true model. the new proposed criteria NIC1. NIC2. NIC3, NIC4 and NIC5 perform better than all the listed existing criteria for all designs and for all sample sizes. Among the new proposed crieria, the performances of NIC4 and NIC5 are marginally better than those of the remaining three proposed criteria, but the performances of NIC4 and NICS are very similar for all designs and sample sizes. The penalties that maximise the MAPCS obtained from the new criteria are different from those of the existing criteria. The variation among the APCS ohtained using proposed criteria is righer for some designs and lower for other designs. Because of the existing criteria. AIC and BIC are the most widely used. and thus we will compare the lowest MAPCS (LMAPCS). obtained from the proposed criteria with AlC's and BIC's MAPCS. We choose the fowest MAPCS, so that our proposed IC are not favoured in the comparison.

For Design 3.2 with $n=50$ and 100, the highest MAPCS is ohtained from NiC4, and NIC5 produces the highest MAPCS for sample size 20. Among the new criteria, for n $=20$ and 100, NIC2, and, for $n=50$, NIC1 produces the lowest MAPCS, which are nigher than the corresponding highest MAPCS obtained from the existing criteria. BIC produces the highest MAPCS among the existing criteria for $n=20$ and 50 , while for $n=100$, HQ produces the highest MAPCS among the existing criteria.

There are 3.9. 2.9 and 3.6 percent increases in LMAPCS over that of AIC observed for sampie sizes 20. 50 and 100, respectively. These increases are 1.0.6 and 1.4 percent over the MAPCS of BIC for $n=20.50$ and 100 . respectively. The variation among the APCS obtained from the proposed criteria is higher than that of all the existing criteria for $n=20$, and lower than that of BIC for $n=50$ and 100 .

For Design 3.3. the highest MAPCS is obtaned from NIC5 for $n=50$ and 100 , and both NIC4 and NIC5 produces the highest MAPCS for the sample size 20. Among the new eriteria, the lowest MAPCS is obtained from NIC3 and NIC2 for $n=20$ and 50. respectively, while both NIC3 and NIC2 produce the lowest MAPCS for the sample size 100. The lowest MAPCS obtained from the new criteria for different sample sizes are higher than the corresponding highest MAPCS obtained from the existing criteria. Among the existing criteria. AIC, BIC and GCV choose the true model with the highest MAPCS for $n=20.50$ and 100 . respectively. There are 1.1 , 0.3 and 0.3 percent improvements of LMAPCS over that of AIC observed for $n=20$. 50 and 100 , respectively. These improvements over BIC are 8.8, 7.1 and 6.9 percent, respectively. For $n=20$ and 50 , the variations among the APCS for the proposed criteria are lower than those of all cited existing criteria except RBAR. But for sample size 100, the variations among the APCS obtained from the proposed criteria are lower than those of BIC and HQ and higher than those of the other criteria.

For Design 3.4. the highest MAPCS is ohtained from NIC4 for sample sizes 20 and 50. while both NIC4 and NIC5 produce the highest MAPCS for sample size 160 . Among the new criteria. NIC3. NIC2 and NIC1 produces the lowest MAPCS for $n=$ 20. 50 and 100 . respectively, which are higher than the corresponding highest MAPCS stained from the existing criteria. For all sample sizes. among the existing criteria the highest MAPCS is obtained from AIC. There is 9.8 percent increase in LMAPCS over that of AIC for $n=20$. and for $n=50$ and $1(0)$. LMAPCS are very similar to those of AlC. But these increases over the MAPCS of BIC are 9.9.5 and 9.4 percent for sample sizes 20.50 and 100 . respectively. The variation among the APCS under the new criteria is always lower than that of all existing criteria except RBAR for $n=20$ and 50 . For $n=100$, the proposed criteria produced lower variations compared to BIC and HO, and higher than those of RABR. and in other cases the results are very similar to those of existing criteria.

For Design 3.5, NIC4 produces the highest MAPCS for $n=50$ and 100 . while for sample size 20, the highest MAPCS is obtained from NIC5. Among the new criteria for ail sample sizes, the lowest MAPCS is obtained from $\mathrm{NlC2}$, which are higher than the corresponding largest MAPCS obtained from the existing criteria. For all sample sizes among the existing criteria. BIC produces the highest MAPCS, which also i.ss the highest variation among the APCS. The increase in MAPCS that results from using the worst of the new IC over AlC are 11.7, 14.2 and 17.1 percent for $n=$ 20,50 and 100 , respectively. The increase of LMAPCS over that of BIC are 2.4, 1.1
and 0.4 percent for $n=20.50$ and 100 . respectively. For all cases. the variations among the APCS obtained from the proposed technique are higher than those of existing criteria except for $n=100$. where RBAR has the highest variatior among the APCS.

For Design 3.6. and sample sizes 20 and 50. the highest MAPCS is obtained from NIC5. white NIC4 produces the highest MAPCS for $n=100$. For all sample sizes among the new criteria the iowest MAPCS is obtained from NiC3. Among the existing criteria, the highest MAPCS for sample sizes 20 and 50 is obtaned from RBAR with the lowest variation among the APCS, while AIC produces the highest MAPCS for $n=100$ with the second highest vartation among the APCS. There are 2.3. 1.6 and 0.7 percent increases of the LMAPCS over those of AIC and 9.1. 14.8 and 11.9 percent increases over those of BIC observed for $n=20,50$ and 100 . respectively. For all sample sizes. the vatiations among the APCS obtained from the new criteria are always lower than those of the existing criteria.

For Design 3.7 and all sample sizes, the highest MAPCS is obtained from NIC4. Among the new criteria, the lowest MAPCS is obtained from NIC2 and NIC1 for sample sizes 20 and 100, respectively, while both NIC1 and NIC2 produce the lowest MAPCS among the new criteria for sample size 50 . For all sample sizes, among the existing criteria, the highest MAPCS is obtained from AIC. There are 1.I, 0.4 , and 0.5 percent increases of the LMAPCS observed for the new technique over those of

AIC for $n=20.50$ and 100 . respectively. These increases over the MAPCS of BIC are 6.5. 13, and 13.8 percent for $n=20.50$ and 100 . respectively. The variations among the APCS obtained from new method are lower than those of all listed existing criteria except RBAR.

3.4 CONCLUDING REMARKS

The main purpose of this chapter was to introduce a nev method for selecting the true model from a set of competing afternative models, that performs better on average compared to existing $1 C$. The general form of the penaty functions of AIC. BIC and HQ for the $j^{\prime \prime}$ model is $p_{i}=i_{1} k$, and that for QBAR. GCV and HOC is $D_{1}=\lambda_{2} \ln \left(n-k_{i}\right)$. The penalty functions of all six of these IC can be genatalised to a single penalty function $p_{3}=\lambda_{1} k_{1}+\lambda_{2} \ln \left(n-k_{,}\right)$. For the listed existing criteria. λ_{1} and λ_{2} are determined by the sample size n. For example if $\lambda_{1}=1$ and $\lambda_{2}=0$, the penalty is the AIC penalty, if $\lambda_{1}=0$ and $\lambda_{2}=-\frac{n}{2}$. it is the RBAR penalty. In our proposed method, we did not restrict λ_{1} and λ_{2} to these six sets of values but allowed λ_{1} and λ_{2} to take any values that maximise the MAPCS. Another two penalty functions are also defined as $p_{1}=\lambda_{1} k_{3} \operatorname{in}\left(n-k_{1}\right)$ and $p_{3}=\lambda_{1} k_{1}^{\lambda_{3}}$. We investigated the performance of the new method with these proposed penalties over the listed existing criteria in a linear regression setting.

We conducted simulation experiments to investigate how the efficiency of the estimated AAPCS increases with increases in the number of parameter drawings (y) for a simulation experiment with a fixed number of overall simulations, namely $q N$. where N is the number of simulations conducted for each drawing of the parameters. The average standard deviation averaged over the number of competing models (ASD) was used as a measure of efficiency and CV as a measure of reliability of the estimated AAPCS. From the simulation experiments. it was apparent that the number of parameter drawings for a simulation experiment and ASD is negatively correlated. For all cited criteria and for all sample sizes, the ASD and CV are the highest when q $=1$ and $N=2000$, which indicates that when $q=1$. the AAPCS has the greatest variability and unreliability. With an increase in q. the value of ASD and CV decreases and in almost all cases the lowest ASD and CV is obtained when $q=2000$. the maximum value of q, thus indicating that the AAPCS obtained using maximum q is more efficient and reliable.

Our regression results indicate that the relationship between ASD and q is well represented by the model $\ln (\mathrm{ASD})=a+b \ln (q)+c(\ln (q))^{2}+u$. The estimated value of q, where ASD is the minimum. is always higher than the maximum value of $q N$ (here 2000) used for our simulation experiment except for $n=20$ in Design 3.2. This means that maximum number of parameter drawings with single replication is the hest way to obtain an efficient estimate of mean probability of correct selection for a fixed $q N$. At this combination of q and N, the CV is also the lowest in almost all
cases. indicating that the esimated mean probability of correct selection of the true model obtained using the maximum number of parameter drawings is more reliable.

We conducted a second set of simulation experiments to investigate the performance of our proposed new criteria over the existing listed criteria. The simulation results demonstrate that the performance of the proposed criteria always dominates the existing criteria in terms of MAPCS of the true model. Also. in general, the variations among the A?CS obtained from new IC are smaller than those of all the listed existing IC except RIBAR. From the simulation results, it is revealed that the performances of the six histed existing model selection critcria. vary from situation to situation and from data set to data set. Even for a particular data set. the performance of the selected criteria varies from sample size to sample size. In all designs under study, the MAPCS increases as the sample sizes increases. Within a particular design under any criteria, the variation among the APCS decreases as the sample size increases. Among the listed existing criteria in most cases, RBAR produces the lowest variation among the APCS. Although none of the existing criteria performs well in all sitiations in terms of MAPCS, the performance of all proposed new criteria are always better than the best of the existing listed criteria.

The performances of all new proposed IC are very similar, though NIC4 and NIC5 perform better than the others. The estimation of two parameters is required for NIC. 4 and NIC5, and this can be time consuming. The improvements of MAPCS obtained
by NIC4 and NIC5 over NIC1, NIC2 and NIC3 are not significant. So considering the computational time and imprevement in MAPCS. we recommend the use of any one of the criteria NIC1. NIC2 and NIC3.

Table 3.1 Average over 4 models of mean over 20 iterations of estimated mean probabilities of correct selection and their standard deviations for these 20 iterations averaged over 4 models for Design 3.1.

Number of beta drawings	AIC		BIC		GCV		HOC		10		RBAR		MCP		JIC	
	Average of average	$\begin{aligned} & \text { Average } \\ & \text { SD } \end{aligned}$	A verage of average	$\begin{aligned} & \text { Average } \\ & S D \\ & \hline \end{aligned}$	Average of average	$\begin{aligned} & \text { Average } \\ & \text { SD } \\ & \hline \end{aligned}$	Average of average	Average SD	Average of average	Average SD	Average of average	Average SD	Average of average	$\begin{aligned} & \text { Average } \\ & \text { SD } \\ & \hline \end{aligned}$	Average of average	Average SD
Sample size $=20$																
1	0.4564	0.1527	0.4553	0.1647	0.4581	0.1565	0.4586	0.1577	0.4580	0.1563	0.4337	0.1232	0.4567	0.1532	0.4572	0.1537
2	0.4334	0.1072	0.4264	0.1133	0.4338	0.1035	0.4335	0.1103	0.4336	0.1097	0.4187	0.0898	0.4336	0.1074	0.4335	0.1080
4	0.4229	0.0904	0.4167	0.0947	0.4228	ก. 320	0.4226	0.0926	0.4229	0.0920	0.4079	0.0779	0.4230	0.0905	0.4230	0.0908
8	0.4294	0.0601	0.4223	0.0638	0.4303	. 0617	0.4302	0.0620	0.4303	0.0616	0.4123	0.0494	0.4296	0.0604	0.4299	0.0609
10	0.4295	0.0453	0.4225	0.0467	0.4299	0.0463	0.4294	0.0464	0.4296	0.0459	0.4131	0.0397	0.4296	0.0456	0.4297	0.0456
20	0.4295	0.0343	0.4224	0.0373	0.4291	00350	04287	0.0353	0.4289	0.0351	0.4129	0.0289	0.4295	0.0343	0.4296	0.0344
40	0.4316	0.0287	0.4251	0.0292	0.4316	0.0294	0.4315	0.0298	0.4313	0.0293	0.4158	0.0259	0.4316	0.0286	0.4316	0.0285
50	0.4307	0.0288	0.4247	0.0333	0.4308	0.0300	0.4305	0.0300	0.4307	0.0299	0.4122	0.0253	0.4309	0.0290	0.4311	0.0292
100	0.4307	0.0196	0.4238	0.0214	0.4313	0.0203	0.4312	0.0206	0.4513	0.0205	0.4156	0.0169	0.4306	0.0200	0.4308	0.0199
200	0.4318	0.0140	0.4265	0.0150	0.4321	0.0142	0.4322	0.0139	0.4322	0.0142	0.4137	0.0137	0.4319	0.0139	0.4322	0.0141
250	0.4307	0.0154	0.4254	C0142	0.4313	0.0157	0.4311	0.0148	0.4312	0.0150	0.4136	0.0150	0.4307	0.0153	0.4308	0.0152
400	0.4350	0.0137	0.4292	0.0126	0.4350	0.0141	0.4350	0.0140	0.4349	0.0142	0.4158	0.0137	0.4350	0.0139	0.4348	0.0138
500	0.4328	0.0139	0.4274	0.0138	0.4333	0.0139	0.4330	0.0138	0.4332	0.0139	0.4152	00107	0.4332	0.0139	0.4330	0.0136
1000	0.4314	0.0111	0.4259	0.0107	0.4312	0.0113	0.4312	0.0111	0.4312	0.0113	0.4134	0.0111	0.4313	0.0112	0.4315	0.0110
2000	0.4329	0.0111	0.4263	0.0099	0.4330	0.0107	0.4329	0.0105	0.4330	0.0105	0.4171	0.0127	0.4331	0.0108	0.4330	00109
Sanyle size $=50$																
1	0.6769	0.2022	0.7040	02571	0.6803	0.2060	0.6811	0.2068	0.6979	0.2303	0.6004	0.1457	0.6770	0.2023	0.6932	0.2215
2	0.6649	0.1462	0.6952	0.1744	0.6685	0.1482	06693	0.1486	0.6883	0.1609	0.5890	0.1112	0.6651	0.1463	0.6822	01565
4	0.6648	0.1060	0.7025	0.1311	0.6686	0.1077	0.6698	0.1083	0.6905	0.1182	0.5853	0.0785	0.6649	0.1050	0.6840	0.1144
8	$0.68: 4$	0.0776	0.7213	0.0941	0.6853	0.0790	0.6863	0.0793	0.7080	0.0870	0.5998	0.0570	0.6815	0.0777	0.7010	0.0842
10	0.6806	0.0685	0.7164	0.0817	06845	0.0695	0.6857	0.0697	0.7059	0.0750	0.5999	0.0532	0.6808	0.0685	0.6994	00728
20	0.6758	0.0409	0.7126	0.0495	0.6800	0.0416	0.6810	0.0417	0.7008	0.0447	0.5947	0.0314	0.6760	0.0410	0.6945	0.0431
40	0.6628	0.0297	0.6962	0.0354	0.6665	0.0299	0.6674	0.0299	0.6867	0.0323	0.5857	0.0235	0.6630	0.0297	0.6805	00319
50	0.6730	0.0258	0.7085	0.0296	0.6768	0.0261	0.6775	0.0263	0.6976	0.0277	0.5935	0.0228	0.6731	00859	0.6910	00277
100	0.6741	0.0260	0.7103	0.0292	0.6783	0.0258	0.6795	0.0256	0.6997	0.0271	0.5959	0.0221	0.6743	0.0261	06935	0.0262
200	0.6724	0.0157	0.7086	0.0184	0.6766	0.0161	0.6776	0.0162	0.6976	0.0174	0.5931	0.0150	0.6725	0.0157	0.6914	0.0164
250	06706	0.0147	0.7045	0.0177	0.6745	0.0145	0.6756	0.0144	0.6948	0.0162	0.5919	0.0128	0.6708	0.0148	0.6883	0.0160
400	0.6711	0.0154	0.7066	0.0150	0.6748	0.0154	0.6759	0.0153	0.6965	0.0154	0.5928	0.0146	0.6712	0.0153	0.6896	0.0160
500	0.6750	0.0143	0.7125	0.0138	0.6791	0.0143	0.6801	0.0140	0.7010	0.0140	0.5943	0.0126	0.6752	0.0143	0.6945	0.0137
1000	0.6726	0.0129	0.7094	0.0118	0.6767	?. 0130	0.6777	0.0130	0.6983	0.0127	0.5929	0.0127	0.6729	0.0130	0.6920	0.0122
2000	0.6704	0.0109	0.7074	0.0099	0.6745	0.0109	0.6755	0.0109	0.6955	0.0104	0.5905	0.0109	0.6705	00109	0.6886	0.0103

Table 3.1 Average over 4 models of mean over 20 iterations of estimated mean probabilities of correct selection and their standard deviations for these 20 iterations averaged over 4 models for Design 3.1 (continued).

$\begin{aligned} & \text { Number of } \\ & \text { beta } \\ & \text { drawings } \end{aligned}$	AIC		BIC		GCV		HOC		HQ		RBAR		MCP		JIC	
	Average of average	$\begin{aligned} & \text { Average } \\ & \text { SD } \\ & \hline \end{aligned}$	Average of average	$\begin{aligned} & \text { Average } \\ & \text { SD } \\ & \hline \end{aligned}$	Average of average	$\begin{aligned} & \text { Average } \\ & \text { SD } \end{aligned}$ 150	Average of average	$\begin{aligned} & \text { Average } \\ & \text { SD } \end{aligned}$	Average of average	$\begin{aligned} & \text { Average } \\ & \text { SD } \\ & \hline \end{aligned}$	Average of average	$\begin{aligned} & \text { Average } \\ & \text { SD } \end{aligned}$	Average of average	Averate SD	Average of average	Average 50
Sample size $=96$																
1	0.8340	0.0801	0.9359	0.1002	0.8376	0.0809	0.8386	0.0811	0.8973	0.0922	0.7058	0.0508	0.8341	0.0800	0.8865	0.0900
2	0.7996	0.0943	0.8830	0.1226	0.8029	0.0953	0.8038	0.0953	0.8549	0.1097	0.6810	0.0707	0.7997	0.0943	0.8459	0.1064
4	0.8222	0.0544	0.9129	0.0719	0.8258	0.0551	0.8267	0.0552	0.8807	0.0635	0.6988	0.0388	0.8222	0.0545	0.8707	0.0612
8	0.8113	0.0430	0.9015	0.0569	0.8146	0.0433	0.8156	0.0433	0.8686	0.0504	0.6919	0.0332	0.8114	0.0430	0.8588	0.0491
10	0.8168	0.0323	0.9095	0.0398	0.8202	0.0325	0.8211	0.0326	0.8761	0.0362	0.6941	0.0262	0.8169	0.0323	0.8658	0.0352
20	0.8171	0.0236	0.9078	0.0286	0.8207	0.0240	0.8215	0.0240	0.8741	0.0259	0.6940	0.0203	0.8172	0.0236	0.8647	0.0256
40	0.8149	0.0221	0.9027	0.0271	0.8187	0.0221	0.8197	0.0221	0.8716	0.0247	0.6939	0.0176	0.8150	0.0221	0.8620	0.0241
50	0.8105	0.0173	0.9002	0.0208	0.8142	0.0172	0.8152	0.0171	0.8679	0.0186	0.6868	0.0151	0.8106	0.0172	0.8580	0.0481
100	0.8146	0.0140	0.9060	0.0155	0.8183	0.0141	0.8192	0.0141	0.8728	0.0148	0.6909	00137	0.8147	0.0140	0.8627	0.0147
200	0.8120	0.0131	0.9021	0.0138	0.8156	0.0133	0.8165	0.0132	0.8694	0.0138	0.6900	0.0119	0.8121	0.0131	0.8600	0.0135
250	0.8144	0.0120	0.9056	0.0122	0.8179	0.0119	0.8187	0.0120	0.8728	0.0125	0.6929	0.0111	0.8145	0.0120	0.8631	0.0126
400	0.8124	0.0103	0.9037	0.0094	0.8159	0.0103	0.8167	0.0104	0.8707	00099	0.6927	0.0103	0.8124	0.0102	0.8609	0.0097
500	0.8115	0.0109	0.9029	0.0087	0.8153	0.0112	0.8161	0.0112	0.8693	0.0095	0.6894	0.0112	0.8116	0.0109	08596	00099
1000	08120	0.0094	0.9019	0.0071	0.8156	0.0092	0.8165	0.0092	0.8697	0.0087	0.6901	0.0106	0.8120	0.0094	0.8599	0.0093
2000	0.8116	0.0091	0.9021	0.0067	0.8151	0.0089	0.8160	0.0089	0.8693	0.0077	0.6896	0.0098	0.8117	0.0090	0.8598	0.0078

Table 3.2 Average over 4 models of mean over 20 iterations of estinuated mean probabilities of correct selection and their standard deviations for these 20 iterations averaged over 4 models for Design 3.2.

Number of beta drawings	AIC		BIC		GCV		HOC		HQ		RBAR		MCP		JIC	
	Average of average	$\begin{aligned} & \text { Average } \\ & \text { SD } \end{aligned}$	Average of average	$\begin{aligned} & \text { Average } \\ & \text { SD } \\ & \hline \end{aligned}$	Average of average	$\begin{aligned} & \text { Average } \\ & \text { SD } \\ & \hline \end{aligned}$	Average of average	Average $S D$	Average of average	Average SD	A verage of average	Average SD	Average of average	Average	Average of average	Average SD
Sample size $=20$																
1	0.5006	0.0633	0.5180	0.0618	0.5061	0.0634	0.5075	0.0632	0.5061	0.0634	0.4605	0.0564	0.5011	0.0632	0.5019	0.0632
2	0.4859	0.0630	0.5007	0.0655	0.4906	0.0640	0.4915	0.0643	0.4909	0.0639	0.4493	0.0509	0.4863	0.0631	0.4869	0.0633
4	0.4904	0.0306	0.5073	0.0282	0.4950	0.0298	0.4961	0.0293	0.4949	0.0299	0.4514	0.0303	0.4910	0.0306	0.4919	00305
8	0.4926	0.0223	0.5093	0.0218	0.4973	0.0228	0.4987	0.0228	0.4971	0.0227	0.4550	0.0220	0.4932	0.0224	0.4938	0.0224
10	0.4938	0.0225	0.5103	0.0203	0.4989	0.0218	0.5000	0.0218	0.4983	0.0216	0.4544	0.0216	0.4944	0.0225	0.4951	0.0224
20	0.4918	0.0165	0.5071	0.0164	0.4960	0.0162	0.4969	0.0163	0.4962	0.0161	0.4525	0.0153	0.4924	0.0166	0.4934	0.0164
40	0.4931	0.0160	0.5096	0.0148	0.4974	0.0167	0.4992	0.0165	0.4975	0.0168	0.4543	0.0146	0.4935	0.0162	0.4942	0.0164
50	0.4880	0.0148	0.5049	0.0144	0.4924	0.0149	0.4940	0.0149	0.4926	0.0148	0.4493	0.0154	0.4885	0.0147	0.4890	0.0149
100	0.4922	0.0136	0.5085	0.0107	0.4971	$0.0 \div 31$	0.4982	0.0129	0.4970	0.0132	0.4541	0.0130	0.4928	0.0136	0.4937	0.0134
200	0.4917	0.0105	0.5080	0.0099	0.4969	0.0103	0.4982	0.0099	0.4969	0.0104	0.4518	0.0114	0.4923	0.0102	0.4933	0.0103
250	0.4931	0.0116	0.5104	0.0101	0.4980	0.0117	0.4994	0.0111	0.4982	0.0115	0.4559	0.0105	0.4936	0.0119	0.4943	0.0120
400	0.4916	0.0114	0.5077	0.0089	0.4958	0.0108	0.4969	0.0105	0.4957	0.0107	0.4524	0.0111	0.4920	0.0113	0.4931	0.0111
500	0.4916	0.0118	0.5087	0.0092	0.4964	0.0115	0.4978	0.0114	0.4964	0.0115	0.4537	0.0113	0.4920	0.0116	0.4926	0.0117
1000	0.4943	0.0108	0.5089	0.0090	0.4981	0.0105	0.4995	0.0104	0.4984	0.0104	0.4563	0.0107	0.4949	0.0107	0.4953	00106
2000	0.4909	0.0102	0.5088	0.0083	0.4959	0.0092	0.4973	0.0088	0.4960	0.0093	0.4517	0.0094	0.4914	0.0101	0.4920	0.0099
Sample size $=50$																
	0.5448	0.0952	0.5568	0.0924	0.5463	0.0956	0.546 .5	00956	0.5566	0.0974	0.5004	0.0809	0.5449	0.0952	0.5536	00976
2	0.5316	0.0744	0.5432	0.0749	0.5331	00748	0.5333	0.0756	0.5420	0.0770	0.4862	0.0615	0.5317	0.0744	0.5397	0.0765
4	0.5451	0.0676	0.5584	0.0670	0.5471	0.0680	0.5477	0.0679	0.5570	0.0699	0.4972	0.0544	0.5452	0.0676	0.5545	0.0689
8	0.5537	0.0368	0.5670	0.0335	0.5555	0.0369	0.5558	0.0369	0.5654	0.0378	0.5038	0.0324	0.5537	0.0368	0.5632	00370
10	0.5421	0.0357	0.5549	0.0307	0.5440	0.0360	0.5445	0.0358	0.5535	0.0351	0.4970	0.0319	05421	00356	0.5513	0.0358
20	0.5505	0.0265	0.5637	0.0247	0.5522	0.0269	0.5529	0.0268	0.5629	0.0258	0.5026	0.0233	0.5504	0.0266	0.5599	0.0268
40	0.5492	0.0190	0.5608	0.0163	0.5511	0.0191	0.5514	0.0191	0.5603	0.0180	0.5017	0.0182	0.5493	00191	0.5578	0.0183
50	0.5497	0.0198	0.5626	0.0185	0.5519	0.0196	0.5526	0.0196	0.5620	00193	0.5000	0.0186	0.5499	00199	0.5593	0.0200
100	0.5471	0.0164	0.5602	0.0140	0.5488	0.0166	0.5492	0.0166	0.5594	0.0163	0.4994	0.0146	0.5472	00165	0.5562	0.0165
200	0.5520	0.0118	0.5666	0.0102	0.5542	0.0120	0.5544	0.0121	0.5645	0.0107	0.5039	0.0113	0.5520	0.0119	0.5621	0.0115
250	0.5480	0.0132	0.5616	0.0103	0.5494	0.0132	0.5499	0.0135	0.5607	0.0133	0.5005	0.0128	05481	0.0132	05575	00136
400	0.5460	0.0103	0.5593	0.0084	0.5479	0.0103	0.5485	0.0103	0.5581	0.0099	0.4984	0.0114	0.5461	0.0103	0.5557	0.0098
500	0.5491	0.0108	0.5613	0.0088	0.5510	0.0108	0.5512	0.0105	0.5607	0.0100	0.5015	0.0105	0.5492	00108	0.5579	0.0101
1000	0.5470	0.0113	0.5629	0.0088	0.5491	0.0112	0.5496	0.0111	0.5600	0.0115	0.4993	0.0125	0.5471	0.0113	0.5571	0.0110
2000	0.5489	0.0099	0.5620	0.0067	0.5507	0.0097	0.5512	0.0096	0.5609	0.0082	0.4992	0.0108	05491	0.0099	0.5585	0.0082

Table 3.2 Average over 4 models of mean over 20 iterations of estimated mean probabilities of correci selection and their standard deviations for these 20 iterations averaged over 4 models for Design 3.2 (continued).

Number of beta drawings		AIC		BIC		GCV		10C		HQ		RBAR		MCP		$J 1 \mathrm{C}$	
		Average of average	Average SD	Average of average	$\begin{aligned} & \text { Average } \\ & \text { SD } \\ & \hline \end{aligned}$	Average of average	Average SD	Average of average	$\begin{aligned} & \text { Average } \\ & \text { SD } \\ & \hline \end{aligned}$	Average of average	Average SD						
	Sample size $=100$																
	1	0.6066	0.1313	0.6212	0.1449	0.6079	0.1323	0.6083	0.1324	0.6255	0.1442	0.5453	0.1036	0.6066	0.1314	0.6235	0.142 l
	2	0.6126	0.0938	0.6195	0.1082	0.6141	0.0344	0.6143	0.0944	0.6284	0.1034	0.5516	0.0734	0.6126	0.0938	0.6271	0.1020
	4	0.6028	0.0599	0.6129	0.0626	0.6040	0.0601	0.6045	0.0601	0.6194	0.0634	0.5421	0.0493	0.6028	0.0599	0.6182	0.0630
	8	0.6039	0.0530	0.6143	0.0578	0.6053	0.0532	0.6056	0.0534	0.6205	0.0569	0.5443	0.0410	0.6039	0.0530	0.6193	0.0566
	10	0.6170	0.0484	0.6319	0.0493	0.6183	0.0486	0.6186	0.0487	0.6358	0.0506	0.5519	0.0408	0.6169	0.0485	0.6334	0.0504
	30	0.6224	0.0412	0.6341	0.0428	0.6235	0.0413	0.6238	0.0413	0.6408	0.0439	0.5565	0.0335	0.6224	0.0412	0.6393	0.0434
	40	0.6162	0.0274	0.6308	$0.026 \dagger$	0.6175	0.0272	0.6178	0.0272	0.6356	$0.0<76$	0.5513	0.0220	0.6162	0.0274	0.6337	0.0272
	50	0.6207	0.0260	0.6329	0.0254	0.6219	0.0264	0.6223	0.0264	0.6395	0.0267	0.5558	0.0221	0.6208	0.0260	0.6379	0.0271
	100	0.6190	0.0216	0.6324	0.0195	0.6201	0.0216	0.6204	0.0216	0.6373	0.0207	0.5544	0.0171	0.6190	0.0217	0.6359	00210
	200	0.6171	0.0148	0.6320	0.0131	0.6184	0.0148	0.6187	0.0148	0.6371	0.0137	0.5507	0.0134	0.6171	0.0148	0.6349	0.0144
	250	0.6173	0.0161	0.6313	0.0131	0.6185	0.0159	0.6190	0.0159	0.6361	0.0156	0.5530	0.0143	0.6173	0.0161	0.6345	0.0158
∞	400	0.6171	0.0129	0.6323	0.0107	0.6184	0.0128	0.6188	0.0128	0.6377	0.0124	0.5514	0.0117	0.6171	0.0129	0.6353	0.0128
∞	500	0.6190	0.0125	0.6321	0.0104	0.6204	0.0125	0.6208	0.0125	0.6381	0.0115	0.5536	0.0121	0.6190	0.0126	0.6369	0.0119
	1000	0.6192	0.0097	0.6330	0.0081	0.6204	0.0099	0.6267	0.0099	0.6381	0.0095	0.5548	0.0112	0.6192	0.0097	0.6361	0.0097
	2000	0.6185	0.0111	0.6341	0.0071	0.6198	0.0113	0.6202	0.0113	0.6382	0.0093	0.5550	0.0120	0.6185	0.0111	06361	00097

Table 3.3 The estimated models ${ }^{\otimes}$ of the relationship between ASD and 4 under different criteria

Sample size	Criteria	Design 3.1				Design 3.2				
		\hat{A}	\hat{B}	\bar{R}^{2}	DW	\hat{A}	\hat{B}	\bar{R}^{2}	DW	
20	AIC		$\begin{aligned} & -0.365 \\ & -0.385 \end{aligned}$	$\begin{aligned} & 0.958 \\ & 0.970^{\ldots} \end{aligned}$	$\begin{aligned} & 0.552 \\ & 0.768 \end{aligned}$	$\begin{gathered} 3.086 \\ -3.070 \end{gathered}$	$\begin{aligned} & -0.239 \\ & -0.270 \end{aligned}$	0.832^{\cdots}		
	BIC							$0.868{ }^{\circ}$	$0.745^{\prime \prime}$	
	GCV	$\left\{\begin{array}{l} -1.979 \cdots \\ -2.049 \cdots \end{array}\right.$	-0.369 ${ }^{\circ}$	$0.963 \cdots$	0.579°	-3.069 ${ }^{\circ}$	-0.47...	0.850^{\ldots}	0.688^{*}	
	HOC	-2.035**	-0.373 ${ }^{\cdots}$	0.964^{\cdots}	0.575^{*}	-3.065*	-0.252	0.855^{\cdots}		
	HQ	-20.47 ${ }^{\text {c }}$	-0.370*	$0.964 \cdots$	0.549^{*}	-3.072 ${ }^{\prime}$	-0.246 ${ }^{\circ}$	0.848^{\cdots}	0.676*	
	RBAR	$\begin{aligned} & -2.308^{\cdots} \\ & -2.076 \end{aligned}$	-0.335 \ldots	$0.932 \cdots$	0.713°	-3.178**	$-0.228{ }^{*}$	0.863^{\cdots}	$0.456^{\prime \prime}$	
	MCP		-0.366 ${ }^{\circ}$	$0.960 \cdots$	0.540°	-3.081 ${ }^{1}$	-0.240*	$0.836 \cdots$	$0.628^{\prime \prime}$	
	Jic	-2.068**	.0.368 ${ }^{\circ}$	$0.961{ }^{\prime}$	$0.558^{\prime \prime}$	-3.078**	$-0.242{ }^{*}$	0.839^{\cdots}	$0.644^{\prime \prime}$	
50	AlC	$\begin{aligned} & 1.788 \\ & -1.513 \\ & -1.768 \end{aligned}$	$\begin{aligned} & -0.403 \\ & -0.444 \end{aligned}$	$\begin{aligned} & 0.957 \\ & 0.979 \end{aligned}$	$\begin{aligned} & 0.581 \\ & 0.706 \end{aligned}$. 2.524	-0.321	$0.934{ }^{\prime}$. 674	
	BIC					-2.508 -2.514	-0.362-0.323	$0.938{ }^{0 .}$	0.814^{*}	
	GCV		-0.406**	0.958	0.552°				$0.689^{\text {. }}$	
	HOC		$0.408{ }^{\cdots}$	0958^{\cdots}	0.546^{*}	-2.513^{\prime}	-0.324 ${ }^{+}$	0.940^{\ldots}	0.731^{*}	
	HQ	-1.646**	$\begin{aligned} & -0.424 \\ & -0.35 \cdots \end{aligned}$	$\begin{aligned} & 0.969^{\cdots} \\ & 0.942 \end{aligned}$	$\begin{aligned} & 0.560^{\circ} \\ & 0.603^{\circ} \end{aligned}$	$\begin{aligned} & -2.485 \\ & -2.744 \end{aligned}$	$\begin{aligned} & -0.338^{\cdots} \\ & -0.282^{\cdots} \end{aligned}$	$0.935 \cdots$	$0.911^{\prime \prime}$	
	RBAR	-2.141						$0.908 \cdots$	$0.578{ }^{\circ}$	
	MCP	-1.787 ${ }^{\prime \prime}$	-0.403 ${ }^{\ldots}$	0.957^{\cdots}	0.580^{*}	$\begin{aligned} & -2.524^{\cdots} \\ & -2.479 \end{aligned}$	$\begin{aligned} & -0.321 \cdots \\ & -0.337 \end{aligned}$	$\begin{aligned} & 0.935 \\ & 0.946 \end{aligned}$	$\begin{aligned} & 0.689^{*} \\ & 0.967^{\prime} \end{aligned}$	
	JIC	-1.681 ${ }^{1}$	-0.421	$0.971 \cdots$	$0.607{ }^{\prime \prime}$					
96 for Design 3.1 and 100 for Design 3.2	AIC	$\begin{aligned} & -2.537 \\ & -2.515 \\ & -2.524^{\cdots} \\ & -2.523 \\ & -2.329 \\ & -2.888^{\cdots} \\ & -2.53 \cdots \\ & -2.37 \cdots \end{aligned}$	-0.328.0 .407$.0 .331 \cdots$$-0.331 \cdots$.0 .369$-0.271 \cdots$.0 .239-0.360	0.939 0.916 0.974^{\prime} $1.727^{n 5}$ 0.940^{\prime} 0.932° 0.9411° 0.927° 0.959 $1.254^{n 5}$ 0.904^{\prime} 0.727^{\prime} 0.939 0.912° 0.955^{\prime} $1.174^{\text {ns }}$		$\begin{aligned} & -2.214 \\ & -2.043 \\ & -2.211 \\ & -2.210 \\ & -2.098 \\ & -2.518 \\ & -2.214 \\ & -2.118 \end{aligned}$	$\begin{aligned} & -0.346 \\ & -0.407 \cdots \\ & -0.345 \cdots \\ & -0.345 \cdots \\ & -0.375 \cdots \\ & -0.303 \cdots \\ & -0.346 \cdots \\ & -0.368 \cdots \end{aligned}$	0.9740.9880.9$0.972 \cdots$$0.972 \cdots$$0.980 \cdots$$0.944 \cdots$$0.974 \cdots$$0.980 \cdots$	$\begin{aligned} & 1.291^{\text {ns }} \\ & 1.697^{75} \\ & 1.231^{\mathrm{nd}} \\ & 1.205^{\mathrm{nt}} \\ & 1.363^{\mathrm{ns}} \\ & 0.624^{\circ} \\ & 1.299^{\mathrm{ns}} \\ & 1.346^{\mathrm{ns}} \end{aligned}$	
	BIC									
	GCV									
	HOC									
	HQ									
	RBAR									
	MCP									
	JIC									

*** Significant at 0.1 percent level
** Significant at I percent level

* Significant at 5 percent level
ns Not significant
nd Nodecision
$\otimes \quad \ln (\mathrm{ASD})=\hat{A}+\hat{B} \ln q$
q must be greater than or equal to 1

Table 3.4 The estimated models ${ }^{8}$ of the relationship between ASD and q under different criteria for Design 3.1.

Sample size	Criteria	\hat{a}	\hat{b}	\hat{c}	\bar{R}^{2}	DW	$\dot{q}^{\text {\# }}$
20	AlC	$\left\{\begin{array}{l} -1.800 \\ -1.754 \end{array}\right.$	$\begin{aligned} & -0.594 \\ & -0.569 \end{aligned}$				19286
	BIC			0.0242^{\prime}	$0.987^{\prime \prime}$	1.720^{76}	127542
	GCV	$\underbrace{-1}_{-1.788}$	-0.582 ${ }^{-\cdots}$	0.0280*	0.989	$1.691^{\text {rs }}$	32626
	HOC	-1.78**	$0.583 \cdots$	$0.027{ }^{\prime \prime}$	$0.98{ }^{\ldots}$	$1.571^{\text {ns }}$	38623
	HQ	$]_{-1.788}^{-1.979}$	-0.582 ${ }^{\text {² }}$	0.0278*	$0.989 \cdots$	$1.593{ }^{\text {ns }}$	35159
	RBAR		-0.603 ${ }^{\text {² }}$	$0.0353^{\prime \prime}$	0.979	$1.682^{\text {ns }}$	5121
	MCP	$\begin{array}{\|l} -1.801 \\ \hline 1.796 \\ \hline 1 \end{array}$	-0.590 ${ }^{-1}$	0.0295*'	$0.988 \cdots$	$1.665^{\text {ms }}$	22026
	JIC		-0.591*	$0.0293 \cdots$	$0.989 \cdots$	$1.665^{\text {ns }}$	23988
50	AIC	-1.478	-0.565	0.0333	${ }^{0.998}$	$\begin{aligned} & 1.692^{n 5} \\ & 1.817^{n 5} \end{aligned}$	4834
	BIC	$\begin{array}{\|l} -1.280 \\ -1.459 \end{array}$	-0.633 \cdots	0.0249*'			$\begin{array}{r} 331321 \\ 19829 \end{array}$
	GCV		$\begin{gathered} -0.659 \cdots \\ -0.661 \cdots \end{gathered}$	$0.0333^{\prime \prime}$	$0.987 \times$	$1.583^{\text {ns }}$	
	HOC	$\left\{\begin{array}{l} -1.45 \cdots \cdots \\ -1.369 \end{array}\right.$		$0.0335^{\prime \prime}$0.0297	0.987"	$1.542^{\text {ns }}$	19258
	HQ		$-0.649 \cdots$		0.989	$\begin{aligned} & 1.622^{n s} \\ & 1.898^{\mathrm{ns}} \end{aligned}$	555996466
	RBAR	-1.807 ${ }^{1 .}$	-0.630*	0.0359**			
	MCP	$\begin{aligned} & -1.478 \cdots \cdots \\ & -1.406 \end{aligned}$	$\begin{aligned} & -0.655^{\prime} \\ & -0.644 \cdots \end{aligned}$	$\begin{aligned} & 0.0332^{\cdots} \\ & 0.0295{ }^{\prime} \end{aligned}$	$\begin{aligned} & 0.987 \cdots \\ & 0.991 \cdots \end{aligned}$	$\begin{aligned} & 1.6955^{\mathrm{ns}} \\ & 1.740^{\text {ns }} \end{aligned}$	$\begin{array}{r} 19234 \\ 55009 \end{array}$
	JIC						
96	AIC	-2.264$-2.02 \xi^{\prime}$-2.254-2.254$-2.120 \cdots$-2.573-2.263-2.148	$\begin{aligned} & -0.551 \\ & -0.54 \cdots \\ & -0.551 \cdots \\ & -0.550 \\ & -0.539 \cdots \\ & -0.528 \\ & -0.552^{\cdots} \cdots \\ & -0.542 \end{aligned}$	$\begin{aligned} & \hline 0.0293 \\ & 0.0132^{n s} \\ & 0.0290^{\circ} \\ & 0.0288^{\circ} \\ & 0.0225^{\circ} \\ & 0.0338^{\prime} \\ & 0.0294^{\prime} \\ & 0.0239^{\circ} \end{aligned}$	0.9720.9770.9720.9730.9740.9690.9720.973	$\begin{aligned} & 2.243^{\text {ns }} \\ & 2.159^{\mathrm{ns}} \\ & 2.251^{\mathrm{ns}} \\ & 2.249^{\mathrm{ns}} \\ & 2.211^{\mathrm{ns}} \\ & 2.495^{\mathrm{ns}} \\ & 2.237^{\mathrm{ns}} \\ & 2.257^{\mathrm{ns}} \end{aligned}$	12121 218991934 13360 14025 ; 159178 2467 11941 84029
	BIC						
	GCV						
	HOC						
	HQ						
	RBAR						
	MCP						
	JIC						

*** Significant at 0.1 percent level
** Significant at I percent level

* Significant at 5 percent level
ns Not significant
\# Estimated value of q where ASD is the minimum
$\otimes \quad \ln (\mathrm{ASD})=\hat{a}+\hat{b} \ln q+\hat{c}(\ln q)^{2}$
q must be greater than or equal to 1

Table 3.5 The estimated models ${ }^{\otimes}$ of the relationship between ASD and q under different criteria for Design 3.2.

Sample size	Criteria	\hat{a}	\hat{b}	\hat{i}	$\overline{\bar{R}}^{2}$	DW	$\hat{q}^{\prime \prime}$
20	AIC	${ }^{-2.681}$			0.962		695
	BIC		$\begin{aligned} & -0.587 \cdots \\ & -0.554 . \end{aligned}$	0.0417	0.964	$2.553^{\text {no }}$	1140
	GCV	$\begin{aligned} & -2.693 \\ & -2.692^{\cdots} \end{aligned}$		$0.0404^{\prime \prime}$	0.955^{\prime}	2.300^{18}	9501043
	HOC		-0.556*	$0.0400 \times$	0.955	$2.328^{\text {n/8 }}$	
	HQ	-2.692*	-0556"	$0.0408 \cdots$	0.957"	$2.302{ }^{\text {ns }}$	310
	RBAR	-2.829 ${ }^{\prime \prime}$	-0.512^{\cdots}	$0.0375{ }^{\text {- }}$	(.973 ${ }^{\text {c }}$	$1.843^{\text {78 }}$	922
	MCP	$\begin{array}{\|l} -2.682 \cdots \\ -2.685 \\ \hline \end{array}$	$\begin{aligned} & -0.566 \cdots \\ & -0.561 \cdots \end{aligned}$	$0.0429{ }^{\text {a }}$	0961*	$2.418{ }^{\text {n5 }}$	733
	JIC			$1042{ }^{1}{ }^{\text {a }}$	0.956^{\cdots}	$2.364{ }^{\text {n5 }}$	783
50	AlC	2.212	-0.575	0.0334	0.981	$2.172^{\text {¹8 }}$	5474
	BIC	$\begin{array}{\|l\|l\|} -2.236 \\ -2.211 \cdots \end{array}$	-0.583 ${ }^{\prime \prime}$	$0.0292{ }^{\prime \prime}$	0.981^{\cdots}	$2.513^{\text {m }}$	21653
	GCV		-0.570 ${ }^{-\cdots}$	$0.0325{ }^{\text {a }}$	$0.982 \cdots$	2.205^{*}	6433
	HOC	$\begin{aligned} & -2.215 \\ & -2.186 \cdots \end{aligned}$	-0.566*'	0.0319	$0.982 \cdots$	$2.277^{\text {ns }}$	7126
	HQ		$\begin{gathered} -0.582 \cdots \\ -0.562 \cdots \end{gathered}$	$0.0321{ }^{\prime \prime}$	$0.97{ }^{\text {. }}$	$2.417^{\text {ms }}$	8651
	RBAR	$\begin{aligned} & -2.400 \\ & -2.215 \end{aligned}$		0.03690.0332	0.981	$2.219^{\text {n5 }}$	$\begin{aligned} & 2029 \\ & 5594 \end{aligned}$
	MCP		-0.573^{\cdots}		0.978	$\begin{aligned} & 2.196^{n 5} \\ & 2.528^{n 5} \end{aligned}$	
	JIC	$-2.205 \cdots$	$-0.560 \cdots$	c.0294 ${ }^{-1}$			13682
100	AIC	$\begin{array}{\|l} -2.035 \\ -1.926 \\ -2.023 \end{array}$	$\begin{aligned} & -0.491 \\ & -0.502 \end{aligned}$	$\begin{aligned} & 0.0192 \\ & 0.0125 \end{aligned}$	0.987	2.235^{14}	357345
	BIC				0.992	$2537{ }^{\text {n5 }}$	525573182
	GCV		$\begin{aligned} & -0.499 \cdots \\ & -0.499 \cdots \end{aligned}$	$\begin{aligned} & 0.0202^{\prime \prime} \\ & 0.0202^{\circ} \end{aligned}$	0.986^{\prime}	2.123^{ns}	231303
	HOC:	$-2.022^{\cdots}-1.938$			$0.987 \times$	$2.129^{\text {n0 }}$	231303
	HQ		-0.505".	0.0171°0.0295	$\begin{aligned} & 0.989 \cdots \\ & 0.986 \end{aligned}$	$\begin{aligned} & 2.285^{\text {ns }} \\ & 1.449^{\text {ns }} \end{aligned}$	2587187
	RBAR	$\begin{gathered} -2.243 \cdots \\ -2.035 \cdots \\ -1.95 \boldsymbol{c}^{\cdots} \\ -1 \end{gathered}$					$\begin{array}{r}7701 \\ 357345 \\ 1737254 \\ \hline\end{array}$
	MCP		$\begin{aligned} & -0.491 \cdots \\ & -0.500 \cdots \end{aligned}$	$\begin{aligned} & 0.0192^{\circ} \\ & 0.0174^{\circ} \end{aligned}$	$\begin{aligned} & 0.987 \cdots \\ & 0.990 \cdots \end{aligned}$	$\begin{aligned} & 2.244^{\mathrm{ns}} \\ & 2.363^{\mathrm{ns}} \end{aligned}$	
	JIC						

*** Significant at 0.1 percent level
** Significam at 1 percent level

* Significant at 5 percent level
ins Not significant
nd Nodecision
\# Estimated value of q where ASD is the minimum
- $\quad \ln (\mathrm{ASD})=\hat{a}+\hat{b} \ln q+\hat{c}(\ln q)^{2}$
q must be greater than or equal to 1

Table 3.6 Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for samples of different sizes and under different criteria for Design 3.2.

Sample size	Mode	A verage probabilities of correct selection with penalties (given in the parenthesis for new criteria only) under different criteria										
		AIC	BIC	HQ	GCV	RBAR	HOC	N1C1	NIC2	NIC3	NIC 4	NICS
20	M_{1}	0.6715	0.8115	0.7120	0.7095	0.4705	0.7205	0.8745 (1.8600)	0.8605 (.95.3998)	0.8765 (1.9728)	0.8750 (1.8900)	0.8795 (-28.16439)
	M_{2}	0.8100	0.8850	0.8260	0.8315	0.6785	0.8365	0.7160 (3.7200)	0.9165 (-93.6480)	0.9140 (3.8731)	09160 (3.7539)	0.9155 (-26.34372)
	M_{1}	0.2170	0.1595	0.2050	0.2085	0.2805	0.2070	01335 (3.7200)	0.1425 (-93.6480)	0.1310 (3.8731)	0.1330 (3.7539)	0.1350 (-26.34372)
	Ms.	0.2945	0.1940	0.2720	0.2635	0.4385	0.2565	01505 (5.5800)	0.1510 (-91.7961)	0.1530 (5.6948)	0.1510 (5.6081)	0.1510 (-24.49213)
	Mean	0.4983	0.5125	0.5038	0.5033	0.4670	0.5051	0.5186	0.5176	0.5186	0.5188	0.5205
	SD	0.2874	0.3891	0.3110	0.3134	0.1636	0.3198	0.4353	0.4289	0.4353	0.4354	0.4362
50	M_{1}	0.7080	0.9055	0.8110	0.7195	0.4780	0.7225	0.8570 (1.6000)	0.8570 (-299.6702)	0.87×5 (1.6735)	0.8570 (1.5900)	0.8555 (-153.9669)
	M_{2}	0.8255	0.9435	0.8910	0.8365	0.6690	0.8370	0.9160 (3.1900)	0.9225 (-298.0825)	0.9235 (3.3292)	0.9190 (3.1800)	$0.9190(-151.3924)$
	M_{1}	0.3090	0.2060	0.2645	0.3045	0.3620	0.3040	0.2445 (3.1900)	0.2445 (-298.0825)	0.2315 (3.3292)	0.2454 (3.1800)	0.2460 (-151.3924)
	Ms	0.3580	0.1945	0.2735	0.3430	0.5000	0.3405	0.2445 (4.7600)	0.2400 (-296.4614)	0.2375 (4.9667)	0.2445 (4.7700)	0.2445 (-149.8008)
	Mean	0.5501	0.5624	0.5600	0.5509	0.5023	0.5510	0.5655	0.5660	0.5658	0.5665	0.5663
	SD	0.2555	0.4185	0.3376	0.2670	0.1266	02687	0.3714	0.3748	0.3831	0.3721	0.3716
100	M_{1}	0.7175	0.9370	0.8455	0.7255	0.4770	0.7265	0.8610 (1.6200)	0.8905 (-817.9313)	0.8820 (1.7462)	0.8645 (1.6800)	0.8780 (-339.0689)
	M \%	0.8470	0.9670	0.9190	0.8535	0.6800	0.8545	0.9255 (3.2400)	$0.9430(-816.1242)$	0.9365 (3.4846)	0.9255 (3.3137)	0.9365 (-337.3476)
	M_{3}	0.4145	0.3325	0.3900	0.4140	0.4185	0.4130	0.3880 (3.2400)	0.3720 (-816.1242)	0.3770 (3.4846)	0.3870 (3.3137)	0.3815 (-337.3476)
	Ms	0.4810	0.2765	0.3875	0.4775	0.6120	0.4770	C. 3745 (4.8600)	0.3425 (-814.2986)	0.3545 (5.2152)	0.3745 (4.9305)	$0.3550(.335 .6!86)$
	Mean	0.6150	0.6283	0.6355	0.6176	0.5469	0.6178	0.8373	0.6370	0.6375	0.6379	0.6378
	SD	0.2021	0.3747	0.2865	0.2069	0.1202	0.2079	0.2968	0.3240	0.3147	0.2980	0.3123

Penalties for NIC1. NIC2, NIC3, NIC4 and NIC5 are $\lambda_{1} k_{\mathrm{j}}, \lambda_{2} \ln \left(n-k_{1}\right), \lambda_{1} k_{1} \ln \left(n-k_{1}\right), \lambda_{1} k_{\mathrm{j}}^{\boldsymbol{2}_{2}}$ and $\lambda_{1} k_{1}+\lambda_{2} \ln \left(n-k_{1}\right)$. respectively.

Table 3.7 Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for samples of different sizes and under different criteria for Design 3.3.

Sample size	Model	A verage probabilities of correct selection with penalties (given in the parenthesis for new criteria only) under different criteria										
		AIC	BIC	HQ	GCV	RBAR	HOC	NICl	NIC 2	NIC 3	NIC4	NIC5
20	M	0.9080	0.9685	0.9200	0.9180	0.7205	0.9245	0.8455 (0.7890)	0.8305 (-40.6333)	0.8575 (0.8539)	$0.8000(0.4200)$	0.8460 (-27.9966)
	M_{2}	0.6425	0.5955	0.6345	0.6420	0.6645	0.6365	0.6615 (1.5780)	0.6695 (-39.8871)	0.6555 (1.6764)	0.6870 (1.0931)	0.6660 (-27.2075)
	M:	0.5935	0.5395	0.5885	0.5900	0.6340	0.5975	0.6155 (1.5780)	0.6230 (-39.8871)	0.6065 (1.6764)	0.6415 (1.0931)	$0.6180(-27.2075)$
	M	0.4290	0.3200	0.4005	0.3920	0.5495	0.3835	0.4830 (2.3670)	0.4830 (-39.0983)	0.4820 (1.4649)	0.4790 (1.9128)	0.4775 (-26.3889)
	Mean	0.6433	0.6059	0.8359	0.6355	0.6421	0.6343	0.6514	0.6515	0.6504	0.6519	0.6519
	SD	0.1987	0.2694	0.2148	0.2170	0.0714	0.2228	0.1499	0.1433	0.1562	0.1331	0.1521
50	M_{i}	0.9265	0.9950	0.9715	0.9310	0.7420	0.9330	0.9115 (0.9100)	0.9075 (-169.294)	$0.9140(0.9340)$	0.9170 (0.7700)	$0.9110(-98.8614)$
	M_{2}	0.7600	0.6975	0.7425	0.7595	0.7375	0.7595	$0.7590(1.8200)$	0.7600 (-168.397)	0.7590 (1.8582)	0.7690 (1.7087)	0.7605 (.97.9556)
	M	0.7145	0.6450	0.6855	0.7125	0.7220	0.7135	0.7245 (18200)	0.7275 (-168.397)	0.7235 (1.8582)	0.7270 (1.7087)	0.7265 (-97.9556)
	M,	0.5750	0.4500	0.5150	0.5685	0.6895	0.5650	0.5915 (2.7300)	0.5915 (-167.481)	0.5915 (2.7721)	0.5735 (2.7238)	0.5910 (-97.0388)
	Mean	0.7440	0.6971	4.7986	0.7429	0.72 .28	0.7428	0.7466	0.7466	0.7470	0.7466	0.7473
	SD	0.1449	0.2254	¢ 686	0.1494	0.0238	0.1516	0.1315	0.1297	0.1326	0.1413	0.1314
100	M_{i}	0.9330	0.9985	0.9805	0.9390	0.7545	0.9400	0.9460 (1.0600)	0.9545 (.5i0.058)	0.9575 (1.1488)	0.9435 (0.9900)	0.9460 (-229.206)
	M_{2}	0.7965	0.7455	0.7885	0.7970	0.7750	0.7970	0.7985 (2.1200)	$0.8000(-508.931)$	0.7975 (2.2925)	0.8010 (2.0357)	0.7990 (-228.148)
	M	0.7880	0.7135	0.7555	0.7885	0.7470	0.7875	ก.7875 (2.1200)	0.7850 (-508.931)	0.7845 (2.2925)	0.7885 (2.0357)	0.7875 (-228.140)
	M.	0.7000	0.5620	0.6425	0.6980	0.7790	0.6975	0.6950 (3.1800)	0.6870 (.507.793)	0.6870 (3.4310)	0.6940 (3.1034)	$0.6950(-227.086)$
	Mean	0.8044	0.7549	0.7928	0.8056	0.7638	0.8055	0.8068	0.8066	0.8066	0.8068	0.8069
	SD	0.0962	0.1811	0.1402	0.0996	0.0156	0.1003	0.1038	0.1106	0.1120	0.1029	01038

Penalties for NIC1. NIC2. NI-3, NIC4 and NIC5 are $\lambda_{1} k_{1} \cdot \lambda_{2} \ln \left(n-k_{1}\right), \lambda_{1} k_{1} \ln \left(n-k_{1}\right) . \lambda_{1} k_{1}^{\prime \prime}$ and $\lambda_{1} k_{1}+\lambda_{2} \ln \left(m-k_{1}\right)$. respectively.

Table 3.8 Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for samples of different sizes and under different criteria for Design 3.4.

Samp le size	Mode!	Average probabilities of correct selection with penaltics (given in the parenthesis for new criteria only) under different criteria										
		AIC	BIC	HQ	GCV	RBAR	HOC	NICl	NIC2	NIC3	NIC4	NICS
20	M_{1}	0.8630	0.9545	0.8915	0.8875	0.6485	0.8945	0.7770 (0.8000)	0.7590 (-41.2221)	0.8070 (0.8833)	0.6875 (0.3500)	0.7710 (-31.6099)
	M_{2}	0.5590	0.5310	0.5560	0.5670	0.5330	0.5650	0.5525 (1.6000)	0.5625 (-40.4652)	0.5465 (1.7342)	0.5885 (0.9763)	0.5595 (-30.8360)
	M_{1}	0.5780	0.5415	0.5745	0.5830	0.5400	0.5840	0.5780 (1.6000)	0.5840 (-40.4652)	0.5735 (1.7342)	0.6110 (0.9763)	$0.5830(-30.8360)$
	M	0.6205	0.6055	0.6230	0.6290	0.5680	0.6265	0.6120 (1.6000)	0.6175 (-40.4652)	0.6050 (1.7342)	0.6415 (0.9763)	0.6175 (-30.8360)
	Ms,	0.4005	0.3265	0.3845	0.3845	04635	0.3780	0.4290 (3.4000)	0.4335 (-39.6650)	0.4235 (3.5499)	0.4390 (1.7791)	$0.4315(\cdot 30.0287)$
	Ms	0.3850	0.3060	0.3710	0.3650	0.4520	0.3595	0.4210 (3.4000)	0.4245 (-39.6650)	0.4145 (3.5439)	0.4275 (1.7791)	0.4210 (-30.0287)
	M_{7}	0.4290	0.3505	0.4100	0.4025	0.4825	0.3980	0.4580 (3.4000)	0.4635 (-39.6650)	0.4525 (3.5499)	0.4720 (1.7781)	0.4620 (-30.0287)
	M_{8}	0.3290	0.2385	0.3135	0.2930	0.4280	0.2845	0.3730 (3.2000)	0.3545 (-38.8162)	0.3760 (3.3271)	0.3395 (3.7234)	$0.3560(-29.1840)$
	Mean	0.5205	0.4818	0.5155	0.5139	0.5107	0.5113	0.5251	0.5249	0.5248	0.5258	0.5252
	SD	0.1732	0.2318	0.1882	0.1929	0.0650	0.1976	0.1322	0.1307	0.1408	0.1228	0.1340
50	M_{1}	0.8900	0.9920	0.9570	0.8965	0.6565	0.8980	0.8770 (0.9500)	$0.8715(-175.1319)$	0.8805 (0.9730)	0.8800 (1.0900)	$0.8730(136.0037)$
	M	0.7055	0.66 Sts	0.6990	0.7110	0.6200	0.7100	0.7055 (1.9000)	0.7065 (-174.2041)	0.7035 (1.9356)	0.6940 (2.0482)	0.7065 (-135.0720)
	M,	0.7450	0.7195	0.7495	0.7485	0.6320	0.7490	0.7380 (1.9000)	$0.7405(-174.2041)$	0.7380 (1.9356)	0.7285 (2.0482)	0.7395 (-135.0720)
	$M 1$	0.7200	0.6905	0.7285	0.725%	0.6300	0.7250	0.7175 (1.9000)	$0.7180(-174.2041)$	0.7170 (1.9356)	0.7120 (2.0482)	$0.7180(\cdot 135.0720)$
	M,	0.5745	0.4580	0.5280	0.57 is	0.6180	0.5710	0.5795 (3.8500)	0.5810 (-173.2566)	0.5795 (3.8876)	0.5830 (3.9622)	0.5815 (-134.1252)
	M	0.5785	0.4615	0.5345	0.5710	0.6145	0.5690	0.5870 (3.8500)	0.5885 (-173.2566)	0.5860 (3.8876)	0.5905 (3.9622)	0.5890 (-134.1252)
	M :	0.5805	0.4690	0.5330	0.5730	0.6090	0.5725	0.5815 (3.8500)	$0.5830(\cdot 173.2566)$	0.5800 (3.8876)	0.5865 (3.9622)	$0.5830(\cdot 134.1252)$
	M_{8}	0.5335	0.4125	0.4825	0.5200	0.6310	0.5175	0.5440 (3.8000)	0.5405 (-173.2889)	0.5455 (3.8286)	0.5590 (3.8486)	$0.5420(-133.1625)$
	Mean	0.6659	0.6085	0.6515	0.6646	0.6264	0.6640	0.8663	0.6662	0.6663	0.6667	0.6666
	SD	01206	0.1969	0.1615	0.1272	0.0148	0.1284	0.1132	0.1121	0.1140	0.1089	$\checkmark .1121$
100	M	0.9040	0.9960	0.9750	0.9080	0.6575	0.9120	0.9040 (1: . 98)	0.9030 (-450.3218)	0.9050 (1.0109)	0.8950 (0.8500)	0.9050 (-123.3382)
	M_{2}	0.7740	0.7365	0.7745	0.7775	0.6645	0.7765	0.7690 (2.164)	0.7760 (-449.3268)	0.7740 (2.0174)	0.7785 (1.8094)	$0.7760(-123.3341)$
	M_{i}	0.7840	0.7540	0.7820	0.7845	06655	07845	0.7860 (2.0164)	0.7855 (-449.3268)	0.7830 (2.0174)	0.7895 (1.8054)	$0.7845(\cdot 123.3341)$
	M_{4}	0.7855	0.7500	0.7925	0.7880	0.6590	0.7880	0.7858 (2.0164)	0.7865 (-449.3268)	0.7855 (2.0174)	0.7895 (1.8094)	0.7865 (-123.3341)
	M	0.6605	0.5350	0.6095	0.6590	0.6620	0.6590	0.6619 (3.0195)	0.6610 (-448.3217)	0.6605 (3.0193)	0.6620 (3.8150)	$0.6610(-121.3272)$
	M	0.6660	0.5575	0.6205	0.6630	0.6710	0.5630	0.6676 (3.0195)	$0.6660(.448 .3217)$	0.6680 (3.0193)	0.6675 (3.8150)	0.6660 (-121.3272)
	M	0.6420	0.5260	0.5990	0.6400	0.6485	0.6385	0.6422 (3.0195)	0.6420 (-448.3217)	0.6420 (3.0193)	0.6435 (3.8150)	$0.6420(-121.3272)$
	M_{8}	0.6550	0.5105	0.5900	0.6495	0.7360	0.6475	0.6550 (4.0167)	$0.6530(-447.3061)$	0.6555 (4.0166)	0.6495 (3.8518)	$0.6540(-120.3174)$
	Mean	0.7339	0.6707	0.7179	0.7337	0.6705	0.7338	0.7339	0.7341	0.7339	0.7344	0.7344
	SD	0.0929	0.1695	0.1366	0.0958	0.0273	0.6971	0.0924	0.0931	0.0930	0.0918	0.0934

Penalties for NIC1, NIC2, NIC3, NIC4 and NIC5 are ${ }^{\prime}, k_{j}, \lambda_{2} \ln \left(n-k_{j}\right) . \lambda_{1} k_{3} \ln \left(n-k_{j}\right) . \lambda_{1} k_{j}^{{ }_{j}^{\prime}}$ and $\lambda_{1} k_{j}+\lambda_{2} \ln \left(n-k_{j}\right)$, respectively.

Table 3.9 Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for samples of different sizes and under different criteria for Design 3.5.

Sample size	Model	Average probabilities of correct selection with penalties (given in the parenthesis for new criteria only) under different criteria										
		AIC	BIC	HQ	GCV	REAR	HOC	NICl	NIC2	NIC3	NlCA	NICS
20	M_{1}	0.5520	0.7200	0.5945	0.5885	0.3115	0.6015	0.8780 (3.3200)	0.8585 (-119.5442)	0.8836 (3.4733)	0.8785 (3.2900)	0.8780 (-9.6778)
	M_{2}	0.6440	0.7830	0.6820	0.6970	0.4595	0.7095	0.9005 (4.6400)	$0.9005(-117.3491)$	0.8965 (4.8558)	0.9015 (4.6119)	$0.9010(-7.3615)$
	M,	0.3800	0.4095	0.3930	0.4030	0.3090	0.4060	0.3815 (4.6400)	0.3930 (-117.3491)	0.3770 (4.8558)	0.3820 (4.6119)	$0.3820(-7.3615)$
	M	0.5685	0.6315	0.5985	0.6150	0.4250	0.6235	0.7505 (4.6400)	0.7550 (-117.3491)	0.7455 (4.8558)	0.7510 (4.6119)	0.7515 (-7.3615)
	Ms,	0.4360	0.4180	0.4380	0.4435	0.4330	0.4425	0.3530 (6.9600)	$0.3545(-115.0285)$	0.3540 (7.1397)	0.3520 (6.9459)	0.3525 (-5.0329)
	M_{6}	0.6990	07475	0.7135	0.7215	0.6200	0.7350	0.7665 (6.9600)	0.7745 (-115.0285)	0.7630 (7.1397)	0.7685 (6.9459)	0.7685 (-5.0329)
	\boldsymbol{M} \%	0.4195	0.3870	0.4135	$0.41^{\prime \prime} 0$	0.4205	0.4125	0.3290 (6.9600)	0.3315 (-115.0285)	0.3295 (7.1397)	0.3295 (6.9459)	0.3300 (-5.0329)
	M_{8}	0.5180	0.4520	0.5040	0.4855	0.6035	0.4805	0.3605 (9.2800)	$0.3415(-113.5671)$	0.3725 (9.3159)	0.3570 (9.2879)	0.3570 (-3.6904)
	Mean	0.5271	0.5748	0.5421	0.5469	0.4478	0.5514	0.5899	0.5886	0.5901	0.5900	0.5901
	SD	0.1116	0.1723	0.1230	0.1291	0.1155	0.1330	0.2554	0.2543	0.2536	0.2564	0.2561
50	M_{1}	0.5780	0.8540	0.7320	0.5890	0.3165	0.5975	0.9310 (3.4900)	0.9240 (-461.1807)	0.9365 (3.6075)	0.9320 (3.4400)	0.9320 (-126.5901)
	M_{2}	0.7030	0.8885	0.8115	0.7215	0.4645	0.7240	0.9370 (4.9800)	0.9375 (-458.7373)	0.9425 (5.1874)	0.9405 (4.9481)	$0.9405(-124.0696)$
	M ${ }_{3}$	0.4920	0.5485	0.5320	0.5035	0.3660	0.5040	0.5410 (4.9800)	0.5460 (-458.7373)	0.5415 (5.1874)	0.5435 (4.9481)	0.5430 (-124.0696)
	M ${ }_{\text {c }}$	0.6625	0.8360	0.7550	0.6810	0.4370	0.6830	0.8725 (4.9800)	0.8730 (-458.7373)	0.8745 (5.1874)	0.8750 (4.9481)	$0.8750(-124.0696)$
	Ms	0.5675	0.5620	0.5860	0.5740	0.5210	0.5745	0.5330 (7.4700)	0.5325 (-456.2425)	0.5290 (7.7388)	0.5295 (7.4826)	0.5295 (-121.5349)
	M_{6}	0.7705	0.8685	0.8240	0.7840	0.6520	0.7845	0.8805 (7.4700)	0.8835 (-456.2425)	0.8805 (7.7388)	0.8835 (7.4826)	$0.8835(-121.5349)$
	M_{7}	0.5755	0.5570	0.5830	0.5785	0.5495	0.5785	0.5290 (7.4700)	$0.5300(-456.2425)$	0.5235 (7.7388)	0.5265 (7.4826)	0.5285 (-121.5349)
	M_{8}	0.7080	0.5945	0.6595	0.7005	0.7850	0.6975	0.5510 (9.9600)	0.5470 (-453.6940)	0.5495 (10.261)	0.5479 (10.034)	0.5470 (-118.9852)
	Mean	0.6321	0.7136	0.6854	0.6415	0.5114	0.6429	0.7219	0.7217	0.7222	0.7222	0.7221
	SD	0.0932	0.1596	0.1113	0.0942	0.1526	0.0937	0.1974	0.1966	0.2007	0.1997	0.1997
100	M	0.6140	0.9025	0.7795	0.6220	0.3390	0.6235	0.9175 (3.5000)	$0.9170(-1121.209)$	0.9190 (3.5273)	0.9145 (3.2000)	0.9245 (-103.3678)
	M_{2}	0.6975	0.9460	$0.84 i 0$	0.7075	0.4575	0.7115	0.9570 (5.0000)	$0.9570(-1118.732)$	0.9570 (5.0435)	0.9570 (4.6188)	$0.9585(-100.8143)$
	M	0.5710	0.6845	0.6510	0.5775	0.4065	0.5775	0.6860 (5.0000)	$0.6865(\cdot 1118.732)$	0.6845 (5.0435)	0.6905 (4.6188)	0.6855 (-100.8143)
	M_{1}	0.6945	0.9010	0.8175	0.7025	0.4890	0.7045	0.9105 (5.0000)	$0.9105(-1118.732)$	0.9105 (5.0435)	0.9110 (4.6188)	0.9120 (-100.8143)
	M.	0.6710	0.6730	0.6860	0.6740	0.5935	0.6740	0.6695 (7.5000)	0.6695 (-1116.229)	0.6695 (7.5483)	0.6705 (7.1276)	0.6645 (-98.25840)
	M_{6}	0.7930	0.9125	0.8570	0.8000	0.6505	0.8005	0.92^{10} (7.5000)	$0.9215(-1116.229)$	0.9210 (7.5483)	0.9235 (7.1276)	0.9235 (-98.25840)
	M_{7}	0.6730	0.7055	0.7040	0.6755	0.5735	0.6750	0.7000 (7.5000)	$0.7005(-1116.229)$	0.6995 (7.5483)	0.7010 (7.1276)	0.6980 (-98.25840)
	M_{8}	0.7800	0.6825	0.7315	0.7745	0.8370	0.7740	0.6715 (10.000)	0.6690 (-1113.701)	0.6715 (10.042)	0.6670 (9.6968)	0.6670 (-95.70000)
	Mean	0.6868	0.8009	0.7584	0.6917	0.5433	0.6926	0.6041	0.8039	0.8041	0.8044	0.8042
	SD	0.0749	0.1236	0.0765	0.0731	0.1567	0.0731	0.1319	0.1321	0.1323	0.1317	0.1351

Penalties for NIC1, NIC2, NIC3, NIC4 and NIC5 are $\lambda_{1} k_{j}, \lambda_{2} \ln \left(n-k_{j}\right), \lambda_{1} k_{j} \ln \left(n-k_{i}\right), \lambda_{1} k_{j}^{{ }^{\prime}:}$ and $\lambda_{1} k_{j}+\lambda_{2} \ln \left(n-k_{j}\right)$, respectively.

Table 3.10 Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for samples of different sizes and under different criteria for Design 3.6.

Penalties for NIC1. NIC2. NIC3, NIC4 and NIC5 are $\lambda_{1} k_{j}, \lambda_{2} \ln \left(n-k_{j}\right), \lambda_{1} k_{j} \ln \left(n-k_{1}\right), \lambda_{1} k_{j}^{\lambda_{2}}$ and $\lambda_{1} k_{j}+\lambda_{2} \ln \left(n-k_{j}\right)$. respectively.

Table 3.11 Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for samples of different sizes and under different criteria for Design 3.7.

Sample size	Model	Average probabilities of correct selection with penalties (given in the parenthesis for new criteria only) under difforent criteria										
		AIC	BIC	HQ	GCV	RBAR	HOC	NICl	NIC2	NIC3	NIC4	NICS
20	M_{1}	0.8935	0.9690	0.9110	0.9110	0.6945	0.9165	0.8500 (0.8400)	0.8100 (.40.63326)	0.8520 (0.8833)	0.8620 (1.0800)	0.8300 (.9.98998)
	M_{2}	0.7300	0.7495	0.7410	0.7460	0.6510	0.7485	0.7105 (1.6800)	$0.7105(-39.88713)$	0.7060 (1.7342)	0.7050 (1.9602)	0.7090 (.9.18534)
	M_{3}	0.6945	0.7095	0.7035	0.7095	0.5860	0.7105	0.6710 (1.6800)	$0.6580(-39.88713)$	0.6655 (4.7342)	0.6660 (1.9602)	0.6680 (-9.18534)
	M_{4}	0.2395	0.1855	0.2300	0.2325	0.2915	0.2290	0.2595 (1.6800)	0.2785 (-39.88713)	0.2560 (1.7342)	0.2530 (1.9602)	0.2685 (-9.18534)
	Ms	0.4425	0.3720	0.4265	0.4225	0.5025	0.4180	0.4670 (3.5200)	0.4735 (-39.09834)	0.4670 (3.5499)	0.4660 (3.7781)	0.4715 (-8.36957)
	M_{6}	0.1620	0.1025	0.1480	0.1425	0.2395	0.1405	0.1885 (3.5200)	$0.1995(-39.09834)$	0.1915 (3.5499)	0.1910 (3.7781)	0.1920 (-8.36957)
	M_{7}	0.1225	0.0700	0.1065	0.1025	0.2025	0.0985	0.1545 (3.5200)	$0.1655(-39.09834)$	0.1595 (3.5499)	0.1585 (3.7781)	0.1615 (-8.36957)
	M_{8}	0.0810	0.0350	0.0705	0.0600	0.1555	0.0570	0.1040 (3.3600)	0.1055 (-38.26172)	0.1200 (3.3271)	0.1185 (3.5579)	0.1075 (.7.54132)
	Mean	0.4207	0.3991	0.4171	0.4158	0.4154	0.4148	0.4256	0.4251	0.4272	0.4275	0.4260
	SD	0.3159	0.3624	0.3284	0.3324	0.2169	0.3356	0.2888	0.2747	0.2847	0.2874	0.2816
50	M_{1}	0.9045	0.9870	0.9550	0.9105	0.6785	0.9125	0.8190 (0.7500)	0.8055 (-134.2678)	0.8255 (0.7784)	0.8540 (1.4400)	$0.8180(-13.9514)$
	M_{2}	0.8410	0.8570	0.8610	0.8510	0.7215	0.8505	0.7935 (1.5000)	0.7910 (-133.5564)	0.7955 (1.5485)	0.7800 (3.2912)	0.7925 (-13.2092)
	M_{3}	0.7610	07575	0.7720	0.7665	0.6665	0.7685	0.7305 (1.5000)	0.7265 (-133.5564)	0.7310 (1.5485)	0.7175 (3.2912)	0.7295 (-13.2092)
	M_{4}	0.3655	0.2455	0.3115	0.3620	0.4060	0.3590	$0.3960(1.5000)$	0.4015 (-133.5564)	0.3915 (1.5485)	0.3735 (3.2912)	0.3975 (-13.2092)
	Ms,	0.6455	0.5665	0.6275	0.6450	0.6430	0.6430	0.6530 (3.2500)	0.6550 (-133.8301)	0.6520 (3.3101)	0.6390 (3.0063)	$0.6530(-11.4655)$
	M_{6}	0.3225	0.1920	0.2585	0.3135	0.4045	0.3120	0.3640 (3.2500)	0.3690 (-133.8301)	0.3615 (3.3101)	0.3650 (3.0063)	0.3655 (-1 1.4655)
	M_{7}	0.2330	0.1110	0.1765	0.2260	0.3265	0.2260	0.2750 (3.2500)	0.2810 (-133.8301)	0.2725 (3.3101)	0.2765 (3.0063)	0.2785 (-11.4655)
	M_{8}	0.1905	0.0715	0.1335	0.1805	0.3350	0.1775	0.2500 (3.0000)	0.2515 (-132.0881)	0.2495 (3.0629)	0.2870 (3.6454)	0.2510 (-10.7202)
	Mean	0.5329	0.4735	0.5119	0.5319	0.5227	0.5311	0.5351	0.5351	0.5349	0.5366	0.5357
	SD	0.2872	0.3634	0.3293	0.2944	0.1691	0.2957	0.2382	0.2330	0.2407	0.2358	0.2367
100	M_{1}	0.9175	0.9955	0.9770	0.9200	0.7190	0.9215	0.8790 (0.8200)	0.8755 (-367.6096)	0.8790 (0827i)	0.9120 (1.2800)	0.8770 (-146.5538)
	M_{2}	0.8695	0.8865	0.8950	0.8740	0.7210	0.8745	$0.84 i 5$ (1.6400)	0.8415 (-366.7974)	0.8410 (1.6506)	0.8495 (3.2597)	$0.8415(-145.7389)$
	M_{3}	0.8235	0.8430	0.8495	0.8260	0.6980	0.8265	0.8015 (1.6400)	0.8015 (-366.7974)	0.8015 (1.6506)	0.8105 (3.2597)	0.8005 (-145.7389)
	M4	0.5155	0.3685	0.4520	0.5160	0.5185	0.5140	0.5240 (1.6400)	0.5265 (-366.7974)	0.5235 (1.6506)	0.5080 (3.2597)	$0.5265(-145.7389)$
	M5	0.7345	0.6620	0.7150	0.7335	0.7040	0.7335	0.7360 (3.4600)	0.7380 (-365.9769)	0.7355 (3.4703)	0.7335 (3.1510)	0.7360 (-144.9208)
	M_{6}	0.4565	0.3055	0.3910	0.4535	0.5200	0.4525	0.4795 (3.4600)	0.4795 (-365.9769)	0.4795 (3.4703)	0.4715 (3 1510)	0.4805 (-144.9208)
	M_{7}	0.3775	0.2195	0.3005	0.3740	0.4640	0.3735	0.4105 (3.4600)	$0.4110(-365.9769)$	0.4105 (3.4703)	0.3960 ('510)	$0.4130(-144.9208)$
	M_{8}	0.3135	0.1410	0.2340	0.3060	0.4610	0.3055	0.3610 (3.2800)	0.3600 (-365.1479)	0.3615 (3.2863)	0.3585 (: + +93)	0.3610 (-144.0991)
	Mean	0.6260	0.5527	0.6018	0.6254	0.6007	0.6252	0.6291	0.6292	0.6290	0.6299	0.6295
	SD	0.2377	0.3337	02913	0.2412	0.1196	0.2420	0.2076	0.2071	0.2075	0.2202	0.2065

Penalties for NIC1, NIC2, NIC3. NIC4 and NIC5 are $\lambda_{1} k_{1}, \lambda_{2} \operatorname{in}\left(n-k_{1}\right), \lambda_{1} k_{j} \ln \left(n-k_{1}\right), \lambda_{1} k_{j}^{\lambda_{2}}$ and $\lambda_{1} k_{j}+\lambda_{2} \ln \left(n-k_{1}\right)$, respectively.

CHAPTER 4

MAXIMISATION OF MEAN AVERAGE PROBABILITY OF CORRECT SELECTION USING ADDITIVE AND MULTIPLICATIVE PENALTIES ${ }^{1}$

4.1 INTRODUCTION

In the previous chapter, we discussed some of the widely used information criteria to select the best model from a set of competing alternative models. But one of the main problems of existing eriteria is that their performance varies from data set to data set and none of the existing criteria performs well in all situations. So from a user's point of view, which criteria one should use to select the best model for a particular data set is a question that is unresolved. Also. there is no guarantee that an existing criterion will select the true model with the highest average probability in all situations.

In this chapter we investigate the problem of maximisation of mean average probability of correct selection (MAPCS) of the model using additive and

[^1]multiplicative penalties. The theory of the use of APCS and the technique used to estimate APCS were discussed in Section 3.2. We used the Simulated Annealing Optimisation (SAO) technique to find penalties that maximise the MAPCS. Here we are not imposing a particular functional form of the penalty: instead we give upper and lower boundaries of the penalty, a set of starting values, and a temperature reduction value. Then, we use the SAO technique (discussed in Section 2.4 of Chapter 2) to find the penalties for the competing models, which maximise the MAPCS of the true model. This chapter is divided into five sections. In Section 4.2. we describe the technique of maximisation of APCS using additive penalties with maximised log-likelihood functions. The maximisation of MAPCS using multiplicative penaties applied to cach model's mean squared error is described in Section 4.3. The designs of Monte Carlo experiments are given in Sectuon 4.4. Section 4.5 contains results and discussion, and some concluding remarks are presented in the last section.

4.2 ADDITIVE PENALTY

Suppose we are interested in selecting a model from m alternative models, M_{1}, M_{2}. \ldots, M_{m}. for a given data set. Let the model $M_{,}, j=1,2, \ldots, m$, be represented by

$$
\begin{equation*}
\mathbf{y}=\mathbf{X}_{j} \beta_{j}+\mathbf{u}_{i}, \tag{4.1}
\end{equation*}
$$

where \mathbf{y} is an $n \times 1$ vector of observations on the dependent variable. \mathbf{X}, is an $n \times k_{j}^{*}$ matrix, $k_{j}^{*}=(k,-1), \beta_{j}$ is a vector of k_{j} paramet and \mathbf{u}_{j}, is an $n \times 1$
vector of random disturbances distributed as $\mathrm{N}\left(0, \sigma^{\prime} \mathbf{J}\right)$. \mathbf{X}_{y} contains a column vector of ones in its first column and observations on $\left(k_{,}^{*}-1\right)$ non-stochastic variables in the remaining $\left(k_{i}^{*}-1\right)$ columns. Let the log-hikelithood function for model M, be $L_{j}\left(\beta_{j}, \sigma_{j}^{2}\right)$ and the maximized value of $L_{j}\left(\beta_{j} . \sigma_{j}^{2}\right)$ be $L_{j}\left(\hat{\beta}_{j}, \hat{\sigma}_{j}^{2}\right)$. where $\hat{\beta}_{j}$ and $\hat{\sigma}_{j}^{2}$ are the maximum likelihood estimates of β, and σ_{j}^{2}, respectively. Then

$$
\begin{equation*}
L_{,}\left(\beta_{1}, \sigma_{i}^{2}\right)=-\frac{n}{2}\left[\ln \sigma_{i}^{2}+\ln (2 \pi)+\frac{(\mathbf{y}-\mathbf{X}, \beta,)^{\prime}(\mathbf{y}-\mathbf{X}, \beta,)}{n \sigma_{i}^{2}}\right] \tag{4.2}
\end{equation*}
$$

The maximum of the log-likelinood. $L,\left(\hat{\beta}_{,}, \hat{\sigma}_{i}^{2}\right)$, can be uritten as

$$
\begin{equation*}
L_{1}\left(\hat{\beta}_{1} \cdot \hat{\sigma}_{1}^{2}\right)=-\frac{n}{2}\left[\ln \hat{\sigma}_{1}^{2}+\ln (2 \pi)+1\right] . \tag{4.3}
\end{equation*}
$$

where $\hat{\sigma}^{2}=\frac{\left(\mathbf{y}-\mathbf{X}, \hat{\beta}_{1}\right)^{\prime}\left(\mathbf{y}-\mathbf{X}, \hat{\beta}_{1}\right)}{\prime \prime}$ is the maximum likelihood estimetor of σ_{1}^{*} and $\hat{\beta}_{,}=\left(\mathbf{X}_{j}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}$ is the maximum likelihood estimator of β_{1}.

Let p_{j} denote the penalty for model M, In almost all IC based model selection procedures, the model with the largest I, is selected, where I_{1} is given by

$$
\begin{equation*}
l_{j}=L_{j}\left(\hat{\beta}_{1}, \hat{\sigma}_{j}^{2}\right)-p_{j} \tag{4.4}
\end{equation*}
$$

This I_{j} is called the penalized maximised log-likelihood. Then the $j^{\prime t h}$ model will be selected if

$$
\begin{equation*}
I_{1}>I_{i}, \forall i=1.2 \ldots(j-1) .(j+1) \ldots m . \tag{4.5}
\end{equation*}
$$

For all existing criteria. p_{l}, are a function of n. the sample size, and k, , the number of parameters in the $j^{\text {th }}$ model. The functional form of p; for different existing criteria was presented in Chapter 3. One of the main disadvantages of using these penalty functions is: that they are independent of the data set. i.e. for a particuiar model. the penally remains the same for different data sets. To overcome this problem. we suggest the use of the SAO technique to find the optimum penalty, which maximises the MAPCS for the data set in hand. This approach does not involve a functional form of penalty, instead it requires an arbitary starting value of the penalty set with appropriate upper and lower bounds of the penalties, and a temperature reduction value. A detailed description and discussion of the advantages of this optimisation technique was given in Section 2.4 of Chapter 2. The theory and the computational techniques for calculating MAPCS were discussed in Section 3.2 of Chapter 3.

4.3 MULTIPLICATIVE PENALTY

Equation (4.3) can be written as a function of the residual sum of squares as follows:

$$
\begin{equation*}
L_{j}\left(\hat{\beta}_{j}, \hat{\sigma}_{j}^{2}\right)=-\frac{n}{2}\left[\ln \frac{S_{j}^{2}}{n}+\ln (2 \pi)+1\right], \tag{4.6}
\end{equation*}
$$

where $S_{j}^{2}=\left(\mathbf{y}-\mathbf{X}_{j} \hat{\beta}_{j}\right)^{\prime}\left(\mathbf{y}-\mathbf{X}_{j} \hat{\beta}_{j}\right)$ is the residual sum of squares for the $j^{\text {th }}$ model.

From this equation it is obvious that the selection of a model using the largest value of (4.6) is equivalent to the selection of a model with the smallest value of S_{1}^{2}. But one of the main problems in using the smallest S_{j}^{2} is that the residual sum of squares always decreases or remains constant (i.e.. never increases) with the inclusion of additional regressors. So there is a tendency touards seleciing modets with a needlessly large number of regressors. Hence in order to use residual sum of squares for model selection purposes, we need some adjustment so that models with an unnecessarily large number of parameters will not be favoured. This is achieved by using a penalty function. Rahman (1998) defined the penalised error sum of squares as follows:

$$
\begin{equation*}
J_{1}=S_{i}^{2} q_{1}, \tag{4.7}
\end{equation*}
$$

where q_{i} is called the multiplicative penalty and J, is the penalised error sum of squares. The model with the smallest $J_{\text {, }}$ (multiplicative information criterion for the $j^{\text {rin }}$ model) will be selected if

$$
\begin{equation*}
J_{1}<J_{i}, \forall i=1.2, \ldots(j-1),(j+1) \ldots, \ldots . \tag{4.8}
\end{equation*}
$$

The functional form of a possible q, is also given by Rahman (1998) as

$$
\begin{equation*}
q_{j}=\left(n-k_{j}\right)^{a_{1}}\left(a_{2}\right)^{\frac{k_{1}}{n}}, \tag{4.9}
\end{equation*}
$$

where a_{1} and a_{2} are arbitrary constants.

He mentioned that all existing criteria can be expressed as a special case of this new criterion in linear regression settings and he analytically showed how the widely used criteria AIC. BIC. HQ. GCV, HOC. Mallows ${ }^{*} C_{p}$, and RBAR, were a special case of this criterion. He also mentioned that by choosing the appropriate values of a_{1} and a_{2}. it is possible to develop an infinite numier of new criteria, which will perform well in a range of situations. But a problem with this penalty fanction is the need to find the values of a_{1} and a_{2} for a particular data set. Also the penalty function is a function of n, the sample size, and $k_{\text {, }}$, the number of free parameters, but is independent of data values. i.e. for the same set of competing models, a change of data sets does not have any impact on the penalty function. Another problem with this penalty function is that. for a particular data set, like the existing additive IC, the same dimensional models have the same penalty. To overcome these problems, we redefine the multiplicative information criteria J, for the $j^{\text {th }}$ model as J_{i}^{*}, where

$$
\begin{equation*}
j_{j}^{*}=E_{j}^{2} \dot{q}_{j} . \tag{4.10}
\end{equation*}
$$

in which $E_{j}^{2}=\frac{S_{j}^{2}}{n-k_{j}^{*}}$ is the mean squared error and $\dot{q}_{j}=\left(n-k_{j}\right)^{a_{1}}\left(a_{2}\right)^{\frac{h_{2}}{n}}$ is the mulitiplicative penalty.

Then, instead of searching for the values of a_{1} and a_{2}, we use the SAO technique to find the value of \dot{q}_{j}^{*}, which maximises the MAPCS by minimising J_{j}^{*} in equation
(4.10). The advantage of using the mean squared error over the error sum of squares is that we are taking account of the residual degrees of freedom.

4.4 THE DESIGNS OF THE MONTE CARLO STUDIES

In order to evaluate the performance of the additive and multiplicative penalties discussed in Sections 4.2 and 4.3 and compare them to the performance of the selected existing criteria. we conducted some simulation experimet's. In these experiments the assumed models are the same as used in Chapter 3. We use the same technique as descrbed in Section 3.3 of the previous chapter for generating the data and computing the APCS. The designs used for the experiments are as follows.

Design 4.1: x_{1}, is the real per capita GDP of the $t^{\prime \prime}$ country and x_{2}, is GDP as a percent of USA GDP. We used the annual data from Summers and Heston (1991) revised version 5.6 and World Bank world tables. Here we consider four non-nested models M_{1}, M_{2}, M_{3} and M_{5} given by (3.16), (3.17), (3.18) and (3.19) with $s_{c}^{2}=0.1$ and $s_{b}^{2}=0.5$.

Design 4.2: x_{11} is Australian retail trade quarterly data commencing the first quarter of 1959 and x_{21} is, the same series lagged one quarter. We have used the fata from the Australian Bureau of Statistics. Here we consider four non-nested models M_{1}, M_{2}, M_{3} and M_{5} given by (3.16), (3.17), (3.18) and (3.19) with $s_{r}^{2}=55$ and $s_{b}^{2}=6$.

Design 4.3: x_{14} and x_{2}, are randomly and independently generated values from the $\mathrm{N}(0.1)$ distribution. Here we consider four non-nested models M_{1}, M_{2}, M_{3} and M_{s} given by (3.16). (3.17), (3.18) and (3.19) with $s_{r}^{2}=0.12$ and $s_{b}^{2}=0.08$.

Design 4.4: This is an extension of Design 4.1 to more models using one extra variable x_{3}, which is the price level of consumption of the $t^{t h}$ country. Here we consider eight non-nested models $M_{1}, M_{2}, M_{7}, M_{4}, M_{5}, M_{6} . M_{7}$ and M_{8} given by (3.16), (3.17). (3.18), (3.29), (3.19), (3.30), (3.31) and (3.32), respectively. with $s_{r}^{2}=0.35$ and $s_{b}^{2}=0.02$.

Design 4.5: This is an extension of Design 4.2. Here we add one more variable $x_{3,}$, which is x_{1} (in Design 4.2) lagged two quarters. Eight non-nested models. i.e. M_{1}. $M_{2}, M_{3}, M_{4}, M_{5}, M_{6}, M_{7}$ and M_{8}, given by (3.16). (3.17), (3.18), (3.29), (3.19), (3.30), (3.31) and (3.32), respectively, with $s_{t}^{2}=0.1$ and $s_{i}^{2}=0.15$, are considered.

Design 4.6: This is an extension of Design 4.3 with x_{3}, randomly and independenily generated from the $\mathrm{N}(0,1)$ distribution. Here we consider eight non-nested models $M_{1}, M_{2}, M_{3}, M_{4}, M_{5}, M_{6}, M_{7}$ and M_{8}, given by (3.16), (3.17), (3.18), (3.29), (3.19), (3.30), (3.31) and (3.32), respectively, with $s_{c}^{2}=0.12$ and $s_{b}^{2}=0.08$.

The sample sizes used for the Designs 4.1, 4.3. 4.4 and 4.6 are 20, 50 and 100: and for Designs 4.2 and 4.5, sample sizes are 20,50 and 96 .

To apply the SAO technique with maximised log-likelibmen functions and additive penalties, we experimented with the use of different sets of starting values, upper and lower boundaries, and temperature reduction values, which are requirements of the SAO technique. It is well known that among the existing criteria. AIC and BIC have wider use in econometrics and physical sciences for model selection. So we used the relative penalties ${ }^{2}$ of AIC and BIC as starting values of the penalties for the SAO technique. In addition, we also used zero penalties as the starting values. One of the conditions of the SAO technique is that the starting value of the parameter (here penalties) cannot be outside the boundary values of the parameters. So when selecting thie boundaries of the penalties, we had to keep this condition in mind. We considered the maximum number of free parameter (k) among the competing models. the number of competing model $(\mathrm{m}) \mathrm{km}$ and an arbitrary value of 10 as upper boundaries with starting penalties relative AIC and zeros. For these starting values. we used two types of lower boundaries, namely zeros and the negative of upper boundaries. We used $k \ln (n) / 2, m \ln (n) / 2$, an arbitrary value of 10 and $k m$ as upper boundaries with starting penalties being relative BIC. In this case we also have two

[^2]types of lower boundaries, namely zeros and the negative of $k . m, 10$ and $k m$. When maximising the MAPCS using maximised log-likelihoods with additive penalties, we used the following initia! ralues for Designs 4.1.4.2 and 4.3.

Three sets of starting values of the penalties were $\{0,0.0,0\}$.
$\left\{\left(k_{:}-1\right),\left(k_{2}-1\right),\left(k_{3}-1\right),\left(k_{4}-1\right)\right\}$, and
$\left\{\frac{k_{1}-1}{2} \ln (n), \frac{k_{2}-1}{2} \ln (n), \frac{k_{3}-1}{2} \ln (n), \frac{k_{4}-1}{2} \ln n\right\}$, where $k_{1}, j=1.2 .3 .4$. is the number of free parameters in the $j^{\text {th }}$ model.

We used the eight boundary yets $(0,3),(0,4)(0,10),(0,12),(-3,3),(-4,4),(-10$, 10), and ($-12,12$) with the first and s.cond starting penalty sets, and the eight boundary sets $(0,3 \ln (n, 2 / 2),(0,2 \ln (n)),(0,10),(0,12),(-3.3 \ln (n) / 2),(-4,2 \ln (n))$, $(-10,10) .(-12.12)$ with the third penalty. In all cases, we used four temperature reduction values nartiely $0.1,0.01,0.001$, and 0.0001 : so. we have 96 combinations of inient seis of values lor the SAO technique to estmate APCS.

The starting values and boundary values for Designs $4.4,4.5$ and 4.6 (eight competing modetis) were also chosen considering the same reasons given for Designs 4.1, 4.2 and 4.3.

The three sets of starting values for additive penalies for Designs 4.4. 4.5 and 4.6 are. $\{0.0,0.0,0.0,0.0\} .\{(k,-1)\}$ and $\left\{\frac{k_{,}-1}{2} \ln (n)\right\}$. where $k_{1}, j=1.2,3,4,5,6$.
7. 8 , is the number of free parameters in the $j^{\text {th }}$ model.

We used the eight boundary sets $(0,4),(0.8)(0,10),(0,32),(-4,4),(-8,8),(-10$. 10) and (-32, 32), with the first and second starting penalty sets. and the eight boundary sets $(0,10),(0,32),(0.2 \ln (n)),(0,4 \ln (n) / 2),(-10,10),(-32,32),(-4$. $2 \ln (n))$ and $(-8.4 \ln (n))$ with the third penalty set. In all cases, we used four temperature reduction values, namely 0.1. 0.01, 0.001. and 0.0001: so. we have 96 combinations of initial sets of values for the SAO technique to estimate the APCS.

In the case of multiplicative penalties, we have to multiply the mean squared error by the penalties selected in such a way that the MAPCS is maximised with the minimisatior of mean squared error and the penalised value of mean squared error being non-negative. Considering these constraints, we have to select the stanting and boundary values of the penalties. Because the penalised mean squared etror cannot be negative and the mean squared error is positive, the value of the penalties must be positive. As mentioned earlier, AIC and BIC are widely used IC, so we used AIC and BIC as the starting values for the SAO technique. In addition, we used no penalty as the starting value. Here we use zero as the lower boundary. The upper boundaries are
$k . m$ and some arbitrary value: and a combination of these. These boundaries were selected so that the conditions required by the SAO technique were satisfied.

The three sets of starting values for multiplicative penalties for Designs 4.1, 4.2 and 4.3 are. $\{1,1,1,1\},\left\{k_{1}, k_{2}, k_{3}, k_{4}\right\}$, and $\left\{\frac{k_{1}}{2} \ln (n), \frac{k_{2}}{2} \ln (n), \frac{k_{2}}{2} \ln (n), \frac{k_{4}}{2} \ln (n)\right\}$, where $k_{j}, j=1,2,3,4$. is the number of free parameters in the $j^{\text {th }}$ model.

We used the six boundary sets. (0, 1), (0, 3), (0, 10), (0,12), (0, 20) and $(0,36)$, with the first starting penalty set: the four boundary sets, $(0,10),(0,12),(0,27)$ and $(0$, 48), with the second starting penalty set; and the four boundary sets $(0.3 \ln (n) / 2),(0$, $3 \ln (n)),(0.4 \ln (n))$ and $(0,5 \ln (n))$, with the third starting penalty set. For each combination of boundary and penalty sets, we used the same four temperature reduction values used for the additive penalty. Thus we have 56 combinations of initial sets of values.

The three sets of starting values of muitiplicative penalics for Designs 4.4, 4.5 and 4.6 are, $\{1,1,1,1,1,1,1,1\},\left\{k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}\right\}$, and $\left\{\frac{k_{1}}{2} \ln (n), \frac{k_{2}}{2} \ln (n), \frac{k_{3}}{2} \ln (n), \frac{k_{4}}{2} \ln (n) \frac{k_{5}}{2} \ln (n), \frac{k_{6}}{2} \ln (n), \frac{k_{7}}{2} \ln (n), \frac{k_{8}}{2} \ln (n)\right\}$, where k_{1}, j $=1,2,3,4,5,6,7,8$, is the number of free parameters in the $j^{\text {ith }}$ model.

We used the five boundary sets $(0,1),(0,4),(0,8),(0,20)$ and (0.32) with the first penalty set: the five boundary sets $(0,2 \ln (n)),(0,4),(0,8),(0,20)$ and $(0,32)$ with the second penalty set: and the five boundary sets $(0.2 \ln (n)),(0,4 \ln (n)) .(0.8 \ln (n))$. (0.20) and (0.32) with the third penalty set. For each combination of boundary and penalty sets. we used the same four temperature reduction values used for the additive penalty. This adds up to 60 combinations of initial sets of values.

4.5 MONTE CARLO RESULTS

The results of the simulation experiments for ihe SAO technique with additive and multiplicative penalties are presented in Tables 4.1a-c to Tables 4.6a-c. In each tabie there are three types of penalties: Type 1-additive, which are penalties of the existing criteria: Type 2-additive. which use maximised log-likelihood with the SAO technique: and Type 3-multiplicative, which use mean squared error with the SAO technique. There ate eight Type 1 criteria, namely AIC, BIC, GCV, HOC, HQ RBAR, MCP and IIC. The largest MAPCS. smallest variation among the APCS, modal MAPCS and median MAPCS obtained from the SAO technique are uscd as criteria under Type 2 and Type 3 penalties. A comparative study between Type 1 and Type 2 penalties for all designs under consideration is given in Section 4.5.1. The comparison between Type 1 and Type 3 penalties is presented in the Section 4.5.2 and in Section 4.5 .3 we give a comparative study of Type 2 and Type 3 penalties.

4.5.1 COMPARISON OF TYPE 1 AND TYPE 2 PENALTIES

The average probabilities of choosing the true model along with MAPCS and the peralties for Designs 4.1. 4.2. 4.3, 4.4. 4.5 and 4.6 are presented in Tables 4.1a-c, 4.2a-c. $4.3 a-c .4 .4 a-c .4 .5 a-c$ and $4.6 a-c$. respectively.

The Monte Carlo experiments indicate that the application of the SAO technique has a great effect on the performance of model selection in terms of APCS. For Designs 4.1, 4.2 and 4.3 and for all sample sizes under consideration. the MAPCS obtained using Type 2 penalties is always greater than that of the largess MAPCS (here that of BIC) among the listed existing IC (Table 4.1a to Tabie 4.3c). Also the variation among the APCS under Type 2 penalties is smaller ti th that of cited IC for all cases of Design 4.1 and some cases of Design 4.2 and 4.3. For all designs and sample sizes, in comparison to BIC, there is an increase in APCS for the model with the largest number of regressors (M_{5}) and a decrease in APCS for the model with the smallest number of regressors (M_{1}) for the largest MAPCS oblained from the SAO technique; but the picture is reversed in the case of the largest MAPCS oblained from the existing IC (here that of BIC). The mode ${ }^{*}$ and median MAPCS obtained from the SAO technique are very close to the largest MAPCS obtained from the SAO technique and in some cases these are identical to the largest MAPCS. For Design

[^3]4.1. the MAPCS corresponding to the smallest standard deviation of APCS among the competing models obtained from the SAO technique is very close to the largest MAPCS for all sample sizes. For Designs 4.2 and 4.3, the gap between the largest MAPCS and the APCS corresponding to the smallest standard deviation among the MAPCS obtained from the SAO technique increases as the sample size increases, but the value of standard deviation decreases with an increase in sample size. In general it is observed that among the existing criteria. RBAR selects the true model with the lowest MAPCS and the variation among its APCS is also the lowest. But this lowest variation is generally higher than the corresponding smallest variation among the APCS ohtained from the SAO technique with higher MAPCS obtained from this technique compared to RBAR.

The results obtained for Designs 4.4. 4.5 and 4.6 are very similar to those of Designs 4.1, 4.2 and 4.3 even though the number of competing models are double. For all designs and sample sizes, the largest MAPCS obtaincd using Type 2 penalties are always higher than that of BIC, the largest MAPCS among the existing listed IC with lower vatiation among the APCS compared to BIC (Table 4.4a to Table 4.6c). A decrease in the APCS for the model with the lowest number of regressors (M_{1}) and an increase in the APCS for the model with the highest number of regressors (M_{8}) is observed compared to the corresponding APCS ottained from BIC, for all sample sizes of Design 4.4, $n=20$ of Design 4.5, and $n=50$ and 100 of Design 4.6. For the remaining sample sizes of Designs 4.5 and 4.6 , the APCS for the model with the
lowest number of regressors and the model with the highest number of regressors are increasing compared to BIC. For all sample sizes and designs. the mode and median MAPCS obtained from the SAO technique are very close to the largest MAPCS obtained from the SAO technique and some cases these are identical to the largest MAPCS obtained from the SAO technique. An increase in the difference between the largest MAPCS and the MAPCS corresponding to the smallest standard deviation among the APCS is observed with an increase in sample size, but the numerical value of the standard deviation decreases as the sample size increases. Among the existing criteria. RBAR chooses the true model with the lowest MAPCS and in some cases the variation among the APCS is also the lowest. But this lowest variation among the PCS is always higher than the smallest variation among the APCS obtained from the SAO technique with larger MAPCS compared to RBAR.

The number of competing models in Designs 4.1, 4.2 and 4.3 are the same; and we used three different sets of data to test the performance of the application of the SAO technique with additive penalties. The relative penalty for a particular model under the existing criteria remains the same for Designs 4.1, 4.2 and 4.3 as the existing penalties are a function of n, the sample size, and k, the number of free parameters. But for the same set of starting values, boundary values and temperature reduction factors, the relative penalty obtained using the SAO technique for the Designs 4.1, 4.2 and 4.3 are different. For exampie, for sample size 20 , starting value $(0,0,0,0)$, boundary $(0,10)$, and temperature reduction factor 0.1 , the relative penalties for
models M_{1}, M_{2}, M_{3} and M_{5} that maximise the MAPCS are (0, 7.6894. 0.5024. 8.0203). (0, 1.6146, 1.3136, 3.7060) and (0.2.1953. 1.8668. 3.5430) for Designs 4.1. 4.2 and 4.3, respectively. It indicates that the penalties do not depend only on n and k. but also the data generating process. It is also notable that although the models M_{2} and M_{3} have the same number of parameters and the penalties of these models under the existing criteria are the same, while the penalties are different under the SAO technique. Another notable finding from the simulation experiments using Type 2 penalties is that for a partictlar data set and a set of competing models, exactly the same MAPCS and the same variation among the APCS is obtained from different sets of relative penalties. For example, for Design 4.1 and sample size 50 , the larezst APCS and SD among the APCS are 0.6290 and 0.1687 , respectively. These MAPCS and SD values are obtained from 21 different relative penalty sets, e.g. $10,8.9402$. 1.2482. 9.2081). (0. 11.4229. 1.2439, 11.6918). (0. 17.5325, 1.2462. 17.8005). This result implies that there is no unique set of penalties for a particular data set to maximise the MAPCS. Further it is probable that there may be no unique functional form for the penalties for a paricular data set. A similar picture is also observed for Designs 4.4, 4.5 and 4.6.

4.5.2 COMPARISON OF TYPE 1 AND TYPE 3 PENALTIES

Here we compare the MAPCS and variation among the APCS obtained using the Type 1 penalties, which are existing penalties, and the Type 3 penalties (multiplicative), which are those obtained using the SAO technique applied to
penalised mean squared error. The results of the experiments are presented in Tables 4.1a-c. 4.2a-c. 4.3a-c. 4.4a-c, 4.5a-c and 4.6a-c.

The simulation results demonstrate that in 100 percent of the cases under consideration for Designs 4.1, 4.2, and 4.3 and for all sar . $:$ sizes, the MAPCS obtained using the SAO technique with multiplicative penalties (Type 3 penatics) is greater than that of the largest MAPCS among the cited criteria (here BIC). It is also evident from the simulation results that in 100% of the cases for Design 4.1, the variation among the APCS is also lower than the variation for the largest MAPCS among the cited criteria. But in the case of Designs 4.2 and 4.3. the variation among the APCS is comparatively higher than that of the existing criteria. For Design 4.1 with $n=20$, all sample sizes of Design 4.2 and sample sizes 20 and 100 of Design 4.3, the mode ${ }^{4}$ and the median MAPCS coincide with the largest MAPCS obtained from Type 3 penalites. In other cases, the mode and the median MAPCS are very similar to the largest MAPCS obtanted using Type 3 penalties. The MAPCS corresponding to the smallest standard deviation among the APCS is very close to the largest MAPCS. The variation among the APCS increases as the sample size increases for Designs 4.2 and 4.3, but the reverse picture is observed for Design 4.1.

[^4]The results obtained from Designs 4.4, 4.5 and 4.6 are very similar to the results obtained from Designs 4.1.4.2 and 4.3 although the number of competing models is double in Designs 4.4.4.5 and 4.6. In 100 percent of the cases, the MAPCS obtained using Type 3 penalties is greater than the corresponding largest MAPCS obtained from the existing IC, for $n=20$ and 50 of Design 4.4, for all sample sizes of Design 4.5 , and $n=20$ of Design 4.6. For the remaining designs and sample sizes, in more than 95 percent of the cases. the MAPCS obtained from Type 3 penalties is higher than the corresponding largest MAPCS obtained from the existing IC. For all sample sizes of Design 4.4, and $n=20$ of Design 4.5. an increase of APCS in the model with the largest number of regressors (M_{s}) and a decrease of APCS in the model with the sma!!est number of regressors (M_{1}) is observed, compared to the largest MAPCS from the existing $1 \mathbf{C}$. The reverse picture is observed for the remaining sample sizes of Design 4.5 and all sample sizes of Design 4.6. For all designs and sample sizes, the mode ${ }^{5}$ and median MAPCS are very close to the largest MAPCS obtained irom Type 3 penalties and in some of the cases these are identical. The MAPCS corresponding to the smallest variation among the APCS is very close to the largest MAPCS obtained using Type 3 penalties.

As for additive penalties, in the case of multiplicative penalties we find. for the same set of starting values, boundary and temperature reduction factors, the relative

[^5] For example. T. $n=20$. starting pematies (1. 1, 1, 1), boundary (0.3), and temperature reduction factor 0.1 , the relative penalties for mixiels $M_{1}, M_{2} . M_{7}$ and M_{5} that maximise the MAPCS are (1. 3.1681, 0.9959, 0.30906). (1. 1.1127, 1.0804. 1.2957) and (1. 1.1806. 1.1412, 1.2887) for Designs 4.1. 4.2 and 4.3, resuctively. Like Type 2 penalties, foi the same dimensional model. the peralties are different ander the SAO techniquc although the penaltics of these models under the existing criteria are the same. Another remarkable finding from the simulatic experinents is that for a particular data set and set of competing models. exactly the same MAPCS and same variation among the APCS is obtained from different sets of relative penalties for the SAO technique. For example, for Design 4.1 and sample size 100 . the APCS 0.7331 and SD 0.201] is oblained from 12 combinations of initial parameter values for the SAO technique. But the relative penallies that maximise this MAPCS, are different e.g. (1.000, 3.5512, 1.0257, 3.5727) and (1.000, 1.6630. 1.0257. 1.6731). It confirms the finding concerning $T_{y p e} 2$ penalties, that there is no unique set of penalties that naximise the MAPCS. A similar picture is also observed for Designs 4.4, 4.5 and 4.6.

4.5.3 COMPARISON OF TYPE 2 AND TYPE 3 PENALTIES

The Monte Canlo expeiments indicate that the results obtained from additive penalties used with maximised log-likelihood functions (Type 2) and from multiplicative ponatics used with mear squared error (Type 3), are very simiar for
all designs and sample sizes under consideration. li implies that there is no significant effect of the form of penalties on the MAPCS of the model. So. from the user's point of view, one can use either of the penalties with the SAO technique to select the true model from a set of competing atternative models in linear regression settings.

4.6 CONCLUDING REMARKS

In this chapter. we introduced the application of the SAO technique to model selection. We used two types of penalty with the SAO technique to maximise the MAPCS. namely additive penalties applied to maximised log-likelihood functions and multiplicative penalties applied to mean squared error. The employment of this technique has a great effect on the performance of model selection procedures with respect to the selection of the true model in terms of MAPCS. Sumulation results show that the MAPCS obtained using the SAO technique is always higher than that of the existing criteria for all designs and sample sizes. Also, the variation among APCS obtained from the SAO technique decreases or remains very close to that of existing criteria. In some experimental designs, an exceptional improvement in the APCS for the model with the highest number of regressors is observed. In t. cases, a drastic reduction of the variation among the APCS is also observed.

The simulation results demonstrate that the optimal penalty for a particular model does not depend only on the sample size and the number of free parameters, but also
on the data generating process. The results for the SAO technique indicate that exactly the same MAPCS and variation among the APCS for a particular data set and a set of competing models can be obtained with different sets of penalties. It means that there is no unique set of penalties which maximise the MAPCS. We found from our simulation results that for the same dimensional model, the penalties obtained using tae SAO technique vary from data set to data set although they are the same in the case of existing criteria. Billah and King (1998) conducted simulation experiments for linear regression models with white noise. AR(1), AR(2) and MA(1) disturbances to estimate the penalties which maximise the MAPCS of the model. It is also apparent from their simulation results that although the $\mathrm{AR}(1)$ and $\mathrm{MA}(1)$ disturbance models have the same number of parameters, the penalties that maximise the MAPCS are different. Thes in the context of selecting the hest model from a set of models with equal number of parameters, the idea of penalising their corresponding maximised log-likelihood or mean squared error functions is inevitable in order to maximise the MAPCS. In the next chapter, we will discuss this issue of model selection.

Our simulation results indicate that the application of the multiplicative penalty to mean squared error and the additive penalty to the maximised log-likelihood function have very similar effects on the selection of the true model among a set of competing alternative models. So from the user's point of view, one can use cither of these techniques for model selection purposes.

In this chapter, it has been asserted that the application of the SAO technique to additive penalties applied to maximised log-likelihoods and multiplicaiive penalties applied to mean squared error. can be used to select the true model with higher APCS compared to existing criteria. It would seem that the numerical evidence from our simutiation experiments is a good reason to recommend the use of the SAO technique for model selection purposes with either additive penalties applied to maximised inglikelihoods or multiplicative penalties applied to mean squared error.

Table 4.1a Average probabilities, mean average probabilities and standard deviations of average probalvilities of correct selection of models for sample size $\mathbf{2 0}$ for Design 4.1 together with relative penalty values and input values of SAO technique.

[^6]Table 4.1b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 50 for Design 4.1 together with relative penalty values and input values of SAO technique.

Type of penalty	Criteria	A verage probabilities of correct selection of model						Relative petaltes			Input values fur simulated annealing								
								Starting values of penalties	Boundaries		TRI ${ }^{\text {T- }}$								
		M_{1}	M_{2}	M_{3}	M	Mcan	St)				P_{i}	P	p_{s}	S	s_{i}	S	S_{3}	LB	UB
Additive: Exisuing criteria (Type 1)	AIC	0.7560	0.8230	0.3165	0.2080	0.5259	03088	1.0050	1.0000	2.0000									
	BIC	0.9260	0.9450	0.2840	0.0800	0.5587	0.4430	1.9560	+ 1.9560	39120									
	GCV	0.7630	0.8320	0.3155	0.2010	0.5279	0.3161	1.310	1.0310	2.0936									
	HOC	07670	0.8340	0.3150	0.9990	0.5287	03185	- 0418	1.0418	21058									
	HQ	0.8450	0.8865	0.3085	0.1430	0.5457	03780	1.3541	1.3641	2.7281									
	RBAR	0.5145	0.6660	0.3070	0.3560	0.4634	- 1508	0.5155	0.5155	1.0418									
	MCP	0.7560	0.8240	0.3165	02075	0.5260	03093	1.0009	1.0009	2.0035									
	IIC	0.8175	0.8650	0.3150	0.1630	0.5401	0.3537	12357	12357	24769									
Additive: Cing loglikeithood with SAO technique (Type 2)	Largest MAPCS	0.8770	0.5170	0.5935	0.5285	0.6290	0.15887	8.9402	1.2482	9.2081	0.0000	0.0000	0.0000	0.0000	0	12.0000	0.1000		
	Smallest SD among APCS	0.7765	0.5180	0.6275	0.5275	0.6124	0.1201	2.6381	0.8357	2.9068	0.0000	0.0000	0.0000	0.0000	0	3.0000	0.0100		
	Modal MAPCS	0.8770	0.5170	0.5935	0.5285	0.6290	0.1687	89402	12482	9.2081	0.0000	0.0000	0.0000	0.0000	0	12.0000	J. 1000		
	Median MAPCS	0.8745	0.5170	0.5920	05285	0.6280	0.1676	5.4455	1.2475	5.7132	0.0000	0.0000	0.0000	0.0000	0	10.0000	0.0100		
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	0.8770	0.5290	0.5930	0.5145	06284	0.1692	1.6936	10293	1.6774	1.0000	1.0000	1.0000	1.0000	0	1.0000	0.1000		
	Smallest SD among APCS	0.8730	0.5290	0.5910	0.5145	0.6269	01574	?:923	1.0294	1.1809	1.9560	? 9120	3.9120	58680	0	195601	0.0010		
	Modal MAPCS	0.8770	0.5290	0.5930	0.5145	0.6284	0.1692	1.6936	1.0293	1.6774	1.0000	1.0000	10000	10000	0	10000	0.1000		
	Median MAPCS	0.8770	0.5285	0.5930	05140	0.628	0.1594	29855	1.0293	2.9570	1.0000	1.0000	10000	1.0000	0	36.0000	0.1000		

* Additive penalty for modef M_{1} is zero and multiplicative penalty for model M_{i} is one
** TRF 7 emperature reduction factor

Table 4.1c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size $\mathbf{1 0 0}$ for Design 4.1 together with relative penalty values and input values of SAO technique.

Type of penalty	Criteria	Average probabilities of correct selection of model						Relative penalties			Input values for simulated annealing								
								Starting values of penalties	Boundaries		TRF*								
		M	M_{3}	M.	M_{5}	Mean	Si)				P_{2}	r_{3}	p	S_{1}	S_{2}	S_{3}	S	1.B	1 1B
Additive: Existing criteria (Type 1)	AlC	0.7615	0.8450	0.5215	0.4040	0.6330	0.2052	1.0000	1.0000	2.0000									
	BIC	0.5435	0.9580	0.5190	0.2095	0.6590	0.3631	2.3026	2.3026	4.6052									
	GCV	0.7645	0.8520	0.5225	0.3970	0.6340	0.2107	1.0152	1.0152	2.0409									
	HOC	0.7665	c. 8520	0.5220	0.3970	0.6344	0.2112	1.0204	1.0204	2.0514									
	HQ	0.8745	0.9170	0.5305	0.2990	0.6552	0.2939	1.5272	1.5272	3.0544									
	RBAR	0.5380	0.6935	0.4825	0.5435	0.5644	00904	0.5076	0.5076	1.0204									
	MCP	0.7615	0.8450	0.5215	0.4035	0.6329	0.2054	1.0002	1.0002	2.0009									
	J IC	0.8585	0.9065	0.5270	0.3215	0.6533	02784	1.4051	1.4051	2.8:28									
Additive: Using loglikelihood with SAO iechnique (Type 2)	$\begin{aligned} & \text { Largest } \\ & \text { MAPCS } \end{aligned}$	0.9340	0.7990	0.7380	0.4635	0.7336	0.1978	15.2409	1.7396	16.0419	0.0000	0.0000	00000	00000	$\cdot 12$	12.0000	0.1000		
	Smaliest SD among APCS	0.8450	0.7530	0.7405	0.5040	07106	0.1454	23308	1.1201	2.9778	00000	0.0000	00000	00000	0	3.0000	0.0010		
	Modal MAPCS	0.9340	0.7990	0.7375	0.4635	07335	0.1978	74871	17973	82880	0.0000	0.0000	0.0000	0.0000	0	10.0000	0.1000		
	Median MAPCS	0.9340	0.7990	0.7355	0.4635	0.7330	0.1978	6.1524	1.7391	6.9534	0.0000	2.3026	2.3026	4.6052	. 3	6.9078	0.1000		
Multiplicative: Using mean squared error with SAO technique (Type 3)	$\begin{aligned} & \text { Largest } \\ & \text { MAPCS } \\ & \hline \end{aligned}$	0.9365	0.8040	0.7355	0.4570	57332	0.2022	12291	1.0257	12366	23026	46052	46052	6.9078	0	23.0259	0.1000		
	Smallest SD among APCS	0.9365	0.7850	0.7355	0.4745	0.7329	0.1923	3.7588	17257	3.7764	2.3026	46052	4.6052	6.9078	0	13.8155	0.0010		
	Modal MAPCS	0.9365	0.8035	0.7355	3.4570	0.7331	0.2921	1.6630	1.0257	1.6731	2.3026	4.6052	46052	6.9078	0	6.9078	0.0001		
	Median MAPCS	0.9365	0.7855	0.7355	0.4745	0.7330	0.1924	1.7747	1.0257	17830	2.3026	4.6052	46052	6.9978	0	6.9078	0.1000		

[^7]Table 4.2a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 20 for Design 4.2 together with relative penalty values and input values of SAO terhnique.

Type of penalty		A verage probabilities of correct selection of model						Relative penalties*			Input values for simulated annealing								
								Starting values of penalties	Boundaries		TRF ${ }^{\text {²- }}$								
		M_{1}	M_{2}	M.	M_{s}	Mean	S0				P_{2}	P :	$P_{\text {S }}$	s	S_{3}.	S	S_{3}	1.8	18
Additive: Existiag criteria (Type 1)	AIC	0.6690	0.6545	0.3850	0.2605	0.4923	0.2023	1.0000	10000	2.0000									
	BIC	0.7970	0.6850	0.3485	0.1700	0.5001	$1) 2911$	1.4979	14979	2.9957									
	GCV	0.6985	0.6710	0.3900	0.2295	0.4973	0.2265	1.0813	1.0813	2.2245									
	HOC	0.7095	0.6745	0.3885	0.2245	0.4992	0.2329	1.1123	1.1123	2.2901									
	HQ	0.7035	0.6635	0.3835	0.2370	0.4969	0.2242	1.0972	1.0972	2.1944									
	RBAR	0.4505	0.5775	0.4190	0.3785	0.4564	0.0860	0.5407	0.5407	1:.73									
	MCP	0.6715	0.6565	0.3850	0.2545	04919	0.2059	1.0059	10059	2.6.20									
	JC	0.6765	0.6580	0.3870	0.2490	0.4926	02095	10193	1.0193	2.0540									
Additive: Using loglikelihood with SAO technique (Type 2)	$\begin{aligned} & \text { Largest } \\ & \text { MAPCS } \end{aligned}$	0.8015	0.7255	03975	011095	0.5085	0.3186	1.6079	1.3140	3.6832	0.0000	0.0000	0.0000	0.0000	12	12.0000	0.1000		
	Sma! lest SD among APCS	0.7940	0.6075	03635	0.2465	05029	02455	15974	13141	25162	0.0000	1.0000	1.0000	2.0000	0.	3.0000	0.0001		
	Modal MAPCS	0.8015	0.7255	0.3975	0.1095	0.5085	0.3186	1.6079	1.314)	3.6832	0.0000	0.0000	00000	00000	12	120000	0.1000		
	Median MAPCS	0.8015	0.7255	0.3975	0.1095	0.5085	0.3786	1.6079	13140	36832	0.0000	0.0000	00000	0.0000	. 12	12.0000	0.1000		
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	0.8015	0.7255	03975	0.1095	0.5085	0.3185	1.7125	1.0804	1.2930	7.4970	2.9967	29957	44936	\bigcirc	14.9787	01000		
	Smallest SD among APCS	0.8015	0.7255	0.3975	0.095	05085	0.3186	1.1125	1.0804	1.2930	1.4979	29957	2.9957	44936	0	149787	01000		
	Modal MAPCS	0.8015	0.7255	0.3975	0.1095	0.5085	0.3186	1.1125	1.0804	1.2930	4.4979	2.9957	2.9957	4.4936	0	14.9787	0.1000		
	Median MAPCS	0.8015	0.7255	0.3975	01095	0.5085	0.3186	1.1125	1.0804	- 2930	1.4979	2.9957	2.9957	4.4936	0	14.9787	0.1000		

[^8]Table 4.2b Average probabilities, mean average probabilities and s.andard deviations of average probabilities of correct selection of models for sample size 50 for Design 4.2 together with relative penalty values and input values of SAO technique.

[^9]Table 4.2c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 96 for Design 4.2 together with relative penalty values and input values of SAO technique.

Type of penalty	Criteria	A verage probabilities of correct selection of model						Relative penalties*			Input values for simulated annealing								
								Starting values of penalties	Boundaries		TRF'								
		M_{1}	M_{2}	M_{3}	M_{s}	Mean	SD				P_{2}	P_{1}	P_{5}	5	S_{2}	S_{3}	S_{3}	LB]	UB
Additive: Existing criteria (Type 1)	AIC	0.7415	0.8155	0.8035	0.8830	0.8109	0.0580	1.0000	1.0000	2.0000									
	BIC	0.9390	0.9445	0.9160	0.8255	0.9063	0.0552	2.2822	2.2822	4.5643									
	GCV	0.7455	0.8195	0.8080	0.8815	0.8136	0.0557	1.0159	1.0159	2.0426									
	HOC	0.7480	0.8205	0.8085	0.8815	0.8146	0.0547	1.0213	1.0213	2.0536									
	HQ	0.8665	0.8905	0.8740	0.8595	0.8725	0.0133	1.5183	¢.5183	3.0366									
	RBAR	0.5290	0.6600	0.6610	0.9155	0.6914	0.1518	0.5079	0.5079	1.0213									
	MCP	0.7415	0.8155	0.8035	0.8830	0.8109	0.0580	110003	1.0003	2.0009									
	JtC	0.8375	0.8745	0.8595	0.8625	0.8585	0.0154	1.3951	1.3951	2.7928									
Additive: Using loglikelihood with SAO technique (Type 2)	Largesi MAPCS	0.9940	0.9530	0.9550	0.7920	0.9235	0.0897	4.780 .1	4.1070	7.6732	0.0000	0.0000	000.ji	$\overline{0000}$	4	4.0000	0.1000		
	$\begin{aligned} & \text { Smallest } \\ & \text { SD among } \\ & \text { APCS } \\ & \hline \end{aligned}$	0.8650	0.8805	0.8820	0.8600	0.8719	0.0110	1.5598	1.4537	2.9997	0.0000	0.0000	00000	0.0000	0	3.0000	0.1000		
	Modal MAPCS	0.9940	0.9530	0.9550	0.7920	0.9235	0.0897	4.7801	4.1070	7.6732	0.0000	0.0000	00000	0.0000	. 4	4.0000	0.1000		
	Median MAPCS	0.9940	0.9530	0.9550	0.7920	0.9235	0.0897	4.7801	4.1070	7.6732	0.0000	0.0000	0.0000	0.0000	-4	4.0000	0.1000		
Multiplicative: Using mean squared error with SAO iechnique (Type 3)	Largest MAPCS	0.9940	0.9530	0.9550	0.7920	0.9235	0.0897	10931	1.0778	1.1886	1.0000	2.0000	2.0000	3.0000	$\overline{0}$	48.0000	0.0100		
	Smallest SD among APCS	0.9970	0.9395	0.9480	0.8070	0.9229	0.0813	11118	1.0960	11569	1.0000	2.0000	2.000	30000	0	48.0000	0.0001		
	$\begin{aligned} & \text { Modal } \\ & \text { Mr } \quad \text { I } \end{aligned}$	0.9940	0.9530	0.9550	0.7920	0.9235	0.0897	1.0931	1.0778	1.1486	- 0000	2.0000	2.0000	30000	0	48.0000	0.0100		
	$\begin{aligned} & \text { Mecian } \\ & \text { MAPCS } \end{aligned}$	0.9940	0.9530	0.9550	0.7920	0.9235	0.0897	1.0931	10778	1.1486	1.0000	2.0000	2.0000	3.0000	0	48.0000	0.0100		

* Additive penalty for model M_{y} is zero and multiplicative penalty for model M_{I} is one
** TRF Temperature reduction factor

Table 4.3a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size $\mathbf{2 0}$ for Design $\mathbf{4 . 3}$ together with relative penalty values and input values of SAO technique.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Type of penalty} \& \multirow[t]{3}{*}{Criteria} \& \multicolumn{6}{|l|}{\multirow[t]{2}{*}{A verage probabilities of correct selection of model}} \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Relative pertalits \({ }^{\text {a }}\)}} \& \multicolumn{7}{|c|}{Input values for simulated annealing} \\
\hline \& \& \& \& \& \& \& \& \& \& \& \multicolumn{4}{|l|}{Staring values of penalties} \& \multicolumn{2}{|l|}{Boundaries} \& \multirow[t]{2}{*}{TRF**} \\
\hline \& \& \(M_{1}\) \& \(\mathrm{M}_{2}\) \& \(M_{3}\) \& \(M_{5}\) \& Mean \& SD \& , \& \(P_{3}\) \& \(P_{s}\) \& \(s_{i}\) \& \(S_{2}\) \& \(S_{i}\) \& \(S_{5}\) \& LB \& UB \& \\
\hline \multirow[t]{8}{*}{\begin{tabular}{l}
Additive: \\
Existing criteria (Type 1)
\end{tabular}} \& AIC \& 0.6355 \& 0.5995 \& 0.5725 \& 0.5085 \& 0.5790 \& 0.0536 \& 1.0000 \& 1.0000 \& 2.0000 \& \& \& \& \& \& \& \\
\hline \& BIC \& 0.7815 \& 0.6210 \& 0.5750 \& 0.4205 \& 0.5995 \& 0.1486 \& 1.4979 \& 1.4979 \& 2.9957 \& \& \& \& \& \& \& \\
\hline \& GCV \& 0.6650 \& 0.6155 \& 0.5815 \& 0.4810 \& 0.5857 \& 0.0778 \& 1.0813 \& 1.0813 \& 2.2245 \& \& \& \& \& \& \& \\
\hline \& HOC \& 6755 \& 0.6165 \& 0.5825 \& 0.4740 \& 0.5871 \& 0.0846 \& 1.1123 \& 1.1123 \& 2.2901 \& \& \& \& \& \& \& \\
\hline \& HQ \& 0.6695 \& 0.6090 \& 0.5735 \& 0.4900 \& 0.5855 \& 0.0750 \& 1.0972 \& 1.0972 \& 2.1944 \& \& \& \& \& \& \& \\
\hline \& RBAR \& 0.4305 \& 0.5365 \& 0.5320 \& 0.6100 \& 0.5272 \& 0.0737 \& 0.54: \& 0.5407 \& 1.1123 \& \& \& \& \& \& \& \\
\hline \& MCP \& 0.6400 \& 0.6025 \& 0.5750 \& 0.5075 \& 0.5813 \& 0.0559 \& -.005\% \& 10059 \& 2.0220 \& \& \& \& \& \& \& \\
\hline \& JIC \& 0.6450 \& 0.6065 \& 0.5750 \& 0.5050 \& 0.5829 \& 0.0593 \& 1.0193 \& \(\bigcirc 0193\) \& 2.0540 \& \& \& \& \& \& \& \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Additive: \\
Using loglikelihood with SAO technique (Type 2)
\end{tabular}} \& Largest MAPCS \& 0.8740
0.8000 \& 0.5745

0.6100 \& 0.5580 \& 0.8110 \& 0.6046
0.6005 \& 0.1941
0.1466 \& 2.1992

1.5052 \& 1.8608 \& 3.6479 \& 0.0000 \& 0.0000
0.0000 \& 0.0000 \& 0.0000
0.0000 \& 0 \& 12.0000 \& 0.4000

\hline \& Smallest SD among APCS \& 0.8000 \& 0.6100 \& 0.5330 \& 0.4590 \& 0.6005 \& 0.1466 \& 1.505? \& 16540 \& 2.8529 \& 0.0000 \& 0.0000 \& 0.0000 \& 0.0000 \& 0 \& 3.0000 \& 0.0100

\hline \& Modal MAPCS \& 0.8740 \& 0.5745 \& 0.5590 \& 0.4110 \& 0.6046 \& 0.1941 \& 2.1992 \& 1.8608 \& 3.6479 \& 0.0000 \& 0.0000 \& 0.0000 \& 00000 \& 0 \& 12.0000 \& 0.1000

\hline \& Median MAPCS \& 0.8740 \& 0.5745 \& 0.5590 \& 0.4110 \& 0.6046 \& 0.1941 \& 2.1992 \& 18608 \& 30479 \& 0.0000 \& 0.0000 \& 0.0000 \& 0.0000 \& 0 \& 12.0000 \& 0.1000

\hline \multirow[t]{4}{*}{Multiplicative: Using mean squared error with SAO rechnique (Type 3)} \& Largest MAPCS \& 0.8740 \& 0.5745 \& 0.5590 \& 0.4110 \& 0.6046 \& 0.1941 \& 1.1806 \& 1.1412 \& 12887 \& 1.0000 \& 1.0000 \& 1.0000 \& 1.0000 \& 0 \& 10.0000 \& 0.1000

\hline \& Smallest SD among APCS \& 0.8315 \& 0.5915 \& 0.5590 \& 0.4330 \& 0.6038 \& 0.1665 \& 1.1389 \& 1.1221 \& 1.2321 \& 1.0000 \& 2.0000 \& 2.0000 \& 3.0000 \& 0 \& 48.0000 \& 0.0010

\hline \& Modal MAPCS \& 0.8740 \& 0.5745 \& 0.5590 \& 0.4110 \& 0.6046 \& 0.1941 \& 1.1806 \& 1.1412 \& 1.2897 \& 1.0060 \& 1.0000 \& 1.0000 \& 1.0000 \& 0 \& 10.0000 \& 0.1000

\hline \& Med:~n MAPCS \& 0.8740 \& 0.5745 \& 0.5590 \& 0.4110 \& 0.6046 \& 0.1941 \& 1.1806 \& 1.1412 \& 1.2887 \& 1.0000 \& 1.0000 \& 1.0000 \& 1.0000 \& 0 \& 10.0000 \& 0.1000

\hline
\end{tabular}

* Additive penalty for model M_{i} is zero and multiplicative penalty for model M_{i} is one
** TRF Temperature redurtion factor

Table 4.3b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 50 for Design 4.3 together with relative penalty va'ues and input values of SAO technique.

Type of penalty	Criteria	A verage probabilities of correct selection of model						Relative penalties*			Input values for simulated annealing								
								Starting values of penalies	Boundaries		TRI ${ }^{\text {T}}$								
		M_{1}	M_{2}	M_{3}	M_{5}	Mean	SO				P_{2}	P_{5}	P_{s}	S_{\perp}	S_{2}	S_{3}	S	LB	UB
Additive: Existing criteria (Type 1)	AIC	0.7050	0.7140	0.6610	0.6610	0.6853	0.0282	1.0000	1.0000	2.0000									
	BIC	0.8985	0.7660	0.6980	0.5605	0.7308	0.1408	1.9560	1.9560	3.9120									
	GCV	0.7140	0.7235	0.6720	0.6565	0.6915	0.0323	1.0310	1.0310	2.0836									
	HOC	0.7165	0.7265	0.6740	0.6545	0.6929	0.0342	1.0418	1.0418	2.1058									
	HQ	0.7945	0.7460	0.6875	0.6140	0.7105	0.0778	1.3641	1.3641	2.7281									
	RBAR	0.4735	0.6145	0.5735	0.7455	0.6018	0.1127	0.5155	0.5155	1.0418									
	MCP	0.7050	0.7145	0.6615	0.6605	0.6854	0.0284	1.0009	1.0009	2.0035									
	JIC	0.7670	0.7395	0.6880	0.6290	0.7059	0.0608	1.2357	1.2357	2.4769									
Additive: Using logjikelihood with SAO technique (Type 2)	Largest MAPCS	0.3060	0.7665	0.7035	0.5560	0.7330	0.1452	2.0229	1.9573	4.0287	0.0000	0.0000	0.0000	0.0000	0	10.0000	0.1000		
	Smallest SD among APCS	0.8005	0.7780	0.7010	0.5930	0.7181	0.0937	1.3051	1.4416	2.9445	0.0000	0.0000	0.0000	0.0000	0	3.0000	0.1000		
	Modal MAPCS	0.9060	0.7665	0.7035	0.5560	0.7330	0.1452	2.0229	1.9573	4.0287	0.0000	0.0000	0.0000	0.0000	0	10.0000	0.1000		
	Median MAPCS	0.9060	0.7665	0.7035	0.5560	0.7330	0.1452	2.0229	1.9573	4.0287	0.0000	0.0000	8:0000	0.0000	0	10.0000	0.1000		
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	0.9065	0.7665	0.7035	0.5560	0.7331	0.1454	1.0624	1.0593	1.1271	1.0000	2.0000	2.0000	3.0000	0	16.0000	0.1000		
	Smallest SD among APCS	09015	0.7630	0.7075	0.5590	0.7328	0.1417	1.0624	1.0568	1.1244	1.0000	1.0000	1.0000	1.0000	0	36.0000	0.0001		
	Modal MAPCS	0.9070	0.7655	0.7035	0.5560	0.7330	0.1455	1.0626	1.0593	1.1272	1.0000	2.0000	2.0000	3.0000	0	12.0000	0.0010		
	Median MAPCS	0.9070	0.7655	0.7035	0.5560	0.7330	0.1455	1.0626	1.0593	1.1272	1.0000	2.0000	2.0000	3.0000	0	12:000	0.0010		

* Additive penalty for model M_{1} is zero and raultiplicative penalty for model M_{l} is one
** TRF Temperature reduction factor

Table 4.3c Average probabilities, mean average probabifities and standard deviations of average probabilities of correct selection of models for samplo size 100 for Design 4.3 together with relative penalty values and input values of SAO technique.

Type of penalty	Criteria	A verage probabilities of correct selection of model						Relative penalties*			Input values for simulated annealing								
								Starting values of penillies	Boundaries		TRF ${ }^{\text {T }}$								
		M_{1}	M_{2}	M	Ms	Mcan	SD				P_{2}	P_{3}	$P_{\text {S }}$	s	S_{2}	S_{2}	S_{s}	1.8	$1{ }^{1} 8$
Additive: Existing criteria (Type 1)	AIC	0.7025	0.7665	0.7125	0.7515	0.7332	00306	1.0000	10000	20000									
	BIC	0.9315	0.8325	0.7580	0.6375	0.7899	0.1240	2.3026	2.3026	4.6052									
	GCV	0.7090	0.7710	0.7170	0.7475	0.7361	0.0286	1.0152	1.0152	2.0409									
	HOC	0.7090	0.7710	0.7175	0.7470	0.7361	0.0284	1.0204	1.0204	2.0514									
	HQ	0.8450	0.8095	0.7605	0.6980	0.7782	0.0637	1.5272	1.5272	3.0544									
	RBAR	0.4575	0.6440	0.6055	0.8275	0.6336	01522	0.5076	0.5076	1.0204									
	MCP	0.7025	0.7665	0.7125	0.7515	0.7332	00306	1.0002	1.0002	2.0009									
	JIC	0.8215	0.8010	0.7550	0.7090	0.7716	00502	1.4051	1.4051	2.8128									
Additive: Using loglikelihood with SAO technique (Type 2)	Largest MAPCS	0.8905	0.8330	0.8165	0.6305	0.7926	01126	2.1758	1.5387	4.2676	0.0000	0.0000	0.0000	0.0000	0	12.0000	. 01000		
	Smallest SD among APCS	0.8485	0.7945	0.7700	0.7065	0.7799	0.0589	1.6293	1.4306	2.9826	0.0000	1.0000	1.0000	2.0000	0	3.0000	0.0010		
	Modal MAPCS	0.8905	0.8330	0.8160	0.6305	0.7925	01126	2.1811	1.5461	4.2745	0.0000	1.0000	1.0000	2.0000	. 3	3.0000	0.1000		
	Median MAPCS	0.8905	0.8330	0.8160	0.6305	0.7925	01126	2.1811	1.5461	4.2745	0.0000	1.0000	1.0000	2.0000	$\cdot 3$	3.0000	0.1000		
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	0.8950	0.8320	0.8175	0.6270	0.7929	0.1156	1.0350	1.0213	1.0692	1.0000	1.0000	1.0000	1.0000	0	10.0000	01000		
	Smallest SD among APCS	0.8895	0.8160	0.8235	0.6400	0.7923	0.1067	1.0366	1.0193	1.0655	1.0000	1.0000	1.0000	10000	0	12.0000	0.0001		
	Modal MAPCS	0.8950	0.8320	0.8175	0.6270	0.7929	0.1156	1.0350	1.0213	1.0692	1.0000	1.0000	1.0000	1.0000	0	10.0000	0.1000		
	Median MAPCS	0.8950	0.8320	0.3175	0.6270	0.7929	0.1156	1.0350	1.0213	1.6692	1.0000	1.0000	17000	1.0000	0	10.0000	0.1000		

* Additive penalty for model M_{1} is zero and multiplicative penalty for model M_{1} is one
** TRF Temperature reduction factor

Table 4.4a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size $\mathbf{2 0}$ for Design 4.4 together with relative penalty values and input values of SAO technique.

Type of penalty	Criteria	A verage probabilities of correct selection of model										Relative penalties						
		M_{1}	M_{2}	M_{3}	M_{4}	Ms	M_{0}	M_{7}	M_{8}	Mean	SD	F_{2}	P	P	P_{5}	Γ_{0}	P	Ps
Additive: Existing criteria (Type 1)	AIC	0.5445	0.6280	0.2395	0.5015	0.2985	0.6275	0.2335	0.3330	0.4257	0.1681	1.0000	1.0000	1.0000	20000	2.0000	20000	3.00005
	BIC	0.7240	0.7735	0.2325	0.5660	0.2300	0.6555	0.1855	0.2420	0.4511	0.2519	1.4979	1.4979	1.4979	2.9957	2.9957	2.9957	4.4936
	GCV	0.5865	0.6825	0.2485	0.5325	0.2765	0.6440	0.2250	0.2915	0.4359	0.1935	1.0813	1.0813	1.0813	2.2245	22245	2.2245	3.4370
	HOC	0.6000	0.6910	0.2515	0.5390	0.2780	0.6485	0.2210	0.2860	0.4394	0.1983	1.1123	1.1123	1.1123	2.2901	2.2901	2.2901	3.5417
	HQ	0.5885	0.6630	0.2400	0.5205	0.2825	0.6295	0.2265	0.3140	0.4331	0.1852	1.0972	1.0972	1.0972	2.1944	2.1944	2.1944	3.2916
	RBAR	03175	0.4295	0.2200	0.3775	0.3450	0.5635	0.2735	0.4380	0.3706	0.1075	0.5407	0.5407	0.5407	1.1123	1.1123	1.1123	1.7185
	MCP	0.5465	0.6340	0.2415	0.5055	0.2955	0.6290	0.2320	0.3280	0.4265	0.1706	1.0059	1.0053	1.0059	2.0220	2.0220	2.0220	3.0538
	JC	0.5550	0.6410	0.2425	0.5080	0.2930	0.6305	0.2310	0.3230	0.4280	0.1738	1.0193	1.0193	1.0193	2.0540	2.0540	2.0540	3.1061
Additive: Using loglikelihood with SAO technique (Type 2)	Largest MAPCS	0.6815	0.7115	0.4390	0.5095	0.3670	0.5375	0.3600	0.3455	0.4939	0.1433	4.7017	0.7324	1.5757	5.5869	6.5864	2.2801	7.4196
	Smallest SD among APCS	0.5190	0.6290	0.4905	0.5150	0.4040	0.5270	0.3115	0.3915	0.4734	0.0992	1.8258	0.4346	1.2583	2.5177	3.3279	2.0440	39924
	Modal MAPCS	0.6830	0.7120	0.4415	0.5045	0.3675	0.5375	0.3550	0.3455	0.4933	0.1441	4.1549	0.7339	1.6192	5.0393	6.0374	2.3214	6.8702
	Median MAPCS	0.6770	0.7015	0.4350	0.5070	0.3625	0.5490	0.3570	0.3490	0.4922	0.1416	3.8050	0.7321	1.5763	4.6895	55458	22803	6.3889
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	0.6855	0.7110	0.4445	0.5230	0.3670	0.5375	0.3375	0.3455	0.4939	0.1472	1.5420	1.0195	1.1138	1.5910	1.7583	1.1374	1.7988
	Smaliest SD among APCS	0.6835	0.6650	0.4420	0.5050	0.4235	0.5310	0.3555	0.3395	0.4931	0.1295	1.4543	1.0194	1.1142	1.4755	1.6746	11288	1.7131
	Modal MAPCS	0.6865	0.7575	0.4475	0.5230	0.3660	0.5285	0.3370	0.3515	0.4934	0.1455	1.6716	$1.0 ; 93$	1.1151	1.7249	1.9060	1.1389	1.9438
	Median MAPCS	0.7825	0.6580	0.3725	0.4885	0.4405	0.5095	0.3485	0.3415	0.4927	0.1570	1.7006	1.0510	1.1533	1.7209	2.0067	1.1686	20464

* Additive penalty for model M_{1} is zero and multiplicative penalty for model M_{1} is one

Table 4.4a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 20 for Design 4.4 together with relative penalty values and input values of SAO technique (continued).

Type of penalty	Criteria	Input values for simulated annealing										
		Starting values of penaltics								Boundaries		TRF*
		S	S	S	S_{3}	$S_{\text {c }}$	S_{6}	S_{7}	S_{5}	LB	UB	
Additive: Using loglikelihood with SAO technique (Type 2)	Largest MAPCS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	8.0000	0.1000
	Smallest SD among APCS	0.0000	1.0000	1.0000	1.0000	2.0000	2.0000	2.0000	3.0000	0.0000	4.0000	0.0010
	Modal MAPCS	0.0000	1.0000	1.0000	1.0000	2.0000	2.0000	2.0000	3.0000	0.0000	8.0000	0.1000
	Median MAPCS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-4.0000	40000	0.0010
Multiplicative: Using mean squared error with SAO technique (Type 3)	Large: MAPCS	1.0000	2.0000	2.0000	2.0000	3.0000	3.0000	30000	4.0000	0.0000	8.0000	0.0001
	Smallest SD among APCS	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	10000	1.0000	0.0000	8.0000	0.0010
	Modal MAPCS	1.0900	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	20.0000	0.1000
	Median MAPCS	1.4979	2.9957	2.9957	2.9957	4.4936	4.4936	44936	5.9915	0.0000	32.0000	0.1000

** TRF Temperature reduction facter

Table 4.4b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size $\mathbf{5 0}$ for Design 4.4 together with relative penalty values and input values of SAO technique.

Type of penalty		Average probabilities of correct selection of model										Relative penalites ${ }^{\text {a }}$						
		M_{1}	M	M_{3}	M_{4}	Ms	M ${ }_{\text {\% }}$	M	M_{s}	Mean	SD	P_{2}	P_{i}	r_{s}	$1{ }^{\text {P }}$	P_{0}	P	r_{s}
Additive: Existing criteria (Type 1)	AIC	0.5775	0.6915	0.3595	0.6210	0.3875	0.7475	03975	0.4700	0.5315	0.1485	1.0000	1.0000	1.0000	2.0000	2.0000	2.0000	3.0000
	BIC	0.8535	0.8860	0.3410	0.7820	0.3020	0.8140	03325	0.3125	0.5779	0.2755	1.9560	1.9560	1.9560	3.9120	3.9120	3.9120	5.8680
	GCV	0.5910	0.7100	0.3660	0.6340	0.3815	0.7605	03955	0.4595	05373	0.1566	1.0310	1.0310	1.0310	2.0836	2.0836	2.0836	3.1589
	HOC	0.5965	0.7165	0.3675	0.6365	0.3790	0.7600	03950	0.4565	0.5384	0.1584	1.0418	1.5418	1.0418	2.1058	2.1058	2.1058	31929
	HQ	0.7120	0.7950	0.3710	0.7015	0.3505	0.7900	03725	0.4045	0.5621	0.2036	1.3641	1.3641	1.3641	2.7281	2.7281	2.7281	4.0922
	RBAR	0.3215	0.4665	0.2890	0.4230	0.3965	0.6115	04105	0.5760	0.4368	0.1124	0.5155	0.5155	0.5155	1.0418	1.0418	1.0418	1.5795
	MCP	0.5795	0.6925	0.3595	0.6210	0.3875	0.7485	03970	0.4690	0.5318	0.1491	1.0009	1.0009	10009	2.0035	2.0035	2.0035	30084
	JIC	0.6730	0.7605	0.3725	0.6805	0.3620	0.7795	03840	0.4260	0.5549	0.1847	12357	12357	12357	2.4769	2.4769	24769	37238
Additive: Using loglikelihood with SAO technique (Type 2)	Largest MAPCS	0.7875	0.7685	0.5530	0.7260	0.5260	0.7060	04620	0.4450	06218	0.1402	4.9667	0.9045	2.4313	57810	7.7208	3.5824	8.7929
	Smallest SD among APCS	0.5950	0.6870	0.5380	0.6675	0.5035	0.7055	04875	0.4905	058.6	0.0910	1.7772	0.6178	12365	2.5019	3.1335	20651	39976
	Moda! MAPCS	0.7955	0.7585	0.5560	0.7090	0.5200	0.7165	04650	0.4485	0.6211	0.1387	5.4151	09033	2.7849	62300	7.7770	38951	88491
	Median MAPCS	0.7845	0.7660	0.5505	0.7245	0.5220	0.7095	04565	0.4465	0.6200	01407	39549	09037	2.4215	4.7714	6.5256	3.5734	75972
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	0.7900	0.7660	0.5560	0.7310	0.5255	0.7050	045	0.4440	06218	$0 \longdiv { 1 4 1 9 }$	15637	1.0156	10808	15819	17095	11099	17465
	Smatlest SD among APCS	0.7355	0.7560	0.6030	0.7180	0.5195	0.7175	0.4675	0.4485	0.6207	0.1276	+2183	1.0081	10904	1.2324	1.3074	1.1060	13357
	Modal MAPCS	0.7895	0.7325	0.5560	0.7300	0.5555	0.7065	0.4560	0.4450	0.6214	0.1346	1.2955	1.0156	1.0810	13048	1.4109	11098	14414
	Median MAPCS	0.8410	0.7540	0.5205	0.7095	0.5190	0.7145	0.4500	0.4480	0.6196	0.1523	1.3159	10226	1.1129	1.9381	2.0563	11425	21007

* Additive penalty for model M_{1} is zero and multiplicative penaly for model M_{1} is one

Table 4.4b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 50 for Design 4.4 together with relative penalty values and input values of SAO technique (continued).

Type of penalty	Criteria	Input values for simulated annealing										
		Starting values of penalties								Boundaries		TRI: ${ }^{\text {a }}$
		s	S	S	S	S_{5}	S_{0}	s :	S_{s}	LB	UB	
Additive: Using loglikelihood with SAO technique (Type 2)	Largest MAPCS	0.0000	1.0000	1.0000	1.0000	2.0000	2.0000	20000	3.0000	-8.0000	80000	0.0010
	Smallest SD among APCS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	00000	0.0000	0.0000	4.0000	0.0001
	Modal MAPCS	0.0000	1.0000	1.0000	1.0000	2.0000	2.0000	20000	3.0000	. 10.0000	10.0000	01000
	Median MAPCS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	00000	0.0000	-40900	4.0000	0.0010
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	1.0000	2.0000	2.0000	2.0000	3.0000	3.0000	30000	4.0000	0.0000	20.0000	0.0001
	Smaliest SD among APCS	1.9560	3.9120	3.9120	3.9120	5.8680	5.8680	58680	7.8240	0.0000	320000	0.0001
	$\begin{aligned} & \text { Modal } \\ & \text { MAPCS } \end{aligned}$	1.0000	2.0000	20000	20000	3.0000	3.0000	30000	4.0000	0.0000	8.0500	0.1000
	Median MAPCS	1.9560	3.9120	3.9120	3.9120	5.8680	5.8680	58680	78240	0.0000	20.0000	00010

** TRF Temperature reduction factor

Table 4.4c Average probabilities, mean average probabilities and standard deviations of a:erage probabilities of correct selection of models for sample size $\mathbf{1 0 0}$ for Design 4.4 together with relative penalty values and input values of SAO technique.

Type of penalty		A verage probabilities of correct selection of model								Relative penalies								
		M_{l}	M_{3}	M_{3}	M_{4}	M	M_{2}	M-	M_{s}	Mean	SO	P P	r_{i}	p	r	0	\cdots	r^{3}
Additive: Existing criteria (Type 1)	AIC	0.5980	0.7005	0.4750	0.6650	0.5105	0.7875	0.5170	0.6320	0.6107	0.1070	1.0000	1.0000	1.0000	2.0000	2.3000	2.0000	30000
	BIC	0.9100	0.9230	0.5005	0.8325	0.4215	0.8740	0.4630	0.4610	0.6732	0.2288	2.3026	2.3026	23026	$4.605 ?$	4.6052	4.6052	69078
	GCV	0.6030	0.7100	0.4810	0.6735	0.5125	0.7950	0.5170	0.6250	0.6146	0.1090	1.0152	1.0152	1.0152	20409	20409	20409	30772
	HOC	0.6050	0.7110	0.4820	0.6750	05130	0.7970	0.5175	0.6245	06156	0.1094	1.0204	1.9204	1.0204	2.0514	2.0514	20514	30931
	HQ	0.7755	0.8345	0.5230	0.7650	0.4920	0.8420	0.5030	0.5560	0.6614	0.1560	1.5272	1.5272	1.5272	30544	30544	30544	45815
	RBAR	0.3435	0.4670	0.3640	0.4550	0.4860	0.6520	0.4860	0.7355	0.4986	0.1337	0.5076	0.5076	05076	1.0204	1.0204	10204.	15386
	MCP	0.5980	0.7010	0.4750	0.6650	0.5110	0.7875	0.5170	0.6310	0.6107	0.1070	1.0002	1.0002	1.000%	2.0009	2.0009	2.0009	30028
	JIC	0.7450	0.8160	0.5215	0.7460	0.5030	0.8285	0.5090	0.5700	0.6549	0.1424	1405 ;	1.4051	1.4051	28128	28128	28128	4.2232
Additive: Using loglikelihood with SAO technique (Type 2)	Largest MAPCS	0.8955	0.8545	0.6525	0.7545	0.5735	0.7690	0.5975	0.6070	0.7130	0.1230	75854	1.4027	3.3902	8.819	104567	4.5752	115769
	Smallest SD among APCS	0.6770	0.7735	0.6115	0.7580	0.5480	0.7165	0.5820	0.6775	0.6680	0.0817	1.6096	0.9039	1.2082	26533	32269	2.3071	39943
	Modal MAPCS	0.8925	0.8705	0.6560	0.7540	0.5690	0.7580	0.5980	0.6040	0.7127	0.1253	71941	13768	3.3912	84791	107632	4.5765	118838
	Median MAPCS	0.8755	0.8635	0.6440	0.7560	0.5650	0.7760	0.6210	0.5910	07115	0.1224	259405	1.3755	2 2081	27.2264	289419	36079	301568
Multiplicative: Using mean squared etror with SAO technique (Type 3)	Largest MAPCS	0.8925	0.8640	0.6560	0.7540	0.5635	0.7810	0.5985	05930	07:28	01279	12724	10775	1.0594	12372	12709	10736	12888
	Smallest SD among APCS	0.8955	0.8590	0.6525	0.7540	0.5810	0.7235	9.5990	06060	0.7088	01206	27717	10180	10595	$28: 15$	30264	10737	3.0584
	$\begin{aligned} & \text { Modal } \\ & \text { MAPCS } \end{aligned}$	0.8920	0.8650	0.6560	0.7540	0.5665	07585	05990	06035	0.7118	0.1245	1.7619	10175	\$ 0592	17894	18618	16734	18844
	Median MAPCS	0.8955	0.8645	0.6525	0.7540	0.5830	0.7215	0.5990	05935	0.7079	01228	2.1047	10181	10596	21350	23482	10739	23767

* Additiv: penalty for model M_{7} is zero and multiplicative penalty for model M_{i} is one

Table 4.4c Average probabilities, mean average probabitics andid standard deviations of average probabilities of correct selection of models for sample size $\mathbf{1 0 0}$ for Design 4.4 together with relative penalty values and input values of SAO technique (contimued).

Type of penalty	Criteria	Input values for simulated annealing										
		Starting values of penalies								Boundaties		TRF**
		S_{t}	S_{2}	S_{3}	5	S.	S_{6}	5	S_{3}	LB	1 B	
Additive: Using loglikelihood with SAO technique (Type 2)	Largest MAPCS	0.0000	2.3026	2.3026	2.3025	4.6052	4.6052	46052	6.9078	0.0000	184207	0.1000
	Smailest SD among APCS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	00000	0.0000	0.0000	40000	0.0100
	Modal MAPCS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	32.0000	0.1000
	Median MAPCS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	. 320000	32.0000	0.1000
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	1.0000	2.0000	2.0000	2.0000	3.0000	3.0000	3.0000	4.0000	0.0000	8.0000	00001
	Smallest SD among APCS	1.0000	20000	2.0000	2.0000	30000	30000	3.0000	4.0000	0.0000	92103	0.0010
	Modal MAPCS	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	00000	1,2000	01000
	Median MAPCS	2.3026	4.6052	4.6052	46052	6.9078	69078	69078	92103	00000	20.0000	0.0100

** TRF Temperature reduction factor

Table 4.5a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 20 for Design 4.5 together with relative penalty values and input values of SAO technique.

Type of penalty	Criteria	A verage probabilities of correct selection of modd										Relative penalties ${ }^{\text {a }}$						
		M_{1}	M_{2}	M_{1}	M_{s}	Ms	M_{6}	M.	M_{3}	Mean	SD	P_{2}	P_{2}	P_{1}	$P_{\text {S }}$	P_{0}	P	P_{s}
Additive: Existing criteria (Type 1)	AIC	0.5320	0.3800	0.3635	0.3470	0.2760	0.2625	0.2560	0.2585	0.3344	0.0946	1.0000	1.0000	1.0000	2.0000	2.0000	2.0000	3.0000
	BIC	0.7105	0.4060	0.3755	0.3655	0.2280	0.2185	0.2150	01905	0.3388	0.1726	1.4979	1.4979	1.4979	2.9957	2.9957	2.9957	44936
	GCV	0.5730	0.3955	0.3745	0.3625	0.2670	0.2590	02475	0.2210	0.3375	0.1156	1.0813	1.0813	1.0813	2.2245	2.2245	2.2245	34370
	HOC	0.5880	0.4000	0.3750	0.3635	0.2655	0.2570	02435	0.2160	0.3387	0.1219	1.1123	1.1123	1.1123	2.2901	2.2901	22901	3.5417
	HQ	0.5760	0.3865	0.3630	0.3555	0.2675	0.2585	0.2470	0.2380	0.3365	0.1131	1.0972	1.0972	1.0972	2.1944	2.1944	21944	3.2916
	RBAR	0.2990	0.2990	0.3220	0.2910	0.3155	0.3010	0.2905	0.3590	0.3096	0.0228	0.5407	0.5407	0.5407	1.1123	1.1123	1.1123	1.7185
	MCP	0.5325	0.3820	0.3640	0.3460	02740	0.2685	02525	0.2505	0.3329	0.0965	10059	1.0059	1.0059	2.0220	20220	2.0280	3.0538
	JIC	0.5385	0.3840	0.3655	0.3470	02715	0.2610	02515	0.2465	0.3332	00994	1.0193	10193	1.0193	2.0540	2.0540	2.0540	31061
Additive: Using loglikelihood with SAO technique (Type 2)	Largest MAPCS	0.6320	0.4095	0.4280	0.3425	0.2650	02550	0.1870	0.2305	0.3437	0.1444	1.2311	11016	1.4259	2.4117	2.5093	2.8040	37523
	Smallest SD among APCS	0.5695	0.3850	0.4620	0.3745	0.2410	0.2810	0.2320	01955	0.3426	01290	1.2359	08975	1.1031	2.5051	2.2660	23944	38528
	Modal MAPCS	0.6255	0.4100	0.4115	0.3345	0.2685	02555	0.2465	0.1950	0.3434	0.1381	12383	1.1034	13851	2.4199	25278	2.4925	39504
	Median MAPCS	0.6245	0.4170	0.4170	0.3395	0.2650	02555	0.2345	0.1930	0.3433	0.1405	1.2046	1.1027	1.3873	24320	25371	2.5755	4.0098
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	0.3490	0.3570	0.3645	0.3470	0.3625	0.3600	0.3430	0.3990	0.3603	00175	1.0000	1.0000	10000	10000	10000	10000	10000
	Smallest SD among APCS	0.3490	0.3570	0.3645	0.3470	0.3625	0.3600	0.3430	0.3990	0.3603	0.0175	1.0000	1.0000	1.0000	10000	1.0000	1.0000	1.0000
	Modal MAPCS	0.3490	0.3570	0.3645	0.3470	0.3625	0.3600	03430	0.3990	0.3603	0.0175	1.0000	1.0000	1.0000	10000	1.0000	10000	1.0000
	Median MAPCS	0.5935	0.4250	0.4380	0.4085	0.2140	0.2470	0.2230	0.1915	0.3426	0.1444	1.0715	1.0559	1.0543	11881	11501	1.1555	12719

[^10]Table 4.5a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 20 for Design 4.5 together with relative penalty values and input values of SAO) technique (continued).

Type of penalty	Criteria	Input values for simulated annealing										
		Starting values of penalties								Boundaries		7RF"
		S_{1}	S_{7}	S_{3}	S_{6}	S,	S_{6}	5	S_{s}	L.B	UB	
Additive: Using loglikelihood with SAO technique (Type 2)	Largest MAPCS	0.0000	1.0000	1.0000	1.0000	2.0000	20000	2.0000	3.0000	-8.0000	8.0000	0.0100
	Smallest SD amone APCS	0.0000	1.0000	1.0000	1.0000	2.0000	2.0000	2.0000	3.0000	0.0000	8.0000	0.0100
	Modal MAPCS	0.0000	1.0000	1.0000	1.0000	2.0000	2.0000	2.0000	3.0000	0.0000	40000	0.0001
	Median MAPCS	0.0000	1.4979	1.4979	1.4979	2.9957	2.9957	2.9957	4.4936	0.0000	11.9829	0.0001
Muitiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	1.0000	1.0000	1.0000	1.0000	10000	1.0000	7.0000	1.0000	0.0000	1.0000	0.1000
	Smallest SD among APCS	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.1000
	Modal MAPCS	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	10000	00000	1.0000	0.1000
	Median MAPCS	1.0000	2.0000	2.0000	2.0000	3.0000	3.0000	30000	40000	0.0000	8.0000	0.0010

[^11]Table 4.5b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 50 for Design 4.5 together with relative penalty values and input yalues of SAO technique.

Type of peralty	Criteria	A verage probabilities of correct selection of model										Relative penalties ${ }^{\text {a }}$						
		M	M_{2}	M_{3}	M_{*}	M.	M_{6}	1	M_{s}	Mean	SD	P_{2}	p_{i}	P_{4}	$1 \cdot$	p	17	Ps
Additive: Existing criteria (Type 1)	AIC	0.6240	0.5700	0.5905	0.5945	0.5540	0.5290	0.5635	05725	0.5747	0.0286	1.0000	1.0000	1.0000	2.0000	2.0000	2.0000	30000
	BIC	0.8770	0.7125	0.7325	0.7300	0.5280	0.5115	0.5400	0.4565	0.6360	0.1467	1.3560	1.9560	19560	3.9120	3.9120	3.9120	58680
	GCV	0.6450	0.5870	0.6040	0.6085	0.5530	0.5305	0.5675	0.5580	0.5817	0.0368	1.0310	1.0310	1.0310	2.0836	2.0836	2.0836	3.1589
	HOC	0.6505	0.5900	0.6050	0.6130	0.5530	0.5315	0.5685	0.5575	05836	0.0385	1.0418	1.0418	1.0418	2.1058	2.1058	2.1058	3.1929
	HQ	0.7530	0.6470	0.6640	0.6765	0.5535	0.5300	0.5690	0.5200	0.6141	0.0831	1.3641	1.3641	1.3641	2.7281	2.7281	2.7281	4.0922
	RBAR	0.3620	0.4010	0.4220	0.4090	0.5010	0.4765	0.5230	0.6650	0.4699	00958	0.5155	0.5155	0.5155	1.0418	1.0418	1.0418	1.5795
	MCP	0.6255	0.5710	0.5910	0.5955	0.5540	0.5295	0.5635	0.5720	0.5753	0.0290	1.0009	10009	1.0009	2.0035	2.0035	2.0035	50084
	JIC	0.7145	0.6290	0.6460	0.6505	0.5535	0.5300	0.5675	0.5365	0.6034	0.0662	1235%	12357	1.2357	2.4769	24769	247 m9	37238
Additive: Using loglikelihood with SAO technique (Type 2)	Largest MAPCS	0.9255	0.5885	0.7245	0.7180	0.5625	0.5330	0.5300	0.4530	0.6419	0.1519	25078	2.3976	2.4758	4.1494	4.2778	4.4728	9399
	Smallest SD among APCS	0.7720	0.6845	0.6485	0.6845	0.5685	0.4940	0.5335	0.5475	0.6166	0.0952	1.2583	1.4758	1.4544	2.5422	2.9266	2.9284	3.9798
	Modal MAPCS	0.9135	0.6940	0.7250	0.7275	0.5665	05320	0.5160	0.4580	0.6416	0.1503	23.396	2.2837	22696	3.9580	4.1045	4.4485	62200
	Median MAPCS	0.9135	0.6940	0.7250	0.7275	0.5665	0.5320	0.5160	0.4580	0.6416	0.1503	2.2996	2.2887	2.2696	3.9580	4.1045	44485	62200
Multiplicative: Using mean squared ertor with SAO technique (Type 3)	$\begin{aligned} & \text { Largest } \\ & \text { MAPCS } \end{aligned}$	0.9260	0.6895	0.7230	0.7160	0.5610	0.5335	0.5320	0.4510	0.6419	0.1515	1.0831	10786	1.0818	1.1330	1.1384	1.1465	12118
	Smallest SD among APCS	0.9260	0.6895	0.7230	0.7160	0.5610	0.5335	0.5320	04540	0.6419	0.1515	1.0831	1.0786	1.0818	1.1330	1.1384	1.1465	12118
	Modal MAPCS	0.9275	0.6910	0.7225	0.7210	0.5640	0.5345	0.5130	0.4595	0.6416	0.1532	10831	1.0820	1.0821	1.1331	11387	1.1557	12130
	Median MAPCS	0.9275	0.6910	0.7225	0.7210	0.5640	05345	0.5130	0.4595	0.6416	0.1532	1.0831	1.0820	10821	11331	1.1387	1.1557	1.2130

[^12]Table 4.5b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size $\mathbf{5 0}$ for Design 4.5 together with relative penalty values and input values of SAO technique (continued).

Type of penalty	Criteria	Input values for simulated annealing										
		Starting values of penalties								Boundaries		TRF**
		s	S_{2}	S_{3}	S_{4}	S S	S_{0}	S;	S_{9}	LB	UB	
Additive: Using loglikelihood with SAO technique (Type 2)	Largest MAPCS	0.0000	1.9560	1.9560	1.9560	3.9120	3.9120	3.9120	5.8680	-10.06 30	10.0000	0.0001
	Smallest SD among APCS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	4.0000	00010
	Modal MAPCS	0.0000	1.0000	1.0000	1.0000	2.0000	2.0000	2.0000	3.0000	0.0000	8.0000	0.0010
	Median MAPCS	0.0000	1.0000	1.0000	1.0000	2.0000	2.0000	2.0000	3.0000	0.0000	8.0000	0.0010
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	1.0000	2.0000	2.0000	2.0000	3.0000	3.0000	3.0000	4.0000	0.0000	32.0000	0.1000
	Smallest SD among APCS	1.0000	2.0000	2.0000	2.0000	3.0000	3.0000	3.0000	4.0000	0.0000	32.0000	0.1000
	Modal MAPCS	1.9560	3.9120	3.9120	3.9120	5.8680	5.8680	5.8680	7.8240	0.0000	20.0000	0.0100
	Median MAPCS	1.9560	3.9120	3.9120	3.9120	5.8680	5.8680	5.8680	7.8240	0.0000	20.0000	0.0100

** TRF Temperature reduction factor

Table 4.5c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 96 for Design 4.5 together with relative penalty values and input values of SAO technique.

Type of penalty	Criteria	Average probabilities of correct selection of model										Relative penallies ${ }^{\text {a }}$						
		M	M_{2}	M ${ }^{\text {b }}$	M_{A}	Ms	M_{6}	M_{7}	M_{8}	Mcan	SD	P_{2}	P_{1}	P	$P_{\text {s }}$	P_{6}	P	${ }^{3}$
Additive: Existing criteria (Type 1)	AIC	0.6895	0.6565	0.6860	0.6630	0.7480	0.7490	0.7210	0.8735	0.7233	0.0702	1.0000	1.0000	1.0000	2.0000	2.0000	2.0000	3.0600
	BIC	0.9525	0.8850	0.8905	0.8840	0.8340	0.8030	0.8055	0.8135	0.8585	0.0531	2.2822	2.2822	2.2822	4.5643	4.5643	4.5643	6.8465
	GCV	0.6990	0.6660	0.6935	0.6715	0.7535	0.7535	0.7235	0.8720	0.7291	0.0667	1.0159	1.0159	1.0159	2.0426	2.0426	2.0426	3.0805
	HOC	0.7025	0.6685	0.6945	0.6750	0.7555	0.7545	0.7250	0.8720	0.7309	0.0657	1.0213	1.0213	1.0213	2.0536	2.0536	2.0536	3.0971
	HQ	0.8525	0.7895	0.8130	0.7945	0.8065	0.7845	0.7780	0.8460	0.8081	0.0278	1.5183	1.5183	1.5183	3.0366	3.0366	3.0366	4.5548
	RBAR	0.3975	0.4445	0.4600	0.4485	0.6270	0.6345	0.6070	0.9040	0.5654	0.1658	0.5079	0.5079	0.5079	1.0213	1.0213	1.0213	15402
	MCP	0.6895	0.6575	0.6850	0.6635	0.7480	0.7490	0.7210	0.8735	0.7235	c. 0700	1.0003	1.0003	1.0003	2.0009	2.0009	2.0009	3.0023
	JIC	0.8245	0.7635	0.7915	0.7705	0.8000	0.7780	07700	0.8520	0.7937	0.0308	1.3951	1.3951	1.3951	2.7928	2.7928	27928	41934
Additive: Using loglikelihood with SAO technique (Type 2)	Largest MAPCS	0.9970	0.9230	0.9395	0.9300	0.8380	08150	0.7870	0.7690	0.8748	0.0831	4.4921	$4.40 \overline{30}$	4.5470	7.7022	7.5448	8.2879	11.4742
	Smallest SD among APCS	0.7145	0.8480	0.8470	0.8285	0.7920	0.7465	0.7720	0.8475	0.7995	0.0515	0.8333	0.8190	08562	2.6041	2.7918	2.5156	39997
	Modal MAPCS	0.9970	0.9230	0.9395	0.9300	0.8380	0.8150	0.7870	0.7690	0.8748	0.0831	4.4921	4.4030	4.5470	7.7022	7.5448	8. 2879	11.4742
	Median MAPCS	0.9970	0.9240	0.9350	0.9310	0.8390	0.8140	0.7825	0.7745	0.8746	0.0825	4.4892	4.5413	4.5984	7.6989	76223	8.4281	11.3691
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	0.9970	0.9225	0.9395	0.9305	0.8375	0.8150	0.7870	0.7695	0.8748	0.0830	10884	10856	1.0888	1.1513	1.1469	1.1645	1.2313
	Smallest SD among APCS	0.9970	0.9235	0.9350	0.9310	0.8395	0.8140	0.7825	0.7745	0.8746	0.0825	1.0833	1.0845	1.0860	1.1455	1.1438	1.1636	1.2245
	Modal MAPCS	0.9970	0.9225	0.9395	0.9305	0.8375	0.8150	0.7870	0.7695	0.8748	0.0830	1.0884	1.0856	1.0888	1.1513	1.1469	1.1645	1.2313
	Median MAPCS	0.9970	0.9255	0.9345	0.9305	0.8400	0.8135	0.7825	0.7745	0.3747	0.0826	1.0825	1.0854	1.0866	1.1457	1.1445	1.1642	1.2247

* Additive penalty for model M_{1} is zero and multiplicative penalty for model M_{1} is one

Table 4.5c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size $\mathbf{9 6}$ for Design 4.5 together with relative penalty values and input values of SAO technique (continued).

Type of penalty	Criteria	Input values for simulated annealing										
		Starting values of penalies								Boundaries		TRF"
		S_{L}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}	S_{7}	S_{3}	L8	LB	
Additive: Using loglikelihood with SAO technique (Type 2)	Largest MAPCS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-32.0000	32.0000	0.1000
	Smallest SD among APCS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	4.0000	0.0010
	Modal MAPCS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-32.0000	32.0000	0.1000
	Median MAPCS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	00000	-10.0000	10.0000	0.0010
Multiplicative: Using mean squared error with SAO technique (Type 3)	largest MAPCS	1.0000	2.0000	2.0000	2.0000	30000	3.0000	3.0000	4.0000	0.0000	32.0000	0.1000
	Smallest SD among APCS	2.2822	4.5643	4.5643	4.5643	68465	6.8465	5.8465	9.1287	0.0000	9.1287	0.0100
	Modal MAPCS	1.0000	2.0000	2.0000	2.0000	3.0000	3.0000	3.0000	4.0000	0.0000	32.0000	0.1000
	Mcdian MAPCS	2.2822	4.5643	4.5643	4.5643	6.8465	6.8465	6.8465	9.1287	0.0000	36.5148	0.0010

** TRF Temperature reduction factor

Table 4.6a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size $\mathbf{2 0}$ for Design 4.6 together with relative penalty values and input values of SAO technique.

Type of penalty	Criteria	A verage probabilities of correct sefection of model										Relative penalties ${ }^{\text {J }}$						
		M_{I}	M_{2}	M	M 4	Ms	M_{6}	M_{-}	M_{8}	Mean	SD	P	P_{1}	P_{4}	P	D_{0}	P	I's
Additive: Existing criteria (Type 1)	AIC	0.5310	0.3275	0.5425	0.5705	0.3325	0.3515	0.5650	0.3740	0.4493	0.1116	1.0000	1.0000	1.0000	2.0000	2.0000	2.0000	3.0000
	BIC	0.7065	0.3285	0.6260	0.6865	0.2885	0.3190	0.5770	0.3025	0.4793	0.1858	1.4979	1.4979	1.4979	2.9957	2.9957	2.9957	44936
	GC:	0.5655	0.3445	0.5730	0.6125	0.3255	0.3530	0.5775	0.3385	0.4613	0.1302	1.0813	1.0813	1.0813	2.2245	2.2245	2.2245	3.4370
	HOC	0.5775	0.3460	0.5835	0.6195	0.3220	0.3525	0.5775	0.3330	0.4639	0.1352	: 11123	1.1123	1.1123	2.2901	2.2901	2.2901	3.5417
	HQ	0.5690	0.3345	0.5610	0.6010	0.3280	0.3460	05660	0.3525	0.4572	0.1258	1.0972	1.0972	1.0972	2.1944	2.1944	2.1914	32916
	RBAR	0.3070	0.2810	0.4020	0.3940	0.3530	0.3840	0.5090	0.4890	0.3899	0.0795	05407	0.5407	0.5407	1.1123	11123	1.1123	1.7185
	MCP	0.5325	0.3300	0.5455	0.5750	0.3335	0.3550	0.5680	0.3675	0.4509	0. 1129	1.0059	10059	1.0059	20220	2.0220	20220	30538
	JIC	0.5385	0.3295	0.5500	0.5815	0.3325	0.3555	0.5705	0.3630	0.4526	0.1161	1.0193	1.0193	1.0193	2.0540	2.0540	2.0540	31061
Additive: Using loglikelihood with SAO technique (Type 2)	Largest MAPCS	0.7615	0.4425	0.6540	0.6940	0.3435	0.3455	0.4360	0.3675	0.5056	0.1702	1.1824	1.8443	2.5753	3.1273	3.9067	5.0477	59209
	Smallest SD among APCS	0.5170	0.5160	0.6735	0.6520	0.3215	0.3730	0.3760	0.4835	0.4891	0.1290	0.5890	1.0991	1.5113	23820	2.5229	3.5102	3.9726
	Modal MAPCS	0.7520	0.4450	0.6540	0.6855	0.3450	0.3595	0.4355	0.3665	0.5054	0.1648	1.1542	1.8081	2.5115	3.0893	37540	4.9743	5.8478
	Median MAPCS	0.7580	0.4515	0.6545	0.6625	0.3440	0.3720	0.4350	0.3605	0.5047	0.1619	11451	1.8474	2.7002	3.1285	3.8322	5.1673	6.0580
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	0.7575	0.4395	0.6525	0.6865	0.3450	0.3595	$0 \longdiv { 4 3 4 5 }$	0.3680	0.5054	0.1662	1.0663	1.1375	1.2163	12219	1.3005	1.4708	1.5086
	Smallest SD among APCS	0.7320	0.4735	0.6540	0.6485	0.3410	0.3875	0.4390	0.3635	05049	0.1514	1.0490	1.1374	12344	12211	1.2906	1.4793	1.5195
	Modal MAPCS	0.7575	0.4485	0.6545	0.6505	0.3420	0.3845	04390	0.3645	0.5051	0.1584	1.0621	1.1392	1.2367	1.2232	1.2958	14826	1.52 .28
	Median MAPCS	0.7620	0.4550	0.6440	0.6790	0.3405	03570	04355	0.3655	0.5048	0.1654	1.0621	1.1527	1.2386	12374	1.3245	1.4965	1.5369

* Additive penalty for model M_{l} is zero and multiplicative penalty for model M_{l} is one

Table 4.6a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 20 for Design 4.6 together with relative penalty values and input values of SAO technique (continued).

Type of penalty	Criteria	Input values for simulated annealing										
		Starting values of penalties								Buundaries		TRT"
		S_{1}	S :	S	S_{4}	S_{5}	S	S_{-}	S_{8}	LB	CB	
Additive: Jsing loglikelihond with SAO technique (Type 2)	Largest MAPCS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	10.0000	0.0010
	Smallest SD among APCS	0.0000	1.0000	1.0000	1.0000	2.0000	2.0000	2.0000	3.0000	0.0000	4.0000	0.0100
	Morlal MAPCS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	. 32.0000	32.0000	0.1000
	Median MAPCS	0.0000	1.0000	1.0000	1.0000	2.0000	2.0000	2.0000	3.0000	0.0000	10.0000	0.0010
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	1.4979	2.9957	2.9957	2.9957	4.4936	4.4936	4.4936	5.9915	0.0000	23.9659	0.0000
	Smallest SD among APCS	1.0000	2.0000	2.0000	2.0000	3.0000	3.0000	3.0000	40000	0.0000	32.0000	0.0001
	Modal MAPCS	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	32.0000	01000
	Median MAPCS	1.0000	2.0000	2.0000	2.0000	3.0000	3.0000	30000	4.0000	0.0000	20.0000	0.0010

[^13]Table 4.6b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size $\mathbf{5 0}$ for Design 4.6 together with relative penalty values and inpui values of SAO technique.

Type of penalty	Criteria	A verage probabilities of correct selection of model										Relative penalties						
		M_{i}	M_{2}	M3	M_{s}	Ms	M 6	M	Ms	Mcan	SD	P	P	P_{4}	P	r_{0}	P	1%
Additive: Existing criteria (Type i)	AIC	0.5815	0.4510	0.6105	0.5990	0.4730	0.4900	06810	0.5505	0.5546	0.0787	1.0000	1.0000	1.0000	2.0000	2.0000	2.0000	3.0000
	BIC	0.8675	0.4735	0.7660	0.7895	0.4165	0.4375	07155	0.4190	0.6106	0.1913	1.9560	1.9560	1.9560	3.9120	3.9120	3.9120	5.8680
	GCV	0.5940	0.4575	0.6270	0.6190	0.4785	0.4945	06905	0.5400	0.5626	0.0828	1.0310	1.0310	1.0310	2.0836	2.0836	2.0836	3.1589
	HOC	0.6010	0.4600	0.6295	0.6225	0.4790	0.4925	C. 6895	0.5370	0.5639	0.0834	1.0418	1.0418	10418	2.1053	2.1058	2.1058	3.1929
	HQ	0.7165	0.4770	0.6960	0.7055	0.4605	0.4795	06985	0.4955	0.5911	0.1213	1.3641	1.3641	1.5541	27281	2.7281	2.7281	4.0922
	RBAR	0.3105	0.3460	0.4265	0.4105	0.4730	0.4705	05695	0.6570	0.4579	0.1134	0.5155	0.5155	0.5155	1.0419	10418	1.0418	1.5795
	MCP	0.5815	0.4510	0.6125	0.5995	0.4730	0.4905	06810	0.5500	0.5549	0.0789	1.0009	1.0009	1.0008	20035	2.0035	2.0035	3.0084
	JIC	0.6750	0.4665	0.6695	0.6735	0.4655	0.4910	06950	0.5135	0.5812	01051	1.2357	1.2357	1.2357	2.4769	2.4769	2.4769	37238
Additive: Using log- likelihood with SAO technique (Type 2)	Largest MAPCS	0.8560	0.5595	0.7680	0.7210	0.4675	0.5220	06500	0.4485	0.6241	0.1486	1.4094	2.0569	3.0438	3.6339	4.3033	5.5823	7.1213
	Smaliest SD among APCS	0.6155	0.6325	0.7045	0.7010	0.4880	0.5030	05965	0.5635	0.6006	0.0808	0.6797	1.3275	1.4290	2.4737	2.6022	31670	39984
	Modal MAPCS	0.8225	0.6085	0.7420	0.7125	0.4655	0.5320	06575	0.4480	0.6236	0.1347	1.1256	2.3000	2.8629	3.7902	4.0360	5.3913	6.9278
	Median MAPCS	0.8390	0.5735	0.7660	0.7255	0.4640	0.5195	06510	0.4490	0.6234	0.1450	1.5257	2.0568	2.8626	3.6388	4. 1367	5.4097	69457
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	0.8670	0.5625	0.7565	0.7215	0.4605	0.5230	06620	0.4390	0.6240	0.1524	1.0369	1.0740	1.1055	1.1201	1.1384	1.1982	12514
	Smallest SD among APCS	0.8025	0.5890	0.708	0.7205	0.5020	0.5130	0.6520	0.4825	0.6212	0.1180	1.0247	10638	1.0746	1.0915	1.1066	1.1479	1.1845
	Modal MAPCS	0.8560	0.5600	0.7680	0.7200	0.4660	0.5215	0.6510	0.4490	0.6239	0.1487	1.0364	1.0638	1.1064	1.1096	1.1393	1.1985	12476
	Median MAPCS	0.8190	0.6075	0.7405	0.7235	0.4690	0.5225	0.6660	0.4390	0.6234	0.1374	1.0247	1.0722	1.0954	1.1134	1.1280	1.1867	12395

* Additive penalty for model M_{1} is zero and multiplicative penalty for model M_{1} is one

Table 4.6b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 50 for Design 4.6 together with relative penalty values and input values of SAO technique (continued).

Type of penalty	Criteria	Input values for simulated annealing										
		Starting values of penalies								Boundaries		TRF**
		S,	S_{2}	S,	S_{4}	St	S_{6}	S	S_{8}	LB	UB	
Additive: Using loglikelihood with SAO technique (Type 2)	Largest MAPCS	0.0000	1.9560	1.9560	1.9560	3.9120	3.9120	3.9120	5.8680	-4.0000	7.8240	0.1000
	Smallest SD among APCS	0.0000	1.0000	1.0000	1.0000	2.0000	2.0000	2.0000	3.0000	0.0000	4.0000	0.0001
	Modal MAPCS	0.0000	1.9560	1.9560	1.9560	3.9120	3.9120	39120	5.8680	-10.0000	10.0000	0.0001
	Median MAPCS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	32.0000	0.1000
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	32.0000	0.1000
	Smallest SD among APCS	1.9560	3.9120	3.9120	3.9120	5.8680	5.8680	5.8680	7.8240	0.0000	320000	00100
	Modal MAPCS	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	4.0000	0.1000
	Median MAPCS	1.9560	3.9120	3.9120	3.9120	5.8680	5.8680	58680	78240	0.0000	32.0000	0.1000

** TRF Temperature reduction factor

Table 4.6c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size $\mathbf{1 0 0}$ for Design 4.6 together with relative penalty values and input values of SAO technique.

Type of penalty	Criteria	A verage probabilities of correct selection of model										Relative penaities ${ }^{\text {² }}$						
		M	M_{2}	M_{3}	M_{4}	Ms	M_{6}	M_{7}	M_{8}	Mean	SD)	P_{2}	P	P_{s}	P	r_{6}	r	P_{3}
Additive: Existing criteria (Type 1)	AIC	0.5860	0.5310	0.6470	0.6660	0.5245	0.5740	0.7245	0.6465	0.6124	0.0700	1.0000	1.0000	1.0000	2.0000	2.0000	2.0000	3.0000
	BIC	0.8865	0.5875	0.8220	0.8540	0.4905	0.5390	0.7685	0.5065	0.6818	0.1670	2.3026	2.3026	2.3026	4.6052	4.6052	4.6052	6.9078
	GCV	0.5905	0.5385	0.6515	0.6755	0.5265	0.5770	0.7300	0.6390	0.6161	0.07 G 2	1.0152	1.0152	1.0152	20409	2.0409	2.0409	3.0772
	HOC	0.5925	0.5390	0.6550	0.6755	0.5265	0.5765	0.7315	0.6385	0.6169	0.0707	1.0204	1.0204	1.0204	2.0514	2.0514	20514	3.0931
	HQ	0.7540	0.5855	0.7570	0.7785	0.5295	0.5825	0.7590	0.5840	0.6663	0.1043	1.5272	1.5272	1.5272	3.0544	3.0544	3.0544	4.5815
	RBAR	0.3105	0.3870	0.4345	0.4430	0.4880	0.5110	0.5150	0.7415	0.4914	01351	0.5076	0.5076	0.5076	1.0204	1.0204	1.0204	1.5386
	MCP	0.5860	0.5310	0.6470	0.6670	0.5245	0.5740	0.7245	0.6435	0.6126	0.0701	1.0002	1.0002	1.0002	2.0009	2.0009	2.0009	3.0021
	IIC	0.7285	0.5805	0.7360	0.7600	0.5320	0.5855	0.7530	0.5940	0.6587	0.0939	1.4051	1.4051	1.4051	28128	28128	2.8128	42232
Additive: Using loglikelihood with SAO technique (Type 2)	Largest MAPCS	0.8700	0.6725	0.8025	0.7955	0.5630	0.6235	0.7065	0.5500	0.6979	0.1174	1.5503	2.3922	3.3009	4.0272	4.7063	6.0731	7.6431
	Smallest SD among APCS	0.6715	0.6365	0.7400	0.7920	0.5590	0.5820	0.6535	0.6600	0.6618	0.0764	1.0279	1.3596	1.3104	2.4956	2.6699	3.1693	39985
	Modal MAPCS	0.8490	0.6855	0.8055	0.8010	0.5630	0.6295	0.6955	0.5520	0.6776	0.1130	1.4065	2.2542	3.0763	3.8007	4.4596	6.0289	7.5572
	Median MAPCS	0.8705	0.6725	0.7970	0.7785	0.5585	0.6155	0.7265	0.5605	0.6974	0.1151	1.5488	2.3967	3.3606	4.0343	47452	5.5759	7.1319
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	0.8670	0.6725	0.8025	0.8120	0.5630	0.6175	07000	05490	0.6979	0.1195	1.0211	10385	1.0537	1.0621	1.0742	1.1066	1.1307
	Smallest SD among APCS	0.8665	0.6710	0.7995	0.8120	0.5560	0.6105	0.5825	0.5815	0.6974	0.1159	1.0210	1.7385	1.0508	1.0621	1.0717	10993	1.1159
	Modal MAPCS	0.8665	0.6710	0.7995	0.8120	0.5560	0.6105	0.5825	0.5815	0.6974	0.1159	1.0210	1.0385	1.0508	1.0621	1.0717	1.0993	1.1159
	Median MAPCS	0.8975	0.6740	0.7985	0.7780	0.5660	0.6080	0.6650	0.5395	0.6908	0.1243	1.0233	1.0441	1.1133	1.0675	1.1334	1.1755	12002

* Additive penalty for mode! M_{l} is zero and multiplicative penalty for model M_{i} is one

Table 4.6c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size $\mathbf{1 0 0}$ for Design 4.6 together with relative penalty values and input values of SAO technique (continued).

	Type of penalty	Criteria	Input values for simulated annealing										
			Starting values of penalties								Boundaries		$7 \mathrm{RF}{ }^{-1}$
			S_{1}	S	S:	S_{4}	S,	S_{0}	S_{i}	S_{8}	LB	UB	
	Additive: Using loglikelihood with SAO technique (Type 2)	Largest MAPCS	0.0000	2.3026	2.3026	2.3026	4.6052	4.6052	4.6052	6.9078	0.0000	32.0000	0.1000
		Smailest SD among APCS	0.0000	1.0000	1.0000	1.0000	2.0000	2.0000	2.0000	3.0000	0.0000	4.0000	0.0100
		Modal MAPCS	0.0000	2.3026	2.3026	2.3026	4.6052	4.6052	4.6052	6.9078	0.0000	9.2103	0.0100
		Median MAPCS	0.0000	1.0000	1.0000	1.0000	2.0000	2.0000	2.0000	30000	-8.0000	8.0000	0.0001
I	Multiplicative: Using mean squared error with SAO technique (Type 3)	$\begin{aligned} & \text { Largest } \\ & \text { MAPCS } \end{aligned}$	2.3026	4.6052	4.6052	4.6052	6.9078	6.9078	69078	9.2103	0.0000	20.0000	01000
		Smallest SD among APCS	1.0000	2.0000	2.0000	2.0000	3.0000	3.0000	3.0000	4.0000	00000	8.0000	01000
		Modal MA.PCS	1.0000	2.0000	2.0000	2.0000	3.0000	3.0000	3.0000	4.0000	0.0000	8.0000	0.1000
		Median MAPCS	1.0000	2.0000	2.0000	2.0000	30000	3.0000	3.0000	4.0000	0.0000	4.0000	0.0001

** TRF Temperature reduction factor

CHAPTER 5

MAXIMISATION OF MEAN AVERAGE PROBABILITY OF CORRECT SELECTION FOR EQUI-DIMENSIONAL COMPETING MODELS

5.1 INTRODUCTION

In Chapter 4. we applied the Simulated Annealing Optimisation (SAO) technique to estimate the optimal penalties to select the best model from a set of competing alternative models with an unequal number of regressors, with the objective of maximising the mean average probability of correct selection (MAPCS). In this chapter, we investigate the issue of model selection when the competing models have an equal number of parameters. For the existing IC based model selection procedures when the competing models have the same number of parameters, there is no need to use a penalty function because they result in the same penally. In this situation, the problem reduces to choosing the model with the largest maximised log-likelihood.

For model sf are compeling models are white noise, first-order autoregressivi : 4 , in der moving average (MA(1)) and second-order

(1998) applied a grid search method for finding the optimal penalty. The results obtained from their simulation experiments show that, though the AR(1) and MA(1) disturbance models have the same number of parameters. the penalty values that maximise the APCS are different. For selecting between $\operatorname{AR}(1)$ and MA(1) disturbances in the linear regression model, Grose and King (1994) observed that the MA(1) model is favoured because of the functional form of its log-likelihood. They argued that for model selection in small samples, a penalty for differences in the functional form of the log-likelihoods is needed to improve the probability of correct selection (PCS) in addition to the penalty for the number of parameters in the model. In other words. the penalty functions need to be able to take into account the form of the log-likelihood functions.

The simulation results we presented in the previous chapter indicate that for the models with the same number of parameters, the penalties that maximise the MAPCS of different data sets are different. Also for a paricular data set, penalies for models with same number of parameteis ate difierent. From the literature on model selection and the simulation results we presented in the previous chapter, it is apparent that penalty functions should depend not only on n, the sample size, and k, the number of free parameters, but also on the form of the log-likelihood function. Unfortunately all the existing penal!y functions are functions of n and k but not of the form of the loglikelihood functicn. This is the reason, when competing models are equidimensional, that the penalty function has no effect. In our view, a good penalty
function should be a function of the log-likelihood in addition to n and k. To overcome the problem of the independence of penalty function from the data. here we appiy the SAO technique to find the penalties, which maximise the MAPCS of the model. when the competing models have the same number of parameters to be estimated. Here. instead of using a particular functional form of penalty, we use appropriate upper and lower limits of penaities, and starting values of penalties. Then we apply the SAO tecina $\mathfrak{z} u$ to find the penalties, which maximise the MAPCS.

In this chapter we use both the edditive and multiplicative penalties discussed in the previous chapier to select the correct model, when the competing models have an equal number of parameters. We use the SAO technique to maximise the MAPCS of the models. A detailed description of this method oi optimisation technique was given in Section 2.4 of Chapter 2. The theory and computational technique of MAPCS are discussed in Section 3.2 of Chapter 3.

The pian of the chapter is as follows. In Section 5.2, we outline the Monte Carlo experiments. A variery of computer simulation results are presented in Section 5.3, and Section 5.4 contains some concluding remarks.

5.2 THE DESIGNS OF THE MONTE CARLO STUDIES

The main objective of the simulation experiments of this chapter is to investigate the performance of SAO technique to select the correct model from a set of equi-
dimensional competing alternative models. Another objective is to see how the penalties obtained using SAO technique differ from zero (in all existing IC the penalties are zero when the competing models are equi-dimensional) when the competing models have same number of parameters.

The following three sets of models and two sets of data were used to conduct Monte Carlo experiments to examine the performance of the SAO technique with additive and multiplicative penalties when competing models are equi-dimensional.

Data set 1: $x_{1,}$ is the real per capita GDP. x_{2} is the investment of a country, x_{3}, is the price level consumption and x_{4}, is 1960 GDP as a percent of USA GDP of 1960. We used the annual data from Summers and iteston (1991) revised version 5.6 and World Bank tables.

Data set 2: We generated data from the normal distribution with standard deviation 4, 9,11 and 17. Then, $x_{14} \sim \operatorname{NN}\left(0,4^{2}\right): x_{21} \sim \operatorname{IN}\left(0,9^{2}\right): x_{31} \sim \operatorname{IN}\left(0,11^{2}\right)$: and $x_{4,} \sim \operatorname{IN}(0$, 17^{2}).

We used three model sets for simulation experiments with the above two data sets. Model set 1 is the single regressor model. Model set 2 and Model set 3 have two and three independent variables, respectively.

Model set 1.

$$
\begin{array}{lll}
M_{1}: & y_{1}=\beta_{16}+x_{1,}, \beta_{11}+u_{11}, & u_{1,}=\operatorname{NN}\left(0 . \sigma_{1}^{2}\right): \\
M_{2}: & y_{1}=\beta_{20}+x_{2,}, r_{21}^{\prime}+u_{2 t}, & u_{2 t}=\mathbb{N}\left(0 . \sigma_{2}^{2}\right): \\
M_{3}: & y_{1}=\beta_{40}+x_{3,}, \beta_{31}+u_{3 t}, & u_{31}=\mathbb{N}\left(0 . \sigma_{3}^{2}\right): \\
M_{4}: & y_{1}=\beta_{41}+x_{4,} \beta_{41}+u_{4 t}, & u_{4 t}=\operatorname{N}\left(0 . \sigma_{4}^{2}\right) .
\end{array}
$$

Model set 2.

$$
\begin{array}{lll}
M_{5}: & y_{1}=\beta_{50}+x_{11} \beta_{51}+x_{21} \beta_{52}+u_{51}, & u_{5 t}=\operatorname{lN}\left(0, \sigma_{5}^{2}\right) ; \\
M_{6}: & y_{1}=\beta_{60}+x_{21} \beta_{02}+x_{31} \beta_{6,3}+u_{61}, & u_{61}=\operatorname{IN}\left(0, \sigma_{6}^{2}\right) ; \\
M_{7}: & y_{1}=\beta_{70}+x_{31} \beta_{73}+x_{41} \beta_{74}+u_{7 t}, & u_{7 t}=\operatorname{IN}\left(0, \sigma_{7}^{2}\right) ; \\
M_{8}: & y_{1}=\beta_{80}+x_{41} \beta_{84}+x_{1 t} \beta_{81}+u_{8 t} . & u_{8 t}=\operatorname{IN}\left(0, \sigma_{8}^{2}\right) .
\end{array}
$$

Model set 3.

$$
\begin{align*}
& M_{9}: \quad y_{t}=\beta_{90}+x_{11} \beta_{91}+x_{21} \beta_{02}+x_{31} \beta_{97}+u_{9 t} . \quad u_{91}=\operatorname{lN}\left(0, \sigma_{9}^{2}\right): \tag{5.9}\\
& M_{10}: \quad y_{1}=\beta_{100}+x_{21} \beta_{102}+x_{3:} \beta_{103}+x_{41} \beta_{104}+u_{104} . \quad u_{101}=\operatorname{IN}\left(0, \sigma_{10}^{2}\right) ; \tag{5.10}\\
& M_{11}: \quad y_{1}=\beta_{110}+x_{31} \beta_{113}+x_{41} \beta_{114}+x_{11} \beta_{131}+u_{114} . \quad u_{111}=\mathrm{IN}\left(0, \sigma_{11}^{2}\right): \tag{5.11}\\
& M_{12}: \quad y_{1}=\beta_{120}+x_{41} \beta_{124}+x_{11} \beta_{121}+x_{21} \beta_{122}+u_{12 t}, \quad u_{121}=\mathbb{N}\left(0, \sigma_{12}^{2}\right) . \tag{5.12}
\end{align*}
$$

Here y_{t} is the $t^{t h}$ observation on the dependent variable, $x_{t u}$ is the $t^{t /}$ observation on the $i^{\text {th }}$ regressor, $\beta_{j 0}$ is a constant, β_{μ} is a scalar regression coefficient associated
with the $j^{\text {th }}$ model. $j=1,2 \ldots, 12$ and $x_{i n}$ is the $t^{\text {th }}$ value of the $i^{t h}$ regressor, $i=1$. 2.3.4: and u_{n} is a random disturbance term following a normal distribution with mean zero and variance σ_{j}^{2}.

We used the various combinations of data sets and model sets as designs. This gave $2 \times 3=6$ designs, as follows:

Design	Data set	Model set
5.1	1	1
5.2	2	1
5.3	1	2
5.4	2	2
5.5	1	3
5.6	2	3

We used the same data generating technique as described in Section 3.3.1 of Chapter 3 for these experiments using $s_{r}^{2}=50.0$ and 15 and $s_{b}^{2}=0.02,0.05$ and 0.1 . The sample sizes 20,50 and 100 were used for the simulation experiments for all designs.

5.3 RESULTS OF THE SIMULATION EXPERIMENTS

The results of the Monte Carlo simulation experiments are presented in Tables $5.1 a-c$ to $5.6 a-c$. There are three types of penalties in each table as mentioned in
the previous chapter. The relative penalties for all existing criteria (Type 1 penalties) are zero and the APCS obtained form all the existing criteria are the same as the competing models are equi-dimensional. We present a comparative study of Type 1 and Type 2 penalties (additive penalty with maximised log-likelihood and the SAO technique) in Section 5.3.1. Section 5.3.2 contains the comparison of the simulation results obtained from Type 1 and Type 3 penalties (multiplicative penally with mean squared error and the SAO tectnique). We compare the simulation results obtained from the newly proposed Type 2 and Type 3 penalties in Section 5.3.3.

5.3.1 COMPARISON OF TYPE 1 AND TYPE 2 PENALTIES

There are several interesting and notable results from the simulation experiments. For all destgns and sample sizes under study, in 100 percent of the 96 combinations of the initial parameter values for the SAO technique, the MAPCS obtained from the simulation experiments using the SAO technique and Type 2 penalty for equidimensional models are higher than those obtained using the existing criteria. The variations among the APCS are always fower than those of the existing criteria for single regressor models. For other models, the variations among the APCS of the true models are generally higher than those of the existing criteria with an exception of Design 5.5 for sample size 100 . The relative penalties that maximise the MAPCS using the SAO technique are not the same and are different from zero. An exceptional improvement in MAPCS was observed for all sample sizes for Design 5.5. In general we see that the model having the largest APCS from existing criteria,
has the smallest APCS from the SAO technique and vice versa. It is evident from the simulation results that the MAPCS obtained from the different combinations of the initial parameter values for a particular sample size under any particular design are very similar. It implies that the APCS is in general insensitive to the initial values of the parameters of the SAO technique when the competing models are equidimensional.

Tables 5.1a-c and 5.2a-c contain the simulation results for Designs 5.1 and 5.2 . where the competing models have a single non-constant regressor. For these designs, the gap between the largest ${ }^{\prime}$ MAPCS and the smallest MAPCS obtained from the SAO technique is very small. The smallest MAPCS obtained from the SAO technique for Design 5.1 are 11, 14 and 17 percent higher than those of the MAPCS obtained from the existing criteria for $n=20,50$ and 100 , respectively. For Design 5.2, the smallest MAPCS obtained from the SAO technique are 5. 4 and 4 percent higher than those of the existing criteria for $n=20,50$ and 100 , respectively. For both designs, the variation among the APCS obtained from Type 2 penalties is lower than the variation obtained from the existing criteria. The decrease of variation among the APCS obtained from the SAO technique over the existing criteria for sample sizes 20,50 and 100 is 27,35 and 45 percent for Design 5.1 and 71, 56 and 73 percent for Design 5.2, respectively. The mode and the median MAPCS obtained

[^14]from the SAO technique are identical to the largest MAPCS obtained from the SAO technique for all sample sizes of Design 5.1 and sample size 20 of Design 5.2. For the other sample sizes of Design 5.2. the mode and median MAPCS are very similar to the largest MAPCS obtained from the SAO technique. For both designs and for all sample sizes, the MAPCS corresponding to the smallest variation among the APCS obtained from the SAO technique is very similar to the corresponding largest MAPCS obtained from the SAO technique.

The simulation results of the competing models with two non-constant regressors of Designs 5.3 and 5.4 are presented in Tables $5.3 \mathrm{a}-\mathrm{c}$ to $5.4 \mathrm{a}-\mathrm{c}$. Like for the single regressor models, for both designs, the differences between the largest MAPCS and the smallest MAPCS is very small. The smallest MAPCS obtamed from the SAO lechnique are 16,9 and 9 percent higher than those of the existing criteria for sample sizes 20, 50 and 100, respectively for Design 5.3. The increases of MAPCS over the existing criteria are 8,10 , and 10 percent for sample sizes 20,50 and 100 , respectively, for Design 5.4. For both designs, the variations among the APCS are comparatively larger than those obtained from existing criteria. The mode and median MAPCS are very similar to the largest MAPCS and in some situations these are identical to the largest MAPCS. For both designs, the MAPCS corresponding to the smallest variation among the APCS are very similar to the largest MAPCS. This implies that the performance of Type 3 and Type 4 penalties are similar and from a
user's point of view. any of these may be used for selecting the trest model when the competing models are equi-dimensional.

The results of the simulation experiments for the three non-constant regressor models of Designs 5.5 and 5.6 are presented in Tables $5.5 \mathrm{a}-\mathrm{c}$ to Table $5.6 \mathrm{a}-\mathrm{c}$. The results indicate that for both designs. for 100 percent of the combinations of the initial parameter values for the SAO technique, the MAPCS is higher than that of the existing criteria. An exceptional improvement of the MAPCS obtained from the SAO technique over the existing criteria is observed for Design 5.5. For both designs, the largest MAPCS and the smallest MAPCS obtained from the SAO technique are very similar. The smallest MAPCS obtained from the SAO technique for the sample sizes 20. 50 and 100 are 56.57 and 56 percent larger than that of the existing enteria for Design 5.5. These increases in MAPCS for Design 5.6 are 14, 12 and 9 percent for the sample sizes 20,50 and 100 . respectively. For all designs and sample sizes, the variation among the APCS is larger than that of the existing criteria with the exception for Design 5.5 and $n=100$, where the variation among the APCS is smaller than that of the existing criteria. The mode and the median MAPCS are very similar to the largest MAPCS for both designs and all sample sizes and in some cases these are identio the largest MAPCS. The MAPCS corresponding to the smallest variation among the APCS are very close to the largest MAPCS for both designs.

For all designs. exactly the same MAPCS and SD among the APCS is obtained from different sets of relative penalties. For example, for Design 5.1 with $n=20$. the largest MAPCS is 0.6470 with a SD amorg the APCS of 0.2434 . This MAPCS and SD is obtained from 26 different relative penalty sets. two examples being (0 . 1.5532. $-1.1620,-1.8220$), and ($0,-1.5495,-1.1575,-1.1879$). This result confirms the comment we made in the previous chapter, that there is no unique set of penalties for a particular data set that maximises the MAPCS. It is also observed that for all designs exactly the same MAPCS and SD are obtained from different sets of initial values for the SAO technique. For example, as mentioned earlier. for Design 5.1 the largest MAPCS with SD 0.2434 is obtained from 26 different penaties. These penalties are obtained from 26 different initial sets of values for the SAO technique. The smailest MAPCS obtained from the SAO technique for Design 5.1 and $n=20$, is 0.6464 with a SD among the APCS of 0.2501 , which is very close to the corresponding largest MAPCS and SD. This means that when the competing models have the same number of parameters, the SAO technique is largely insensitive to the initial values of the SAO technique.

5.3.2 COMPARISON OF TYPE 1 AND TYPE 3 PENALTIES

In this section, we compare the MAPCS obtained from the application of the SAO technique with mean squared error and miltiplicative penalties, with those from the existing criteria. The simulation results obtained from the designs considered are presented in the second part of Tables $5.1 \mathrm{a}-\mathrm{c}$ to $5.6 \mathrm{a}-\mathrm{c}$.

It is apparent from the simulation results that in 100 percent of the combinations of the initial parameter values for the SAO technique with mean squared error for all designs and sample sizes. the MAPCS obtained using the SAO technique are higher than those of the MAPCS obtained from the existing criteria. For all designs and sample sizes, the MAPCS obtained using the SAO technique with maximised loglikelihood and additive penalties are very similar to the MAPCS obtained from the SAO technique with mean squared error and multiplicative penalties. Sometimes the largest, mode, median MAPCS and the MAPCS corresponding to the smallest variation among the APCS, are all identical for Type 2 and Type 3 penalties. Thus for all designs and sample sizes, the comparisons between Type 1 and Type 3 penalties are very similar to the comparisons between Type 1 and Type 2 penaities discussed in the previous section.

5.3.3 COMPARISON OF TYPE 2 AND TYPE 3 PENALTIES

The results obtained from the simulation experiments for Type 2 and Type 3 penalties indicate that MAPCS obtained from both types of penalties are very similar. The largest MAPCS from the additive and multiplicative penalties are identical in 16 out of 18 experiments (six designs each with three sample sizes) and in the remaining two experiments, the numerical values of the largest MAPCS are very close. The modal MAPCS are identical in 12 out of 18 experiments and in the other experiments the values are very close. A similar picture is observed for median MAPCS and the MAPCS corresponding to the smallest variation among the APCS. The smallest

MAPCS obtained from these two types of penalties are also very close. It implies that to maximise the MAPCS of the true model from a set of competing alternative equidimensional models, the effect of the form of the penalty is insignificant. Thereforc. either of the methods with the SAO technique can be used to maximise the MAPCS of the true model from a set of competing equi-dimensional models.

5.4 CONCLUDING REMARKS

In this chapter, we investigated the performance of the SAO technique to select the true model from a set of equi-dimensional competing alternative models. To compare the performance of the technique with the existing criteria, we conducted simulation experiments with two sets of data in three different sets for equi-dimensional models. In 100 percent of the combinations of the initial parameter values for the SAO technique, the MAPCS is higher than those of the existing criteria for all designs and the sample sizes considned. The variation among the APCS of the true model is smaller compared to that of the existing criteria when the competing models have a single regressor. In all other experiments, this variation is generally larger than those of the existing criteria with the exception of Design 5.5 with sample size 100 . An exceptional increase (56%) of the M $\sim \mathrm{PCS}$ over the existing criteria is observed for all sample sizes of Design 5.5.

The relative penalties are zero for the existing criteria, but in the new method the relative penalties that maximise the MAPCS are different from zero. Also. for the
same set of models. these penaltics are different for different data sets. This finding confirms our previous finding that the penalties should not only be functions of the sample size and the number of free parameters, but also the form of the loglikelihood function. Exactlv equal MAPCS were obained from different reiative penalties, which implies that there is no unioue sel of penchics that maximise the MAPCS.

From the simulation results, it is observed that the model having the largest MAPCS for the existing criteria, has the smallest MAPCS frem the SAO technique and vice versa. It is apparent from the simulation results that for a particular sample size under any particular design, the MAPCS obtained from different combinations of the initial parameters are very similar. The difference between the largest and the smallest MAPCS obtained from the SAO techmque is very small for all designs and for all sample sizes considered. This implies, for equi-dimensional competing allemative models, that the APCS of the true model is generally insensitive to the starting parameter values of the SAO technique. We may conclude from our simulation results that for selecting the best model from a set of equi-dimensional competing alternative models, the MAPCS obtained from the SAO technique will always be higher than that of existing criteria. We also recommend the use of the SAO technique to compute penalties for selecting the best model, when the competing models are equi-dimensional.

The results obtained from the simulation experiments indicate that the APCS obtained using the SAO technique with maximised log-likelihood functions and additive penalties, and mean squared error with multiplicative penalties, are very similar. So foom the user's point of view, one can use either technique to select the true model from a set of competing alternative equi-dimensional models.

The performance of Type 2 and Type 3 penalties relative to the existing IC for selecting the true model from a set of equi-dimensional competing models, is uniformly better in all the experiments we conducted. From the results of the simulation experiments. it may be concluded that for the equi-dimensional competing mode!s. the application of the SAO technique with additive or multipicative perictres always guarantees the selection of the true model with higher MAPCS compared to the existing criteria in all situations for linear regression settings. We presented numerical evidence in favour of using the SAO technique over the existing IC to select the true model from a set of equi-dimensional competing alternative models. Such evidence is the best grounds for using this technique to improve APCS of the true model, instead of not using a penalty as the existing criteria effectively do in this situation.

Table 5.1a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size $\mathbf{2 0}$ for Design 5.1 together with relative penalty values and input values of SAO technique.

Type of penalty	Criteria	Average probabilities of correct selection of model						Relative penalties*			Input values for simulated annealing								
								Starting values of penalites	Boundaries		TRF*								
		M_{1}	M_{2}	M_{3}	M_{4}	Mean	SD				$r:$	P,	P_{1}	S_{1}	S_{z}	S_{1}	S_{1}	1.B	$1 / 8$
Additive: Existing criteria (Type 1)	All are same	0.9845	0.3905	0.7200	0.2350	0.5825	0.3357	00000	0.0000	0.0000									
Additive: Using logJikelihood with SAO technique (Type 2)	Largest MAPCS	0.9725	0.3850	0.6395	0.5910	0.6470	0.2434	- 15532	-1.1620	-1.8220	0.0000	0.0000	0.0000	0.0000	0.0000	10.0000	0.1000		
	Smallest SD of APCS	0.9685	0.3855	0.6395	0.5925	0.6465	0.2414	-21418	-1.7502	-2.4104	1.4979	1.4979	1.4979	1.4979	0.0000	8.0000	0.0001		
	Modal MAPCS	0.9725	0.3850	0.6395	0.5910	0.6470	0.2434	. 15532	$\cdot 1.1620$	-1.8220	0.0000	0.0000	0.0000	0.0000	0.0000	10.0000	0.1000		
	Median MAPCS	0.9725	0.3850	0.6395	0.5910	0.6470	0.2434	. 15532	$\cdot 1.1620$	-1.8220	0.0000	0.0000	0.0000	0.0000	0.0000	100000	0.1000		
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	0.9725	0.3850	0.6395	0.5910	0.6470	0.2434	08561	0.8903	0.8334	1.0000	1.0000	1.0000	1.0000	0.0000	10.0000	0.1000		
	Smallest SD of APCS	0.9730	0.3900	0.6110	0.6115	0.6464	0.2414	0.8563	0.9070	0.8335	1.0000	2.0000	2.0000	3.0000	0.0000	32.0000	0.0001		
	Moda! MAPCS	0.9725	0.3850	0.6395	0.5910	0.6470	0.2434	08561	0.8903	0.8334	1.0000	1.0000	1.0000	1.0000	0.0000	10.0000	0.1000		
	Median MAPCS	0.9725	0.3850	0.6395	0.5910	0.6470	0.2434	08561	0.8903	0.8334	1.0000	1.0000	1.0000	1.0000	0.0000	10.0000	0.1000		

* Additive penalty for model M_{I} is zero and multiplicative penalty for model M_{i} is one
** TRF Temperature reduction factor

Table 5.1b Average probabilities, mean average probaīilities and standard deviations of average probabilities of correct selection of models for sample size 50 for Design 5.1 together with relative penalty values and input values of SAO technique.

Type of penalty	Criteria	A verage probabilities of correct selection of model						Relative penalties*			Input values for simulated anncaling								
								Starting values of penalies	Boundaries		TRF**								
		M_{1}	M_{2}	M_{3}	M_{4}	Mcan	SD				P_{5}	P_{3}	P_{1}	S_{1}	S_{3}	S	S_{4}	LB	UB
Additive: Existing criteria (Type 1)	All are same	0.9920	0.5000	0.8880	0.2065	0.6466	0.3618	0.0000	0.0000	0.0000									
Additive: Using loglikelihood with SAO technique (Type 2)	Largest MAPCS	0.9890	0.4225	0.7870	0.7610	0.7399	0.2348	-0.3541	0.8881	-0.8217	0.0000	0.0000	0.0000	0.0000	. 8.0000	8.0000	0.1000		
	Smallest SD of APCS	0.9890	0.4595	0.7860	0.7130	0.7394	0.2145	-0.5173	0.8542	-0.8258	0.0000	0.0000	0.0000	0.0000	0.0000	2.0000	0.0010		
	Modal MAPCS	0.9890	0.4225	0.7870	0.7610	0.7399	0.2348	-0.354 4	0.8881	-0.8217	0.0000	0.0000	0.0000	0.0000	. 8.0000	8.0000	0.1000		
	Median MAPCS	0.9890	0.4225	0.7870	0.7610	0.7399	0.2348	-0.3541	0.8881	-0.8217	0.0000	0.0000	0.0000	0.0000	-80000	8.0000	0.1000		
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	0.9890	0.4225	0.7870	0.7610	0.7399	0.2348	0.9860	1.0362	0.9677	1.0000	1.0000	1.0000	1.0000	0.0000	8.0000	0.1000		
	Smallest SD of APCS	0.9890	0.4225	0.7870	0.7610	0.7399	0.2348	0.9860	1.0362	0.9677	1.0000	1.0000	1.0000	1.0000	0.0000	8.0000	0.1000		
	Modal MAPCS	0.9890	0.4225	0.7870	0.7610	0.7399	0.2348	09860	1.0362	0.9677	1.0000	1.0000	1.0000	1.0000	0.0000	8.0000	0.1000		
	Median MAPCS	0.9890	0.4225	0.7870	0.7610	0.7399	0.2348	0.9860	1.0362	0.9677	1.0000	1.0000	1.0600	1.0000	0.0000	8.0000	0.1000		

[^15]Table 5.1c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 100 for Design 5.1 together with relative penalty values and input values of SAO technique.

Type of penalty	Criteria	A verage probabilities of correct selection of model						Relative penalties ${ }^{\text {* }}$			Input values for simulated annealing								
								Starting values of penalies	Buandaries		TRF*								
		M_{1}	M_{2}	M_{3}	M_{4}	Mean	SD				P_{2}	P	P_{1}	s_{1}	S_{2}	S_{3}	s_{1}	LB	UB
Additive: Existing criteria (Type 1)	All are same	0.9970	0.6180	0.9315	0.2055	0.6880	0.3617	0.0000	0.0000	0.0000									
	Largest MAPCS	0.9940	0.5270	0.8585	0.8425	0.8055	0.1977	- 08164	0.6215	-1.4880	00000	0.0000	0.0000	0.0000	-8.0000	8.0000	0.1000		
	Smaliest SD of APCS	0.9940	0.5285	0.8585	0.8405	0.8054	0.1969	. 08678	0.5861	-1.5303	0.0000	1.0000	1.0000	2.0000	0.0000	10.0000	0.0100		
	Modal MAPCS	0.9940	0.5270	0.8585	0.8425	0.8055	0.1977	-0.8164	0.6215	-1.4880	0.0000	0.0000	0.0000	0.0000	-8.0000	8.0600	0.1000		
	Median MAPCS	0.9940	0.5270	0.8585	0.8425	0.8055	0.1977	. 0.8164	0.6215	-1.4880	0.0000	0.0000	0.0000	0.0000	-8.0000	8.0000	0.1000		
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	0.9940	0.5270	0.8585	0.8425	0.8055	0.1977	0.9799	1.0085	0.9669	1.0000	1.0000	1.0000	1.0000	0.0000	8.0000	0.1000		
	Smallest SD of APCS	0.9940	0.5270	0.8585	0.8425	0.8055	0.1977	0.9799	1.0085	0.9669	10000	10000	1.0000	1.0000	0.0000	8.0000	0.1000		
	Modal MAPCS	0.9940	0.5270	0.8585	0.8425	0.8055	0.1977	0.9799	1.0085	0.9569	1.0000	1.0000	1.0000	1.0000	0.0000	8.0000	01000		
	Median MAPCS	0.9940	0.5270	0.8585	0.8425	0.8055	0.1977	0.9799	1.0085	0.9669	1.0000	10000	1.0500	1.0000	0.0000	8.0000	01000		

[^16]Table 5.2a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size $\mathbf{2 0}$ for Design 5.2 together with relative penalty values and input values of SAO technique.

Type of penalty	Criteria	A verage probabilities of correct selection of model						Relative penalties:			Input values for simuiated annealing								
								Starting values of penalies	Boundaries		TRI*								
		M_{1}	M_{2}	$M_{\text {; }}$	M	Mean	SD				P_{2}	P_{i}	P_{1}	S	S_{2}	S_{i}	5	LB	1 B
Additive: Existing criteria (Type 1)	All are same	0.2690	0.4950	0.5085	0.6305	0.4758	0.1507	00000	0.0000	0.0000									
	Largest MAPCS	0.5570	0.4770	0.4560	0.5110	0.5002	0.0441	03764	0.5043	0.9540	0.0000	0.0000	0.0000	0.0000	00000	8.0000	0.1000		
	Smallest SD of APCS	0.5535	0.4760	0.4560	0.5150	0.5001	0.0432	03767	0.5043	0.9144	0.0000	1.0000	1.0000	2.0000	0.0000	8.0000	0.1600		
	$\begin{aligned} & \text { Modal } \\ & \text { MAPCS } \end{aligned}$	0.5570	0.4770	0.4560	0.5110	0.5002	0.0441	03764	0.5043	0.9540	0.0000	0.0000	0.0000	0.0000	0.0000	8.0000	0.1000		
	Median MAPCS	0.5570	0.4770	0.4560	0.5110	0.5002	0.0441	0.3764	0.5043	0.9540	0.0000	0.0000	0.0000	0.0000	0.0000	8.0000	0.1000		
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	0.5570	0.4770	0.4560	0.5110	0.5002	0.0441	10384	1.0517	11001	1.0000	1.0000	1.0000	1.0000	0.0000	2.0000	0.1000		
	Smallest SD of APCS	0.5535	0.4760	0.4560	0.5150	0.5001	0.0432	10384	1.0518	1.0957	1.0000	10000	1.0000	1.00%	0.0000	20.0000	0.1000		
	Modal MAPCS	0.5570	0.4770	0.4560	0.5110	0.5002	0.0441	10384	1.0517	1.1001	1.0000	1.0000	1.0000	1.0000	00000	2.0000	0.1000		
	Median MAPCS	0.5535	0.4760	0.4560	0.5150	0.5001	0.0432	1.0384	1.0518	1.0957	1.0000	1.0000	10000	1.0000	0.0000	200000	0.1000		

[^17]** TRF Temperature reduction factor

Table 5.2b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 50 for Design 5.2 together with relative penalty values and input values of SAO technique.

[^18]Table 3.2c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size $\mathbf{1 0 0}$ for Design 5.2 together with relative penalty values and input values of SAO technique.

Type of penalty	Criteria	A verage probabilities of correct selection of model						Relative penalties			Input values for simulated annealing								
								Starting values of penalties	Boundaries		TRF**								
		M	M_{2}	M,	M_{4}	Meall	SD				P_{i}	P_{1}	$P_{\text {d }}$	S	S_{2}	S_{3}	S	LB	UB
Additive: Existing criteria (Type 1)	All are same	0.4290	0.6575	0.7125	0.8180	0.6542	0.1643	0.0000	0.0000	0.0000									
Additive: Using log- likelihood with SAO technique (Type 2)	Largest MAPCS	0.3890	0.6320	0.6620	0.7370	0.6800	0.0446	04189	0.6262	9.1782	0.0000	0.0000	0.0000	0.0000	0.0000	10.0000	0.1000		
	Smallest SD of APCS	0.6890	0.6320	0.6620	0.7370	0.6800	0.0446	0.4189	0.6262	1.1782	0.0000	00000	0.0000	0.0000	0.0000	10.0000	0.1000		
	Modal MAPCS	0.6890	$\bigcirc 5320$	0.6620	0.7370	0.6800	0.0446	04189	0.6262	1.1782	0.0000	0.0000	0.0000	0.0000	0.0000	10.0000	0.1000		
	Median MAPCS	0.6390	0.6320	0.6620	07370	0.6800	0.0446	0.4189	0.6262	1.1782	0.0000	0.0000	0.0000	0.0000	0.0000	10.0000	0.1000		
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	0.6890	0.6320	0.6620	0.7370	0.6800	0.0446	1.0084	1.0126	1.0239	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.1000		
	Smallest SD of APCS	0.6900	0.6320	0.6620	0.7355	0.6799	0.0440	1.0084	1.0126	1.0242	1.0000	2.0000	2.0000	3.0000	0.0000	10.0000	0.0010		
	Modal MAPCS	0.6890	0.6320	0.6620	0.7370	0.6800	00446	10084	1.0126	1.0239	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.1000		
	Median MAPCS	0.6890	0.6320	0.6620	0.7370	05800	00446	1.0084	1.0126	10239	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.1000		

[^19]Table 5.3a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size $\mathbf{2 0}$ for Design 5.3 together with relative penalty values and input values of SAO technique.

Type of penalty	Criteria	A verage probabilities of correct selection of model						Relative penalties*			Input values for simulated annealing								
								Starting values of penalties	Boundaries		TRF**								
		M_{5}	M_{0}	M_{7}	M_{8}	Mean	SD				P_{6}	P_{i}	P_{8}	Ss	S_{6}	S_{i}	s_{s}	LB	UB
Additive: Existing criteria (Type 1)	All are same	0.5270	0.4030	0.3745	0.4785	0.4457	0.0697	0.0000	0.0000	0.0000									
Additive: Using loglikelihood with SAO technique (Type 2)	Largest MAPCS	0.2440	0.3505	0.7285	0.7470	05175	0.2581	-3.4352	$\cdot 3.7546$	0.5835	2.9957	2.9957	2.9957	2.9957	-4.0000	5.9915	0.0001		
	Smallest SD of APCS	0.3310	0.3215	0.7410	0.6680	0.5154	0.2204	-1.8554	-2.2314	-0.3124	0.0000	1.0000	1.0000	2.0000	0.0000	3.0000	0.0001		
	Modal MAPCS	0.2440	0.3505	0.7285	0.7470	0.5175	0.2581	-34352	. 37546	-0.5835	2.9957	2.9957	2.9957	2.9957	-4.0000	5.9915	0.0001		
	Median MAPCS	0.2800	0.3510	0.7285	0.7095	0.5172	0.2349	-3.4126	-3.7303	-0.4440	0.0000	1.0000	1.0000	2.0000	. 12.0000	12.0000	0.0100		
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	0.2440	0.3510	0.7280	0.7470	0.5175	0.2579	0.7101	0.6879	0.9433	1.0000	2.0000	2.0000	30000	0.0000	48.0000	0.1000		
	Smallest SD of APCS	0.2800	0.3510	0.7285	0.7095	0.5172	0.2349	0.7131	0.6907	0.9566	44936	4.4936	4.4936	4.4936	0.0000	14.9787	0.0010		
	Modal MAPCS	0.2440	0.3510	0.7280	0.7470	0.5175	0.2579	0.7101	0.6879	0.9433	1.0000	2.0000	2.0000	3.0000	0.0000	48.0000	0.1000		
	Median MAPCS	0.2440	0.3265	0.7495	0.7485	0.5171	0.2699	07485	0.7209	0.9433	1.0000	2.0000	2.0000	3.0000	0.0000	27.0000	0.0010		

[^20]Table 5.3b Average probabilities, mean average probabilities and standard deviations of average probahilities of correct selection of mode's for sample size 50 for Design 5.3 together with relative penalty values and input values • $i 0$ technique.

Type of penalty	Criteria	A verage probabilities of correct selection of model						Relative penalties*			Input values for simulated annealing								
								Starting values of penalties	Bocundiries		TRF**								
		Ms	M_{6}	M;	M_{s}	Mcan	SD				P_{e}	P.	D_{s}	S_{5}	$S_{0} 1$	S_{3}	S_{3}	LH	UB
Additive: Existing criteria (Type 1)	All are same	0.5820	0.5045	0.4295	0.4845	0.5009	0.0631	0.0000	0.0000	0.0030									
Additive: Using loglikelihood with SAO technique (Type 2)	Largest Mit ${ }^{\text {P }} \mathrm{CS}$	0.3945	0.3845	0.7400	0.7085	0.5569	0.1937	-1 4966	-1.8183	-0.2936	3.9120	3.9120	3.9120	3.9120	0.0000	12.0000	0.1000		
	Smallest SD of APCS	0.4210	0.3885	0.7345	0.6815	0.5564	0.1769	-14294	$\cdot 1.7417$	-0.2272	3.9120	3.9120	3.9120	3.9120	0.0000	7.8240	0.1000		
	Modal MAPCS	0.4190	0.3850	0.7450	0.6750	0.5560	0.1806	$-20^{7} \mathrm{i}$	- $<.3929$	-0.2262	3.9120	39120	3.9120	3.9120	-12.0000	12.0000	0.1000		
	Median MAPCS	0.4190	0.3850	0.7450	0.6750	0.5560	0.1808	-20712	-2.3929	-0. 2262	3.9120	3.9120	3.9120	3.9120	- 12.0000	12.0000	0.1000		
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	0.3945	0.3840	0.7405	0.7075	0.5566	0.1938	09403	0.9283	09883	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.1000		
	Smallest SD of APCS	0.4130	0.3865	0.7485	0.6370	0.5463	0.1755	06784	0.6697	0.9918	1.0000	1.000	1.0000	1.0000	0.0000	12.0000	0.0001		
	Modal MAPCS	0.4195	0.3850	0.7445	0.6755	0.5561	0.1804	C 9238	0.9120	0.9910	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.0001		
	Median MAPCS	0.4150	0.3900	0.7425	0.6670	0.5536	0.1775	08733	0.8624	0.9910	5.8680	5.8680	5.8680	5.8680	0.0000	¢ 8680	0.0001		

* Additive penalty for model M_{s} is zero and multiplicative penalty for model $\overline{M_{0}}$ is one
** TRF Temperature reduction factor

Table 5.3c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 100 for Design 5.3 together with relative penalty values and input values of SAO technique.

Type of penalty	Criteria	A verage probabilities of correct selection of model						Relative penalties ${ }^{*}$			Input values for simulated annealing								
								Starting values of penalties	Boundaries		TRF ${ }^{\text {² }}$								
		M_{5}	M_{6}	M_{7}	M_{8}	Mean	SD				P_{6}	P_{i}	P_{8}	S:	S_{0}	S_{7}	S_{8}	LB	UB
Additive: Existing criteria (Type 1)	All are same	0.6230	0.6085	0.4785	0.5005	0.5526	0.0737	0.0000	0.0000	0.0000									
Additive: Using log. likelibood with SAO technique (Type 2)	Largest MAPCS	0.4480	0.4490	0.8080	0.7330	0.6095	0.1884	- 1.7048	-2.3262	0.3119	0.0000	0.0000	0.0000	0.0000	0.0000	10.0000	0.0100		
	Smailest SD of APCS	0.4515	0.4490	0.8075	0.7290	0.6093	0.1864	-1.8037	-2.2247	-0.3028	0.0000	1.0000	1.0000	2.0000	0.0000	3.0000	0.0010		
	Modal MAPCS	0.4460	0.4500	0.8105	0.7300	0.6091	0.1889	-3.3369	. 3.7578	.0.3118	0.0000	0.0000	0.0000	0.0000	. 4.0000	4.0000	0.1000		
	Median MAPCS	0.4460	0.4500	0.8105	0.7300	0.6091	0.1889	-3.3369	-3.7578	-0.3118	0.0000	0.0000	0.0000	0.0000	. 4.0000	4.0000	0.1000		
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	0.4480	0.4490	0.8080	0.7330	0.6095	0.1884	09625	0.9544	0.9938	1.0000	2.0000	2.0000	3.0000	n. 0000	12.0000	0.1000		
	Smallest SD of APCS	0.4580	0.4405	0.7970	0.7250	0.6051	0.1825	0.5825	0.9743	0.9942	6.9078	6.9078	6,9078	6.9078	0.0000	6.9078	0.0001		
	Modal MAPCS	0.4400	0.4500	0.8095	0.7370	0.6091	0.1919	0.9527	0.9447	0.9935	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.0100		
	Median MAPCS	0.4575	0.4445	0.8025	0.7235	0.6070	0.1831	0.9757	0.9675	0.9942	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.0001		

[^21]Table 5.4a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size $\mathbf{2 0}$ for Design 5.4 together with relative penalty values and input values of $\mathbf{S} \boldsymbol{\Lambda O}$ technique.

Type of penaity	Criteria	A verage probabilities of correct selection of model						Relative penalties ${ }^{\text {a }}$			Input values for sifoulated anneuling								
								Starting values of penalties	Brundaries		TRF*								
		M_{5}	M_{6}	Mi ;	M_{8}	Mcan	SD				P_{6}	P_{i}	P_{8}	S_{5}	S	S_{3}	S_{8}	LB	UB
Additive: Existing criteria (Type 1)	All are same	0.3790	0.4805	0.5250	0.3840	0.4421	0.0744	0.0000	0.0000	0.000									
Additive: Using loglikelihood with SAO technique (Type 2)	Largest M.APCS	0.7265	0.3540	0.3700	0.4720	0.4806	0.1720	$\overline{0.7617}$	0.8956	0.4813	0.0000	0.0000	00000	0.0000	-12.0000	12.0000	0.1000		
	Smallest SD of APCS	0.6180	0.5120	0.3185	0.4710	0.4799	0.124	0.2655	0.8940	04780	0.0000	0.0000	00000	0.0000	-12.0000	12.0000	0.0100		
	Modal MAPCS	0.7135	0.3755	0.3765	0.4560	0.4804	0.1599	0.6810	0.8592	0.5009	2.9957	2585	2.9957	2.9957	-12.0000	12.0000	0.1000		
	Median MAPCS	0.7135	0.3755	0.3765	0.4560	0.4804	0.1599	0.6810	0.8592	0.5009	29957	2.9957	2.9957	2.9957	-12.0000	12.0000	0.1000		
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	0.7265	0.3540	0.3700	0.4720	0.4806	0.1720	1.0790	1.0936	1.0492	1.0000	2.0000	2.0000	3.0000	0.0000	48.0000	0.1000		
	Smallest SD of APCS	0.6805	0.4285	0.3400	0.4715	0.4801	0.1444	1.0513	1.0947	1.0502	10000	1.0000	10000	10000	0.0000	20.0000	0.0010		
	Modal MAPCS	0.7135	0.3755	0.3775	0.4555	0.4805	0.1597	1.0702	1.0894	1.0514	1.0000	10000	10000	10000	0.0000	20.0000	0.1000		
	Median MAPCS	0.7135	0.3755	0.3775	0.4555	0.4805	0.1597	1.0702	1.0894	1.0514	1.0000	1.0000	1.0000	1.0000	0.0000	20.0000	0.1000		

* Additive penalty for model M_{s} is zero and multiplicative penalty for model M_{s} is one
** TF F Temperature reduction factor

Table 5.4b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 50 for Design 5.4 together with rela!ive penalty values and input values of SAO technique.

Type of penalty	Criteria	A verage probabilities of correct selection of model						Relative penalties ${ }^{\text {a }}$			Input vaiues for simulated annealing								
								Starting values of penalties	Boundaries		TRE*								
		i.:	M_{0}	M_{7}	M_{8}	Mean	SD				p_{0}	P_{2}	P_{8}	S	$\mathrm{S}_{6} 1$	L S	S_{3}	1.	UB
Additive: Existing criteria (Type 1)	All are same	0.4155	0.5910	0.6380	0.4610	0.5264	0.1052	0.0000	0.0000	0.0000									
Additive: Using loglikelihood with SAO technique (Type 2)	Largest MAPCS	0.7005	0.5455	0.4435	0.6305	0.5800	0.1109	0.5450	0.9479	0.2884	0.0000	0.0000	0.0000	0.0000	0.0000	10.0000	0.1000		
	Smallest SD of APCS	0.6945	: 55510	0.4440	0.6300	0.5799	0.1079	0.5265	0.9294	0.2819	0.0000	1.0000	1.0000	20000	0.0000	3.0000	0.1000		
	Modal MAPCS	0.7025	0.5400	0.4465	0.6300	05797	0.1109	0.5604	0.9389	0.2902	39120	39120	3.9120	3.9120	-12.0000	12.0000	0.0010		
	Median MAPCS	0.7025	0.5400	$0.446 E$	0.6300	0.5797	0.1109	0.5604	0.9389	0.2902	3.9120	3.9120	3.9120	3.9120	-12.0000	12.0000	0.0010		
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	0.7005	0.5450	0.4440	0.6305	0.5800	0.1107	1.0220	10385	1.0114	1.3000	1.0000	1.0000	1.0000	0.0000	10.0000	0.1000		
	Smallest SD of APCS	0.6965	0.5500	0.4435	0.6295	0.5799	0.1089	1.0214	1.0381	1.0115	58680	5.8680	5.8680	5.8680	0.0000	195601	0.1000		
	Modal MAPCS	0.6965	0.5500	0.4435	0.6295	0.5799	0.1089	1.0214	1.0381	1.0115	5.8680	5.8680	5.8680	5. 3680	0.0500	19.5601	0.1000		
	Median MAPCS	0.7330	0.5715	0.4195	0.5950	0.5797	0.1284	1.0213	1.0492	$1.0<24$	5.8680	5868 c	5.8680	5.8680	0.0000	46.9443	0.1000		

* Additive penalty for model M, is zero and multiplicative penalty for model M. is one
** TRF Temperature reduction factor

Table 5.4c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size $\mathbf{1 0 0}$ for Design 5.4 together with relative penalty values and input values of SAO technique.

Type of penalty	Criteria	A verage probabilities of correct selection of model						Relative penalties*			Input values for simulated annealing								
								Starting values of penalties	Boundaries		TRF**								
		M_{5}	M_{6}	M	M_{3}	Mcan	SD				P_{0}	P_{7}	P_{s}	S,	S_{0}	S_{7}	S_{8}	IB	18
Additive: Existing criteria (Type 1)	All are same	0.5130	0.6520	0.7370	0.5780	06200	0.0965	0.0000	0.0000	0.0000									
Additive: Using loglikelih rod with SAO technique (Type 2)	Largest MAPCS	0.7805	06545	0.5480	0.7465	0.6824	0.1042	0.5510	1.2144	0.5141	0.0000	1.0000	1.0000	2.0000	-10.0000	10.0000	0.1000		
	Smallest SD of APCS	0.7675	0.6450	0.5590	0.7540	0.5814	00983	0.5513	1.0794	0.4080	0.0000	0.0000	0.0000	0.0000	0.0000	10.0000	0.1000		
	Modal MAPCS	0.7795	0.6545	0.5495	0.7455	0.6823	0.1030	0.5467	1.2017	0.5117	0.0000	0.0000	0.0000	0.0000	0.0000	4.0000	0.1000		
	Median MAPCE	0.7795	0.5545	0.5495	0.7455	0.6823	0.1030	0.5467	1.2017	0.5117	0.0000	0.0000	0.0000	0.0000	0.0000	4.0000	0.1000		
Multiplicative: Itsing mear. squarcd error with SAO technique (Type 3)	I . $\mathrm{F}^{\prime} \cdot \mathrm{cst}$ MAPCS	0.7805	0.6545	0.5480	0.7465	0.6824	0.1042	1.0111	1.0246	11.103	6.9078	6.9078	6.9078	6.9078	0.0000	138155	0.1000		
	Smallest SD of APCS	0.7805	0.6450	0.5705	0.7290	0.6813	0.0926	1.0111	1.0219	1.0103	6.9078	6.9078	6.9078	6.9078	0.0000	6.9078	0.0001		
	Modal MAPCS	0.7795	0.6550	0.5485	0.7460	0.6823	0.1035	1.0110	1.0245	1.0103	1.0000	2.0000	2.0000	3.0000	0.0000	12.0000	0.1000		
	Median MAPCS	0.7795	0.6550	0.5485	0.7460	0.6823	0.1035	1.0110	1.0245	1.0103	10000	2.0000	2.0000	3.0000	0.0000	12.0000	0.1000		

[^22]Table 5．5a Average probabilities，mean ayarage probabilities and stancard deviations of average probabilities of correct selection of models for sample size 20 for Design 5.5 together with relative penalty values：id input values of SAO technique．

Type of penalty	Criteria	A verage probabilities of correct selection os mondel						Relative penalties			Input values for simulated remaealing								
								Starting values of penalics	Boundaries		TRI ${ }^{\text {T＋}}$								
		M9	M 10	M_{1}	T M_{j}	Mean	SD				P_{10}	$P_{i l}$	P_{12}	S_{9}	S_{12}	s_{u}	$s:$	1.8	UB
Additive： Existing criteria （Type 1）	All are same	0.6410	0.3770	0.4550	0.3950	0.695	0.1205	0.0000	0.0007	0.0000									
Additive： Using log－ likelihood wit＇． SAO technique （Type 2）	Largest MAPCS	03690	0.9970	0.6530	0.9180	0.7343	C2545	$\overline{5.2083}$	． 07590	－2．2686	0.0000	$\bigcirc 000$	0.0000	0.0000	0.0000	10.0000	0.1000		
	Smallest SD of APCS	0.3725	0.9855	0.6625	0.9060	0.7316	0.2760	3.9370	－0．7641	－20906	0.0000	0.0000	00000	0.0000	0.0000	4.0000	0.1000		
	Modal MAPCS	0.3690	マ．こ． 0	0.6530	0.9180	0.7343	0.2845	－5．2089	－0．7590	－2．2686	00000	0.0000	0.0000	0.0030	0.0000	1～0000	0.1000		
	$\begin{aligned} & \text { Median } \\ & \text { MAPCS } \end{aligned}$	0.3695	©． 6955	0.6530	0.9180	0.7340	0.2838	4.9027	．0．705	22689	4.4936	4.4936	4.4936	44935	0.0000	5.9915	0.0100		
Meliplicative： Using mean squared erros with SAO technique （Type 3）	Latgest MAPCS	0.3690	0.3970	0.6530	0.9180	0.7343	0.2945	0.5873	0.9270	$0 . \overline{7970}$	10000	10000	1.0000	1.0000	0.0000	1.0000	0.1000		
	Smallest SD of APCS	0.3760	O，9970	0.6460	0.9165	0.7339	02819	0.5935	0.9310	08012	1.0000	10000	1.0000	1.0000	0.0000	10.0000	こ． 1000		
	$\begin{aligned} & \text { Modal } \\ & \text { MAPCS } \end{aligned}$	0.3690	0.9370	0.6530	0.9180	0.7343	0.2845	0.5873	$0 \cdot 9270$	0.7970	10000	1.0000	1.0000	1.0000	00000	1.0000	0.1000		
	Mediar： MAPCS	0.3690	0.9970	06530	0.91	$\therefore 7343$	0.2845	05873	09270	0.7970	10000	1.0000	10000	1.0000	0.0000	1.0000	0.1000		

＊Addiaive penalty for model M_{9} is zero and multiplicative periatity fior model M_{9} is ore
＊＊TRF Temperaturt eduction facior
＊＊TRF Temperaturt educcion facior

Table 5.5b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 50 for Design 5.5 together with relative penalty values and input values of SAO technique.

Type of penalty	Criteria	A verage probabilities of correct selection of model						Relative penaities			Input values for simulated annealing								
								Starting values of penalies	Boundaries		TRF*								
		M	M_{10}	M_{11}	M_{12}	Mcan	SD				P_{10}	P_{11}	P_{1}.		s_{10}	s_{u}	s_{12}	LB	UB
Additive: Existing criteria (Type 1)	All are same	0.7685	0.4010	0.4955	0.4365	0.5254	0.1667	0.0000	0.0000	0.0000									
Additive: Using loglikelihood with SAO technique (Type 2)	$\begin{aligned} & \text { Largest } \\ & \text { MAPCS } \end{aligned}$	0.5175	0.9990	0.8325	0.9490	0.8245	0.2162	4.8874	-1.2190	-2.6135	0.0000	1.0000	1.0000	2.0000	0.0000	10.0000	0.0100		
	Smallest SD of APCS	0.5330	0.9935	0.8095	0.9600	0.8240	0.2099	. 3.9153	-1.0541	-2.7323	0.0000	0.0000	0.0000	00000	0.0000	4.0000	0.1000		
	Modal MAPCS	0.5175	0.9990	0.8325	0.9490	0.8245	02962	. 48874	. 12130	-2.6135	0.0000	1.0000	1.0000	2.0000	0.0000	10.0000	0.0100		
	Median MAPCS	0.5175	0.9990	0.8325	0.9490	0.8245	0.2162	-4.8874	-1.2190	26135	0.0000	1.0000	1.0000	2.0000	0.0000	10.0000	0.0100		
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	05175	09990	0.8325	0.9495	$0.824 \hat{6}$	0.2163	0.8220	0.9523	0.9002	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.1000		
	Smallest SD of APCS	0.5165	0.9935	0.8330	0.9540	0.8242	0.2162	0.8488	0.9523	0.8981	1.0000	2.0000	20000	3.0000	0.0000	10.0000	0.0001		
	Modal MAPCS	0.5775	0.9990	0.8325	0.9495	0.8246	0.2163	0.8220	0.9523	0.9002	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.1000		
	Median MAPCS	0.5175	0.9990	0.8325	0.9495	0.8246	0.2163	0.8220	0.9523	0.9002	10000	10000	10000	1.0000	0.0000	1.0000	01000		

* Acditive penalty for $\pi \times 3 M_{y}$ is zero and multiplicative penalty for model M_{0} in one
** TRF Temperature reduction factor

Tabie 5.5c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size $\mathbf{1 0 0}$ for Design 5.5 together with relative penalty values and input values of SAO technique.

Type of penalty	Criteria	A verage probabilities of correct selection of model						Relative penalties*			Input values for simulated annealing								
								Starting values of penalties	Boundaries		TRF ${ }^{\text {T }}$								
		M9	M_{10}	$M_{l l}$	M_{12}	Mean	SD				P_{10}	P_{u}	$P_{1:}$	S_{9}	S_{10}	s_{u}	S_{2}	LB	UB
Additive: Existing criteria (Type 1)	All arc same	0.8505	0.4350	0.5005	0.4495	0.5589	0.1964	0.6000	0.0000	0.0000									
Additive: Using loglikelihood with SAO techerique (Type 2)	Largest MAPCS	0.6480	0.9985	0.8710	0.9830	0.8751	0.1617	-5.3640	$\cdot 1.2130$	3.0750	0.0000	0.0000	0.0000	0.0000	0.0000	10.0000	0.1000		
	Smallest SD of APCS	0.6530	0.9845	0.8785	0.9685	0.8711	0.1527	-3.4805	-1.2128	-25651	0.0000	1.0000	1.0000	2.0000	0.0000	4.0000	0.0010		
	Modal MAPCS	0.6480	0998	0.8710	0.9830	0.8751	0.1617	-5.3640	-1.2130	$\cdot 3.0750$	0.0000	0.0000	0.0000	0.0000	0.0000	10.0000	0.1000		
	Median MAPCS	0.6480	0.9985	0.8710	0.9830	0.8751	0.1617	-5.3640	-1.2130	-3.0750	0.0000	00000	0.0000	0.0000	0.0000	10.0000	0.1000		
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	0.6480	0.9985	0.8710	0.9830	0.8751	0.1617	0.8978	0.9760	0.9403	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.1000		
	Smallest SD of APCS	0.6520	0.9985	0.8760	0.9715	0.8745	0.1574	0.8964	0.9760	0.9174	9.2103	9.2103	92103	9.2103	0.0000	9.2103	00100		
	Modal MAPCS	0.6480	0.9985	0.8710	0.9830	0.87E:	0.1617	10.8978	0.9760	0.9403	10000	1.0000	1.0000	1.0000	0.0000	1.0000	0.1000		
	Median MAPCS	0.6480	0.9985	0.8710	0.9830	0.8751	0.1617	0.8973	0.9760	0.9403	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.1000		

[^23]Table 5.6a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size $\mathbf{2 0}$ for Design 5.6 together with relative penalty values and input values of SAO technique.

Type of penalty	Criteria	Average probabilities of correct selection of modes						Relative penalties:			Input values for simulated annealing								
								Starting values of penalties	Boundaries		$7 \mathrm{RF}{ }^{\text {T- }}$								
		M9	M_{16}	M_{11}		Mcan	SD				$P_{i l}$	$P_{i j}$	$P_{i l}$	S\%	s_{10}	s_{u}	S_{12}	LB	Lb
Additive: Existing criteria (Type :)	All are same	0.4295	0.6030	0.4520	0.4030	0.4869	0.0787	0.0000	0.0000	0.0000									
Additive: Using loglikelihood with SAO technique (Type 2)	Largest MAPCS	0.8290	0.2640	0.5340	0.6330	0.5650	0.2351	1.6520	0.6531	0.5078	00000	0.0000	0.0000	0.0000	. 4.0000	4.0000	0.1000		
	Smallest SD of APC'S	0.8275	0.3400	0.4970	0.5915	0.5640	0.2040	1.2607	0.7286	0.5748	0.0000	10000	1.0000	20000	-10.0000	10.0000	0.0100		
	Modal MAPCS	0.8290	0.2640	0.5340	0.6330	0.5650	0.2351	16520	0.6531	0.5078	0.0000	0.0000	0.0000	0.0000	-4.0000	4.0000	0.1000		
	Median MAPCS	0.8265	0.2580	0.5360	0.6390	0.5649	0.2373	1.6989	0.6420	0.4884	0.0000	1.0000	1.0000	20000	. 10.0000	10.0000	0.0010		
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	0.8290	0.2640	0.5340	0.6330	0.5650	0.2351	1.7796	1.0675	1.0521	1.0000	2.0000	2.0000	30000	0.0000	10.0000	0.1000		
	Smallest SD of APCS	0.8370	0.3280	0.5140	0.5775	0.5641	0.2105	1.1434	10755	10657	1.0000	10000	1.0000	1.0000	0.0000	10.0000	0.0010		
	$\begin{aligned} & \text { Modal } \\ & \text { MAPCS } \\ & \hline \end{aligned}$	C. 8290	0.2640	0.5340	0.6330	0.5650	0.2351	1.1796	1.0675	1.0521	1.0000	2.0000	2.0000	3.0000	0.0000	10.0000	0.1000		
	Median MAPCS	0.8265	0.2580	0.5360	0.6390	0.5649	0.2373	1.185	1.0663	1.0500	5.9915	59915	5.9915	5.9915	00000	11.9829	0.0010		

* Additive penalty for model M_{0} is zero and multiplicative penalty for mokiel M_{4} is one
** TRF Temperaturr reduction factor

Table 5.6b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 50 for Design 5.6 together with relative penalty values and input values of SAO technique.

Type of penalty	Criteria	A verage probabilities of correct selection of model						Relative penalties			Input values for simulated annealing								
								Starting values of penalties	Boundaries		TRF ${ }^{\text {T }}$								
		. H_{0}	M_{10}	M_{1}	M_{12}	Mca:	SD				P_{10}	P_{u}	P_{12}	S_{9}	510	S_{11}	S_{12}	LB	UB
Additive: Existing criteria (Type 1)	All are same	0.5360	0.6960	0.5555	0.5520	0.5849	0.0746	0.0000	0.0000	0.0000									
Ad Us !!k	Largest MAPCS	0.8325	0.4160	0.5895	0.7950	0.6583	0.1936	1.3174	0.5771	0.1042	0.0000	00000	00000	0.0000	4.40000	4.0000	0.1000		
	Smallest SD of APCS	0.8285	0.4225	0.5925	0.7855	0.6573	01871	1.2521	05440	0.1041	5.8680	5.8680	5.8680	5.8680	-10.0000	10.0000	0.0010		
	Modal MAPCS	0.8340	0.4180	0.5835	0.7965	0.6580	0.1943	1.3200	0.6113	0.1041	0.0000	00000	0.0000	0.0000	-16.0000	16.0000	0.0010		
	Median MAPCS	0.8340	0.4180	0.5835	0.7965	0.6580	0.1943	1.3200	0.6113	0.1041	0.0000	0.0000	0.0000	0.0000	-16.0000	16.0000	0.0010		
Multiplicative: Using mean squared error with SAO technique (Type 3)	!argest MAPCS	0.8325	0.4160	0.5895	0.7950	0.6583	01936	$1 \overline{0541}$	1.0233	1.0042	8.0000	2.0000	2.0000	3.0000	0.0000	10.0000	01000		
	Smallest SD of APCS	0.7900	0.4450	0.6430	0.7395	0.6544	0.1523	10404	1.0113	1.0042	10000	1.0000	1.0000	1.0000	0.0000	16.0000	0.0100		
	Modal MAPCS	0.8325	0.4160	0.5895	0.7950	0.6583	0.1936	10541	10233	1.0042	10000	2.0000	2.0000	3.0000	0.0000	10.0000	0.1000		
	Median MAPCS	0.8325	0.4960	0.5895	0.7950	0.6583	0.1936	14541	1.0233	10042	1.0000	2.0000	2.0000	3.0000	0.0000	10.0000	0.1000		

* Additive penalty for model M_{9} is zero and multiplicative penaliy for model M_{9} is one
** TRF Temperature reduction factor

Table 5.6c Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models for sample size 100 for Design 5.6 together with relative penalty values and input values of SAO technique.

Type of penalty	Criteria	A verage probabilities of correct selection of model						Relative penalties*			Input values for simulated annealing								
								Starting values of penalities	Boundaries		TRF*								
		M_{9}	M_{10}	$M_{1 /}$	M_{2}	Mean	SD				P_{10}	$P_{i 1}$	P_{12}	S_{9}	S_{10}	S_{11}	S_{12}	LB	UB
Additive: Existing criteria (Type 1)	All are same	0.6290	0.7505	0.6785	0.6565	0.6786	0.0520	0.0000	0.0000	0.0000									
Additive: Using loglikelihood with SAOt: rnique (Type 2,	Largest MAPCS	0.9270	0.5510	0.7080	0.7890	0.7438	0.1571	1.4753	0.8747	0.6798	0.0000	0.0000	0.0000	0.0000	0.0000	10.0000	0.1000		
	Smallest SD of APCS	0.8945	0.5670	0.7345	0.7760	0.7430	0.1355	- .1706	05862	0.4886	0.0000	0.0000	0.0000	0.0000	0.0000	4.0000	0.0100		
	Modal MAPCS	0.9270	0.5510	0.7080	0.7890	0.7438	0.1571	1.4753	0.8747	0.6798	0.0000	0.0000	0.0000	0.0000	i).0000	10.0000	0.1000		
	Median MAPCS	0.9005	0.5090	0.7440	0.8200	0.7434	0.1688	1.5228	0.5904	0.4183	0.0000	0.0000	0.0000	0.0000	0.0000	16.0000	0.1000		
Multiplicative: Using mean squared error with SAO technique (Type 3)	Largest MAPCS	0.9270	0.5510	0.7080	0.7890	0.7438	0.1571	1.0300	1.0177	1.0137	1.0000	1.0000	1.0000	1.0000	0.0000	10.0000	0.1000		
	Smallest SD of APCS	0.8935	0.5670	0.7350	0.7765	0.7430	0.1352	1.0235	1.0116	1.0097	9.2103	9.2103	9.2103	9.2133	0.0000	18.4207	0.0100		
	Modal MAPCS	0.8990	0.5085	0.7445	0.8210	0.7432	0.1687	1.0308	1.0115	1.0082	1.0000	1.0000	1.0000	1.0000	0.0000	10.0000	0.0001		
	Median MAPCS	0.8990	0.5085	0.7445	0.8210	07432	0.1687	1.0308	10116	1.0082	1.0000	1.0000	1.0000	1.0000	0.0000	10.0000	0.0001		

[^24]
CHAPTER 6

EQUAL PROBABILITIES OF CORRECT SELECTION: A CONSTRAINED MINIMISATION OF VARIATION AMONG 1 HE AVERAGE PROBABILITIES OF CORRECT SELECTION

6.1 INTRODUCTION

In the previous three chapters, we mainly concentrated on the maximisation of the mean average probablity of correct selection (MAPCS), using our proposed technique used in Chapter 3 and the SAO technique used in Chapter 4 and Chapter 5. In Chapter 3, we presented the generaliased form of the penally function of six existing IC and a technique of maximisation of the MAPCS. In Chapter 4 and Chapter 5, we presented two different types of penalties: additive penalties with maximised log-likelihood and multiplicative penalties with mean squared error: and applied the SAO technique to maximise the MAPCS. We conducted several simulation experiments with different sets of data and competing models to evaluate the performance of both types of penalties with the SAO technique. It was observer. that the MAPCS obtaines from these techniques were alway; Migher the n those of the existing criteria. Unfortunately like the existing criteria, the average probabilities of correct selection (APCS) for each model are uneven across differc.at models for both
types of penalties, sithough in some cases the variation umong the APCS is much less than that of existing criteria. But a desirable property of a good model selection procedure should be that it selects the best model without favouring one model over the others. i.e the APCS of each competing model when it is the true model should be equal. Our goal is to choose the penalty in such a way that none of the competing models is favoured over the others unknowing'y. In the titerature, this technique is called controlling the probabilities of correct selection. (see for example King et al. (1995) and Forbes et al. (1995)). This chapter is concerned with controlling the APCS in linear regression settings.

Forbes a al. (1995) proposed three teciniques for controllng the probability of correct selection of one model over the others. They showed that for the variable selection problem. the relative penally of any two competing models can be expressed as a function of the percentile of the F distriintion and they called this penalty function FIC. Their second method is also for variable selection purposes and is based on quasi-maximum likelihood functions. They showed that in this case the penalty function could be expressed approximately as a function of a χ_{1}^{2} andom varsable. Their thind method gives the penalties that aim to control the probability of correct sel ction but are approximate penalties for general model selection problems.

The problem with using the above methods is that the penalty function is fixed (function of F distribution or χ_{i}^{2} distribution) for a particular saraple size and
number of free parameters. and the form of log-likelihood function has no impact on its value. Also. when the models are equi-dimensional, the impact of these penalties in selecting the true model is null. King et al. (1995) proposed two approaches for controiling the probability of correct selection (PCS) of models and gave an algorithm for calculating the penalties, which control the PCS. Their first approach is based on the idea of a common model, but there are two problems with this approach. Firstly, there may not be a common model among the competing models. Secondly. when the competing models are nested, then there is no fixed rule for seting the selection probabilities and it is left to the user"s arbitrary choice. Obviously different users may then come to different conclusions for the same data set and set of competing models. Their second method is based on a representative fixed points approach. They proposed two techniques for selecting representative fixed point models. Their first technique entirely depends on the judgement of the user, while the second technique depends on the idea of a common model. which may not exist in all situations. They argued that it is possible to control probabilities of correct selection, though their approach has some limitations as mentioned earlier. Our objective in this chapter is to develop a technique of selecting the true model by controlling the APCS in such a way that each competing model has an equal chance on average of being selected.

The organisation of this chapter is as follows. In Section 6.2 we discuss the issue of making the APCS equal and propose a new method of selecting penalties which
makes the APCS equal when the number of parameters in the competing models are unequal and equal. Section 6.3 contar: the descriptions of the Monte Carlo experiments and results of these experiments when competing models have an unequal number of parameters. Section 6.4 contains the description of the simulation experiments and the results of these experimerts when competing models are equidimensional. The final section contains some concluding remarks.

6.2 PROPOSED METHOD OF MINIMISATION OF VARIATION AMONG THE APCS

In this section we propose a method of choosing the penalties in an IC based model selection procedure so that the variation among the APCS of each model is as small as possible. Theoretically, our main objective is to make the APCS of each model equal and it will happen if the variation among the APCS of modiels is zero. Numerically if the variation among the APCS of each model is close to zero, it may be believed that the estimated APCS of the models are nearly equal.

As noted in the previous chapter, in almost all IC based model selection procedures, the $j^{\text {th }}$ model will be selected if

$$
\left(L_{i}\left(\hat{\beta}_{j}, \hat{\sigma}_{j}^{2}\right)-p_{j}\right)>\left(L_{1}\left(\hat{\beta}_{1}, \hat{\sigma}_{1}^{2}\right)-p_{1}\right) . \forall i, i=1.2, \ldots .(j-1) .(j+1), \ldots, m,(6.1)
$$

or,

$$
\begin{equation*}
E_{j}^{2} \dot{q}_{j}<E_{1}^{2} \dot{q}_{i}, \forall i, i=1,2, \ldots,(j-1),(j+1), \ldots, m, \tag{6.2}
\end{equation*}
$$

where p_{j} is the additive penalty. $L,\left(\hat{\beta}_{1}, \hat{\sigma}_{f}^{2}\right)$ is the maximised log-likelihood function, $\hat{\beta}$, and $\hat{\sigma}_{i}^{2}$ are the maximum likelihood estimators of β_{1} and σ_{i}^{2}. respectively. \dot{q}_{i}^{*} is the multiplicative penalty and E_{i}^{2} is the mean squared error for the $j^{\text {th }}$ model.

In equation (6.1), $L_{i}\left(\hat{\beta}_{1}, \hat{\sigma}_{i}^{*}\right), \forall j, j=1,2, \ldots m$, and in (6.2), $E_{i}^{z}, \forall j, j=1.2 \ldots, m$, is known. Our main objective is to find the penalties p_{1} and $q_{j}^{*}, \forall j, j=1,2, \ldots, m$. in such a way that the average probabilities of correctly choosing the $j^{\text {t/ }}$ model and the $i^{\text {th }}$ models are equal. i.e.

APCS of the $j^{\text {th }}$ model $=\operatorname{APCS}$ of the $i^{\text {th }}$ model. $\forall j \neq i, i, j=1,2 \ldots, m$. (6.3) or approximately equal, i.e.
APCS of the $j^{\text {it }}$ model $=\operatorname{APCS}$ of the $i^{\text {th }}$ model. $\forall j \neq i, i, j=1,2 \ldots, m$ (6.4)

In other words, equation (6.3) will be true if the variation among the APCS of the $j^{\text {th }}$ model, $\forall j, j=1,2 \ldots, m$, is zero and (6.4) will be true if the variation among the APCS of the $j^{\text {th }}$ model, $\forall j, j=1,2 \ldots, m$, is clese to zero. The literature on model selection shows that for an IC based model selection procedure, none of the existing penalties can satisfy these equations. This is because some IC favour the model with the smallest number of parameters, while others favour the model with the largest number of parameters, as a result the APCS of different models are uneven in all
situations. For example. BIC always favours ite model with the smallest number of parameters. while RBAR favours the model with the largest number of parameters. Also from our simulation studies, it is apparent that the APCS of different models obtained from the existing criteria are far from equal. The MAPCS obtained from our proposed additive and multiplicative penalities with the SAO techrique in Chapter 4 and Chapter 5 are higher than those of the existing criteria. But the APCS of models are generally unequal. though in some cases the variation among the APCS of different models is much less compared to that for the existing 1 C . So. in onder to select the true model withoul favouring one model over the others. we need a set of penalties which satisfy equation (6.3) ideally or (6.4) to a reasonable extent. We used standard deviation (SD) among the APCS of the models as a measure of variation and applied the SAO tochnique to find penahties for a particular data set and set of competing models with the objective that the SD among the APCS of the models be the minimum.

The APCS when the the $j^{t h}$ model. M_{i}. is true, is deffined in Chipter 3 as

$$
\mathrm{APCS}_{j}=\underset{\theta_{l}}{\mathrm{E}}\left[\mathrm{P}\left(\operatorname{CS} \mid M_{1}, \theta_{j}\right)\right]=\int \psi\left(\theta_{1}\right) g\left(\theta_{1}\right) d \theta_{1}, j=1,2, \ldots, m,
$$

where $g\left(\theta_{1}\right)$ is the weighting density function of the vector of parameters $\theta_{,}$. Thus the mean of the average probability of correct selection will be

$$
\mathrm{MAPCS}=\frac{\sum_{j=1}^{m,} \mathrm{E}_{,}\left[\mathrm{P}\left(\mathrm{CS} \mid M_{j}, \theta_{j}\right)\right]}{m}=\frac{\sum_{i=1}^{m} \mathrm{APCS},}{m} .
$$

Then the standard deviation (SD) among the $\operatorname{APCS}_{,}, j=1.2 \ldots . m$. can be written as

$$
\mathrm{SD}(\mathrm{APCS})=\mathrm{E}(\mathrm{APCS}-\mathrm{MAPCS})^{:}=\frac{\sum_{1=1}^{m}(\mathrm{APCS}-\mathrm{MAPCS})^{\circ}}{m} .
$$

which is our objective function to be minimised. In Chapier 3 we explained how APCS can be estimated using the Monte Carlo method with the objective that MAPCS is maximised. Here we apply the same technique but instead of maximising the MAPCS here we minimised the SD(APCS) among the APCS.

We used additive penalties with maximised log-likelihood functions and multiplicative penalies with mean squared error to compute penalties for a particular data set, which satisfy equation (6.3) or (6.4).

6.3 MINIMISATION OF VARIATION AMONG THE APCS FOR MODELS OF UNEQUAL NUMBER OF PARAMETERS

In this section, we have applied the method of minimisation of variation among the APCS. discussed in Section 6.2 with the models of an unequal number of parameters in the competing models in a linear regression setting. The purpose of this section is to evaluate the performance of the method proposed in Section 6.2 over the existing IC and the methods of maximising MAPCS discussed in the Section 4.2 and 4.3. We conducted simulation experiments to provide numerical evidence of the performance of the proposed method, and to compare this method with the existing IC and the
methods discussed in Chapter 4. The designs for our simulation experiments are discussed in Section 6.3.1. In Section 6.3.2 we compare the simulation results of this proposed method with the results for the existing IC and the methods discussed in the Section 4.2 and 4.3.

6.3.1 The designs of the monte carlo simllation experiments

Simulation experiments were conducted to evaluate the performance of the technique of minimisation of variation among the APCS with the models of an unequal number of parameters. The same designs used in Section 4.4 were used for the present simulation experiments. The models used for the present study are also the same models used in Chapter 3. The same data gencrating process discussed in Section 3.3.1 was also employed here. The initial parameter sets for the SAO technique for this chapter are the same initial parameter sets used with the additive and multiplicative penalties in Chapter 4. The main reason for using the same models. designs. data generating process and initial parameter valucs is to compare the results of these simulation experiments with the simulation results of the methods discussed in Chapter 4.

6.3.2 RESULTS OF THE MONTE CARLO EXPERIMENTS

The results of the simulation experiments are presented in two series of tables, Tables 6.1a to 6.6 a and Tables 6.1 b to 6.6 b . Each table represents three methods of computing penalties. These are: method 1, existing IC: method 2, maximistion of

MAPCS: and method 3. minimisation of standard deviation (SD) among the APCS. We called the penalties of method 1. Type 1 penattes. In method 2. we have two types of penalties, the additive penalty with maximised log-Whelihood, and the multiplicative penalty with mean squared error. In Chapter 4, we called these penalties Type 2 and Type 3 penaltues. respectively. In method 3. we also have two types of penatties. additive penalties with maximised log-fikehhood functions, and multiplicative penalties with mean squared error. Let us call these penalties Type 4 and Type 5 penalties, respectively. In Table 6.1a to 6.6a. we presented the largest MAPCS obtained using the above mentioned five types of penaities and. in Tables 6.1b to 6.6 b, we presented the MAPCS corresponding to the smallest variation among the APCS obtained using Type 1 to Type 5 penalues. Comparative studnes of Type 1 and Type 2 penalties, Type 1 and Type ? penalties, and Type 2 and Type ? penaties were given in Sections 4.5.1, 4.5.2 and 4.5.3 of Chapter 4, respectively Simulation results show that MACPS obtained using method 2 (Type 2 and Type 3 penaltics) are always large with high variation among the APCS, as compared to method 3 (Type 4 and Type 5 penalies). Therefore here we will present a comparative study of Type 1 and Type 4 penalties. Type 1 and Type 5 penalties, and Type 4 and Type 5 penalties.

6.3.2.1 COMPARISON OF TYPE 1 and TYPE 4 PENALTIES

The largest MAPCS obtained from Type 1 to Type 5 penalties along with APCS, standard deviation (SD) among the APCS and the penalties for Designs 4.1 to 4.6 are
presented in Table 6.1a to 6.6 a . Tables 6.1 b to 6.6 b contain the APCS and MAPCS with the smallest variation among the APCS along with SD and penalties obtained from Type I to Type 5 penalties for Designs 4.1 to 4.6. respectively.

The simulation results show that, in six out of 18 experiments (six designs times three sample sizes). the largest MAPCS obtained from Type 4 penalties is larger than those of BIC the largest MAPCS among the existing criteria for all designs and sample sizes). The mean. maximum and minimum gain of the MAPCS from these six experiments over BIC are 5.7. 9.2 and 2.7 percent, respectively (Table 6.1a-6.6b). In the remaining 12 experiments, the largest MAPCS are less than those of BIC and the mean, maximum and minimum loss from these 12 experiments over BIC are 6.0. 12.8 and 0.6 percent. respectively. It is well established that BIC always favours models with a smaller number of parameters. so the APCS of the model with the largest number of parameters is generally much less compared to the APCS of the model with the smallest number of parameters. Consequently the variation among the APCS is high for BIC and in all designs and sample sizes the variation among the APCS obtained from Type 4 penalties is smaller than that of BIC. There are eight experiments, where there is no variability among the APCS obtained from Type 4 penalties, i.e. the APCS of the models are exactly equal.

Simulation results show that in 72 percent (13 out of 18) experiments, the MAPCS corresponding to the smallest variation among the APCS obtained from using Type 4
penalties are higher than those of the MAPCS with the smallest variation among the APCS of the existing IC. In the other experiments. the numericall values of APCS are very close to those of the existing IC (Tables $6.1 \mathrm{~b}-6.6 \mathrm{~b}$) with the smallest variation among the APCS. Among the existing criteria. RBAR and AIC are the dominant criteria. which produce the smallest variation among the APCS. RBAR produces the lowest variation among the APCS in eight experiments, while AIC produces the Ic west variation among the APCS in seven experiments. Among the existing IC. there is no experiment where the variation among the APCS is zero, i.e. in the existing criteria there are no experiments which produce equal APCS. But in 89 percent (16 out of 18) of the experiments with a Type 4 penalty, the variation among the APCS is zero, i.e the APCS of the competing models are equal.

It is observed from the simulation results that the largest MAPCS obtained from the existing IC are generally larger than those of the MAPCS corresponding to the smallest variation among the APCS obtained from Type 4 penalties. But there are three experiments with Type 4 penalties, where the MAPCS corresponding to the smallest variation among the APCS is higher than those of the largest MAPCS obtcined from the existing IC (here that of BIC). But in most of the experiments the variation among the APCS is zero or very close to zero, when we consider the MAPCS corresponding to the smallest variation among the APCS with Type 4 penaltics. This means that the APCS obtained using the smallest variation among the APCS with Type 4 penalties are equal. The average, maximum and minimum gains
of MAPCS corresponding to the smallest variation among the APCS with Type 4 penalties over BIC from these three experiments are 3.7. 6.9 and $1 ;$ percent. respectively. The mean maximum and minimum josses of MAFCS from the remaining 15 experments over BIC are 6.6.12.0 and 1.2 percent. respectively. This implies that. if we use the MAPCS corresponding to the smallest variation among the APCS with a Type 4 penalty to select the true model. then on average there is a chance of losing approximately six percent in MAPCS compared to the largest MAPCS among the existing IC. But the hig gain of using this technique is that none of the models is unduly favoured and the APCS of models is equal, i.e. there is no variation among the APCS of the competing models.

6.3.2.2 COMPARISON OF TYPE 1 and TYPE 5 PENAITIES

The MAPCS obtained from Type 5 penalties are also presented in Tables 6.1a-6.6a and Tables $6.1 \mathrm{~b}-6.6 \mathrm{~b}$. From the simulation experiments, it is observed that in seven out of 18 experiments the largest MAPCS ohtained using Type 5 penalties are larger than those of the largest MAPCS from the existing criteria (here that of BIC). The mean, maximum and minimum gain of MAPCS obtained from using Type 5 penalties from these seven experiments over BIC are 5.2, 9.1 and 1.2 percent and the losses of MAPCS obtained from using Type 5 penalties from the remaining eleven experiments over BIC are 5.7, 11.6 and 1.0 percent, respectively. But in all experiments, the variations among the APCS obtained from Type 5 penallies are smaller than the vatiations among the APCS obtained from using BIC. It was

Chapter 6

observed in the previous section that all of the existing criteria produce some variation in APCS. But there are five experiments with Type 5 penalties, where the variations among the APCS are close to zero. i.e. the APCS of the competing models are almost equal.

The simulation results demonstrate that in 56 percent of the experiments (ten out of 18), the MAPCS corresponding to the smallest variation among the APCS ohtained from Type 5 penalties are higher than those of the MAPCS with the smallest variation among the APCS of the existung criteria. As noted in the previous section. among the existing criteria. RBAR and AIC produce the smallest variation among the APCS in 44 and 39 percent of the experiments. respectively. In 67 percent of the experiments (12 out of 18), it is observed that there is no variation among the APCS. i.e. APCS are equal, when we used Type 5 penalties and the smallest variation among the APCS. But for the existing criteria. none of the experiments produces equal APCS.

The simulation results demonstrate that the largest MAPCS obtained from the existing IC are generally larger than those of the MAPCS obtained using Type 5 penalties. But in three experiments, the largest MAPCS obtained from Type 1 penaities are smaller than the MAPCS corresponding to the smallest variation among the APCS obtained from using Type 5 penalties. The average, maximum and minimum gains of MAPCS from these three experiments over BlC (the largest

MAPCS among the existing IC) are 3.5. 7.0 and 1.2 percent. respectively. The mean. maximum and minimum losses of MAPCS obtained from using Type 5 penalties from the remaining 15 experiments are 6.1, 12.0 and 1.2 percent. respectively. But in all experiments, the smallest variations among the APCS obtained from using Type 5 penalties are zero or close to zero. implying that the APCS are equal or close to equal.

6.3.2.3 Comparison of type 4 and type 5 penalties

From the simulation results we preserited in Section 6.3.2.2, it is apparent that the largest MAPCS oblained using Type 4 and Type 5 penalties are very similar for all designs and sample sizes. However. there are some exceptions where Type 5 penalties produced marginally higher MAPCS than those of Type 4 penalties. In fourteen out of 18 experiments (three sample sizes across six designs), the variations among the APCS are higher when using Type 5 penalties compared to using Type 4 penalties, when we consider the largest MAPCS. But in 17 out of 18 experiments, the variation among the APCS obtained from using Type 5 penalties is lower than that obtained from the largest MAPCS of the existing criteria. The differences of variation between Type 1 and Type 5 penalties are larger than those of Type 1 and Type 4 penalties as the variation among APCS obtained from using Type 5 penalties is higher than that when using Type 4 penalties.

In 67 percent of the experiments (twelve out of 18). the MAPCS corresponding to the smallest variation among the APCS of competing models obtained using Type 5 penalties are the same as those obtained from using Type 4 penalties. In other experiments, the MAPCS obtained from using Type 5 penalties are very similar to those obtained from using Type 4 penalties.

6.4 MINIMISATION OF VARIATION AMONG THE APCS FOR MODELS OF EQUAL NUMBER OF PARAMETERS

In Section 6.3, we discussed the issue of minimisation of variation among the APCS of the models, when the competing models have an unequal number of parameters. In this section. we investigate the special case of an equal number of parameters among the competing models. We consider this special case because for the existing $\mathbf{I C}$, when the competing models have the same number of parameters. there is no need to use any penalty because the pen lities cancel out. Thus, the problem reduces to selecting the modet with the largest maximised log-likelihood because all existing penalty functions are a function of sample size and number of free parameters. In Chapter 5, we have shown that the application of the SAO technique with two different types of penaltics (additive with maximised log-likelihood and multiplicative with mean squared error) has a great effect on selecting the true model with higher MAPCS, when the competing models have an equal number of parameters. It is also shown that the penalties which maximise the MAPCS are not zero although the competing models have the same number of parameters. But like
the existing criteria. the APCS of modcls obtained using the SAO technique with these penalties are not equal and sometimes far from equal. So here we apply the idea of Section 6.2 to find the MAPCS with the objective that the variation among the APCS is as small as possible; essentially, our goal is to make the variation zero or close to zero. We apply the SAO technique to find the penalties in such a way that the SD among the APCS is the minimum. We compare these results with those obtained using the methods discussed in Sections 4.2 and 4.3. and the existing cited criteria are presented in Section 5.3 of Chapter 5.

The plan of this section is as follows. In Section 6.4.1, we discuss the design on the simulation experiments, while the simulation results are reported in Section 6.4.2.

6.4.1 THE DESIGNS OF THE MONTE CARLO SIMULATION EXPERIMENTS

The purpose of the simulation experiments of this section is to evaluate the performance of the technique discussed in Section 6.2. when the competing models häve the same number of parameters to be estimated. The same designs used in Chapter 5 are used here to compute the MAPCS with the objective of minimisation of SD among the APCS. We used the same models. data generating processes and the initial parameter values for the SAO technique used in Chapter 5 for our present study. The rcason for keeping everything the same for the simulation experiments, is to compare the results of these experiments with those obtained using the methods discussed in Chapter 5.

6.4.2 RESLLTS OF THE MONTE CARLO EXPLRIMENTS

Like Section 6.3. this section also contains two series of tables. The series "a contain the largest MAPCS obtained using Type 1 to Type 5 penalties, while series ' b ' contain the MAPCS corresponding to the smallest variation among the APCS obtained using Type 1 to Type 5 penalties. The results of these experiments are presented in Tables 6.7 a to 6.12 a and Tables 6.7 b to 6.12 b . respectively. In each table, there are three methods and five penalty types as mentioned in Section 6.32. A comparative study of Type 1 and Type 2 penalties. Type 1 and Type 3 penathes. and Type 2 and Type 3 penalties was given in Sections 5.3.1. 5.3.2 and 5.3.3. respectively. Simulation results show that MACPS obtained using Type 4 and Type 5 penalties are always smaller with zero or close to zero variation among the APCS compared to Type 2 and Type 3 penalties, respectively. Therefore, in this section we will present the comparative study of Type 1 and Type 4 penaltes. Type 1 and $\mathrm{T}_{\text {ype }}$ 5 penalties, and Type 4 and Type 5 penalties.

6.4.2.1 COMPARISON OF TYPE 1 AND TYPE 4 PENAITIES

In this section, our concern is with competing models with an equal number of parameters in linear regression settings. As mentioned earlier, in this situation the MAPCS and APCS obtained from all the existing IC are the same and the relative penalties are zero. But the MAPCS with minimum SD among the APCS obtained from using Type 4 penalties are different: and relative penalties are different from zero in all designs and sample sizes. We mentioned earlier that the MAPCS obtained
using Type 2 and Type 3 penalties are always higher than those obtained from using Type 1 penalties. i.e. from the existing IC with sometimes higher variation among the APCS compared to Type I penalties. Here the MAPCS obtained from using Type 4 penalties are also always higher than those for Type 1 penalties for all designs and sample sizes and with smaller vartation among the APCS. But the MAPCS obtained from using Type 4 penalties are always less than those of Type 2 penalties with less variation among the APCS. and in most cases the variation among the APCS are zero or close to zero. which implies that the APCS of different competing models are equal.

For Design 5.1, in respect to all sample sizes and combinations of initial parameters, the M.APCS obtained from Type 4 penalties are always higher than those of Type 1 penatics with less variation among the APCS compared to the existing criteria (Table 6.7a). The largest MAPCS obtained from using Type 4 penalties are 9.7. 13.1 and 15.1 percent higher than those of existing 1 C with 33.6 .44 .8 and 54.5 percent less variability among the APCS for the sample sizes 20.50 and 100, respectively. We mentioned earlier that all existing criteria are the same when selecting from the competing models that have the same number of parameters, so the largest MAPCS obtained from the existing 1 C , is the same as that obtained with the smallest variation among the APCS. For $n=20,50$ and 100, the MAPCS with the smallest variation among the APCS obtained using Type 4 penalties are 6.4, 9.2 and 12.4 percent higher than those of the existing criteria with $45.5,54.5$ and 59.6 percent less variability
among the APCS (Table 6.7b). The gaps between the largest MAPCS and smallest MAPCS obtained from using Type 4 penalties are small and the smallest MAPCS is always higher than that of the existing 1 C . For $n=20,50$ and 100 , the smallest MAPCS obtained using Type 4 penalties are 6.4, 9.2 and 12.4 percent higher than those of the existing IC with 45.5. 54.1 and 59.6 less varrability ationg the APCS. respectively.

For Design 5.2, the largest MAPCS obtained from using Type 4 penalties are 3.2, 3.1 and 2.9 percent higher with 99.7. 96.0 and 87.8 percent smaller variation among the APCS than those of existing criteria for sample sizes 20, 50 and 100. respectively (Table 6.8a). For $n=20.50$ and 100, the MAPCS with the smallest variation among the APCS ohtained using Type 4 penalties are 4.0.3.0 and 2.2 percent higher than those of the existing criteria, respectively (Table 6.8b). For all sample sizes, there is no variation among the APCS. which implies that the APCS of the different models are exactly equal. The MAPCS obtained from using Type 2 penaties and Type 3 penalties are very close to those obtained from using Type 4 penalties. The smallest MAPCS obtained using Type 4 penalties are 3.1, 3.0 and 1.5 percent higher than those obtained from the existing criteria with no variation among the APCS for sample sizes 20, 50 and 100 , respectively.

For Design 5.3, the largest MAPCS obtained using Type 4 penalties for the sample sizes 20,50 and 100 are 14.0, 6.9 and 6.1 percent higher than those of the existing
criteria. with $63.3,82.1$ and 77.2 percent less variability among the APCS than those of the existing criteria. respectively (Table 6.9a). It is interesting to note that for all sample sizes. the MAPCS obtained using Type 2 and Type 3 penalties are higher than those obtained from using the existing criteria and are very close to those obtained from using Type 4 penalties. But the variation among the APCS for Type 2 penalties and Type 3 penalties are higher than those obtained from Type 1 penalties, and even higher than those obtained from using Type 4 penalties. The MAPCS with the smallest variation among the APCS obtained using Type 4 penalties are 10.6,5.8 and 4.0 percent higher than those obtained from using Type 4 penalties for $n=20.50$ and 100, respectively (Table 6.9b). The variation among the APCS obtained using Type 4 penalties is zero for $n=50$ and almost zero for the other two sample sizes. This implies that the APCS of the different models are equal. The MAPCS with the smallest variation among the APCS obtained from using Type 2 and Type 3 penalties are higher than those obtained from the existing criteria and close to those obtained from using Type 4 penalties. But the variations among the APCS obtained using Type 2 penalties and Type 3 penalties are always higher than those obtained from using the existing criteria and are much higher than that obtained from using Type 4 penalties. In this design there are 13.55, 8.93 and 29.8 percent of the cases where MAPCS is less than that of the existing criteria for $n=20.50$ and 100 , respectively,

For Design 5.4, the largest MAPCS obtained using Type 4 penalties are 4.6, 5.9 and 7.0 percent higher than those obtained from the existing criteria (Table 6.11a). The

Chapter 6

variability among the APCS obtained from using Type 4 penalties are almost zero for $n=20$ and 50 . and 74.5 percent less than that of the existing criteria for the sample size 100 . The largest MAPCS with the smallest variation among the APCS obtained using Type 4 penalties are 4.5, 5.8 and 6.4 percent higher than those obtained from the existing criteria (Table 6.10b). The variations among the APCS obtained using Type 4 penalties are zero for all sample sizes. which indicates the APCS of the different models are exactly equal. The MAPCS with smallest variation obtained using Type 2 penalties and Type 3 penalties are higher than those obtained from the existing criteria and are marginally higher than those obtained from using Type 4 penalties. But the vatiation among the APCS is the least for Type 4 penalties compared to Type 2 penalties. Type 3 penalties and the existing criteria. The smallest MAPCS obtained using Type 4 penalties are 4.4. 5.8 and 6.0 percent higher than those obtained using the existing criteria with $99.6,100$ and 94.8 percent less variation among the APCS for sample sizes 20, 50 and 100 . respectively.

For Design 5.5, the largest MAPCS and the MAPCS corresponding to the smallest variation among the APCS obtained using Type 4 penalties are the same for all sample sizes and are 20.0, 29.1 and 35.6 percent higher than those obtained from the existing criteria for $n=20,50$ and 100 . respectively (Tables 6.11a and 6.11b). The variations among the APCS obtained using Type 4 penalties are equal to zero for all sample sizes, implying that the APCS of the models are equal. The MAPCS obtained using Type 2 penalties and Type 3 penalties are bigger than those obtained from
using Type 4 penalties. but the variation among the APCS obtained from using Type 2 penalties and Type 3 penalties are also large compared to those of Type 4 penalties. The smallest MAPCS obtained using Type 4 penalties are 20.0. 28.8 and 35.3 percent higher than those obtained using the existing criteria with 100.98 .2 and 98.9 percent less variation among the APCS for sample sizes 20.50 and 100 . respectively.

Like for Design 5.5, for Design 5.6. the largest MAPCS and the MAPCS with the smallest variation among the APCS obtained using Type 4 penalties are the same for all sample sizes, and are 6.7. 5.1 and 3.8 percent higher than those obtained from the existing criteria for $n=20,50$ and 100 . respectively (Table 6.12a, 6.12b). The variations among the APCS obtained using Type 4 penalties are equal to zero for all sample sizes, which implies that the APCS of the different models are equal. The MAPCS obtained using Type 2 and Type 3 penalties are larger than those obtained from using Type 4 penalties, but the variation among the APCS ohtained from Type 2 and Type 3 penalties are also large compared to those for Type 4 penalties. The smallest MAPCS obtained using Type 4 penalties are 6.7, 5.0 and 3.7 percent higher than those obtained using the existing criteria with $99.2,100,98.9$ percent less variation among the APCS for sample sizes 20,50 and 100 , respectively.

6.4.2.2 COMPARISON OF TYPE 4 and TYPE 5 PENALTIES

In this section, we compare the MAPCS and the variation among the APCS of models chosen using Type 4 penalties and Type 5 penalties. Simulation results
demonstrate that in 33 percent of the experiments. the largest MAPCS and the variation among the APCS of models chosen using Type 4 penalties and Type 5 penalties are exactly equal and in other experiments these values are very close (Tables 6.7 a to 6.12 b). In 67 percent of the experiments. the MAPCS obtained using the smallest variation among the APCS and the variation among the APCS are exactly equal and in the remaining experiments these values are very close. This means that there is no significant effect of the type of penalties on the estimated MAPCS of the model and the variation among the APCS of the competing models. So either of the penalty types can be used with the SAO technique to estimate the MAPCS to select the true model from a set of equi-dimensional competing alternative models.

6.4.2.3 COMPARISON OF TIPE 1 AND TYPF:5 PENALTLES

It is apparent from the results of Section 6.4.2.2 that the MAPCS and the vartaion among the APCS obtained using Type 4 and Type 5 penaltes are similar for almost all designs and sample sizes. So the comparison between Type 1 and Type 5 penalties is very similar to the comparison between Type 1 and Type 4 penalties given in Section 6.4.2.1.

6.5 CONCLUDY

 from a set of competing asi, mative modets of both unequal and equal numbers of

Abstract

parameters. in such a way that all competing models have an equal chance of being selected. Here we applied the SAO technique to find the penalties to select the correct model. with the objective that the variation among the APCS of the different models is as small as possible. We used SD among the APCS as a measure of variation and applied the SAO technique to find the minimum value of the SD, to determine the penalties to select the correct model.

The results of the simulation experiments for competing models with an unequal number of parameters show that in six out of 18 experiments. the MAPCS is on average 5.7 percent higher than the largest MAPCS obtained using the existing critria (here BIC), while for the remaining experiments, MAPCS is on average 6.0 percent lower compared to that of the existing criteria. But in all experiments the variation among the APCS fotained fiom Type 4 and Type 5 penalties are less than that of BIC.

In 13 out of 18 experiments, the MAPCS corresponding to the smallest variation among the APCS are higher than those obtained from the corresponding lowest variation among the APCS in the existing IC (here RBAR and AIC). From the results of the simulation experiments, it is evident that if the MAPCS corresponding to the smallest variation among the APCS is used to select the best model, then, on average MAPCS is approximately six percent lower than the largest MAPCS in the existing IC (here, that of BIC). Generally, for the existing criteria, the APCS of the competing
models are far from equal, but the APCS obtained using Type 4 and Type 5 penalties are often equal or close to equal, which is the best feature of this technique.

The simulation results demonstrate that for models with an equal number of parameters in 100 percent of the combinations of initial parameter values for the SAO technique. the MAPCS obtained from using Type 4 and Type 5 penalties are higher than those of the existing IC for als designs with an exception of Design 5.3. where these figures were on average 87 and 83 percent for Type 4 and Type 5 penalties, respectively. For all designs except for Design 5.3, and in 100 percent of the combinations of initial parameter values for the SAO technique, the variations among the APCS obtained from using Type 4 and Type 5 penalties are less than those obtained from the existing criteria. For Design 5.3. these figures are on average 92 and 88 percent for Type 4 and Type 5 penalties. respectively. There are three experiments with Type 4 penalties and four experiments with Type 5 penalties, where the APCS are equal in 100 percent of the combinations of initial parameter sets for the SAO technique.

It is apparent from the simulation results that for a particular sample size and design, the MAPCS obtained from the different combinations of initial parameter values for the SAO technique are very similar. in five out of six designs and for three different sample sizes, the MAPCS and variation among the APCS obtained using different initial parameter values are almost equal. This indicates that the MAFCS obtained
from using Type 4 and Type 5 penalties are generally insensitive to the initial parameter values of the SAO technique. From our simulation results. it may be concluded that the MAPCS obtained from Type 4 and Type 5 penalties will always be higher than those of the existing criteria with no variation among the APCS or variation among the APCS close to zero. This means that for equi-dimensional competing alternative models, the application of the SAO technique with Type 4 or Type 5 penalties is the best way of selecting the true model without favouring any of the competing models.

Table 6.1a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes $\mathbf{2 0 , 5 0}$ and $\mathbf{1 0 0}$ for Design 4.1 together with refative penalty values and input values of SAO technique.

Method	Penalty type	Average probabilities of correct selection of model						Relative penalties*			Input values for simulated annealing								
								Starting values of penalties	Bcundiries		TRF*'								
		M 1	M_{3}	M_{3} !	M	Mean	SD				P	P:	$P_{\text {s }}$	S	5	5.	S_{5}	LB	UB
Sample size $=20$																			
Existing IC	Type 1 (BIC)	0.8225	0.8815	0.1150	0.1345	0.4884	0.4206	1.4979	1.4979	2.9957									
Maximisation of MAPCS	Type 2	0.6245	0.5435	0.4550	0.5080	0.5328	0.0712	13.0759	0.4639	13.4040	0.0000	1.4979	1.4979	2.9957	- 12.0000	12.0000	0.0160		
	Type 3	0.6485	0.5400	0.4325	0.5120	0.5333	0.0893	3.1681	09959	3.0906	1.0000	1.0000	1.0000	1.0000	0.0000	3.0000	0.1000		
Minimisation of SD among APCS	Type 4	0.5300	0.5270	0.5300	0.5210	0.5270	0.0042	13.8227	0.3070	14.1300	0.0000	1.4979	1.4979	2.9957	-12.0000	12.0000	0.0001		
	Type 5	0.5315	0.5245	0.5320	0.5230	0.5278	0.0047	3.2600	0.9768	3.1741	1.0000	2.0000	2.0000	3.0000	0.0000	12.0000	0.1000		
Sample size $=50$																			
Existing IC Maximisatio MAPCS Minimisatio SD among APCS	Type 1 (BIC)	0.9260	0.9450	0.2840	0.0800	0.5587	0.4430	1.9560	1.9560	39120									
	Type 2	0.8770	0.5170	0.5935	0.5285	0.6290	0.1687	8.9402	1.2482	9.2081	0.0000	0.0000	0.0000	0.0000	0.0000	12.0000	0.1000		
	Type 3	0.8770	0.5290	0.5930	0.5145	0.6284	0.1692	1.6936	1.0293	1.6774	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.1000		
	Type 4	0.6765	0.5185	0.7185	0.5270	$0.610 ?$	0.1024		0.5157	9.5453				2.0000	0.0000	12.0000	0.0100		
	Type 5	0.6795	0.5280	0.7150	0.5155	0.6095	0.1025	1.1903	1.0001	1.1788	1.0000	2.0000	2.0000	3.0000	0.0000	16.0000	0.0100		
Sample size $=100$																			
Existing IC	Type 1 (BIC)	0.9495	0.9580	0.5190	~ 2095	0.6590	0.3631	2.3026	2.3026	4.6052									
Maximisation of MAPCS	Type 2	0.9340	0.7990	0.7380	- $4 \overline{535}$	0.7336	0.1978	15.2409	1.7396	16.0419	0.0000	0.0000	0.0000	0.0000	$\cdot 12.0000$	12.0000	0.1000		
	Type 3	0.9365	0.8040	0.7355	0.4570	0.7332	0.2022	1.2291	1.0257	1.2366	2.3026	46052	4.6052	6.9078	0.0000	23.0300	0.1000		
Minimisation of SD among APCS	Type 4	0.7515	0.6320	0.8375	0.5955	0704 !	0.1111	6.5959	0.6777	6.9833	0.0000	23026	2.3026	4.6052	- 10.0000	100000	0.0001		
	Type 5	0.7415	0.6305	0.8415	0.5980	0.7029	0.1110	1.3866	1.0031	1.3831	1.0000	2.0000	2.0000	3.0000	0.0000	12.0000	0.1000		

* Additive penalty for model M_{1} is zero and multiplicative penalty for model M_{i} is one
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error

Table 6.1b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the smallest variation among the average probabilities of correct selection of models under different methods for sample sizes 20,50 and 100 for Design 4.1 together with relative penalty values and input values of SAO technique.

Method	Penalty type	Average probabilities of correct selection of model						Relative penalties			Input values for simulated annealing								
								Starting values of penatios	Boundaries		TRF:								
		M_{1}	M_{2}	M_{3}	M_{3}	Mcan	SD				r P.	P_{3}	P_{5}	S_{1}	S_{3}	S_{3}	Ss	LB	UB
Sample size $=20$																			
Existing IC	Type 1 (RBAR)	0.4710	0.6790	0.2195	0.3695	0.4347	0.1928	0.5407	0.5407	1.123									
Maximisation of MAPCS	Type 2	0.5535	0.5440	0.4845	0.5080	0.5225	0.0320	2.6281	0.3685	2.9563	0.0000	1.0000	1.0000	2.0000	0.0000	3.0000	0.1000		
	Type 3	0.5845	0.5460	0.4940	0.5055	0.5325	0.0412	2.2897	0.9852	2.2352	1.0000	10000	1.0000	1.0000	0.0000	1.0000	0.1000		
Minimisation of SD among APCS	Type 4	0.5220	0.5220	0.5225	0.5220	0.5221	0.0002	3.7796	0.3072	4.0844	0.0000	1.0000	1.0000	2.0000	- 10.0000	10.000	0.0010		
	Type 5	0.5215	0.5235	0.5220	0.5240	0.5228	0.0012	1.3312	09768	1.2960	1.0000	1.0000	1.0000	1.0000	0.0000	10.0000	0.1000		
Sample size $=50$																			
Existing IC	Type 1 (RBAR)	0.5145	0.6660	0.3070	0.3660	0.4634	0.1608	0.5155	0.5155	1.0418									
Maximisation of	Type 2	0.7765	0.5180	0.6275	0.5275	0.6124	3.1201	2.6381	0.8357	2.9068	0.0000	0.0000	0.0000	0.0000	0.0000	3.0000	0.0100		
MAPCS	Type 3	0.8730	0.5290	0.5910	0.5145	0.6269	0.1674	1.1923	1.0294	1.1809	1.9560	3.9120	3.9120	5.8680	0.0000	19.5601	0.0010		
Minimisation of	Type 4	0.5225	05225	0.5225	0.5225	0.5225	0.0006	0.8311	0.4552	1.1052	0.0000	0.0000	0.0000	0.0000	0.0000	3.0000	0.1000		
$\begin{aligned} & \text { SD among } \\ & \text { APCS } \\ & \hline \end{aligned}$	Type 5	0.5205	0.5205	0.5205	0.5205	0.5205	0.0000	1.0126	0.9975	1.0025	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.1000		
Sample size $=100$																			
Existing IC	Type 1 (RBAR)	0.5380	0.6335	0.4825	0.5435	0.5644	0.0904	0.5076	0.5076	1.0204									
Maximisation of MAPCS	Type 2	0.8450	0.7530	0.7405	0.5040	0.7106	0.1454	2.3308	1.1201	2.9778	0.0000	0.0000	0.0000	0.0000	0.0000	3.0000	0.0010		
	Type 3	0.9365	0.7850	0.7355	0.4745	0.7329	0.1923	3.7588	1.0257	3.7764	2.3026	4.6052	4.6052	6.9078	0.0000	13.8155	0.0010		
Minimisation of SD among APCS	Type 4	0.6095	0.6095	0.6095	0.6095	0.6095	0.0000	0.9096	0.5489	1.2657	0.0000	0.0000	0.0000	0.0000	0.0000	10.0000	0.1000		
	Type 5	0.6095	0.6095	0.6095	0.6095	0.6095	0.0000 !	1.0081	1.0009	1.0050	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.1000		

* Additive penality for model M_{i} is zero and multiplicative penalty for model M_{i} is one
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised Iog-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error

Table 6.2a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes $\mathbf{2 0 , 5 0}$ and 96 for Design 4.2 together with relative penalty values and input values of SAO technique.

Method	Penalty type	A verage probabilities of correct selection of model						Relative penalties			Input values for simulated annealing								
								Starting values of penalies	Boundaries		TRF"								
		M_{j}	M_{2}	M	M_{5}	Mcan	SD				$P_{\text {: }}$	P i	P_{5}	S	S	S_{3}	S	18	UB
Sample size $=20$																			
Existing IC	Type 1 (BIC)	0.7970	0.6850	0.3485	0.1700	0.5001	0.2911	1.4979	1.4979	2.9957									
Maximisation of MAPCS	Type 2	0.8015	0.7255	0.3975	0.1095	0.5085	0.3186	1.6079	1.3140	3.6832	0.0000	0.0000	0.0000	0.0000	-12.000	12.0000	0.1000		
	Type 3	0.8015	0.7255	0.3975	0.1095	0.5085	0.3186	1.1125	1.0804	12930	1.4979	2.9957	2.9957	4.4936	0.0000	14.9790	0.1000		
Minimisation of SD among APCS	Type 4	0.4400	0.4400	0.4400	0.4400	0.4400	0.0000	0.6965		0.9954	0.0000		0.0000	0.0000		10.0000	0.1000		
	Type 5	0.5320	0.3830	0.5615	0.3400	0.4541	0.1091	1.0963	0.9898	1.0629	1.4979	2.9957	2.9957	4.4936	0.0000	4.4940	0.0100		
Sample size $=50$																			
Existing IC	Type 1 (BIC)	0.9095	0.8830	0.7100	0.4530	0.7389	0.2101	19560	19560	3.9120									
Maximisation of MAPCS	Type 2	0.9745	0.8650	0.7185	0.4210	0.7448	0.2400	3.3296	2.8476	52849	0.0000	0.0000	0.0000	0.0000	0.0000	12.0000	0.1000		
	Type 3	0.9745	0.8650	0.7185	0.4210	0.7448	0.2400	1.1194	1.0978	1.1852	1.0000	1.0000	10000	1.0000	0.0000	3.0000	0.1000		
Minimisation of SD among APCS	Type 4	0.6530	0.6530	0.6555	0.6505	0653	0.0020	0.9932	0.7299	1.5666	00000	19560	1.9560	3.9120	0.0000	5.8680	0.0007		
	Type 5	0.6530	0.6530	0.6555	0.6505	0.6530	0.0020	1.0193	1.0087	1.0212	1.9560	3.9120	3.9120	5.8680	00000	19.5600	0.0001		
Sample size $=96$																			
	Type 1 (BIC)	0.9390	0.9445	0.9460	0.8255	0.9063	0.0552	22822	2.2822	4.5643									
Maximisation of MAPCS	Type 2	0.9940	0.9530	0.9550	0.7920	0.9235	0.0897	4.7801	4.1070	7.6732	0.0000	0.0000	0.0000	0.0000	-4.0000	40000	0.1000		
	Type 3	0.9940	0.9530	0.9550	0.7920	0.9235	0.0897	1.0931	1.0778	11486	1.0000	20000	2.0000	3.0000	0.0000	48.0000	0.0100		
Minimisation of SD among APCS	Type 4	0.8650	0.8650	0.8650	0.8645	0.8649	0.0002	1.6006	1.4843	2.9090	0.0000	0.0000	0.0000	0.0000	-40000	4.0000	0.1000		
	Type 5	0.8650	0.8650	0.8650	0.8645	0.8649	0.0002	1.0230	1.0206	1.0401	1.0000	1.00015	1.0000	1.0000	0.0000	1.0000	0.1000		

* Additive penalty for model M_{l} is zero and multiplicative penality for model M_{I} is one
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error

Table 6.2b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the smallest variation among the average probabilities of correct selection of models under different methods for sample sizes 20, 50 and 96 for Design 4.2 together with relative penalty values and input values of SAO technique.

Method	Penalty type	A verage probabilities of correct selection of nodel						Relative penalties			Input values for simulated annealing								
								Starling values of penalties	Boundaries		TRF*								
		M_{l}	M.	M_{3}	M_{5}	Mcan	SD				P	P_{1}	P.	s_{i}	s_{2}	S	S_{5}	L.B	$1{ }^{1}$
Sample size $=20$																			
Existing IC	Type 1 (RBAR)	0.4505	0.5775	0.4190	0.3785	0.4564	0.0860	0.5407	0.5407	1.1123									
Maximisation of MAPCS	Type 2	0.7940	0.6075	0.3635	0.2465	0.5029	0.2455	1.5974	1.3141	2.5162	0.0000	1.0000	1.0000	2.0000	0.0000	3.0000	0.0001		
	Type 3	0.8015	0.7255	0.3975	0.1095	0.5085	0.3185	1.1125	1.0804	1.2930	1.4979	2.9957	2.9957	4.4936	0.0000	14.9790	0.1000		
Minimisation of SD among APCS	Type 4	0.4400	0.4400	0.4400	0.4400	0.4400	0.0000	0.6265	0.4446	0.9954	0.0000	0.0000	0.0000	0.0000	0.0000	10.0000	0.1000		
	Type 5	0.4400	0.4400	0.4400	0.4400	0.4400	0.0000	1.0158	0.9905	0.9885	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.1000		
Sample size $=50$																			
Existing IC	Type 1 (AIC)	0.7190	0.7780	0.6655	0.5925	0.6887	0.0789	1.0000	1.0000	20000									
Maximisation of MAPCS	Type 2	0.8690		0.6840	0.5460	0.7289	0.1446	1.7732	1.6949	2.9996	0.0000			0.0000		3.0000	0.0010		
	Type 3	0.9635	0.8740	0.6785	0.4600	0.7440	0.2236	1.0922	1.0988	1.1551	1.0000	1.0000	1.0000	1.0000	0.0000	12.0000	0.0001		
Minimisation of SD among APCS	Type 4	0.6520	0.6520	0.6520	0.6520	0.6520	0.0000 T	0.9815	0.7386	1.5528	0.0000	0.0000	0.0000	0.0000	0.0000	12.0000	0.1000		
	Type 5	0.6520	0.6520	0.6520	0.6520	0.6520	0.0000	1.0188	1.0090	1.0206	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.1000		
Sample size $=96$																			
Existing IC	Type 1 (IIC)	0.8375	0.8745	0.8595	0.8625	0.8585	0.0154	1.3951	1.3951	2.7929									
Maximisation of MAPCS	Type 2	0.8650	0.8805	0.8820	0.8600	0.8719	0.0110	15598	1.4537	2.9997	0.0000	0.0000	0.0000	0.0000	0.0000	3.0000	0.1000		
	Type 3	0.9970	0.9395	0.9480	0.8070	0.9229	0.0813	1.1118	1.0960	1.1569	1.0000	2.0000	2.0000	3.0000	0.0000	48.0000	0.0001		
Minimisation of SD among APCS	Type 4	0.8645	0.8645	0.8645	0.8645	0.8645	0.0000	1.5924	1.4832	2.8994	0.0000	0.0000	0.0000	0.0000	0.0000	3.0000	01000		
	Type 5	0.8645	0.8645	0.8645	0.8645	0.8645	0.0000	1.0229	1.0205	1.0399	1.0000	1.0000	1.0000	1.0000	0.0000	3.0000	0.1000		

* Additive penalty for model $M_{\text {! }}$ is zero and multiplicative penalty for model M_{i} is one
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error

Table 6.3a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes $\mathbf{2 0 , 5 0}$ and $\mathbf{1 0 0}$ for Design 4.3 together with relative penalty values and input values of SAO technique.

Method	Penalty type	A verage probabilities of correct selection of model						Relative penalties ${ }^{\text {a }}$			Input values for simulated annealing								
								Starting values of penalties	Boundaries		TRF**								
		M_{1}	M_{2}	M_{3}	M_{5}	Mean	SD				P	P_{1}	$P_{\text {P }}$	5	S_{2}	S_{3}	S_{3}	LB	UB
Sample size $=20$																			
Existing IC	Type 1 (BIC)	0.7815	0.6210	0.5750	0.4205	0.5995	0.1486	1.4979	1.4979	2.9957									
Maximisation of MAPCS	Type 2	0.8740	0.5745	0.5590	0.4110	0.6046	0.1941	2.1992	1.8608	3.6479	0.0000	0.0000	0.0000	0.0000	0.0000	12.0000	0.1000		
	Type 3	0.8740	0.5745	0.5590	0.4110	0.6046	0.1941	1.1806	1.1412	1.2887	1.0000	1.0000	1.0000	1.0000	0.0000	10.0000	0.1000		
Minimisation of SD among APCS	Type 4	0.5605	0.5605	0.5605	0.5605	0.5605	0.0000	0.8391	0.7869	1.5818	0.0000	0.0000	0.0000	0.0000	0.0000	10.0000	0.1000		
	Type 5	0.5605	0.5605	0.5605	0.5610	0.5606	0.0003	1.0300	1.0249	1.0476	5.3469	2.9957	2.9957	4.4936	0.0000	8.9870	0.0001		
Sample size $=50$																			
Existing IC	Type 1 (BIC)	0.8985	0.7660	0.6980	0.5605	0.7308	0.1408	1.9560	1.9560	3.9120									
Maximisation of MAPCS	Type 2	0.9060	0.7665	0.7035	0.5560	0.7330	0.1452	2.0229	1.9573	4.0287	0.0000	0.0000	0.0000	0.0000	0.0000	10.0000	0.1000		
	Type 3	0.9065	0.7665	0.7035	0.5560	0.7331	0.1454	1.0624	1.0593	1.1271	1.0000	2.0000	2.0000	3.0000	0.0000	10.0000	0.1000		
$\begin{aligned} & \text { Minimisation of } \\ & \text { SD among } \\ & \text { APCS } \\ & \hline \end{aligned}$	Type 4	0.6760	0.6760	0.6755	0.6730	0.6759	0.0003	1.0194	0.8441	1.8413	0.0000	1.9561)	1.9560	3.9120	0.0000	5.8680	0.0001		
	Type 5	0.7510	0.6510	0.8270	0.5465	0.6939	0.1219	1.1105	1.0087	1.1363	16.9521	2.0000	2.0000	3.0000	0.0000	27.0000	0.0001		
Sample size $=100$																			
Existing IC	Type 1 (BIC)	0.9315	0.8325	0.7580	0.6375	0.7899	0.1240	2.3026	2.3026	4.6052									
Maximisation of MAPCS	$\text { Type } 2$	0.8905	0.8330	0.8165	0.6305	0.7926	0.1126	2.1758	1.5387	4.2676	0.0000	00000	0.0000	0.0000	0.0000	12.0000	01000		
	Type 3	0.8950	0.8320	0.8175	0.6270	0.7929	0.1156	1.0350	1.0213	1.0692	1.0000	1.0000	1.0000	1.0000	00000	100000	0.1000		
$\begin{aligned} & \text { Minimisation of } \\ & \text { SD among } \\ & \text { APCS } \\ & \hline \end{aligned}$	Type 4	0.7465	0.7465	0.7465	0.7465	0.7465	0.0000	1.2720	1.0431	2.2346	0.0000	0.0000	0.0000	0.0000	00000	10.0000	0.1000		
	Type 5	0.7790	0.7330	0.8735	0.6465	0.7580	0.0946	1.0514	1.0058	1.0663	19.5147	2.0000	2.0000	3.0000	0.0000	27.0000	0.0010		

* Additive penalty for model M_{1} is zero and multiplicative penalty for model M_{1} is one
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihorod function
Type 3 and Type 5 are multiplicative penalties with mean squared error

Table 6.3b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the smallest variation among the average probabilities of correct selection of models under different methods for sample sizes 20,50 and 100 for Design 4.3 together with relative penalty values and input values of SAO technique.

Method	Penalty type	Average probabilities of correct sefection of model						Relative penalties			Input values for simulated annealing								
								Starting values of penalties	Boundiaties		TRF**								
		M_{1}	M_{2}	M_{1}	M	Mcan	SD				p	P	P_{s}	S_{i}	S_{2}	S_{3}	St	L.B	1 1B
Sample size $=20$																			
Existing IC	Type I (AIC)	0.6355	0.5995	0.5725	0.5085	0.5790	0.0536	1.0000	1.0000	2.0000									
Maximisation of MAPCS	Type 2	0.8000	0.6100	0.5330	0.4590	0.6005	0.1466	1.5052	1.6540	2.8529	0.0000	0.0000	0.0000	0.0000	0.0000	3.0000	0.0100		
	Type 3	0.8315	0.5915	0.5590	0.4330	0.6038	0.1665	1.1389	1.1221	1.2321	1.0000	2.0000	2.0000	3.0000	0.0000	48.0000	0.0010		
Minimisation of SD among APCS	Type 4	0.5605	0.5605	0.5605	0.5605	0.5605	0.0000	08391	0.7869	1.5818	0.0000	0.0000	0.0000	0.0000	0.0000	10.0000	0.1000		
	Type 5	3.5605	0.5605	0.5605	0.5605	0.5605	0.0000	1.0303	1.0249	1.0481	0.9747	1.0000	1.0000	1.0000	0.0000	10.0000	0.1000		
Sample size $=50$																			
Existing IC	Type 1 (AIC)	0.7050	0.7140	0.6610	0.6610	0.6853	0.0282	1.0000	1.0000	2.0000									
Maximisation of MAPCS	Type 2	0.8005	0.7780	0.7010	0.5930	0.7181	0.0937	1.3051	1.4416	2.9445	0.0000	0.0000	0.0000	0.0000	0.0000	3.0000	0.1000		
	Type 3	0.9015	0.7630	0.7075	0.5590	0.7328	0.1417	1.0624	1.0568	1.1244	1.0000	1.0000	1.0000	1.0000	00000	36.0000	0.0001		
Minimisation of SD among APCS	Type 4	0.6755	0.6755	0.6755	0.6755	0.6755	0.0000	1.0207	0.8426	1.8425	0.0000	0.0000	0.0000	0.0000	0.0000	10.0000	0.7000		
	Type 5	0.6755	0.6755	0.6755	0.6755	06755	0.0000	1.0202	1.0132	1.0325	0.9623	1.0000	1.0000	1.0000	0.0000	1.0000	0.1000		
Sample size $=100$																			
Existing IC	$\begin{aligned} & \hline \text { Type 1 } \\ & \text { (HOC) } \end{aligned}$	0.7090	0.7710	0.7175	0.7470	0.7361	0.0284	10204	10204	2.0514									
Maximisation of MAPCS	Type 2	0.8485	0.7945	0.7700	0.7065	0.7799	0.0589	1.6293	1.4306	2.9826	0.0000	1.0000	1.0000	2.0000	0.0000	3.0000			
	Type 3	0.8895	0.8160	0.8235	0.6400	0.7923	0.1067	1.0366	1.0193	1.0655	10000	1.0000	1.0000	1.0000	0.0000	12.0000	0.0001		
Minimisation of SD among APCS	Type 4	0.7465	0.7465	0.7465	0.7465	0.7465	0.0000	1.2720	1.0431	2.2346	0.0000	0.0000	0.0000	0.0000	0.0000	10.0000	0.1000		
	Type 5	0.7465	0.7465	0.7465	0.7465	0.7465	0.0000	1.0157	1.0107	1.0247	0.9755	1.0000	1.0000	1.0000	0.0000	1.0000	0.1000		

* Additive penalty for model M_{i} is zero and multiplicative penalty for model M_{1} is one
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihoord function
Type 3 and Type 5 are multiplicative penalties with mean squared erfor

Table 6.4a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes $\mathbf{2 0 , 5 0}$ and 100 for Design 4.4 together with relative penalty values and input values of SAO technique.

Method	Penalty type	A verage probabilities of correct selection of model										Relative penalties ${ }^{\text {a }}$						
		M_{1}	M_{2}	M_{3}	M_{s}	Ms	M_{6}	\cdots.	M_{8}	Mcan	SD	P :	P_{3}	P_{4}	P_{s}	P_{6}	r_{7}	P
Sample size $=20$																		
Existing IC	Type 1 (BIC)	0.7240	0.7735	0.2325	0.5660	0.2300	0.6555	0.1855	0.2420	0.4511	0.2519	1.4979	1.4979	1.4979	2.9957	2.9957	2.9957	4.4936
Maximisation of MAPCS	Type 2	0.6815	0.7115	0.4390	0.5095	0.3670	0.5375	0.3600	0.3455	0.4939	0.1433	4.7017	0.7324	1.5757	5.5869	6.5864	2.2801	7.4196
	Type 3	0.6855	0.7110	0.4445	0.5230	0.3670	0.5375	0.3375	0.3455	0.4939	0.1472	1.5420	1.0195	1.1138	1.5910	1.7583	1.1374	1.7988
Minimisation of SD among APCS	Type 4	0.4695	0.5045	0.4695	0.4630	0.5150	0.4350	0.4590	0.4405	0.4695	0.0280	4.3512	0.3881	0.8700	4.7285	6.0333	1.2931	6.4884
	Type 5	0.4675	0.5065	0.4675	0.4665	0.5515	0.4080	0.4655	0.4060	0.4674	0.0477	2.1299	0.9851	1.0306	2.0844	2.5428	1.0150	2.5092
Sample size $=50$																		
Existing IC	Type I (BIC)	0.8535	0.8860	0.3410	0.7820	0.3020	0.8140	0.3325	0.3125	0.5779	0.2755	1.9560	1.9560	1.9560	3.9120	3.9120	3.9120	5.8680
Maximisation of MAPCS	Type 2	0.7875	0.7685	0.5530	0.7260	0.5260	0.7060	0.4620	0.4450	0.6218	0.1402	4.9667	0.9045	2.4313	5.7810	7.7208	3.5824	8.7929
	Type 3	0.7900	0.7660	0.5560	0.7310	0.5255	0.7060	0.4555	0.4440	0.6218	0.1419	1.5637	1.0156	1.0808	1.5819	1.7095	1.1099	1.7465
Minimisation of SD among APCS	Type 4	0.6620	6.6215	0.6740	0.5620	0.6290	0.5520	05505	05415	0.5991	0.0538	5.9632	0.4816	3.7861	6.3914	8.6105	4.3210	9.1502
	Type 5	0.5860	0.5820	0.5875	0.5940	0.5820	0.5790	0.6070	0.5595	0.5846	0.0135	$\underline{5821}$	0.9988	1.0272	1.5767	1.6408	1.0259	1.6409
Sample size $=100$																		
Existing IC	Type 1 (BIC)	0.9100	0.9230	0.5005	0.8325	0.4215	0.8740	0.4630	0.4610	0.6732	0.2288	23026	23026	2.3026	46052	4.6052	4.6052	6.9078
Maximisation of MAPCS	Type 2	0.8955	0.8545	0.6525	0.7545	0.5735	0.7690	0.5975	0.6070	0.7130	0.1230	7.5854	1.4027	3.3902	88119	10.4567	4.5752	11.5769
	Type 3	0.8925	0.8640	0.6560	0.7540	0.5635	0.7810	0.5985	0.5930	0.7128	0.1279	1.2124	1.0175	10594	1.2312	1.2709	10736	12888
Minimisation of SD among APCS	Type 4	0.7265	0.6915	0.7325	0.6795	0.6705	0.6825	0.6665	0.6820	0.6914	0.0247	6.5278	0.6945	25233	7.1803	8.7208	3.2896	9.4218
	Type 5	0.7300	0.7000	0.7615	0.6390	0.7030	0.6600	0.6245	0.6400	0.6822	0.0490	1.1216	1.0027	1.1164	1.1237	1.2743	1.1221	1.2825

* Additive penalty for model M_{1} is zero and multiplicative penalty for model M_{1} is one

Type 2 and Type 4 are additive penalties with maximised log-likelihoed function
Type 3 and Type 5 are multiplicalive penalties with mean squared error

Table 6.4a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes $\mathbf{2 0 , 5 0}$ and $\mathbf{1 0 0}$ for Design 4.4 together with relative penalty values and input values of SAO technique (continued).

Method	Penalty type	Input values for simulated annealing										TRF**
		Starting values of penalies								Boundaries		
		S_{1}	S_{z}	S_{3}	S_{4}	S	S_{1}	S	S_{s}	LB	UB	
Sample size $=20$												
Existing IC	Type 1 (B!C)	00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 8.0000 1.0000 2.0000 2.0000 2.0000 3.0000 3.0000 3.0000 4.0000 0.0000 8.0000										
Maximisation of MAPCS	Type 2											0.1000
	Type 3											0.0001
Minimisation of SD among APCS	Type 4	$\begin{aligned} & 0.0000 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 2.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 2.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 2.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 3.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 3.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 3.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 4.0000 \end{aligned}$	-10.00000.0000	10.000032.0000	$\begin{aligned} & 0.0001 \\ & 0.9000 \end{aligned}$
	Type 5											
Sample size $=50$												
Existing IC	Type 1 (BIC)											
Maximisation of MAPCS	Type 2	$\begin{array}{\|l\|} \hline 0.0000 \\ 1.0000 \\ \hline \end{array}$	$\begin{aligned} & 1.0000 \\ & 2.0000 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 2.0000 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 2.0000 \end{aligned}$	$\begin{aligned} & 2.0000 \\ & 3.0000 \end{aligned}$	$\begin{aligned} & 2.0000 \\ & 3.0000 \end{aligned}$	$\begin{aligned} & 2.0000 \\ & 3.0000 \end{aligned}$	$\begin{aligned} & 3.0000 \\ & 4.0000 \end{aligned}$	$\begin{array}{r} 8.0000 \\ 0.0000 \end{array}$	$\begin{array}{r} 8.0000 \\ 20.0000 \end{array}$	$\begin{aligned} & 0.0010 \\ & 0.0001 \end{aligned}$
	Type 3											
Minimisation of SD among APCS	Type 4	$\begin{aligned} & 0.0600 \\ & 1.9560 \end{aligned}$	$\begin{aligned} & 1.9560 \\ & 3.9120 \end{aligned}$	$\begin{aligned} & 1.9560 \\ & 3.9120 \end{aligned}$	$\begin{aligned} & 1.9560 \\ & 3.9120 \end{aligned}$	$\begin{aligned} & 3.9120 \\ & 58680 \end{aligned}$	$\begin{aligned} & 3.9120 \\ & 5.8680 \end{aligned}$	$\begin{aligned} & 3.9120 \\ & 5.8680 \end{aligned}$	$\begin{aligned} & 5.8680 \\ & 7.8240 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 15.6481 \\ & 20.0000 \end{aligned}$	$\begin{aligned} & 0.0001 \\ & 0.1000 \end{aligned}$
	Type 5											
Sample size $=100$												
Existing IC	Type 1 (BIC)											
Maximisation	Type 2	$\begin{aligned} & 0.0000 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & 2.3026 \\ & 2.0000 \end{aligned}$	$\begin{aligned} & 2.3026 \\ & 2.0000 \end{aligned}$	$\begin{aligned} & 2.3026 \\ & 2.0000 \end{aligned}$	$\begin{aligned} & 4.6052 \\ & 3.0000 \end{aligned}$	$\begin{aligned} & 4.6052 \\ & 3.0000 \end{aligned}$	$\begin{aligned} & 4.6052 \\ & 3.0000 \end{aligned}$	$\begin{aligned} & 6.9078 \\ & 4.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$	$\begin{array}{r} 18.4207 \\ 8.0000 \end{array}$	$\begin{aligned} & 0.1000 \\ & 0.0001 \end{aligned}$
of MAPCS	Type 3											
Minimisation of	Type 4	$\begin{aligned} & 0.0000 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & \hline 0.0000 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 1.0000 \end{aligned}$	8.0000 8.0000 00000 8.0000		0.0100					
SD among APCS	Type 5											0.1000

** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error

Table 6.4b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the smailest variation among the average probabilities of correct selection of models under different methods for sample sizes 20,50 and 100 for Design 4.4 together with relative penalty value: and input values of SAO technique.

Method	Penalty type	A verage probabilities of correct selection of model										Relative penalties ${ }^{\text {c }}$						
		M_{1}	M_{2}	M_{3}	M	M .	M_{6}	1.	M_{9}	Mean	SD	P	P_{2}	P	P	r_{0}	P.	P_{s}
Sample size $=20$																		
Existing IC	$\begin{aligned} & \text { Type 1 } \\ & \text { (RBAR) } \end{aligned}$	0.3175	0.4295	0.2200	0.3775	0.3450	0.5635	0.2735	04380	0.3706	0.1075	0.5407	0.5407	0.5407	1.1123	1.1123	1.1123	1.7185
Maximisation of MAPCS	Type 2	$\begin{aligned} & 0.5190 \\ & 0.6835 \end{aligned}$	$\begin{aligned} & \hline 0.6290 \\ & 0.6650 \end{aligned}$	$\begin{aligned} & 0.4905 \\ & 0.4420 \end{aligned}$	$\begin{aligned} & \hline 0.5150 \\ & 0.5050 \end{aligned}$	$\begin{aligned} & 0.4040 \\ & 0.4235 \end{aligned}$	$\begin{aligned} & 0.5270 \\ & 0.5310 \end{aligned}$	$\begin{aligned} & 0.3115 \\ & 0.3555 \end{aligned}$	$\begin{aligned} & 0.3915 \\ & 0.3395 \end{aligned}$	$\begin{aligned} & 0.4734 \\ & 0.4931 \end{aligned}$	$\begin{aligned} & \hline 0.0992 \\ & 0.1295 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.8258 \\ & 1.4543 \end{aligned}$	$\begin{aligned} & 0.4346 \\ & 1.0194 \end{aligned}$	$\begin{aligned} & 1.2583 \\ & 1.1142 \end{aligned}$	$\begin{aligned} & 2.5177 \\ & 1.4753 \end{aligned}$	$\begin{aligned} & 3.3279 \\ & 1.6746 \end{aligned}$	$\begin{aligned} & 2.0440 \\ & 1.1288 \end{aligned}$	3.9924 1.7131 6.
	Type 3																	
Minimisation of SD among APCS	Type 4	$\begin{aligned} & 0.4635 \\ & 0.4625 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.4640 \\ & 0.4605 \end{aligned}$	$\begin{aligned} & 0.4630 \\ & 0.4625 \end{aligned}$	$\begin{aligned} & 0.4630 \\ & 0.4625 \end{aligned}$	$\begin{aligned} & 0.4635 \\ & 0.4605 \end{aligned}$	$\begin{aligned} & 0.4635 \\ & 0.4585 \end{aligned}$	$\begin{aligned} & 0.4630 \\ & 0.4665 \end{aligned}$	$\begin{aligned} & 0.4635 \\ & 0.4590 \end{aligned}$	$\begin{aligned} & 0.4634 \\ & 0.4616 \end{aligned}$	$\begin{aligned} & 0.0004 \\ & 0.0025 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.7577 \\ & 2.4383 \end{aligned}$	$\begin{aligned} & 0.3912 \\ & 0.9849 \end{aligned}$	$\begin{aligned} & 0.8292 \\ & 1.0280 \end{aligned}$	$\begin{aligned} & 5.1517 \\ & 2.3949 \end{aligned}$	$\begin{aligned} & 5.8582 \\ & 2.5728 \end{aligned}$	$\begin{aligned} & 1.2480 \\ & 1.0122 \end{aligned}$	$\begin{aligned} & 6.3144 \\ & 2.5341 \end{aligned}$
	Type 5																	
Sample size $=50$																		
Existing I	$\begin{aligned} & \text { Type I } \\ & \text { (RBAR) } \end{aligned}$	0.3215	0.4665	0.2890	0.4230	0.3955	0.6115	0.4105	0.5760	0.4368	0.1124	0.5155	0.5155	0.5155	1.0418	1.0418	. 0418	1.5795
Maximisation of MAPCS	Type 2	$\begin{aligned} & 0.5950 \\ & 0.7355 \end{aligned}$	$\begin{aligned} & \hline 0.6810 \\ & 0.7560 \end{aligned}$	$\begin{aligned} & 0.5380 \\ & 0.6030 \end{aligned}$	$\begin{aligned} & \hline 0.6675 \\ & 0.7180 \end{aligned}$	$\begin{aligned} & 0.5035 \\ & 0.5195 \end{aligned}$	$\begin{aligned} & 0.7055 \\ & 0.7775 \end{aligned}$	$\begin{aligned} & 0.4875 \\ & 0.4675 \end{aligned}$	$\begin{aligned} & 0.4905 \\ & 0.4485 \end{aligned}$	$\begin{aligned} & 0.5836 \\ & 0.6207 \end{aligned}$	$\begin{aligned} & 0.0910 \\ & 0.1276 \end{aligned}$	$\begin{array}{\|l\|} \hline 1.7772 \\ 1.2183 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.6178 \\ & 1.0081 \end{aligned}$	$\begin{aligned} & 1.2365 \\ & 1.0804 \end{aligned}$	$\begin{aligned} & 2.5019 \\ & 1.2324 \end{aligned}$	$\begin{aligned} & 3.1335 \\ & 1.3074 \end{aligned}$	$\begin{aligned} & 2.0651 \\ & 1.1060 \end{aligned}$	$\begin{aligned} & 3.9976 \\ & 1.3357 \end{aligned}$
	Type 3																	
Minimisation of SD among APCS	Type 4	$\begin{aligned} & 0.5710 \\ & 0.5860 \end{aligned}$	0.57050.5820	0.57100.5875	$\begin{aligned} & 0.5720 \\ & 05940 \\ & \hline \end{aligned}$	0.57050.5820	0.5690 0.5790	0.57400.6070	0.56950.5595	0.57090.5846	0.00150.0135	$\begin{aligned} & 2.2709 \\ & 1.5821 \end{aligned}$	$\begin{aligned} & 0.4778 \\ & 0.9988 \end{aligned}$	$\begin{aligned} & 1.2709 \\ & 1.0272 \end{aligned}$	$\begin{aligned} & 2.7072 \\ & 1.5767 \end{aligned}$	$\begin{aligned} & 3.5602 \\ & 1.6408 \end{aligned}$	1.7593$i .0259$	4.07401.6409
	Type 5																	
Sample size $=100$																		
Existing IC	$\begin{aligned} & \text { Type } 1 \\ & \text { (AIC/MCP) } \end{aligned}$	0.5980	0.7005	0.4750	0.6650	0.5105	0.7875	0.5170	0.6320	0.6107	0.1070	1.0000	1.0000	1.0000	2.0000	2.0000	2.0000	3.0000
Maximisation of MAPCS	Type 2	$\begin{aligned} & 0.6770 \\ & 0.8955 \end{aligned}$	$\begin{aligned} & 0.7735 \\ & 0.8590 \end{aligned}$	$\begin{aligned} & 0.6115 \\ & 0.6525 \end{aligned}$	$\begin{aligned} & 0.7580 \\ & 0.7540 \end{aligned}$	$\begin{aligned} & 0.5480 \\ & 0.5810 \end{aligned}$	$\begin{aligned} & 0.7165 \\ & 0.7235 \end{aligned}$	$\begin{aligned} & 0.5820 \\ & 0.59 \mathrm{~b} \end{aligned}$	$\begin{aligned} & 0.6775 \\ & 0.6060 \end{aligned}$	$\begin{aligned} & 0.6680 \\ & 0.7088 \end{aligned}$	$\begin{aligned} & \hline 0.0817 \\ & 0.1206 \end{aligned}$	$\begin{aligned} & 1.6096 \\ & 2.7717 \end{aligned}$	$\begin{aligned} & 0.9039 \\ & 1.0180 \end{aligned}$	$\begin{aligned} & 1.2082 \\ & 1.0595 \end{aligned}$	$\begin{aligned} & 2.6533 \\ & 2.8115 \end{aligned}$	3.22693.0264	2.30711.0737	3.9943 3.0584 6.
	Type 3																	
Minimisation of SD among APCS	Type 4	$\begin{array}{\|l\|} \hline 0.6825 \\ 0.6625 \\ \hline \end{array}$	$\begin{aligned} & 0.6855 \\ & 0.6650 \end{aligned}$	$\begin{aligned} & \hline 0.6825 \\ & 0.6635 \end{aligned}$	$\begin{aligned} & 0.6830 \\ & 06510 \end{aligned}$	$\begin{aligned} & 0.6845 \\ & 0.6640 \end{aligned}$	$\begin{aligned} & 0.6795 \\ & 0.6765 \end{aligned}$	$\begin{aligned} & 0.6835 \\ & 0.6510 \end{aligned}$	$\begin{aligned} & 0.6795 \\ & 0.6895 \end{aligned}$	$\begin{aligned} & 0.6826 \\ & 0.6654 \end{aligned}$	$\begin{aligned} & 0.0021 \\ & 0.0127 \end{aligned}$	$\begin{aligned} & 2.9171 \\ & 1.0260 \end{aligned}$	$\begin{aligned} & 0.7231 \\ & 1.0036 \end{aligned}$	$\begin{aligned} & 1.5474 \\ & 1.0247 \end{aligned}$	$\begin{array}{r} 3.5315 \\ 1.0281 \\ \hline \end{array}$	$\begin{array}{r} 5.4163 \\ 1.0546 \end{array}$	2.2577 1.0282	6.1205 1.0578
	Type 5																	

* Additive penalty for model M_{I} is zero and multiplicative penalty for model M_{i} is one

Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error

Table 6.4b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the smallest variation among the average probabilities of correct selection of models under different methods for sample sizes $\mathbf{2 0}, \mathbf{5 0}$ and $\mathbf{1 0 0}$ for Design 4.4 together with relative penalty values and input values of SAO technique (continued).

Method	Penalty type	Input values for simulated annealing										TRF**
		Starting values of penalties								Boundaries		
		S_{1}	S_{2}	S	S_{4}	S_{5}	S_{6}	S_{7}	S_{8}	LB	UB	
Sample size $=20$												
Existing IC	Type 1 (RBAR)											
Maximisation of MAPCS	Type 2	0.0000	1.0000	1.0000	1.0000	2.0000	2.0000	2.0000	3.0000	0.0000	4.0000	0.0010
	Type 3	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	n. 0000	8.0000	0.0010
Minimisation of SD among APCS	Type 4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-10.0000	10.0000	0.1000
	Type 5	1.0030	2.0000	2.0000	2.0000	3.0000	3.0000	3.000 C	4.0000	0.0000	4.0000	0.1×00
Sample size $=50$												
Existing IC	Type 1 (RBAR)											
Maximisatioun	Type 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	00000	4.0000	0000:
of M.apCS	Type 3	1.9560	3.9120	3.9120	3.9120	5.8680	5.8680	58680	7.8240	0.0000	32.0000	0.0001
Minimisation of	Type 4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-3.0000	30000	0.0100
SD among APCS	Type 5	1.9560	3.9120	3.9120	3.9120	5.8680	5.8680	5.8680	7.8240	0.0000	20.6000	0.1000
Sample size $=100$												
Existing IC	Type 1 (AIC/MCP)											
Maximisation of MAPCS	Type 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	4.0000	0.0100
	Type 3	1.0000	20000	2.0000	2.0000	3.0000	3.0000	3.0000	4.0000	0.0000	9.2103	0.0010
Minimisation of SD among APCS	Type 4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	10.0000	0.1000
	Type 5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	4.0000	0.1000

** TRF Temperature reduction factor
Type 2 and Type 4 are additive penaities with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error

Table 6.5a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the largest mean average prob bilities of correct selection under different methods for sample sizes $\mathbf{2 0 , 5 0}$ and 96 for Design 4.5 together with relative pernify rakes and inpet values of SAO technique.

Method	Penalty type	A verage probabilities of correct selection of model										Relative penaties						
		M_{1}	M	M	M_{+}	M.	M ${ }_{6}$	M.	M_{s}	Mean	SD	P_{2}	P	P_{4}	P :	P_{6}	P_{7}	18
Sample size $=20$																		
Existing IC	Type 1 (BIC)	0.7105	0.4060	0.3755	0.3655	0.2280	0.2185	0.2150	0.1905	0.3388	0.1726	1.4979	1.4979	1.4979	2.9957	2.9957	2.9957	4.4936
Maximisatio	Type 2	0.6320	0.4075	0.4280	0.3425	0.2650	0.2550	0.1870	0.2305	0.3437	0.1444	1.2311	1.1016	1.4259	2.4117	2.5093	2.8040	3.7523
MAPCS	Type 3	0.3490	0.3570	0.3645	6.3470	0.3625	0.3600	0.3430	0.3990	0.3603	0.0175	1.0000	1.0000	+.0000	1.000	1.0000	1.0000	1.0000
Minimisation of	Type 4	0.3160	0.3165	0.3775	0.3165	0.3155	0.3166	0.3180	0.3160	0.3155	0.0008	0.5810	0.5883	0.5312	12147	11881	1.1350	1.9315
SD among APCS	Type 5	0.3490	0.3570	0.3645	0.3470	0.3625	03600	0.3430	0.3990	0.3603	0.0175	1.0000	1.0000	1.0000	10000	1.0000	1.0000	1.0 .50
									Sam	ple size	$=50$							
Existing IC	Type 1 (BIC)	0.8770	0.7125	0.7325	0.7300	0.5280	0.5115	0.5400	0.4565	0.6360	0.1467	1.9560	1.9560	1.9560	3.9120	3.9120	3.9120	5.8680
Maximisation of	Type 2	0.9255	0.6885	0.7245	0.7180	0.5525	0.5330	05300	0.4530	0.6419	0.7519	2.5078	2.3976	2.4758	4.1494	4.2778	4.4728	6.3899
MAPCS	Type 3	0.9260	0.6895	0.7230	0.7160	0.5610	0.5335	0.5320	0.4540	0.6419	0.1515	1.0831	1.0786	1.0818	1.1330	1.1384	1.1465	1.2118
Minimisation of	Type 4	0.5730	0.5725	0.5715	0.5770	0.5715	0.5925	0.5595	0.5540	0.5714	0.0115	0.8052	0.9969	0.8544	19040	1.6271	19887	3.0404
SD among APCS	Type 5	0.5855	0.5970	0.5695	0.5960	0.55 to	0.6615	0.5355	0.5155	0.5764	0.0451	10089	1.0391	10100	1.0595	1.0138	10659	1.0939
									Sam	ple size	=96							
Existing IC	Type 1 (BIC)	0.9525	0.8850	0.8905	0.8840	0.8340	0.8030	08055	0.8135	0.8585	0.0531	2.2822	28282	22822	4.5643	4.5643	4.5643	6.8465
Maximisation of	Type 2	0.9970	0.9230	0.9395	0.9300	0.8380	0.8150	0.7870	0.7690	0.8748	0.0831	44921	4.4030	4.5470	7.7022	7.5448	82879	11.4742
MAPCS	Type 3	0.9970	03225	0.9395	0.9305	0.8375	0.8150	0.7870	0.7695	0.8748	0.0830	1.0884	1.0856	10888	1.1513	1.1469	1.1645	1.2313
Minimisation of	Type 4	0.8295	0.8295	0.8295	0.8285	0.8530	0.8260	0.8245	0.8160	0.8296	0.0105	1.2863	1.4084	1.2804	3.0183	29921	3.0599	5.3840
SD among APCS	Type 5	0.8495	0.8375	0.9685	0.8375	0.8295	0.8175	0.8105	0.7945	0.8431	0.0536	10522	1.0114	1.0528	1.0853	10894	1.0842	1.1404

* Additive penalty for model M_{1} is zero and multiplicative penalty for medel M_{i} is one

Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error

Table 6.5a Average probabilities, mean average probabilities and standard deviations of average prubebilities of correct selection of models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes $\mathbf{2 0 , 5 0}$ and 96 for Design 4.5 together with relative penalty values and input values of SAO technique (continued)

[^25]Type 2 and Type 4 are additive penalties with maximised log-likelihord function
Type 3 and Type 5 are multiplicative penalties with mean squared error

Table 6.5b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the smallest variation among the average probabilities of correct selection of models under different methods for sample sizes $\mathbf{2 0}, \mathbf{5 0}$ and $\mathbf{9 6}$ for Design 4.5 together with relative penalty values and input values of SAO technique.

Method	Penalty type	A verage probabilities of correct selection of model										Relative penalties						
		M_{1}	$M 2$	M	M_{4}	M.	M_{6}	M:	M_{5}	Mcan	SD	$P:$	P	P	F.	P_{n}	P	Ps
Sample size $\mathbf{= 2 0}$																		
Existing IC	Type 1 (RBAR)	0.2990	0.2990	0.3220	0.2910	0.3155	0.3010	02905	0.3590	0.3096	0.0228	0.5407	0.5407	0.5407	1.1123	1.1123	11123	1.7185
Maximisation of MAPCS	Type 2	0.5695	0.3850	$0.4<20$	0.3745	0.2410	0.2810	0.2320	0.1955	0.3426	0.1290	1.2359	0.8975	1.1031	2.5051	2.2600	23944	3.8528
	Type 3	0.3490	0.3570	0.3645	0.3470	0.3625	0.3600	0.3430	0.3990	0.3603	0.0175	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Minimisation of SD among APCS	Type 4	0.3170	0.3165	0.3165	03165	0.3165	0.3160	0.3165	0.3160	0.3164	0.0003	0.5806	0.5928	0.5347	1.2156	1.1892	1.1431	1.9356
	Type 5	0.3490	0.3385	0.3335	0.3220	0.3370	0.3255	0.3415	0.3310	0.3347	0.0087	1.0016	1.0020	1.0020	1.0020	1.0020	1.0020	1.0071
Sample size $=\mathbf{5 0}$																		
Existing 1 C	Type 1 (AIC)	0.6240	0.5700	0.5905	0.5945	0.5540	0.5290	0.5635	0.5725	0.5747	0.0286	1.0000	1.0000	10000	2.0000	2.0000	2.0000	3.0000
Maximisation of MAPCS	Type 2	0.7720	0.6845	0.6485	0.6845	0.5685	04940	0.5335	05475	0.6166	0.0952	1.2583	1.4758	1.4544	2.6422	2.9266	2.9284	3.9798
	Type 3	0.9260	0.6895	0.7230	0.7160	0.5610	0.5335	0.5320	0.4540	0.6419	0.1515	1.0831	10786	1.0818	1.1330	1.1384	1.1465	1.2118
Minimisation of SD among APCS	Type 4	0.5670	0.5670	0.5670	0.5670	0.5655	0.5670	0.5670	0.5670	0.5669	0.0002	0.8048	0.9248	08805	1.8094	1.6973	1.8562	2.8751
	Type 5	0.5665	0.5665	0.5665	0.5665	0.5685	0.5665	0.5865	0.5655	0.5665	0.0000	1.0416	1.0165	1.0146	1.0310	1.0264	10339	1.0530
Sample size $=96$																		
Existing IC	Type I (HQ)	0.8525	0.7895	0.8130	0.7945	0.8065	0.7845	0.7780	0.8460	0.8081	0.0278	1.5183	1.5183	1.5183	3.0366	3.0366	3.0366	45548
Maximisation of MAPCS	Type 2	0.7145	0.8480	0.8470	0.8285	0.7920	0.7465	0.7720	0.8475	0.7995	0.0515	0.8333	0.8190	0.8562	2.6041	2.7918	2.5156	3.9997
	Type 3	0.9970	0.9235	0.9350	0.9310	0.8395	0.8140	0.7825	0.7745	0.8746	0.0825	1.0833	1.0845	10860	1.1455	1.1438	1.1636	1.2245
Minimisation of SD among APCS	Type 4	0.8245	0.8245	0.8245	0.82:5	0.8245	0.8245	0.8245	0.8245	0.8245	0.0000	12674	1.4939	1.1999	3.2747	2.8044	2.9843	5.1171
	Type 5	0.8250	0.8250	0.8250	0.8250	0.8250	0.8250	0.8250	0.8250	08250	0.0000	1.0164	1.0204	1.0145	1.0480	1.0380	1.0416	1.0776

* Additive penalty for model M_{i} is zero and multiplicative penalty for model M_{i} is one

Type 2 and Type 4 are additive penalties with maximised log-likelibond function
Type 3 and Type 5 are muliplicative penalties with mean squared error

Table 6.5b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models cerresponding, to the smallest variation among the probabilities of correct selection of models under different methods for sample sizes 20,50 and 96 for Design 4.5 together with relative penalty values and input values of SAO technique (continued).

** TRF Temperature reduction factor
Type 2 and Type 4 are additive penaities with maximised log-likelihored function
Type 3 and Type 5 are multiplicative penalties with mean squared error

Table 6.6a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes $\mathbf{2 0 , 5 0}$ and $\mathbf{1 0 0}$ for Design 4.6 together with relative penalty values and input values of SAO technique.

Method	Penalty type	A verage probabilities of correct selection of model										Relative penalies ${ }^{\text {a }}$						
		M_{1}	M_{2}	M	M_{1}	.	M ${ }_{6}$	M.	M_{*}	Mcan	SD	P :	P_{2}	P_{s}	P	P_{6}	r_{-}	P s
Sample size $=20$																		
Existing IC	Type 1 (BIC)	0.7065	0.3285	0.6260	0.6865	02885	0.3190	0.5770	0.3025	0.4793	0.1858	14979	1.4979	1.4979	2.9957	2.9957	29957	4.4936
Maximisation of MAPCS	Type 2	0.7615	0.4425	0.6540	0.6940	0.3435	0.3455	0.4360	0.3675	0.5056	0.1702	1.1824	$1 . \overline{8443}$	2.5753	3.1273	3.9067	50477	5.9209
	Type 3	0.7575	0.4395	0.6525	0.6865	0.3450	0.3595	0.4345	0.3680	0.5054	0.1662	1.0663	1.1375	1.2163	1.2211	1.3005	1.4708	1.5086
Minimisation of SD among APCS	Type 4	0.4995	0.5120	0.4950	0.4705	0.5000	0.4640	0.4365	0.4320	0.4762	${ }^{1.0304}$	0.4758	1.1614	2.0909	16428	2.5945	3.4191	634
	Type 5	0.6090	0.6605	0.4090	0.4910	0.3900	0.5030	0.3660	0.3655	0.4743	0.1127	0.9895	1.4499	1.3265	1.4448	1.3128	1.7508	1.7650
Sample size $=50$																		
Existing IC	Type 1 (0.8675	0.4735	0.7660	0.7895	0.4165	0.4375	0.7155	04190	0.6106	0.1913	1.9560	1.9560	1.9560	39120	3.9120	3.9120	5.8680
Maximisation of MAPCS	Type 2	0.8560	0.5595	0.7680	0.7210	04675	0.5220	0.6500	0.4485	0.6241	0.1486	7.4094	2.0569	3.0438	3.6339	4.3033	5.5823	1213
	Type 3	0.8670	0.5625	0.7565	0.7215	0.4605	0.5230	05620	04390	0.6240	0.1524	1.0369	1.0740	1.1055	1.1201	1.1384	1.1982	1.2514
Minimisation of SD among APCS	Type 4	0.6620	0.6610	0.6065	0.5970	0.6130	0.5830	0.5600	0.5405	0.6029	0.0433	0.6137	16517	2.9123	22565	36126	51529	5.9806
	Type 5	0.6360	0.7765	0.5450	0.5725	05265	0.5520	05235	05125	0.5806	0.0882	09960	1.1785	1.2707	1.1832	1.2815	1.3926	14092
Sample size $=100$																		
Existing IC	Type 1 (BIC)	0.8865	0.5875	0.8220	0.8540	0.4905	05390	0.7685	0.5065	0.6818	0.1670	2.3026	23026	23026	4 4052	46052	46052	6.9078
Maximisation of MAPCS	Type 2	0.8700	0.6725	0.8025	0.7955	0.5630	0.6235	0.7065	0.5500	0.6979	0.1174	1.5503	2.3922	3.3009	272	4.7063	6.0731	7.6431
	Type 3	0.8670	0.6725	0.8025	0.8120	0.5630	0.6175	0.7000	0.5490	0.6979	0.1195	1.0211	1.0385	1.0537	1.0621	1.0742	1.1066	1.1301
Minimisation of SD among APCS	Type 4	0.7425	0.7805	0.6490	0.6740	0.6185	0.6750	0.6260	0.6275	0.6741	0.0588	0.7452	3.3059	3.9003	40792	4.6636	6.4081	7.2420
	Type 5	0.6520	0.6525	0.6480	0.6555	0.6465	0.6555	0.6530	0.6555	06523	0.0035	1.0060	1.0175	1.0261	1.0211	3.0315	1.0469	1.0532

* Additive penalty for model M, is zero and multiplicative penaliy for model $M_{\text {, is one }}$

Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error

Table 6.6a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes $\mathbf{2 0 , 5 0}$ and $\mathbf{1 0 0}$ for Design 4.6 together with relative penalty values and input values of SAO technique (continued).

** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error

Table 6.6b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the smallest variation among the average probabilities of correct selection of models under different methods for sample sizes 20,50 and 100 for Design 4.6 together with relative penalty values and input values of SAO technique.

Method	Penalty type	Average probabilities of correct selection of model										Relative penalties						
		M_{i}	M_{2}	M_{3}	M_{s}	M.	M_{n}	M.	M_{8}	Mcan	SD	P_{2}	P_{i}	r_{4}	r	r_{0}	P	's
Sample size $=20$																		
Existing IC	$\begin{aligned} & \text { Type 1 } \\ & \text { (RBAR) } \end{aligned}$	0.3070	0.2810	0.4020	0.3940	0.3530	0.3840	0.5090	0.4890	0.3899	0.0795	0.5407	0.5407	0.5407	1.1123	1.1123	1.1123	17185
Maximisation of MAPCS	Type 2	0.5170	0.5160	0.6735	0.6520	0.3215	0.3730	0.3760	0.4835	0.4891	0.1290	0.5890	1.0991	1.5113	23820	25229	3.5102	3.9726
	Type 3	0.7320	0.4735	0.6540	0.6485	0.3410	0.3875	0.4390	0.3635	0.5049	0.1514	1.0490	1.1374	1.2344	1.2211	1.2906	1.4793	1.5195
Minimisation of SD among APCS	Type 4	0.4570	0.4570	0.4570	0.4570	0.4570	0.4570	0.4570	0.4570	0.4570	0.0000	0.4777	1.0568	1.2884	1.5328	1.7543	2.3599	2.9654
	Type 5	0.4575	0.4575	0.4585	0.4575	0.4580	0.4575	0.4570	0.4560	0.4574	0.0007	0.9937	1.0523	1.0794	1.0424	10723	1.1359	1.1356
Sample size $=50$																		
Existing IC	Type 1 (AIC)	0.5815	0.4510	0.6105	0.5990	0.4730	0.4900	0.6810	0.5505	0.5546	0.0787	10000	1.0000	1.0000	2.0000	20000	2.0000	3.0000
Maximisation of MAPCS	Type 2	0 0.155	0.6325	0.7045	07010	0.4880	0.5030	05965	0.5635	06006	00808	0.6797	1.3275	1.4290	24737	2.6022	3.1670	3.9984
	Type 3	5.82e	0.5890	0.7080	07205	C. 5020	0.5130	0.6520	0.4825	0.6212	0.1180	1.0247	1.0638	1.0746	1.0915	1.1066	1.1479	1.1845
Minimisation of SD among APCS	Type 4	0.5770	0.5770	0.5770	0.5770	0.5755	0.5770	0.5780	0.5785	0.5771	0.0009	1.0042	1.0302	1.0351	1.0342	1.0418	1.0707	1.0788
	Type 5	0.5775	0.5775	0.5775	0.5775	0.5770	0.5775	0.5780	0.5775	0.5775	0.0003	0.6204	1.2574	1.3911	1.8771	2.0773	2.7711	35012
Sample size $=100$																		
Existing IC	Type 1(AIC)	0.5860	0.5310	0.6470	0.6660	0.5245	0.5740	0.7245	0.6465	0.6124	0.0700	1.0000	1.0000	1.0000	20000	2.0000	2.0000	30000
Maximisation of MAPCS	Type 2	0.6715	0.6365	0.7400	0.7920	0.5590	0.5820	0.6535	0.6600	0.6618	0.0764	1.0279	1.3596	1.3104	2.4956	2.6699	3.1693	3.9985
	Type 3	0.8665	0.6710	0.7995	0.8120	0.5560	0.6105	0.6825	0.5815	0.6974	0.1159	1.0210	1.0385	1.0508	1.0621	1.0717	1.0993	1.1159
Minimisation of SD among APCS	Type 4	0.6535	0.6540	0.6540	0.6540	0.6540	0.6545	0.6540	0.6545	0.6541	0.0003	0.8088	1.3326	1.9484	2.0225	2.7240	3.4613	4.2872
	Type 5	0.6515	0.6490	0.6485	0.6530	0.6470	0.6535	0.6555	0.6555	0.6517	0.0032	1.0061	1.0171	1.0264	1.0208	10316	1.0463	1.0526

* Additive penalty for model M_{1} is zero and multiplicative penalty for model M_{i} is one

Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error

Table 6.6b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the smallest variation among the average probabilities of correct selection of models under different methods for sample sizes $\mathbf{2 0}, \mathbf{5 0}$ and $\mathbf{1 0 0}$ for Design $\mathbf{4 . 6}$ together with relative penalty values and input values of $\mathbf{S A O}$ technique (continued).

Method	Penalty type	Input values for simulated annealing										TRF**
		Starting values of penalties								Boundaries		
		S_{i}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}	S_{7}	S_{8}	LB	UB	
Sample size $=20$												
Existing IC	Type 1 (RBAR)											
Maximisation of MAPCS	Type 2	0.0000	1.0000	1.0000	1.0000	2.0000	2.0000	2.0000	3.0000	0.0000	4.0000	0.0100
	Type 3	1.0000	2.0000	2.0000	2.0000	3.0000	3.0000	3.0000	4.0000	0.0000	32.0000	0.0001
Minimisation of SD among APCS	Type 4	0.0000	1.4979	1.4979	1.4979	2.9957	2.9957	2.9957	4.4936	-24.0000	24.0000	0.1000
	Type 5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	4.0000	0.1000
Sample size $=50$												
Existing IC	Type 1 (AIC)											
Maximisation of MAPCS	Type 2	$\begin{aligned} & \hline 0.0000 \\ & 1.9560 \end{aligned}$	$\begin{aligned} & 10000 \\ & 3.9120 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 3.9120 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 3.9120 \end{aligned}$	$\begin{aligned} & 2.0000 \\ & 5.8680 \end{aligned}$	$\begin{aligned} & \hline 2.0000 \\ & 5.8680 \end{aligned}$	$\begin{aligned} & \hline 2.0000 \\ & 5.8680 \end{aligned}$	$\begin{aligned} & 3.0000 \\ & 7.8240 \end{aligned}$	$\begin{aligned} & 00000 \\ & 0.0000 \end{aligned}$	$\begin{array}{r} 4.0000 \\ 32.0000 \end{array}$	$\begin{aligned} & 0.0001 \\ & 0.0100 \end{aligned}$
	Type 3											
Minimisation of SD among APCS	Type 4	$\begin{aligned} & 0.0000 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & 2.0000 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & 2.0010 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & 2.0000 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & \hline 3.0000 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$	$\begin{array}{r} 24.0000 \\ 4.0000 \end{array}$	$\begin{aligned} & 0.1000 \\ & 0.0100 \end{aligned}$
	Type 5											
Sample size $=100$												
$\begin{array}{\|l\|} \hline \text { Existing IC } \\ \hline \begin{array}{l} \text { Maximisation } \\ \text { of MAPCS } \end{array} \\ \hline \end{array}$	Type 1 (AIC)											
	Type 2	$\begin{aligned} & 0.0000 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 2.0000 \end{aligned}$	$\begin{aligned} & \hline 1.0000 \\ & 2.0000 \end{aligned}$	$\begin{aligned} & \hline 1.0000 \\ & 2.0000 \end{aligned}$	$\begin{aligned} & 2.0000 \\ & 3.0000 \end{aligned}$	$\begin{aligned} & 2.0000 \\ & 3.0000 \end{aligned}$	$\begin{aligned} & 2.0000 \\ & 3.0000 \end{aligned}$	$\begin{aligned} & 3.0000 \\ & 4.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 40000 \\ & 80000 \end{aligned}$	$\begin{aligned} & 0.0100 \\ & 0.1000 \end{aligned}$
	Type 3											
Minimisation of SD among APCS	Type 4	$\begin{aligned} & 0.0000 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & 2.3026 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & 2.3026 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & 2.3026 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & \hline 4.6052 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & 4.6052 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & 4.6052 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & 6.9078 \\ & 1.0000 \\ & \hline \end{aligned}$	$\begin{array}{r} -3.0000 \\ 0.0000 \end{array}$	$\begin{aligned} & 6.9078 \\ & 8.0000 \\ & \hline \end{aligned}$	0.1000
	Type 5											0.1000

** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised leg-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error

Table 6.7a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the largest mean average probabilities of correct selection under dieerent methods for sample sizes 2v, 50 and 100 for Design 5.1 together with relative penalty values and input values of SAO: aique.

* Additive penalty for model M_{1} is zero and multiplicative penalty for model M_{1} is one
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihoud function
Type 3 and Type 5 are multiplicative penalties with mean squared error

Table 6.7b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of medels corresponding to the smallest variation among the average probabilities of correct selection of models under different methods for sample sizes 20,50 and 100 for Design 5.1 together with relative penalty values and input valaes of SAO) technique.

Method	Penaity type	A verage probabilities of correct selection of model						Relative penalties			Input values for simulated annealing							
								Starting values of penalies	Boundaries	TRF'*								
		M_{l}	M_{2}	M_{3}	M_{4}	Mean	SD				P_{2}	P_{2}	1	S_{i}	\underline{S}	S_{1} I	$S_{ \pm}$	$1.8-18$
Sample size $=20$																		
Existing IC	Type 1 (All are same)	0.9845	0.3905	0.7200	0.2350	0.5825	0.3357	0.0000	0.0000		0.0000							
Maximisation of MAPCS	Type 2	$\begin{aligned} & 0.9685 \\ & 0.9730 \end{aligned}$	$\begin{aligned} & 0.3855 \\ & 0.3900 \end{aligned}$	$\begin{aligned} & 0.6395 \\ & 0.6110 \end{aligned}$	$\begin{aligned} & 0.5925 \\ & 0.6115 \end{aligned}$	$\begin{aligned} & 0.6465 \\ & 0.6464 \end{aligned}$	$\begin{aligned} & 0.2414 \\ & 0.2414 \end{aligned}$	$\begin{array}{r} -2.1418 \\ 0.8563 \end{array}$	$\begin{array}{r} -1.7502 \\ 0.9070 \end{array}$	$\begin{array}{r} -2.4104 \\ 0.8335 \end{array}$	1.4979 1.4979 1.4979 1.4979 1.0000 2.0000 2.0000 3.0000				0.0000 8.0000 0.0000 32.0000	$\begin{aligned} & 0.0001 \\ & 0.0001 \end{aligned}$		
	Type 3																	
Minimisation of SD among APCS	Type 4	$\begin{aligned} & 0.8925 \\ & 0.9265 \end{aligned}$	$\begin{aligned} & 0.5060 \\ & 0.5050 \end{aligned}$	$\begin{aligned} & 0.5575 \\ & 0.5575 \end{aligned}$	$\begin{aligned} & 0.5235 \\ & 0.5250 \end{aligned}$	$\begin{aligned} & 0.6199 \\ & 0.6285 \end{aligned}$	$\begin{aligned} & 0.1830 \\ & 0.1998 \end{aligned}$	$\left[\begin{array}{r} 16.8792 \\ 0.3196 \end{array}\right.$	$\begin{array}{rr} -15.7717 & -16.9344 \\ 0.3572 & 0.3+73 \end{array}$		$\begin{aligned} & 0.0000 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 2.0000 \end{aligned}$	1.0000 2.0000 2.0000 3.0000		-10.0000 10.0000 0.0600 160000	$\begin{aligned} & 0.1000 \\ & 0.0001 \end{aligned}$		
	Type 5																	
Sample size $=50$																		
Existing IC	Type 1 (All are same)	0.9920	0.5000	0.9880	0.2065	0.6466 0.3618			0.0000	0.0000 0.0000								
Maximisation of MAPCS	Type 2	$\begin{aligned} & 0.9890 \\ & 0.9890 \end{aligned}$	$\begin{aligned} & 0.4695 \\ & 0.4225 \end{aligned}$	$\begin{aligned} & 0.7860 \\ & 0.7870 \end{aligned}$	$\begin{aligned} & 0.7130 \\ & 0.7610 \end{aligned}$	$\begin{aligned} & 0.7394 \\ & 0.7399 \end{aligned}$	$\begin{aligned} & 0.2145 \\ & 0.2348 \end{aligned}$	$\begin{array}{r} .0 .5173 \\ 0.9860 \end{array}$	$\begin{aligned} & 0.8542 \\ & 1.0362 \end{aligned}$	$\begin{array}{r} -0.8258 \\ 0.9677 \end{array}$	$\begin{aligned} & 0.0000 \\ & 10000 \end{aligned}$	0.0000 1.0000	$\begin{array}{ll} 0.0000 & 0.0000 \\ 1.0000 & 1.0000 \end{array}$		0.0000 20.0000 0.0000 8.0000	$\begin{aligned} & 0.0010 \\ & 0.1000 \end{aligned}$		
	Type 3																	
Minimisation of SD among APCS	Type 4	$\begin{aligned} & 0.9365 \\ & 0.9125 \end{aligned}$	$\begin{aligned} & 0.5545 \\ & 0.5750 \end{aligned}$	$\begin{aligned} & 0.7000 \\ & 0.6520 \end{aligned}$	$\begin{aligned} & 0.5340 \\ & 0.5960 \end{aligned}$	$\begin{array}{ll}0.7062 & 0.1646 \\ 0.6589 & 0.1074\end{array}$		$\begin{array}{r} 18.2836 \\ 0.0832 \end{array}$	-14.5567 -18.3989 0.1030 0.0830		$\begin{aligned} & 1.9560 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & 1.9560 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & 1.9560 \\ & 1.0000 \end{aligned}$	1.9560	-10.0000 10.0000 0.0000 12.0000	$\begin{aligned} & 0.1000 \\ & 0.0010 \end{aligned}$		
	Type 5							1.0000										
Sample size $=100$																		
Existing IC	$\begin{aligned} & \text { Type I } \\ & \text { (All are same) } \end{aligned}$	$\begin{array}{\|llllll\|}0.9970 & 0.6180 & 0.9315 & 0.2055 & 0.6880 & 0.3617\end{array}$							$0.0000 \quad 0.00000 .0000$									
Maximisation of MAPCS	Type 2	$\begin{aligned} & 0.9940 \\ & 0.9940 \end{aligned}$	$\begin{aligned} & 0.5285 \\ & 0.5270 \end{aligned}$	$\begin{aligned} & 0.8585 \\ & 0.8585 \end{aligned}$	$\begin{aligned} & 0.8405 \\ & 0.8425 \end{aligned}$	$\begin{aligned} & 0.8054 \\ & 0.8055 \end{aligned}$	$\begin{aligned} & 0.1969 \\ & 0.1977 \end{aligned}$	$\begin{aligned} & 0.8678 \\ & 0.9799 \end{aligned}$	$\begin{aligned} & 0.5861 \\ & 1.0085 \end{aligned}$	$\begin{array}{r} 1.5303 \\ 0.9669 \end{array}$	$\begin{aligned} & 0.0000 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 1.0000 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 v 00 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & 2.0000 \\ & 1.0000 \end{aligned}$	0.0000 10.0000 0.0000 8.0000	$\begin{aligned} & 0.0100 \\ & 0.1000 \end{aligned}$		
	Type 3																	
Minimisation of SD among APCS	Type 4	$\begin{aligned} & 0.9785 \\ & 0.9120 \end{aligned}$	$\begin{aligned} & 0.6495 \\ & 0.6495 \end{aligned}$	$\begin{aligned} & 0.7735 \\ & 0.7515 \end{aligned}$	$\begin{aligned} & 0.6925 \\ & 0.6930 \end{aligned}$	$\begin{aligned} & 0.7735 \\ & 0.7515 \end{aligned}$	$\begin{aligned} & 0.1460 \\ & 0.1149 \end{aligned}$	$\begin{array}{r} -17.0655 \\ 0.1114 \end{array}$	$\begin{array}{r} -11.6500 \\ 0.1270 \end{array}$	$\begin{array}{r} -17.2544 \\ 0.1110 \end{array}$	$\begin{aligned} & 0.0000 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 1.0000 \end{aligned}$	2.0000	$\begin{array}{rr} -10.0000 & 10.0000 \\ 0.0000 & 4.0000 \end{array}$	$\begin{aligned} & 0.1000 \\ & 0.0001 \end{aligned}$		
	Type 5													1.0000				
* Additive penalty for model M_{1} is zero and multiplicative penalty for model M_{i} is one ** TRF Temperature reduction factor																		
Type 2 and Type 4 are additive penalties with maximised log-likelihood function																		

Table 6.8a Average probabilities, mean average probabilities and standard deviations of average probabilides of correct selection of medels corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes $\mathbf{2 n}, \mathbf{5 0}$ and $\mathbf{1 0 0}$ for Design 5.2 together with relative penelty values and input values of SAO techneque.

Method	Penalty type	A verage probabilities of correct selection of model						Relative penalties			Input values for simulated anmeating									
								Startin	ge values	of pena	luties	Boundi	arles	TRI^{+7}						
		M_{1}	M	M_{3}	M_{1}	Meat	SD				r :	\bar{P}	P_{1}	S_{1}	S_{i}	S_{2}	s	LB	LB	
Sample size $=20$																				
Existing C	Type 1 (All are same)	0.2690	04950	0.5035	0.6305	0.4758	0.1507	0.0000	0.0000	0.0000										
Maximisation of MAPCS	Type 2	0.5570	0.4770	0.4560	0.5110	0.5002	00441	0.3764	0.5043	C ${ }^{5} 40$	0.0000	0.0000	00100	0.0000	00000	8.0000	0.1000			
	Type 3	0.5570	0.4770	0.4560	05110	0.5002	0.0441	1.0384	1.0517	. 1001	1.0000	1.0000	1.0000	1.0000	0.0000	2.0000	0.1000			
Mirimisation of SD among APCS	Type 4	0.4910	0.4905	0.4905	0.4915	0.4909	0.0005	0.2895	0.3017	1.0538	0.0000	1.0000	$1.0 \cdot 0$	2.0000	0.0000	4.0000	0.0010			
	Tyr 25	0.4885	0.4910	0.4860	0.5075	0.4932	0.0097	10281	1.0325	10960	1.0000	10000	1.0050	1.0000	0.0000	1.0000	0.0010			
Sample size $=50$																				
Existing IC	$\begin{aligned} & \text { Type 1 } \\ & \text { (All are same) } \end{aligned}$	03360	0.5725	0.6275	0.7180	0.5635	01631	0.0000	0.0000	0.0000										
Maximisation of	Type 2	0.6720	0.5275	0.5245	0.6165	0.5851	00719	0.5147	0.8774	1003	0005	00000	00000	00600	$\cdot 100000$	10.0000	0.1000			
	Type 3	0.6720	0.5275	0.5245	0.6165	0.5851	2.0719	1.0208	1.0357	10412	10000	- 0000	10000	1.0000	0.0000	1.0000	0.1000			
Minimisation of SD among APCS	Type 4	0.5765	0.5770	0.5805	0.5905	0.5811	0.0065	02412	0.4500	1.1978	0.0000	1.0000	1.0000	20000	2.0000	2.0000	0.0100			
	Type 5	0.5750	0.5790	0.5695	0.6030	0.5816	0.0148	1.0093	1.0204	1.0418	1.0000	1.0000	10000	10000	0.0000	1.0000	0.0901			
Sample size $=100$																				
Existing IC	Type 1 (All are same)	0.4290	06575	0.7125	0.8180	0.6542	$0.164 \hat{3}$	0.0000	0.0000	00000										
Maximisation of MAPCS	Type 2	0.6890	0.6320	06620	07370	0.6800	0.0446	0.489	0.6262	11782	00000	00000	00000	00000	00000	10.0000	07000			
	Type 3	0.6890	0.6320	0.6620	07370	0.6800	00446	10084	10128	1.0239	1.0000	10000	10000	1.0000	0.0000	10000	0.1000			
Minimisation of SD among APCS	Type 4	0.6625	0.6680	0.6595	0.7030	06733	0.0201	02446	0.5109	14754	00000	1.0000	10000	20000	2.0000	2.0000	0.000			
	Type 5	06640	0.8570	0.6575	0.7295	08770	0.0351	¢ 0057	1.0126	1.0252	10000	10000	1.0000	10000	0.0000	10000	0.0010			

[^26]Table 6.8b Average probabilities, mean average probabilities and standard deviations of average probainities of correct selection of models corresponding to the smallest variation among the average probabilities of correct selection of models under different methods for sample sizes 20,50 and 100 for Design 5.2 together with relative penalty values and input values of SAO) technique.

Method	Penalty type	A verage probabilities of correct selection of model						Relative penalties*			Input values for simulated annealing								
								Starting values of penalities	Boundaries		TRF ${ }^{\text {FF }}$								
		M_{1}	M	M.	M_{4}	Mcan	SO				r :	P_{3}	P	S_{i}	5	S_{i}	S_{1}	18	I 118
Existing IC	$\begin{aligned} & \text { Type I } \\ & \text { (All are same) } \end{aligned}$	0.2690	0.4950	0.5085	0.6305	0.4758	01507	$0.000-$ Sample size $=\mathbf{2 0}$											
Maximisation of MAPCS	Type 2	0.5535	0.4760	0.4560	0.5150	0.5001	0.0432	\bigcirc	05043	0.9144	0.0000	1.0000	1.0000	20000	0.0000	8.0000	0.1000		
	Type 3	0.5535	0.4760	0.4560	C 5150	05001	00432	10384	1.0518	1.0957	1.0000	1.0000	10000	1.0000	0.0000	20.0000	0.1000		
Minimisation of SD among APCS	Type 4	0.4905	0.4905	04905	0.4905	0.4905	00000	0.2896	0.3005	1.0648	0.0000	0.0000	00000	0.0000	0.0000	10.0000	$0.100 \overline{0}$		
	T.pe 5	0.4905	0.4905	0.4905	04905	0.4905	0.0000	-. 0293	10306	1.1125	1.0000	10000	1.0000	1.0000	00000	1.3 .0000	0.1000		
Sample size $=50$																			
Existing IC	Typ: 1 (All are si	0.3360	0.5725	0.6275	07180	0.5635	0.1631	0.0000	00000	00000									
Maximisation of MAPCS	Type 2	0.6465	0.5235	0.5420	0.6265	05846	0.0609	05123	0.7462	0.8995	0.0000 10000 10000 2.0000 3.9120 3.9120 39120 3.9120 0.0200 0.000 0000 0.000				2.0000 2.0000 0.0000 3.9120		$\begin{aligned} & 0.0010 \\ & 00010 \end{aligned}$		
	Type 3	0.6510	0.5235	0.5420	0.6220	0.5846	0.0615	1.0207	1.0302	1.0386									
Minimisation of SD among APCS	Type 4	0.5805	0.5805	0.5805	0.5805	0.5805	00000	02323	04600	1.2438	$\begin{aligned} & 0.0000 \\ & 1.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 10000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 1.0000 \end{aligned}$	0.0000	$\begin{array}{ll} 0.0000 & 10.0000 \\ 0.0000 & 100000 \end{array}$		$\begin{aligned} & 0.1000 \\ & 0.1000 \end{aligned}$		
	Type 5	0.5805	0.5805	05805	0.5805	0.5805	0.0000	¢ 0094	1.0186	1.0512				10000					
S_C._- Sample size $=1001$																			
Existing JC	Type 1 (All are same)	0.4290	0.6575	0.7125	0.8180	0.6542	0.1643	0.0000	0.0000	0.0000									
Maximisation or	Type 2	0.6890	0.6320	0.6620	0.7370	0.6800	0.0446	0.4189	0.6262	1.1782	00000	0.0000	0.0000	0.0000	0.0000	100000	0.1000		
MAPCS	Type 3	0.6900	0.6320	0.6620	0.7355	0.6799	0.0440	1.0084	1.0126	1.0242	1.0000	2.0000	2.0000	3.0000	0.0000	10.0000	0.0010		
Minimisation of	Type 4	0.6685	0.6685	0.6685	0.6688	0.6685	0.0000	0.2444	0.5668	20418	0.0000	30000	0.0000	0.0000	0.0000	10.0000	0.1000		
$\begin{aligned} & \text { SD among } \\ & \text { APCE } \\ & \hline \end{aligned}$	Type 5	0.6885	0.6685	0.6685	0.6685	0.6685	0.0000	1.0049	1.0114	10415	10000	i ūus	1.0000	10000	00000	10.0000	0.1000		

* Additive penaliy for model M_{1} is zero and muitiplatative penalty for model $M_{\text {/ }}$ is one
** TRF Temperature reduction factor
Type \therefore and Type 4 are additive penalties with maximised log-likelihord function
Type 3 and Type 5 are multiplicative penalties with mean squared error

Table 6.9a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the largest mean average probabilities of correct selection under diff ont methods for sample sizes 20, 50 and $\mathbf{1 0 0}$ for Design 5.3 together with relative penaity values and input values of SAO tech; "uue.

Method	Penalty type	Average probabilities of correct selection of model						Relative penalties ${ }^{\text {a }}$			Input values fro simulated annealing								
								Starting values of penalies	Boundaries		TRF**								
		M.	M_{6}	M_{2}	M_{5}	Mcan	SD				Ps	$r_{\text {; }}$	P_{8}	S_{s}	S_{0}	5	S_{3}	1.8	UB
Sample size $=20$																			
Existing IC	Type 1 (All are same)	0.5270	0.4030	0.3745	0.4785	0.4457	0.0697	0000	0.0000	0.0000									
Maximisation of MAPCS	Type 2	0.2440	0.3505	07285	0.7470	0.5175	0.2581	-3.4352	3.7546	-0.5835	2.9957	2.9957	29957	2.9957	-4.0000	5.9915	0.0001		
	Type 3	0.2440	0.3510	0.7280	0.7470	0.5175	0.2579	0.7101	06879	0.9433	1.0000	2.0000	2.0000	3.0000	0.0000	48.0000	0.1000		
Minimisation of SD among APCS	Type 4	C.4780	0.5260	0.5325	0.4960	0.5081	0.0256	-3.5696	-3.5836	-0.0276	0.0000	1.0000	1.0000	2.0000	$\cdot 3.0000$	30000	0.0100		
	Type 5	0.4820	0.5295	0.5200	04985	0.5075	00214	0.7650	0.7646	09973	1.0000	2.0000	20000	3.0000	0.0000	120000	0.1000		
Sample size $=50$																			
Existing IC	$\begin{aligned} & \text { Type } 1 \\ & \text { (All are same) } \end{aligned}$	0.5820	0.5045	0.4295	0.4845	05001	00631	00000	0.0000	0.0000									
Maximisation of	Type 2	C. 3945	0.3845	0.7400	07085	0.5569	0.1937	- 14966	- $1 . \overline{8183}$	-02936	3.9120	3.9120	3.9120	3.9120	0.0000	12.0000	0.1000		
MAPCS	Type 3	0.3945	0.3840	0.7405	0.7075	0.5566	0.1938	09403	09283	0.9883	1.0000	1.0000	1.0000	1.0000	0.0000	10000	0.1000		
Miammisatoon of SD among APCS	Type 4	0.5245	0.5485	0.5395	0.5265	0.5347	0.0113	20280	-2.0545	0.0412	00000	1.0000	10000	20000	00000	3.0000	0.0100		
	Type 5	0.5320	0.5065	0.5040	0.5290	0.5179	0.0147	0.9865	09851	08985	1.0000	1.0000	1.0000	1.0000	00000	3.0000	01000		
- - Sample size $=100$																			
Existing IC.	Type I (All are same)	06830	0.6085	0.4785	0.5005	0.5526	00737	0.0000	00000	00000									
Maximisation of MAPCS	Type 2	0.4480	04490	08080	07330	0.6095	$0.78{ }^{\text {a }}$	-1.9048	2.3262	03119	0.0000	00000	n.0000	0.0000	0.0000	10.0000	0.0100		
	Type 3	0.4480	0.4490	0.8080	0.7330	0.6095	0.1884	0.9625	0.9544	0.9938	1.0000	2.0000	2.0000	3.0000	0.0000	12.0000	0.1000		
Minimisation of SD among APCS	Type 4	0.5645	0.6015	0.5975	05825	0.5865	0.0163	. 3.7893	-3.8600	-0.0701	46052	4.6052	4.6052	46052	$\overline{0.0000}$	6.9078	0.1000		
	Type 5	0.5605	0.6020	0.5975	0.5795	0.5849	0.0189	0.8527	0.8515	0.9986	1.0000	2.0000	2.0000	3.0000	0.0000	27.0000	0.0010		

* Additive penalty for model M_{c} is zero and multiplicative penally for model M a is ome
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-fikelihood function
Type 3 and Type 5 are multiplicative penalties with mian squared error

Table 6.9\% dverage probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the smallest variation among the average probabilities of correct selection of models under different methods for sample sizes 20,50 and 100 for Design 5.3 together with relative penalty values and input values of SAO technique.

* Additive penalty for model M_{5} is zero and multiplicurve ponaty tom model hf is une
** TRF Temperature reduction factor
Type 2 and Ty ee 4 are addinive peraltjes with maximised log-likelihond function
Type 3 and Type 5 are inultplicative penalties with mean squared error

Table 6.10a Average probabilities, mean average probabilities, il standard deviations of average probabilities of correct selection of models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes $\mathbf{2 0 , 5 0}$ and $\mathbf{1 0 0}$ for Design 5.4 together with relative penalty values and input values of SAO technique.

Method	Penalty type	A verage probabilities of correct selection of model						Relative penalties*			Input values for simulated annealing								
								Starting values of penalties	Boundaries		TRF*								
		M.	M_{0}	M_{2}	M_{3}	Mean	SD				P_{0}	P_{-}	P^{\prime}	5.	S_{2}	S	S_{8}	1.1	U'B
Sample stze $=20$																			
Existing IC	$\left\{\begin{array}{l} \text { Type } 1 \\ \text { (All are same) } \end{array}\right.$	0.3790	0.4805	0.5250	0.3840	0.4427	0.0724	0.0000	0.0000	0.00007									
Maximisation of MAPCS	Type 2	0.7265	03540	0.3700	0.4720	- 4806	0.1720	0.7617	08956	04813	0.0000	00000	00000	0.0000	-12.0000	12.0000	0.1000		
	Type 3	0.7265	0.3540	0.3700	0.4720	0.4806	0.1720	10790	1.0936	1.0492	10000	2.0000	2.0000	3.0000	0.0000	48.0000	01000		
Minimisation of SD among APCS	Type 4	0.4625	0.4625	0.4620	0.4625	0.456	0.0003	0.1059	01544	00281				2.0000			0.1000		
	$\text { Type } 5$	0.4625	0.4625	0.4620	0.4625	0.4624	0.0003	1.0107	:0156	1.0028	1.0000	20000	2.0000	3.0000	0.0000	16.0000	0.1000		
Sample size $=50$																			
Existing $1 \mathbb{C}$	Type 1 (All are same)	04155	05910	0.6380	0.4610	05264	0.7052	0.0000	0.0000	0.0000									
Maximisation of MAPCS	Type 2	0.7005	0.5455	0.4435	0.5305	0.5800	0.1109	0.5450	0.9479	0.2884	00000	00000	00000	0 n 0 O	0.0000	10.0000	0.1000		
	Type 3	0.7005	0.5450	0.4440	0.6305	0.5800	0.1107	1.0220	10385	10114	1.000%	1.0000	1.0000	1.0000	0.0000	10.0000	0.1000		
Minimisation of SD among AFCS	Type 4	0.5560	0.5575	0.5595	05565	05574	0.0015		0.2874	0.1043	00000	00000	0.0000	0.0000	0.0000	10.0000	0.0001		
	Type 5	0.5560	0.5575	0.5590	0.5575	0.5575	00012:	10085	1.0117	1.0042	58680	5.8680	5.8680	58680	0.0000	5.8680	0.0100		
- Sample size $=100$																			
Existing IC	$\begin{aligned} & \text { Type 1 } \\ & \text { (All are same) } \end{aligned}$	0.5130	0.6520	0.7370	0.5780	06200	0.0965	00000	0.0003	0.0000									
Maximisation of MAPCS	Type 2	07805	0.6545	0.5480	0.7465	0.6882	0.1042	05510	$1.214 \overline{4}$	05141	0.0000	10000	1.0000	2.0000	10.0000	100000	0.1000		
	Type 3	0.7805	0.6545	0.5480	0.7465	0.6824	0.1042	1.0111	1.0246	10103	6.9078	6.9078	6.9078	6.9078	00000	128155	01000		
Minimisation of SD among APCS	Type 4	0.6795	0.6885	0.6360	06500	0.6635	0.0246	02110	0.6355	04415	46052	4.6052	4.6052	46052	0.0000	0.9078	0.0001		
	Type 5	0.6825	0.5890	0.6340	0.6475	0.6633	0.0267	1.0042	10134	1.0095	1.0000	2.0000	20900	30000	0.0000	10.0000	0.1000		

* Additive penalty for mocel M_{s} is zero and multipitcative penally fir model M is ome
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelibrod function
Type 3 and Type :. are muitiplicative penalties with mean squared error

Table 6.10b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the smallest variation among the average probabilities of correct selection of models under different methods for sample sizes 20,50 and 100 for Design 5.4 together with relative penalty values and input values of SAO technique.

Method	Penalty type	A verage probabilities of correct selection of model						Relative penalties*			Input values for simulated annealing								
								Starting values of penalties	Boundaries		TRF ${ }^{\text {T- }}$								
		Ms_{3}	M_{6}	M_{i}	M_{8}	Mean	SD				P6	P_{-}	P_{s}	S.	sol	S	S_{3}	LB	IB
Sample size $=20$																			
Existing IC	$\begin{aligned} & \text { Type 1 } \\ & \text { (All are same) } \end{aligned}$	0.3790	0.4805	0.5250	0.3840	0.4421	0.0724	00000	0.0000	0 COOO									
Maximisation of MAPCS	Type 2	0.6180	0.5120	0.3185	0.4710	0.4799	$0.124{ }^{\text {² }}$	2655	0.8940	0.4780	00000	06500	0.0000	0.0000	. 12.0000	12.0000	0.0100		
	Type 3	0.6805	0.4285	0.3400	0.4715	0.4801	0.1444	i. 0513	1.0947	1.0502	1.0000	1.0000	10000	10000	0.0000	20.0000	0.0010		
Minimisation of SD among APCS	Type 4	0.4620	0.4620	0.4620	0.4620	0.4620	0.0000	0.1057	0.1537	0.0284	0.0000	0.0000	0.0000	0.0000	0.0000	10.0000	0.1000		
	Type 5	0.4620	0.4620	0.4620	0.4620	0.4620	0.0000	1.0106	10155	1.0028	1.0000	10000	¢0000	1.0000	0.0000	1.0000	0.1000		
Sample size $=50$																			
Existing IC	$\begin{aligned} & \text { Type 1 } \\ & \text { (All are same) } \end{aligned}$	0.4155	0.5910	0.6380	0.4610	0.5264	0.1052	00000	0.0000	0.0000									
Maximisation of MAPCS	Type 2	0.6945	0.5510	0.4440	0.6300	0.5799	0.1079	0.5265	0.9294	0.2819	0.0000	7.0000	1.0000	2.0000	0.0000	3.0000	0.1000		
	Type 3	0.6965	0.5500	0.4435	0.6295	0.5799	0.1089	1.0214	1.0381	1.0115	5.8680	58680	5.8680	5.8680	0.00001	19.5601			
Minimisation of SD among APCS	Type 4	0.5570	0.5570	0.5570	0.5570	0.5570	0.0000	0.2134	0.2993	0.1092	0.0000	0.0000	0.0000	0.0000	0.0000	10.0000	0.1000		
	Type 5	0.5570	0.5570	0.5570	0.5570	05570	0.0000	1.0086	1.0120	1.0044	1.0000	1.0000	10000	1.0000	0.0000	1.0000	0.1000		
Sample size $=100$																			
Existing IC	$\begin{aligned} & \text { Type } 1 \\ & \text { (All are same) } \end{aligned}$	0.5130	0.6520	0.7370	0.5780	0.6200	0.0965	0.0000	0.0000	0.0000									
Maximisation of MAPCS	Type 2	0.7675	0.6450	0.5590	0.7540	0.6814	0.0983	0.5513	1.0794	0.4080	0.0000	0.0000	0.0000	0.0000	0.0000	10.0000	0.1000		
	Type 3	0.7805	0.6450	0.5705	0.7290	0.6813	0.0926	1.0111	1.0219	1.0103	6.9078	6.9078	6.9078	6.9078	0.0000	69078	0.0001		
Minimisation of SD among APCS	Type 4	0.6595	0.6595	0.6595	0.6595	0.6595	0.0000	0.2182	0.46\%?	0.2743		0.0000	0.0000	0.0000	0.0000	10.0000	0.1000		
	Type 5	0.6595	0.6595	0.6555	¢ 6595	0.6595	0.0000	1.0044	1.0093	1.0055	1.0000	1.9000	1.0000	1.0000	0.0000	1.0000	0.1000		

* Additive penalty for model $M \leq$ is zero and multiplicative penalty fir model M as me
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood functoon
Type 3 and Type 5 are multiplicative penalties with mean squared error

Table 6.11a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the largest mean average probabilities of correct selection under different methods for sample sizes $\mathbf{2 0 , 5 0}$ and $\mathbf{1 0 0}$ for Design 5.5 together with relative penalty values and input valies of SAO technique.

Method	Penalty type	A verage probabilities of correct selection of model						Relative penalties*			Input values for simulated amnealing								
								Starting values of penalties	Boundaries		TRF"								
		M_{9}	$1 M_{10}$	M_{μ}	M_{12}	Mcan	SD					P_{4}	P_{i}	T	S		S_{2}	LB	UB
Sample size $=20$																			
Existing IC	Type 1 (All are same)	0.5410	0.3770	0.4650	0.3950	04695	0.1205	0.0000	0.0000	0.0000									
Maximisation of MAPCS	Type 2-	0.3690	0.9970	0.6330	0.9180	$\bigcirc 7343$	0.2845	5.2089	0.7590	-2.7686	0.0300	0.0000	0.0000	0.0000	0.0000	10.0000	0.1000		
	Type 3	0.3690	0.9970	0.6530	0.9180	0.7343	0.2845	0.5873	09270	0.7970	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.1000		
Minimisation of SD among APCS	Type 4	0.5635	0.5635	0.5635	0.5635	0.5635	0.0000	02022	c. 13 139	0.2334	0.0000	0.0000	0.0000	0.0000	0.0000	10.0000	0.1000		
	Type 5	0.5635	0.5635	$\bigcirc 5635$	0.5635	0.5635	0.0000	0.9799	0.9867	0.9769	0.9975	1.0000	1.0000	1.0000	0.0000	1.0000	0.1000		
Sample size $=\mathbf{5 0}$																			
Existing IC	Type 1 (All are same)	0.7685	0.4010	0.4955	0.4365	05254	0.1667	0.0006	0.0000	0.0000									
Maximisation of	Type 2	0.5175	0.9990	0.8325	0.9490	0.8245	02162	48874	. 12190	2.6135	0.0000	1.0000	1.0000	2.0000	0.0000	10.0000	0.0100		
MAPCS	Type 3	0.5175	0.9990	© 8325	0.9495	0.8246	0.2163	0.8220	0.9523	0.9002	10000	1.0000	1.0000	1.0000	0.0000	1.0000	0.1000		
Minimisation of SD among APCS	Type 4	0.6785	- 5.3885	0.6785	0.6785	0.6785	0.0000	0.1841	0.2797	0.3831	00000	00000	0.0000	0.0000	0.0000	10.0000	0.1000		
	Type 5	0.6785	0.6785	0.6785	c. 6785	0.6785	0.0000	0.9927	0.9889	09848	0.9932	10000	1.0000	1.0000	0.0001	10000	0.1000		
-_- ${ }^{\text {a }}$ Sample size $=100$																			
Existing IC	$\begin{aligned} & \begin{array}{l} \text { Type } 1 \\ \text { (All are same) } \end{array} \\ & \hline \end{aligned}$	08505	0.4350	0.5005	0.4495	0.5589	0.1964	00000		0.0000									
Maximisation of MAPCS	Type 2	0.6480	0.9985	0.8710	0.9836	0.8751	0.1617	5.3640	12:30	30750	0.0000	0.0000	0.0000	0.0000	0.0000	10.0000	0.1000		
	Type 3	0.6480	0.9985	0.8710	0.9830	0.8751	0.1617	0.8978	0.9760	0.9403)	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.1000		
Minimisation of SD among APCS	Type 4	0.7580	0.7580	0.7580	0.7580	0.7580	0.0000	0.3382	-0.3997	0.5470	0.0000	0.0000	0.0000	0.0000	0.0000	10.0000	0.1000		
	Type 5	0.7580	0.7580	0.7580	0.7580	0.7580	0.0000	0.9933	0.9920	0.9891	0.9204	1.0000	1.0000	1.0000	0.0000	1.0000	0.1000		
* Additive penalty for modei M_{9} is zero and multiplicative penalty for model M_{9} ** TRF Temperature reduction factor Type 2 and Type 4 are additive penalties with maximised log-likelihood function Type 3 and Type 5 are multiplicative penalties with mean squared error																			

Table 6.11b Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the smallest variation among the average probabilities of correct selection of models under different methods for sample sizes 20,50 and 100 for Design 5.5 together with relative penalty values and input values of SAO technique.

Method	Penalty type	A verage probabilities of correct selection of model						Relative penalties			Input values for simulated annealing								
								Starting values of penalties	Boundaries		TRI ${ }^{\text {T- }}$								
		M_{9}	M_{10}	M_{1}	M_{1}	TMean	ISD				Pe	P_{11}	P_{1}	S_{9}	S_{40}	S_{11}	S_{12}	LB	CB
Sample size $=20$																			
Existing IC	$\begin{array}{\|l} \hline \text { Type 1 } \\ \text { (All are same) } \\ \hline \end{array}$	0.6410	0.3770	0.4650	0.3950	0.4695	0.1205	00000	0.0000	0.0000									
Maximisation of MAPCS	Type 2	0.3725	0.9855	0.6625	0.9060	0.7316	0.2750	-3.9370	-0.7647	-2.0906	0.0000	0.0000	0.0000	0.0000	0.0000	4.0000	0.1000		
	Type 3	0.3760	0.9970	0.6460	0.9155	0.7339	0.2819	0.5935	0.9310	0.8012	1.0000	1.0000	1.0000	1.0000	0.0000	10.0000	0.1000		
Minimisation of SD among APCS	Type +	0.5635	05635	0.5635	$0 .=35$	0.5635	0.0000,	-0.2022	- 0.1329	-0.2334	0.0000	0.3000	00000	0.0000	0.0000	100000	0.1000		
	Type 5	0.5635	0.5635	0.5635	0.5635	0.5635	0.0000	0.9799	0.9867	0.9769	0.9975	1.0000	1.0000	1.0000	0.0000	1.0000	0.1000		
Sample size $=50$																			
Existing IC	$\begin{aligned} & \text { Type 1 } \\ & \text { (All are same) } \end{aligned}$	0.7685	0.4010	0.4955	0.4365	0.5254	0.1667	0.0000	0.0000	0.0000									
Maximisation of MAPCS	Type 2	0.5330	0.9935	0.8095	0.9600	08240	0.2099		-1.0541	-2.7323	0.0000			0.0000		40000			
	Type 3	0.5165	0.9935	0.8330	0.9540	08242	0.2162	08488	0.9523	08981	1.0000	2.0000	2.0000	3.0000	0.0000	10.0000	0.0001		
Minin isation of SD among APCS	Type 4	0.6785	0.6785	0.6785	0.6785	0.6785	0.0000	-0.1841	0.2797	0.3831	0006	0.0000	0.0000	0.0000	0.0000	10.0000	01000		
	Type 5	0.6785	0.6785	0.6785	0.5785	0.6785	0.0000	0.9927	0.9889	0.9848	09932	1.0000	10000	1.0000	00000	1.0000	0.1000		
Sample size $=160$																			
Existing IC	$\begin{aligned} & \text { Type } 1 \\ & \text { (All are same) } \end{aligned}$	0.8505	04350	0.5005	0.4495	0.5589	0.1964	0.0000	0.0000	onoco									
Maximisation of MAPCS	Type 2	05530	0.9845	0.8785	0.9685	0.8711	0.1527	. 34805	-1.2128	-2.5651	0.0000	1.0000	1.0000	2.0000	00000	4.0000	0.0010		
	Type 3	0.6520	0.9985	0.8760	0.9715	0.8745	0.1574	08364	0.9760	0.9474	9.2103	9.2103	9.2103	9.2103	00000	92103	0.0100		
Minimisation of SD among APCS	Type 4	0.7580	0.7580	0.7530	0.7580	0.7580	0.0000	-0.3382	-0.3997	. 0.5470	0.0000	0.0000	0000	00000	0.0000	10.0000	0.1000		
	Type 5	0.7580	0.7580	0.7580	0.7580	0.7580	$0.000{ }^{\prime}$	0.9933	0.9920	0.9891	0.9204	1.0000	: 0000	1.0000	0.0000	1.0000	0.1000		

* Additive penalty for mostel M_{0} is zero and multiplicative penaliy for model M_{y} is one
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised ag-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error

Table 6.12a Average probabilities, mean average probabilities and standard deviations of average probabilities of correct selection of models corresponding to the largesi mean average probabilities of correct selection under different methods for sample sizes $\mathbf{2 0}, \mathbf{5 0}$ and $\mathbf{1 0 0}$ for Design 5.6 together with relative penalty values and input values of SAO technique.

Method	Penalty type	A verage probabilities of correct selection of model						Relative penalties			Input values for simulated anneating								
								Starting values of penalties	Boundaties		TRF*								
		M_{9}	$M_{\text {il }}$	141	M_{1}	Mean	SO				$P_{i 0} \ldots$ II	P^{\prime}	P_{1}	S_{8}	S_{10}	\leqslant_{11}	s_{12}	LB	$U B$
Sample size $=20$																			
Existing IC	Type 1 (All are same)	0.4295	0.6030	0.4520	0.4630	0.4869	0.0787	0.0000	0.0000	0.0000									
Maximisation of MAPCS	Type 2	0.8290	0.2640	6.5340	0.6330	0.5650	0.2351	1.6520	0.6531	0.5078	0.0000	0.0000	0.0000	0.0000	4.0000	4.0000	0.1000		
	Type 3	0.8290	0.2640	0.5340	0.6330	0.5650	0.2351	1.1796	1.0675	1.0521	1.0000	2.0000	2.0000	3.0000	0.0006	10.0000	0.1000		
Minimisation of SD among APCS	Type 4	0.5195	0.5195	0.5195	0.5195	0.5195	0.0000	0.1446	0.0096	0.0178	0.0000	0.0000	0.0000	0.0000	0.0000	10.0000	0.1000		
	Type 5	0.5195	0.5195	0.5195	0.5195	0.5195	0.0000	1.0146	1.0010	1.0018	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.1000		
- ${ }^{\text {a }}$ Sample size $=50$																			
Existing IC	$\begin{aligned} & \text { Type I } \\ & \text { (All are same) } \end{aligned}$	0.5360	0.6960	0.5555	0.5520	0.5849	0.0746	0.0000	0.0000	0.0000									
Maximisation of MAPCS	Type 2	0.8325	0.4160	0.5895	0.7950	0.6583	0.1936	1.3174	0.5771	0.1042	0.0000	0.0000	0.0000	0.0000	4.0000	4.0000	01000		
	Type 3	0.8325	0.4160	0.5895	C. 7950	$0.65{ }^{0} 3$	0.1936	1.0541	1.0233	1.0042	1.0000	2.0000	2.0000	3.0000	0.0000	100000	0.1000		
inimisation of SD among APCS	Type 4	0.6150	0.6145	0.6140	0.5145	0.6145	0.0.004	0.1459	0.0133	0.0150	0.0000	0.0000	0.0000	0.0000	0.0000	4.0000	0.1000		
	Type 5	0.6145	0.6140	0.6145	06150	0.6145	0.0004	1.0058	1.0005	1.0005	1.0000	1.0000	1.0000	1.0000	0.0000	10.0000	0.0100		
Sample size $=100$																			
Existing IC	Type 1 (All are same)	0.6290	07505	0.6785	0.6565	0.6786	0.0520	0.0000	0.0000	0.0000									
Maximisation of MAPCS	Type 2	0.9270	0.5510	0.7080	0.7890	0.7438	0.1571	1.4753	08747	0.6798	0.0000	0.0000	00000	00000	0.0000	10.0000	0.1000		
	Type 3	0.9270	0.5510	0.7080	0.7890	0.7438	0.1571	1.0300	1.0177	1.0137	1.0000	1.0000	1.0000	1.0000	0.0000	10.0000	0.1000		
Minimisation of SD among APCS	Type 4	0.7045	0.7045	0.7045	0.7045	0.7045	0.0000	0.9476	0.0514	0.0328	0.0000	0.0000	0.0000	0.0000	00000	10.0000	0.1000		
	Type 5	0.7045	0.7045	0.7045	0.7045	0.7045	0.0000	1.0029	1.0010	1.0007	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	0.1000		

* Additive penalty for model M_{9} is zero and multiplicative penalty for model M_{9} is one
** TRF Temperature reduction factor
Type 2 and Type 4 are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penaties with mean squared error

Table 6.12b Average probabilities, mean average probabilities and staziderd deviations of average probabilities of correct selection of models corresponding to the smallest variation among the average probabilities of correct selection of models under different methods for sample sizes 20,50 and 100 for Design 5.6 together with relative penalty values and input values of SAO) technique.

* Additive penalty for model M_{q} is zero and multiplicative penality for model M_{c} is nhe
** TRF Temperature reduction factor
Type 2 and $\mathrm{Ty},-4$ are additive penalties with maximised log-likelihood function
Type 3 and Type 5 are multiplicative penalties with mean squared error

CHAPTER 7

SUMMARY AND CONCLUSIONS

One of the important decision making problems in econometrics and statistics is to choose an appropriate model to represent a particular data set from a set of alternative models. There are several ways of solving this problem and the most popular way is the use of an information criteria (IC). In an IC based model selection procedure, the model which has the largest maximised log-likelihood minus a penalty function is chosen as the best model. Several IC based model selection procedures have been proposed in the literature. The penalty function of all exisiting IC procedures depend on the number of free parameters in the model and, in most of the cases, the sample size. One of the main disadvantages of these IC procedures is that their performance varies from data set to data set and none perform well in all situations. Some IC procedures favour the model with the smallest number of parameters while others favour the model with the largest number of parameters. One of the unresolved questions is which criteria one should use to select the best model for a particular data set. Also, the penalty functions used in these IC are independent of the data set. Thus for the same set of models, a change of data does not have any impact on the penalty function. When the competing models have the same number of parameters,
there is no need to use a penalty function and the problem reduces to choosing the model with the largest maximised log-likelihood, which is a weakness of this approach. Thus, it is our belief that bet!r handling of the penalty function will improve the probability of selection of the correct model. The main aim of this thesis is to investigate the ways in which the information in the data can be used to calculate the penalty function, so that the mear: average probability of correct selection (MAPCS) is increased or optimised.

A survey of relevant literature on model selection was presented in Chapter 2. We first reviewed the literature on model selection based on sum of squared errors and then we surveyed model selection based on IC. It was argued that none of the existing IC performs well in all situations, so a new technique of model selection, which performs well on average in all situations was needed. Finally, we introduced the SAO technique and reviewed its applications in econometrics.

The main purpose of Chapter 3 was twofold. First to introduce a new method for computing penalties for selecting the best model from a set of competing models, which assure the best average probability of correct selection. Another purpose was to find the most efficient combination of the number of parameter drawings (q) and replications (N) for estimating APCS via a simulation experiment for a fixed number of total simulations, $q N$. We used the average standard deviation averaged over the
number of competing models (ASD) as a measure of efficiency and coefficient of variation (CV) as a measure of reliability of the estimated MAPCS.

We found that the relationship between ASD and q is well represented by the regression model $\ln (\mathrm{ASD})=\hat{a}+\hat{b} \ln (q)+\hat{c}(\ln (q))^{2}$. as the adjusted \bar{R}^{2} are large (>0.95), the estimated coefficients of the model are also highly significant and there is no significan autocorrelation. The value of q, where the value of ASD is at a minimum. is almost in all cases greater than the maximum value of $g N$ (here 2000). This implies that the maximum number of drawings of parameters produces the most efficient estimate of the MAPCS. For this combination of q and N, the value of CV is also the lowest.

We observed that the penalty functions of $\mathrm{AIC}, \mathrm{BIC}, 1 \mathrm{HQ}, \mathrm{RBAR}, \mathrm{GCV}$ and HOC for the $j^{\text {th }}$ model can be generalised to a single penaliy function $p_{1}=\lambda_{1} k_{1}+\lambda_{2} \ln \left(n-k_{j}\right)$. For the listed existing criteria, λ_{1} and λ_{2} are determined by the sample size n. In our proposed method of computing penalties for IC based model selection, we allowed λ_{1} and λ_{2} to take any values that maximise the esiimated MAPCS. We proposed five IC, and for the $j^{\text {th }}$ model the criteria are as follows:

$$
\begin{aligned}
& \mathrm{NICl}_{j}=L\left(\hat{\theta}_{j}\right)-\lambda_{1} k_{j} \\
& \mathrm{NIC} 2_{j}=L\left(\hat{\theta}_{j}\right)-\lambda_{1} \ln \left(n-k_{j}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{NIC} 3_{1}=L\left(\hat{\theta}_{3}\right)-\lambda_{1} k_{1} \ln \left(n-k_{i}\right) \\
& \mathrm{NIC} 4_{1}=L\left(\hat{\theta}_{1}\right)-\lambda_{i} k_{i} \text { and } \\
& \mathrm{NIC} \\
& 1
\end{aligned}=L\left(\hat{\theta}_{1}\right)-\left(\lambda_{1} k_{2}+\lambda_{2} \ln \left(n-k_{1}\right)_{1} .\right.
$$

We conducted simulation experiments to evaluate the performance of these proposed IC compared to the performance of existing cited IC in linear regression model settings.

The simulation results revealed that the performances of the six listed IC vary from situation to situation and from data set to data set. Even for a particular data set, the performance of the selected criteria varies from sample suze to sample size. In all designs under study, the MAPCS increases as the sample sizes increases. Within a particular design under any criteria, the variation among the APCS decreases as the sample size increases. In terms of MAPCS, none of the listed criteria performs well in all situations. But for all designs and sample sizes, the MAPCS ohtained using the new method and the proposed IC are always higher than that of the largest MAPCS obtained from the listed existing criteria. Also, in general, the variation among the APCS is smaller than that of all the listed criteria except RBAR.

The performances of all new proposed IC are very similar, although the performances of NIC4 and NIC5 are better than those of the others. The estimation of two
parameters is required for NIC4 and NIC5 and this can be time consuming. The improvements of MAPCS obtained from NIC4 and NIC5 over NIC1. NIC2 and NIC3 are not significant. So considering the computational time and improvement of MAPCS, NIC1. NIC2 and NIC3 seem to be better than NiC4 and NIC5 for selection of linear regression models.

In Chapter 4 we introduced the application of the simulated annealing optimisation (SAO) technique for penalty function calculation in linear regression settings. Two types of penalties were used with the SAO technique to maximise the MAPCS. These are an additive penalty used with the maximised log-likelihood function and a multiplicative penalty used with the mean squared error. We conducted simulation experiments to compare the performance of the existing IC procedures with the SAO technique as a method for finding penalty function values in terms of maximising the MAPCS. Simulation results demonstrate that the MAPCS obtained using the SAO technique with additive and multiplicative penalues are always higher than those of the existing criteria. We found that the relative penalties that maximise the MAPCS for a particular model are different for different data sets. Also for competing models of the same dimension, the relative penalties that maximise the MAPCS are different, but for the existing IC they are zero. This implies that the optimal penalty does not depend only on the sample size and the number of free parameters, but also on the data generating process. Simulation results show that the APCS obtained using a multiplicative penalty with mean squared error are very similar to those obtained
using an additive penally with maximised log-likelihood function. So. one can use either of these techriques to select the best model.

In Chapter 5 we investigated the use of the SAO technique to select the best model from a set of equi-dimensional alternative inodels. We conducted simulation experiments to evaluate the performance of the SAO technique in selecting the best model and used three types of penalties. The penatties are existing C (Type 1), maximisation of MAPCS using additive penaltues (Type 2) and multiplicative penalties (Type 3).

From the simulation results we observed the following:

- The SAO technique with additive penaltics always produced a larger MAPCS than any of the existing criteria.
- For the same set of equi-dimensional competing models the relative penalties that maximise the MAPCS are different and non-zero for different data sets. In contrast these are always equal to zero for the existing criteria.
- Exactly the same MAPCS is obtained from the different sets of relative penalties, which indicates that there is no unique set of penalties that maximises the MAPCS.
- The gap between the largest MAPCS and the smallest MAPCS obtained using the SAO technique is very small, which indicates that the maximised MAPCS is
insensitive to the intual parameter values for the SAO technoue. when the competing models have the same number of parameters.
- The MAPCS obtained from additive and multiplicative penaties are very similar. Therefore. from the user's point of vieu. one can tse either of the penalty types to select the hest model.

In Chapter 6 we investigated an alternative approach of finding the penalties that makes the APCS for each model equal or nearly equal based on the SAO technique. We used the standard deviation (SD) among the APCS as a measure of variation and applied the SAO technique to find the penaltics for a particular data set and set of competing models with the objective that the SD among the APCS of the different model is a minimum. For the purpose of comparison. we defined five types of penalties. These are existing IC (Type 1). maximisation of MAPCS (Type 2. addinive and Type 3, multiplicative) and minimisation of vartation among the APCS (Type 4. additive and Type 5, multiplicalive).

From the simulation results we found that for models with an unequal number of parameters, the MAPCS obtained from additive (Type 2) and multiplicative (Type 3) penalties by minimising the variation among the APCS using SAO technique are generally lower (around six percent) than those obtained from the existing criteria (Type 1). But for most of the experiments, the MAPCS corresponding to the smallest variation among the APCS is higher ($2.9 \%-15.1 \%$) than the corresponding MAPCS
for the existing crteria. Generally, the APCS obtaned from the existung criteria are far from equal. but the APCS obtained using Type 4 and Type 5 penaties are often equal or very close to cqual.

For equi-dimensional competing models. the MACPS obtained from using Type 4 and Type spenalties are gencrally higher than those of the exisung criteria. The variation among the APCS oftained from Type 4 and Type 5 peialties is aluays lower than that of the existing criterta and in some experiments, the APCS were equal for all combinations of the initial parameter sets used for the SAO technique. From the simulation experiments it is observed that Type 4 and Type 5 penalties are insensitive to the initiai parameter sets for the SAO technique for selecting the best model from a set of models of equal dimensions.

To find the best combination of the number of parameter drawings (q) and replications (N) for estimating APCS via simulation experiments for a fixed total number of simulations, $q N$. for selecting the best model with reliable MAPCS, we recommend the method proposed in Chapter 3. The performance of the technique we proposed to maximise the MAPCS for selecting the best model from a set of linear regression models with an unequal or an equal number of parameters is better then that of the existing criteria in all situations. The MAPCS obtained from our proposed method of minimising the variance in the average probability of correct selection is better than that of existing criteria most of the time, in particular the performance is
always better when the competing models are equi-dimensional. So. for selecting the best model from a set of competing hnear regression models with an unequal number of parameters. the method of maximisation of MAPCS proposed in Chapter 4 seems to be the best method. But for equi-dimensional competing linear regression models the technique of making APCS equal proposed in Chapter 6 is our recommended method.

Finally, the results from our experiments raise several interesting questions, which invite future research on the area of model selection. For example, our proposed method of model selection for lincar regression models assuming ideal conditions can be extended for the models with heteroscedastic errors, serially contelated errors. non-normal error distributions and the models that violate some of the assumptions of regression analysis to test the robustness of the methods. The performance of the proposed methods can be tested for the selection of other types of modets, which have not been considered in this thesis, for example non-linear models and modets with lagged dependent variables. This technique may the used to select the best linear forecasting models. All the existing model selection criteria are likelihood based. For non-likelihood based methods such as selection of regression models based on generalised estimating equations (GEE), there is a lack of model selection criteria. Recently Pan (2001) proposed a modification of AIC for selection of regression models based on GEE and the use of a quasi-likelihood in place of the standard likelihood in AIC. Our method of model selection with SAO and proposed penalty

Chapter 7

types could be examined as an alternative solution with the quasi-likelihood replacing the likelihood function.

REFERENCES

Abstract

Aarts. E.H. J. Korst and P.J. van Larhoven (1997). Simulated annealing. in E.H. Aans and J.K. Lenstra (eds.). Lecal Scarch in Comhinatorial Optimisatiom. John Wiley and Sons. New York.

Akaike. H. (1969). Fitting autoregressive models for prediction. Annals of the Institute of Statistical Mathematics. 21. 243-247.

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. in B.N. Petrove and F. Caski (eds.), Secomd Intermational Symposium om Information Therry. Akademiai Kiado, Budapest. 267-281.

Akaike, H. (1974). A new look it the statistical model identification. IEEE: Transactioms om Automatic Combrol, 19. 716-723.

Akaike, H. (1981). Likelihood of a model and information criteria. Jomrnal of Ecomometrics. 16, 3-14.

Ali, M.. A. Torn and S. Vitanen (1997). A direct search simulated annealing algorithm for optimisation involving continuous variables. ThCS Techmical Report No. 97. Turku Centre for Computer Science, Finland.

Allen, D.M. (1971). The prediction sum of squares as a criterion for selecting predictor variables. Teclmical Report No. 23. Deparrment of Statistics. University of Kentucky.

Allen, D.M. (1974). The relationship between variable selection and data augmentation and a method for prediction. Technometrics, 16, 125-127.

Amemiva. T. (1972). Lecture notes on econometrics. Department of Economics. Stanford University.

Amemiya. T. (1980). Selection of regressors. International Economic Review, 21. 331-354.

Athinson. A.C. (1980). A note on the generalised information criterion for choice of a model. Biometrika. 67, 413-418.

Atkinson, A.C. (1981). Likelihood ratios posterior odds and information criteria. Joumal of Economatrics. 16. 15-20.

Atkinson, A.C. and V.V. Federov (1975). The design of experiments for discriminating between two rival models. Biometrika, 62, 289-304.

Azam. M.N. and M.L. King (1998). Model selection with a data-driven penalty when there is an unknown change point in the data, mimeo, Monash University, Department of Econometrics and Business Statistics, Australa.

Bai, Z.D., C.R. Rao and Y. Wu (1999). Model selection with data-oriented penalty. Journal of Statistical Planning and liference. 77, 103-117.

Bhansali, R.J. and D.Y. Downham (1977). Some properties of the order of an autoregressive model selected by a generalisation of Akaike's FPE criterion. Biometrika, 64, 547-551.

Billah, M.B. (2001). Model selection for time series forecasting models, Unpublished Ph.D. thesis, Monash University, Australia.

Billah. M.B. and M.L. King (1998). Model selection and optimal penalty function estimation for time series models, mimeo. Department of Econometrics and Business Statistics, Monash University, Australia.

Billah. M.B. and M.L. King (2000a). Time series model selection and forecasting via optimal penalty estimation. Pakistan Joumal of Statistics. 16. 126-145.

Billah. M.B. and M.L. King (2000b). Using simulated annealing to estimate penalty functions for time series model selection. mimeo. Department of Econometrics and Business Statistics. Monash University.

Bohachervky. I.. M.E. Johnson and M.L. Stein (1986). Generalised simulated annealing for function optimisation. Technomerrics. 28. 209-217.

Bora-Senta. E. and S. Kounias (1986). Parameter estimation and order determination of autoregressive models. in O.D. Anderson (eci.), Analysing Time Series. North-Holland Publishing Company. Amsterdam. 93-108.

Breiman, L. and D. Freedman (1983). How many variables should be entered in a regression equation? Journal of the American Statistical Association. 78, 131-136.

Brownstone, D. (1990). How to "data mine" if you must: Bootstrapping Stein-rule model sclection procedtes. Technical Report No. MBS-08. Irvine Research Unit in Mathematical Behavioural Sciences, UC Urvine.

Bunke, H. and B. Droge (1985). A slepwise procedure for the selection of non lincar models. Mathematische Operationsforschung und Statistik, Scries Statistics, 16, 35-45.

Camevali, P.. L. Coletti and S. Patarnello (1985). Image processing by simulated annealing. IBM Joumal of Research and Developmem, 29. 569-579.

Cerny, V. (1985). A thermodynamic approach to the traveling salesman problem: An efficient solution. Joumal of Optima Theory and Application, 45, 41-51.

Chen. C.H., R.A. Davis. P.J. Brockwell and Z.D. Bai (1993). Order determination for autoregressive processes using resampling methods. Statistica Sinica, 3. 481-500

Corana. A., M. Marchesi. C. Martinı and S. Ridella (1987). Minimising multimoda! functions of continuous variables with the simulated annealing algorithm. ACM Transactions of Mathematical Softmare. 13. 262-280.

Cramer. J.S. (1986). Econometric Applicutioms of Maximum Likelihood Methods, Cambridge University Press. New York.

Crato, N. and B.K. Ray (1996). Model selection and forecasting for long-range dependent processes. Journal af Forccasting. 15. 107-125.

Craven. P. and G.S. Wahba (1979). Smoothing noisy data with spline functons: Estimating the corred degree of smoothing by the method of generalised cross validation. Numerische Mathematik. 31, 377-4)3.

Davidson, R. and J.G. Mackinnon (1984). Model specification tests based on artificial lincar regressions. International Ecomomic Review, 25, 485-501.

DeGroot, M.H. (1970). Optimal Siatistical Decisioms, McGraw-Hill, New York.

Derwent, D. (1988). A better way to control population. Nature. 331, 575-578.

Dhrymes, P. (1970). On the game of maximising \bar{R}^{2}. Australian Economic Papers, 9.117-185.

Durbin, J. and G.S. Watson (1951). Testing for serial correlation in least squares regression. Biometika, 159-178.

Eastwood, A. and L.G. Godfrey (I992). The properties and constructive use of misspecification tests for multiple regression, in L.G. Godfrey (ed.), The

Implementation and Constructive Use of Misspecification Tests in Econometrics. Manchester University Press. Manchester. 109-175.

Finch. S.J.. N.R. Mendall and H.C. Thode (1989). Prohabilistic measures of accuracy of numerical search for global maximum. Journal of the American Statistical Association. 84. 1020-1023.

Forbes, C.S.. M.L. King and A. Morgan (1995). Sinall sample variable selection procedures. An unpublished manuscript, Monash University.

Fox. K.J. (1995). Model selection criteria: A reference source. An unpublished manuscript. University of New South Wales.

Gaver, K.M. and M.S. Geisel (1974). Discriminating among alternative models: Bayesian and Non-Bayesian methods. in Paul Zarembka (ed.). Fromiers of Econometrics. Academic Press. New York, 49-77.

Geisser. S. (1974). A predictive approach to the random effect model. Biometrika, 61, 101-107.

Geisser, S. (1975). The predictive sample reuse method with applications. Journal of the American Statistical Association, 70. 320-328.

Giles, J.A. and D.E.A. Giles (1993). Pre-test estimation and testing in econometrics: Recent developments. Journal of Economic Survexs, 7, 145-197.

Goffe, L.G., G.E. Ferrier and J. Rogers (1994). Global optimisation of statistical functions with simulated annealing. Journal of Econometrics, 60, 65-99.

Gorman, J.W. and R.J. Toman (1966). Selection of variables for filting equations to data. Technometrics, 8. 27-51.

Granger. C.J.W.. M.L. King and H. Whate (1995). Comments on lesting economic theories and the use of model selection criteria. Journal of Econometrics. 67. 173-187.

Grassa. A.A. (1989). conometric Model Selection: A New Approach. Kluwer Academic Press. Boston.

Gray, P.. W. Hatt. L. Painton. C. Philips. M. Trahan. and J. Wagner, (1997). A survey of global optimisation. Sandia National Laboratories. Albuquerque. [Onfine]. Available: hup://www.cs.sandia.gov/op/survev/main.html.

Grose. S.D. and M.L. King (1994). The use of information criteria for model selection between models with equal numbers of parameters. Paper presented at the 1994 Australasian Mecting of the Econometric Society. Armidale.

Hannan. E.J. (1982). Testing for autocorretation and Akaike's criterion, in J. Gani and EJJ. Hannan (eds.), Essays in Statistical Science. Papers in Honour of P.A.P. Moran, Applied Probability Tru:l. Sheffield, 403-412.

Hannan. E.3. and B.G. Quim (1979). The determination of the order of an autoregression. Journal of the Royal Statistical Socicty, B, 41. 190)-195.

Harvey, A.C. (1981). The Eicomometric Analysis of Time Series. Philip Allan Publisher. The United Kingdom.

Hocking, R.R. (1976). The analysis and selection of variables in linear regression. Biometrika, 32, 1-49.

Holmes, J.M. and P.A. Hutton (1989). Optimal model selection when the true relationship is weak and occurs with a delay. Economics Letters, 30. 333339.

Hossain. Z. (1998). Model selection problems involving interval restricted parameters in econometrics. Unpublished Ph.D. thesis. Department of Econometrics and Business Statistics. Monash University.

Hughes. A.w. (1997). Improved model selection based on AlC-type criteria. Unpublished Ph.D. thesis. Department of Econometrics and Business Statistics.. Monash University.

Hughes. A.W. and M.L. King (1994). One-sided model selection procedures. Paper presented at the 1994 Australasian Meeting of the Econometric Society, Armidale.

Hurvich, C.M. and C.-L. Tsai (1989). Regression and time series model selection in small samples. Biometrika, 76, 297-307.

Hurvich. C.M. and C.-L. Tsai (1990). The impact of model selection on inference in linear regression. The American Statistician. 44. 214-217.

Hurvich. C.M. and C.-L. Tsai (1991). Bias of the corrected AIC criterion for underfitted regression and time series models. Biometrika. 78, 499-509.

Hurvich, C.M. and C.-L. Tsai (1993). A corrected Akaike information criterion for vector autoregressive model selection. Journal of Time Series Analysis. 14. 271-279.

Johnson. D., and L. McGeoch (1997). The traveling salesman problem: A case study in local optimisation, in E.H. Aarts and J.K. Lenstra (eds.), Local Search in Combinatorial Optimisation, John Wiley and Sons, New York.

Judge, G.G., R.C. Hill. W.E. Griffiths, H. Lütkepohl and T.-C. Lee (1985). The Theory and Practice of Econometrics. 2nd edition. John Wiley, New York.

Judge. G.G.. R.C. Hill. W.E. Griffiths. H. Lüthepohl and T.-C. Lee (1988). Introduction to the Theory and Practice of Ecomometrics. Ind edition. John Wiley. New York.

Kinal. T. and K. Lahiri (1984). A note on selection of regressors. International Economic Review. 25. 624-629.

King. M.L. (1987). Towards a theory of point-optimai lesting. Ecomometric Reviews, 6. 169-218.

King. M.L. and G.K. Bose (2002). Finding optimum penalties for model selection in linear regression. in D.E.A. Giles (ed.). Computer Aided Econometrics. Marcel Dekker (forthcoming).

King. M.L. C.S. Forbes and A. Morgan (1995). Improved small sample model selection procedures. Paper presented at the 1995 World Congress of the Econometric Sociely. Tokyo.

Kirkpatrick. S.. C.D. Gelatt and M.P. Vecchi (1983). Optimization by simulated anncaling. Science, 220. 671-680.

Kochler. A.B. and E.S. Murphree (1988). A comparison of the Akaike and Schwarz criteria for selecting model order. Applicd Statisticx. 37. 187-195.

Kohn. R. (1983). Consistent estimation of minimal subset dimesision. Econometrica, 51. 367-376.

Kullback. S. and R.A. Leibler (1951). On information and sufficiency. Annals of Mathematical Statistics, 13, 79-86.

Kwek, K.T. (2000). Model selection for a class of conditional heteroscedastic processes. Unpublished Ph.D. thesis, Department of Econometrics and Business Statistics, Monash University.

Kwek. K.T. and M.L.. King (1997al. Model selection and optimal penalty estimation for conditional heteroscedastic processes. in P. Bardsley and V.L. Martin (eds.). Procecdings of the Econometric Society Australasian Meeting. 2. University of Melbourne. Australia. 143-176.

Kwek. K.T. and M.L. King (1997b). Model selection of ARCH process using iterative optimal penalties. Proceedings of the Third Annual Doctoral Research Coufereme. Monash L'nisersity. Clayton. Victoria, 5I-62.

Kwek. K.T. and M.L. King (1998). Information criteria in conditional heteroscedastic models: A Bayesian approach to peralty function building. in C.L. Skeels (ed.). Procecdings of the Econometric Sorcicty Australasian Meeting. CD ROM. The Australian National University, Canterra, Australia.

Lawler, E.L. (1976). Combinatorial Opimisation: Networks and Matroids. Holt, Rinchart and Winston. New York.

Leamer, E.E. (1978). Specification Searches. Wiley. New York.

Linhart. H. and W. Zuchini (1986). Model Selectiom. Wiley, New York.

Lütkepohl, H. (1984). Forecasting contemporaneously aggregated vector ARMA processes. Journal of Business and Ecomomic Statistics. 2, 201-214.

MacKinnon, J.G. (1983). Model specification tests against non-nested alternatives. (with discussion and reply). Ecomomerric Reviens. 2. 85-157.

Maddala. G.S. (1992). Inroduction to Ecomometrics. Macmillan Publishing Company, New York.

Malinvaud, E. (1981). Econometrics faced with the need of microeconomic policy, Econometrica, 49, 1363-1375.

Mallows, C.L. (1964). Choosing variables in a linear regression: A graphical aid. Paper presented at the Central Regional Meeting of the Institute of Mathematical Statistics. Manhantan. Kansas.

McAleer. M. (1987). Specification tests for separate modeis: A survey in M.L. King and D.E.A. Gıles (eds.). Specification Analvsis in the Linear Model: Essays in Honour of Domald Cechranc. Routledge and Kegan Paul. New York. 146-196.

Meese. R. and J. Geweke (1984). A comparison of autoregressive univariate forecasting procedures for macroconomic time series. Journal of Business and Economic Statistics. 2. 191-200.

Metropolis. N.. A.W. Rosenbluth. M.N. Rosenbluth. A.H. Teiler and E. Teller (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics. 21, 1087-1091.

Mills, J.A. and K. Prasad (1992). A comparison of model selection eriteria. Ecemometric Revicws, 11. 201-233.

Nishii. R. (1986). Criteria for selection of response variables and the asymptotic properties in a multivariate calibeation. Amals of the Institute of Statistical Mathematics. 38, 319-329.

Nishii. R. (1988). Maximum likelihood principle and model selection when the true model is unspecified. Journal of Multivariate Analysis, 27, 392-403.

O'Hagan, J. and B. McCabe (1975). Tests for the severity of multicollinearity in regression analysis: A comment. Review of Ecomomics and Statistics, 57, 368-370.

Pan. W. (2001). Akaike's information criterion in generalised estimating equations. Biometrics 57, 120-125.

Papadimitriou, C.H. and K. Steiglitz (1982). Combinatorial Optimisation: Algorithms and Complexity. Prentice-Hall. New York.

Pearce. D.W. (1992). Macmillan Dictionan of Modern Economics. Macmillan Publisher. The United Kingdom.

Pesaran. M.H. and B. Pesaran (1987). Data-fit: An Intcraciive Ecomometric Sofiware Package. Oxford University Press. The United Kingdom.

Pinter. J.D. (1996). Continuous global optimisation sofiware: A brief reviex [Online]. Available: http://mat.gsia.cmu edu/pinter:fil.

Pötscher. B.M. (1991). Efferv; of model selection on inference. Ecomometric Theory. 7. 163-185.

Pronzato. L.. E. Walter. A. Venot and J.F. Lebruchec (1984). A gereral purpose optimiser: Implementation and applications. Mathematics and Computers in Simulutions, 24, 412422.

Rahman. M.S. (1998). Generalised Model Sclection Criterion. in C.L. Skeels (ed.), Procecdings of the Eicomometric Society Australasian Merting. CD ROM. Australian National University, Canberra, Australia.

Rahman. M.S. and M.L. King (1997). Probability of correct identification in model selection, in P. Bardsley and V.L. Martin (eds.), Proceedings of the Lconometric Socicty Australasion Meeting. 2, University of Melbourne, 613-640.

Rahman. M.S. and M.L. King (1999). Improved model selection criterion. Communications in Statistics - Simulation and Computation. 28, 51-71.

Ramsey, J.B. (1969). Tests for specification errors in classical linear least squares regression analysis. Journal of the Roya Statistical Societt. B, 31, 350-371.

Rao. C.R. and Y. Wu (1989). A strongly consistent procedure for model selection in a regression probi.m. Biometrika. 76. 369-374.

Rissanen. J. (1978, Modelling by shortest data description. Amomatica. 14, 465-471.

Rissanen. J. (1986). Stochastic complexity and modelling. Annals of Statistics, 14, $1080-1100$.

Rissanen. J. (1987). Stochastic complexity and modelling. Joumal of the Roval Statistical Societr: B, 49, 223-239 and 252-26.5 with discussions.

Rissanen. 1. (1988). Stochastic complexty and the MDL principie. Economotric Revieus. 85-102.

Romeo. F., V.A. Sangrovanni and C. Sechen (1984). Research on simulated annealing at Berkeley, in Procedings of the IELEE Intemational Conferchee om Computer Design. (CD 84. IEEE. New York, 652-657.

Rothman. D. (1968). Letter to the edtor. Tedmometrics. 10.4.32.

SAS Institute Inc. (1992). Primeiples of Regression Analyws Comese Notes. USA.

Sawa. T. (1978). Information criteria for discriminating among altemative regression models. Eicomometrica, 46. 1273-1291.

Schmidt, P. (1971). Methods of choosing among altemative models. Economerrics Workshop Paper Mr. 7004. Michigan State University.

Schmidt. P. (197.3). Cakulating the power of the minimum standard enor choice criter: : :

Schmidt. P. (1975). Choosing among atternative linear regression models: A correction and some further resuls. Atlantic Economic Joumal. 3, 61-63.

Schmidt. P. and R. Tscherning (1993). Identification of fractional ARIMA models in the presence of long memory. Discussion paper. University of Munich. Munich. Germany.

Schwarz. G. (1978). Estimating the dimension of a model. Annals of Statistics, 6. 461-464.

Shao. J. (1993). Linear model selection by cross-validation. Journal of the American Statistical Assectanion. 88. 486-494.

Shibata, R. (1976). Selection of the order of an attoregressive model by Akaike's information criterion. Biomerrika, 63. 117-126.

Shibata, R. (1981). An optimal selection of regression variables. Biomertika, 68, 4554.

Shibata. R. (16;0). Consistency of model selection and parameter estimation, in J. Gani and M.B. Priestley (eds.), Essays in Time Series and Allied Pracesses. Journal of Applied Probability, 23A, 127-141.

Stone. M. (1974). Cross-validatory choice and assessment of statistical predictors (with discussion). Journal of the Roval Statistical Society, B, 36, 111-147.

Stone, M. (1977). Asymptotics for and against cross-validation. Biometriki, 64, 2935.

Sugiuro, N. (1978). Further analysis of the data by Akaike's information criterion and the finite cortections. Commumications in Statistics - Theory and Methodology, 7, 13-26.

Summers. R. and A. Heston. (1991). The Penn World Table (Mark 5): An extended set of international comparisons, 1950-1988. Quarterly Journal of Econometrics. 106, 327-368.

Szu. H. and R. Hartley (1987). Fast simuiated annealing. Physics Letters. A, 3. $157-$ 162.

Telly. H.. Th.M. Liebling and A. Mocellin (1987). Reconstruction of polycrystalline structures: A new application of combinatorial optimisation. Complating. 38. 1-11.

Theil. H. (1961). Liomomic Forecasts and Policy. Second edition. North-Holland. Amsterdam.

Theii, H. (1971). Principles of Ecomometrics. Wiley, New York.

Thompson, M.L. (1978). Selection of variables in multiple regression. International Stanistical Review. 40.1-19 and 129-146.

Vanderbilt. D. and S.G. Louie (1984). A Monte Carlo simulated annealing approach to optimisation over continuous variables. Journal of Compuational Physics. 50, 259-271.

Vetterling. W.T.. W.H. Press. S.A. Teukolsky and B.P. Flannery (1994). Numerical Recipes in FORTRAN: The An of Scientific Computing. Cambridge U'riversity, New York.

Wallace, T.D. (1977). Pre-test estimation in regression: A survey. American Journal of Agricultural Eiconomics, 59, 431-443.

Wang, D.F, H.W. Leong and C.-L. Liu (1988). Simulated Annealing for VLSI Design. Kluwer Academic Publishers. Boston, MA.

Referpaces

Wasserman. P.D. and T. Schwartz (1988). Neural networks. part 2: What are they and why is everybody so interested in them now? IEE Experf. Spring. 10-15.

White. H. (1982a). Maximum likelihood estimation of misspecified models. Econometrica. 50. 1-25.

White. H. (ed.). (1982b). Model specification. Joumal of Econometrics. 20. 1-157.

White. H. (ed.). (1983). Non-nested models. Journal of Ecomometrics. 21. 1-160.

White, H. (1990). A consistent model selection procedure based on M-testing, in C.W.J. Granger (ed.). Modelling Economic Series: Readings in Econometric Methodology. Oxford University Press. Oxford.

White. K. (1978). A general computer program for econometric methods SHAZAM, Eicomemetrica. 46. 239.240.

White, S.R. (1984). Concepts of scale in sumulated annealing. in Proceding of the IEEE Internatiomal Conference on Computer Design. ICCD 84. IEEE. New York, 46-651.

Williams. P. and D. Sams (1981). Houschold headship in Australia: Futher developments to the IMPACT project's conometric model of household headship. IMPACT Project Research Centre Working Paper. No. BP-26. Augusi 1981, 91-96.

Zellner, A. (1971). An Inroduction to Bayesian Inference in Ecomomerrics, John Wiley and Sons. New York.

Zhang, P. (1992). On the distributional propertics of mode! selection criteria. Journal of the American Statistical Association. 87, 732-737.

[^0]: ${ }^{1}$ A paper based on some of the findings reported in this shapter and Chapter 4 has been accepted for publication in Computer Aided Ecomometrics, edited by D.E.A Giles, see King and Bose (2002).

[^1]: ${ }^{1}$ A paper based on some of the findings reported in this chapter and Chapter 3 has been accepted for publication in Computer Aided Economerrics, edited by D.E.A Giles. see King and Bose (2002).

[^2]: ${ }^{2}$ Suppose we have four competing alternative models M_{1}, M_{2}, M_{3} and M_{4} with number of free parameters k_{1}, k_{2}, k_{3} and k_{4}, respectively. Then the relative penalties of AIC for the models M_{1}, M_{2}, M_{3} and M_{4} are $0, k_{2}-k_{1}, k_{3}-k_{1}$ and $k_{4}-k_{1}$, respectively.

[^3]: ${ }^{3}$ We have 96 MAPCS for 96 combinations of initial parameter values for the SAO technique applied to Type 2 penalties. We computed the mode and median of these 96 MAPCS.

[^4]: ${ }^{4}$ We have 56 MAPCS for 56 combinations of initial parameter values for the SAO technique applied to Type 3 penalties. We computed the mode and median of thece 56 MAPCS .

[^5]: ${ }^{5}$ We have 60 MAPCS for 60 combinations of initial parameter values for the SAO technique applied to Type 3 penalties. We computed the mode and median of these 60 MAPCS.

[^6]: * Additive penalty for model M_{i} is zero and multiplicative penalty for model M_{i} is ame
 ** TRF Temperature reduction factor

[^7]: * Additive penalty for model M_{i} is zero and multiplicative penalty for model M_{i} is one
 ** TRF Temperature reduction factor

[^8]: * Additive penalty for model M_{1} is zero and multiplicative penalty for model $M_{\text {I }}$ is one
 ** TRF Temperature reduction factor

[^9]: * Additive penalty for model $M /$ is zero and multuplicative penalty for model $M /$ is onc
 ** TRF Temperature reduction factor

[^10]: * Additive penality for model M_{1} is zero and multiplicative penalty for model M_{1} is one

[^11]: ** TRF Temperature reduction factor

[^12]: * Additive penalty for model M_{l} is zero and multiplicative penally for model M_{1} is one

[^13]: ** TRF Temperature reduction factor

[^14]: ${ }^{1}$ There are 96 MAPCS for 96 combinations of initial parameter values for Type 2 penalties oblained using the SAO technique. We computed the largest. smallest. mode and median of these 96 MAPCS.

[^15]: * Additive penalty for model M_{1} is zero and multiplicative penalty for model M_{1} is one
 ** TRF Temperature ieduction factor

[^16]: * Additive penalty for model $M_{\text {; }}$ is zero and multiplicative penalty for model $M_{\text {}}$ is one
 ** TRF Temperature reduction factor

[^17]: * Additive penalty for model M_{1} is zero and multiplicative penalty for model M_{i} is ane

[^18]: * Additive penalty for model M_{1} is zero and multiplicative penalty for model M_{1} is one
 ** TRF Temperature reduction factor

[^19]: * Additive penalty for model M_{I} is zero and muliiplicative penalty for model M_{j} is one
 ** TRF Temperature reduction factor

[^20]: * Additive penalty for model M_{s} is zero and multiplicative penalty for model M c is one
 ** TRF Temperature reduction factor

[^21]: * Additive penalty for model M_{5} is zero and multiplicative penalty for model M_{s} is one
 ** TRF Temperature reduction factor

[^22]: * Additive penalty for model M_{5} is zern and multiplicalive penally for model M_{4} is ane
 ** TRF Temperature reduction factor

[^23]: * Additive penalty for model M_{y} is zero and multiplicative penalty for model M_{0} is one
 ** TRF Temperature reduction factor

[^24]: * Additive penalty for model M_{0} is zero and multiplicative penalty for model M_{0} is one
 ** TRF Temperature reduction factor

[^25]: ** TRF Temperature reduction factor

[^26]: Aciditive penaity for model M_{1} is zern and multiplicative penalty for model M_{3} is ane
 ** TRF Temperature reduction factor
 Type 2 and Type 4 are additive penaltes whith maximised los-likelihorad function
 Type 3 and Type 5 are multip'icative penalties with mean squared error

