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ABSTRACT

This thesis is concerned with some problems in the epistemology of

mathematics, hi the first three chapters, I argue that the proper approach to

this subject is descriptive rather than normative. The aim of the

epistemology of mathematics should be to present an account of the ways in

which mathematical beliefs are justified which illuminates the practice,

history and methodology of mathematics. In the second half, I develop an

account of mathematical evidence based on the concept of explanatory

unification. I argue that the account of mathematical evidence developed

here reveals that despite appearances to the contrary, mathematics is a

science like any other.
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There are two main kinds of philosophical question that can be asked about

mathematics; ontological questions and epistemological questions. Ontologjcal questions

are concerned with the subject matter of mathematics. What, if anything, is mathematics

about? An obvious kind of answer immediately suggests itself. The different branches of

mathematics are about different things. Number theory is about the natural numbers,

geometry is about points, lines and shapes, set theory is about sets and so on.

This kind of answer, of course, immediately raises further questions. What kinds of

objects are numbers, points, lines and sets? Are they, as Plato believed, objectively

existing, but non-physical or abstract objects, or are they, as others have thought, mental

constructions or ideas? Or are they physical objects? Perhaps it is a mistake to think of the

subject matter of mathematics in terms of particular objects. Perhaps the subject matter of

mathematics concerns universals; properties or relations of some kind. It is often said, for

example, that mathematics is in general the study of patterns or structures and that the

different branches of mathematics study different kinds of pattern. Then again, perhaps the

question with which we began is based on a false presupposition. According to formalists,

for example, mathematics has no subject matter. On this view, mathematics is essentially a

meaningless game with symbols, played according to arbitrary rules, like chess.

On the other hand, we have epistemological questions; questions concerning our

knowledge of mathematics. How do we come to know the truths of mathematics? How is

mathematical knowledge acquired? Plato held that mathematical knowledge was in some

sense innate. When we come to know a mathematical truth, we are really just remembering
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something we knew already but had forgotten.1 Later platonists held that mathematical

knowledge was not innate but learned, via a faculty of mathematical intuition, akin to, but

distinct from sensory perception, which gives us access to the platonic realm of abstract

objects.2 Others have held that mathematical knowledge is ultimately derived from the

senses. J. S Mill, for example, argued that arithmetical statements such as '2 + 2 = 4' were

simply highly confirmed inductive generalisations, gained from our experience of counting

collections of physical objects.3 Again, perhaps the whole question is based on a mistake.

If, as the formalists say, mathematics is simply a game we play with symbols, then there is

a sense in which we have no mathematical knowledge. If mathematics has no subject

matter, there is no question of how we can acquire knowledge of the objects of

mathematics. Perhaps all there is to mathematical knowledge is knowledge of technique,

'know how' rather than 'knowing that', like knowing how to ride a bike or how to get mate

in three moves from a certain chess position.

Answers to the question of how we acquire mathematical knowledge suggest further

epistemological questions. What is the epistemic status of the knowledge so acquired? How

does it differ, if at all, from other kinds of human knowledge? Is mathematical knowledge

certain and infallible? Or is it, like our knowledge of physics and chemistry, uncertain and

fallible, open to revision in the light of new evidence?

Obviously these epistemological and ontological problems are interdependent.

What, if anything, you take mathematics to be about will affect how, if at all, you think

mathematical knowledge is acquired. This is most clearly apparent in the case of

formalism; if you hold that mathematics is not a body of propositions which are about

anything at all, you are forced to the conclusion that there can be no mathematical

knowledge.4 Likewise, Plato's account of mathematical knowledge was dictated by his

account of the subject matter of mathematics as concerning a realm of abstract objects.

Such objects, being non-physical cannot be perceived and hence, Plato argued, our

knowledge of them cannot be based on the evidence of the senses. The only alternative

Plato saw was to say that our mathematical knowledge was innate.

Conversely, the way in which you think mathematical knowledge is acquired will

affect what you take the subject matter of mathematics to be. Mill, for example, as an

empiricist, held that all human knowledge must ultimately derive from the senses. In

particular, this has to bs true for mathematical knowledge. But if mathematical knowledge

is empirical, it seems that it cannot be knowledge of abstract, non-physical objects which

are inaccessible to perception. Therefore, mathematics must be about physical objects or

processes of some kind. Arithmetic, for example is a body of truths about the results of

counting and operating on collections of physical objects.5

Clearly, we would like to be able to answer both kinds of question and we would

like our answers to be consistent with each other. The main difficulty in the philosophy of

mathematics has not been that we have failed to find consistent answers to these questions.

Rather, the problem has always been one of finding answers to the two kinds of questions

1 This doctrine is described in the Meno. See [Jowett 1949].
2 See for example [Godel 1947].
3 See [Mill 1884].

4 One might say that we can have knowledge about the formalism itself, knowledge of the consistency of a
certain formal system for example. But as Frege argued, either meta-mathematics is mathematics, in which
case not all mathematics is simply a formal game and some of it is factual after all, or meta-mathematics itself
is open to a formalist description, in which case,, we have no factual mathematical knowledge. See [Frege
1884, §§93-119,Dummettl991,pp. 253-5].
5 This is an example of the famous saying 'One philosopher's modus ponens is anothers modus tollens.' Both
Plato and Mill accept the conditional; if mathematics is about abstract objects, it cannot be known via the
evidence of the senses. Plato accepts the antecedent and applies modus ponens, arriving at the doctrine of
anamnesis, Mill rejects the consequent, applies modus tollens and arrives at, what Frege derisively called his
'pebble arithmetic'. In more recent times, Quine has famously denied the conditional, arguing that there can
be empirical evidence for abstract objects.
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which are simultaneously acceptable. Plato's answers for example, are consistent with each

other, but not simultaneously acceptable. The claim that mathematics is about abstract

objects has much to recommend it; the doctrine that mathematical knowledge is innate does

not. In general, platonism, while independently plausible as an account of the ontology of

mathematics faces serious epistemological difficulties. Plato's solution to those difficulties

would not now have many adherents, but more seriously, as we shall see, some have argued

that no other solution is possible in principle. Likewise, Mill's empiricism is independently

plausible, but his account of the subject matter of mathematics is open to severe

objections.6

The final aim of the philosophy of mathematics should be to provide answers to the

ontological and epistemological questions about mathematics which are not only consistent

with each other but simultaneously acceptable. Although much progress has been made, we

are still a long way from attaining this goal. What makes it hard to arrive at simultaneously

acceptable answers to all these questions are the complex interconnections between them. It

is as though we are faced with a tangled knot; pulling out the loops in one place serves only

to tighten up the knots in another.

In this thesis, I will be concerned with epistemological questions, rather than

ontological ones. One aim is to show that there are many questions and problems in the

epistemology of mathematics which are quite independent of any particular account of its

subject matter. Some examples: Can there be empirical evidence for mathematical

statements? How does a mathematical proof provide us with evidence for its conclusion?

How are the axioms and other first principles of mathematical theories justified? Is

deductive justification the only kind of mathematical evidence? How can we make sense of

the idea, common to many mathematicians, that some proofs of a theorem show not only

that it is true, but also explain why it is true? I will attempt to provide answers to all these

questions in what follows. A second aim is to argue that mathematics is a science.

Mathematics is a science, not because it is empirical, but because it is sensitive to evidence.

The central problem I will be concerned with then, is that of describing and explaining the

nature of evidence in mathematics.

One kind of view concerning the nature of evidence in mathematics is

foundationalism. On this view, the proper justification of our mathematical beliefs consists

in showing how they can all be derived from a set of epistemologically secure first

principles. I critically examine this idea in chapter one, taking Frege's logicist programme

as my example.

hi epistemological terms, Frege's work represents two things. Firstly, it is an

example of a foundational account of mathematics, a description of the kind of evidence we

have for mathematics. I argue that as such it is a failure; mathematics is not built on unique

epistemologically privileged foundations. Secondly, Frege's work is an example of a

certain kind of approach to epistemological questions; an approach I want to call

normative, as opposed to descriptive. On this approach, the task of the epistemologist is to

attempt to justify mathematics, to provide reasons for believing that mathematics is true.

Foundationalism is the view that we can do this by delineating a set of first principles in

terms of which the justification can be carried out. Although the foundational ideal has

6 See, for example, [Frege 1884, §§7-11, Dummett 1991, pp. 58-61, Ayer 1936]. For a reconstruction and
defence of Mill's views see [Kitcher 1980].
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been largely abandoned in recent philosophy of a mathematics,7 the epistemological

problem is still often seen as one of providing a justification for mathematics. But why

should mathematics need justifying if we have given up the idea that it needs some kind of

a priori foundation? The feeling that there is still a problem of justification here stems from

the fact that mathematics appears to be concerned with abstract, non-physical objects. The

problem is then to explain how belief in such objects can be justified, given a broadly

naturalistic or empiricist account of human knowledge in general. One popular kind of

approach to this problem is to attempt construct a non-platonist ontology for mathematics

which allows for an empirical or perceptual route to knowledge of mathematics. In chapter

two, I examine some of this recent work and suggest some grounds for dissatisfaction with

the normative approach. This leads, in chapter three, to a more detailed examination of an

alternative, descriptive approach to the epistemology of mathematics. Here I focus on the

work of Imre Lakatos and Philip Kitcher. This serves not only to illustrate the kind of

descriptive approach to epistemological questions that I will be taking here, but also to

elaborate the thesis that mathematics is a science, by showing how its growth and

development is sensitive, in recognizably scientific ways, to evidence of various kinds.

I begin my investigation of the varieties of mathematical evidence with a discussion

of empirical evidence. Quine has famously argued that since mathematics is an integral part

of our best scientific theories and since those theories have been successfully confirmed by

experiment and observation, it follows that there is empirical evidence for mathematics. I

examine Quine's argument in chapter four. I argue that although there are some serious

problems with Quine's argument; problems connected with his general account of scientific

7 There are exceptions of course. Most notably, Crispin Wright has attempted a revival of Frege's
foundationalist programme, while Michael Dummett has argued for a version of intuitionism. See [Wright
1983, Dummett 1975].
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evidence; it is nonetheless indisputable that empirical evidence does play some role in

mathematics. Where I part company with Quine is on the question of whether empirical

evidence is the only kind of evidence we can have for mathematics. In fact, although utility

in science is one source of evidence in mathematics, it is not the only source^ or even the

main source. Far more important than utility in science is utility in mathematics.

In chapter five I take a closer look at this kind of mathematical evidence and sketch

the outlines of a general account. I argue that the key to giving an adequate account of

mathematical evidence lies in understanding the concept of explanation in mathematics. In

the final chapter, I attempt to develop an account of mathematical explanation and show

how it can cast some light on the nature of evidence in mathematics. I conclude with some

remarks on how this investigation of mathematical evidence reveals that despite

appearances to the contrary, mathematics is a science like any other.
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CHAPTER ONE

FOUNDATIONAL EPISTEMOLOGY

Many philosophers have supposed that the epistemological problem in the

philosophy of mathematics is to show how mathematical knowledge is possible by

providing a justification for our mathematical beliefs. An example of this kind of approach

is the view (or family of views) I call foundationalism. The central idea here is that all of

our mathematical beliefs can be justified in terms of an epistemologically privileged set of

first principles. The task of the philosopher is to uncover these first principles or

foundations and show how the required justification can be carried out.

In this chapter, I want to examine and criticise this idea. I will take as my example

the logicist programme of Gottlob Frege, not only because it represents the first fully

worked out attempt to provide mathematics with a foundation, but also because it raise

many important epistemological issues which will occupy us in later chapters. I describe

Frege's strategy for showing that arithmetic is a branch of logic and explain why that

strategy failed. I then examine some of Frege's epistemological assumptions. We can

distinguish in Frege's work, two distinct senses in which a set of first principles may be

said to provide a foundation for mathematics; they may provide us with certainty regarding

mathematical truths or they may reveal the proper justification for those truths. I argue that

any attempt to provide mathematics with foundations in either sense is misguided.

Mathematics, like any other science, does not have foundations. There are no unique,

epistemologically privileged first principles in terms of which all our mathematical beliefs
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receive their proper justification. I will begin however, by reviewing some of the

philosophical and mathematical motivations for Frege's programme.

1. FREGE'S PROGRAMME

In 1884, Frege published what has come to be seen as one of the great classics of

philosophy, Die Grundlagen Der Arithmetic. Frege begins the introduction to the book by

remarking that no satisfactory answer to such an apparently simple question as 'what is the

number one?' has yet been given, nor has anyone been able to answer the more general

question 'what is a number?'. Frege describes this situation as a scandal to the science of

mathematics:

Questions like these catch even mathematicians for that matter, or most of them, unprepared with any

satisfactory answer. Yet is it not a scandal that our science should be so unclear about the first and

foremost among its objects, and one which is apparently so simple? Small hope, then that we shall be

able to say what number is. If a concept fundamental to a mighty science gives rise to difficulties, then

it is surely an imperative task to investigate it more closely until those difficulties are overcome;

especially as we shall hardly succeed in finally clearing up negative numbers, or fractional or complex

numbers, so long as our insight into the foundation of the whole structure of arithmetic is defective.

[Frege 1884, p. II]

An analysis of the concept of number is therefore required if arithmetic is to retain

its status as a science. The motivation for Frege's work is set out in more detail in §§1 and

2 of Grundlagen. In §1 Frege describes his project as in line with contemporary attempts to

instil rigour in analysis. By the beginning of the nineteenth century, many mathematicians

had become dissatisfied both with the clarity of the basic concepts of analysis (those of

function, infinite series, continuity, derivative and so on) and with the rigour of proofs
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which had been given of the theorems of analysis. For example, consider a function which

is continuous over the interval [a, b]. Suppose this function has a negative value at a and a

positive value at b. If we imagine the graph of the function, it is obvious that the function

must cross the jc-axis at some point in the interval [a, b]. Many mathematicians appealed to

such considerations in order to 'prove' that any such function must take the value zero at

some point in the interval. Here a fundamental theorem of analysis is justified by appeal to

geometric intuition.

Bolzano was one of the first mathematicians to argue for the elimination of such

appeals to intuition from analysis. The need to do this was felt to be especially pressing in

the case of analysis, for here our geometric intuition can easily lead us into error. It had

been intuitively obvious to many mathematicians that any continuous function must be

differentiable, except perhaps at a finite number of isolated points. Bolzano himself found

an example of a function which is continuous but nowhere differentiable. In order to attain

some degree of certainty regarding the theorems of analysis then, we ought to avoid

geometric intuition. Bolzano also believed that analysis was a science independent of

geometry - its true subject matter was not points and curves, but quantities - real numbers

and functions. If so, the real grounds for accepting the theorems of analysis cannot be

geometrical, they must in some sense by arithmetical.

Bolzano began then, the task of reducing the concepts of analysis to purely

arithmetical concepts. This would achieve two things: appeals to uncertain geometric

intuition would be eliminated from proofs of theorems and the true basis of those theorems

would be exhibited. Bolzano attempted to give a 'purely analytic' proof of the theorem
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mentioned above - the intermediate value theorem.1 This work was continued and

improved upon by such mathematicians as Cauchy and Weierstrass.2

Frege wished to achieve similar results for arithmetic - the theory of the natural

numbers 0,1,2,. . . Here too, many things are accepted without rigorous proof, by appeal to

induction or intuition; Frege mentions for example, such numerical formula as 7 + 5 = 12 or

the associative law of addition. These, says Frege. "... are so amply established by the

countless applications made of them every day, that it may seem almost ridiculous to try to

bring them into dispute by demanding a proof of them. But it is in the nature of

mathematics always to prefer proof, where proof is possible, to any confirmation by

induction." [Frege 1884, §2]. The nineteenth century mathematicians had shown that

obvious and fundamental truths of analysis could in fact be proved. Frege hoped to achieve

the same for arithmetic. Not only would we thereby achieve greater certainty, by

eliminating appeals to uncertain intuitions, we would also attain "insight into the

dependence of truths upon one another" [ibid. §2]. That is, the true foundations of

arithmetic would be revealed.3

These then, were the mathematical motivations for Frege's work. In §3, he

discusses a philosophical motivation. Since Kant, philosophers had debated whether

mathematics was a priori, a posteriori, analytic or synthetic. Frege now gives his own

definitions of these philosophical terms. For Frege, these are distinctions among kinds of

1 In his 'Rein analytische Beweis' [Bolzano 1817]. See also [Kitcher 1975] for a philosophical discussion of
Bolzano's proof.
2 See for example [Kline 1972, pp. 947-978] and [Kitcher 1984, pp. 229-71], We shall look at some of this
work in more detail in chapters three and five.
3 As we shall see in chapter three, Philip Kitcher has argued that Frege was mistaken in comparing the
mathematical motivation for his programme with the attempts to instil rigour in analysis. In the latter case, the
vagueness of the fundamental concepts was becoming a severe impediment to solving the problems
mathematicians were interested in; no such state of affairs was impeding the progress of number theory. The
concepts of analysis were indeed unclear and problematic, but it was not obvious that the concept of natural
number was in urgent need of clarification and analysis. [Kitcher 1979, p. 239; 1984, pp. 268-270],
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true judgement and concern "not the content of the judgement but the justification for

making the judgement." [ibid. §3]. According to Frege, such a justification must be a

deductive proof of the proposition in question from primitive truths. The status of the

proposition then depends on the nature of the primitive truths appealed to in its proof:

The problem becomes, in fact, that of finding the proof of the proposition, and of following it up right

back to the primitive truths. If, in carrying out this process, we come only on general logical laws and

on definitions, then the truth is an analytic one, bearing in mind that we must take account also of all

propositions upon which the admissibility of any of the definitions depends. If, however, it is

impossible to give the proof without making use of truths which are not of a general logical nature, but

belong to the sphere of some special science, then the proposition is a synthetic one. For a truth to be a

posteriori it must be impossible to construct a proof of it without including an appeal to facts, i.e truths

which cannot be proved and are not general, since they contain assertions about particular objects. But

if, on the contrary, its proof can be derived exclusively from general laws, which themselves neither

need nor admit of proof, then the truth is a priori.

[ibid. §3]

Thus true judgements are divided into two main categories; a truth is a posteriori if

every proof of it appeals to at least one fact, where a fact is an improvable judgement of the

form Fa; a predication of a property to a particular object. A truth is a priori if it is not a

posteriori; that is if some proof of it appeals only to general laws.4 Among a priori truths

Frege fiirther distinguishes between analytic and synthetic judgements, depending on the

nature of the general laws appealed to in the proof of the judgement. If all of the laws are

"of a general logical nature", then the judgement is analytic. If the proof appeals to non-

logical laws, belonging to "the sphere of some special science", then the judgement is

synthetic a priori.

The following diagram summarises Frege's distinctions.

True Judgements

A Posteriori
All proofs appeal to
at least one fact.

A Priori
Some proof appeals
only to general lews.

I -
I j

Analytic Synthetic
Only logical laws Some non-logical
appealed to laws appealed to

For Frege, the distinction between general logical laws and non-logical laws is that

the non-logical laws contain terms which refer to some specific domain of discourse, while

logical laws consist only of terms which are universally applicable. Logical laws are thus

'topic neutral'. The axioms of geometry were for Frege of the first kind; they contain terms

which are not of universal application, but apply only to things which can be said to exist in

space. Hence, Frege agrees with Kant that geometry is synthetic a priori.

However, Frege disagreed with Kant about the status of arithmetic. Arithmetic is

not synthetic a priori, as Kant had held, but analytic.5 To establish the analyticity of

arithmetic then, Frege needs to show that the propositions of arithmetic can be proved from

logical laws alone. This is the task he sets himself in Grundlagen; to show that the basic

laws of arithmetic can be deduced from purely logical first principles. If every truth of

4 Frege seems to be assuming here that every proposition is either a general law or states a particular fact. The
assumption might be doubted; existentially quantified statements like 'Whales exist' are not clearly general
laws, nor are they predications of a property to a particular object

5 It should be clear that Frege's definition of 'analytic' is utterly at odds with the version of this concept
familiar from the writings of the logical positivists. The latter held that analytic truths do not state 'matters of
fact' but simply record the conventions we have adopted for the use of certain symbols; analytic statements
are true in virtue of the meanings of their component terms. On this account, the claim that arithmetic is
analytic is meant to be inconsistent with the view that arithmetical truth requires the existence of abstract
objects; nor does it entail that arithmetic is derivable from the laws of logic. [See Ayer 1936]. Frege's view,
by contrast, is certainly not that analytic statements are made true by linguistic convention; in particular,
arithmetical truths are not only derivable from the laws of logic, they also state facts about certain abstract
objects - as we shall se*\ Frege combines his logicism with a thoroughgoing platonim.

bil-i.
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arithmetic is a deductive consequence of these basic laws, then Frege will have shown that

arithmetic is, after all, analytic and neither synthetic a priori, as Kant had held or a

posteriori, as J. S. Mill had suggested.

It is useful to distinguish three components of Frege's logjcism:

(1) Arithmetical concepts can be defined using purely logical vocabulary.

(2) The basic laws of arithmetic can be deduced from purely logical laws, using those

definitions.

(3) Every truth of arithmetic is analytic; deducible from purely logical laws by means

of definitions.

These claims are independent of each other. It is now well known that (2) does not

entail (?>), since arithmetic cannot be given a complete axiomatisation. Furthermore, the

claim that arithmetical concepts can be expressed in purely logical vocabulary (1) and the

claim that the basic laws or axioms of arithmetic are analytic (2) are logically independent.

For example, the Dedekind-Peano axioms for number theory (see below) contain the

apparently non-logical symbols zero, successor and natural number. But since it might be

possible to give definitions of these symbols in purely logical terms (and this is -what Frege

sets out to do), this does not by itself prevent those axioms from being analytic.

Conversely, a non-analytic proposition might be expressible in purely logical terms.

Consider a claim like "There are at least two individuals', which we can symbolise as

3x3y(x *y). This is a formula expressed in purely logical terms, but which is not a

consequence of the laws of logic and so not analytic.
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What are the basic laws of arithmetic? Richard Dedekind addressed this question in

his book Was sind und was sollen die Zahlen?, written at about the same time as

Grundlagen. The Preface to the first edition of Dedekind's book, reveals that he had much

in common with Frege:

In science nothing capable of proof ought to be accepted without proof. Though this demand seems so

reasonable yet I cannot regard it as having been met even in the most recent methods of laying the

foundations of the simplest science; viz., that part of logic which deals with the theory of numbers. In

speaking of arithmetic (algebra, analysis) as a part of logic I mean to imply that I consider the number

concept entirely independent of the notions or intuitions of space and time, that I consider it an

immediate result from the laws of thought

[Dedekind 1888, p. 31]

So far, Frege would agree entirely. But Dedekind continues:

My answer to the problems propounded in the title of this paper is, then, briefly this: numbers are free

creations of the human mind; they serve as a means of apprehending more easily and more sharply the

differences of things.

[Dedekind, op cit.]

This Frege would certainly not have agreed with, being firmly opposed to any such

'psychologists' account of arithmetic. He held that mental processes such as 'abstraction'

which Dedekind (and Husserl) appealed to, were irrelevant to mathematics. Frege's

logicism was combined with a thoroughgoing platonism; for him, numbers are not mental

constructions of any kind, but objectively existing, abstract objects.

In his book, Dedekind does not state explicit axioms for number theory. The first

axiomatization of arithmetic was published by Peano6, although the Peano axioms were in

See[Peano 1889].
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fact first stated by Dedekind in correspondence.7 The Dedekind-Peano axioms for

arithmetic can be stated as follows:

(1) Zero is a natural number

(2) Zero is not the successor of any natural number.

(3) Every natural number has a successor, which is also a natural number.

(4) No distinct natural numbers have the same successor.

(5) Any property which:

(a) belongs to zero

(b) if it belongs to a natural number, it also belongs its successor

belongs to every natural number.

The successor of a number is just the next number in the series; two is the successor

of one, three is the successor of two and so on. The fifth axiom is the principle of

mathematical induction. Poincare held that it was not reducible to logic, but was a specially

mathematical, synthetic proposition.

Instead of taking zero, successor and natural number as undefined, Frege sets out to

define them, using purely logical concepts. This would satisfy the first component of his

logicism; (1) above. Frege then attempts, in effect, to derive the five Dedekind-Peano

axioms from these definitions. This would satisfy the second component of his logicism;

(2). If every truth of arithmetic were deducible from these axioms, then the third component

(3) would also be satisfied.
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This then, was Frege's programme; to show that arithmetic was analytic by giving

definitions of the basic arithmetical concepts in purely logical terms and deriving the basic

laws of arithmetic from those definitions. The motivation was essentially epistemological.

Frege aimed to exhibit the true justification for arithmetic. In particular, he aimed to show

that we do not need to appeal to either intuition or perception in order to justify arithmetical

propositions.

Grundlagen Der Arithmetik represents only an outline of Frege's programme

however, because it contains only informal proof sketches, not fully formal proofs. For

Frege, the advantage of formalising proofs was that it would make explicit every

assumption, no matter how obvious, that was required in order for a proof to be valid. By

formalising the proofs of the basic laws of arithmetic, the assumptions necessary to

establish them would be clearly revealed. Informal inferential steps that seemed to appeal to

intuition would be revealed to involve no more than a possibly quite long and complex

sequence of simple deductive steps. If on the other hand, we did need to appeal to synthetic

propositions (and hence to intuition) at some stage in the proof, formalisation would reveal

this. Frege had already taken a first step, by inventing one of the first serious formal

systems, in his Begriffsschrift [1879]. The task of setting out the proofs sketched in the

Grundlagen in a fully formal setting was carried out by Frege in his Grundgesetze der

Arithmetik [1893-1903].

The discussion so far should already have revealed some important assumptions in

Frege's epistemology; that there is such a thing as the proper justification of any given

truth; that this justification is always a deductive proof; that a true science requires clear

and precise concepts and that logic provides us with sure and certain knowledge,
7 See [Wang 1957].
8 See [Poincare 1894].



24

independent of perception and intuition. I will examine these assumptions in more detail in

sections four and five. Before doing so however, I will describe the strategy Frege develops

for establishing the analyticity of arithmetic and explain how that strategy led to the

disaster of the contradiction in Frege's system.

2. FREGE' S METHOD

§§5-61 of Grundlagen are concerned with the question 'what is a number?'. More

accurately, Frege wants to describe the logical form of ascriptions of number -

propositions such as 'two horses are pulling the carriage' or 'there are five books on the

table'. Frege rejects the view that here we are ascribing a property - 'fiveness' - to the

books on the table; number is not a property of objects. He arrives at the conclusion that an

ascription of number assigns a property, not to objects, but to concepts. A concept is

something which can be either true or false of particular objects. For example, we have the

concept 'is a book on the table'. When we say that there are five books on the table, we are

ascribing a property to this concept, the property of having five instances, or in Frege's

terminology of there being five objects that 'fall under' the concept.

Notice that this does not tell us what sort of thing a number is, it just tells us that

ascriptions of number predicate something of a concept. In §§56-61, Frege argues for the

view that numbers are objects. In particular, they are non-physical, non-mental, yet

objective objects; abstract objects in other words.9 This is the platonist strand in Frege's
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logjcism. If numbers are objects, then an ascription of number should contain a singular

term or name for such an object. Frege argues, that in fact, an ascription of number like:

(1)

has the logical form:

There are n Fs

Frege calls them non-actual objects. This does not mean that numbers are merely possible objects - objects
which do not actually exist, but might; all Frege means is that numbers are real, but non-physical, non-
causally active objects.

(2) The number belonging to the concept F = n

where n is a singular term denoting a particular number. Suppose we write Num(F) for 'the

number belonging to the concept F \ Then Frege's claim is that (1) has the form:

(3) Num(F) = n

The symbol Num(F) represents an operator on concepts; a function which takes a concept

as argument and returns an object as its value. We will call this operator the cardinality

operator.

Having argued that numbers are objects, Frege asks the Kantian question 'how are

numbers given to us?'; that is, 'how do we acquire knowledge of numbers?'. Kant had said

that objects can only be given to us or known through 'sensible intuition', sensory

perception in other words. But Frege has by now rejected the view that number is a

physical or perceptible property of things or that we can have intuitions of numbers. How

then do we acquire knowledge of numbers, how are they 'given' to us, if they cannot be

perceived or apprehended by intuition?

This is a general problem for platonism. Abstract objects are not part of the physical

universe, they do not exist in space or time. Being non-physical, they are entirely causally

isolated from us, they cannot affect us, or any other physical thing in any way. But if

abstract objects are causally unreachable in this way, how can we get to know facts about

them, or even become aware of their existence at all? The obvious answer is that we cannot.
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Hence either we have no mathematical knowledge, or platonism is not the correct view of

mathematics.10

Frege attempted to solve this problem by appeal to what has since become known as

the context principle; "only in the context of a proposition do words really have a

meaning". [Frege 1884, §60]. According to Frege, the objection to abstract objects just

considered is based on a fallacious assumption; that words acquire meaning by being

associated with ideas, so that in order to refer to an object of a certain kind, we must have

some idea or intuition of it. This is a view of meaning and reference which Frege rejects.

For Frege, the meaning of a word is given the systematic contribution it makes to the truth-

conditions of sentences. A word has meaning for us if we know how it affects the truth-

conditions of all the sentences in which it can occur. "It is enough", Frege says, "if the

proposition taken as a whole has a sense; it is this that confers on it parts also their

content." [ibid. §60]. Hence, if we can give the truth-conditions for all contexts (sentences)

in which singular terms for numbers can occur, then we can justify the claim that numbers

are objects, even though we cannot causally interact with, perceive or imagine the objects

those words refer to.

hi giving the truth-conditions for all contexts in which numerical terms can occur,

we have conferred a sense or meaning on those words, but clearly this does not imply that

they actually refer to anything. We could give truth-conditions for statements involving

unicorns (say by means of some definition of the predicate 'x is a unicorn') but it does not

follow from this that there really are any unicorns. However, if some sentences involving

the word are actually true, then the word must have a reference. So Frege's claim would be

that if we can give a sense to numerical terms by laying down conditions for the truth or

101 discuss a modern formulation of this ancient problem in the next chapter.

falsity of all sentences containing them (by means of appropriate definitions of those

terms), and we can establish that certain of those sentences are in fact true (and indeed,

Frege hopes to show that they are logically true), then it follows that numerical terms have

a reference and in particular that they refer to objects, even though we can have no

perceptual or casual contact with those objects.11

According to the context principle then, we will have shown how reference to and

knowledge of numbers is possible, despite their abstractness, if we can give determinate

truth-conditions to sentences containing terms for numbers. We do not, in addition, need to

show how such objects can be perceived or how we can have intuitions or ideas of them.

Frege's answer to the Kantian question then, is that numbers are given to us, not through

perception or intuition, but through language: "How, then, are numbers to be given to us, if

we cannot have any ideas or intuitions of them? Since it is only in the context of a

proposition that words have meaning, our problem becomes this: To define the sense of a

proposition in which a number word occurs." [Frege 1884, §62]. Michael Dummett argues

that Frege's move here represents the first example of the 'linguistic turn' in philosophy.12

Frege now argues that since numbers are objects, the primary type of statement

which must be supplied with determinate truth conditions are identity statements:

...we have already settled that number words are to be understood as standing for self-subsistent

objects. And that is enough to give us a class of propositions which must have a sense, namely those

which express our recognition of a number as the same again. If we are to use the symbol a to signify

11 This interpretation of Frege's use of the context principle is essentially the same as that given by Crispin
Wright [1983] and Michael Dummett [1991]. The interpretation of the context principle is a somewhat
controversial area, to the say the least The problem is made all the more difficult because Frege does not
distinguish very clearly, in the Grundlagen, between an expression having a sense (or meaning) and its having
a reference. See [Dummett 1991, pp. 66-7].
12 See Pummett 1991, p. 111].



28

an object, we must have a criterion for deciding in all cases whether b is the same as a, even if it is not

always in our power to apply this criterion.

[Frege 1884, §62]

Frege has argued that the fundamental type of numerical term is 'the number of Fs'

or, in his terminology, 'the number belonging to the concept F'. His task then, becomes that

of stating the truth-conditions for sentences of the form:

(4) The number of Fs = the number of Gs

Only when we have done this can we legitimately say that such terms refer to objects. In

Quine's phrase; 'no entity without identity'.13 In §63, Frege suggests a solution to this

problem:

Hume long ago mentioned such a means: "When two numbers are so combined as that the one has

always a unit answering to every unit of the other, we pronounce them equal." This opinion, that

numerical equality or identity must be defined in terms of one-one correlation, seems in recent years to

have gained widespread acceptance among mathematicians.

[ibid. §63]

We can distinguish two separate proposals here. The first is that a statement of the

form (4); 'the number of Fs = the number of Gs', is equivalent to 'there are just as many Fs

as Gs'. 'There are just as many Fs as Gs' in turn is to be defined in terms of the idea of a

one-one correlation or mapping: there are just as many Fs as Gs iff there is a one-one

correlation between the Fs and the Gs.14

13 See [Quine 1953]. Quine famously used the idea of a criterion of identity to refute the view that there are
such things as possible objects. We are unable to state any identity criteria for such objects "and what sense
can be found in talking of entities which cannot meaningful be said to be identical with themselves and
distinct from one another?" [ibid. p. 4].
14 A relation R provides a one-one correlation between the Fs and the Gs if and only if, every F bears the
relation R to exactly one G and conversely, every G is related by R to exactly one F.

29

Suppose we write F * G for 'there are just as many Fs as Gs'; in Frege's

terminology, this says 'the concept F is equinumemus with the concept G'. We write 3R(F

1-1R G) to mean there is a relation R, such that R provides a one-one correlation between

the Fs and the Gs. Then Frege's proposal can be summarised as follows:

(Hume's Principle)

(Def. «)

Num(F) = Num(G) <->F«G

F«G= d f 3R(Fl - l R G)

Hume's Principle, 'The number of Fs = the number of Gs iff the Fs and the Gs are

equinumerous' then provides the required criterion of identity for numbers. In §§63-67

Frege canvasses the possibility of taking Hume's Principle as providing us with a definition

of the cardinality operator, Num(F). Clearly this would be a contextual rather than an

explicit definition of the operator. An explicit definition has the form either of an identity

statement (like the definition of « given above) or the form of a logical equivalence; we

could write that definition in the form: F « G <-> 3R(F 1-1R G). Such a definition allows us

the means of replacing the defined term or definiendum (F « G in this case) in every context

in which it occurs, with the defining term or definiens (in this case, 3R(F 1-1R G)).

A contextual definition of a term, by contrast, is given by stating truth-conditions

only for some contexts in which the defined term can occur. For example, we could give a

contextual definition of the notion of an ordered pair, by stating the required identity

conditions for such objects. That is:

(5) (a,b) = (c,d) **a = c&b=d
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This is a contextual definition because we have not defined the symbol (a, b) for all

contexts in which it can occur, but only for identity contexts. An explicit definition of (a,

b) could be given in set-theoretic terms by (for example):

(6) (a,b)=df {{a},{b,0}}

from which (5) can be deduced using the standard principles of set theory.

The idea currently under consideration then, is that we take Hume's Principle as a

contextual definition of the cardinality operator, Num(F), in much the same way as we

could take (6) as a contextual definition of the ordered pair {a, b).

In §64, Frege switches the discussion to an analogous case. We could, Frege says,

define the concept of the direction of a straight line by means of the follow principle:

(7) Dir(a) = Dir(Z>) <r>a II b

That is, the direction of a = the direction of b iff a is parallel to b. Hence, given the

concepts of line and parallel, we obtain the abstract concept of a direction. Frege also

mentions the concept of shape, which could be introduced in an analogous way:

(8) Shp(a) = Shp(£) o a and b are similar figures.

The shape of a = the shape of b iff a and b are similar.15 Note the analogy between such

definitions and the proposal that we define the cardinality operator by means of Hume's

Principle:

(9) Num(F)=Num(G)<^ F«

In each case, we define an operator or function, by stating identity conditions for the values

of the function, in terms of an equivalence relation (parallelism in the case of directions,

similarity for shapes, equinumerosity for numbers) which holds between the arguments of

the function (lines in the case of directions, geometrical figures in the case of shapes,

concepts in the case of numbers).16

In §§64-65, Frege defends this method of definition against two objections, then in

§§66-67, he discusses an objection which he finds compelling and so the proposal is

rejected. The objection has become known as the Julius Caesar Problem. Essentially, the

problem is that such contextual definitions do not uniquely determine the referent of the

defined term. The proposed definition of the direction operator (7) for example, can tell us

when two directions are identical, but it does not tell us what a direction is. It does not tell

us, in general, which things are directions and which are not. Hence, given an arbitrary

object, like England or Julius Caesar, the definition cannot tell us whether that object is or

is not a direction.

The same applies to the proposed contextual definition of the cardinality operator

(9). The definition tells us when the numbers belonging to two concepts are identical, but it

does not tell us what a number is - which things are and which things are not, numbers. The

definition fails to tell us the truth-value of propositions of the form Num(F) = q, except

where q itself is of the form Num(G) for some concept G.

Why should this matter? Sentences like 'the number three = Julius Caesar' are not

likely to be ones we are going to want to either prove or disprove in mathematics.

However, recall that according to the context principle, all that is necessary in order to fix

the meaning of a term, is to specify truth-conditions for sentences in which it can occur. It

is not necessary, for example, to explain how we can have ideas, intuitions or causal

15 Similar figures are those such that corresponding sides are in constant proportion.

16 An equivalence relation is one that is reflexive, symmetric and transitive. That is, R is an equivalence
relation iff:

(1) VX(RJOT)

(2) VxYKRxv-*Rj«)
(3) VxVyVz((R*y & Ryz) -> Rx?)

i'ii'
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interactions with the referents of those terms and this the key to Frege's solution to the

Droblem of our knowledge of abstract objects. Our proposed definitions of the operators

Dir(x) and Num(F) however, fail to specify determinate truth conditions for all sentences in

which those terms can occur and hence the context principle cannot be applied - the

definitions do not uniquely fix the references of those terms.

For this reason, Frege rejects the proposed contextual definition of the direction

operator and by analogy, the proposal to take Hume's Principle as a contextual definition of

the cardinality operator. In §68 then, Frege adopts an alternative type of definition. He now

shows how we can give explicit definitions of the direction and cardinality operators, using

the concept of the extension of a concept.

Think of the extension of a concept F as the set of all and only those objects which

have the property F. If we abbreviate the phrase 'the extension of the concept F* as

Extjc(Fjc) - read this as 'the set of all objects x such that Fx' - then Frege's proposed

definitions of the direction and cardinality operators are as follows:

(Def. Dir)

(Def. Num)

Dir(a) =df Extx(*//a)

Num(F) =
df

These are explicit definitions of the operators involved, having the form of

identities. According to the first, the direction of a is the extension of the concept 'is

parallel to a'; alternatively, the direction of a is the set of all lines parallel to a. According

to the second, the number belonging to a concept F is the extension of the concept 'is

equinumerous with F!; alternatively, the number belonging to a concept F is the set of all
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concepts which are equinumerous with F. Take some arbitrary concept F and suppose it

applies to just three things; a, b and c. The extension of the concept F is then just the set {a,

b, c). The number belonging to the concept F is, according to Frege's definition, the set of

all concepts {F, G, H, ...} which can be put in one-one correspondence with F. This is

Frege's number three - the set of all concepts which have exactly three objects falling under

them.

§§70-83 contain the details of Frege's derivation of the basic laws of arithmetic

from his definitions of arithmetical concepts. Frege first shows how the notion of a one-one

correlation can be defined in purely logical terms, using only first and second-order

quantifiers and identity. In §§70-71 he says that a relation R provides a one-one correlation

of the Fs with the Gs just in case:

(A) Every F bears the relation R to exactly one G.

(B) Every G is related by R to exactly one F.

In modern notation, we can express (A) and (B) as:

Pef. F 1-1R G) Vx( Fx - • 3iy(Gy & Rxy)) & Vx( Gx -> 3xy(Fy & Ryx))

where the quantifier 3i can be defined in the usual way:

Pef. 3i) 3\)>{<&y) =df 3y(<by& Vz(Oz-»z=y))

In §73, Frege sketches a proof of Hume's Principle from his explicit definition of the

cardinality operator pef. Num above). This is the first and only time he makes use of that

definition, all 1he proofs that follow depend only on Hume's Principle. I will examine

Frege's attempted proof of Hume's Principle in the next section.
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Frege now shows how to define the terms zero, successor and natural number. The

number zero is defined to be the number belonging to the concept 'is not identical with

itself [§74]. That is:

(Def. 0) 0 =df Num^x =* x)

For the definition of zero, Frege could have chosen the number belonging to any concept

which has no instances, for example, the number belonging to the concept 'is a unicorn\

The advantage of choosing the concept 'is not identical with itself of course, is that it is a

logical truth that this concept has no instances.

The successor relation is defined in §76. Frege there defines n is a successor of m'

to mean 'for some concept F, n is the number of Fs and there is an object x which is F and

m is the number of things which are F, but distinct from x'. In symbols, we have:

(Def. S) Snm =df 3F3x( Fx & rt=Num);(F>) & m=Num;j(Fz & z * x))

From this definition and Hume's Principle, we can prove that successor is a one-one

relation; the fourth Dedekind-Peano axiom, stating that no distinct natural numbers have

the same successor is an immediate consequence. From the definitions of successor and

zero, it is easy to prove that for all x, zero is not the successor of x; the second Dedekind-

Peano axiom, that zero is not the successor of any natural number, is an obvious

consequence of this theorem.

Frege's definition of natural number is a little more complex. Frege first defines the

relation cn follows m in the series of natural numbers'. Following Dummett17, I will

abbreviate this as n > m. To define this relation, Frege makes use of the notion of the

ancestral of a relation, which he had defined in the Begriffsschrift [§9]. The definition of

this notion given in §79 of Gntndlagen can be unpacked into two parts. Firstly, let us say

that a property F is hereditary -with respect to a relation R iff whenever an object x has the

property F and x bears the relation R to y, then y also has the property F. That is:

(Def. HER) HER(F, R) =df JC & Rxy) -> Yy)

Secondly, let us say that a property F is inherited by every object after a in the R-

series iff whenever a bears the relation R to an object x, x has the property F:

(Def. IN) !N(F,a,R)=dfVx(Rax ->Fx)

1 C

Frege's definition of la is the ancestral of b with respect to R', can then be

expressed as lb has every property which is hereditary with respect to R and inherited by

every object after a in the R-series':

(Def. ANC) ANC(fl, b, R) =df VF( (HER(F, R) & m(F, a, R)) -» Vb )

Frege's procedure is then to define n > m ('« follows m in the series of natural

numbers') to mean 'm is an ancestral of n with respect to the converse of the successor

relation'[§81]. That is:

(Def. >) n > m ^ ANC( m, n, P )

Where P is the predecessor relation; Pxy =df Syx. Frege now defines the relation '« belongs

to the series of natural numbers beginning with m'. Again following Dummett, I write this

asn>.m. This is defined in §81 to mean 'either n > m or n = w':

(Def. >) « ^ w = d f « > m v « = m

Frege's definition oi natural number can now be stated quite simply; n is a natural number

iff n belongs to the series of natural numbers beginning with zero [§83]. That is:

17 See [Dummett 1991, pp. 119-124]

18 Frege's terminology for this is "b follovs in the R-series after a\
19 Frege uses the expression^ ite number in place of natural number.
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(Def. NAT) NAT(«) =x n > 0

The effect of this definition is that n is a natural number just in case n is either zero

or can be reached by starting from zero and going from one number to its successor. The

first Dedekind-Peano axiom, stating that zero is a natural number is clearly an immediate

consequence. More surprisingly, the principle of mathematical induction, the fifth

Dedekino-Peano axiom, can be quite easily proved from this definition. This represents

something of an achievement on Frege's part. He has shown, pace Poincare, that the

principle of mathematical induction can be seen as simply a consequence of the very

definition of natural number and is therefore analytic - a second-order logical truth.

This leaves only the third axiom, which states that every natural number has a

successor, which is also a natural number. It is easy to prove that the successor of any

natural number, if mere is one, is also a natural number, using Frege's definitions of

successor and natural number. The claim that every natural number has a successor is not

so easy to prove. This was always going to be the biggest hurdle for Frege's programme;

the task of showing that pure logic CPJI tell us that there are infinitely many objects.

How does he do it? Firstly, he has shown that the number zero exists; this is the

number belonging to the concept 'is not identical with itself. Now consider the concept, 'is

a natural number less than or equal to zero'. Exactly one thing falls under this concept,

(namely the number zero) and so Frege defines the number one to be the number belonging

to this concept. Hence the number one exists. Then we take the concept 'is a natural

number less than or equal to one'. Exactly two things fall under this concept (the numbers

one and zero) and so Frege defines the number two as the number belonging to this

concept. Hence the number two exists. Obviously, w^ can iterate this process to infinity.

Frege sketches his proof mat every natural number has a successor in §§82-83 of

Grundlagen. Frege has to provide, for every number «, a concept such that the number of

things falling under it is the successor of n. The reasoning given above suggests the concept

'natural number < n\ where < is just the converse of the relation > defined above; a<b =

dib>a. There is one natural number < 0; and one is the successor of 0. Likewise, there are

two natural numbers < 1 and two is the successor of 1. There are three numbers ^ 2, and

three is the successor of two. Frege shows how we can prove by mathematical induction,

the general theorem, that the number belonging to the concept 'natural number < «' is the

successor of n. From this, the desired theorem that every natural number has a successor

follows at once by existential generalisation.

It seems then, as though Frege has established at least the first two components of

his programme. He has defined the basic concepts of arithmetic in purely logical

vocabulary and derived the basic laws of arithmetic from those definitions. Unfortunately,

as we now know, things are not so simple. But where did Frege go wrong?

3. WHY FREGE' S PROGRAMME FAILED

Recall that Frege's final explicit definition of the cardinality operator made use of

the notion of the extension of a concept. He defined the number belonging to a concept F as

the extension of the concept 'is equinumerous with F \ That is:

(Def.Num) Num(F) =df

Intuitively, the extension of a concept is the set of all objects which fall under the

concept. So according to Frege's definition, the number belonging to the concept F is the
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set of all concepts equinumerous with F. Unfortunately for Frege, the introduction of

extensions was to lead to disaster. In Grundlagen, Frege does not put forward any specific

theory of extensions, contenting himself with the remark "I assume mat is known what the

extension of a concept is." [§69, footnote 2]. This represents a significant lacuna in the

argument of Grundlagen. Like numbers, extensions are themselves abstract objects, so in

order to complete Frege's programme, we need to provide a logical justification for the

introduction of the extension operator Extx(Fjc). In the light of the context principle, this

would involve laying down determinate tmth conditions for all sentences involving such

terms. Since extensions are objects, we need, in particular, to state the truth conditions for

identity statements involving extensions.

Frege's theory of extensions was presented formally in Grundgesetze Der

Arithmetik [Frege 1893-1903]. There, Frege introduces the extension operator in a manner

analogous to the proposed contextual definitions of the direction and numerical operators

which he had rejected in the Grundlagen; that is, he defines the operator by stating an

identity condition for extensions in terms of an equivalence relation. Axiom V of

GrundgesetzQ states, in effect, that the extension of the concept F is identical with the

extension of the concept G if and only every .F is a G and every G is an F - in other words,

if and only if, F and G are co-extensive!10 In symbols, we have:

1
t

In a letter to Frege, written just before the second volume of Grundgesetze was due

to be published, Bertrand Russell showed that Axiom V was inconsistent, hi the context of

Frege's system, Russell's paradox arises in the following way.

In a second-order logic with identity and Ext(G>) as a primitive function symbol, we

can prove the following 'comprehension principle' for extensions:

(Comprehension) x = Ext(<t>))

This is a second-order logical truth, stating that every concept has an extension.

Really all this amounts to is that the function referred to by Ext(O) is defined (has a value)

for every argument. This becomes a logical truth because it is a requirement on every

interpretation of a function symbol, that the function is defined for every object in the

domain of discourse.21

Consider the concept \x is the extension of some concept which x itself falls under'.

We define:

(Axiom V) W V O (ExtCF) = Ext(O) <-> VxQVx <-» Ox))

The extension of this concept will be the set of all things which are the extensions of some

concept they themselves fall under. An example of an object which has the property S is the

extension of the concept 'is an extension'. Call the extension of this concept 5. Then

obviously s is the extension of some concept, namely S - the concept 'is an extension'.

Equally obviously, 5 itself falls under this concept, since s itself is an extension.

I have simplified somewhat here. In feet Frege's Axiom V is more general than this. It applies to the
extensions Crange-of-values') of arbitrary functions, and not just to the special functions from objects to
truth-values which represent concepts.

21 The proof of this comprehension principle is very simple. Let F be an arbitrary concept Then, by the laws
of identity, we have Ext(F) = Ext(F). By existential generalisation, it follows that 3x( x = Ext(F)). Since F
was arbitrary, we can deduce: V*3x( x - Ext(5>)).
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Now consider the concept which holds of just those things for which Sx does not

hold. We define:

Rx =df ~Sx = ~3O( x = Ext(O) & d?x )

Equivalently, we can define Rx as:

(Def. R) Rx =df V<D( x = Ext(<X>)

This is the Russell property. The extension of R will be the set of all things which are not

the extensions of any concepts they themselves fall under. Anything which is not an

extension will have the property R. Some extensions will also have it. An example would

be the extension of the concept 'is a man', since this object is of course not itself a man.

We can aow show how Axiom V leads to contradiction. Consider the concept R,

defined as above. By the comprehension principle, this concept has an extension, which we

will denote by the symbol r.

(1) r = Ext(R)

We now ask whether r has the Russell property or not. Suppose it does. That is, suppose:

(2) Rr

Then, by the defiuition of R, we have:

(3) VO( r = Kxt(<t>) -> -Or )

Since this holds for every concept O, it holds w particular for R:

(4) r = Ext(R) -> ~Rr

Applying modus ponens to (1) and (4), we have:

(5) ~Rr

The assumption that r has the Russell property, led to the conclusion that r does not have

that property. Hence:

I

(6) Rr-»~Rr

So far, we have not made use of Axiom V at all. We now use it to show that, conversely, if

r does not have the Russell property, then r does have that property. We suppose:

(7) ~Rr

Applying the definition of R, we get:

(8) = Ext(O)&Or)

This says that r is the extension of some concept which r itself falls under. Call this concept

G. Then we have:

(9) r = Ext(G)

(10) Gr

But, by our initial assumption (1) r = Ext(R). So from (1) and (9) we have:

(11) Ext(R) = Ext(G)

By Axiom V, (11) is equivalent to:

(12) V.r(Rjc*»Gx)

In particular, we have:

(13) Rr<+Gr

From (10) and (13), we obtain the desired result:

(14) Rr

So from the assumption that r does not have the Russell property, it follows that it does

have it:

(15) ~Rr-*Rr

Combining (15) and (6), we deduce:

(16) Rr<->~Rr
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This is a contradiction. So Axiom V is inconsistent.

How does this effect Frege's derivation of the basic laws of arithmetic? Recall that

Frege attempted to use his explicit definition of the cardinality operator to prove Hume's

Principle:

(Hume's Principle) WVO( Num(¥) = Num(O) <-»(¥« O))

where ¥ « O means 'there is a one-one correlation between the ^ s and the <t>s\ In fact, as

already remarked, this is the only use Frege ever makes of the definition of the cardinality

operator in terms of extensions. The proofs of the Dedekind-Peano axioms depend only on

Hume's Principle.

Let us see how Frege's proof of Hume's Principle from the definition of the

cardinality operator is meant to work. We need to prove two things, for arbitrary concepts F

andG:

(A) F«G->Num(F)=Num(G)

and

(B) = Num(G)->F«G

Let us consider how we would prove (A). We start by assuming:

(1) F « G

and we need to prove that Num(F) = Num(G). Given that«is an equivalence relation, it is

straightforward to show that (1) entails:

(2) VX(JC » F <-> x « G)

Frege then claims that (2) entails:

(3) ExX&c w F) = Ext*(x «G)

V

By the definition of the cardinality operator, we have Num(F) = Ext^x « F) and Num(G) =

Extx(x ~ G). Therefore, (3) entails:

(4) Num(F) = Num(G)

as required. The crucial step here is that from (2) to (3). This is the point at which Frege

made an implicit appeal to Axiom V. Substituting the concepts x « F for *F and x ~ G for O

in that Axiom V, we obtain:

(5) ExUx«F) = ExtK(x«G)<-»V;t(;t«F<-»x«G)

and given (5), (2) obviously entails (3). But since Axiom V is inconsistent, Frege's

derivation of Hume's Principle from his definition of the cardinality operator is unsound.

Frege's strategy for showing arithmetic to be analytic was in ruins. A principle

indispensable to his derivation of the basic laws of arithmetic had been shown to be

inconsistent.

Nonetheless, Frege's technical achievement should not be underrated. The proofs of

the five Dedekind-Peano axioms from Hume's Principle are perfectly sound. The fact that

Hume's Principle, given appropriate definitions, entails the Dedekind-Peano axioms for

arithmetic has become known as Frege's Theorem.21 The second-order Dedekind-Peano

axioms are categorical - all the models of the theory are isomorphic to each other - and

every truth of arithmetic is a logical consequence of those axioms. Frege's Theorem

shows then, that there is a sense in which the entire body of number theory can be founded

a single, self-evident principle which states an identity condition for numbers.

22 See Pemopoulos 1995, passim].
23 Of course, since second-order logic is incomplete, it does not follow that every truth of arithmetic is
provable from those axioms.

it.



44 45

Crispin Wright has used this fact to argue that we can salvage Frege's logicism

from the wreckage of the contradiction.24 If Hume's Principle were a logical truth, Frege's

logicism would indeed be unaffected by the inconsistency in the theory of extensions. But

Hume's Principle is not a logical truth in the standard sense; it is not true under every

allowable interpretation of the function symbol Num(F).

To some extent of course, the question of whether Hume's Principle is a logical law

or not is a terminological one. Leibniz's law is not a logical truth in this sense either; it is

not true under every interpretation of the relation symbol =. Nonetheless, it is standard

practice to include in systems of logic the special symbol = taken to be governed by a

special 'logical axiom', namely Leibniz's law. This fits quite well with Frege's

characterisation of the laws of logic as involving only terms of universal application; the

concept of identity is so general that it applies to objects of any kind whatsoever. It could

be argued that we should think of the cardinality operator in the same way. Since objects of

any kind whatsoever can be numbered, it follows that the cardinality operator is also

universally applicable. Why then should we not introduce the special function symbol

Num(F) into our second-order logic, and include Hume's Principle as a logical axiom

governing its use? I think we could certainly do this and that it would not be completely

unreasonable to call the resulting system a logic. If so, we might say that under this wider

application of the term logic, Frege was correct; arithmetic is reducible to logic, since it is

reducible to Hume's Principle.25 But the important question is, what woul •:'. be the

epistemological significance of this move?

\

24 In Frege's Conception of Numbers As Objects [Wright 1983].
25 Dummett makes a similar point in Frege: Philosophy of Mathematics: "The style of objection to logicism
now exceedingly frequent is therefore quite beside the point: the objection for instance, that set theory is not
part of logic...By Frege's criterion of universal applicability, the notion of cardinal number is already a

f

Crispin Wright does not take this line. Instead adopts the proposal, rejected by

Frege, that we take Hume's Principle as constituting a definition, albeit a contextual one, of

the cardinality operator. He argues that definitions which introduce terms for abstract

objects by stating a criterion of identity for them in terms of an equivalence relation on

objects of some other kind ('definition by abstraction' as it is often called) is legitimate and

that the Julius Caesar problem can be solved. If so, the way is open for a logical

justification of arithrretic by means of the context principle. But is this kind of definition

really legitimate? Michael Dummett has argued that it cannot be. For, if it were, then the

method Frege uses to introduce the extension operator would also be legitimate, since it has

exactly the same form. But we know that it in this case the technique was not legitimate,

since it led to a contradiction.26

This point raises the question of whether Hume's Principle itself is consistent. Since

Hume's Principle has an analogous logical form to Axiom V, it might be possible to

construct an analogous proof of an inconsistency. Wright considers this, but argues that the

proof will not go through. Again, as before, we have as a second-order logical truth, a

comprehension principle for numbers:

which states that every concept has a number. We could again define a concept R

analogously as:

= Num(<X>)

logical one, and does not need the definition in terms of classes to make it so...The definition in terms of
classes is not needed to show arithmetic to be a branch of logic...Had Frege been concerned only with
number theory...and had he been able to solve the Julius Caesar problem for numbers...then it would not
have impaired his logicist programme to take the numerical operator as primitive" Pummett 1991, p. 224-5].
26 See [Dummett 1991, pp. 187-9],
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An object has the property R if it is not the number of any concept it falls under. Obviously,

the first half of the proof given above of the inconsistency of Axiom V, will go through

without change. By comprehension for numbers, the concept R has a number, call it r. So

we have:

(1) r = Num(R)

As before, we will be able to derive Rr -> ~Rr. However, the next half of the proof fails.

From the assumption that ~Rr, we can prove that there must be some object which has the

property R, but of course this does nor entail that r has the property R. So the derivation of

Rr from the assumption that ~Rr is blocked. Of course, this argument does not show that

Hume's Principle must be consistent, it only shows that one route to a contradiction is

blocked. We now know however, that Hume's principle can in fact be proved consistent.28

Nonetheless, Dummett's objection to Wright still stands. The inconsistency of

Axiom V shows that proposed method for contextually defining terms for abstract objects

is not, in general, a legitimate technique. Wright cannot get himself off the hook by

suggesting that the method is legitimate, provided only that the definition is consistent. For

there are consistent principles of this form which are inconsistent with each other. George

Boolos gives an example in 'The Standard of Equality of Numbers' [Boolos 1995b, pp.

250-1; see also Hazen 1985]. Say that the concepts F and G 'differ evenly' if the number

of objects falling under F, but not under G, or the number of objects falling under G, but

not F, is a finite even number. This relation between concepts is an equivalence relation and

can be defined in purely logical (second-order) vocabulary. Now introduce the operator 'the

parity of F' by means of the Parity Principle; the parity of F = the parity of G iff F and G

27 See [Wright 1983, pp. 155-156].
28 See for example [Boolos 1995a, pp. 216-217].
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differ evenly. The Parity Principle is consistent, but Boolos shows it is false in any infinite

domain. Hence it is inconsistent with Hume's Principle, which entails the existence of

infinitely many objects, as Frege proved. Both principles then are consistent and of the

required form, but they cannot both be true, since they are inconsistent with each other. The

prospects appear bleak then, for this attempt to salvage Frege's programme. In the

remaining sections, I argue that indeed, any attempt to provide mathematics with

foundations is epistemologically misguided.

4. ON CERTAINTY

We have seen then that Frege's programme failed for mathematical reasons. This is

a feature it shares with one of the other great early twentieth century foundational

programmes; the formalist programme of Hilbert, which was fairly conclusively refuted by

Gedel's second incompleteness theorem.29 Since these programmes failed for quite specific

technical reasons, their failure may seem to leave open that possibility that some

foundational programme might succeed where they have failed. I would like now to

discuss some of the epistemological presuppositions underlying the doctrine of

foundationalism; to see if there are any general objections to the idea that arithmetic, or any

other branch of mathematics, has or needs to be provided with foundations.

As I am using it here, foundationalism with respect to a given subject matter is the

doctrine that there exists a set of episteraologically privileged first principles which serve to

29 The other two foundational programmes are of course, the development of Frege's logicist programme
along positivist lines initiated by Russell and Whitehead [Russell and Whitehead 1910-13; see also Camap
1931] and the Intuitionist programme of Brower and Heyting [Brower 1913;1949, Heyting 1931]. I will not
discuss these programmes in any detail here; the reader may decide how the arguments developed here apply
to these cases.
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justify every other truth of that subject matter. Fouiidationalists differ as to the nature and

status of the first principles and in the kind of justification they provide. For Frege, the

foundational propositions of arithmetic were the truths of logic and the justification

deductive - he aimed to show that every truth of arithmetic could be deduced from logical

laws, by means of definitions. For Hilbert, the foundational propositions were finitary

statements; decidable propositions which do not involve reference to infinite totalities. The

rest of mathematics, consisting of ideal statements, Hilbert supposed to be strictly

meaningless. Finitary arithmetic, in Hilbert's programme, provides the sure and certain

foundation. The ideal statements of arithmetic are justified by showing that if we add them

to the foundation, no new finitary statement can be deduced. This is to say that the classical

arithmetic is a conservative extension of finitary arithmetic. Even though adding the ideal

statements does not allow us to prove anything new, they nonetheless have an instrumental

justification - they provide us with an extremely useful means of proving facts about the

finitary subject matter of mathematics; facts we could prove without them, though not as

concisely or as elegantly. Furthermore, since a proof of conservativeness is in this case

equivalent to a proof of consistency, we can be sure that the introduction of the ideal

statements will never lead us into contradiction.30

We have two different kinds of foundational proposition here, logical laws in

Frege's case, finitary statements in Hilbert's. In both cases, it is important that the

foundational propositions are taken to have an epistemologically privileged status, in the

sense that they are truths we can be especially certain of. Foundationalism is, in this sense,

a search for certainty. But one may question whether such a search is justifiable.

I1
1
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Frege had aimed to found arithmetic on the certainty of logic, by showing that our

knowledge of arithmetic is derived from our knowledge of the fundamental laws of logic.

Nowhere in Grundlagen does Frege address the question of how we know the laws of logic

to be true. It has been argued that he felt no need to, believing the answer to this question to

have been already settled by Kant.31 Consider Frege's classification of truths into a priori

and a posteriori, analytic and synthetic. What is the basis of Frege's classification? Why

should we call 'analytic' those propositions deducible from logical laws and 'synthetic'

those deducible only from laws of some special science? Why call either of these 'a

priori"!

Although there are obvious differences here between Frege's distinctions and the

corresponding distinctions in Kant, Frege says that he does not "mean to assign a new sense

to these terms but only to state accurately what earlier writers, Kant in particular, have

meant by them" [§3]. For Kant, the distinction between the a priori and the a posteriori is

epistemic; a priori propositions can be known independently of experience, a posteriori

truths cannot. But Kant, unlike Frege, drew the analytic/synthetic distinction in terms of the

content of a proposition, rather than in terms of its justification; an analytic proposition is

one where the concept of the subject contains the concept of the predicate (Kant's example

is 'all bodies are extended'), a synthetic proposition is one in which although the predicate

may apply to the subject, the concept of the subject does not contain the concept of the

predicate ('all bodies are heavy').32 Frege saw that since Kant was wrong in supposing that

every proposition is of subject-predicate form, his distinctions failed to be exhaustive;

30 See [Hilbert 1926, Giaquinto 1983].

31See[Kitcherl979].
32 See [Kant 1881: Introduction, §§ iv-v].
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propositions not of that form will not be classified under Kant's scheme. Hence a

redefinition of the Kantian distinctions is required.

Frege's idea was to define both of the Kantian distinctions in epistemic terms, by

classifying all truths in terms of the their justifications. This justification remember, is

always a deductive proof from unprovable first principles, so the question becomes one of

classifying the source of our knowledge of the first principles. Kant held that in general,

there are just three sources of knowledge. Every proposition is either (1) synthetic a

posteriori, (2) analytic a priori or (3) synthetic a priori. Our knowledge of truths of type

(1) comes from sensible intuition, or perception. A priori knowledge on the other hand, is

independent of experience. Our knowledge of truths of type (2) comes from a kind of

conceptual analysis; we have a means of recognising when one concept is 'contained' in

another, which is independent of experience, but not further elucidated by Kant. Our

knowledge of truths of type (3) come from what Kant called a pure intuition.

Frege accepted this three-fold classification of the sources of knowledge and used it

as the basis for his redefinition of the Kantian distinctions, hi Frege's scheme, a posteriori

truths are ones which can only be deduced from a primitive truth which ascribes a property

to a particular object and such facts are known by observation or perception. A priori truths

are ones which can be deduced from general laws alone. Our knowledge of these laws is

not based on experience or perception. Some of these general laws apply only to things

which can exist in space or time and our knowledge of them is grounded in a pure intuition

(spatial or temporal). These are the synthetic a priori truths. Other general laws are of

universal applicability, they apply to any object whatsoever, even objects we cannot

perceive or intuit. Hence our knowledge < hem cannot be based on intuition or perception.
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These are the analytic a priori truths. Where Kant had spoken of an ability to recognise

relations of containment between concepts, Frege widens the idea so as to include

statements not of subject-predicate form. He speaks instead of the 'logical source of

knowledge' or the 'logical faculty'.33

To summarise; for Frege, primitive a posteriori truths are known by observation or

perception, primitive synthetic a priori truths, like the âxioms of geometry are known by

pure intuition and primitive analytic truths, like the basic laws of logic, are known by

means of the operation of the logical faculty; a process which provides us with knowledge

that is independent of both perception and intuition.34 All other truths are known by

deducing them from primitive truths known in one of these three ways.

Just what is this 'logical faculty' which provides us with knowledge of the laws of

logic? Frege provides no answer to this question. It is not discussed at all in the

Grundlagen. In the Grungesetze he remarks only that "[t]he question why and with what

right we acknowledge a law of logic to be true, logic can answer only by reducing it to

another law of logic. Where that is not possible logic can give no answer." [Frege 1893-

1903]. Frege's silence on this issue may be traced to his view that the question how we

come to know the laws of logic is something for psychology to answer; it is not a question

for mathematics or logic. There mu^ be some psychological process by means of which we

come to know the laws of logic, but Frege does not see it as his task to explain how this

process works.

33 See [Kitcher 1979; Dummet t 1991 p. 44].
34 Hence , as Frege remarks in $4 of Grundlagen, the mathematical project of eliminating appeals to intuition
(spatial or temporal) from arithmetic and the philosophical problem of showing that arithmetic is analytic
come to the same thing.
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Nonetheless, Frege accepted the Kantian doctrine that whatever the nature of this

process, it can provide us with knowledge that is independent of experience and absolutely

certain. It is this unexpressed presupposition of Frege's thought that provides the central

epistemological motivation to his programme. The contradiction in Frege's system was so

devastating to him because it casts doubt on the presupposition.

Let us keep the phrase 'the logical faculty' as a shorthand way of referring to the

source, whatever it may be, of our logical knowledge. What can we say about it? In fact our

beliefs concerning logical truths have two main sources. Some truths of logic we accept

because they are 'intuitively obvious5, others we believe only because they form part of a

logical theory. Even before we begin to study formal logic, we have certain pre-theoretic

intuitions about the validity of certain inferences. It is these that we often appeal to in

teaching logic to students and they are sometimes appealed to in criticisms of logical

theories. But these intuitions can hardly be said to give us certain knowledge. It is well

known to psychologists that our logical intuitions can often lead us into error. People often

make mistakes in simple deductive reasoning. Frege's logical faculty may have convinced

him of the truth of his ill-fated Axiom V; the inconsistency of that axiom is testament to the

fact that what seems intuitively logically self-evident can often be false. Whatever the

psychological source of our pre-theoretic judgements concerning logical truths, Frege and

Kant were surely wrong in supposing that it provides an absolutely reliable belief forming

mechanism.

Furthermore, our logical intuitions are not only sometimes faulty, they often simply

fail to give a verdict. Where intuition fails, theory has to take over. In the words of

logicians R. K. Meyer and J.K. Slaney:

3
Irs

Consider "If if if snow is white then grass is green then grass is green then snow is white." If you, dear

reader, have any firm intuitive sense of whether this is valid, then your intuitions carry you further into

left field than do ours. Such sentences get labelled "logically valid" or "logically invalid" only on the

basis of some theory, not on whether they commend themselves individually to their beholders.

[Meyer and Slaney 1989, p. 256]

This is the second source of our beliefs concerning the laws of logic. There are many

logical principles which we accept or reject only the basis of some systematic theory of

deductive inference. Of course, Frege is well aware of this. For him, our logical faculty

provides us with knowledge of the unprovable basic axioms of logic, whir i are simple and

self-evident. More complex logical truths, like the one above, are known by deducing them

from such axioms. But the relationship between the axioms of the logical theories we

accept and our pre-theoretic judgements is not so simple.

Intuitions, even concerning fundamental axioms, can be modified in the light of

improvements in logical theories. In Aristotle's logic for example, the inference from a

universal statement (All men are mortal) to the corresponding existential (Some men are

mortal) is valid. The inference seems intuitively valid to many people - the concept of a

vacuously true universal statement is somewhat counter-intuitive. Nonetheless, the

inference is rejected in modern logic. A logical theory may account for some of our pre-

theoretic judgements or intuitions and be in conflict with others. Where a logical theory

conflicts with intuition, we may come to abandon the intuition and accept what seemed to

be a counter-intuitive consequence of the theory. We are justified in doing so to the extent

that the theory gives a plausible and systematic account of the laws of logic. The classical

definition of valid inference, for example, enables us to give a uniform account of the

validity of a wide range of particular inferences. It does have some counter-intuitive
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consequences (that a contradiction entails everything; that everything entails a logical truth

and so on) but we may come to accept these because they are consequences of a systematic

theory we have good grounds for accepting. In other cases, the counter-intuitive

consequences of a logical theory may lead us to reject the theory and adopt another. Such is

one motivation for relevance logic, for example. But the fact that a theory conflicts with

some our intuitions is not, by itself, conclusive evidence that the theory is incorrect. In fact,

there a few intuitions so indubitable that some logician or other has not at some time denied

them. Logicians there are who have denied even the law of non-contradiction, that no

statement is both true and false.35

It is not that we have a sure and certain grip on certain fundamental logical axioms

and all the rest of our knowledge is deduced from these. Rather, we accept axioms to the

extent that they give us a systematic account of deductive inference; an account which may

justify many of our pre-theoretic judgements, but also show us that some of them are false.

There is a complex interplay between theoretical and pre-theoretical judgements. Intuitions

are not sacrosanct and neither are logical theories. Both are revisable; intuitions are

revisable in the light of theoretical principles and those theoretical principles themselves are

revisable, not only in the light of our uncertain intuitions, but also the grounds that an

alternative account provides, a more systematic or powerful theory of deductive inference.36

The sources of our logical knowledge are therefore not very different from the

sources of our knowledge of other kinds. They do not provide us with an especially secure

35 See for example [Priest 1987].
36 Some have even argued that logical theories can even be revised in the light of empirical evidence. [Quine
1951, Putnam 1971]. This argument is independent of the one given here - 1 examine it in more detail in
chapter four. If it is correct, then Frege and Kant were wrong not only in supposing that our logical
knowledge is of an absolutely certain kind, they were also wrong in believing it to be independent of
experience.

r c
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kind of knowledge, but only with beliefs which are both fallible and revisable. The logical

faculty whatever its nature, is an imperfect source of knowledge, it can lead us into error as

well as into truth. Logic then, cannot provide an absolutely certain foundation on which to

base a mathematical theory like arithmetic.37

Hilbert, by contrast, wanted to found arithmetic on the certainty of finitary

statements. The programme was to show that classical arithmetic is a conservative

extension of finitary arithmetic. This is equivalent to showing, using only finitary

reasoning, that classical arithmetic is consistent. If this could be done, then we would have

a guarantee that the introduction of ideal (non-finitary) statements into arithmetic can never

lead to contradiction.

As already remarked, Gtidel's second incompleteness theorem revealed that

Hilbert's programme was unachievable. According to that theorem, classical arithmetic, if

it is consistent, cannot prove its own consistency. Hence finitary arithmetic, being a

proper part of classical arithmetic, cannot provide such a consistency proof either.

The point can be generalised. Suppose you were worried about the certainty of

arithmetic. You want to be able to prove that arithmetic is at least consistent. To prove that

arithmetic is consistent you will need a theory T in which to construct the proof. Go" del's

theorem tells us that the theory T will have to be stronger than arithmetic itsCtff; T cannot be

a proper subset of arithmetic. But if you were worried about arithmetic, you ought also to

be worried about any mathematical theory that goes beyond arithmetic. Hence you ought

37 Frege himself seems to have come to recognise this. In a late paper, published in his Posthumous Writings,
he reiterates the validity of the Kantian three-fold classification of sources of knowledge; perception, pure
spatial or temporal intuition and the logical source of knowledge. However, he argues that contrary to his
previous belief, the logical source of knowledge is imperfect and prone to error. He continues to believe that
our knowledge of arithmetic is not based on perception. The only alternative, if we want to retain a privileged
status for arithmetical knowledge is to base it on pure intuition, and so Frege sets about investigating the
possibility of reducing arithmetic, not to logic, but to geometry. [Frege 1979, see also Kitcher 1979],
r8See[Godell931].

I
I
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also to be wonied about the consistency of T. The consistency of arithmetic can in fact be

proved, but it can only be proved by means of some fairly high-powered tramsfinite set-

theory.39 Such a proof is worthless if absolute certainty is your aim; if arithmetic is open to

doubt, transfmite set theory cannot be any better off Hence, the search for absolute

certainty regarding arithmetic is obtainable.

We can now see more clearly why there would be little epistemological gain for a

foundationalist in adopting idea mentioned in section three for salvaging Frege's

programme. We could take the cardinality operator as primitive and governed by Hume's

Principle as an axiom. We could even, with some justification, call the resulting system a

logic. But this would not show that our knowledge of arithmetic is grounded in anything we

can be especially certain of. Whether we call Hume's Principle a definition or not, we only

know that it is consistent by means of a proof which appeals to principles of higher set-

theory, principles which cannot be more certain than arithmetic itself. Neither logic, nor

any privileged part of mathematics itself can provide us with the certainty yearned for by

foundationalism. The quest for absolute certainty in mathematics, as in the rest of science,

should be abandoned.

5. ON PROPER JUSTIFICATION

I have not yet discussed the second epistemological motivation for Frege's

programme. Recall that Frege was not only concerned to establish the certainty of

arithmetic, he also wanted to exhibit the true grounds on which it should be accepted; its

proper justification. In particular, he wanted to show that the proper justification of
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arithmetic was independent of perception and intuition. The notion of proper justification

provides a second sense in which foundational propositions might be said to be

epistemologically privileged; they may be privileged, not in the sense that they are

especially certain, but in the sense that they provide the real basis in terms of which other

truths are justified. Hence, even if logic is not a certain foundation for arithmetic, it may

nonetheless provide the proper justification for arithmetical truths. In this section, I want to

examine this further presupposition of Frege's epistemology; the idea that there is such a

thing as the proper justification of any given proposition.

In the Grundlagen, Frege is quite clear that he is not interested in how we actually

come to know arithmetical truths, but in exhibiting the real justification for accepting them.

In §17, he quotes Leibniz, "...it is here a matter, not of the history of discoveries, which is

different in different people, but of the connection and natural order of truths, which is

always die same." Here we come across a rationalist strand in Frege's thought; the idea that

there is a 'natural order of truths', where this implies that there must be such a thing as the

real or true ground for a proposition. This assumption is clearly implicit in Frege's

classification of truths as either a posteriori or a priori, analytic or synthetic; which of

these terms applies to a judgement depends on the nature of the first principles appealed to

in the proof of the proposition.40 In introducing these distinctions, Frege writes:

It not uncommonly happens that we first discover the content of a proposition, and only later give the

rigorous proof of it, on other and more difficult lines...In general, therefore, the question of how we

arrive at the content of a judgement should be kept distinct from the other question, Whence do we

derive the justification for its assertion?....When a proposition is called a posteriori or analytic in my

40 Michael Dummett makes just this point when he remarks that "[t]he basis of [Frege's] classification is the
justification for the judgement: not how we in fact know the proposition to be true, but the best justification of
it that could be given." [Dummett 1991, p.23].

39 See [Gentzen 1943].
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sense, this is not a judgement about the conditions, psychological, physiological and physical, which

have made it possible to form the content of the proposition in our consciousness; nor is it a judgement

about the way in which some other man has come, perhaps erroneously , to believe it to true, it is a .

judgement about the ultimate ground upon which rests the justification for holding it to be true.

[Frege 1884, $3 my emphasis ]

There are two distinctions in the background here which need to be separated. The

first is the distinction between discovering a truth and having some evidence for it. Carl

Hempel gives a nice example of this distinction:

The chemist Kekule, for example, tells us that he had long been trying unsuccessfully to devise a

structural formula for the benzene molecule when, one evening in 1865, he found a solution to his

problem while he was dozing in front of his fireplace. Gazing into the flames, he seemed to see atoms

dancing in snakelike arrays. Suddenly, one of the snakes formed a ring by seizing hold of its own tail

and then whirled mockingly before him. Kekule awoke in a flash; he had hit upon the now famous and

familiar idea of representing the molecular structure of benzene by a hexagonal ring. He spent the rest

of the night working out the consequences of this hypothesis.

[Hempel 1966, pp. 15-16]

A famous anecdote of Poincare's provides a mathematical example:

Just at this time, I left Caen, where I was living, to go on a geologic excursion under the auspices of

the School of Mines. The incidents of the travel made me forget my mathematical work. Having

reached Coutances, we entered an omnibus to go to some place or other. At the moment when I put

my foot on the step, the idea came to me, without anything in my former thoughts seeming to have

paved the way for it, that the transformations I had used to define the Fuchsian functions were

identical with those of non-Euclidean geometry. I did not verify the idea; I should not have had time,

as, upon taking my seat in the omnibus, I went on with a conversation already commenced, but I felt a

perfect certainty. On my return to Caen, for conscience's sake, I verified the results at my leisure.

[Poincarel907]

In both cases, someone made a discovery, or at least first came to believe a

proposition, without having any real evidence for it. The evidence was found later; by
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experiment in the case of benzene, proof in the case of the Fuchsian functions; only then

was the discovery confirmed. There is therefore a more or less clear distinction between

discovery and evidence. But we can make this distinction easily enough without assuming

there is such a thing as the proper justification for a proposition. All we need is the idea

that some processes of belief formation involve citing evidence for a proposition and others

do not. It is not that in such cases we come to accept certain truths on the basis of

inadequate evidence; evidence which does not provide the proper justification of the truths

in question; Kekule's dream and Poincare's sudden insight do not provide any evidence for

their hypotheses at all.

The second distinction however, brings us closer to the idea of proper justification.

This is a distinction between different kinds of evidence we can have for a proposition. As

Frege says, we can come to accept a proposition initially on grounds which we later come

to realise are not the best grounds that could be given. Einstein, for example, made use of

arguments based on verificationism (the view that the meaning of an empirical statement

consists in the method by means of which we would verify it) in some expositions of the

special theory of relativity.41 The opinion of most scientists these days would be, I hope,

that such arguments are irrelevant to the justification of the theory; the true test of the

theory is its success in making empirical predictions. One might be tempted to say; it is the

power of the theory to explain certain phenomena which provide the real evidence for it,

not the philosophical arguments. In the same way, Frege argues that although we may

initially come to accept such arithmetical truths as 7 + 5 = 12 or the associative law of

addition on empirical or inductive grounds, this cannot be the real evidence for those truths;

the proper justification of the truths of arithmetic must consist in proofs of them from fir t

41 See for example [Einstein 1917, p. 22].
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principles. Likewise, Bolzano would have argued that the evidence for the intermediate

value theorem provided by the intuitive geometric argument was specious; the real

justification for that theorem was given by his analytic proof.

More generally, we may come to know a truth by hearing it from an authority. Most

of our layman's knowledge of science and mathematics has this source; we come to know

that the speed of light is constant for all observers by reading Einstein or other

commentators on the theory of relativity; we come to know that Fermat's Last Theorem is

true by reading in books or articles that Andrew Wiles proved it. We might say that in such

cases, although we may have some evidence that a certain propositions is true, we may not

know the real justification for it; namely the proof in the case of Fermat's Last Theorem or

the experimental evidence in the case of the theory of relativity.

However, all we need in order to account for such examples is the idea that there

can be better and worse kinds of evidence for a proposition. We do not need the idea that

every proposition has a proper justification - the best justification of it that could be given.

The fact that there are better and worse kinds of evidence for a hypothesis is well known in

the natural sciences. A statistical correlation between A and B provides some evidence that

there is a causal connection between A and B; if we can explain the causal mechanism

involved by means of a well established theory, we have a better kind of evidence. That an

established theory predicts the existence of some new elementary particle provides some

evidence that the particle exists; an experimental observation of the particle is better. More

controversially, some say that if a theory predicts something already known, then this

provides some evidence for the theory, but a prediction of some new and unexpected

phenomenon is a stronger kind of evidence for the theory.

%5
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In mathematics too, there can better and worse kinds of evidence. We can have

inductive evidence for a mathematical conjecture for example, by confirmation of a large

number of its instances; a deductive proof is a better kind of evidence. On the other hand,

some proofs are said to be more explanatory and hence provide better evidence for a

theorem than others.42

We can say then, that the evidence for the special theory of relativity which comes

from the power of that theory to explain certain phenomena is stronger than the evidence (if

such it can be called) that comes from verificationism. In the same way, although some

evidence for numerical equations and arithmetical laws can be obtained from induction or

from successful applications, Frege's proofs may provide better evidence for them, since

they go some way to explaining why they are true, rather than merely providing some

evidence that they are true. Likewise, the intuitive argument for the intermediate value

theorem provides some evidence for it, but Bolzano's analytic proof provides a better kind

of evidence, since it gives a better explanation of the theorem. We can say this without

committing ourselves to the claim that there could not be any better explanation of it, nor

do we need to suppose that there must be such a thing as the best explanation of it.

It is a commonplace that evidence comes in degrees; some evidence for a

proposition can give us stronger grounds for accepting it than other evidence. It does not

follow from this that there is such a thing as the best, ultimate or fundamental grounds for

accepting it.43 That claim provides one way of giving sense to the doctrine of

foundationalism; the foundations of a theory just are those propositions which state the

true grounds for accepting that theory. If there is such a thing as the ground or justification

42 This idea is discussed in more detail in chapter six.
43 Of course there may be such a thing as the be.c justification for a statement that we can give at any
particular time, but this obviously does not mean that we might not find a better justification in the future.
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for mathematical statements, then mathematics has foundations and it may be the task of

the philosopher to uncover them. But if there is no reason to believe there is such a thing as

the grounds for accepting a proposition, then mathematics has no such foundation.

6. MATHEMATICS WITHOUT FOUNDATIONS

The same point was made, in a different way, by Hilary Putnam, in 'Mathematics

without Foundations' [Putnam 1975d]. In that paper Putnam argued against the view that

there is such a thing as the foundation for any mathematical theory. He argued that any

mathematical theory may be given many different, but equally explanatory, equivalent

formulations:

In my view, the chief characteristic of mathematical propositions is the very wide variety of equivalent

formulations that they possess. I don't mean this in the trivial sense of cardinality: of course, every

proposition possesses infinitely many equivalent formulations; what I mean is rather that in

mathematics the number of ways of expressing what is in some sense the same fact (if the proposition

is true) while apparently nor talking about the same objects is especially striking.

[Putnaml975d,p.45]

Putnam gives an example from physics. We can describe a quantum system either

as a system of particles or as a system of waves (in the rather strange quantum mechanical

sense of 'wave' and 'particle'). The two descriptions are equivalent; each can be translated

into the other and they have exactly the same empirical content. But the metaphysical

pictures underlying the two descriptions are very different.

Putnam then describes two equivalent, but metaphysically very different

formulations of arithmetic. The first formulation is the standard Dedekind-Peano

axiomatization. Here we have quantification over abstract particulars; the natural numbers.
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Putnam refers to this kind of description of mathematical reality as Mathematics as Set

Theory - "the conception of mathematics as the description of a universe of mathematical

objects" - platonism in other words. The alternative formulation he refers to as

Mathematics as Modal Logic. In the case of arithmetic, the idea here is to consider every

arithmetical proposition as making a claim about what must hold good in any ©-sequence,

that is, in any structure isomorphic to that of the natural numbers.

Let AX be the conjunction of the second-order Dedekind-Peano axioms for

arithmetic. Let A be any statement of arithmetic expressed in the same language. If A is

true, then it is a second-order logical consequence of the Dedekind-Peano axioms. That is A

is true just in case the implication: AX -> A is valid, that is iff:

(1) D(AX-»A)

The formulas AX and A will still contain the undefined terms, zero, successor and

natural number. Replace these terms wherever they occur in AX and A by the second-order

variables S, o and N. We write the result as AX(S,o,N) and A(S,o,N) respectively. The

formula AX(S,O,N) says that the relation S, the object o and the property N have a certain

mathematical structure - that of any co-sequence. The formula A(S,o,N). says that A is true

in the structure formed by S, o and N. The proposed translation of A is then:

(2) D V S V O V N [ A X ( S A N ) - > A ( S , O , N ) ]
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This says that necessarily, if S, o and N constitute an co-sequence, then A is true in

that co-sequence. If A is true, then (2) will be a valid formula of second-order modal logic.44

The effect of such a translation scheme, Putnam argues, is to show that every

statement of arithmetic, platonistically interpreted, has an equivalent formulation as a

statement which tells us what must of necessity hold good in any co-sequence. The

metaphysical picture of this latter formulation is quite different to the platonistic one.

According to the modal-logic picture, arithmetic is not a theory about particular abstract

objects; the natural numbers. Rather it is. the theory of what must be true in any structure of

a certain kind. We have in effect, quantification over structures; more precisely, over

properties and relations; but no quantification over individual numbers. Putnam writes:

...each of these two ways of looking at mathematics can be used to clarify the other. If one is puzzled

by the modalities.... then one can be helped by the set-theoretic notion of a model (necessity = truth in

all models; possibility = truth in some model). On the other hand, if one is puzzled by the question

recently raised by Benacerraf: how numbers can be 'objects' if they have no properties except order in

a particular ©-sequence, then, I believe, one can be helped by the answer: call them 'objects' if you

like (they are objects in the sense of being things one can quantify over); but remember that these

objects have the special property that each fact about them is, in an equivalent formulation, simply a

fact about any ©-sequence. 'Numbers exist'; but all this comes to, for mathematics anyway, is that (1)

©-sequences are possible (mathematically speaking); and (2) there are necessary truths of the form 'if

a is an ©-sequence, then....' (whether any concrete example of an ©-sequence exists or not).

[Putnam 1975d, p. 49]

44 In Putnam's paper, the example he gives of this translation scheme is first-order, rather than second-order. I
have used a second-version of the translation scheme here for ease of exposition. The problem with the first-
order version is that we cannot take the conjunction of the first-order Dedekind-Peano axioms as the
antecedent of our conditional. This is because there are infinitely many such axioms, in particular, infinitely
many instances of the induction schema. For more details on this and other structuralist formulations of
arithmetic see Parsons [1990].
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Geoffery Hellman, in his book Mathematics Without Numbers [Helhnan 1989]

developed this idea of Putnam's as the basis for his modal-structuralist account of

mathematics. His hope was to avoid the problems associated with platonism by giving an

account of mathematics in which quantification over abstract objects was eliminated. But

this was not quite Putnam's aim. For Putnam, the two formulations, platonist and modal-

structuralist stand on an equal footing; neither is a more or less correct description of

mathematical reality than the other, in just the same way as both the wave and particle

descriptions of the quantum system are equally correct. Putnam's point was that we have

here two equally explanatory 'foundations' for arithmetic. We cannot say of either that it

provides the ground or foundation for arithmetic. The implies uniqueness and in the case of

mathematics (as in the case of the empirical sciences) uniqueness is just what we do not

have.

I think that Putnam's metaphysical point is correct and that we can draw an

epistemological conclusion. We have two equally correct, but metaphysically quite

different descriptions of mathematical reality. Since there are equally correct, they must be

on equal footing epistemologically, as well as metaphysically. It cannot be that our

evidence for one of them is better or worse than the evidence for the other, just as it cannot

be that we have better or worse evidence for one rather than another of the equivalent

formulations of quantum mechanics. Since mathematics has no unique metaphysical

foundation, it cannot have a unique epistemological foundation either. Both of the

formulations Putnam describes provide an equally good explanation of the truths of

arithmetic, although the explanations provided are quite different. Hence, each provides an

equally good justification for arithmetic.
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We might want to say; the real justification for a proposition p must appeal to

whatever it is that makes p true - a truth-maker for p if you like. Perhaps this is why we

want to say that when I know Fermat's Last Theorem by hearing it has been proved from

an authority, I do not know the real reason why it is true; for my evidence is based on facts

about the beliefs of various mathematicians and not on whatever it is that makes Fermat's

Last Theorem true. But if there is no such thing as the correct metaphysical description of

mathematical reality, but many equally correct such descriptions, then there is no unique

answer to the question of what makes a particular mathematical proposition true. Hence,

even if to give a real justification for a proposition, one must say something about the facts

mat make it true, there will be still be no unique real justification for that proposition. I

could justify a mathematical proposition p, by citing something that makes it true, but some

other justification, in terms of some other, equally correct description of what makes p true

would do just as well.

We have to give up the idea that there is such a thing as the justification for a

mathematical proposition. Mathematical propositions can be justified in various ways;

some as good as each other, some better or worse than others. In mathematics, there are no

epistemological foundations, only better and worse kinds of evidence.
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CHAPTER TWO

POST-FOUNDATIONAL EP1STEMOLOGY

Since the collapse of the great foundational programmes, attention has shifted away

from epistemology and towards metaphysical issues; over the last few decades there has

been a proliferation of proposed ontologies for mathematics. Nonetheless, epistemological

issues have not been completely ignored. As we shall see, a great deal of this metaphysical

work can be seen as motivated by epistemological concerns. The problem is no longer seen

to be one of providing an a priori guarantee that the mathematics we accept is true, but

rather one of reconciling the ontology of mathematics with an empirical or naturalistic

account of human knowledge. Although foundationalism has been largely abandoned,

many philosophers continue to see the role of epistemology in this area as normative; the

problem is to provide an account of the subject matter of mathematics in terms of which it

is possible to give a broadly empirical justification for our mathematical beliefs. In this

chapter, I want to examine and criticise certain aspects of these 'post-foundationaT

accounts of the epistemology of mathematics. I shall begin by discussing an argument

which has provided one of the main sources of motivation for this work.

1. BENACERRAF' S DILEMMA

By the mid-twentieth century, views on what was still often called 'the foundations

of mathematics' could be divided into three main kinds, each offering a distinct analysis of

the concept of mathematical truth. A central debate was between platonists and
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constructivists. According to the platonist position, mathematical truth depends on the

existence of abstract objects; a typical variety of this account elaborated it by arguing that

all of classical mathematics can be developed from within the theory of sets.1 In opposition

to this was the intuitionist or constructivist account of mathematical truth, according to

which a mathematical statement can be said to be true (or false) only when it is possible to

construct a proof (or disproof) of it. Opposed to both of these were various kinds of

conventionalist accounts of mathematical truth; typical was the view according to which

mathematical statements are true or false in virtue of the meanings of their component

terms - that is, analytic, in the new sense given to that term by the logical positivists.

In a highly influential paper 'Mathematical Truth', Paul Benacerraf argued that

none of these accounts of mathematical truth can be correct. [Benacerraf 1973]. According

to Benacerraf, any adequate analysis of the concept of mathematical truth must satisfy two

conditions. The first condition is that the analysis must be in conformity with a general

account of the semantics of our language. Mathematical statements should not be treated

differently to statements of other kinds having the same logical form; mathematical and

non-mathematical statements alike should be treated in a uniform manner. Since to provide

a semantics for a set of statements is to state the conditions under which they are true, this

means that any adequate account of mathematical truth must conform to a general theory of

truth for the sentences of our language. It is not enough for the analysis to simply label

some statements with the tag 'true' and others with the tag 'false'. The analysis must also

1 This view can be seen as one way of salvaging something from the logicist programmes of Frege, Russell
and Whitehead; many took the view that what the work of these philosophers really showed was that
mathematics was reducible not to logic, but to set-theory. See for example [Quine 1937,1940],
2 For the constructivist or intuitionist account see [Heyting 1931]. For very clear expositions of the
conventionalist account see [Ayer 1936, Hempel 1945b].
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explain why it is that those sentences labelled as 'true' can properly be said to be true and

this can only be done in tenns of a general account of the concept of truth.

The second condition is that any adequate analysis must be in conformity with a

general theory of knowledge. Since some mathematical sentences are not only true, but

known to be true, the account must explain how this is possible. That is, it must explain

how we can know the mathematics that we do, in terms of a general account of the

conditions required for knowledge.

Benacerraf then argues that no accouit of mathematical truth satisfies both of these

conditions; all those accounts which satisfy the first condition fail to satisfy the second and

conversely, all accounts which satisfy the second condition fail to satisfy the first:

...accounts of truth that treat mathematical and nonmathematical discourse in relevantly similar ways

do so at the cost of leaving it unintelligible how we can have any mathematical knowledge

whatsoever; whereas those which attribute to mathematical propositions the kinds of truth conditions

we can clearly know to obtain, do so at the expense of failing to connect these conditions with analysis

of the sentences which shows how the assigned conditions are conditions of their truth.

[Benacerraf 1973, p. 662]

In order to estabu'sFffiIs~claim, Benacerraf divides accounts of mathematical truth into two

broad categories. He asks us to consider the following two sentences:

(1) There are at least three large cities older than New York.

(2) There are at least three perfect numbers greater than 17.

These appear to have exactly the same logical form, namely:

(3) There are at least three Fs that bear R to a.

If we analyse (1) as having the form (3), then according to Benacerraf, (1) will be true just

in case the thing named by a (New York in this case) bears the relation R (x is older thany)
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to at least three things which satisfy the predicate F (x is a large city). In the same way, if

we analyse (2) as having the form (3), then (2) will be true just in case the object referred to

by a (the number 17) bears the relation R (x is greater than y) to at least three objects which

satisfy the predicate F (x is a perfect number).3

Let us call any account which analyses both (1) and (2) as having the form given by

(3), and which, in general, gives the same standard semantic analysis to mathematical and

non-mathematical statements of the same form, a standard account. An example of a

standard account would of course be the platonist analysis of mathematical truth. Many

philosophers of mathematics of course, have denied that we should analyse mathematical

statements in this way. An account which does not treat (1) and (2) as having the form

given by (3), but which provides some alternative semantic analysis of mathematical

statements we can call a non-standard account.4 An example of a non-standard account

would be the intuitionist analysis of mathematical truth, for on this account although the

'surface form' of (1) and (2) may be the same, the quantifiers and connectives in (2) are

treated differently to those in (1); they are interpreted intuitionistically rather than

classically. On this view (2) is not made true by abstract objects but our possession of a

proof.5 A more extreme non-standard view, which Benacerraf also mentions, would be the

formalist account of Hilbert. As we saw in the previous chapter, on that account the

3 A perfect number is one which is equal to the sum of its proper divisors. The smallest perfect number is 6;
its proper divisors are 1, 2 and 3 and 1+2+3=6. The next three perfect numbers, all greater than 17, are 28,
496 and 8128.

Benacerraf, somewhat misleadingly, calls them combinatorial accounts, since they often explain the
meaning of mathematical statements in terms of purely syntactical features, such as provability.
5 Of course, since 'x is a perfect number' is a decidable predicate, the intuitionistic and classical analyses of
(2) would agree on the truth value of this statement, although not on its meaning.
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semantic analysis of (2) would be radically different to that of (1), since (2) is a non-finitary

or ideal statement and hence neither true nor false.6

Benacerraf now argues that his first condition on the adequacy of an analysis of

mathematical truth rules out any non-standard account and that the second condition rules

out any standard account. Hence no account is adequate. His argument for this startling

conclusion depends on his elaboration of those two conditions of adequacy.

The first condition is that any adequate analysis of mathematical truth must conform

to a general account of the semantics of our language; in particular it must conform to a

general account of what it is for a sentence of our language to be true; a general theory of

truth in other words. Benacerraf argues that our best general account of the concept of truth

is that provided by Tarskian semantics:

I take it that we have only one such account: Tarski's, and that its essential feature is to define truth in

terms of reference (or satisfaction) on the basis of a particular kind of syntactico-semantical analysis of

the language, and thus that any putative analysis of mathematical truth must be an analysis of a

concept which is a truth concept at least in Tarski's sense.
[Benacerraf 1973, p. 19]

Obviously, any standard account will satisfy the first condition, elaborated in this

way. However, the condition rules out non-standard accounts, which give a different

semantic analysis to mathematical statements. One problem with such accounts is that they

prevent us from giving a uniform semantic analysis for our language taken as a whole. We

have to treat mathematical and non-mathematical discourse as involving essentially

different languages, with a corresponding distinction between different kinds of truth. For a

6 The reason (2) is non-finitary is that its truth-value is not decidable in a finite number of steps; an algorithm
which stepped through each number greater than 17, checked to see if they were perfect and halted when it
had found three such numbers would fail to halt if the statement in question is false.
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constructivist for example (at least one who restricts their constructivism to mathematics)

the concept of truth as applied to mathematical statements will be quite distinct from that

concept as applied to non-mathematical statements. There is a well known problem with

the idea that there are different kinds of truth, which stems from the fact that we ought to be

able to combine truths acquired from different fields of inquiry into a unified picture of the

world. If we have a unified account of truth, independent of subject matter, then we can

say for example that the conjunction of two statements ' A and B' is true just in case A is

true and B is true. But if we have an account which analyses mathematical truth in a

different way to truth as applied to, say, statements of physics, then we encounter a

problem; if A is mathematically true and B is a truth of physics, then in what sense is 'A

and B' true, if any? It is not a purely mathematical truth, nor a purely physical truth. If it is

true in some more general sense, then we are back to the idea that there is such a general,

topic neutral concept of truth. Perhaps it is not true at all then. But then we will be unable to

explain how we can build up a coherent, unified account of the world, by combing

knowledge obtained from different fields.

There is a further problem however. As already mentioned, it is not enough for an

analysis of mathematical truth to simply show how we can label some sentences as 'true'

and others as 'false'. There must be a reason to think that the concept characterised by the

account is indeed a concept of truth. Benacerraf suggests that this can only be done by

showing how the concept characterised as 'mathematical truth' is the same as the concept

defined by our best general theory of truth. Since our best general theory of truth is provide

by Tarskian semantics, any account which explicates mathematical truth along non-

standard lines must fail to have explicated a concept of truth. Hence, the second condition,
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elaborated in this way, rules out all non-standard accounts of mathematical truth. For

example, the first condition requires that any account which equates truth in mathematics

with provability, must explain the connection between provability and truth as defined by

our best general theory of truth. But since our best definition of the concept of truth is

Tarski's, it appears that any account of this kind will fail to satisfy the first condition, since

provability is quite independent of truth so defined. •

The second condition on the adequacy of an analysis of the concept of mathematical

truth is that it must explain how mathematical knowledge is possible. Analogously,

Benacerraf argues that this can only be done by appealing to a general account of what it is

to know something. In particular, we need to show how the conditions for knowledge

required by such a general account can be satisfied in the case of mathematical knowledge.

Benacerraf elaborates this condition by arguing that out best general account of

knowledge is some version of the causal theory of knowledge:

I favour a causal account of knowledge on which for X to know that 5 is true requires some causal

relation to obtain between X and the referents of the names, predicates and quantifiers of S... .It must

be possible to establish an appropriate sort of connection between the truth conditions of/? (as given by

an adequate truth definition for the language in whichp is expressed) and the grounds on which/? is

said to be known In the absence of this, no connection has been established between having those

grounds and believing a proposition which is true... .The link between/? and justifying a belief in/? on

those grounds cannot be made. But for that knowledge which is properly regarded as some form of

justified true belief, then the link must be made.
[Benacerraf 1973, pp. 23-24]

7 In particular, the existence of undecidable statements of arithmetic (statements which are true, yet neither
provable nor disprovable) appears to show that an account of this kind will violate Tarski's T-schema; for
where A is such a statement A will be true, although 'A is true' will be false, since 'A is true' on such an
account means *A is provable'. As we shall see in section two however, this appearance is somewhat
deceptive; it is open to the intuitionist to interpret the left hand side of the T-schema intuitionistically and if
this is done the T-schema will remain valid.

i)
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But the second condition now rules out any standard account of mathematical truth. For on

such an account, the truth of a mathematical statement requires reference to certain objects;

numbers for example. Given that some mathematical statements are indeed true, mis

commits us to the existence of mathematical objects. But mathematical objects, if they

exist, must be abstract objects. Although the distinction between abstract and concrete

objects is difficult to make precise8 it is easy to say what abstract objects are not. They are

not physical objects, they are not located anywhere in space or time. They are not causal

agents of any kind; they are not effected by, nor do they themselves effect, anything at all.

But how is it possible to acquire knowledge of objects which cannot effect human beings or

anything else in the world in any way? This is of course is the problem mentioned in

chapter one, of explaining our knowledge of abstract objects; a problem which Frege

attempted, but ultimately failed to solve.

Benacerraf conclusion is that the second condition rules out any standard account of

the concept of mathematical truth: 'For a typical 'standard' account (at least in the case of

number theory or set theory) will depict truth conditions in terms of objects whose nature,

as normally conceived, places them beyond the reach of the better understood means of

human cognition (e.g., sense perception and the like)' [Benacerraf 1973, p. 20].

In particular, since our best account of knowledge requires some causal connection

between the knower and the objects which make the known statements true and since a

standard account explains the truth-conditions of mathematical statements in terms of

causally inert abstract objects, it follows that mathematical knowledge is in principle

impossible according to such an account:

: See for example [Hale 1983].
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... .combining this view of knowledge with the 'standard' view of mathematical truth makes it difficult

to see how mathematical knowledge is possible. If, for example, numbers are the kinds of entities they

are normally taken to be, then the connection between the truth conditions for the statements of

number theory and any relevant events connected with the people who are supposed to have

mathematical knowledge cannot be made out It will be impossible to account for how anyone knows

any properly number-theoretic propositions. The second condition on an account of mathematical truth

will not be satisfied, because we have no account of how we know that the truth conditions for

mathematical propositions obtain.

[Benacerraf 1973, pp. 24-5]

We are therefore faced with a dilemma. Either we give a uniform semantic analysis

of mathematical statements along the lines of Tarski's analysis of truth, or we provide an

alternative semantic analysis. If we take the latter course, we fail to satisfy the first

condition - we will be unable to explain why some mathematical statements can be

properly said to be true. If we take the former course, however, then although the first

condition will be satisfied, the second condition will be violated - we will be unable to

explain how some mathematical statements can be known to be true.

Of course there are many ways in which one might seek to avoid this dilemma.;

much contemporary work in the philosophy of mathematics is usefully classified according

to the way in which it attempts to solve it One could, for example, accept a standard

semantic analysis of mathematical statements and agree that some mathematical statements

are true, but deny that this commits us to the existence of abstract objects, by providing an

alternative account of the nature of mathematical objects, one which allows for a direct

perceptual or causal connection between those objects and human beings. This is perhaps

the most common type of solution to Benacerraf s dilemma. I examine some examples in

section three, below.
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On the other hand, one could accept the standard analysis and the truth claim, and

also accept that this commits us to abstract objects, but deny that this makes mathematical

knowledge impossible, by providing an account of how we can come to know truths about

abstract objects without there being any direct causal connection between us and them. This

is the route taken by Quine and Putnam; I will examine their arguments in chapter four. On

the other hand, more radically, one could accept the standard analysis, and the claim that if

some mathematical statements are true, this commits us to abstract objects, but deny the

truth claim, holding that mathematical statements are all literally false. This is Hartry

Field's solution to the problem, which is also discussed in chapter four.

All of these solutions to Benacerraf s dilemma retain something like the standard

semantic analysis of mathematical statements, but seek in different ways to avoid the

conclusion that this makes mathematical knowledge impossible. With one or two notable

exceptions, the non-standard approach has been pretty much abandoned. One of the

exceptions is of course, Michael Dummett who has argued for an intuitionistic

interpretation of mathematics. Duinmett rejects the assumption implicit in Benacerraf s

argument, that the meaning of a sentence is to be analysed in terms of truth conditions

along Tarskian lines. Instead he proposes that the meaning of a statement is to be analysed

in terms of its assertability conditions; to know the meaning of a statement is to know what

would count as verifying it. In the case of mathematical statements, this entails that to know

the meaning of such a statement is to know what would count as a proof, or disproof of it.

Dummett's main argument for this conclusion however, depends on very general

considerations about the communicability of meaning; if valid his argument would apply to

statements of any kind whatsoever and not just to mathematical ones. Hence Dummett can
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avoid the problems associated with failing to give uniform semantic analysis of our

language. Dummett can be seen as avoiding Benacerraf s dilemma by replacing the

classical Tarskian conception of truth with an alternative general account of that concept.

The problem of course is to say in more detail what this concept comes to and how it can be

justified, a task which Dummett undertakes with great vigour in his writings on the subject,

[see for example, Dummett 1975], This solution however, comes at a price - many

theorems of classical mathematics are disprovable when interpreted intuitionistically. As

we shall see, this price is considered too high to pay by many contemporary philosophers of

mathematics.

Benacerraf s dilemma can be stated in the following way. Our best general theory of

truth, namely Tarskian semantics, combined with the thesis that some mathematical

statements are true commits us to the existence of abstract mathematical objects. But our

best general theory of knowledge, namely the causal theory, entails that we cannot have any

knowledge of such objects and that mathematical knowledge is therefore impossible. The

second part of Benacerraf s argument concludes that knowledge of abstract objects is

impossible and many philosophers have taken something like this argument as a standard

formulation of the epistemological problem for platonism; the problem of showing how we

can acquire knowledge of causally inert, abstract objects. Many argue that this problem is

indeed insoluble and that platonism should therefore be abandoned and replaced with an

alternative ontology for mathematics.

There are however, reasons for dissatisfaction with Benacerraf s way of stating his

dilemma; in particular with the way he elaborates the two conditions on the adequacy of

accounts of mathematical truth. I shall argue that properly formulated, Benacerraf s
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dilemma is independent of both Tarskian semantics and the causal theory of knowledge.

One upshot of this analysis will be that in fact, there is a more general epistemological

problem in the philosophy of mathematics; a problem which is independent of any general

account of knowledge and also independent of any theory of the subject matter of

mathematics. I shall begin however, by examining the hom of BenacerraPs dilemma which

proceeds from Tarski's theory of truth to the existence of abstract objects.

2. TARSKIAN SEMANTICS

The first reason for dissatisfaction with Benacerraf s formulation of the dilemma is

its dependence on what he calls 'Tarskian semantics' or 'Tarski's theory of truth'. The

problem here is that Tarskian semantics is itself a mathematical theory. Let us start by

reviewing the details of that theory.

In 'The Concept of Truth in Formalized Languages' [Tarski 1956] Tarski

inaugurated what has become known as model-theoretic semantics by showing how to

provide a semantics for the formal language of first-order predicate logic.9 The key notion

in Tarskian semantics is that of truth in a model. A model for a formal language L is a set-

theoretic structure M consisting of several parts:

(1) A non-empty set D; the domain of M.

(2) A function that assigns to each singular term, or name, c of the language L an

element^ of D.

'Seealso [Tarski 1944].
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(3) A function that assigns to each «-ary predicate symbol P of L a relation r on

D. (That is, a set of ordered n-tuples of elements of D). If L has the identity

symbol =, then =M is the identity relation on D.

(4) The set of truth values: {T, F}.

An L-valuation based on the model M, is then recursively defined to be a function v which

maps elements of the language L onto elements of the model M in the following way:

(i) If x is any variable: v(x) e D

(ii) If c is any singular term, or name: v(c) = d"

(iii) If P is an w-ary predicate symbol and ti, ...tn are terms (either variables or singular

terms): v( Pt,... tn) = T if (vfa),...., v(tn)> e f \ v( Pti... tn ) = F otherwise.

In addition, assuming our language contains only the two connectives -> (if...then) and ~

(not...) and a single quantifier V (for all...) then, if a and {3 are any well formed formulas:

(iv) v(a -> (3) = T if v(a) = F or v(P) = T; F otherwise.

(v) v(~ a) = T if v(a) = F; F otherwise.

(vi) v(Vx(3) = T if v̂ /uCP ) = T for all u e D; F otherwise.

where v^u is the valuation based on M which differs from v only in that it assigns the

element u of D to the variable x.
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A valuation v is said to satisfy a formula a if and only if v(a) = T. Tarski's formal

definition of truth in a model can then be stated as follows:

(TT) A sentence of a formal language L (a formula of L containing no free variables) is

true in a model M if and only if it is satisfied by every L-valuation based on M.

Suppose we are given a formal language powerful enough to express the Dedekind-

Peano axioms for arithmetic Then we can define a model N for that language. The language

will need two predicate symbols, = and S for the identity and the successor relations and

just one name, 0 for the number zero. The domain of N is just the set of all natural numbers.

iS^ is the set of all ordered pairs (a, b) such that a and b are natural numbers and a is the

successor ofb.=N is just the identity relation on the natural numbers and (f is the number

zero. By (TT) a sentence of this language is true in a model if and only if it is satisfied by

every valuation based on that model. We might call a sentence of the language of arithmetic

true simpliciter if it is true in the 'standard model' N, that is:

(TTA) A sentence of the language of arithmetic is true if and only if it is satisfied by every

valuation based on the model N.

Consider for example, the first Dedekind-Peano axiom, which states that zero is not

the successor of any number. In our formal language this sentence would be expressed as

Vx-SOx. By (TTA) this sentence is true if and only if for every valuation v based on N, we

have v(Vjc-Sto) = T. Now:
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iff

iff

iff (v^ (0), v ^ (x)> e SN for all u e N

iff (O^Vx/uOO) £SA 'forall«eN

iff <Ov,w>^SArforallwcN

iff (0,w>

By(vi)

By(v)

By (iii)

By definition of Vx/U (0)

By definition of v̂ /u (x)

By definition of (f

So our sentence is true if and only if, for every natural number u, the ordered-pair

(0, u) is not an element of the successor relation; that is, if and only if the number zero is

the not the successor of any natural number.10

The point I want to draw attention to is that the Tarskian definition of truth (TT) is a

mathematical definition of a mathematical property. A formal language is itself a kind of

mathematical object and a model for such a language is a certain kind of mathematical

structure. Truth in a model is defined using the concept of a mathematical function - a

valuation v. A sentence of a formal language is true if every such function meets some

complex condition. Arithmetical truth, on such an account has become a mathematical

property of certain mathematical objects (sentences of a certain formal language) just as

being composite or prime is a mathematical property of numbers.

7/platonism is true, then of course, the mathematical claim that a sentence a is true

in the model N commits us to the existence of various abstract objects - in particular to the

10 We have here proved an instance of one half of Tarski's.T-schema: ' a ' is true <-• a.
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model N and hence to all the natural numbers. But in this regard, the statement ' a is true in

N7 is no different to any other mathematical statement. For the platonist, any true

mathematical statement commits us to the existence of those abstract objects which make it

true. But of course, platonism is not the only option. If one thinks that mathematical

statements are in some sense true, but not in the platonist sense, then one ought to have the

same attitude to Tarskian semantics itself. If for example, one adopted the intuitionistic

analysis of mathematical statements, then one ought apply the analysis equally to Tarski's

mathematical definition of the concept of 'truth in a model'. There is nothing to prevent the

intuitionist from giving exactly the same recursive truth definition as Tarski, but

interpreting the clauses intuitionistically rather than classically. Such an approach would

yield all the instances of Tarski's T-schema; ' a ' is true <-> a , where the right hand side of

the equivalence is interpreted intuitionistically.11

Then again, suppose one had a fictionalist account of mathematics, according to

which mathematical objects such as numbers do not exist at all, but nonetheless,

mathematical statements can be true or false in the same sense (whatever that is) in which

statements occurring in fiction can be true or false. Applying this to the definition of truth

in model, the claim mat every valuation based on N satisfies the sentence a (the claim that

a is arithmetically true) makes a claim about non-existent, fictional objects. On this

interpretation, one can say that ' a is true in AT without being committed to the existence of

any mathematical objects.12

11 See pummett 1975, p. 80].
12 One might of oounc be committed to fictions, tcxta, itorica or whatever is involved in the a u l y u of 'fiction*! truth*.
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Hence, one can accept the Tarskian definition of arithmetical truth (TTA) and the

claim that some mathematical statements are true, without being thereby committed to

platonism, for one need not interpret (TTA) platonistically.

Tarski's mathematical definition of truth in a model then, forces us to accept the

existence of abstract mathematical objects only under a certain interpretation of

mathematics. Thus Benacerraf makes a mistake when he argues that our 'best theory of

truth', Tarskian semantics, commits us to platonism. If the first horn of Benacerraf s

dilemma is to have any force, we need to find a way of stating the argument which is

independent of Tarskian semantics, for so elaborated, the first condition will not rule out

non-standard accounts of mathematical truth such as intuitionism or fictionalism.

What we need to do is distinguish the mathematical theory of truth in a model from

what might be called referential semantics. The central idea of the latter is that the truth

value of a sentence is a function of the references of its component parts. The notion of

reference employed here is a philosophical one; it denotes some kind of intensional

relationship between words and the world. Notice that no such relationship is required in

the mathematical definition of truth in a model; all we have there are mathematical

functions from one kind of mathematical object (items in a formal language) to others

(items in a certain kind of mathematical structure). No substantial notion of reference is

involved here.

It is referential semantics, rather than the account of truth in a model, which I

suspect Benacerraf really has in mind when he speaks of our 'best theory of truth'. On such

an account, the truth value of an arithmetical statement is a function of the referents of its

component parts. The connection with Tarskian semantics is that one can use the recursive
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clauses (i)-(vi) as a mathematical model of the way in which the semantic values of the

components of a sentence combine to yield the semantic value of the whole sentence. So '3

> V for example is true if the object referred to by ' 3 ' stands in the relation referred to by

'>' to the object referred to by ' 2 \ Benacerraf s argument is really that what this shows is

that for '3 > V to be true, the symbols ' 3 ' and C2' must refer to objects. Such objects would

of course be numbers. So referential semantics, given that some arithmetical statements are

true, appears to commit us to the existence of numbers.

Contrast this referential account of mathematical truth to the logical positivist

analysis of mathematical truths as analytic; where analytic statements are 'true in virtue of

meaning'. On this account, the truth of '3 > 2' does not involve reference to any peculiar

mathematical objects like numbers, rather it is made true by the stipulations we have laid

down governing the use of the symbols ' 3 ' , '2 ' and '>'.

A referential semantics for arithmetic men, commits us to the existence of numbers,

but of course, it does not by itself imply that numbers are abstract objects. Again, further

philosophical argument is needed to get from referential semantics to platonism. Benacerraf

is well aware of this; his argument is just that the usual standard account of the

mathematical objects required to make mathematical statements true is that such objects are

abstract, rather than physical or mental entities. If so, we then have the problem of

explaining how there can be knowledge of such objects.

85

3. METHODOLOGICAL PLATONISM

However, even this reformulation of the first horn of Benacerraf s dilemma will not

quite do. To see this, consider that an obvious solution to the dilemma formulated in this

way would be to retain a referential semantics for mathematical language, but to reinterpret

mathematical sentences so as to avoid commitment to abstract objects, by providing an

alternative, non-platonist account of the ontology for mathematics. The further hope is that

we will then be able to explain our mathematical knowledge in terms some kind of normal

epistemic contact (such as perception) with the modified ontology.

In her highly stimulating article 'Philosophy of Mathematics: Prospects for the

1990s', Penelope Maddy discusses several account of this kind.13 For example,

structuralists like Resnik and Shapiro give an interpretation of mathematics according to

which it is concerned not with particular abstract objects, but with the properties of patterns

or structures™ Hellman adopts a similar position, but develops the ideas of Putnam

mentioned in chapter one, to give us a modal-structuralist interpretation of mathematics; on

this account mathematics is about possible structures and what must of necessity hold good

of them.15 Then again, some writers have adopt a broadly constructivist interpretation of

mathematics; Charles Chihara for example, provides a reformulation of mathematics in

terms of the construction of open sentence tokens16 while Philip Kitcher presents the

theory of the ideal collector, according to which mathematics is concerned with the

operations of collecting and correlating objects which could be carried out by an idealised

13 See [Maddy 1991].
14 See [Resnik 1981,1982, Shapiro 19831.
15 See [Hellman 1989].
16 See [Chihara 1990]
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agent. Maddy herself takes a different approach, arguing that some sets are in fact not

abstract, but material objects and hence mat mathematical sentences about them are made

true or false by physical objects we can directly perceive.18

I will discuss the question of whether these accounts succeed in their

epistemological aims in section five below. Here, I want to draw attention to a feature

shared by all the accounts of mathematics in Maddy's list. This is that they involve a

refusal to take mathematical discourse at face value. Consider again the first Dedekind-

Peano axiom:

(1) Zero is not the successor of any natural number.

On the face of it, (1) is of the form:

(2) ~3x(N(x)&S0x)

Following Benacerraf, let us call (2) the standard interpretation of (1). On most of the

accounts mentioned above, the standard interpretation of (1) is rejected. On these accounts

(1) does not have the form (2) but something quite different. For example, on the modal-

structuralist account, as we saw in chapter one, the form of (1) would not be (2) but:

(3) DVSVoVW [ AX(S, o,N)-> ~3x(N(x) & Sox) ]

Of course, it is possible to give a non-platonist interpretation of mathematics without

claiming that the logical form of mathematical sentences is something other than the form

they appear to have. One could claim for example that (1) does indeed have the form

expressed by (2) but that the quantifiers of (2) range not over abstract objects, but over

objects of some other kind; physical sets perhaps.

17 See [Kitcher 1984]. Kitcher's theory is discussed in more detail in chapter three.
18 See [Maddy 1990].
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The problem with these accounts which I want to draw attention to here is that they

are false to actual mathematical discourse. Contemporary mathematical discourse is at least

methodologically platonist. It is the standard interpretation of the form of mathematical

statements that mathematicians actually use. Mathematicians do talk about the subject

matter of the fields in which they work in terms of certain objects - the natural numbers,

sets and so on. Actual proofs proceed in terms of the standard interpretation of the form of

mathematical statements and make use of principles of classical logic. Nor do

mathematicians treat their objects as though they were physical. That mathematical objects

are abstract is in a sense implicit in the practice of mathematics.

In actual practice then, mathematicians are platonists in their methodology, in the

way they actually do mathematics. I take it that it would be preferable to have a philosophy

of mathematics which explains this practice, rather than ignoring it or explaining it away.

Otherwise, we have not given an account of mathematics as it is actually done. We will

have, perhaps, a philosophy of a possible form of mathematics, not an accurate philosophy

of actual mathematics.

If this is right then the first horn of Benacerraf s dilemma is quite independent of

any semantic theory or general account of the concept of truth. We do not need referential

semantics to yield the conclusion that mathematics is about abstract objects. All we need is

the methodological principle that our account of mathematics should respect actual practice

in mathematics. In particular, we should take mathematical discourse at face value.

Consider an analogous case. It does not take any deep philosophical theory of semantics to

tell us that nuclear physics is about sub-atomic particles. All we need to do is look at what

physicists say and take what they say literally and at face-value. If we do this, we find that



the claims they make concern the properties of various objects; protons, neutrons, electrons

and so forth. Nor do we need any high powered philosophical argument in order to say

something more about these objects; in particular mat they have certain properties (mass,

location in space and time) and lack certain others (colour, smell and so forth). Simply by

paying attention to what physicists do and do not say about these objects, we can get to the

conclusion that they are physical objects of a certain kind.

Exactly the same considerations apply to mathematics. We do not need referential

semantics to tell us that mathematics is about certain objects. All we need to do is look at

what mathematicians actually say. What they say are things like 'Every set has a power set'

and 'Every number has a successor'. Taking this literally and at face-value, we conclude

that mathematics is about certain objects; numbers, sets and so on. Again, it does not

require much argument to conclude that these objects have certain properties and lack

others. In particular, we need no deeply philosophical argument to the conclusion that these

objects are not physical things, but abstract. All we need to do is look at what

mathematicians do and do not say about their objects. Of course it is no theorem of

mathematics that numbers do not exist in space or time or that they are not causal agents.

But then neither is there any explicit law of nuclear physics to the effect that electrons

occupy space and have mass but do not have colours or smells. These facts about electrons

would be readily accepted, but are usually just taken for granted. They are implicit in the

questions physicists do not ask and the things they do not say about their objects. The same

goes for mathematics; that numbers are abstract is revealed by the questions

mathematicians do not ask about them and the things they do not say about them.
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If we take mathematical discourse seriously and at face value then, platonism of

some kind or other seems forced on us. The reasons why we ought to take mathematical

statements at face value are methodological, rather than dependent of any theory of the

semantics of our language. The methodological principle involved is that we should take

actual mathematical practice seriously. Platonism is to some extent implicit in this practice.

Now of course, this is not enough to rule out of court all of the non-platonist

accounts mentioned above. There can be good reasons for denying mat the face value or

obvious interpretation of a kind of sentence is the correct interpretation. Attempts to solve

philosophical problems have very often proceeded by arguing that certain kinds of

statement ought not to be taken as having their face-value logical form. Russell's theory of

descriptions is a famous example.19 More mundane examples are provided by sentences

like 'His whereabouts are unknown' or 'I did it for her sake'. The grammatical 'surface

form' of such sentences is misleading as to their logical form; taking them literally and at

face value would suggest that they are about strange objects such as sakes and whereabouts

and of course they are not. In these and other cases, we get into some kind of philosophical

trouble if we take certain sentences at face value; the trouble is resolved by showing that

the statements involved have a quite different logical form to that which might be suspected

by their surface form.

In assessing an argument of this kind we need to weigh up the cost of abandoning a

literal, face value v.uerpretation of some part of our language (the cost of claiming that we

do not quite mean what we say) against the benefits, measured in terms of an ability to

resolve philosophical problems, of the proposed reinterpretation of that part of the

language. It may happen that the benefits do not in fact outweigh the costs. The new

19 See [Russell 1905, Quine 1948].
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interpretation may not in fact solve the problems it is intended to solve or it may raise new

problems of its own. Then again, it may be that there was only an illusion of a real problem

in the first place.

Applying this to the non-platonist accounts of mathematics listed above, we can say

that it is a disadvantage of these sorts of accounts that they are false to actual mathematical

discourse. I do not want to say that such accounts are therefore completely misguided; the

point is just that the fact that they reinterpret mathematical discourse in a way that is at

odds with actual mathematical practice h something that counts against them.

Of course, the claim would be that this disadvantage is outweighed by the

metaphysical or epistemological advantages of such accounts. It can be argued however,

that there is often very little such gain to be had; we get rid of numbers for example, but

replace them with abstract structures or possible worlds, which raise new problems of a

similar kind to those supposed to accrue to the platonist. ontology.

The main advantage of these non-platonist accounts is supposed to be that they can

avoid the epistemological puzzle about abstract objects; the problem how we can know

anything about them. In order to properly assess these accounts of mathematics then, we

need to get clearer about what exactly this problem amounts to. This brings us to the second

horn of Benacerraf s dilemma and to the second reason for dissatisfaction with his

formulation of it, namely its dependence on the causal theory of knowledge.

4. THE CAUSAL THEORY OF KNOWLEDGE

The causal theory of knowledge emerged from a recognition that justified true belief

is insufficient for knowledge. The so called Gettier cases describe situations in which even
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though someone has a true and justified belief that p, we do not want to say mat they really

know that p?° For example, suppose I read in the paper one morning that John Howard has

resigned as Prime Minister of Australia. I read the same news in other papers, hear of it on

the radio and see reports of the event on the television. I come to believe that John Howard

has resigned and my belief is well justified. In fact, I have been made the victim of an

enormous practical joke; all these news reports have been fabricated. Nonetheless,

unbeknownst to the fabricators, John Howard has in fact resigned. So I have a justified true

belief. But do I know that John Howard has resigned? Apparently not, for after all, I am

only right by accident.

What seems to be missing in this case and others like it, is the lack of an appropriate

causal connection between the formation of the belief and what makes mat belief true. In

the above example, my belief that John Howard has resigned does not count as knowledge

because it was not caused by his resignation, but by the machinations of the fabricators. An

obvious response to counter examples of this kind then, is to add a causal condition to the

justified true belief account of knowledge; knowledge is justified true belief where there is

an appropriate causal connection between the belief and what makes that belief true. This is

still quite vague, since it has not yet been made clear what an 'appropriate' causal

connection is. But there is no reason to suppose that the condition could not be clarified to

some extent, at least in cases of perceptual knowledge.

However, it is possible to describe Gettier cases in which it does not seem to be the

lack of any appropriate causal connection which differentiates knowledge from justified

true belief. Suppose I am sitting in a meadow, looking at some daffodils. I form the belief

20 See [Gettier 1963].
21 See for example [Gettier 1963, Goldman 1967 and Harman 1973].
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that there are some daffodils before me. My belief is true and I have a perfect perceptual

justification for it; it is a clear, sunny day and I am looking right at the daffodils. But I do

not know that there are daffodils before me. What I am unaware of is that someone has

filled this meadow with fake plastic daffodils, practically indistinguishable from the real

thing. Although in this case my belief is correct and well justified, I am again only right by

accident — if I had looked in a slightly different place, I would have been looking at a fake

and still formed the belief that there were daffodils before me.

In cases like these, a person has a justified true belief and an ideal casual relation to

the objects which make that belief true. But the knowledge claim can be defeated by facts

of which the person is not currently aware and such that, if they were to become aware of

them, they would be forced to retract their claim to knowledge. If I was informed that my

meadow contained many fake as well as real daffodils, I would retract my claim to know

that there were some daffodils before me - 1 would no longer be sure, even though in this

case I happen to be right. Notice that the same kind of account can be given of why we do

not have knowledge in the first kind of Gettier case. In the first example, if I became aware

that I was the victim of fabricators, I would retract my initial claim to have known that John

Howard had resigned, even if I learned that he had in fact resigned.

Hence there is another class of counter-examples to the justified true belief account

of knowledge. In the first class, what seemed to be missing was an appropriate causal

connection. But in the second class, something else seems to be missing; knowledge of

some other facts which would defuse the knowledge claim. If we take all the counter

examples now available to us into consideration, they do not point quite so obviously to the
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causal theory. It is much less clear that an appropriate causal connection must be present for

there to be knowledge. In this way, the motivation for the causal theory is undermined.22

The view of many philosophers these days seems to be that the causal theory cannot

be defended as a thesis about necessary and sufficient conditions for knowledge. If this is

so, then the causal theory poses no real threat to platonism.23 Nevertheless, epistemological

worries about platonism have persisted. The challenge "still appears to have some force; if

abstract mathematical objects are so severely independent of human beings, it does appear

at least obscure how we can know anything about them. The problem has changed from a

perception of an inconsistency between platonism and the causal theory of knowledge, to a

challenge to provide a broadly empirical or naturalistic account of our knowledge of

mathematical objects. W.D Hart put the point like this:

It is a crime against the intellect to try to mask the problem of naturalizing the epistemology of

mathematics with philosophical razzle-dazzle. Superficial worries about the intellectual hygiene of

causal theories of knowledge are irrelevant to and misleading from this problem, for the problem is not

so much about causality as about the very possibility of natural knowledge of abstract objects.

[Hart 1977, pp. 125-6]

Several philosophers noting the contemporary ambivalence towards the causal

theory of knowledge, but still suspecting that there is an epistemological problem for

platonism have attempted to find a formulation of the problem which is independent of the

causal theory of knowledge. For example, Hartry Field in the introduction to his book

Realism, Mathematics and Modality argues that the way to understand Benacerraf s

22 See also [Wright 1983, pp. 84-97].
23 See for example [Steiner 1973,1975].
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challenge to platonism is not as a challenge to justify our mathematical beliefs, but as a

challenge to explain the reliability of those beliefs.24

According to Field, if we cannot produce an' account of the mechanisms which

explain how our mathematical beliefs so closely reflect the facts about mathematical

objects, then this tends to undermine belief in those objects. Field attecjpts to express the

idea that our mathematical beliefs reflect the mathematical facts without reference to 'facts'

or to any notion of truth stronger than a disquotational one. The platonist must explain why

it is that the conditional:

(CP) If mathematicians accept that 'p ' , then p

holds for a wide range of mathematical statements p. Penelope Maddy arrives at a similar

conclusion:

Even if reliabilism turns out not to be the correct analysis of knowledge and justification, indeed, even

if knowledge and justification themselves turn out to be dispensable notions, there will remain the

problem of explaining the undeniable fact our expert's reliability. In particular, even from a

completely naturalized perspective, the Platonist still owes us an explanation of how and why

Solovay's beliefs about sets are reliable indicators of the truth about sets.

[Maddy <990,p.43]

Both Field and Maddy think that the platonist will be hard pressed to find such a solution.

Field writes:
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24 See [Field 1989, pp. 25-30 and 230-9].
25 [ibid. p. 26].

... to make it believable that the Benacerrafian challenge is insurmountable, one would have to argue

that it is impossible to explain the reliability claim in question: one would have to argue that the

various facts about how the platonist conceives of mathematical objects collectively rule out all

possibility of finding such an explanation. (The relevant fects .. include their mind-independence and

language-independence; the fact that they bear no spatio-ter, oral relation to us; the fact that they do

not undergo any physical interactions ... with us or anything we can observe ...). Like Benacerraf, I

refrain from making any sweeping assertion about the impossibility of the required explanation.

However, I am not at all optimistic about the prospects of providing,it.

[Field 1989, p. 27]

In similar vein, we have Maddy:

Obviously, what we are up against here is another, less specific, version of the same vague conviction

that makes the causal theory of knowledge so persuasive: in order to be dependable, the process by

which I come to believe claims about xs must ultimately be responsive in some appropriate way to

actual xs. ...nothing can be responsive to non-spatio-temporal, unchanging, acausal, unobservable

Platonic entities. How then can Solovay's reliability be anything more than a fluke? How can it

possibly be explained?

[Maddy 1990, p. 44]

Of course, the problem is not confined to platonism; Benacerraf s claim was that

any philosophical account of mathematics has to explain how mathematical knowledge is

possible. Instead of elaborating this as a requirement that we show how mathematical

knowledge can be explained in terms of the causal theoiy of knowledge, Field and Maddy

elaborate it by asking for an explanation of the reliability of our mathematical beliefs.

Presumably any account of mathematics must provide such an explanation; the further

suggestion is just that this problem will be especially acute for the platonist.

One thing to notice about this way of stating the epistemological horn of

Benacerraf s dilemma is that it is independent of any general account of knowledge. We are

not being asked to show how the conditions laid down in some analysis of 'X knows that/?'
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can be met in the case where p is a mathematical statement. Instead we are asked only to

give an explanation of how we can have reliably true mathematical beliefs. However, there

are some difficulties even with mis reformulation of the problem. To make this clearer, we

need to return to our examination of those accounts of mathematics which attempt to avoid

Benacerraf s dilemma by providing an alternative, non-platonist interpretation of

mathematical discourse.

5. T H E N E W CONSENSUS

The accounts listed by Penelope Maddy (section three above) are all very different

in their characterisations of mathematical reality. Nonetheless, Maddy argues that this work

reveals a new consensus in the philosophy of mathematics:

The new consensus as I see it, is this: some form of ontological tinkering can defuse Benacerraf s

dilemma without sacrificing standard mathematics. That is to say, there are ways of understanding the

subject matter of mathematics as something other than the cool and inaccessible inhabitants of Plato's

heaven, as something accessible to human cognizers, without curtailing the practice of classical

mathematics.

[Maddy 1991, p. 156]

Although Resnik, Shapiro, Hellman, Chihara, Kitcher and Maddy disagree as to

what kind of 'ontological tinkering' is required, they all more or less agree that a basic

knowledge of their ontologies can be acquired empirically, by means of perception. For

Resnik, simple facts abcut concrete patterns can be learnt perceptually.26 Chihara's open

sentence tokens, being physical inscriptions, are obviously perceivable. Kitcher explicitly

appeals to perception as a means of giving us knowledge of some basic features of the

26 {Resnik 1982, pp. 9-10).
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activities of counting and correlating.27 Hellman argues that we come to know that our

mathematical structures represent a coherent possibility through the use of mathematics in

empirically confirmed scientific theories28 Finally, Maddy gives a sophisticated

psychological account of how our basic mathematical knowledge is acquired by

perceptions of physical sets.

Maddy's conclusion is that:

the particular ontological details are less important than the general epistemological trend...there

are two items of agreement: first that the traditionally platonist ontology of mathematics can be

modified without sacrificing standard results and practices; and second that a very basic level of

epistemic contact with the modified ontology is available through ordinary perception.

[Maddy 1991, pp. 156-7]

In section three I argued that an adequate philosophy of mathematics should be

consistent with actual mathematical practice. Part of that practice is obviously the language

of mathematics and that language is at least implicitly platonist. So any account of

mathematics which does not take mathematical language, as it actually is, at face value is

though perhaps not inconsistent with mathematical practice, at least somewhat at odds with

it.

The point I want to make here is that the same methodological argument also

applies to the epistemology of mathematics. An adequate philosophy of mathematics

should also be consistent with the ways in which mathematics is actually justified. The

accounts in Maddy's list however, also fail to meet this condition. The problem is that

perception can only give us knowledge of a restricted class of mathematical statements on

27 [Kitcher 1983, pp 5,117-118].
28 [Hellman 1989, pp. 3 ,96-7] .
29 [Maddy 1990].
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such views as these - simple statements like '2 + 2 = 4' for example. Very little more

advanced contemporary mathematics can be given a directly perceptual or empirical

justification. How then, is the rest of mathematics known? How can our knowledge of the

axiom of choice, or Fermat's Last Theorem, for example, be accounted for in terms of these

reformulated ontologies? Most of these accounts fail to answer these questions, they

provide no account of the ways in which the more theoretical portions of mathematics are

actually justified.30

Again, I do not want to say that any of these accounts of the subject matter of

mathematics are wrong. Rather, I want to take issue with Maddy's claim that 'some degree

of ontological tinkering can defuse Benacerraf s dilemma'. In particular, these accounts do

not completely avoid getting caught on the epistemological horn of that dilemma. It is not

good enough to simply show that there is an interpretation of mathematical discourse under

which we can have empirical or perceptual knowledge of mathematics For this tells us

nothing about how mathematics actually is justified. Such an account need have nothing at

all to do with the way mathematics is actually done.31 We have to show not only that

mathema' ical knowledge is possible, but how it is in fact obtained. Only in this way will we

arrive at a solution to the episiemological problem which is properly sensitive to

mathematical practice.

30 Maddy and Kitcher are the two exceptions to this rule. O n Maddy ' s account, for example, our most basic
mathematical knowledge is grounded in oar perceptions of sets of physical objects. M a d d y then sets herself
the task of explaining h o w the more advanced set-theoretic postulates (the axiom of choice, the cont inuum
hypothesis and so forth) are justified. [Maddy 1988a, 1988b, 1990]. I will discuss s o m e of the results of
Maddy ' s investiagations into t h e justification of set-theoretic principles in chapter five. Ki tcher ' s account of
h o w mathematical knowledge grows out of rudimentary knowledge obtained via percept ion is examined in
chapter three.
31 As Philip Kitcher puts it: T o show that it is in principle possible for us to have knowledge of mathematical
reality... is not to explain h o w we do have such knowledge* [Kitcher 1984, p.103]. Here Kitcher is making the
point with respect to piatot;.* m, but in fact it is generally appliw.ble, to all accounts of mathematics.
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We have seen then that the epistemological problem for platonism is not that

knowledge of abstract objects is ruled out by the causal theory of knowledge. Field and

Maddy argue that in fact the problem is independent of any theory of knowledge; it is to

explain how we can have reliably true mathematical beliefs, in something like the sense of

(CP) above. The problem with this is that an account can satisfy (CP) - explain why it is

true - in a way that has little or nothing to do with the way in which mathematical beliefs

are actually justified. Presumably perception is a reliable belief forming process and so if

mathematical statements (suitably reinterpreted) can be known through perception, we will

be able to explain the reliability of those beliefs. The foregoing remarks this is inadequate

however, since the explanation offered has no obvious connection to the ways in which

mathematical beliefs are actually acquired. If the problem is to explain the reliability of our

mathematical beliefs, we would need to add a constraint on the possible explanations that

we can accept. The explanation must make it clear how the actual practices of

mathematicians can lead to reliable beliefs. We would need to explain why the conditional:

(CP2) Actual mathematical practices are such that if a mathematician comes to accept 'p'

by means of them, thenp

We can certainly say that explaining why (CP2) holds for a large class of mathematical

statements will be difficult for the platonist, but what is not clear is that the non-platonist

accounts were are discussing do any better, to the extent to which they provide no account

of actual mathematical practice.
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Is the formulation of this problem given by (CP2) the right way to make these

worries clearer? One difficulty with it is that appears to ask us to explain the reliability of

our justificatory practices in mathematics. This seems to be a request to justify our cannons

of justification themselves. One might argue however, that this a request impossible to

meet. By what standards of justification could we criticize or defend those standards

themselves? Any such attempt would seem to face a problem of vicious circularity. This is

of course, a version of Hume's problem of induction. Nelson Goodman has argued that it is

indeed impossible to find a guarantee that our inductive practices are reliable. The same

might be said for our justificatory practices in general, both inductive and deductive. For

Goodman, the only real problem is that of simply describing, rather than attempting to

justify our practice.32

I shall return to this issue briefly in the next chapter. Let us leave aside such worries

for now. What I want to suggest is that there is a more fundamental epistemological

problem for platonism. We should view the problem not as one of explaining how

mathematical knowledge is possible in terms of a general theory of what it is to know

something, nor should we see it as a problem of explaining the reliability of our

mathematical beliefs. Rather, we should look at the problem in terms of a conflict between

platonism and our normal everyday and scientific cannons of evidence and justification.

Those cannons of justification are broadly empirical; we do not countenance as a source of

evidence anything which cannot be somehow traced back to our normal perceptual contact

with the world.

The real epistemological problem for platonism then, is to give an account of how

there can be empirical evidence for the existence of such objects. But not just any account

32 See [Goodman 1983].
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will do; the explanation must also be consistent with the actual cannons of evidence in

mathematics; it must show how evidential practice in mathematics can be seen to conform

to the broadly empirical standards we make use of elsewhere.33

The difficulty seems to be that if mathematical objects are abstract, there can be no

empirical evidence for their existence; but empiricism is the claim that all evidence is at

root empirical.34 Notice that this statement of the problem does not depend on any theory of

knowledge, only the concept of evidence. The basic issue is independent of what (if

anything) is required in addition to justified true belief for there to be knowledge. The

problem is not really about knowledge, but about evidence; there can be no knowledge of

abstract objects only if we can have no empirical evidence for them.

6. RESTATING THE PROBLEM

I have argued that Benacerraf s dilemma, properly interpreted is independent of any

theory of truth or semantics and independent of any theory of knowledge. An overall

condition on the adequacy of any philosophical account of mathematics is that it should be

consistent with and hopefully explain mathematical practice. This condition has two

aspects, corresponding to Benacerraf s two conditions on the adequacy of any account of

mathematical truth. The first condition is that our account should accurately reflect the

subject matter of mathematics, which means it must be consistent with the language of

33 If we assume those general cannons are a reliable means of getting to the truth, then we will have gone
about as far as we can go toward explaining the reliability of our mathematical beliefs.
34 Quine's solution is to show that despite appearance, we can show how there can be empirical evidence for
abstract objects As we shall see in chapter four, however, Quine's account may also face the problem of
failing to conform to mathematical practice; the kind of justification which Quine provides for mathematics,
although it may be part of the story, appears to have little to do with the ways in which mathematics is
actually justified.
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mathematical practice. The second condition is that our account should accurately reflect

the epistemology of mathematics; which means it must be consistent with the evidential

standards of mathematical practice. The dilemma is then as follows. If our account of

mathematics is to satisfy the first condition, we must take mathematical statements at face

value. But on the face of it, mathematics is about abstract objects. Combined with the claim

that some mathematical statements are true, the first condition tends to commit us to some

form of platonism. But then we run the risk of failing to satisfy the second condition, since

it seems as though it will be very difficult to give an account of how we can have any kind

of empirical evidence for the existence of abstract objects, and a fortiori we will be unable

to give any account of the evidence for them which is consistent with evidential practice in

mathematics.

The first condition does not of course entail that no non-platonist account of the

subject matter of mathematics can be correct. The condition gives us only a prima facie

case for platonism, since the suggestion that we should take mathematical statements at

face-value could be overruled by the disadvantages of doing so. However many of the

accounts mentioned above also fail to satisfy the second condition. They show how there

can be evidence, of a broadly empirical kind for mathematics, but they fail to do so in a

way that is consistent with actual evidential practice in mathematics.

On many contemporary accounts of the epistemology of mathematics, the problem

is still seen as one of justification - the problem is to show how there can be a perceptual or

empirical justification for the mathematics we accept. That is to say, the approach to

epistemology is still normative, rather than descriptive. Although we no longer expect to

find an epistemologically secure and certain foundation for mathematics, we nonetheless
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seek to find some sort of broadly empirical justification for our mathematical beliefs. I have

argued that this will not quite do. We want our epistemology to be consistent with actual

mathematical practice. This means that we should not be satisfied with an account which

shows there is some way in which mathematics could be empirically justified - for such a

justification might not have any connection at all with the ways in which mathematics is

actually justified.

Many contemporary philosophers of mathematics have taken on board at least one

aspect of my overall condition on the adequacy of an account of mathematics - that the

account should be consistent with actual mathematical practice. Any account which

abandons certain results of standard mathematics, or invalidates certain standard patterns of

mathematical reasoning would obviously fail to meet this condition. One element of the

new consensus identified by Maddy is indeed that any adequate philosophy of mathematics

should not seek to curtail any of the results of classical mathematics. This has become a

standard objection to intuitionism. Part of the reasoning behind it, stems I suspect, from a

rejection of the ideal of 'First Philosophy'. The idea is that philosophy cannot provide us

with an especially privileged standpoint from which the corpus of our ordinary scientific

methods can be criticised. Scientific claims should be judged by ordinary scientific

standards, philosophy can provide no higher standard than this. There can be no better

reason for believing the truths of science than the reasons given by the usual scientific

evidence for them.35

Applying this idea to the case of mathematics, it follows that mathematical claims

ought to be judged by mathematical standards and that philosophy is not in a position to

reject them on the basis of some supposedly higher standard. If this is right however, it

35 See for example [Quine 1969a, 1975, Putnam 1971, pp. 71-4].
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means that there can be no real problem of justification in the philosophy of mathematics.

If philosophy cannot criticise, it cannot justify either. If mathematical claims are to be

judged only by mathematical standards, then they cannot be justified in a way that goes

beyond those standards. But to some extent, this is just what many contemporary accounts

of the epistemology of mathematics attempt to do - they attempt to provide a justification

for our mathematical beliefs which seems to have little connection with the standards of

justification internal to mathematics itself.

Very few philosophers would thiak any more that theories in physics or chemistry

stand in need of any kind of justification that cannot be provided by the methods of the

physical sciences themselves. It is time to admit that the same is true of mathematics.

Justifying mathematics is the task of the mathematicians; the task of the epistemologist is to

provide a descriptive, systematic account of the ways in which this justification is carried

out.

Even if there is a problem of justifying mathematics which properly falls to

philosophy, the project of giving a descriptive account of mathematical practice will not go

away. Clearly we will need to be able to give an accurate description of that practice, before

we can even begin to attempt a justification of it. Furthermore, the problem of description is

independent of any epistemologjcal worries we might have about platonism. I argued above

that the problem for the platonist is not just to show that there can be empirical evidence for

abstract objects, but to show how the standards of evidence mathematicians actually

employ can provide us with evidence for abstract objects in a way that is consistent with

empiricism. Equally clearly, we need to be able to say what those standards of evidence are

before we can assess the chances for a successful solution to this problem.
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Indeed, the problems of descriptive epistemology are independent not only of

platonism, but of any account of the subject matter of mathematics. I suggest that one way

we can make some progress in the philosophy of mathematics is by carrying out an

ontologically neutral study of the ways in which mathematics is justified. By concentrating

on giving a purely descriptive account of the nature of mathematical evidence, we can

properly ignore a great many questions about the subject matter of mathematics. We will

find that many of the problems and questions which arise in the process of describing

mathematical evidence are independent of any particular ontology for mathematics. Of

course, ultimately we would like to be able to answer the ontological questions; we would

like, if possible, a better understanding of what mathematics is about; the nature of the

objects of mathematics. But a descriptive, ontologically neutral approach to epistemology

holds out the hope that we can avoid the grip of Benacerraf s dilemma as I have stated it

here, at least for a time. For on this approach, we can go a long way towards constructing

an adequate epistemology for mathematics, one which accurately reflects mathematical

practice, without first having to solve the ontological problem.36

The real problem in the epistemology of mathematics is not one of showing that the

entire body of our mathematical knowledge can be built up on the basis of a sure and

certain foundation. Nor, more generally, is it the problem of showing how our

mathematical beliefs can be justified. Rather, the problem is to give a descriptive account

36 Indeed, it may be that solving the epistemological problem as I have stated it here is a necessary step on the
road towards solving the ontolomcal problem. One might suppose that providing an accurate descriptive
account of the nature of justification in mathematics would point the way to the correct view of the ontology
of mathematics, since the way in which a subject is justified must have some connection to what it is about.
However, the connections between the epistemology and ontology of mathematics are in feet quite loose; a
descriptive epistemology for mathematics can be consistent with very many distinct ontologies for
mathematics. Nonetheless, as we shall, an adequate account of the epistemology of mathematics can at least
suggest that some accounts of the subject matter of mathematics are more explanatory of mathematical
practice than others.
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of the nature of evidence in mathematics. Our goal should be to describe mathematics in its

own terms and seek to explicate the standards of evidence internal to mathematics itself. To

do this, we need to pay much closer attention to the historical development of mathematics

than is usual in philosophical accounts of the subject.

To make these ideas clearer, it will be helpful to look at some examples of the kind

of approach to the epistemology of mathematics I have been arguing for. In the next

chapter, I examine the work of two philosophers who have also argued that we cannot

understand the growth of mathematical knowledge without understanding the real history

of mathematics, and who have taken on the challenge of giving an accurate descriptive

account of the epistemology of mathematics.
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CHAPTER THREE

DESCRIPTIVE EPISTEMOLOGY

In the first two chapters I traced some of the history- of the epistemology of

mathematics. We have seen something of the evolution of a certain kind of normative

approach to epistemological questions, beginning with the work of Frege, through the rise

and fall of the three great foundational programmes to the modern 'new consensus'. I

would like now to turn to a somewhat neglected area in the history of our subject, the

evolution of an alternative descriptive approach to the epistemology of mathematics. I will

discuss the work of two exponents of this alternative approach, Imre Lakatos and Philip

Kitcher. I will be examining their work in some detail, for several reasons. Firstly, both

writers attempt to develop the idea that mathematics is a science, albeit in different ways,

so their work is directly relevant to my project here. Secondly, their work provides a

paradigm example of the sort of descriptive, ontologically neutral approach to

epistemology which I argued for at the end of the last chapter. Finally, and most

importantly, the work of these writers contains many important insights concerning the

nature of evidence in mathematics and the growth of mathematical knowledge.

1. LAKATOS' S PROGRAMME

After Frege's work, which attempted to unify mathematics and formal logic for the

first time and the development of Frege's logicist programme along different lines by



108

Russell and Whitehead in Principia Mathematics, philosophical attention turned

increasingly to the study of formal systems for matliematical theories. The development of

intuitionism, Hilbert's programme and the philosophical impact of GCdel's incompleteness

theorems gave added impetus to this research programme. By 1963, when Lakatos

published Proofs and Refutations as a series of articles in the British Journal for the

Philosophy of Science2, the philosophy of mathematics was seen by many to be more or

less identical with the study of mathematical logic. Lakatos tliought that this development

was harmful to the philosophy of mathematics. The introduction to Proofs and Refutations

begins with the following words:

It frequently happens in the history of thought that when a powerful new method emerges the

study of those problems which can be dealt with by the new method advances rapidly and attracts the

limelight, while the rest tends to be ignored or even forgotten, its study despised.

This situation seems to have arisen in our century in the Philosophy of Mathematics as a result of

the dynamic development of metamathematics. The subject matter of metamathemati.es is an

abstraction of mathematics in which mathematical theories are replaced by formal systems, proofs by

certain sequences of well-formed formulae, definitions by 'abbreviatory devices' which are

'theoretically dispensable' but 'typographically convenient'.3

[Lakatos 1963, p. 2]

Lakatos thinks it is a mistake to identify mathematics with the model provided by

formal axiomatic systems. Calling this identification 'formalism', he writes:

...there are problems which fall outside the range of metamathematical abstractions. Among these are

all problems relating to informal ... mathematics and to its growth, and all problems relating to the

situational logic of mathematical problem solving.

[ibid. p. 2]

1 [Whitehead and Russell 1910-13].
2 [Lakatos 1963,1976].
3 The quotations are from [Church 1956, pp. 76-77].
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If we identify mathematics with formal systems, we will be unable to make sense of

ordinary mathematical practice. For in practice, mathematicians do not set out their proofs

as formal derivations from axioms, rather they present more or less rigorous arguments in a

mixture of ordinary language and symbolism. The formal model has nothing to say about

how such proofs are discovered - the 'logic of mathematical problem solving'. Nor does it

tell us how the axiom systems were arrived at in the first place, how mathematical theories

are created and justified, how they grow from previous mathematics. In general, the formal

model provides no account of the process of mathematical discovery and hence it can make

no sense of the real history of mathematics:

Formalism disconnects the history of mathematics from the philosophy of mathematics...Formalism

denies the status of mathematics to most of what has been commonly understood to be mathematics,

and can say nothing about its growth. None of the 'creative' periods and hardly any of the 'critical'

periods of mathematical theories would be admitted into the formalist heaven, where mathematical

theories dwell like the seraphim, purged of all the impurities of earthly uncertainty Under the

present dominance of formalism, one is tempted to paraphrase Kant: the history of mathematics,

lacking the guidance of philosophy, has become blind, while the philosophy of mathematics, turning

its back on the most intriguing phenomena in the history of mathematics, has become empty.

[ibid. p. 2-3]

Lakatos then, is proposing a return to the study of real, informal mathematics - an

examination of the methodology of mathematics, as revealed in its history. Lakatos had

been deeply influenced by the work of Karl Popper in the philosophy of science.4 Popper's

target had been the inductivist account of the epistemology of science, according to which

4 Indeed, the very title of Lakatos's work seems to be derived from Popper's Conjectures and Refutations,
published the same year. [Popper 1963].
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scientific laws are arrived at by a process of induction from observations. Popper rejected

this view and proposed a different model. Scientific laws are proposed as tentative

hypotheses. Scientific laws are not discovered by a process of induction from particular

cases. They are arrived at in many and various ways, often just by guessing, but the way in

which scientific laws are first discovered is really epistemologically irrelevant.

Once a law is proposed as a hypothesis, it must be tested against experience. This is

achieved by deriving testable consequences from the hypothesis. The law L, implies some

observation sentence O. We have L -> O. If O turns out to be false, we can validly infer

that the law is false - if L -> O, then ~O -> ~L. The hypothesis has been tested and found

wanting, it has been falsified. If the observation sentence O turns out to be true however,

we cannot validly infer that the law L is true, this is just to commit the fallacy of affirming

the consequent.

Nonetheless, if a law or theory entails many observation sentences, all of which turn

out to be true and it entails no false observation sentences, then the law or theory has been

'corroborated'. It becomes accepted into the body of scientific knowledge. We have no

guarantee, of course, that a well corroborated theory is true, only that it has not so far, been

falsified. This leaves open the possibility that it will be falsified at some point in the future.

If the theory is falsified, it is rejected and a new theory must be found to replace it. If the

theory is corroborated, it is accepted, for the time being at least. The mark of a true science,

according to Popper, is that its hypotheses are falsifiable in mis way. He rejects as pseudo-

scientific any body of propositions which cannot be falsified.5

5 See opper 1959,1963].
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Lakatos wants to show that mathematics is a science in Popper's sense. In

particular, he wants to show mat mathematical claims are proposed as hypotheses which

can be tested and hence falsified. Mathematics is not a body of sure and certain truths, it is

fallible and revisable. This view, of course, runs against a tradition of long-standing in the

history of the philosophy of mathematics, a view which Lakatos traces to what he calls-

'dogmatism'. Lakatos aims to oppose the dogmatist view that mathematics is an infallible

body of truths resting on sure and certain foundations with an alternative picture of

mathematics - one more akin to Popper's picture of science - a picture in which

mathematical claims are tentatively proposed as hypotheses to be tested, falsified and if

necessary revised and improved. Lakatos does not directly argue for this position, instead

he provides us with a case study - the history of a certain conjecture of Euler. In describing

the history of this conjecture, Lakatos hopes to simply show, rather than directly argue for

the superiority of his picture of mathematics over that of the dogmatists. He writes:

The core of this case-study will challenge mathematical formalism, but will not challenge directly the

ultimate positions of mathematical dogmatism. Its modest aim is to elaborate the point that informal,

quasi-empirical mathematics does not grow through a monotonous increase of the number of

indubitably established theorems but through the incessant improvement of guesses by speculation and

criticism, by the logic of proofs and refutations.

[ibid. p. 6]

The method of proofs and refutations is Lakatos's term for his model of the growth

of mathematical knowledge. He presents his ideas in the form of a dialogue between a

teacher and the students in a mathematics class. The discussion is concerned with Euler's

conjecture that for all polyhedra:

V - E + F = 2
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where V is the number of vertices, E the number of edges and F the number of faces of the

polyhedron. As the discussion proceeds, the students recapitulate some of the history of the

development of this conjecture - the real historical story is told in footnotes to the main

text. By reflecting on the methods used to establish and improve the conjecture, the

students state, reject and defend explicit methodological principles. The set of principles

they finally arrive at is the method of proofs and refutations. This is meant not only as a

description of how mathematics actually develops, but as a prescriptive heuristic for

mathematical research.

2. THE METHOD OF PROOFS AND REFUTATIONS

2.1 A CONJECTURE AND A PROOF

The story begins then with Euler's claim concerning polyhedra. Euler had no proof

of his conjecture, but he was nonetheless convinced that it was true. He pointed out that the

conjecture is well corroborated by evidence which falls short of proof. It holds for all the

regular polyhedra; the tetrahedron, octahedron, icosahedron, the cube and the dodecahedron

(see figure 1). Euler also verified that the conjecture holds for a wide variety of other

polyhedra; prisms, pyramids and so on. The conjecture also implies other known

consequences, for example that there are only five regular polyhedra.6

1 See [Euler 1750, Polya 1954a, pp. 35-43].
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Figure 1
The Regular Polyhedra

The teacher begins the discussion by offering the following proof of Euler's

conjecture, originally due to Cauchy. Given any polyhedron, we remove a face and stretch

the result so that it lies flat on the plane. Figure 2 shows the result of performing this

operation on a cube. In doing this, the faces and edges may be deformed, but the number of

edges and vertices will not alter. The number of faces however is decreased by one. Let Vp

be the number of vertices, Ep the number of edges and Fp the number of faces of the

resulting plane network. Then for the original polyhedron, we have:
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(1) V - E + F =Vp-Ep + (Fp

= (Vp-Ep

The proof now proceeds by performing a sequence of operations on the plane network

which do not alter the sum Vp - Ep + Fp. We start by triangulating the network. We draw

diagonals on those polygons which are not already triangles, (see figure 3). In drawing a

diagonal, we are adding an edge and a face. So Ep and Fp both increase by one. But if Vp -

Ep + Fp = n for the original network, then

(2) Vp-(Ep + l) + (Fp + l) = V p - E p - l + Fp + l

= Vp-Ep + Fp

= n

for the triangulated network. So triangulating the network does not alter the sum Vp - Ep +

Fp. From the triangulated network, we remove triangles one by one. In removing a

triangle, we either (a) remove one face and one edge (see figure 4a) or (b) we remove one

face, two edges and a vertex (see figure 4b). In case (a) if Vp - Ep + Fp = n for the original

network, then:

(3) Vp- (Ep- l ) = Vp-Ep
= Vp-Ep + Fp

so the sum Vp - Ep + Fp remains the same. In case (b) if Vp - Ep + Fp = n for the original

network, then:

(4) (Vp- l ) - (Ep-2 ) = V p - l - E p + 2 + F p - l
= Vp - Ep + Fp

so again, the sum Vp - Ep + Fp remains the same.
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Figure 2 Figure 3

Figure 4a Figure 4b

At the end of this process, we get a single triangle. But for a single triangle, V - E +

F = 1, since V = 3, E = 3 and F = 1. Since the sum Vp - Ep + Fp has not changed in the

process of triangulating and then removing triangles, we must have:

(5) Vp-Ep + Fp = l

for the original plane network as well as the final triangle. Substituting this value into

equation (1), we obtain:

(6) V - E + F = 2
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for the original polyhedron.7

The students immediately question this proof. They identify three main lemmas on

which it depends, These are:

(1) Any polyhedra, after having had a face removed can be stretched flat on the plane.

(2) If we triangulate the result, we always get a single new face for every new edge we

draw.

(3) In removing the triangles one by one, we either remove one face and one edge or we

remove one face, two edges and a vertex.

The students express doubts about each of these lemmas. Notice what has happened

here. Since Cauchy's proof is presented in a fairly informal way - the way in which most

mathematical proofs are actually written - it is not immediately obvious what the logical

structure of the proof is. The process of identifying the lemmas used in a proof and the way

in which they entail the conclusion is called proof-analysis by Lakatos. If we were to

attempt to formalise Cauchy's proof by translating it into the language of mathematical

logic and devising a corresponding formal proof in an appropriate axiomatic system, proof-

analysis would be our first step. Obviously this process is often neither automatic nor

trivial. Furthermore, although a proof, once formalised, is either valid or not, there can be

better and worse ways of analysing and so formalising the proof in the first place. As we

shall see, the initial analysis of the proof that the students give is one that can be improved

upon.

7 See [Cauchy 1811, Lakatos 1963, pp. 8-9].
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Our initially highly plausible conjecture is now seen to depend on at least three

somewhat dubious lemmas. The proof then, seems to have actually decreased our level of

confidence in the conjecture, rather than establishing it with certainty. The students

naturally express some surprise and disappointment at this state of affairs. As the student

Alpha remarks, 'But then we are worse off than before! Instead of one conjecture we now

have at least three! And this you call a 'proof!' [ibid. p. 10].

The teacher admits that what he calls Cauchy's 'thought-experiment' does not

conclusively establish the truth of the conjecture. But if a mathematical proof does not

show that its conclusion is true, what does it achieve? The teacher's response is as follows:

-..I propose to retain the time-honoured technical term 'proof for a thought-experiment - or 'quasi-

experiment' - which suggests a decomposition of the original conjecture into subconjectures or

lemmas, thus embedding it in a possibly quite distant body of knowledge.

[ibid. p. 10]

Notice a consequence of this way of using the term 'proof. A proof in this sense is

not a guarantee of certain truth - in fact, it is not even a guarantee of truth at all. In this

sense, it is possible to 'prove' a false conjecture:

TEACHER: ...My interpretation of proof will allow for a false conjecture to be 'proved', i.e to be

decomposed into subconjectures. If the conjecture is false, I certainly expect at least one of the

subconjectures to be false. But the decomposition might still be interesting! I am not perturbed at

finding a counterexample to a 'proved' conjecture; I am even willing to set out to 'prove' a false

conjecture!

[ibid. p. 25]

In fact, the third lemma is false as it stands. As one of the students points out, if we

remove a triangle from inside the network shown in figure 3 instead of removing a
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boundary triangle, then we only remove a face - the edges and vertices remain unchanged.

So if Vp - Ep + Fp = n in the original network then:

Vp-Ep + (Fp-l) =(Vp-Ep + Fp) - l

in the new network, so the sum Vp - Ep + Fp has changed.

Notice that this is a counter-example only to the third lemma, it does not by itself

refute the conjecture. Lakatos calls a counter-example to a lemma a local counter-example.

A counter-example to the main conjecture, he calls a global counter-example. In this case,

we have a local, but non-global counter-example. In response, the teacher suggests a

modification of the lemma:

(3') In removing boundary triangles one, by one, we either remove one face and one

edge or we remove one face, two edges and a vertex.

But there are counter-examples to this version of the lemma also. There is a way of

removing boundary triangles one by one from the network, so that we end up with two

disconnected triangles [ibid. p. 13]. The lemma is again reformulated:

(3") There is always a sequence in which triangles can be removed one by one, so that at

each stage the sum V-E+F does not alter.

Lemma 3 has now become quite a strong claim, lacking the initial plausibility of the

original formulation.
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We now come to the first global counter-example - the hollow cube (see figure 5).

Think of this as a solid cube which has had a smaller cube hollowed out in its centre. This

serves as a local counter-example to the first lemma, because it cannot be stretched flat on

to the plane. But it is also a global counter-example, since for the hollow cube we have V =

16, E = 24 and F = 12 - double the number of vertices, edges and faces of a single cube.

Hence, in this case, V - E + F = 4.

1 1 | 5
Lciv.yjfc"'

\ ,

Figure 5
The Hollow Cube

2.2 THE METHOD OF MONSTER BARRING

We are now in a somewhat puzzling position. We appear to have both a proof of the

conjecture and a counter-example to it. Given that Lakatos is using the term 'proof to

allow for even a false conjecture to be proved, this is not too surprising. But what should

we do now? Should we simply reject the original conjecture? This is what Lakatos

eventually suggests, but before doing so he canvasses the idea that we could instead reject

the counter-example. The student Delta argues that the hollow cube is not a polyhedron, it

is a monster and hence does not refute the conjecture that for all polyhedra, V - E + F = 2.
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This leads to a definition of 'polyhedron' aimed at ruling out such monsters: a polyhedron

is a surface consisting of a system of polygons [ibid. p. 13]. This definition rules out the

hollow cube, since it consists of two surfaces, one inside the other.

There are counter-examples to the conjecture even under this interpretation of

'polyhedron' however. For example, there is the polyhedron, first discussed by Kepler, and

named by him the urchin (see figure 6). This can be thought of as a polyhedron, in the

sense of the definition given above, with twelve 'star-pentagon' (or pentagram) shaped

faces (figure 7)8. This is a global counter-example to Euler's conjecture, since in this case,

V=12, E = 30 and F = 12, so that V - E + F =-6.

Figure 6
The Urchin

Figure 7
A star-pentagon face

But this counter-example only works if the pentagram counts as a polygon - for

according to the current definition, a polyhedron is a surface consisting of polygons.

Gamma suggests then, a definition of polygon which will rule this out: a polygon is a

system of edges arranged in such a way that exactly two edges meet at every vertex, [ibid.

8 Each of the twelve star-pentagonal faces are shaded differently in Kepler's drawing of the urchin shown in
figure 6.
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p. 19]. The pentagram is not a polygon in this sense, since it has four edges meeting at die

vertices of the inner pentagon.

We are now introduced to yet another counter-example - the picture-frame (figure

8). This is a system of polygons in the sense of the new definition. However, for the picture

frame, V = 16, E = 32 and F = 16, s o V - E + F = 0 - another global counter-example to the

conjecture.

Figure 8
The Picture Frame

In response, an amendment is made to the definition of polyhedron: for a genuine

polyhedron through an arbitrary point in space, there will be at least one plane whose

cross-section with the polyhedron will consist of a single polygon, [ibid. p. 23]. In the case

of the picture-frame, if we take a point inside the 'tunnel' and lay a plane through it, the

intersection always consists of two distinct polygons. So this definition rules out the

counter-example.

Lakatos refers to this method of saving the conjecture as the method of monster-

barring and rejects it as ad hoc:
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TEACHER: I think we should refuse to accept Delta's strategy for dealing with global counterexamples,

although we should congratulate him on his skillful execution of it We could aptly label his method

the method ofmonsterbarring. Using this method one can eliminate any counterexample to the original

conjecture by a sometimes deft but always ad hoc redefinition of polyhedron, of its defining terms, or

of the defining terms of the defining terms.

[ibid. 25]

In what sense is this strategy ad hocl Suppose we have a theory (or hypothesis) T

and a piece of evidence E which is inconsistent with that theory (or hypothesis). That is, E

is a counter-example to T. In response, we make a modification to the theory T, modifying

it to T' say, so that T' is consistent with E. The modification to the theory is ad hoc just in

case there is no independent ground for accepting Ts. In other words, the modification is ad

hoc if its only purpose is to save the theory from counter-example.

In this case we have the initial hypothesis that for all polyhedra, V~E+F=2. We

discover a series of counter-examples to the hypothesis. The hypothesis is modified by

redefining the terms polyhedron, polygon and so on, so as to exclude the counter-examples.

But these modifications are ad hoc, because they often seem to have no independent

justificauun - the only reason for accepting them is that they save the hypothesis from

counter-example.9

9 For example, in response to the picture-frame, the hypothesis is modified by proposing that for a genuine
polyhedron, through an arbitrary point in space, there will be at least one plane whose cross-section with the
polyhedron will consist of one single polygon. The picture-frame does not have this property, so the modified
conjecture is immune to this counter-example. But what independent reason is. there for accepting this
amendment to the definition? If there is no independent ground for accepting it, other than that it saves the
hypothesis from a counter-example, then we have a ad hoc modification of our hypothesis.
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Other similar responses that reject the counter-examples are then suggested. For

example, we could treat the counter-examples as exceptions to the theorem.10 Alternatively,

we can reinterpret the counter-examples so that they in fact support the conjecture rather

than refute it.11 The main problem with such methods, apart from their ad hoc character, is

that they ignore the proof. They do not tell us what went wrong with the proof or how to

improve it. The teacher proposes a new method. We should not reject the counter-examples

as 'monsters' or 'exceptions'. Instead we have to accept that they refute the conjecture in its

original form. But this is not the end of the story. By paying attention to the proof, we can

use the counter-examples to improve our original conjecture.

2.3 THE METHOD OF LEMMA INCORPORATION

The teacher begins by admitting that the picture-frame is a genuine counter-example

to the conjecture. The picture-frame is a global and hence a local counter-example - it

shows that one of the lemmas must be false. Which one? In this case, the guilty lemma is

the first one - after removing a face, the picture frame cannot be stretched flat onto the

plane. The teacher continues:

TEACHER: I accept the picture-frame as a criticism of the conjecture. I therefore discard the

conjecture in its original form as false, but immediately put forward a modified, restricted version,

namely this: the Descartes-Euler conjecture holds good for 'simple' polyhedra, ie for those which,

after having had a face removed, can be stretched onto a plane. Thus we have rescued some of the

original hypothesis. We have: the Euler characteristic of a simple polyhedron is 2. This thesis will not

10 So for example, we think of the theorem as saying that 'for all polyhedra except those with tunnels,
cavities,etc,V-E + F = 2 \
11 For example, instead of thinking of the urchin as having 12 star-pentagon faces, we can see it as having 60
triangular faces and hence 90 edges and 32 vertices. So now V-E+F=32-90+60=2 and the counter-example
has become an example.
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be falsified by the nested cube, by the twin-tetrahedra, or by the star-polyhedra - for none of these is

'simple'.

[ibid. 130-131]

The idea is that in the face of a global counter-example, we first identify the lemma

or lemmas which are falsified by the example. We then restrict the domain of the main

conjecture to that of the guilty lemma. In this case, we have a counter-example to the first

lemma. So we restrict the conjecture to all those polyhedra for which the first lemma holds.

Call any polyhedron which satisfies the first lemma simple. Then the revised conjecture is

that for all simple polyhedra, V - E + F = 2.In this way, the basic structure of the proof is

retained, but the conjecture is modified so as to incorporate the guilty lemma as a

i o

condition. Lakatos calls this the method of lemma-incorporation.

A new global counter-example, the crested cube is now proposed. Here we have a

small cube on top of a larger cube (figure 9). hi this case, V=16, E=24 and F = 11, so V - E

+ F = 3. But the crested cube is a simple polyhedron - after having a face removed it can be

stretched flat on to the plane.13 So we have a global counter-example to our revised version

of the conjecture.

12 If we use Px for the predicate x is a polyhedon, Sx for x is simple and Ex for x is Eulerian, then we express
the original conjecture as Vx( Px —> Ex ) (Allpolyhedra are Eulerian). We then discovered an object a, with
the following properties:

Pa & ~Ea a is a global counter-example to the conjecture
Pa & ~Sa a is a local counter-example to lemma (1)

So we modify the conjecture to. Vx((Px & Sx) —> Ex) {All simple polyhedra are Eulerian).Now a is no longer
a counter-example to this revised conjecture, since we have (Pa & ~Sa) & ~Ea; for a counter-example to this
improved conjecture, we would need (Pa & Sa) & ~Ea.
13 If this is not clear, notice that the square which hides underneath the smaller cube is not a face of this
polyhedron. So we can immediately stretch the top cube into a flat network that sits on top of the larger cube.
After removing the bottom face from the larger cube, we can the stretch the entire network so it is flat on the
plane.
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Figure 9
The Crested Cube

In response, the method of lemma incorporation is applied again. The crested cube

is a counter-example to the second lemma, that in triangulating the faces, we always add an

edge and a face. This is because the crested cube has a 'ring-shaped face' - the face of the

large cube on which the smaller cube sits (shaded in figure 9). If we a draw a diagonal from

a vertex of this face to a vertex of the smaller cube, we add an edge without adding a face

[ibid. p. 132]. Hence the crested cube fails to satisfy a condition implied by the second

lemma; that any face dissected by a diagonal edge falls into two pieces. Call a polyhedron

which does satisfy this condition simply-connected. Then applying the method of lemma-

inco; poration, the new version of the conjecture is that for all simple, simply-connected

The method of lemma-incorporation is sensitive to counter-examples which are

both global (refuting the conjecture) and local (refuting one of the lemmas). What would

happen if given a global counter-example, we cannot find a lemma which is refuted by it?
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The method of lemma incorporation could not then be applied. Such a counter-example

would be a global, but non-local counter-example. Are such counter-examples possible?

How are we to deal with them?

Gamma points out that a simple cylinder is in fact a counter-example of this kind.

The cylinder is not Eulerian - it has 0 vertices, 3 faces and 2 edges (the circles at the top

and bottom), so in this case V - E + F = 1. Paradoxically, however, the cylinder is both

simple and simply-connected, so it is not a local counter-example to any of the lemmas.

This is odd because our proof seemed to show that any simple, simply-connected

polyhedron must be Eulerian.

Why should we say that the cylinder is simple? If we remove the 'jacket' of the

cylinder, it falls into two circular pieces. Nonetheless, the result can still be stretched flat

onto the plane. We seem to have implicitly assumed in our proof that the resulting plane

network should be connected - and this assumption fails for the cylinder.

Is the cylinder simply-connected? A polyhedra is simply connected if any face

dissected by a diagonal falls into two pieces. The cylinder only satisfies this vacuously -

the faces of the cylinder have no diagonals at all (since they have no vertices) and so there

are no diagonals which do not cut a face in two. It seems that we implicitly assumed an

existential reading of this condition; that any face when dissected by diagonal falls into two

pieces and there is at least one diagonal on each face. Again, this condition fails for the

cylinder.

An apparently global, but non-local counter-example really shows that there is

something wrong with our proof-analysis. It shows that there may be mdden assumptions

or lemmas in our proof, which we need to make explicit. Lakatos calls this the principle of

V1
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retransmission of falsity - falsehood should be transmitted from the consequent of the

theorem to its antecedent, the lemmas or conditions. Global, non-local counter-examples

then, are a source of improved proof-analysis.14

On the other hand, improved proof-analysis can also lead to the discovery of new

counter-examples. A proof may show how an initially plausible conjecture depends on

lemmas which are questionable. Given a good proof-analysis, we may look for counter-

examples to the lemmas (local counter-examples) and these may well also turn out to be

counter-examples to the conjecture (global counter-examples). These are referred to as

proof generated refutations. A proof brings to light lemmas which may lead us to counter-

examples to the conjecture. Thus as Sigma remarks:

SIGMA: Then not only do refutations act as fermenting agents for proof-analysis, but proof-

analysis may act as a fermenting agent for refutations! ...

LAMBDA: That is right If a conjecture seems very plausible or even self-evident, one should prove

it: one may find that it hinges on very sophisticated and dubious lemmas. Refuting the lemmas may

lead to some unexpected refutation of the original conjecture....

GAMMA: Then 'the virtue of logical proof is not that it compels belief, but that it suggests

doubts'.15

[ibid. 227]

Since proof and refutation are linked in this way, it is suggested that we should

rename the method of lemma incorporation, the method of proof and refutations. The main

aspects of this method are listed as three heuristic rules:

14 Lakatos here adds an interesting historical footnote: 'Our class was rather an advanced one - Alpha, Beta
and Gamma suspected three lemmas when no global counterexamples turned up. In actual history proof-
analysis came many decades later: for a long period the counterexamples were either hushed up or exorcised
as monsters, or listed as exceptions. The heuristic move from the global counterexample to proof-analysis -
the application of the Principle of Retransmission of Falsity - was virtually unknown in the informal
mathematics of the early nineteenth century.' [Lakatos 1963, p. 227]
15 The quotation is from [Forder 1927, p. viii]. See also [Russell 1903, p. 360]: 'It is one of the chief merits
of proofs that they instil a certain scepticism as to the result proved'.
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Rule 1; Given a conjecture, set out to prove and refute it. Inspect the current proof to prepare a

list of non-trivial lemmas (proof-analysis), Search for counterexamples to the conjecture (global

counterexamples) and to the lemmas (local counterexamples).

Rule 2: If you find a global counterexample, discard the conjecture. Add to the proof-analysis a

suitable lemma that will be refuted by the counterexample. Replace the discarded conjecture by an

improved one that incorporates that lemma as a condition. Do not allow a counterexample to be

dismissed as a monster. Make all 'hidden lemmas' explicit.

Rule 3: If you have a local counterexample, check to see if it is not also a global

counterexample. If it is, apply rule (2).

[ibid. p. 229]

2.4 THE METHOD OF PROOFS AND REFUTATIONS

So far, we have considered both global and local counter-examples and global, non-

local counter-examples. The former suggest improvements to the conjecture by lemma

incorporation, the latter suggest improvements to the proof-analysis by making hidden

lemmas explicit.

Omega points out that the method of proof and refutations, as described so far, has a

certain flaw. By incorporating refuted lemmas into the proof as conditions we gradually

restrict the domain of validity of the theorem. Our improved conjectures apply to a

narrower and narrower domain of polyhedra. Hence, 'proof analysis, while increasing

certainty, decreases content' [ibid. p. 236]. Lakatos refers to this as ike problem of content.

Perhaps in our quest for certainty, we have 'withdrawn too far', leaving many

Eulerian polyhedra outside the domain of our theorem. That is, we may have excluded

many non-simple, non-simply connected polyhedra, which are nonetheless Eulerian. Such a

polyhedron would represent a local, non-global counter-example to the theorem.

I
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It is counter-examples of this kind which provide the impetus to increase content.

Early on we found a counter-example to the third lemma. If we had invoked lemma

incorporation at this point, our theorem would have applied only to the tetrahedron, for this

is the only polyhedron for which one can remove triangles in any order at all without

altering the sum V - E + F. Instead we modified the lemma so that it became immune to.

the counter-example. In this way, we avoided a drastic narrowing the domain of the

theorem.

It is suggested that we add this as a heuristic rule to the method of proof and

refutations:

Rule 4: Given a local counterexample which is not also a global counterexample, try to improve

the proof-analysis by replacing the refuted lemma by an unfalsified one.

[ibid. p. 237]

It is pointed out that this rule has both a conservative and a radical interpretation. We can

either replace the false lemma with a slightly modified one, keeping within the framework

of the original proof. This is what was done in the case of the counter-example to the third

lemma. Alternatively, we can replace the false lemma, or even all the lemmas, by

constructing a new, deeper proof .

Some examples of different proofs are given. Omega gives a proof of Euler's

conjecture due to Gergonne. The main lemma of this proof is that there is a face of the

polyhedron which can be used as a camera lens to take a 'snapshot' of the interior of the

polyhedron, from which all the edges and vertices are visible [ibid. p. 238]. Call any

polyhedron which satisfies this condition a 'quasi-convex' or 'Gergonne' polyhedron.

Then, after incorporating the lemma, we would have the theorem; for all Gergonne
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polyhedra, V - E + F = 2. Gamma points out that there are many simple polyhedra which

although perfectly Eulerian are not Gergonne polyhedra. That is, there are many local, but

non-global countsr-examples to this theorem. Omega suggests we can imagine starting with

Gergonne's proof, then finding that it is unsatisfactory by a local, but non-global counter-

example - a polyhedron which is Eulerian but has no face from which every edge and

vertex is visible. This is the sort of counter-example that Rule 4 looks out for. Such a

counter-example would not of course, refute the theorem that 'all Gergonne polyhedra are

Eulerian', but Rule 4 suggests that nonetheless some action is required - we should look for

a deeper proof which uses new lemmas which are satisfied by the current counter-example.

Instead of incorporating the false lemma (that all polyhedra are Gergonne) we replace this

'photographing' lemma by the wider topological or 'stretching' lemma. We thereby arrive

at Cauchy's deeper proof and a wider theorem.

A proof due to Legendre is also mentioned [ibid. p. 239] but this proof applies to

even fewer polyhedra than Gergonne's. Thus far Cauchy's proof is the deepest we have

seen - it applies to the most polyhedra. But here too there are local, non-global counter-

examples. One example is the great stellated dodecahedron (see Figure 10). This is a 'star-

polyhedron' like the urchin (or small stellated dodecahedron). It too consists of star-

pentagonal faces, but arranged in a different way. For this polyhedron, V=20, E=30 and F

=12, so V - E + F = 2. This Eulerian polyhedron does not satisfy the first lemma however,

since it cannot be stretched flat on to the plane. Another example is a slight modification of

the picture-frame (see Figure 11). In this case, V=16, E=24 and F=10, so V - E + F = 2, but

this polyhedron does not satisfy the first lemma either, since it is topologically equivalent to

a torus, rather than a sphere.

These local, non-global counter-examples do not refute the theorem that 'all Cauchy

polyhedra are Eulerian' (where a Cauchy polyhedron is one which is simple and simply-

connected) but they suggest we should look for a deeper proof- one that will explain both

Cauchy and Eulerian star-polyhedra for example.

One of the students claims to have found such a proof. This is in fact a proof due to

Poincare.16 The teacher remarks that there is no time to discuss the proof in detail, he says

only that it will not be the final word. If we state Poincare's theorem as 'all Poincare

polyhedra are Eulerian' - after having incorporated all Poincare's lemmas - then there will

still be Eulerian, but non-Poincare polyhedra - local, but non-global counter-examples.

11
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Figure 10
The Great Stellated

Dodecahedron

Figure 11
An Eulerian Picture

Frame

A single proof is not enough to improve our original conjecture. We also need

deeper proofs, as a counterweight against the narrowing of content entailed by lemma

16 See [Poincare 1893].
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incorporation. Rule 4 is therefore added, in both its conservative and radical interpretation

to the other three rules and the method is renamed the method of proofs and refutations.

There is one final amendment to the method. The existence of polyhedra which are

not Eulerian suggests that we should try to find a general relationship between V, E and F

which will apply to all polyhedra. This observation leads to a discussion of the method of

deductive guessing11 and to a sequence of generalizations of Euler's theorem. For example,

for polyhedra with 'tunnels', we have:

for an n-spheroidal polyhedron For a normal polyhedron, with no tunnels, n = 1, so (1)

gives V - E + F = 2. For the picture-frame, which has one tunnel, n = 2, so (1) gives V - E

+ F = 0, which is correct, [ibid. p. 307-8]. For polyhedra with ring-shaped faces, like the

crested-cube, we have:

for a polyhedron with r ring-shaped faces. For the crested cube, we have a monospheroidal

polyhedron (« = 1) and one ring-shaped face (r = 1). Hence (2) gives us: V - E + F = 2 -

2(1-1) + 1 = 3. The formula also explains the Eulerian picture-frame (Figure 11). This has

one tunnel and two ring-shaped faces, so n = 2 and r = 2. Hence, by (2) the Euler number of

this polyhedron is 2 - 2(2 - 1) + 2 = 2. [ibid. p. 309].

Local and global counter-examples then, can suggest that we need to generalise, by

finding a deeper conjecture, one that covers more cases. A final rale is then added to the

method of proofs and refutations:

1 ->'i

17 The idea here is to use a proof rather than induction to generate generalizations of a theorem. See [ibid. pp.
296-314].

Rule 5: If you have counterexamples of any type, try to find ... a deeper theorem to which they

are not counterexamples any longer.

[ibid. p. 306]

To summarise; the method of proofs and refutations counsels us, given a conjecture,

to attempt to both prove and refute it. The method can only begin when we have both a

proof and a counter-example. Indeed, proofs suggest counter-examples - by looking for

counter-examples to the lemmas of the proof, we may find a counter-example to the main

conjecture itself. If the counter-example is both global and local, we can use lemma-

incorporation to improve the conjecture. If we find an apparently global, but non-local

counter-example, we apply the principle of retransmission of falsity - we improve our

proof-analysis by adding, if necessary, a suitable lemma to the proof-analysis, which will

be refuted by the counter-example. On the other hand, we may find a local, but non-global

counter-example. Such counter-examples are used to increase the content of our conjecture.

We can either modify the refuted lemma slightly, or replace all the lemmas of the proof by

finding a deeper proof, which makes use of lemmas which are not falsified by the counter-

example. Finally, a global or local counter-example can also lead to an increase in content,

by suggesting that we should look for a proof a more general conjecture, one that is not

refuted by the counter-example, but which implies at as a special case. An overview of the

method of proofs and refutations is shown in figure 12.
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3. THE SIGNIFICANCE OF PROOFS AND REFUTATIONS

Disappointingly, there is very little critical analysis of Lakatos's work in the

philosophical literature.18 This is one reason why I have attempted to describe the method

of proofs and refutations in some detail. Of course, my discussion has necessarily been

schematic. I have skipped over large sections of the text which cover a wide variety of

further topics. To do full justice to Lakatos's work would require a complete book all to

itself.

The neglect of Lakatos's work by philosophers of mathematics may be due in part

to the way in which Proofs and Refutations is written. As the reader may have noticed, the

style of the work is a reflection of Lakatos's 'critical rationalist' view of the nature of

inquiry. In the course of the dialogue, the students adopt positions on methodological

questions which are continually subjected to criticism and debate. As a result, it is often

hard to extract from Lakatos's work a clear and explicit statement of his final view.

Furthermore, since the discussion centres around a single example, it is not obvious what

sort of general account Lakatos is offering. Nonetheless, I think we can find in Proofs and

Refutations many insights which are of crucial importance in the epistemology of

mathematics and this is a further, more important reason for discussing Lakatos's work in

some detail.

A common view of the epistemology of mathematics pictures the mathematician as

beginning by laying down certain self-evident axioms and then proceeding to rigorously

deduce theorems from them. In this way, a growing body of infallible knowledge is

gradually built up. This is the picture suggested by the foundationalist account of Ihe

18 Two exceptions are [Kitcher 1977] and [Brown 1990].
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structure of mathematical knowledge. Lakatos's central insight was that an examination of

the actual history of mathematics will reveal the absolute poverty of this kind of picture of

the growth of mathematical knowledge. If we look in detail at that history, we find

something utterly at odds with the picture of a gradual accumulation of indubitably

established truths, founded on a set of sure and certain first principles. What we actually see

is something much more like the development of knowledge in the natural sciences.

In particular, the foundationalist account mistakes the role of proof in mathematics.

Lakatos pointed out that a proof is only an argument and real mathematical proofs do not

always begin from self-evident axioms, but are based on an often not explicitly formulated

set of lemmas, which may be neither self-evident, nor indeed true at all. For this reason, the

sort of justification a proof gives us need not be one that provides conclusive evidence that

the theorem is true. By showing how a theorem depends on lemmas which are themselves

open to rational doubt, a proof may in fact decrease our conviction that the theorem is true,

rather than establishing it with certainty. By identifying counter-examples to the lemmas,

one may be led to counter-examples to the theorem, or to ways of improving it. Thus,

Lakatos argues, proofs are instruments of discovery, rather than instruments purely of

justification. Proofs are one of the main tools in the development and growth of

mathematical knowledge, but they are not the sort of perfect tool suggested by the

foundationalist picture. They are a fallible tool in the development of a field of human

knowledge which, for Lakatos, grows under the pressure of criticism and doubt, conjectures

and refutations.

Another important fact that Lakatos's work reveals is that an account of the

epistemology of mathematics need not depend on any particular metaphysical analysis of
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the subject matter of mathematics. Lakatos proposes no such account and nothing he has to

say about the epistemology of mathematics seems to depend on or require any particular

ontology for mathematics. His analysis of the growth of mathematical knowledge is

consistent with a wide variety of different ontologies for mathematics.19 Proofs and

Refutations is therefore, the first example of the sort of ontologically neutral, descriptive

examination of the epistemology of mathematics which I argued for at the end of chapter

two. This is another motivation for spending some time discussing the details of Lakatos's

work here - it shows that this kind of investigation is not only possible, but also

philosophically fruitful.

Of course, one can find fault with some of the details of Lakatos's account. The

method of proofs and refutations applies most clearly to conjectures of the form 'All As are

Bs\ Statements of this universal form can be refuted by a single counter-example, an object

which is A, but not B. But clearly, not all mathematical statements have this form. What of

mathematical statements that are either existential (such as 'There are numbers which

cannot be expressed as a fraction') or particular (such as 'TC is a transcendental number')?

Such statements cannot be refuted by a single counter-example, so it is not clear how the

method of proofs and refutations is meant to apply to them.

This is suggestive of a deeper worry. As already mentioned, Lakatos's argument is

based on a single example, the history of Euler's conjecture. One might wonder then if

19 James R. Brown makes this point in his article 'Proofs and Truth in Lakatos's Masterpiece' [Brown 1990].
It is worth pointing out however, that Lakatos's account may not be consistent with all accounts of the subject
matter of mathematics. It is hard to see how formalism, for example, can accommodate the facts about the
history and methodology of mathematics which Lakatos draws attention to. Nonetheless, any broadly realist
account of mathematics would fit well with Lakatos's account. Ontology and epistemology are clearly not
completely independent - a descriptive, ontologically neutral account of the epistemology of mathematics
may rule out some kinds of account of the subject matter of mathematics and be at least suggestive of others.
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Lakatos's account is more widely applicable, to other historical episodes and other

Oft

branches of mathematics.

Consider how Lakatos's account would apply to number theory. Lakatos argues that

the growth of mathematical knowledge is driven by proofs and refutations of conjectures.

The history of number theory, however is littered with conjectures that withstood all

attempts to either prove or refute them for centuries - Goldbach's conjecture or Fermat's

Last Theorem are obvious examples. The history of these conjectures does not, at first

glance, appear to sit well with Lakatos's account.

However, looking more closely, we find that Lakatos can in fact account for these

examples. Consider Fermat's Last Theorem. It is true that no one ever found a global

counter-example to Fermat's conjecture - positive integers x, y and z that satisfy the

equation x" = / + z" for some n > 3. Nor was anyone able to find the proof which Fermat

claimed to have discovered. But it would be wrong to say that proofs and refutations played

no role in the development of our knowledge of Fermat's conjecture, which culminated in

Wiles' final proof. Firstly, although unable to prove the conjecture itself, mathematicians

were able to prove particular instances of it. Euler, for example, proved the case for n ~ 3.

Although there are no global counter-examples to Euler's theorem, there are obvious local,

but non-global counter-examples; that is, values of n greater than three for which the

Fermat conjecture holds. Although such counter-examples do not of course refute the

conjecture, they do play an important heuristic role in the method of proofs and refutations.

Lakatos claims that they suggest we should look for a deeper proof and this is more or less

20 In an appendix I of [Lakatos 1976], Lakatos does briefly consider another example - Cauchy's attempted
proof of the claim that the sum of a convergent series of continuous functions is itself continuous. See also
[Kitcher 1977; 1984, pp. 254-6]. We will come across Cauchy's proof again in section five of the current
chapter.
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what we find - a succession of increasingly general proofs which account for such local,

non-global counter-examples, proofs for cases where n = 4,5, ... and so on and proofs such

as Sophie Gennaine's, which accounted for an infinite number of special values of w.21

Hence, the history of Fermat's Last Theorem and of similar examples from number theory,

can be made to accord fairly well with Lakatos's account, so long as we remember that it is

not only global but also local counter-examples which play a role in the method of proofs

and refutations.

This example illustrates an important fact however, which suggests a deeper

criticism of Lakatos's account. I have argued that the case of n = 4 is a local, non-global

counter-example to Euler's theorem that there are no positive integer solutions to the

equation xn = y" + z" when n - 3. The claim that it is a local counter-example is trivially

true, but we only know that it is a non-global counter-example by proving that the

conjecture holds for n - 4.22

In some cases, showing that a particular object is a counter-example to a universal

conjecture is a simple matter. We can draw polyhedra, for example and simply count the

number of vertices, edges and faces. Likewise, we can check whether a particular triple of

positive integers satisfies Fermat's equation for a particular value of n with a simple

calculation, hi general, if we have a universal statement 'All As are Bs' where B is an

effectively decidable property,23 then checking whether a particular object is a counter-

example is straightforward. But of course, not all properties of mathematical objects are

21 See chapter five, section five for further details and references.
22 Not ice also that the case of n = 4 is n o t more general than the case of n = 3. The theorem for n = 4, accounts
for t he local counter-example without also accounting for the case of n = 3 . This is a state of affairs Lakatos
does no t consider - given a local, non-global counter-example the method of proofs and refutations suggests
we should look for a more general proof. But this may not b e possible - one can deal with the local counter-
example with a theorem that applies only to that counter-example and not to others previously obtained.
23 That is, one for which there exists an algorithm for deciding whether an object has the property or not.
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effectively decidable. Where B is not a decidable property, it may be a very tricky matter

indeed to find out whether an object is counter-example to the claim that 'All As are Bs\

What this sort of example reveals is that refutation of a mathematical conjecture

may require proof. This will, in general, also be the way in which conjectures which are not

of universal form would be refuted. To refute the claim that a is F may require a non-trivial

proof that a is not F. To refute the claim that some Fs are Gs, we need a proof that all Fs are

not Gs. Likewise, showing that there are local, but non-global counter-examples to the

theorem that for n = 3, there are no solutions to x" = y" + z", required a proof that there are

no solutions for some values of n > 3.

This represents a major gap in Lakatos's account. For suppose we have a proof of a

conjecture and a proof that some object is a counter-example to that conjecture. We need to

decide whether to accept the refutation or reject it - since proof is never conclusive, either

option is open to us. Lakatos's method of proofs and refutations does not tells us on what

basis such decisions can be made.

This problem is an example of the way in which the account offered in Proofs and

Refutations inherits some of the difficulties which have been identified with Popper's

account of the development of scientific theories . Popper argued that no scientific law or

theory can ever be conclusively confirmed and in this he was surely right. But he was

wrong in thinking that scientific laws can be conclusively refuted - laws are much more

resistant to falsification that Popper's simple logical model suggests. The reason for this, as

many philosophers of science have since pointed out, is that scientific laws do not, by

24 Kitcher makes j u s t this point in relation to Lakatos 's discussion of counter -examples to Cauchy ' s proof that
a convergent series of continuous functions is continuous. See [Kitcher 1977, p. 783].
25 It is worth pointing out that Lakatos himself was one of the philosophers responsible for pointing out some
of these difficulties. See for example jLakatos 1970,1978].
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themselves, entail any testable predictions at all. To derive a prediction from a law, we

require auxiliary hypotheses. These may include not only singular statements of initial

conditions, but also further laws. Hence, in a case where the prediction turns out to be false,

we know that that either the law being tested, or one of the auxiliary hypotheses must be

false, but logic alone cannot tell us which. In practice, the working scientist will not take an

observation which is inconsistent with a law as definitively refuting it. The background

assumption is that observational anomalies can and should be accounted for by rejecting or

modifying one or more of the auxiliary hypotheses.26

This is analogous to the difficulty just mentioned with Lakatos's account of

mathematical methodology. A refutation of a conjecture may be based on a proof which

makes use of mathematical statements which can also be questioned. These latter

statements axe the analogue in mathematics of the auxiliary hypotheses required to test a

scientific law. In such a situation, we know that either the original conjecture or one of the

statements used to deduce the refutation must be false, but once again, we do not know

which and Lakatos's account is silent on the criteria used by mathematicians in deciding

the issue.

Lakatos's Popperian presuppositions are perhaps most clearly revealed in his

discussion of induction in mathematics. Lakatos argues that the initial naive conjecture is

not arrived at by inductive generalization from an examination of particular cases:

TEACHER: ... naive guessing is not induction: there are no such things as inductive conjectures!

BETA: But we found the naive conjecture by induction! That is, it was suggested by

observation, indicated by particular instances. . . . And among the particular cases that we have

26 Many philosophers have made the point that no scientific law can be tested in isolation. See for example,
[Duhem 1906, Quine 1951, Putnam 1974]. This point is discussed in more detail in chapter four.
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examined we could distinguish two groups: those which preceded the formulation of the conjecture

and those which came afterwards. The former suggested the conjecture, the latter supported it....

TEACHER: NO! Facts do not suggest conjectures and do not support them either!

[Lakatos 1963, p. 303]

The distinction made here, between induction as a method of discovering new truths

and induction as a way of confirming or supporting conjectures is an important one. It may

well be the case, as Popper argued, that inductive generalisation is not a good model of how

scientific laws are discovered. A law may be discovered by a process of reasoning which is

much more logically complex than simple induction (inference to the best explanation,

analogy with the mathematical form of other laws and so on) as well as by entirely non-

rational 'methods' - laws which are guessed at or suggested by dreams for example.

However, it does not follow from this observation that there is no such thing as

inductive evidence for a conjecture. In chapter one I drew attention to the distinction

between discovery and evidence. The means by which a truth is discovered may not be

such as to provide us with any evidence for it, the evidence supporting the discovery may

only be found at a later date. Since discovery and evidence are independent, the fact that

induction is not a means of discovery does not entail that it cannot be a kind of evidence.

Regardless of how a conjecture is first arrived at, confirmation of a wide variety of its

instances can provide evidence that the conjecture is true. The history of mathematics

reveals many examples of this kind of reasoning. Euler, for one, made extensive use of

such arguments in his work. Of course, giving an account of this kind of evidence is

notoriously problematic - I discuss some of these problems as they arise in the case of

mathematics in chapter five. For now, it is enough to point out, that pace Popper and

Lakatos, there is such a thing as inductive confiimation of a hypothesis or conjecture.
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It is not just induction which Lakatos objects to however. He appears to want to do

without the idea of any kind of confirming evidence at all. Here again, he is in agreement

with Popper, who argued that the corroboration of a theory by verification of its

observational consequences should not be taken as evidence that the theory is true27. Again,

although Popper was right to say that we can never have conclusive evidence that a

scientific theory is true, it is surely a mistake to infer from this that scientific theories are

not confirmed to any degree by the evidence we have for them. We can have evidence for a

scientific theory which although not conclusive, nonetheless gives us good reasons for

thinking that theory is true.

Likewise, it is a mistake to think that one can do without an account of confirming

evidence in the epistemology of mathematics, even if you agree that mathematics is a

thoroughly fallible branch of inquiry. We have already seen how Lakatos's omission of

such an account exposes a gap in the method of proofs and refutations; sometimes counter-

examples to mathematical conjectures require sophisticated proofs and the question then

arises how the principles on which such proofs depend are themselves justified. To answer

this question, we need an account of the ways in which mathematical conjectures can be

justified, as well as the ways in which they can be refuted. What Lakatos fails to provide is

an account of mathematical evidence. Lacking such an account, he does not fully solve the

problem of how a proof can provide us with mathematical knowledge. Lakatos was right to

point out that proofs are instruments of discovery, but without an account of mathematical

evidence, he is unable to show how they can also be instruments of justification.

27 At least, this was Popper's position in his earliest writings. Later on, he introduced the concept of
verisimilitude, which was intended to show how, through the process of corroboration and falsification, we
arrive at theories which approach the truth more and more closely. However, his formal definitions of
verisimilitude have been shown to fece difficulties of their own. See [Miller 1974a, 1974b and Tichy 1974,
1978].
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These problems however, should not distract us from the truth of Lakatos's central

insight - that the history of mathematics provides us with a valuable testing ground for

epistemological theories of mathematics. Although Lakatos's own theory may have its

flaws, it certainly fairs much better in this regard than the alternative he was most

concerned to attack, namely the foundationahst account.

The idea that the history of mathematics is not epistemologically irrelevant was

revolutionary. Few philosophers of mathematics however have taken the point seriously. I

would like now to examine the work of one notable exception, a philosopher who has built

on Lakatos's insight and developed it in new and exciting ways.

4. KITCHER'S PROGRAMME

In The Nature of Mathematical Knowledge, Philip Kitcher develops a detailed and

sophisticated account of the epistemology of mathematics which builds on many of the

points which have emerged in our discussion of Lakatos's work. Like Lakatos, Kitcher

rejects the thesis that mathematical knowledge is a priori or built on epistemologically

secure foundations. He also emphasises the importance of the history of mathematics:

A third break with the usual approaches to mathematical knowledge consists in my emphasis on the

historical development of mathematics. I suggest that the knowledge of one generation of

mathematicians is obtained by extending the knowledge of the previous generation. To understand the

epistemological order of mathematics, one must understand the historical order... .Most philosophers

of mathematics have regarded the history of mathematics as epistemologically irrelevant (Lakatos's

principal insight was to recognize that this is a mistake).

[Kitcher 1984, pp. 4-5]
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Kitcher provides an evolutionary account of the epistemology of mathematics. The

central idea of such an account is that at any time, the mathematical knowledge of a

community is justified through its relationships to the knowledge of earlier communities.

Kitcher summarises his account as follows:

I shall explain the knowledge of individuals by tracing it to the knowledge of their communities. More

exactly, I shall suppose that the knowledge of an individual is. grounded in the knowledge of

community authorities. The knowledge of the authorities of later communities is grounded in the

knowledge of the authorities of earlier communities. Putting these points together we can envisage the

mathematical knowledge of someone at the present day to be explained by reference to a chain of prior

knowers.... However, if this explanation is to be ultimately satisfactory, we must understand how the

chain of knowers is itself initiated. Here I appeal to ordinary perception. Mathematical knowledge

arises from rudimentary knowledge acquired by perception.

[ibid. p. 5]

Kitcher's suggestion is that mathematics begins as perceptually justified. This gives

us some basic knowledge of arithmetic and geometry. Mathematicians then inherit the

mathematical knowledge of the previous generation, modify and extend it in identifiably

rational ways and pass it on to the next generation. At each stage, these modifications and

extensions (proofs of new theorems, introduction of new language, concepts and so on) are

justified via their relationship to the prior body of knowledge which mathematicians have

inherited. In this way, our mathematical knowledge evolves from a primitive, perceptually

justified body of knowledge concerning simple facts of arithmetic and geometry, into the

wide-ranging, sophisticated and abstract system of contemporary mathematics.

Hence, for Kitcher, the epistemological order of mathematics is revealed in its

historical development. This does not mean that the historical order and the epistemological

order correspond exactly. The grounds on which some part of mathematics is initially
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accepted might fail to properly justify it; that justification may only be given much later.

The point of Kitcher's evolutionary account is just that this later justification will proceed

by showing how that part of mathematics is appropriately related to prior mathematical

knowledge. The historical and epistemological order can diverge at times, but '[w]hat

matters is that we should be able to describe a sequence of transitions leading from

perceptually justified mathematical knowledge to current mathematics. In giving tins

description .... we shall appeal to antecedently justified principles to justify further

extensions.' [ibid. p. 9].

Kitcher introduces the theory of the ideal collector, mentioned in the previous

chapter, in order to explain how the mathematics passed on from one generation to the next

can have its origin in a perceptually justified body of knowledge. The theory is meant to

provide a non-piatonist, construct!vist account of the ontology of mathematics. The basic

idea is that we should think of mathematics as an idealised theory of what human beings

can do. In particular, it is an idealised theory of the operations of counting, collecting and

ordering objects. Kitcher argues that similar constructivist accounts such as intuitionism

fall into the trap of attempting to delineate in advance what operations the 'ideal subject'

can perform and thereby severely restrict the amount of mathematical knowledge we can

be said to have. Kitcher places no such restrictions on ideal operations and in this way

hopes to account for the entirety of classical mathematics [ibid. pp. 101 -38].

Some basic knowledge of what operations the ideal subject can perform can be

gained through ordinary perception; 'we observe ourselves and others performing particular

acts of collection, correlation and so forth, and thereby come to know that such operations

exist. This provides us with rudimentary knowledge - proto-mathematical knowledge, if
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you like.' [ibid. p. 117]. This 'proto-knowledge' is turned into knowledge of arithmetic,

geometry, set-theory and so on, by a process of generalising, systematising and idealising

the operations we have seen ourselves and others carrying out

Like Lakatos, Kitcher sees the development of mathematics as proceeding in ways

which are analogous to the development of the sciences. But Kitcher is able to improve on

Lakatos's model of the development of mathematics by taking into account some of the

problems with the Popperian model of scientific methodology mentioned in chapter three.

Recall how Popper's model is open to the objection that it overestimates the extent

to which theories can be falsified by observation. Discrepancies with observation are often

accounted for by modification of auxiliary hypotheses; the falsification of a hypothesis by

observation does not necessarily lead to its outright rejection. Thomas Kuhn has famously

argued that not only are scientific theories resistant to falsification in this way, but that they

are falsified almost all the time. Theories are constantly in conflict with both observation

and other parts of scientific theory. The attempts of scientists to account for such anomalies

makes up a large part of what Kuhn calls normal science. When all attempts to account for

a theory's external and internal problems start to fail, scientific practice may enter a

revolutionary period and only then will the theory be finally abandoned and replaced with a

more promising alternative.

Kitcher argues that what this shows is that observation and experiment are not the

only source of scientific change. A scientific theory may also come into conflict with other

theoretical principles. These internal problems are of various kinds. Newton worried about

instantaneous action at a distance, for example because it seemed contrary to the notion of a

mechanical action. Contemporary physicists attempt to create unified theories, connecting

28 See [Kuhn 1970].
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the fundamental forces of nature - here we find tensions for example, between the

principles of quantum mechanics and those of general relativity. There can also be internal

tensions in a theory. For example, in quantum mechanics, some have argued mat there is a

conflict between the deterministic component of the theory (the evolution of the wave

equation) and the non-deterministic component (which describes what happens when a

measurement is made).29 In cases like these, we see science evolving in ways that are not

prompted by purely observational evidence, but by inter- and intra-theoretical problems.

Kitcher argues that this kind of evolution is the rule in mathematics:

There are always "internal stresses" in scientific theory, and these provide a spur to modification of the

corpus of beliefs. I propose to think of mathematical change as akin to this latter type of modification.

Just as the natural scientist struggles to resolve the puzzles generated by the current set of theoretical

beliefs, so too mathematical changes are motivated by analogous conflicts, tensions, and mismatches.

[Kitcher 1984, p. 154]

One example of the kind of theoretical puzzle that Kitcher sees as driving the

development of mathematics is the conflict between early methods of differentiating

functions and the normal rules of algebra and arithmetic. The resolution of these and other

theoretical puzzles led to the eventual rigorization of the calculus by mathematicians such

as Cauchy and Weierstrass - a story which Kitcher tells in detail in the final chapter of his

book.

Kitcher extracts from Kuhn's work the idea that we should see the development of

science as consisting of the modification and extension of scientific practices. This

development is sensitive to changes in the results of observation and experiment, but it is

29 See for example [Penrose 1989, pp. 250-1].
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also sensitive to changes in other components of the practice; language, theoretical

principles, problems, approved methods of reasoning, methodological maxims and so forth.

Hence Kitcher introduces the concept of a mathematical practice:

One of Kuhn's major insights about scientific change is to view the history of a scientific field as a

sequence of practices: I propose to adopt an analogous thesis about mathematical change. I suggest

that we focus on the development of mathematical practice, and that we view a mathematical practice

as consisting of five components: a language, a set of accepted statements, a set of accepted

reasonings, a set of questions selected as important, and a set of metamathematical views (including

standards for proof and definition and claims about the scope and structure of mathematics).

[ibid. p. 163]

Given this Kuhnian framework,30 Kitcher's account aims at showing how mathematical

knowledge grows through the rational modification of mathematical practices; '[t]he

problem of accounting for the growth of mathematical knowledge becomes that of

understanding what makes a transition from a practice ... to an immediately succeeding

practice a rational transition' [ibid. p. 164].

5. THE EVOLUTION OF MATHEMATICAL PRACTICES

Let us look at some of the components of a mathematical practice in more detail.

The set of accepted statements of a mathematical practice is the set of sentences,

formulated in the language of the practice, which are accepted as true by the mathematical

community of the time. The ways in which new statements can be added to the set of

accepted statements are fairly obvious, a statement can be added when it is proved for the

30 Although he adapts Kuhn's idea of a scientific paradigm to yield the notion of a scientific (or mathematical)
practice, Kitcher rejects some of Kuhn's additional claims about scientific change. In particular he rejects the
thesis that pre- and post-revolutionary paradigms are incommensurable, [ibid. pp. 162-3],
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first time, or perhaps accepted on grounds which fall short of proof, but which are sufficient

according to the standards of the day.

But mathematics is not a simple cumulative process of adding more and more

statements to our store of truths. Statements that are accepted at one time, may later come

to be rejected. This might happen when a flaw is found in a proof of an accepted theorem,

or when we find a counter-example to a statement which was accepted on the basis of

inductive evidence. But removal of a statement need not involve an outright rejection of it.

Early sixteenth century mathematicians would have accepted the statement 'there is no

number whose square is negative'. Contemporary mathematicians would reject this

statement. But this hides a certain measure of agreement; some of the content of the

sixteenth century statement is preserved in the currently accepted statement that 'there is no

real number whose square is negative.' [ibid. p. 179].

The set of questions of a mathematical practice is Kitcher's representation of the set

of problems which occupy the mathematical community of the time. A question is usually

removed from the practice by being answered - this represents a problem being solved. On

the other hand, questions may be removed, not because they have been answered, but

because they are no longer considered important. Changes in the perceived importance of a

field of mathematics, or changes in the requirements of applications may result in a

question being removed from the set of questions considered worth asking by the practice.

Of course, a question removed for these reasons may later return to the practice if its

solution comes to be seen as important in a new way. [ibid. p. 185-7].

The set of accepted reasonings of a mathematical practice is the set of all those

sequences of statements which mathematicians of the. time advance as arguments in support
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of members of the set of accepted statements. Kitcher makes several important distinctions

among the members of the set of accepted reasonings. Firstly, they can be divided into

classes according to the degree of support they provide for their conclusions. In this

respect, an important class of accepted reasonings are of course proofs. Proofs are those

arguments which provide optimal support for their conclusions (relative to the standards of

proof accepted at the time - these standards forming part of the metamathematical

component of the practice) but they also have an explanatory function - by revealing the

logical connections between their conclusions and other accepted statements of the practice,

proofs improve our understanding of a mathematical field, [ibid. p. 181].

A second class of reasonings are the various non-deductive arguments; arguments

by induction or analogy for instance. Such arguments provide the lowest degree of support

to their conclusions. A third, intermediate type, are what Kitcher calls the unrigorous

reasonings of the practice. These are arguments which cannot be reformulated as valid

deductions in their accepted system of proofs. Seventeenth and eighteenth century calculus

was full of such reasonings. Kitcher makes use of the following example [ibid. p. 182].

Mathematicians at this time would calculate the derivative of the function y = x2 along the

following lines. Let x increase by an infinitesimal amount A. Then:

dx
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But since A is infinitesimally small in comparison to x, we can ignore it. Thus:

dx

This looks enough like an ordinary algebraic demonstration to suggest that it could be

reformulated as a rigorous proof. It is not sound as it stands however. We first divide

through by A and then take A as zero. But division by zero is not normally allowed. Why

can we get away with it here? Although unrigorous reasonings like these often give us the

right answers, they reveal a certain sort of failure of understanding. We can use the

techniques they offer to get solutions to problems, but we do not really understand why the

techniques work. Kitcher argues that unrigorous reasonings have been a major source of

intra-theoretic tension in mathematics, the resolution of which has played an important role

in the evolution of mathematical knowledge, [ibid, pp.182,213-217].

The members of the set of accepted reasonings can also be divided into classes

according to the ways in which they can be used to answer questions. In this context,

Kitcher makes a distinction between those arguments which provide problem-solutions and

those which do not. An argument is a problem-solution if it enable us to obtain an answer

to a question even if we do not already know the answer. A confirmation-technique31, by

contrast, enables us to confirm that an answer to a question is correct, but will not generate

the solution for us if we have not already conjectured an answer.

Proof by mathematical induction is an example of a confirmation-technique. We

can use it to confirm for example, that 1 + 2 + 3 + 4 + ... « = — n{n +1), but mathematical

induction will not generate an answer to the question 'what is the sum of the first n natural

311 have introduced the term confirmation-technique here to stand for any argument which is not a problem-
solution.

numbers?' for us32. We can only use it to check answers once we have already got them by

some other means. Hence not all proofs are problem-solutions. But neither are all problem-

solutions proofs. An example of a problem-solution which is not a proof is the unrigorous

reasoning described above which can be used for generating answers to questions about the

derivatives of polynomial functions. Another example which Kitcher discusses is Euler's

technique for finding sums of infinite series. Euler used this technique to discover, for

example that 1 + —+—+—+... = — . Although it is not a proof, Euler's technique does
4 9 25 6

enable us to generate answers to questions we do not already know the answers to, and

hence counts as a problem-solution.33.

On the other hand, although some confirmation-techniques are proofs

(mathematical induction for example) some are not. An example of a confirmation

technique which is not a proof would be the technique Euler used for checking the results

of his method for summing infinite series; he computed the sums of a finite number of

terms of the series and verified that they approximated to the values his technique

produced. Another example would be confirming a universally quantified statement by

checking that the theorem holds for a few particular cases, as when we check that Euler's

formula V-E+F=2 holds for the regular polyhedra. Kitcher calls confirmation-techniques

which are not proofs checking-procedures, [ibid. p. 182-3].

In the penultimate chapter of his book, Kitcher identifies and discusses five patterns

of change in mathematical practice, changes which involve modification of several

32 See chapter five, section four.
33 Euler's argument is discussed in more detail in chapter five. See also [Kitcher 1984, pp. 196-7] and [Polya
1954a, pp. 17-21].
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components of the practice at once. These are systematization, generalization, question-

generation, question-answering and rigorization.34

Systematization is a modification of mathematical practice with the aim of

improving our understanding of previous material by achieving a systematic presentation of

previous results. This may involve the introduction of new statements or language into the

practice. For example, Cayiey gave a definition of the concept an abstract group with the

aim of systematizing a great deal of prior work in abstract algebra and Lagrange introduced

new concepts which provided a systematic treatment of techniques for solving equations,

[ibid. pp. 217-224].

Generalization is a modification of mathematical practice which shows how

previous results can be seen as special cases of a more general theory. New language,

statements and reasonings are introduced in such a way that we obtain analogs of some

previous results and are able to show how others can be seen as special cases of the more

general perspective. Kitcher central example is Cantor's introduction of the theory of

transfinite numbers as a generalization of finite arithmetic [ibid. pp. 207-12] .3S

Modifications to mathematical practice such as these may provoke new questions -

this is the pattern of question-generation. As expressions for new kinds of object are

introduced into the practice, new questions may arise by analogy with old ones. [ibid,

pp. 187-188]. Additions to the set of accepted statements may also generate new questions.

Suppose for example, that we come to accept that some objects have a certain property,

while others do not. Then the question naturally arises whether we can find a condition

34 In his discussion of changes in the language component of a mathematical practice, Kitcher also identifies a
sixth pattern of change, which might be called reinterpretation. See [Kitcher 1984, pp.158-61]. See also
section five, below.
351 discuss this example in more detail in chapter five, section two.
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which will separate those objects which have the property from those mat do not. Kitcher

gives an example from the theory of equations; '[a]fter Abel's discovery that there is no

memod for solving the quintic in radicals and Gauss's discovery that some classes of

equations of high degree can be solved in radicals, Galois posed the (immensely fruitful)

question "Under what conditions will there be a method for solving an equation in

radicals?'" [ibid. pp. 188,204-5].

Question-answering is a modification of mathematical practice whereby new

statements and reasonings are introduced in order to answer one or more of the accepted

questions of the practice. This may also involve modification of the language component of

the practice; the introduction of terms for new entities, for example, or new language for

describing objects already discussed.

The new statements, reasoning and language introduced into the practice in this way

may bring in their wake new problems and questions. The new language may not initially

be well understood, the reasonings may not be rigorous, or there may be apparent counter-

examples to some of the new statements. However, Kitcher argues that this kind of

modification to a mathematical practice is justified, or rational, to the extent that the new

techniques '..enable the mathematical community to answer questions previously

recognized as important, and the value of providing answers .. outweigh the difficulties

involved in the ill-understood language, the new statements and the unrigorous reasonings.'

[ibid. p. 195].

A further condition on the rationality of ",uch a change is obviously that there must

be reasons for believing that the proposed answers to the questions are correct. Otherwise,

there would no reason why we should not adopt the statement 'every even number greater
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than two is the sum of two primes' merely on the grounds that it answers the question 'Is

Goldbach's conjecture true?'. If the modification is not to be ad hoc, there must be

independent grounds for accepting the answers, grounds other than those provided by the

new reasonings and statements.

However, it may be that although the antecedent practice contains some way of

checking that proposed answers to questions are correct, the new modification provides a

way in which answers can be discovered. That is, the antecedent practice may contain no

problem-solution reasonings for the questions, although it does contain confirmation-

techniques for answers, once they have been obtained. The confirmation-techniques of the

prior practice may not even include any proof techniques; for example, the practice may

only contain techniques for getting approximate answers to the questions, whereas the new

modification allows us to derive exact answers. On the other hand, the extension might

provide a general solution to a question, where the previous practice only provides

techniques for solving some particular instances or special cases. Even if the antecedent

practice contains methods for generating answers to all the questions, the new modification

may provide a systematic way of answering those questions, where the old methods were a

disparate, unsystematic 'bag of tricks', [ibid. pp. 195-6].

One example of mis kind of pattern of change which Kitcher discusses is Descartes'

creation of analytic geometry. By introducing the idea of a co-ordinate system and showing

how geometric curves could then be represented by equations, Descartes' theory

synthesized geometry and algebra, thereby allowing algebraic techniques to be applied to

geometric problems. Descartes was able to use his wew approach to answer questions in

geometry which could not be solved using previous techniques - questions whose solution
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had baffled the ancient geometers for example. Nonetheless, those previous techniques

could be used to check some of the answers which Descartes obtained using his new

method. In particular, he was able to give general solutions to problems concerning the

construction of loci, which could be verified by checking them against the partial solutions

for the special cases which the Greeks had managed to obtain, [ibid. pp. 197-8].

The final pattern of change is rigorization. Recall that the wrigorous reasonings of

a mathematical practice are those arguments which although successful, cannot be

reconstructed as arguments which conform to the standards of rigorous proof required by

the practice at the time. A modification to mathematical practice which introduces rigorous

replacements for certain unrigorous reasonings of the practice is justified by showing how

it explains previously accepted results; our understanding of those results is improved by

showing how they can be rigorously deduced from certain statements in a way that explains

the success (and failures) of the unrigorous reasonings.

As in the case of question-answering, it may happen that the proposed modification

of mathematical practice brings with it new problems and difficulties, which need to be

weighed against the benefits that rigorization brings. Kitcher argues that the rigorization

may nonetheless be rationally acceptable if the costs are outweighed by the benefits, where

the benefits include not only the provision of rigorous replacements for unrigorous

reasonings, but also the ability of the proposal to further research on important questions,

[ibid. p. 217],

In Kitcher's view a necessary condition for it to be rational to demand a

rigorization of a mathematical practice is obviously that the practice must contain some

unrigorous reasonings. However, he denies that this is a sufficient condition. Consider
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Cauchy's proposals for reconstructing unrigorous arguments in analysis by means of the

concept of a limit. Why were his proposals almost immediately adopted by the

mathematical community? It cannot be merely because they provided rigorous

replacements for unrigorous arguments. The fact that arguments in analysis were

unrigorous had been recognized since the invention of the calculus in the early seventeenth

century and the idea of using the limit concept was not new - it is prefigured in some

writings of Newton himself for example. Why men, were the problems of rigour more or

less ignored until the early nineteenth century? Why did they suddenly become so

important that Cauchy's reconstruction of analysis was required? In order to better

understand Kitcher's answers to these questions, it will be helpful to summarise some of his

discussion of the historical development of analysis. The main points of Kitcher's argument

will be most clearly illuminated by the looking at the history of research on infinite series.

Leibniz was one of the first mathematicians to show how the new techniques of the

calculus could be used to answer questions about the sums of infinite series. For

i i ,

example,36 having shown that | r = —, Leibniz expands the function :
il + x 4 l + x

as a

power series, obtaining:

(1)
1 = l-x2+x4-x6+

Leibniz then integrates this series term by term and obtains:

(2) £=1-1+1-1+
K J 4 3 5 7

?6 For more details of this and similar examples see [Kitcher 1984, p. 242] and [Kline 1972, pp. 436-66].
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Euler was later to develop Leibniz's method into a powerful set of techniques for finding

the sums of infinite series.37 However, the technique of representing functions as a power

series was known to occasionally yield anomalous results. For instance, using the same

method, Leibniz obtained:

(3) - ^ - = 1

Setting x = 1 in this expansion we get:

(4) 1 = 1-1 + 1-1 + 1-1 +
2

Leibniz argued that we can explain away this apparently anomalous statement. If we take

any finite even number of terms (e.g: 1 -1,1 -1 +1 - 1 and so on) the sum is equal to zero.

If we take any finite odd number of terms (e.g 1,1-1 + 1,1-1 + 1-1 + 1 and so on) the sum

is equal to 1. Hence, according to Leibniz, "...it follows that when we proceed to the case

of an infinite number of terms, where the even and odd cases are mixed, and there is equal

reason for it to go either way, we obtain ^ = i "38 - that is, the infinite sum is the

average of the finite sums for odd and even numbers of terms.

Euler criticized Leibniz's explanation, arguing that only the sum of a convergent

is approximated by the sum of a finite number of its terms and the expansion
series

1 + JC
= i _ x + x

2 - JC3 + only converges when x < I39. Nonetheless, Euler refused to

37 See [Kline 1972, pp. 446-54].
38 Cited in [Kitcher 1984, p . 242] .

» Euler also pointed out that if we set x - 2 in the expansion J L = 1 + x + * ' + x3 + we get the even

1 - 1 + 2 + 4 + 8+ The sums of finite numbers of terms of this series get bigger and
£ ^ -V *• « * - » *« «« " • — * Leibniz ^ « -
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say that divergent series do not have a sum. If by means of a series expansion and

appropriate substitutions, we can obtain identities like mat of (4), then the value obtained in

this way can be thought of as the 'sum' of the divergent series. Euler made frequent use of

this concept of the sum of a divergent series to obtain his results on the sums of convergent

series - results which could be verified using the technique of computing partial sums.

Kitcher argues that the verifiable success of Euler's methods for finding sums of

convergent infinite series, made it rational for him to use those methods, despite the lack of

rigor in the arguments, [ibid. p. 243-4].

These problems of rigor however, assumed a new urgency in the nineteenth century

as certain questions about infinite series came to the forefront of mathematical research. At

the very beginning of the nineteenth century, Joseph Fourier showed how trigonometric

series expansions of functions could be used to solve important problems in physics. A

trigonometric series has the general form:

1
—aQ + (ax cosx + 6, sin x) + (a2 cos2x + b2 sin 2x) + (a3 cos3x + 63 sin 3JC)

where an and bn are constants. Fourier was able to show that a wide class of functions can

be represented as a sum of sines and cosines in this way and he was able to derive a

formula for the coefficients an and bn of the trigonometric series which represents such a

function. He then applied these results to problems concerning heat flow40. The use of

trigonometric series quickly become an important technique for solving partial differential

equations which arose in other areas of physics.

for the case of (4). That argument invokes considerations about the sums of finite segments of the series, but
in Euler's view, divergent series do not have sums in a sense which makes such considerations appropriate.

40 In his Analytic Tinory of Heat [Fourier 1822]. See also [Kline 1972, pp. 966-72] and [Stewart 1987, pp.
228-31].
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This work immediately generated an important question. Fourier had shown that

some functions can be expressed as trigonometric series - can every function be expressed

as a trigonometric series? Kitcher calls this the Fourier question. The Fourier question is

just one example of a general trend; questions about series representations of functions

were to become increasingly important in the mathematics of the nineteenth century. Little

progress was made on these questions however because the basic concepts of continuity,

convergence and series sum were not well understood. The lack of rigour in the theory of

infinite series was now becoming a serious obstacle to the solution of the mathematical

problems considered most important by the mathematical community.

In his Cours d"Analyse [1821] Cauchy proposed that the concepts of continuity,

convergence, series sum and derivative should be defined in terms of the algebraic concept

of a limit. In particular, he introduced the following definition of convergence and sum of

an infinite series:,41

CO

(Dl) An infinite series ]T sn is convergent if and only if the sequence of partial sums
n=0

N
sn tends to a limit as N tends to infinity and this limit is the sum of the series.

n=0

Notice that in (Dl), Cauchy explicitly rejects the idea that a divergent series can

have a sum. Hence Cauchy's proposal involved the rejection of Euler's techniques for

solving problems about the sums of infinite series of numbers. By Cauchy's time however,

questions about the sums of infinite series of numbers were seen as less important than

41 See [Kitcher 1984, p. 246] for this and Cauchy's definitions of continuity and the derivative.
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questions (such as the Fourier question) concerning the representation of arbitrary functions

by an infinite series of functions. Since Cauchy's definitions provided tools for tackling the

new questions, it was justifiably adopted, even though it eliminated some successful

reasonings of the prior practice, [ibid. p. 250].

However, Cauchy's rigorization of the calculus was known to give rise to new

difficulties. Consider the Fourier question. Euler had argued that it is unlikely that every

function can be represented as the sum of a trigonometric series. The trigonometric

functions have special properties - they are both continuous and periodic - properties which

do not apply to the vast majority of functions. How could a discontinuous function, for

example, be represented by a sum of a continuous functions?42

In the Cours d'Analyse, Cauchy attempted to give a rigorous version of this

informal argument by proving that the sum of an infinite series of continuous Junctions is

always continuous. If this is right, then the Fourier question would be settled in the

negative; not every function can be represented by a Fourier series, since no discontinuous

function can be represented by a sum of continuous functions. Unfortunately, Cauchy's

attempt at a proof was a failure. Abel provided a counter-example to Cauchy's theorem in

1826. The series:

sin*—sin 2x +—sin 3*—sin4x
2 3 4

is a convergent series of continuous functions, but it converges to a function which is

discontinuous at each value of * = (2«-f l)rc. [ibid. p. 254, see also Kline 1972, p. 965].

The problem with Cauchy's argument, from a modern perspective, is his failure to

42
Euler first proposed this argument in his debate with D'Alembert on the problem of the vibrating string.

See [Kitcher 1984, p.245,249].

distinguish between two different ways in which an infinite series can converge to a

function; what we would now call pointwise convergence and uniform convergence. It was

Weierstrass who was to most clearly demonstrate where Cauchy had gone wrong, by

introducing the modern 8-8 formulation of the concepts of continuity and convergence in

which the distinction can be clearly formulated, [ibid. p. 254-9].

Kitcher compares the foundational work in analysis to Frege's investigations into

the foundations of arithmetic and argues that his account of rigorization can explain why

Frege's work was more or less ignored by the mathematical community. If we think of

Frege's programme as a proposal for the rigorization of reasoning in elementary number

theory, the explanation is not hard to find. The fact that reasoning in number theory was, to

some extent unrigorous, was not by itself sufficient for it to be rational to adopt Frege's

formal definitions and proofs as rigorous replacements for those reasonings. The lack of

rigor in this area posed no real threat to mathematical research, [ibid. p. 268].

Michael Dummett in Frege Philosophy of Mathematics, argues that Kitcher is

selling Frege short here. In his discussion of the sections of the Grundlagen where Frege

sets out the motivation for his work, Dummett writes:

There would be little point in dwelling on the reasons Frege gives for undertaking the investigation, so
obvious must its interest appear to almost all with any philosophical inclination, were it not that there
has been a recent movement, led by Philip Kitcher, to argue that it was indeed pointless. The argument
is that, unlike the clarification of the foundations of analysis, it was not needed for the resolution of
antinomies hampering the progress of mathematics. This might be thought the expression of a
Philistine attitude towards philosophy on the part of certain mathematicians by anyone unaware that it
actually proceeded from philosophers....The questions what the natural numbers are, and how we
know what we assume to be true about them, are of intrinsic interest, whether or not the answers
contribute to progress within number theory... .they lack interest only if either number theory itself is
of no value, or philosophy as a whole is devoid of interest.

[Dummett 1991, p. 11]
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I hope it is clear from my discussion of Kitcher's account of rigorization why

Dummett's criticism is misdirected. Kitcher does not say that Frege's investigation was

pointless. Nor does his argument have anything to do with the status or interest of

philosophical questions about mathematics. I am sure that Kitcher would not deny that

Frege's work represents an important contribution to philosophy. The point is not that

philosophical investigations into mathematics are only useful if they contribute to an

increase in our mathematical knowledge. Rather, the point is that a proposal to replace an

unrigorous field of mathematics with a rigorous reconstruction of it, cannot be justified

merely on the grounds that the field in question is unrigorous. It is perfectly reasonable for

mathematicians to use techniques and methods which are imperfectly rigorous, if those

techniques enable them to successfully solve problems that interest them.

Mi ' ^sticians, like most scientists, are pragmatists. They are not moved by purely

philosophical worries about the clarity of concepts or rigor of arguments. Just as most

mathematicians did not let Berkley's criticisms of the calculus worry them too much, since

the techniques of the calculus obviously worked, so mathematicians did not worry too

much about giving a rigorous definition of the concept of number - number theory was, for

the moment, getting on just fine without any such definition.

Of course, mis does not mean that Frege's work was of no mathematical interest. As

Dummett points out, c[p]lainly, inventing modem mathematical logic, and devising the

very first formal system, were major contributions to mathematics under any but the

narrowest circumscription of what constitutes mathematics' [Dummett 1991, p. 12].

Frege's work introduced many important mathematical ideas - the concept of the ancestral

of a relation and of definition by logical abstraction, for example. In addition, we should
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not forget, that despite the contradiction in Frege's system, an important and interesting

result - Frege's Theorem - can be salvaged from it. But all of this is entirely consistent with

what Kitcher says. Although Frege's work was certainly an important contribution to pure

mathematics (let alone philosophy) it is nonetheless true that mere is no great mathematical

pay-off, in terms of problem-solving power, to be gained by adopting his demand to replace

the unrigorous reasonings and definitions of the practice with his formal methods and this

explains why his suggestions were not immediately and universally adopted, in the way

that Cauchy's proposals were.

***

The patterns of change which Kitcher discusses are not mutually exclusive. We

have see# how considerations of problem-solving power - justification by question-

answering - may be involved in the process of rigorization. Likewise, a modification to

practice may be justified not only on the grounds that it provides a generalization of

previous material, but because it also enables us to answer questions - the introduction of

complex numbers would be an example. A generalization may also provide a unified way

of deriving previous results, and so be further justified on the grounds of its ability to

systematize those results. The great power of Kitcher's account lies in its ability to explain

the evolution of mathematics by showing how the different kinds of mathematical changes

which he identifies can work in combination to produce large-scale changes to

mathematical practice.
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6. ORIGINS, KNOWLEDGE AND JUSTIFICATION

The Nature of Mathematical Knowledge represents one of the most important

contributions to the epistemology of mathematics in recent years. Kitcher develops the

idea, implicit in the work of Lakatos, that an adequate epistemology for mathematics

should be faithful to mathematical practice with a high degree of philosophical rigour and

attention to historical detail. The thesis that mathematics is a science is also advanced by

showing how the development of mathematics can be explained by making use of a more

sophisticated model of the evolution of science. Notice that Kitcher's evolutionary account

of the development of mathematics through rational inter-practice transitions could in

general, apply equally well to the development of physics, or indeed any other field of

scientific inquiry.

It is worth noticing that Kitcher's account of the subject matter of mathematics, the

theory of the ideal collector, plays hardly any role at all in his account of the evolution of

mathematics. What he has to say about the justification patterns of change in mathematics

such as generalisation, systematisation and question-answering is quite consistent with any

number of alternative accounts of the ontology of mathematics, including platonism.

Of course, the theory of the ideal collector is really meant to account for the origins

of mathematics, rather than its evolution, by showing how the chain of mathematical

practices can have a perceptually warranted beginning. It does this by providing an account

of the subject matter of mathematics which allows for perceptually acquired knowledge of

that subject matter. But even here, what Kitcher has to say in general about the perceptual

origins of mathematics is consistent with many alternatives to his preferred ontology. As

we shall see, Quine has argued that there can be empirical evidence for mathematics and
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hence that at least some mathematics can be perceptually justified. The details of Quine's

argument and the question of whether or not it is a success will occupy us in the next

chapter. The point I want to make here is that Quine's argument is quite independent of any

specific ontology for mathematics. In particular it is quite consistent with platonism and

indeed Quine himself takes his argument as showing how we can have perceptually

grounded knowledge of abstract objects. Of course, Kitcher thinks that platonism faces

other problems, quite apart from the problem of showing How we can have knowledge of

abstract objects; problems which his theory of the ideal collector is designed to avoid.43

However, my present point is just that the ideal collector is not necessarily required in order

to show how there could be a perceptual grounding for the chain of mathematical practices,

since there may be ways of showing how there can be perceptual evidence for mathematics

which do not require any specific ontology for mathematics.

As Kitcher points out, an evolutionary account of mathematical knowledge must

explain both the origins of mathematical knowledge as well as giving an account of the

growth of mathematical knowledge. In the same way an evolutionary account of life should

explain both how life got started and how it then evolves. Notice however, that in the case

of the theory of natural selection, the question of the origins of life is to a large extent, quite

independent of the question of the nature of its subsequent evolution. There are many

different theories of the origins of life, consistent with the facts of evolution. These theories

are highly speculative and hard evidence for or against them is difficult to find.44

I want to suggest that the situation is similar with regard to the origins of

mathematics. It may well be that mathematics began as a perceptually warranted system of

43 In particular, he has in mind the problem discussed by Benacerraf in 'What Numbers Could N o t B e '
[Benacerrafl965].
44 See for example [Cairns-Smith 1985].
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beliefs, or perhaps more accurately, as pragmatically justified by its utility in solving

practical problems of measurement and counting . What is far less clear is that the theory of

the ideal-collector (or something like it) is strictly required to make good this claim.

It is not that I think that the theory of the ideal-collector must be wrong, it is only

that I want to remain neutral, as far as possible, about such ontological questions. It does

not seem to me that answering them is a prerequisite for answering the sorts of

epistemological questions I am interested in. We need not worry too much about the origins

(perceptual or not) of mathematics, just as evolutionary biologists do not worry too much

about the origins of life. As we shall see, there are problems enougli in giving an account of

the nature of evidence in mathematics, problems which are independent of its origins.

Kitcher's account is aimed at showing how our mathematical knowledge is

acquired. He asks 'how do we know the mathematics that we do?' and answers 'by

acquiring it from authorities whose knowledge is derived by extending in rational ways the

knowledge of previous authorities'. One part of Kitcher's task then is to provide an account

of knowledge; an answer to the question when in general a belief should count as being

known by someone. Kitcher's general schema for answering this question is that

knowledge is appropriately warranted true belief [ibid. p. 17]. The remaining task is that of

describing the nature of the appropriate warrants in mathematics. Kitcher argues that

perception can warrant belief in some primitive mathematics and that the inter-practice

transitions transfer warrant from one practice to its extension.

In chapter two, I argued that the epistemological problem in the philosophy of

mathematics is independent of any theory of knowledge. For me, the problem is not 'how

do we knowT but 'what is the evidence? According to the kind of general account of
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knowledge which Kitcher prefers, evidence or justification is not necessary for knowledge;

one can know something, on such a view, without being able to explicitly formulate any

argument which would justify the belief. A true belief may be warranted by a process

which is reliable, even though the subject can give no account of the reliability of that

process. They may even be unaware that the process is in fact reliable. In such cases, the

subject would have knowledge without evidence. This may be why Kitcher does not make

much explicit use of the concept of evidence in his epistemology for mathematics.

Nonetheless, justification and evidence are surely a very important kind of warrant

for beliefs. They are especially important in mathematics and the other sciences. Marcus

Giaquinto makes this point in his paper on visualization as a source of knowledge in

analysis [Giaquinto 1994]. He endorses a reliabilist account of knowledge, but points out

that this kind of account is 'quite consistent with the fact that demonstrable justification is

indispensable in any collective endeavour to augment knowledge.' [ibid. p. 792]. This point

applies very clearly to Kitcher's account. For Kitcher, much of our mathematical

knowledge is acquired by the testimony of authorities. But this sort of process is clearly not

one which can warrant belief in the absence of someone being able to cite evidence for that

belief; evidence which can be expressed in a public language and assessed by others against

appropriate standards. As Giaquinto remarks:

If we are to rely on some claim announced by a Galois without rediscovering it ourselves, it is not

enough that he has discovered it (and so know[s] it): we must know that it has been discovered, and

this almost always requires that someone has seen and checked a justification for believing it This is

why proof is so important in mathematics.

[ibid. p. 792]
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Indeed, the inter-practice transitions which Kitcher discusses are generally not of a kind

which warrant belief in a way that does not require evidence. In fact, although Kitcher

refers to them as 'patterns of change', they are really kinds of evidence. For example, one

kind of evidence we can have for a mathematical theory is that we can use it solve

problems - this is justification by question-answering. Another kind of evidence is that

theory provides an explanatory systematization or generalization of prior results. That a

theory provides a rigorous reconstruction of previously unrigorously obtained results is also

a kind of evidence for the theory. Here we find a common pattern; a modification to

mathematical practice is justified in terms of its consequences. I shall look at this general

pattern of justification in more detail in chapter five.

We should certainly leave open the possibility that there may be ways of acquiring

mathematical knowledge which do not require demonstrable justification, but we ought

also to acknowledge the central role that such justification plays in mathematics. Kitcher is

quite right to point out that mathematicians are involved in a communal effort to increase

mathematical knowledge. That being so, it is obvious that knowledge acquired by an

essentially private, if reliable, belief forming mechanism is largely irrelevant - what counts

is knowledge which can be communicated to others.45

In subsequent chapters I will be attempting to answer the question 'what kinds of

justification or evidence do we have for our mathematical beliefs?' It is then a further,

45 The great Indian mathematician Ramanujan, who came to Cambridge under the auspices of G. H. Hardy
seems to have had such a mechanism. He claimed that some of his theorems came to him in dreams, in which
he would see scrolls with mathematical formulae written on them. On waking, he would simply write them
down. This belief forming process seems to have been astonishingly reliable - Ramanujan filled notebook
after notebook with statements nearly all of which have since been proved to be correct. It may well be that
Ramanujan knew without having what we would call evidence. Nonetheless, Hardy apparently took great
pains to stress to him the importance of giving proofs. Part of the expi nation of Ramanujan's failure to
understand the importance of proof might be his initial isolation from ) mathematical community; his
mathematics was initially something done by and for himself alone and so ok a while for him to recognise
the necessity of providing evidence for his theorems. See [Kanigel 1991].
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perhaps not especially important question, to ask if the justification we have for our

mathematical beliefs are such as to provide us with knowledge.46 Only the latter question

requires an account of knowledge; the former question, the one that will concern me here,

does not.

Although Kitcher takes a broadly descriptive approach to the epistemology of

mathematics, he does want to show that the kinds of inter-practice transitions he has

identified are rational. There are several ways in which one might go about this:

(1) Show that the patterns of inference to be found in mathematics are analogous to

other patterns of inference, already assumed to be rational; inferences found in the natural

sciences for example.

(2) Show how the patterns of inference can be explained in the light of an appropriate

metaphysical account of the subject matter of mathematics; for example, by providing an

ontoiogical interpretation of mathematics which shows how there can be perceptual

evidence for mathematics.

(3) Show how the patterns of inference instantiate patterns which are rational according

to some previously established general theory of rationality (or 'scientific method'). For

example, one might attempt to show how they conform to valid inferences in some

inductive logic.

46 Indeed if an account of knowledge suggested that our justifications were not adequate for our mathematical
beliefs to count as knowledge, this might well be taken as showing that account itself to be inadequate, rather
than showing that we do not, after all, have any mathematical knowledge.
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Kitcher explicitly rejects method (3). In agreement with many contemporary

philosophers, he doubts that any such general theory can be found in advance of the project

of giving a descriptive account of rational inference. For how would such a general theory

be supported? Only by being in agreement with our actual inferential practice:

Epistemology has no Archimedean point from which it can exert leverage on the knowledge claims of

those who participate in the various kinds of human inquiry. A full account of what knowledge is and

of what types of inferences should be counted as correct is not to be settled in advance. Rather, it must

emerge from consideration of the ways in which humans actually infer and from the knowledge claims

we actually make.

[ibid. p. 97]

For the most part, Kitcher makes extensive use of the first strategy. For example,

the rationality of systematization in mathematics is defended by pointing out how the

benefits which such systematization brings are exactly analogous to the benefits seen to

accrue to systematic theories in the natural sciences; the ability to deduce a wide range of

diverse phenomena from a few basic principles [ibid. p. 218-9]. Kitcher does make

occasionally use of the second strategy; sometimes he brings in his theory of the ideal

collector in order to cast light on the rationale behind some inter-practice transitions. It is

worth noting however that this strategy is never used by itself. Kitcher always gives an

argument of the first kind before to attempting to show how his preferred ontology can

provide some additional insight.

This comes out quite clearly in Kitcher's discussion of reinterpretation in

mathematics. He wants to explain why mathematical theories seem to have a far higher rate

of survival than scientific theories. He advances the claim that mathematical theories are

often saved from refutation by reinterpretation. A mathematical theory that would be
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refuted by some item of evidence is saved by reinterpreting it in a such way that the

evidence ceases to be relevant.47 But why is this sort of reinterpretation rational? Why is

not just an ad hoc move designed only to save a theory from refutation? Kitcher gives two

arguments which are intended to show how this sort of change can be rational. The first

argument makes use of method (1):

...the root idea is readily comprehensible in terms of a division of labor which began in ancient

science. Initially, mathematics included optics, astronomy, and harmonics as well as arithmetic and

geometry.... What has occurred since is a continued process of dividing questions among specialists.

The old mathematical investigations of light, sound and space are portioned into explorations of the

possibilities of theory construction (the province of the mathematician) and determinations of the

correct theory (the province of natural scientists). This division of labour accounts for the feet that

mathematics often resolves threats of competition by reinterpretation, thus giving a greater impression

of cumulative development than the natural sciences.

[ibid. p. 159]

I am not concerned here with whether or not Kitcher's argument here is correct. I want only

to point out the form of the argument - the practice is rational because it is an example of

something - the division of intellectual labour - which we agree to be rational in other

cases. Hence this is an application of strategy (1). In the following paragraph, Kitcher then

applies strategy (2), he attempts to use his ontological account of mathematics to further

defend the claim that the practice is rational:

Consider this practice in light of the picture of mathematical reality advanced in the last chapter.

Mathematics begins from studying physical phenomena, but its aim is to delineate the structural

features of those phenomena. Our early attempts to produce mathematical theories generate theories

which, we later discover, can be amended to yield theories of comparable richness and articulation.

47 The most obvious example, which is discussed in some detail in the next chapter, is the case of Euclidean
geometry. ForKitcher's discussion see [Kitcher 1984, pp. 158-61].
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When this occurs, we regard both the original theory and its recent rival as concerned with different

structures, handing over to our scientific colleagues the problem of deciding which structure is

instantiated in the phenomena we set out to investigate.

[ibid. pp. 159-160]

This second argument does very little work over and above that already done by the

first argument. In particular, notice that the details of the ideal collector theory play no role

in the second explanation. A structuralist or platonist could make exactly the same remarks

to much the same effect. The second argument also carries far less conviction than the first.

I am far more convinced that the division of labour which Kitcher points to is rational than

I am that any particular ontological account of mathematics is correct. This point is

generally applicable; an argument of the first kind will always be preferable to one of the

second kind, because we can generally be far more confident of the premises of an

argument of type (1) than we can be of premises which depend on the correctness of an

account of the ontology of mathematics. This is indicative of the fact that a large class of

problems in the epistemology of mathematics are quite independent of the nature of its

ontology. I suggest then, that just as we can do without method (3), we can also do without

method (2).

Should we in fact, give up any attempt to argue that the methods we use are

rational? One might suppose that since to give an argument is to make use of the methods

of rational inference we are trying to justify, any such attempt is open to the threat of

circularity. However, although it is true that we could never have a global justification for

all of our methods of rational inference, this does not mean that we cannot provide local

justifications for a particular inferences. We might for example, show how the particular
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inference is of the same form as inferences found in other fields of inquiry and already

assumed to be rational. That is, we still have the first method at our disposal.48

Furthermore, although method (3) as described above seems hopeless, this does not

mean that no general theory of rational inference is possible, against which we can judge

particular inferences. What may be possible is to give a general, descriptive account of

patterns of rational inference which can be used to explain and criticise particular cases,

The difference between this and method (3) is that we give up the idea that we can arrive at

such a theory in advance, before attempting to describe the inference we actually make and

which we take to be rational.49

Clearly there are two different problems here. The first problem is to give an

adequate descriptive account of the patterns of inference and cannons of evidence to be

found in mathematics. The second problem is one of showing that those patterns are

rational; either by showing that they are analogous to similar patterns already assumed to

be rational, or by fitting them into a general descriptive theory of rational inference. It is the

first problem which is fundamental; obviously there can be no question of justifying

evidential practice in mathematics without an adequate description of that practice. I will

not be concerned with the second problem here. My aim is only to contribute something

towards the first problem, by giving a descriptive account of the nature of evidence in

mathematics.

48 Of course this would only be a relative or conditional form of justification: if this form of inference is
rational, then so is this particular inference. So method (1) cannot completely avoid the charge of circularity.
But it may be, as Goodman argues that this kind of justification is the best we can ever hope to achieve See
[Goodman 1983, p. 64].
9 Maddy has recently argued that there might be something at least to method (3). That is, we might make

use of a very minimal means-end theory of rationality; we can identify the goals of mathematical practice and
show how an element of the practice is justified by the way it achieves those goals, then: '..the judgement that
the arguments depicted in the model are rational is based on a simple fundamental of practical reason: the
soundness of means-end reasoning.1 [Maddy 1997, p. 197]. Maddy applies this strategy very effectively to the
question of the justification of candidates for new set-theoretic axioms.
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7. DESCRIPTIVE EPISTEMOLOGY

I should like to conclude by drawing attention to three methodological principles

which have emerged from the discussion so far. These are the principles that an

epistemology for mathematics should be (i) descriptive rather than normative, (ii) sensitive

to practice and history and (iii) ontological neutral.

Consider (i) first. This is implicit in the work of Lakatos and quite explicit in that

of Kitcher. In their work, there is no attempt to provide mathematics with an extra-

mathematical or extra-scientific justification; certainly there is no attempt to provide

mathematics with epistemologically secure foundations.50 Instead, what we find is a

detailed attempt to describe the modes of justification at work in mathematics.

The second principle concerns the ways in which any such descriptive account of

mathematics is itself to be justified. As I argued in chapter two, we want our account of the

epistemology of mathematics to be consistent with and hopefully illuminate actual

mathematical practice. We do not want an account which merely shows one way in

mathematics could be justified, we want it to tell us how mathematics actually is justified.

As Kitcher and Lakatos both realise, the way to test epistemological accounts of

mathematics in this respect is to play close attention to the history of mathematics. That

history provides us with a rich source of examples of the varieties of evidence in

mathematics, examples we can use to develop and test our theories of the epistemology of

mathematics.

50 Kitcher's use of method (1) for example clearly does not involve any attempt to provide mathematics with
an extra-scientific justification, for the justification assumes that the methods of the natural sciences are
themselves rational.

177

The third principle is that of ontological neutrality. This is the idea that the project

of giving a descriptive account of the epistemology of mathematics which illuminates the

actual practice and historical development of the subject is independent of the metaphysical

problem of giving an account of the subject matter of mathematics. Lakatos provides us

with no theory of the ontology of mathematics and his account of its development does not

seem to require one. Kitcher does provide such a the'ory, but as I have argued, its role inhis

account of the origin and growth of mathematical knowledge may be eliminable. It is

certainly not one which could not be played by any one of a range of other accounts.

This is not to say that ontological questions are of no philosophical interest. Any

adequate philosophy of mathematics should provide answers to both the ontological

question - what mathematics is about - and the epistemological question - how we know

the mathematics that we do. The descriptive approach holds out the hope that we can make

significant progress with the epistemological problem without having to solve the

ontological problem before we can begin.

These then are the guiding principles of what I have been calling descriptive

epistemology, the project of giving an ontologically neutral, descriptive account of the

epistemology of mathematics; an account which is sensitive to practice and history. The

idea is not of course an entirely new one. Aspects of it are to be found in the writings of

many philosophers and mathematicians. Apart from Kitcher and Lakatos, we can find

similar themes in the work of Godel [1947], Wittgenstein [1933,1953], Quine [1969],

Hilary Putnam [1971], Nelson Goodman [1983], Stuart Shapiro [1989], Ian Stewart [1987]

and Reuben Hersh [1979, 1981] to name but a few. An interesting collection of papers

which apply this approach to the history and methodology of mathematics is to be found in
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History and Philosophy of Modern Mathematics [Aspray and Kitcher (eds.) 1988] which

also contains a useful historical introduction.

Perhaps the most explicit formulation of descriptive epistemology in its application

to mathematics however, is to be found in Penelope Maddy's recent book Naturalism in

Mathematics [Maddy 1997]. Maddy draws on remarks of Godel and Wittgenstein and the

writings of Quine on 'naturalized epistemology' to develop an approach to the

epistemology of mathematics which she calls naturalism and which has strong affinities to

my descriptive epistemology. Maddy's aim in the book is to give an account of the

methodology of set-theory; in particular, she is concerned with the status of the

independent questions such as the continuum hypothesis and the arguments for and against

candidates for new set-theoretic axioms which could settle them51. Since she is primarily

concerned with contemporary set theory, she does not emphasise the historical

development of mathematics. But she does argue forcefully that the account of the

epistemology of mathematics we are aiming for should be consistent with and illuminate

mathematical practice, that it should be descriptive rather than normative and independent

of metaphysics.52

In the remaining chapters of the present work I will be discussing some problems of

descriptive epistemology. My aim is to apply this approach to the investigation of the

511 will discuss some of the features of the justification of set-theoretic axioms which Maddy uncovers from
the perspective of her naturalism in chapter six.
52 For example, Maddy writes: '[t]o judge mathematical methods from any vantage-point outside
mathematics, say from the vantage-point of physics, seems to me to run counter to the fundamental spirit that
underlies all naturalism: the conviction that a successful enterprise, be it science or mathematics, should be
understood and evaluated in its own terms, that such an enterprise should not be subject to criticism from, and
does not stand in need of support from, some external, supposedly higher point of view. What I propose here
is a mathematical naturalism that extends the same respect to mathematical practice ... my naturalist takes
mathematics to be independent of both first philosophy and natural science in short, from any extemal
standard.' [Maddy 1997, p. 1841. See also [ibid. p. 133-160, 190-1] on the importance of sensitivity to
mathematical practice and the irrelevance of ontology to the methodology of mathematics.
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various kinds of evidence to be found in mathematical inquiry. I would like to begin by

examining Quine's claim that there can be empirical evidence of a certain kind for

mathematics and that indeed, this is the only kind of evidence we have for our mathematical

beliefs.
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CHAPTER FOUR

EMPIRICAL EVIDENCE

Can there be empirical evidence for mathematics, evidence which derives ultimately

from the testimony of the senses? Many philosophers have thought there cannot be. There

at two main features of mathematics which provide support for this view. The first is the

seemingly highly abstract nature of the subject matter of mathematics, its concern with

objects that are quite remote from the world of sense experience. The second feature

concerns the methodology of mathematics, at least at first glance there appears to be a

distinct lack of empirical methods in mathematics. Mathematicians give various arguments

for their theorems, but they do not carry out experiments or base their mathematical

conclusions on the results of observations.

In fact, mathematics has always posed a problem for empiricism. If all our

knowledge is at root empirical and if there can be no empirical evidence for mathematics,

then it seems as though we have no reason for thinking that mathematics is true at all. Few

empiricists however, have been willing to simply bite the bullet and say that we should

simply reject mathematics, at least insofar as it has any claim to be a body of truths.1

Mill, it will be recalled, solved this problem by denying both features of

mathematics mentioned above. Arithmetic, in his view, is not concerned with abstract

objects, but is a body of truths about the results of counting and operating on collections of

physical objects. Statements like '2 + 2 = 4 ' are simply abbreviated statements of highly

1 The exception of course, would be those empiricist who adopt a formalist account of mathematics.
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confirmed inductive generalisations, gained from our experience of counting collections of

physical objects.2

An alternative kind of solution has been a fairly constant thread in the history of

empiricist thought. This is the idea that mathematics is a body of truths concerning the

relationships between our concepts, or in more recent times, their linguistic representations.

The view of the logical positivists is a good example. The posnrvists wanted to say that a

statement was cognitively significant, or meaningful, only if it was capable of being

empirically confirmed or refuted. In this way, they hoped to exclude the more extreme

varieties of speculative metaphysics. But in the process, they also seemed to exclude

mathematics and logic, to which empirical evidence seems irrelevant. The claim that

mathematics is a body of analytic truths was their response to this problem; a statement is

cognitively significant if its either empirically verifiable or analytic. An analytic statement

is one which is true in virtue of the meanings of its component terms. '2 + 2 = 4' for

example is true because of the stipulations we have laid down governing the use of the

symbols ' 2 ' , ' 4 ' , ' + ' and '='. As such it is completely devoid of empirical content and this

explains the irrelevance of empirical evidence to mathematics. No fact about the world can

contradict the statement '2 + 2 = 4', because its truth does not depend on facts about the

world, but only on facts about what the mathematical symbols occurring in it mean.

In the 1950s, W.V Quine launched an attack on this 'dogma of empiricism', the idea

that the distinction between analytic and synthetic statements can be made to do useful

work in philosophy. In particular, he argued that the analytic-synthetic distinction cannot be

See [Mill 1884].
1 See for example [Ayer 1936].
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made precise in a way that would allow it to play the role which empiricists had long found

for it, that of accounting for our knowledge of mathematics and logic.4

But if the analytic-synthetic distinction cannot play this role, we are back to the old

problem of explaining how our knowledge of mathematics can be consistent with

empiricism. Again, the apparent abstractness of mathematics seems to cast doubt on the

possibility of providing it with an empirical justification. As I argued in chapter two, this is

the real force of Benacerraf s epistemological challenge to platonism. It is not the causal

theory of knowledge but empiricism which seems to make mathematical knowledge

impossible. Since abstract objects are not physical and not causal agents, they cannot be

perceived in any way. So how can there be empirical evidence for them, if empirical

evidence is grounded ultimately in perception?

I will not be concerned here with the details of Quine's arguments against the

analytic-synthetic distinction. What will concern me is the new solution to the problem of

mathematics which Quine adopted. Quine's genius was to see that the problem could be

solved by denying something that nearly everyone before him had taken for granted,

namely the thesis that empirical evidence is irrelevant to mathematics, without having to

give up the thesis that mathematics is concerned with abstract objects.

1. THE WEB OF BELIEF

Towards the end of Two Dogmas of Empiricism Quine describes the metaphor of

the web of belief:

4 [Quine 19511. See also [Quine 1936,1948,1957,1962].
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The totality of our so-called knowledge or beliefs, from the most casual matters of geography and

history to the profoundest laws of atomic physics or even of pure mathematics and logic, is a man-

made fabric which impinges on experience only along the edges. Or to change the figure, total science

is like a field of force whose boundary conditions are experience.

[Quine 1951, p. 42]

Quine argues that the mistake made by earlier empiricists was to think that individual

statements can be evaluated empirically in isolation from each other. Instead, we have to-

recognise that our scientific beliefs form an interlocked system or web, which "faces the

tribunal of sense experience ... as a corporate body." [ibid. p. 41]. For Quine, the ultimate

justification of the system lies in its ability to help us predict and explain the flow of

sensory experience.

Quine recognised that if this picture is correct, then we can account for our

knowledge of mathematics. For mathematical beliefs form an indispensable part of the

system of total science. Hence, they are justified to the extent that they contribute to the

attainment of the goals of scientific prediction and explanation. In Quine's view, the

mathematics used in a successfully confirmed scientific theory is confirmed along with the

rest of that theory. Mathematical statements should be thought of as empirical hypotheses

like any other - hypotheses which are indispensable in providing us with simple and

powerful theories which allow us to predict and organise the data of sense experience. On

this view, mathematical objects like numbers and sets are theoretical posits, on a par

epistemologically speaking with electrons and photons:

As an empiricist, I continue to think of the conceptual scheme of science as a tool, ultimately, for

predicting future experience in the light of past experience... physical objects...are posits which serve

merely to simplify our treatment of experience... Objects at the atomic level and beyond are posited to

make the laws of macroscopic objects, and ultimately the laws of experience simpler and more
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manageable...Physical objects, small and large, are not the only posits....the abstract entities which

are the substance of mathematics - ultimately classes and classes of classes and so on up - are another

posit in the same spirit.

[ibid. pp. 45-6]

Quine draws another conclusion. If mathematics can be supported by empirical

considerations, it can also be refuted by them:

Any statement can be held true come what may, if we make drastic enough adjustments elsewhere in

the system. Even a statement very close to the periphery can be held true in the face of recalcitrant

experience by pleading hallucination or by amending certain statements of the kind called logical laws.

Conversely, by the same token, no statement is immune from revision. Revision even of the logical

law of the excluded middle has been proposed as a means of simplifying quantum mechanics; and

what difference is there between such a shift and the shift whereby Kepler superseded Ptolemy, or

Einstein Newton, or Darwin Aristotle?

[ibid. p. 43]

If there is evidence which disconfirms a scientific theory, such evidence can also

disconfirm the mathematics used in that theory. Our mathematical beliefs are not certain or

necessary, they are open to empirical confirmation, falsification and revision in the same

way as our scientific beliefs. The illusion of a difference between mathematical and other

statements in this regard is generated, according to Quine, by. purely pragmatic

considerations. We are less inclined to revise the mathematical and logical components of

our theories because they are so deeply embedded in the system of total science that

altering them would result in a massive restructuring of that system. But where revision of

mathematical or logical statements would result in an overall simplification or

improvement in the total system of science, it is an option that is open to us.
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Quine's picture is attractive. It provides us with an account of mathematical

knowledge which is consistent with empiricism and it does so without any reinterpretation

of mathematical discourse. In this way, Quine's epistemology for mathematics comes the

closest to providing us with a solution to Benacerraf s dilemma, as I formulated it in

chapter two. In particular, the epistemological challenge to platonism is met. Mathematical

objects are indeed abstract, but their utility in enabling us to predict and explain the world

provides us with all the justification for their existence we need or could ever have.

Quine's picture is not without critics however. His account of the epistemology of

mathematics has been criticised on the grounds that it does not accord very well with

mathematical practice.5 In particular, Quine's account appears to overestimate the extent to

which mathematical theories can be confirmed or disconfirmed by empirical evidence.

Mathematicians do not in practice take the indispensability of mathematics in scientific

theories as the sole standard by which mathematical theories are to be evaluated. Quine's

epistemology seems to leave a great deal of mathematics unaccounted for. Those portions

of mathematics (the higher flights of set theory for example) which are not applied in

scientific theories receive no justification at all by Quine's argument. Quine's attitude is to

bite the bullet and say that unapplied mathematics should not be thought of as on an equal

footing with empirically confirmed mathematics. There is in fact, no reason to think that

any of it is true. This is not to say research in such areas of mathematics is pointless; after

all what is unapplied now may well turn out to be just what the physics of the 22nQ century

needs. But we do not need to take the ontological commitments of such mathematics

seriously; mathematics of this kind is best viewed as an investigation into what would

follow if certain axioms are true, but in the absence of any application of the theory to the

5 See for example [Maddy 1992,1997].
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serious business of science, there is no reason for thinking that the axioms are true.6 But

again, this conclusion seems to conflict with the practice of mathematics, where we rind

arguments for and against mathematical principles (powerful new axiom candidates for set-

theory for example) which do not appeal to the use of such principles in scientific theories.7

However, Quine does not simply describe an attractive metaphor. He also has an

argument for his epistemology. This is the famous indispensability argument. That

argument concludes that there is empirical evidence of a certain kind for mathematics. This

conclusion is quite consistent with there being other, non-empirical kinds of evidence in

mathematics. Quine does make a further claim however, that empirical evidence of this

kind is the only evidence we have for mathematics. Hence his dismissal of mathematics

which plays no role in empirically well confirmed theories. This second claim depends not

on the indispensability argument but on Quine's empiricism or naturalism; ordinary

empirical evidence of the kind which justifies mathematics and science is the only kind of

evidence we can legitimately ask for; there is no higher standard by which our beliefs can

bejudged.

The arguments against Quine's epistemology for mathematics which appeal to

mathematical practice, if they succeed at all, count against this second claim, rather than the

first, since the features of practice alluded to suggest that there are other, apparently non-

empirical kinds of evidence in mathematics. What I want to do here is consider first the

question whether Quine's indispensability argument succeeds in establishing his first claim,

that there is empirical evidence for mathematics. To anticipate, I will argue that the

6 See [Quine 1984, p. 788, Putnam 1971, p. 56].
7 See [Maddy 1997, pp. 158-60].
8 See [Quine 1969a, 1975, Putnam 1971, pp. 71-4].
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indispensability argument faces certain difficulties, connected with the problem of giving

an account of the relationship of evidence to theory. Nonetheless, there is a way of stating

the argument which, though not immune to these problems, does stand some chance of

success. Hence, 1 conclude with a qualified endorsement of Quine's first claim, that there

can be empirical evidence for mathematics. However, it is a further question what role this

kind of evidence plays in mathematical methodology, that is, whether empirical evidence is

the only kind of evidence we have for mathematics. I shall return to this issue in the

concluding section of this chapter. Let us begin however, by taking a closer look at

Quine's argument.

2. QUINE' S ARGUMENT

Statements of pure mathematics are indispensable in deriving the empirical

predictions which confirm or disconfirm scientific theories. They are therefore confirmed

or disconfirmed by those predictions. Mathematics is thus open to confirmation and

revision in the light of empirical evidence. This is the analysis of Quine's indispensability

argument given by W.D Hart in his paper 'Access and Inference' [Hart 1996]. According to

Hart, the argument is based on two premises:

I call the first premiss Duhem's thesis: beyond a minimal level, no scientific hypothesis is tested

individually; only relatively large and heterogeneous bodies of hypotheses are tested against

experiment and observation...! call the second premiss of Quine's argument his 'indispensability

thesis': beyond a minimal level, we do not know how to do natural science without mathematics...any

reasonably sophisticated natural scientific theory could be formalized only as an extension of some

part of m?*v;matics It follows from Duhem's thesis and Quine's indispensability thesis that such

mathem^s as is required by natural science for making true predictions (and by Quine's thesis, such

mathematics there is) is confirmed thereby; there are no grounds for confining such confirmation to the
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natural science and denying it to the mathematical science. I call this conclusion of Quine's argument

his epistemology for mathematics.

[Hart 1996, pp. 52-53]

Duhem's thesis, or holism in Quine's terminology, has become a commonplace in

the philosophy of science. But why should we think that 'only large and heterogeneous

bodies of hypotheses are tested against experiment and observation'? A common answer

(and the answer Hart provides) is to appeal to the idea that theories are confirmed and

disconfirmed by deriving testable predictions from them. However, as we saw in our

discussion of Popper's philosophy of science, theories do not entail observations by

themselves; it usually requires a large number of auxiliary hypotheses to derive a testable

prediction from a theory. It follows that only such large numbers of hypotheses are

confirmed or disconfirmed by the predictions they entail. Here is Quine's version of this

argument for holism in Pursuit of Truth:

The observational test of scientific hypotheses....consists in testing observation categoricals that they

imply...In order to deduce an observation categorical from a given hypothesis, we may have to enlist

the aid of other theoretical sentences and of many common-sense platitudes that go without saying,

and perhaps the aid even of arithmetic and other parts of mathematics. In that situation, the falsity of

the observation categorical does not conclusively refute the hypothesis. What it refutes is the

conjunction of sentences that was needed to imply the observation categorical. In order to retract that

conjunction we do not have to retract the hypothesis in question; we could retract some other sentence

of the conjunction instead. This is the important insight called Holism.

[Quine 1992 pp. 12-13]

Holism then, is based on the idea that scientific theories and hypotheses are

confirmed or disconfirmed by deriving testable consequences from them. This idea is

known as the hypothetico-deductive account of confirmation. Holism follows from the H-D

account and a simple minor premise. The H-D account states that if a conjunction of
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hypotheses entails a correct prediction, then the conjunction is confirmed by that

prediction. If a conjunction of hypotheses entail a false prediction, then the conjunction is

disconfirmed by that prediction. Since it typically requires a large number of hypotheses to

derive a testable prediction, it follows that only large numbers of hypotheses are confirmed

or disconfirmed by the predictions they entail.9

Consider now the indispensability thesis. This is the claim that mathematics is

indispensable in empirical science as it is now practised. This means that mathematical

statements will typically be included in the large body of hypotheses required to derive a

testable prediction from a scientific theory.

The H-D account of confirmation and the indispensability thesis entail that a true

prediction confirms the conjunction of hypotheses used to derive that prediction and that

these hypotheses will include some mathematical statements. If the prediction is false, it

will disconfirm a conjunction of hypotheses which includes mathematical statements.

However, the conjunction of hypotheses used to derive the prediction is not itself a

mathematical statement, so we cannot yet conclude that there can be empirical evidence for

any purely mathematical statement. We can only conclude that such a prediction confirms a

conjunction of statements which includes some mathematics. In order for Quine's argument

to go through, we need an additional premise, which I call the distribution principle: If a

prediction confirms a conjunction of hypotheses, then the prediction confirms each

conjunct of that conjunction.

9 The use of the term prediction in this context is not meant to imply that the consequences of a theory which
confirm or disconfirm it must be statements of the occurrence of some future event. For Quine, they must
ultimately be observation categoricals - statements capable of more or less direct observational confirmation.
In what follows however, I will not make any special assumptions about the predictions taken to confirm
theories.
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The hypothetico-deductive account of confirmation and the distribution principle

together entail that empirical evidence can confirm mathematical statements. Let aCp

stand for c a confirms p ' and let aDp stand for ' a disconfirms P'. The H-D account of

confirmation can then be expressed as follows:

(HD) ax &ot2.... & an H p => pC( 04 & a2.... & a n ) &~pD( o^ & a2.... & a n )

In words, (HD) says that if a conjunction of sentences entail a prediction p, then the

prediction confirms the conjunction and the negation of the prediction disconfirms the

conjunction. Strictly speaking, the schema (HD) defines a relation of possible, rather than

actual confirmation. If a theory entails a prediction p, then p is possible confirming

evidence for that theory. If P is in fact true, then the theory is actually confirmed by p.

Likewise for disconfirmation, if a theory entails a prediction P, then ~p is possible

disconfirming evidence for the theory. If P is in fact false, then the theory is actually

disconfirmed by the prediction.

Notice that (HD) states only a sufficient condition for confirmation. No claim is

being made that entailing a prediction is necessary for confirmation. It may well be for

example, that a theory can be confirmed by evidence which it does not entail but on which

it confers a high degree of probability. All that is required for Quine's indispensability

argument however, is that entailing a prediction is a sufficient condition for confirmation.
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The relation defined by (HD) is a relation of qualitative, rather than quantitative

10confirmation. If you prefer to think in terms of degree of confirmation, then aCp can be

read as ' a confirms P to some degree', the exact amount of support which a confers on P

being unspecified.

The distribution principle can be stated as follows:

(DIST) pC( ̂  & a2.... & an) & pCa2.... & pCan

Again, the confirmation referred to here is purely qualitative. No claim is being made that

evidence confirms each conjunct of a conjunction to exactly the same degree as it confirms

the conjunction as a whole. In quantitative terms, the principle should be read as stating that

if p confirms a conjunction to some degree, then it confirms each conjunct to some degree

also, but not necessarily to the same degree.

(HD) and (DIST) together entail that any mathematical statement used in deriving a

prediction from a theory or hypothesis is confirmed by that prediction. To see how this

works, let us consider an example. Kepler's third law states that the orbital period of a

planet is directly proportional to the square root of the cube of the planet's distance from

the sun, measured along the major axis of the ellipse which describes the planet's orbit. We

have:

(1)

where T(p) is the orbital period and D(p) the distance of a planet p from the sun. Since it

takes the Earth one year to orbit the sun and the distance of the Earth from the sun is (by

1 See [Hempel 1945a pp. 5-7].
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definition) one astronomical unit, substitution into equation (1) gives a value for k oil. So

if we measure orbital periods in years and distance in astronomical units, equation (1)

becomes simply:

(2) VplT(p) = D(p) /2

Equation (2) can be used to derive a testable prediction about the orbital period of any

planet, given the planet's distance from the sun. I will take Mars as an example and set out

the required deduction.

ar.
a2:
a3:

a4:

a5:

p:

Yp(T(p) = DQ?y2)

T(MARS) = D(MARS)^

D(MARS) = 1.52

T(MARS) = 1.52%

1.52^2=1.87...
T(MARS) = 1.87...

Kepler's third law.

From ai
Auxiliary hypothesis.

From a2 and a3

Mathematical statement
From a4 and a5

Thus Kepler's third law, in conjunction with an auxiliary hypothesis and a

mathematical statement, entails that Mars orbits the sun approximately every 1.87 years, or

683 days. This value is in good agreement with observation, so Kepler's third law is

confirmed by it. We have, by the above derivation shown that:

0) & a2 & a3 & a4 & a51-

By (HD) then, we can infer:

(2) pC( ai &a 2 & a3 & a4 & a 5)

By the distribution principle, we have:

(3) & pCa2 & pCa3 & pCa4 & pCa5

1
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So p confirms not only ai, Kepler's third law, but also the mathematical statement a5, that

1.523/2 = 1.87... Any more general mathematical statement which entails a5 would also be

confirmed by p according to the H-D account. For example, suppose m & JA2 ...& Hn entail

as. The \x\ might be axioms of an appropriate mathematical theory, the axioms of Z-F set

theory for example. Since OL\ & ... a4 & a5 entail P, it follows that u.i & ... \in&a\& ... a4

entail p. Then, by (HD), P confirms ^ & ... \xn & ai & ... a4 and by the distribution

principle, P confirms \i\, jx2 ... un. hi this way, Quine's construction allows for an empirical

justification not only of the often quite specific mathematical statements (numerical

equations such as as for example) which are used to derive predictions from a theory, but

also of any more general mathematical statements, such as set-theoretic axioms, which

imply them.

3. PROBLEMS

Quine's epistemology for mathematics then, follows from three premises, the H-D

account of confirmation (which entails holism), the indispensability thesis and the

distribution principle. If we accept these premises, we must accept that empirical evidence

is relevant to mathematics. If this conclusion is false, one or more of the premises must be

given up.

In fact, as is fairly well known, the H-D account of confirmation is inadequate. It is

wildly over-permissive, yielding a number of absurd results. We formulated the H-D

account of confirmation and the distribution principle as follows:
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(HD)

(DIST)

ai&a2....&ani-p => pC(ai &a2.... &an)

pC( ai & a2.... & an) & pCa2.... & pCan

(HD) and (DIST) quickly lead to absurdity. For example (HD) entails that if a

conjunction of hypotheses entail a prediction p, then that prediction confirms the

conjunction of the original hypotheses with every statement y. This is the so called problem

of irrelevant conjunction}1 We can express this problem using our notation as follows:

(IC) a 1 & a 2 . . . . & a n K P => pC(a 1 &a 2 . . . .&a n &Y) -forally

The derivation of (IC) from (HD) is quite simple:

(1) a1&a2 . . . .&an i - [}
(2) ai & a2.... & an & Y J- (3
(3) pC(a1&a2....&an&Y)

Assumption.
From (1)
From (2) by (HD)

At line (2) we made use of the principle of monotonicity; logical entailment is preserved

under addition of premises.12 Notice also that since any logical truth is entailed by every

statement, (HD) implies that any logical truth confirms every statement:

(LT) hp => (3Ca

Proof

(2)ahp
(3) pCa

Assumption.
From (1)
From (2) by (HD)

11 See [Glymour 1980a, pp. 31-35].
12 This is a fairly trivial consequence of the usual definition of logical consequence. A set of sentences <I>
entails a conclusion a (Oha) iff every interpretation of the language which makes every member of 4> true,
also makes a true. Suppose then that Ohct. Let ¥ be any set of sentences. Then <Du*iVa. Proof. Let v be any
interpretation which makes every member of &U¥ true. Then v makes every member of <!> true. But since, by
assumption, 3>Ha, any interpretation which makes every member of <l> true also makes a true. So in
particular, v makes a true.
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If we combine (HD) with the distribution principle, we can deduce that any arbitrary

statement confirms every hypothesis:

(U) pCa - for all p and a.

Proof 1

( l ) (a&P)i-p
(2)pC(a&P)
(3)pCa&pCp
(4) PCa

Logical Truth.
From (1) by (HD)
From (2) by (DIST)
From (3)

We can argue to the same conclusion as follows:

Proof2

(2)PC(a&~a)
(3) pCa & pC~a
(4) PCa

Logical Truth.
From(l)by(HD)
From (2) by (DIST)
From (3)

So (HD) and (DIST) entail the absurd conclusion that every observation confirms every

hypothesis. The problem is one of relevance. Evidence confirms or disconfirms a

hypothesis only if that evidence is relevant to the hypothesis. Logical entailment however,

is notoriously insensitive to relevance.

For example, take our derivation of the orbital period of Mars from Kepler's third

law. The prediction was entailed by a conjunction of sentences, ai & a2 & a3 & a4 & a5,

which included Kepler's third law, an auxiliary hypothesis and a mathematical statement.

But, by the principle of monotonicity, we can add any arbitrary premise to the derivation

and the deduction will still be valid. For example, let Y be the statement 'Isaac Newton died

in the year 1666'. Then 04 & a2 & a3 & a4 & a5 & y also entails that the orbital period of

Mars is 1.87 years. According to (HD) then, that prediction confirms the conjunction and
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by distribution it confirms y. But clearly data concerning the orbital period of Mars is

simply irrelevant to the date of Newton's death.

It is not too difficult to see how (HD) can be amended to avoid these difficulties.

Notice that in the proof of (IC) above, the irrelevant premise y that we add in line (2) is

dispensable in the proof of (3 from the conjunction a! & a2.... & o^. Likewise, in proof 1, y

is dispensable in the proof of P from y & p. In both cases, there is some proper subset of the

conjunction which suffices to entail p. This suggests the following modified version of

(HD):

(HD')
( a 1 & a 2 . . . . & a n r - P ) & ( a 1 & a 2 . . . . & a n i f ) &

~ 3 ¥ ( ¥ c {a1 ,a2 , . . . . ,an}&x*'Hp)=>

pC(ai&a 2 . . . . & a n )

In words, (HD>) says that if a conjunction of hypotheses entail a prediction P and that

conjunction is consistent and there is no proper subset of those hypotheses which entail P,

then p confirms the conjunction.

(HD') neatly avoids all of the problems noted so far. The proof of (IC) is blocked at

line (2). We cannot, using (HD') deduce from the fact that a, & a2 .... & a n & y entails

P that P confirms a, & a2.... & an & y, because there is a proper subset of {a,, a2,.... ,an,

y} namely {a,, a2,.... ,an} which (by assumption) suffices to entail p.

Likewise, the proof of (LT) is blocked at line (2). We cannot infer from the fact that

a entails P, that P confirms a, because there is a proper subset of {a}, namely the empty

set {}, which suffices to entail the logical truth p.

hi the first proof of (U), the proof is blocked at line (1). We cannot deduce from the

fact that y & p entails p that p confirms y & p because there is a proper subset of {y, p},

namely {p} which entails p. Finally, in the second proof of (U), the proof is blocked at line

(1), since the conjunction that entails the prediction p is inconsistent.

As originally stated, the indispensability thesis claimed merely that some

mathematical statements will be included in the conjunction of hypotheses which entail a

prediction. But we have seen that this is not sufficient for the prediction to confirm those

hypotheses. We require not just that some mathematical statements be included in the

hypotheses which entail the prediction, but that the mathematical statements be

indispensable to the derivation of the prediction, in the sense that the prediction would not

follow without them.

Notice that in the example given in section two (HD') is applicable, since every

premise is indispensable to the derivation of the conclusion. So we would still get the result

that the statement of pure mathematics, a5, is confirmed by an item of empirical evidence.

We also still have the result that any set of axioms, all of which are indispensable in

entailing as, will also be confirmed by the same item of empirical evidence.

Notice how (HD') avoids the problem of irrelevant premises. One way in which a

premise may be irrelevant to establishing a conclusion is when the premise is dispensable

in deducing the conclusion. If irrelevant premises are always dispensable in this way, then

(HD') will guarantee that evidence is relevant to the hypotheses which it confirms or

disconfirms.13

13 (HD') achieves this by ruling out certain deductions. Notice that the sorts of deductions it rules out are the
sorts of deductions ruled out in relevance logic; deductions of an arbitrary statement from a contradiction and
deductions in which one or more assumptions are not used. See for example [Read 1988,1994, Haack 1978
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However, indispensability in this sense is
not sufficient for evidential relevance.

Further difficulties quickly arise for (HD'). For example, from (HD') and (DIST) we can

deduce the so called Paradox of the Ravens [see Hempel 1945a, pp. 13-15, Goodman 1983

p. 70]. The statement that a given thing is neither black nor a raven confirms the hypothesis

that all ravens are black:

(RP) (~Ba&~Ra)CVjc(Rjc->B;c)

Proof

(1) VJC(RX -> Bx) & ~Ba h (~Ba & ~R<0

(2) (~Ba & ~Rfl) C (Vx(Rx -> Bx) & ~Ba )
(3) (~Bfl & ~Rfl) C Vx(Rx -> Bx)

Logical truth.
From(l)by(HD')
From (2) by (DIST)

The entaibnent in line (1) meets the conditions for (HD') to apply. The conjunction

is consistent and there is no proper subset of the conjuncts which entails the conclusion.

But the result is that an apparently irrelevant observation, that a certain object is neither

black nor a raven, confirms the hypothesis that all ravens are black. This is indicative of a

deeper problem. (HD') and (DIST) entail that an arbitrary observation confirms every

sentence consistent with it, relevant or not:

(U') (a & p) if => pCa - for all a and p

Proof

(2)(a->P)&ai-P
(3)pC((a-»P)&a)
(4) pCa

Assumption.
Logical Truth.
From(l)and(2)by(HD')
From (3) by (DIST)

pp. 197-203]. It might then be possible to reformulate (HD') so as to require that a conjunction of hypotheses
* -~/~,VT,I//V entail a Drediction if that prediction is to confirm or disconfirm those hypotheses.

The entailment in line (2) again meets the conditions for (HD') to apply. The

conjunction is consistent (by assumption) and neither conjunct is sufficient by itself to

entail the conclusion. But once more we have an absurd result. Not every observation

confirms every hypothesis consistent with it, since some consistent observations are

irrelevant to a given hypothesis. The problem with (HD') is that any statement can be

indispensable in entailing any item of evidence, given appropriate auxiliary hypotheses.14

I have been analyzing the hypothetico-deductive account in terms of confirmation

rather than discontinuation, but analogous difficulties arise for disconfirmation, since

confirmation and disconfirmation are inter-definable. A sentence a disconfirms a sentence

P if and only if a confirms the negation of P:

(DefD) aDp = aC~p

Recall that (HD) and (DIST) entail that aCp for all a and p. Thus we also have

aC~Y for all a and y and therefore, by the definition of D, aDy. Thus (HD) and (DIST)

entail that every observation both confirms and disconfirms every hypothesis.

Likewise, since (HD') and (DIST) entail that if a and p are consistent, then aCp, it

follows that if a and -7 are consistent, then aC~y. By the definition of D, aDy. So (HD')

and (DIST) entail that every observation confirms every hypothesis consistent with it and

disconfirms every hypothesis whose negation is consistent with that observation.

It may be possible to formulate a better version of the H-D account of confirmation,

which avoids all these problems. However, the difficulties involved in providing anone

14 A.J Ayer in Language, Truth and Logic gives an exactly analogous criticism of this version of the H-D

account of confirmation [Ayer 1946, pp. 15-18]. For a criticism of Ayer's amended account see [Church

1949].

must relevantly entail a prediction

iS
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account of confirmation and disinflation along these Unes are acute" Indeed, the work

of Nelson Goodman seems to suggest tot no purely syntactic account of confirmation, no

account sensitive only to the logical form of the statements involved, is possible at all."

4. HOLISM AND EVIDENTIAL RELEVANCE

Evidence confirms or disconfirms a hypothesis only when that evidence is relevant

to the hypothesis. The problem of characterizing the relationship between a hypothesis and

its confinning or disconfirming evidence is then the problem of characterizing a certain

relation of relevance, evidential relevance, between statements.

Is the empirical evidence which supports a scientific theory also relevant to the

mathematics used by that theory? The indispensability argument we have been considering

conc.udes.that it is. The argument works by providing a certain partial definition of

evidential relevance". Evidence is taken to be relevant to a hypothesis if the hypothesis is

an indispensable premise in entailing the evidence. We have seen, however, that this sort of

indispensability is not sufficient for evidential relevance. A hypothesis may be

indispensable in entailing evidence which is not relevant to it. The hvpothetico-deductive

account of evidential relevance on which Quine's argument is based is inadequate.

It might be objected that Quine's argument does not depend on the hypothetico-

deductive account of confirmation or indeed on any account of evidential relevance at all.

After all, we do have theories for which there is confirming evidence, even though the

project of defining the relation which holds between the evidence and those theories is

^forexample[Hempel 19457pp. 97-101 and 1965a pp. 101-107, Glymour 1980a, pp. 29^8,1980b],

beset by difficulties. This suggests a version of the indispensability argument which dees

not depend on any particular account of evidential relevance. The argument would be that

have good empirical evidence for our best confirmed scientific theories, mathematics is an

indispensable part of those theories and therefore we have good empirical evidence for

mathematics.

Let us consider an example of the application of this version of the indispensability

argument. There is a body of evidence, consisting of the observed advance in the perihelion

of Mercury, Eddington's measurements of the gravitational deflection of starlight and so

on, which confirms the general theory of relativity. Applying the distribution principle, it

follows that this body of evidence confirms every sentence of the general theory of

1S

relativity. But the general theory of relativity includes many mathematical statements, so

they too must be confirmed by that evidence.

Since it is plausible to suggest that all our best scientific theories can be formulated

as extensions of some mathematical theory, exactly analogous arguments will show that

any evidence for those theories is also evidence for the mathematics included in them. All

we need for this argument to work is the distribution principle and an example of a

mathematically formulated theory which is confirmed by some evidence. We do not need

any particular account of the relation of theory to evidence.

This argument assumes that the empirical evidence for the general theory of

relativity is evidence for the whole of that theory, hi general however, this assumption is
18 To apply the distribution principle (as formulated by (DIST) above) in this context, we would need to
assume that the general theory of relativity can be thought of as a (possibly infinite) conjunction of sentences.
The argument we are considering does not depend on this assumption however. Instead of the distribution
principle, we can appeal to the principle that if a confirms a set of sentences <E>, then a confirms each
member of O. Then if <b is a theory (a deductively closed set of sentences) and a represents the empirical
evidence for that theory, we can infer that a confirms every sentence <$, including any mathematical
statements which are elements of the theory.
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false. A given item of evidence is seldom relevant to every part of a theory. Clark Glymour

makes this point in Theory and Evidence:

Recall the case of Kepler's laws...It seems that observations of a single planet (and, of course, the sun)

might provide evidence for or against Kepler's first law (all planets move on ellipses) and for or

against Kepler's second law (all planets move according to the area rule), but no observation of a

single planet would constitute evidence for or against Kepler's third law (for any two planets, the ratio

of their period equals the 3/2 power of the ratio of their distances).

[Glymour 1980a, p. 84]

An item of evidence concerning a single planet is relevant to less than the whole of

Kepler's theory, since such evidence, although relevant to the first and second laws, is not

relevant to the third law.19

Scientific theories can be made up of a number of hypotheses which are

independent of each other. In such cases, evidence which accrues to one hypothesis need

not be relevant to any of the others. Kepler's theory of planetary motion is just one

example. Another example comes from evolutionary biology - the 'neo-Darwinian

Oft

synthesis'. This theory can be thought of consisting of two main hypotheses. The first

hypothesis is that evolution takes place by means of a certain kind of stochastic process, the

process of natural selection identified by Darwin. The second hypothesis is that in all living

organisms, the genetic information which this process requires is carried by the DNA

molecule. These two hypotheses are independent. Suppose scientists discovered tomorrow

that DNA is not after all the carrier of genetic information (perhaps they discover that some

other molecule is responsible). Would we have to abandon evolutionary theory? Not

19 In my example of the derivation of the orbital period of Mars from Kepler's third law in section two, it
seemed as though the evidence did concern only one planet, namely Mars. But the auxiliary assumptions we
used stated the distance of Mars from the sun in astronomical units and to calculate this we need data
concerning the distance from the sun of another planet, namely the Earth.
20See[Dawkinsl986]
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entirely. Obviously such evidence would count against the second hypothesis. But it would

not disconfirm the first hypothesis. It would not show that species do not evolve through a

process of natural selection, it would show only that we had been mistaken about the

underlying molecular mechanism which implements the process.

If, in general, evidence can be relevant to less than the whole of a scientific theory,

then the version of the indispensability argument we have been considering does not go

through. If the empirical evidence for a theory does not necessarily apply to all of mat

theory, then it requires further argument to show that the empirical evidence we have for

our scientific theories applies to the mathematics embedded in those theories. Why include

the mathematical sentences of general relativity in the set of sentences taken to be

confirmed by such empirical evidence as the observed advance in the perihelion of

Mercury? It is tempting to say that we should include them because they are indispensable

in deriving that phenomenon from the theory. But to say this is to slip back to an appeal to

an account of evidential relevance along the lines of the H-D account and we have seen that

this is problematic.

The indispensability argument is often stated as follows; we have good reason to

believe our best confirmed scientific theories, mathematics is an indispensable part of those

theories, therefore we have good reason to believe mathematics. Clearly however, we only

have good reasons for believing the well confirmed parts of our scientific theories. We

cannot simply assume without argument that empirical evidence applies to every part of a

theory. If the mathematics used in a scientific theory is not confirmed by the evidence for

that theory, then such evidence does not provide a good reason for believing that

mathematics.
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To argue that the mathematics used by a theory is confirmed or disconfinned by

empirical evidence therefore requires an account of evidential relevance which entails that

empirical evidence is relevant to mathematics. The problems with the project of providing

such an account are therefore problems which the indispensability argument cannot evade.

5. ELIMINABILITY AND FIELD'S PROGRAMME

We have seen that the mere fact that mathematical statements are included in an

empirically confirmed scientific theory is not enough to show that the empirical evidence

for the theory is also evidence for the mathematics included in it, since the evidence for a

theory does not, in general, apply to the theory as a whole.

We can always add irrelevant hypotheses to a theory without impairing the ability

of the theory to yield correct predictions, since classical logical consequence is preserved

under addition of irrelevant assumptions. For instance we could add the hypothesis 'there

are unicorns' to the general theory of relativity and it would still entail all the observations

currently taken to confirm it. But these observations would not be taken to confirm the

added irrelevant hypothesis. The hypothesis is irrelevant in the sense that the observations

would still follow from the theory, even without the hypothesis. Of course many

mathematical statements are not irrelevant to the derivation of correct predictions from our

theories in this sense. Mathematics is not only included in our scientific theories, it is

indispensable to them in the sense that there are correct predictions of the theory which

would not follow without that mathematics. However, even this is not enough to show that

such mathematics is confirmed by the predictions it entails since, as I argued in section

three, this sort of indispensability is not sufficient for confirmation by the entailed

prediction.

It might be suggested at this point that there is another sense in which mathematics

is not merely included in scientific theories, but is also indispensable to those theories.

Mathematics is used in science, not only in deriving predictions from theories, but also in

formulating the empirical hypotheses of those theories. Mathematical language enters into

our descriptions of the physical world in a very fundamental way; there a fundamental

features of the world which we cannot even state without reference to mathematical objects.

Kepler's third law would be an example. This law, if it is true, commits not only to the

existence of planets, but also to the existence of numbers - in particular, to the real

numbers which are the values of the functions T(p) and D(p). The law states that there is a

certain mathematical relationship between the values of these functions. Of course, this

example is quite representative. Ever since Pythagoras first noted the mathematical

relationships involved in the harmonies generated by vibrating strings, scientists have made

use of the language of mathematics to formulate general truths about the physical world.

This use of mathematics to describe the physical world has of course, been immensely

successful. It seems that we cannot describe the structure of the physical world without

presupposing a great deal of mathematics. This is a point that has been continually stressed

by Hilary Putnam. In 'What Is Mathematical Truth?' for example, he writes:

... [consider a physical law, e.g Newton's Law of Universal Gravitation. To say that this law is true...

one has to quantify over such non-nominalistic entities as forces, masses, distances. Moreover...to

account for what is usually called 'measurement' - that is, for the numericalization of forces, masses

and distances - one has to quantify not just over forces, masses and distances construed as physical

properties... but also over junctions from masses, distances etc. to real numbers....if one is a realist
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about the physical world then one wants to say that the Law of Universal Gravitation makes an

objective statement about bodies - not just about sense data or meter readings. What is that statement?

It is just that bodies behave in such a way that the quotient of two numbers associated with the bodies

is equal to a third number associated with the bodies. But how can such a statement have any objective

content at all if numbers and 'associations' (i.e functions) are alike mere fictions?

[Putnam 1975c, p. 74]

Of course it is not just that we need mathematics in order to state physical laws like

Kepler's Third Law or Newton's Law of Gravitation. We also need mathematics in order to

state auxiliary hypotheses. We also want to say things like 'the orbital period of Mars is

1.87 years' or 'the mass of the electron is 9.10 x 10"31 kg'. And of course, it would be

impossible to properly formulate our physical theories without a great deal of pure

mathematics.

Mathematics is used in science then in at least two different ways. We use

mathematics inferentially, to derive predictions from theories, but we also use it

descriptively, to make assertions about the physical world. Hence mathematics might be

indispensable in science in two ways; it might be indispensable in deriving the observations

which test our theories and it might be might indispensable in the very formulation of those

theories. In this second sense, mathematics is indispensable in scientific theories in that it is

impossible to describe certain physical phenomena without making use of mathematics.

That is, there are no alternative theories of the same phenomena which do not refer to

mathematical objects; reference to mathematical objects is ineiiminable from scientific

discourse.

This suggests another version of the indispensability argument, one which does not

appeal to the indispensability of mathematics in deriving predictions, but appeals instead to

21 See also [Putnam 1971, pp.3 5-43].
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the ineliminability of statements committed to the existence of mathematical objects in the

formulation of scientific theories. The argument would be that since reference to

mathematical objects cannot be eliminated from our best scientific theories, then we should

accept the mathematics used by those theories. Putnam states the argument succinctly,

'quantification over mathematical entities is indispensable for science...therefore we

should accept such quantification; but this commits us to accepting the existence of the

mathematical entities in question' [Putnam 1971, p. 57. See also Quine 1957,1958].

In Science Without Numbers [Field 1980] Hartry Field attempted to undermine this

version of the indispensability argument by showing that mathematics can be eliminated

from science. Field develops a sophisticated fictionalist account of mathematics. He accepts

the premise of the first horn of Benacerraf s dilemma, that mathematical discourse is

irredeemably committed to the existence of mathematical objects and mat these objects are

abstract. Hence, if mathematics is true, then the 'standard account of truth' forces us to

accept the existence of abstract mathematical objects. But Field denies that mathematics is

true. His fundamental philosophical position is nominalism, the thesis that there are no

abstract objects. Since mathematical statements commit us to the existence of various

abstract objects, mathematics according to Field, is literally false.

But why should we accept the nominalist thesis? Field here appeals to the problems

with abstract objects associated with the second horn of Benacerraf s dilemma; the problem

of explaining how we could know anything about objects which exist nowhere in space-

time and exert no causal influence on the world. What possible reason could there be for

thinking that there really are any objects of this kind? In fact, Field thinks there could be

only one good reason for believing in abstract mathematical objects, that we need to
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postulate them in our scientific theories of the physical world. Hence he aims to advance

the cause of nominalism, by seeking to undercut what he takes to be 'the only non-question

begging argument' for the existence of mathematical objects, namely the indispensability

argument.

Field's argument is based on two claims. First, he claims that mathematics is

dispensable in science, in the sense that attractive nominalistic versions of our scientific

theories can be constructed. Let MP be some physical theory, formulated in mathematical

language. Let a be any nominalistic assertion, that is, any assertion which does not quantify

over mathematical objects. The aim of Field's programme is to show that for each such

theory MP (that we actually accept) we can construct a nominalistic theory NP with the

following property:

(N) MPr-cx<-» NPh a

That is, the theory NP has all the same nominalistic consequences as MP. This means that

reference to mathematical objects is eliminable from the theory MP, in the sense that there

is an empirically equivalent theory which does not quantify over any mathematical objects.

Now Field does not seek to establish the very general claim that for any theory such

as MP, there is always a nominalistic theory NP which satisfies (N). Instead, he argues for

the dispensability of mathematics in formulating physical theories by appeal to what he

hopes is a representative example; he constructs a nominalistic version of Newtonian

physics (NNP) and shows that it satisfies (N). He further suggests that the techniques he

uses to nominalize Newtonian physics could be extended to yield nominalistic versions of

other physical theories. Hence, he attempts no general argument for the dispensability of

mathematics in science; we have to look at our theories case by case and see if nominalistic
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versions of them can be constructed. By showing how a representative theory can be

successfully nominalized, Field hopes to show that there are reasons for some optimism

about the success of such a programme of nominaUzing scientific theories.22

If Field's programme were to succeed, then the inehminability version of the

indispensability argument would appear to be undermined, since he would have shown that,

contrary to the main premise of that argument, our physical theories can be formulated

without the use of any mathematics at all. Field goes further however. Even though

mathematics is not required for the formulation of scientific theories, he wants to explain

why mathematics may nonetheless be very useful in science. Here Field appeals to the

inferential use of mathematics; mathematics is useful in science because it provides us with

powerful techniques for deriving the empirical consequences of our theories. Field argues

however, that we can explain the utility of mathematics in deriving empirical predictions

from theories without assuming that mathematics so used is true. Instead, we can explain

the reliability of mathematics in this respect in terms of the conservativeness of

mathematics over nominalistic theories. Let N be a nominalistic theory and a any statement

expressible in the language of N. Suppose we add a mathematical theory M to N, yielding

the combined theory N+M. Field's second claim is that N+M is a conservative extension of

N, which is to say that if N+M entails a, then a is also entailed by N alone. In Science

Without Numbers, Field established that this claim holds for the most general mathematical

theory we have, namely set theory, by proving the following conse- vitiveness theorem:

(C) N + ZF* H a -> N I- a

22 See [Field 1989, p.129].
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The theory ZF* is essentially the usual Zermelo-Fraenkel axiomatisation of set theory, but

with some modifications. As it is usually formulated ZF set theory quantifies only over

sets. It has no nominalistic vocabulary at all and therefore no nominalistic assertions can be

deduced from it. Hence adding ZF to a nominalistic theory N will trivially yield a

conservative extension of N. But it is essential to the use of mathematical theories as tools

for deriving the empirical consequences of physical theories that there is a connection

between the nominalistic assertions of the theory and the mathematical assertions used to

derive their consequences. To get a useful conservativeness result, Field augments ZF so as

that it can make use of the nominalistic vocabulary of N. The resulting theory is ZF*. The

result Field proves - (C) above - is that adding ZF* to any body of nominalistic assertions

N, yields a conservative extension of N; any nominalistic assertion which is a consequence

of N+ZF* is also a consequence of N alone.

Now the conservativeness of a mathematical theory certainly does not imply that

the theory is true. In fact, it implies little more than that the theory is consistent. This opens

the way for an explanation of the inferential utility of mathematics in science which does

not commit us to the truth of mathematics. According to Field, what is true in our physical

theories is captured entirely by a nominalistic reformulation of the theory. However, the

statements involving only nominalistic vocabulary which capture the true content of our

theories will in general be represented by formulas which can be incredibly long and

23 The augmentation proceeds as follows. Firstly, we allow our set theory to include so called urelements,
elements of sets which are not themselves sets. Call the resulting theory ZFU. To ensure a sharp separation
between the mathematical vocabulary of ZFU and the non-mathematical vocabulary of N, we add to ZFU a
new predicate, Mx (for 'x is a mathematical object') governed by three axioms; (a) everything that has an
element is a mathematical object (b) the empty set is a mathematical object and (3) there is a set of all non-
mathematical objects. We then relativise all the quantifiers of N to the non-mathematical objects, ~M Finally,
we allow the vocabulary of N to appear in the separation axiom of ZFU, ensuring that for any property
definable in the language of N, there is a set of all non-mathematical objects with that property.
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complicated. Correspondingly, showing that such a statement has a certain empirical

consequence will, in general, involve a proof that is also long and complicated.

This is where mathematics comes in useful. Adding an appropriate mathematical

theory, like ZF* to our nominalistic theory enables us to prove mathematical counterparts

of the nominalistic assertions. We can then apply all the power of the mathematical theory

to extract the nominaUstic consequences of those assertions. But by (C), we know that any

statement we derive in this way can already be derived from the nominalistic theory alone,

although perhaps in a much more long-winded fashion. Hence, although adding

mathematics to a nominalistic theory will not enable us to prove any new nominalistic

statements, it may make the derivations of such statements more concise or systematic.

Furthermore, (C) shows that it is always safe to add mathematics to our theories of the

physical world, since doing so can never lead to any false assertions about the physical

world which are not already implied by those theories.

On this view mathematics is simply a useful, but in principle dispensable tool for

establishing the empirical consequences of our theories. But we can explain the reliability

of this use of mathematics in science without supposing that mathematics is true. All we

need to suppose is that mathematics is conservative and conservativeness does not imply

truth24

To see how this works, let us look in more detail at the strategy Field develops for

constructing nominalistic reformulations of physical theories. In fact, there is a very simple

24 Notice the formal analogy between Field's programme and Hilbert's formalist programme, discussed in
chapter one. For both philosophers, there is a core set of statements (finitary statements in Hilbert's case,
nominalistic statements in Field's case) which are epistemologically unproblematic. For both, classical
mathematics is given an instrumental justification; we can use mathematics to more easily prove statements in
the core. In both cases, it is argued that extending the core by the addition of a mathematical theory yields a
conservative extension of the core. Hence we can explain the utility and reliability of the extended theory
without supposing that it is true.
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way in which Field could have argued for the thesis (N) above. Suppose we have a

mathematically formulated physical theory MP, which combines mathematical and non-

mathematical vocabulary. Suppose we can sort the predicates of MP into two kinds; those

that apply only to mathematical objects and those that do not. Let M P N be the set of all

sentences of MP which make use only of the non-mathematical vocabulary. M P N is then a

theory which captures the entire nominalistic content of MP. Furthermore, by Craig's

Theorem, M P N can be recursively axiomatized.2 That is we can construct a set of axioms

in purely nominalistic language, from which we can deduce every nominalistic

consequence of the mathematically formulated theory MP. In this way, we can establish

that (N) holds in full generality, in the sense that for any mathematical physical theory MP,

there is a axiomatisable nominalistic theory N which entails every nominalistic sentence

entailed by MP.

Field is well aware of this result of course, but rejects it as a strategy for

constructing nominalistic versions of physical theories on the grounds that it is 'trivial' and

the resulting theories 'uninteresting' and 'unnatural' [Field 1989 p. 129,133]. He writes that

such theories are 'obviously uninteresting since they do nothing whatever toward

explaining the phenomena in question in terms of a small number of principles'. [Field

1980, p. 41, see also Hellman 1989, p. 135]. Field's aim is not simply to enumerate the

nominalistic consequences of our mathematical-physical theories, but to construct

attractive and explanatory nominalistic versions of those theories. [Field 1980, p. 47].

The strategy Field adopts is modelled on Hilbert's axiomatisation of geometry. The

basic idea is to reformulate physical theories which make use of numerical functions (like

25 Provided only that the MP can be given a first-order formulation and that the axioms of MP can be
recursively enumerated. See [Craig 1953,1956]. See also [Putnam 1965] for an excellent discussion of the
philosophical significance of Craig's result.
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m terms of certain comparative, relational predicates. Let us consider just

the geometrical portion of Field's nominalistic version of Newtonian physics, NNP. The

metric approach to geometry begins by assigning a co-ordinate system; a function which

maps each point of space to a unique triple of real numbers. Then we can introduce a

distance Junction <i(pi, P2) which assigns a real number to each pair of points <pi, p2>,

representing the distance between pi and P2 in the given co-ordinate system. We can then

define lines, curves and shapes as sets of points whose co-ordinates satisfy some algebraic

expression, y = mx + c for the straight line, r1 = x2 + y2 for the circle and so on. In this way,

we can give algebraic proofs of geometrical theorems.

The synthetic approach to geometry by contrast, dispenses with all these real

numbers and functions. After all, geometry seems to be fundamentally concerned with

points and lines and the relations between them, rather than with numbers. We can use co-

ordinates and distance functions as a convenient way of representing geometrical facts, but

the possibility of this kind of representation ought to be explicable in terms of the

fundamental structural features of space, facts which we ought to be able to state without

the use of the numerical representation. In fact, all we need are two primitive relations

which can hold between points, the relations of betweenness and congruence. We can

express these with a three-place predicate xByz and a four-place predicate xyCzw. These

relations are taken as primitive and undefined, but intuitively we can think of xByz as

meaning that the point JC lies on the line segment with end points y and z and xyCzw as

meaning that the line segment with end points x and y is congruent to ('the same length as')

the line segment with end points z and w. The axioms and theorems of Euclidean geometry
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can then l»e formulated in terms of these predicates. For example, Euclid's second axiom,

that any line segment can be indefinitely extended can be expressed as VxVyBzfyBxz).26

In this way, the nominalist can give an axiomatisation of geometry which dispenses

with all reference to abstract objects like real numbers and functions and refers only to

points of space and various relations which hold between them. Let NG (for 'nominalistic

geometry') be the theory obtained in this way. We can then prove the following, so called

representation theorem:

(R) For any model of NG, there is a function d which maps pairs of points in the model

into the real numbers and which satisfies the following conditions:

(i) Vxyz: xyCzw <-> d(x, y) = d(z, w)

(ii) Vxyzw: xByz <-» d(y, x) + d(x, z) = d(y, z)

That is, the function d corresponds exactly to the intuitive interpretation of the

predicates xyCzw and xByz. Suppose we add an appropriate mathematical theory, like ZF*,

to NG. Then the representation theorem entails that we can define a function d such that the

equivalences in (i) and (ii) hold in any model of the combined theory NG+ZF*. Titis

function d allows us to obtain mathematical counterparts of the nominalistic assertions of

NG. We can simply replace xyCzw wherever it occurs in a formula with the right hand side

of the equivalence in (i) and we can replace xByz wherever it occurs in a formula with the

right hand side of the equivalence in (ii)27. We can then use the techniques made available

by the mathematical component of the combined theory to derive the consequences of our

2fi See plilbert 1971] for further details.
27 So for example, tb<? mathematical counterpart of the axiom VxVyEbfrBxz) is Vx\/y3z(d(x,y) + d(y, z) = d(x,

215

nominalistic assertions. But by the conservativeness theorem (C), we know that any

nominalistic assertion derivable in this way already follows from the nominalistic theory

NG alone.

As well as the representation theorem (R), we can also prove the following

uniqueness theorem:

(U) The function d(x, y) which satisfies conditions (i) and (ii) above is unique up to a

multiplicative constant.28

Hence, the fact that geometric laws when formulated in terms of a distance function

are invariant under multiplication of all distances by a positive constant, but are not

invariant under other transformations, receives a satisfying explanation. It is explained by

intrinsic facts about physical space, facts which can be expressed in the purely nominalistic

language of NG.

In Science Without Numbers, Field showed how this strategy can be extended give a

nominalistic formulation of classical metric field theories in flat (Euclidean) space-time. A

field is usually represented as a function which assigns certain mathematical objects

(numbers or vectors) to points of space-time. Field draws on work in measurement theory

to show how reference to such functions can be eliminated in favour of comparative

predicates of various kinds. He then shows how physical laws, stated in terms of such

functions (such as Newton's Law of Gravitation) can also be restated in terms of those

comparative predicates. The result is his nominalistic formulation of Newtonian physics,

28 That is, if d, and d2 are any two functions satisfying (i) and (ii) then di and d2 differ only by a positive
multiplicative constant and conversely if d, and d2 differ only by a positive multiplicative constant, then dx

satisfies (i) and (ii) only if d2 does.
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NNP. Field sketches a proof of an appropriate representation theorem for NNP, showing

how, if we add ZF* to NNP we can reintroduce the numerical functions used in the usual

formulation of the theory and in this way obtain a mathematical representation of the

underlying nominalistic theory. But the possibility of introducing such a representation is

regarded as a derivative fact, which is explained in terms of the intrinsic features of space-

time captured by the nominalistic theory.

If MNP is the usual mathematical formulation of Newtonian physics, then the

representation theorem implies that, for any nominalistic assertion a:

(1) MNPha<-»NNP I-a

But by the conservativeness of mathematics (C), we have:

(2) NNP + ZF* l - a ->NNPl -a

Since NNP is a proper subset of NNP+ZF*, we also have:

(3) NNP h- a -> NNP + ZF* h- a

Hence:

(3) NNP + Z F * H a o NNP I- a

Combining (1) and (3) we get:

(4) MNPhot<->NNPha

and Field has succeeded in proving an interesting and representative instance of (N) above.

Field argues that synthetic formulations of physical theories are more illuminating

than the usual metric formulations, not only because they are nominalistic but also because

they explain the phenomena without appeal to extrinsic, causally irrelevant objects. The

mathematical objects referred to in the metric formulation of a theory play no causal role in

explaining the physical facts. They are invoked as something extrinsic to the process to be
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explained, an entity related to that process only by an arbitrarily chosen function. Field's

nominalistic formulations of physical theories show how we can give a purely intrinsic

explanation of the phenomena, an explanation that does not invoke arbitrary and causally

irrelevant entities:

I am saying then that not only is it much likelier that we can eliminate numbers from science than

electrons (since numbers, unlike electrons, do not enter causally in explanations), but also that it is

more illuminating to do so. It is more illuminating because the elimination of numbers, unlike the

elimination of electrons, helps us to further a plausible methodological principle: the principle that

underlying every good extrinsic explanation there is an intrinsic explanation.

[Field 1980, pp. 44-5]

If Field's programme of nominalizing physical theories in this way could be carried

out for every theory we currently accept, this would show that mathematics is dispensable

in scientific theories in the very strong sense that there are better theories of the same

phenomena which make no use of mathematics at all. On the other hand we can explain

why adding mathematics to our best nominalistic theories is useful in drawing out the

nominalistic consequences of our theories, even though that mathematics is literally false.

For by the conservativeness of mathematics, we can always be sure that adding

mathematics to our theories will never enable us to derive any new nominalistic

conclusions which could turn out to be false.

Both aspects of Field's project have been criticized, however. Consider first Field's

explanation of the inferential utility of mathematics in science. Stewart Shapiro has pointed

out that Field's conservativeness claim (C) can be interpreted in two ways, depending on

whether we interpret the relation of logical consequence in terms of deductive or semantic

entailment. The proof of (C) given by Field establishes only the semantic conservativeness
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of mathematics. In a second-order language such as the language Field uses to formulate

NNP, deductive and semantic entailment do not coincide, so we cannot infer from the

semantic conservativeness of mathematics that it is also deductively conservative. In fact,

Shapiro shows that if we interpret entailment deductively, the conservativeness claim fails

for NNP. In more detail, Shapiro proved that for any mathematical theory M, powerful

enough to prove the consistency of Field's second-order nominalistic theory NNP, there are

nominalistic statements which are deductive consequences of NNP+M but which are not

deductive consequences of NNP alone. That is, NNP+M is not a deductively conservative

extension of NNP. It is however, a semantically conservative extension of NNP; every

nominalistic statement which is a semantic consequence of NNP+M is also a semantic

consequence of NNP. Shapiro argues however that Field needs to appeal the deductive

conservativeness of NNP+M, since he wants to explain the utility of mathematics in

science in terms of its power to shorten deductions}9

There has also been much debate concerning the adequacy of Field's strategy for

constructing nominalistic reformulations of scientific theories. Firstly, it has been argued

that Fields' version of Newtoiii&i physics NNP is not a nominalistically acceptable theory.

For NNP quantifies not only over space-time points, but also over regions of space-time

points. It makes use of a powerful second-order logic, which appears to give us a thinly

disguised way of quantifying over sets of physical objects. Secondly, even if NNP is

nominalistically acceptable, it is not clear how Field's techniques could be extended to

29 See [Shapiro 1983a]. For Field's response to this prcMem see [Field 1985,1989 pp. 125-146].
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more complex theories such as quantum mechanics in any nominalisticaUy acceptable

way.30

Irrespective of whether Field's reformulations of physical theories are

nominalistically adequate, we can also ask whether they are scientifically adequate. For

example, it has been argued that Field's nominalistic language is inadequate to the needs of

science in terms of its expressive power. That is, there are statements scientists are

interested in establishing (statements about certain properties of field theories for example)

which cannot be expressed in Field's nominalistic language.31

Even if these problems could be solved, it is not clear that the success of Field's

programme would fatally undermine the indispensability argument. Suppose Field did

succeed in giving an adequate nominalistic reformulation of Newtonian physics. We would

then have two theories to consider, Field's nominahstic Newtonian physics NNP and the

usual mathematically formulated version MNP. The question is then which is the better

theory.

One way in which Field argues that his nominalistic reformulations are better than

their mathematical counterparts is by appeal to the principle of parsimony or Occam's

razor; given two theories of the same phenomena, other things being equal, we should

accept the theory with the fewest ontological commitments.32 This argument cannot be

30 See for example, [Malament 1982, p. 532-4, Hale 1988, Shapiro 1983a]. Field anticipates and responds to
some of these objections in Science Without Numbers, See also [Field 1985,1989, np. 171-281].
31 See [Malament 1982, p. 528, Melia 1998, p. 69].
32 Jus t h o w we are to measure the ontological commitments of theories in order to make such comparisons is
no t obvious however. In terms of the number of individuals postulated, N N P and M N P are on a par. Bo th are
commit ted to uncountably many objects, uncountably many space-tirne points in NNP, uncountably many
real numbers in MNP. In terms of the number of types of object postulated however, N N P has fewer
commitments , since M N P is committed to at least one type of object that Fie ld 's version is not , namely
infinitely many abstract mathematical objects. On the other hand, if we formulate M N P so that i t dispenses
with space-t ime points by simply identifying them with their co-ordinates, then we can say the same thing
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conclusive however. Occam's razor is only one consideration among many which become

operative when trying to decide between otherwise equivalent theories, hi addition,

considerations of simplicity, elegance, explanatory power and coherence with other theories

may become operative. There are no doubt many other types of consideration active in such

decisions and they do not all have equal weight. There is no reason for thinking that

ontological parsimony is an over-riding factor in such decisions. I doubt that working

scientists would find Field's nominalistic version of Newtonian physics more acceptable

than the usual mathematical versions, merely on the grounds that it has a reduced ontology.

I think that Field recognises this point and that is why he appeals to considerations

other than ontological parsimony. For, as already mentioned, according to Field other

things are not equal. He argues that the problem with the usual metric formulations of field

theories is that invoke arbitrary, causally irrelevant objects, extrinsic to the phenomena to

be explained. Field's synthetic formulations of those theories, by contrast, dispense with

causally irrelevant objects and explain the phenomena in terms of intrinsic features of

reality in such a way that we can explain why the metric formulations are arbitrary to

exactly the extent that they are. Hence, according to Field, the synthetic approach has many

advantages quite apart from considerations of ontological parsimony or nominalistic

scruples about abstract objects.

The case Field presents here is far from clear-cut however. It is not clear that the

synthetic formulations of theories really do any better in this respect than the metric

theories they are intended to replace. Joseph Melia, for example, has argued that in fact,

about NNP; it is committed to at least one kind of object (namely space-time points) that MNP is not See also
[Melia 1998, pp. 67-68] for farther doubts about the ontological parsimony of Field's nominalistic theories.

221

Field's reformulations also introduce entities which are extrinsic to the process to be

explained, causally irrelevant and arbitrary.33

These sorts of considerations cannot settle the matter however, hi fact, it is a

mistake to formulate the indispensability argument in terms of the inehminability of

reference to mathematical objects in scientific theories. The more fundamental question

concerns not the eliminability of mathematics from science, but the relevance of empirical

evidence to mathematics.

It is important here to distinguish carefully between two different kinds of argument

that can be made concerning scientific theories or hypotheses, arguments which operate at

different methodological levels. At the first level, the level of evidential relevance, there are

arguments which aim to show how some body of evidence is relevant to a particular

hypothesis or theory. For example, Einstein argued that the observed facts concerning the

photoelectric effect were evidence for the hypothesis proposed earlier by Planck, that

electromagnetic energy is emitted and absorbed in discrete units or quanta.34 Likewise

Newton, by showing how the law of universal gravitation entailed Kepler's laws was

arguing that the observed facts of planetary motion were relevant supporting evidence for

his theory. In these cases, the evidence was confirming evidence. On the other hand, there

are arguments which aim to show that some observation is relevant discorifirming evidence

for a hypothesis. So for example, Michelson and Morley gave an argument aimed at

showing that the results of their famous experiment provided evidence which disconfinned

the hypothesis that light waves propagate through the medium of the ether.

33 See [Melia 1998].
34 See [Gamow 1996, pp. 22-27].
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That a theory is confirmed by some evidence is a necessary but not sufficient

condition for it to be rational to accept that theory. We may also require that there should be

no disconfirming evidence. Nor is only one confirming observation sufficient, a theory

must be confirmed by a wide and varied body of evidence before it becomes rational to

accept it.35 The second level, the level of theory choice, is where we find argument for

accepting or rejecting a theory based on considerations of this kind. So for example, we

might argue that we should accept Newton's theory of universal gravitation on the grounds

that there is a wide range of supporting evidence for it; the orbits of the planets, the

precession of the equinoxes, the motions of the tides and so on. We might also mention the

fact that there is no competing theory that explains all these things as successfully. This

would be a second level argument. It mentions the fact that there is some confirming

evidence for Newton's theory, but it does not by itself show that the evidence mentioned is

in fact relevant supporting evidence for the theory. The latter claim is provided by

Newton's actual derivation of the planetary orbits, the motions of the tides and so on from

his theory. It is at the second level where we also find arguments concerned to adjudicate

between rival theories of the same phenomenon. So for example, we might compare the

phlogiston and oxygen theories of combustion, or the classical and quantum theories of

electromagnetic radiation. In debates like this, it is taken for granted that there is some

evidence for both theories, otherwise the debate would be pointless. What we do is weigh

35 This is somewhat simplified of course. It may be rational to accept a theory for which there is some
disconfirming evidence, if there is a great deal of confirming evidence for it What we in jact do is weigh up
the successes of a theory against any failings it may have, where 'success' and 'failure' are measured in
complex ways. We saw this process at work in the case of mathematics in our discussion of Kitcher's account
of the rigorization of the calculus. My point here is just that a first level argument, to the effect that there is
some evidence for a theory is required before any further second level questions come into play.
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up the evidence for and against each theory and try to make a decision about which theory

is the more acceptable.

Now it may happen that we have two theories of the same phenomenon which are

empirically equivalent. All the empirical evidence we have for one theory applies equally to

the other, the theories agree on all Ihe observational data. The Ptolemaic and Copernican

systems of celestial mechanics might be one example. Another would be the two equivalent

versions of quantum mechanics, Schrodinger's wave equation formulation and the

Heisenburg matrix representation. In such a case we may appeal to such considerations as

ontological parsimony, elegance or simplicity, ease of use, explanatory power and so forth -

the so called 'theoretical virtues'. Such arguments are also part of the second level. Again,

in such a debate, we are assuming that there is some relevant confirming evidence for each

theory (in fact, in a case like this, we are assuming that all the relevant observational"

evidence for one theory is equally relevant confirming evidence for the other). But it

requires a first level argument to show that there is some relevant confirming evidence for

our theories.

The point of this distinction is just that we require an argument of the first kind if

there is to be any argument of the second kind. Before we can choose between two

competing theories, by weighing up the evidence for and against them, it is first necessary

to show that there is some relevant supporting evidence for either theory.

The eliminability version of the indispensability argument appeals to considerations

operative at the second level, the level of theory choice. As stated above, the argument was

that since mathematics is ineliminable from scientific theories, in the sense that there is no

36 Notice that second level considerations like these may decide in favour of one theory rather than another, as
i n l e T J e of the Ptolemaic and Copernican systems, or they may not, as in the case of the two eqmvalent
representations of quantum mechanics.
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way of formulating those theories nominalistically, we should accept tbe mathematics used

in those theories. This is a second \e\e\ argument; we should accept a certain theory

because there is no better theory of the same phenomena. But presumably we should accept

our theories because they are well confirmed by evidence; confirmation is a necessary

though not sufficient condition for accepting a theory. If a theory is not confirmed by some

body of evidence, then second level arguments concerning the relative merits of two

theories are irrelevant.

The meliminability version of the indispensability argument is premised on the

claim that mathematics is required in order to formulate our physical theories. Field

attempts to show that this premise is false by constructing nominalistic version of those

theories. This way of stating the indispensability argument makes the question turn on

whether or not we can eliminate reference to mathematical objects from our physical

theories. But the important question is not whether reference to certain objects is eliminable

or not, but whether there is any evidence for those objects. Craig's theorem shows that so

long as we can clearly distinguish between entities of one kind and those of another kind,

reference to objects of either kind is eliminable in favour of reference to the other. So we

can eliminate talk of electrons, photons and so on in favour of talk about meter readings

and other observations. Likewise, we can eliminate talk of numbers and functions in favour

of talk about space-time points, electrons and photons. But whether or not it would be a

good idea to eliminate talk of electrons and photons depends on whether or not we have

good reason to believe that they exist. That is, it depends on whether or not we have any

evidence for their existence. If we do, then the fact that reference to them is eliminable is

irrelevant.
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On the other hand, even if reference to Xs is inehminable from a theory, it does not

follow that there is any evidence for the Xs. We can easily imagine any number of physical

theories for which there is no evidence at all, but which could not be r.tated without

referring to certain objects. Hence, the mere fact that a theory quantifies over mathematical

objects does not show that there is any evidence for that theory and a fortiori, does not

show that there is any evidence for the mathematics used in the theory.37

Of course, we do have plenty of scientific theories, for which there is a great deal of

evidence and it may be that we cannot reformulate those theories nominalistically. But as

argued in section four, the fact that there is some evidence for a theory does not show that

there is evidence for the mathematics included in that theory, since the evidence for a

theory may not be relevant to every statement included in the theory. This clearly entails

that we should accept only those parts of our theories which are confirmed by the evidence

we have for them. If none of that evidence confirms the mathematics included a theory,

then no second level argument (to the effect that there is no way of stating the theory

without referring to mathematical objects) can provide a good reason for accepting such

mathematics.

For the indispensability argument to work, we need to appeal to some holistic

principle which entails that the evidence we have for our theories applies to the

37 See also [Melia 1998, pp. 70-1].
38 Notice however that on any adequate account of evidential relevance, there is some empirical evidence tor
mathematically formulated empirical hypotheses like Kepler 's third law. Any evidence for such laws would
seem also to b e evidence for the mathematical objects those laws are committed to. However, it is not obvious
how this argument can show that there is empirical evidence for any pure mathematical statement Of course,
in order to use Kepler's law, we need to make use of many statements of pure mathematics. In this sense
Kepler 's law 'presupposes' a great deal of pure mathematics; if not the full theory of the real numbers, then at
least a theory of the nationals [see Putnam 1971, p. 55]. But what is needed here is an argument which shoivs
how the pure mathematics presupposed by Kepler's law in this sense is confirmed by the very same evidence
as confirms that law itself. I am not suggesting no such first level argument could be given, only that such an
argument is required.
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mathematics included in those theories. The ineliminabihty version of the argument does

not by itself provide any such argument, it simply assumes some form of holism. I have

argued that a certain extreme form of holism is false; we cannot assume that the evidence

we have for a theory is evidence for every part of that theory. How could a more

conservative holistic principle be argued for? We have seen that a common argument in

favour of holism, the argument from the H-D account of confirmation, will not work. Any

argument for holism will have to appeal to some other characterization of evidential

relevance.

I doubt that the notions of confirmation and explanation are independent It is well known that

6. EXPLANATION

The first version of the indispensability argument we considered fails because the

hypothetico-deductive account of confirmation on which it is based is inadequate. That a

theory entails a true prediction is not sufficient for that prediction to confirm the theory.

But this is puzzling. After all, we do test our scientific theories by deriving testable

predictions from them. If entailment alone is not sufficient for confirmation, what extra

condition is required? One answer is that the derivation of the prediction from the theory

must provide an explanation of the predicted phenomenon. It is well known that entailment

is not sufficient for explanation.39 Perhaps what is required in addition to entailment for

confirmation is exactly what is required in addition to entailment for explanation.

W.D Hart, in a footnote to 'Access and Inference' considers this idea:

triviality ensues from the thesis that
what entails an observation is confirmed by it..entailment is not

triviality ensues uum u«* u>^w ~

sufficient for confirmation. More likely, the best explanation of an observation is confirmed by it..If

mathematics is confirmed by observation, then that is because it is inextricably part of what bestsome
explains such observation [Hart 1996 p. 56-57]

39 See for example [Salmon 1989, p. 47].

Suppose we replace the hypothetico-deductive account of confirmation in the

indispensability argument with an explanation criterion for confirmation: if a conjunction

of statements explain an observation, then the observation confirms the conjunction of

hypotheses.40 The corresponding indispensability claim would then be that there are some

mathematical statements which play an indispensable role in the scientific explanation of

observations. The indispensability argument will then go through. An observation confirms

the conjunction of hypotheses required to explain it. By the distribution principle each of

the conjuncts is also confirmed. By the indispensability thesis, some of those conjuncts will

be mathematical statements. Thus mathematical statements can be confirmed (and by an

analogous argument, disconfirmed) by observations.

This version of the indispensability argument appeals then to the principle of

inference to the best explanation. Just as we need to postulate objects such as electrons and

photons in order to explain our observations, we need to postulate the existence of a

multitude of mathematical objects in order to explain the same observations. Hence the

evidence we have for theories which postulate electrons and photons applies equally to the

mathematical objects referred to in those theories.

Indispensability arguments are exactly as successful as the accounts of the relation

of evidence to theory on which they are based. The explanation criterion for confirmation is
40 Notice that if entailment is not necessary for explanation (as well as being insufficient) then this criterion

need not even imply that the conjunction must entail the prediction which confirms it.
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certainly an improvement over the H-D account and the corresponding indispensability

argument is therefore on firmer ground. The appeal to explanation as opposed to deduction

avoids many of the problems of relevance which beset the hypothetico-deductive account,

since irrelevant hypotheses, even if they entail an observation, do not explain it.

According to the explanation criterion of evidence, if a mathematical theory enables

us to explain various empirical phenomena, then there is at least some empirical evidence

for that mathematical theory. But this gives us only a prima facie case for realism

concerning mathematics. Whether or not it is rational to accept a theory depends not only

on their being some supporting evidence for the theory but also on various second level

considerations; whether there is any disconfirming evidence for the theory, the scope and

variety of the confirming evidence and the relative merits of any competing theories of the

same phenomena.

From this perspective, the success of Field's attack on the indispensability argument

depends on whether the explanations of the phenomena provided by his nominalistic

reformulations of physical theories are better than the those provided by the mathematical

formulations. If the nominalistic explanations are better, then inference to the best

explanation will tend to support the nominalistic theories as opposed to the mathematical

theories. Here Field could appeal to the principle of parsimony and to the advantages of

intrinsic over extrinsic explanations. As we have seen however, the argument here is far

from conclusive.

Nonetheless, the explanation criterion version of the indispensability argument does

face some difficulties. On the role of mathematics in scientific explanations, Field writes:
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... even on the assumption that mathematical entities exist, there is a. prima facie oddity in thinking that

they enter crucially into explanations of what is going on in the non-platonic realm of matter. ....the

role of mathematical entities, in our explanations of the physical world, is very different from the role

of physical entities in the same explanations. For the most part, the role of physical entities in those

explanations is causal: they are assumed to be causal agents with a causal role in producing the

phenomena to be explained. Since mathematical entities are assumed to be acausal, their explanatory

role (or roles) must be somehow different.

[Field 1989, pp.18-19]

Mathematical objects, if they are abstract, are causally isolated from the physical

universe. It is usually thought to be a failure of explanation to invoke entities which are

causally irrelevant to the phenomena to be explained. Perhaps this sort of causal asymmetry

in the explanatory roles of physical and mathematical entities provides a reason for thinking

that an observation explained by theory does not confirm the mathematical component of

the theory. If causation is the missing factor which turns entailment into explanation, then

abstract mathematics will not explain anything.

Cheyne and Pigden put the point in terms of a dilemma for the platonist: either

mathematics is dispensable in science, in which case there is no reason to believe there are

any mathematical objects at all, or mathematics is indispensable in science, and hence

mathematical objects must play a causal role in explaining what is going on in the physical

world42 But if mathematical objects are causal agents, platonism is not the correct account

of them. So in either case, platonism is refuted. This is too quick however. It is right to

point out that the indispensability argument, properly understood, requires that mathematics

plays a role in explaining physical phenomena, but as Mark Colyvan points out in his

41 See also [Melia 1998, pp. 70-1].
42 See [Cheyne and Pigden, 1996].
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discussion of Cheyne and Pigden's paper, it is a mistake to think that any such explanation

must be causal.43

Causal connection cannot be a necessary condition for explanation, since not all

explanations are causal. Causation is fundamentally a relation between events rather than

statements and it is not only the occurrence of some event that is capable of explanation.

General laws can also be explained. For example, Newton was able to explain Kepler's

third law by showing it was a consequence of his inverse square law of gravitation. In this

way, the evidence for Kepler's third law accrued automatically to Newton's law. Yet there

is no causal relation between the two laws.

Furthermore, mathematical truths themselves are capable of explanation. Some

proofs of a theorem, show not only that the theorem is true, but also show why the theorem

is true. Just what this means is the subject of chapter seven. For now, notice that in

explaining a mathematical truth, we appeal to other mathematical truths and these are not

taken to be causes of the mathematical fact being explained. A statement may be

explanatorily relevant to another, without being in any way causally relevant.

The problem facing this version of the indispensability argument is a^oin one of

relevance. It requires an account of explanation which allows for mathematical statements

to be explanatorily relevant to empirical phenomena. It is well known that it is no simple

matter to give an adequate account of our concept of explaining something. Nonetheless, I

do not think this represents an insurmountable problem for the indispensability argument.

Since not all explanations are causal, it may well be possible to give an account of

43 See [Colyvan 1998a].
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explanation which shows how mathematics can play an explanatory role in science . If

such an account can be provided, then the indispensability argument will have shown mat

there is a great deal of empirical evidence for mathematics.

7. EMPIRICAL vs. NON-EMPIRICAL EVIDENCE

The first version of the indispensability argument we considered attempted to show

that the evidence which confirmed or disconfirmed a theory also confirmed or disconfirmed

the mathematics required to entail that evidence. I argued that this presupposes a certain

account of confirmation, namely the hypothetico-deductive account and that this account is

inadequate.

We then considered a version of the indispensability argument which attempted to

bypass the difficulties involved in providing an account of evidential relevance. The

argument assumed that evidence always confirms the whole of a theory. I argued that this

version of the argument is also unsound because the assumption is false. Evidence can be

relevant to less than the whole of a theory.

I then considered a version of the argument which appealed to the ineliminability of

mathematics in formalizing scientific theories. I argued that for this version of the argument

to work, we would again need to appeal to some holistic principle that evidence confirms

all of a theory, or a subset which typically includes some mathematics. Such a holistic

principle could only be justified by appeal to some account of the confirmation of a theory

44 Mark Colyvan in 'Confirmation Theory and Indispensability' suggests that perhaps the idea of explanaaon
as unification will help here [Colyvan 1999]. In that paper, Colyvan places a sirmlar emphasis on the role of
theories of evidence in the analysis of the indispensability argument to that developed here and arrives at
similar conclusions.
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by evidence. We cannot just say 'quantification of mathematical objects is indispensable in

scientific theories, therefore we ought to accept such <. Ejects'. We have to show that the

evidence we have for our theories applies to the mathematics included in them. Once we

have done that, we can go on to consider whether there are any better theories, which do

not quantify over mathematical objects. But if we do not have an adequate account of the

first level relation of evidence to theory, which succeeds in establishing that the evidence

for a theory also applies to the mathematics included in the theory, then such second level

arguments are irrelevant.

Finally, we looked at a version of the argument which appealed to an explanation

criterion for confirmation. Tins version of the argument does not attempt to bypass the

problem of stating the relation between theory and evidence and the account of evidential

relevance it provides avoids many of the problems with the hypothetico-deductive account.

However, for this version of the argument to be convincing, it must provide a satisfactory

account of explanatory relevance.

Although there are problems with the indispensability argument, it would be a

mistake to leap to the conclusion that there is no such thing as empirical evidence in

mathematics. What I have been trying to show is that indispensability arguments run up

against the severe difficulties involved in providing an account of the relation of evidence

to theory. But clearly, the fact that there are problems in giving an adequate account of this

relation, does not imply that there is no such thing as evidence for a theory. Likewise, the

problem of describing the relationship of empirical evidence to mathematics j(the problem

as I see it, of giving an account of how mathematics can explain physical features of the

world) does not show that there cannot be empirical evidence for mathematics.
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In fact, to deny that there can be empirical evidence for mathematics would involve

a conflict with mathematical practice. For mathematicians do sometimes appeal to the

utility of mathematical theories in science as providing some evidence for those theories.

An obvious example would be the calculus of the early seventeenth century. Although the

rigour of the proofs of the fundamental principles of the new theory could be criticised,

many mathematicians argued that the immense success of the theory in solving problems in

physics showed that the theory must be getting something right. Leibniz, for example,

argued that the success of the calculus made it rational to put aside worries about rigor and

urged the mathematical community to find ways of extending the power of the calculus

"because of the application one can make of [the calculus] to the operations of nature,

which uses the infinite in everything it does." [Leibniz 1849-63, vol. 2, p. 219. See also

Kitcherl984,p.236].

Another example concerns the theory of complex numbers.45 It can be argued that

one factor in the gradual acceptance of complex numbers was their utility in solving

problems that cropped up in the sciences. For example, the complex numbers allowed for a

great simplification in the theory of solutions to partial differential equations. In this way,

complex numbers proved to be immensely useful in a wide and varied range of physical

applications (heat-flow, fluid dynamics and so on) where such equations are common.

45 On the history of complex numbers see [Kline 1972. pp. 502-43,671-708]. On the utility of complex

numbers in scientific applications see [Colyvan 1999].
46 A mathematical statement need not be'embedded in a scientific theory for there to be empirical evidence for

i t Consider the theorem of analytic geometry, that for a curve given by a function./^) the length of the curve

from a to b is given by the formula I -̂  1 + / ' (*) dx. We can test this statement empirically by drawing a

particular curve and then laying a piece of string along it from a to b, so that it follows the line of the curve.

We can then straighten the string out, measure its length, and see if this agrees with the result given by the

formula. Examples of this kind of empirical confirmation of a mathematical statement could multiplied

endlessly.
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On the other hand, mathematical theories seem highly resistant to disconfirmation

by empirical evidence. Mathematicians do not in practice take the empirical

disconfirmation of a scientific theory as applying to the mathematical component of the

theory. Consider the case of Euclidean geometry. It is often suggested that the general

theory of relativity has shown that Euclidean geometry is false?1 If so, then we would have

an empirical disconfirmation of a mathematical theory. This analysis is misleading

however. What has happened is that Euclidean geometry has been reinterpreted.

For nearly two thousand years, mathematicians believed that Euclidean geometry

was the only mathematically possible geometry. Since Euclidean geometry was thought of

not only as a mathematical theory, but also as a theory of physical space, it was also held

that physical space had to be Euclidean. Both of these beliefs have since been overthrown.

Firstly, mathematicians discovered that it was possible to develop an alternative to

Euclidean geometry based on the negation of the parallel postulate. This postulate is

equivalent to the claim that given any line / and any point p not on that line, there is exactly

one line through/? that is parallel to /. Sacherri [1733] had attempted to prove the parallel

postulate by reductio ad absurdum. He was able to derive a contradiction from the

assumption that there is no line parallel to / through p, but was unable to derive a

contradiction from the assumption that there is more than one such line. Bolyai [1832] and

Lobachevsky [1855] independently developed the geometry (now known as hyperbolic

geometry) in which there are an infinite number of parallels to any given line through a

point not on that line. Bolyai and Lobachevsky were convinced that this geometry was

consistent and that the question of its applicability to physical space could not be settled by

47 See for example [Putnam 1994c].
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a priori mathematical argument but only by experience.48 Beltrami and Poincare were later

able to prove that the geometry of Bolyai and Lobachevsky is consistent relative to

Euclidean geometry, by constructing models of it within Euclidean geometry itself.49

Meanwhile, Gauss was developing the field of differential geometry by studying the

properties of curved surfaces in three dimensional (Euclidean) space.50 This work revealed

that the fundamental geometrical properties of a surface (such as the distance between two

points connected by a curve on the surface and the curvature of the surface at a point) .

depend only on intrinsic properties of the surface. That is, they do not depend on the way

the surface is embedded in three dimensional space. This implies that we can consider a

surface to be a space in itself, since the geometrical properties of the surface are quite

independent of the surrounding space. If we consider a surface as a space in its own right,

and take the 'straight lines' of the surface to be geodesies (the curves on the surface which

represent the shortest distance between two points) then the geometry of the space is non-

Euclidean.51

Rieraann further developed this implication of Gauss's work on surfaces. He

introduced the concept of an arbitrary n-dimensional space (or manifold) and showed how

to define a measure of curvature at each point in such a space. If the value of the curvature

at a point is the same as that at every other point in the space, then we have a space of

constant curvature. In such spaces, geometrical figures can be moved around without

changing their shape. Furthermore, if the space has a constant curvature of zero, the

geometry of the space is Euclidean. If the space has a constant positive curvature, then we

48 See [Kline 1972, pp. 861-81].
49 See [ibid. pp . 913-7].
50 See [Gauss 1827]. Gauss also appears to have independently discovered the non-Euclidean geometry of
Lobachevsky and Bolyai, but never published the results of his investigations. See [Kline 1972, p . 871-3].
51 See also [Kline 1972, pp. 882-889].
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obtain a new non-Euclidean geometry. In two dimensions, we obtain the intrinsic geometry

of the surface of a sphere, sometimes called spherical or double elliptical geometry. The

straight lines of this geometry are the great circles of the sphere. Hence in this geometry, all

lines are of finite length and there are no parallel lines, since any two lines intersect at two

points. On the other hand, if the space has a constant negative curvature, we obtain the non-

Euclidean geometry of Bolyai and Lobachevsky in which there are an infinite number of

parallels to any given line.52

These developments led quite naturally to the suggestion that geometrical theories

in mathematics should be reinterpreted.53 We should see them not as theories of physical

space, but as theories of certain abstract spaces. Euclidean geometry is the theory of one

kind of space (a space of constant zero curvature), hyperbolic and spherical geometry

describe different kinds of space (spaces with constant negative or positive curvature

respectively). The alternative geometries are not then competing accounts of physical

space, but simply equally correct theories of distinct abstract spaces or structures. Under

this new interpretation of geometry, the question which of these structures best describes

physical space was no longer a mathematical question, but could be left for the physicists to

determine.

From this perspective, what the success of general relativity shows is that Euclidean

geometry is not true of physical space.54 Mathematicians have not abandoned Euclidean

geometry in the sense that physicists have abandoned the phlogiston theory of combustion.

52 See [Riemann 1854]. See also [Kline 1972, pp. 889-6,904-23,Le Corbeiller 1954].
33 This suggestion was m a d e mos t explicitly b y R iemann in his paper ' O n the hypotheses wh ich lie at the
foundations of geometry ' . [Riemann 1854].
34 In general relativity, gravitation is explained by suppos ing that t he curvature of space varies from point to
point. H e n c e nei ther the hyperbol ic geometry of Lobachevsky and Bolyai, no r R i e m a n n ' s spherical geometry
of constant positive curvature are t rue of physical space either.

I
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Research still goes on in Euclidean geometry; new theorems are proved in it and old

theorems are given new proofs. Furthermore, these proofs are taken as proofs of true

statements. It would be misleading to say that we now take the statement 'the angles of a

triangle add up to 180 degrees' to be simply false. What we would now say is 'in Euclidean

space, the angles of a triangle sum to 180 degrees'. This is a true statement about a certain

abstract structure, a structure which is just one member of the class of mathematical spaces.

I have argued that mathematical theories can be empirically confirmed by appeal to

their utility in scientific theories and cited the examples of the calculus and complex

numbers. But if mathematical theories are capable of empirical confirmation, they ought

also be open to empirical disconfirmation. And yet, mathematical theories are never

empirically disconfirmed by the failure of a scientific theory of which they are a part,

Euclidean geometry is a case in point. This situation seems puzzling. How can we explain

this asymmetry between the empirical confirmation and disconfirmation of mathematical

theories?

Recall that Quine's solution to this problem is to appeal to pragmatic

considerations. The reason we are less inclined to revise the mathematical components of

our theories in the face of empirical disconfirmation of them is simply that doing so would

involve us in a wide-ranging revision of the total system of science. A pragmatic desire to

change our overall system of beliefs as little as possible then counsels us against revision of

the mathematical components of our theories.

What this fails to take into account is the fact that we can have better evidence for

scientific hypotheses than others. As Putnam points out, the reason why we usually

of the auxiliary hypotheses used to derive a prediction from a hypothesis

some
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is that the auxiliary hypothesis are often far less well supported by evidence than the

hypothesis under test.5S Indeed, sometimes the auxiliary hypotheses are even known to be

false, for example when we make such simplifying assumptions as ignoring gravitational

interactions between planets when computing their orbits. I would argue that something

similar can be said about the empirical disconfirmation of mathematical theories.

Let us look again at our examples. Although the success of the theory of complex

numbers in physical applications is part of the story of their acceptance, it is not the whole

story. Far more important was the role of the new numbers in other areas of mathematics;

the problem solving power of complex numbers in analysis, their relation to the logarithmic

and trigonometric functions and so on.

In the same way, although the success of the calculus in physics was seen as

providing some support for the new theory, it was the immense power of the theory to solve

purely mathematical problems which carried the most weight. The calculus was initially

adopted on the grounds that it provided a unified set of techniques for generating general

solutions to mathematical problems which earlier mathematicians had only been able to

solve for certain special cases - problems such as the construction of tangents to curves,

calculation of arc-lengths and finding the maximum and minimum values.57

As the calculus developed, its applications in mathematics multiplied endlessly. As

we saw in the previous chapter, Leibniz and Euler showed how the calculus provided a

powerful set of techniques for finding the sums of infinite series.58 Euler also showed how

the calculus could cast some light on problems in number theory (the representation of

55 See [Putnam 1974].
56 See [Kline 1972, pp. 408-11,628-32, Nagel 1979].
57 See [Kline 1972, pp. 34-77, Kitcher 1984, pp. 229-31].
58 See [Kline 1972, pp. 436-67, Kitcher 1984, pp. 241-244].
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integers as a sum of powers for example) and further extended the problem solving power

of the calculus in geometry by showing how it could be applied to the study of surfaces.

Mathematicians such as Gauss, Riemann and Legendre developed these ideas further, to

create the new fields of differential geometry and analytic number theory.59 Analysis is

now such an indispensable part of mathematics, that mathematicians would not abandon it

even if it turned out to be dispensable in every physical theory we now accept.

Although the utility of mathematical theories in science does count for something, it

is utility in mathematics which counts even more. We saw some examples of this kind of

utility in our discussion of Kitcher's evolutionary account of mathematics; the power of a

new theory to solve important mathematical problems, or to give a more systematic,

general or rigorous treatment of previous mathematical results.

Empirical evidence can be relevant to mathematics, but we do not reject whole

mathematical theories on empirical grounds because there is also a great deal of

independent confirming evidence for those theories; evidence derived from the utility of

such theories in mathematics itself. In the face of an empirical disconfirmation of a

scientific theory, we revise the auxiliary assumptions (such as 'physical space is

Euclidean') rather than the mathematics. What I am suggesting is that we do so not because

of a pragmatic desire to revise as little as possible of our total system of science, but

because the mathematical theories are better supported by evidence than such auxiliary

hypothesis.60

59 See [Kline 1972, pp . 544-570 ,829-33 ,882-903] .
60 Of course, such auxiliary hypotheses are often not explicitly stated. This is especially obvious in the case of
geometry, where the discovery and investigation of the non-Euclidean geometries led to a reinterpretation of
geometrical theories which revealed for the first time, a distinction betw& n Euclidean geometry, considered
as the true theory of a certain kind of abstract space and the auxiliary hypothesis that physical space is
Euclidean. In a similar way, the apparent discrepancies in the positions of the moons of Jupiter led Roemer to
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What the asymmetry between the empirical confirmation and disconfirmation of

mathematical theories suggests is that empirical evidence is not the only kind of evidence

we can have for a mathematical theory. The reason mathematical theories are not simply

abandoned in the light of disconfirming empirical evidence is that there is also a great deal

of mathematical evidence for those theories. In the next chapter, I will be taking a closer

look at some of the varieties of this kind of mathematical evidence.

instantaneous.
6 C t * * P r e V i ° U S l y i m p H c i t l y a S S U m e d a u x i l i a r v hypothesis that the speed of light was

I
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CHAPTER FIVE

MATHEMATICAL EVIDENCE

1. THEOREMS AND PROOFS

Consider the following example of a theorem from number theory; every composite

number is divisible by some prime number. How do we know this? An obvious answer

immediately suggests itself; we can prove it. Here is Euclid's proof from Book VII of the

Elements:

Let A be a composite number. I say that A is divisible by some prime number.

For, since A is composite, some number will divide it. Let a number divide it and let it be B.

Now if B is prime, what was enjoined will have been done.

But if it is composite, some number will divide it Let a number divide it, and let it be C.

Then since C divides B and B divides A, therefore C also divides A.

And if C is prime, what was enjoined will have been done. But if it is composite, some number will

divide it

Thus, if the investigation be continued in this way, some prime number will be found which will

divide the number before it, which will also divide A.

For, if it is not found, an infinite series of numbers will divide the number A, each of which is less than

the other: which is impossible in numbers.

Therefore some prime number will be found which will divide the one before it, which will also divide

A,

Therefore any composite number is divisible by some prime number.

[Heath 1956, vol. H, p. 332]

In Book VII of the Elements Euclid does not, as in his presentation of geometry,

state any axioms. He gives us only definitions; of prime number, composite number and so

I have tinkered with the translation here, by substituting 'A is divisible by B' for 'A is measured by B'.
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on.2 In his proofs, of course, he does appeal to various principles which are neither proved

nor even explicitly stated. Here for example, he appeals to the transitivity of divisibility

and, in effect, to the principle that every set of natural numbers has a least element. This

latter principle is equivalent to the principle of mathematical induction.

Euclid's argument is quite representative of the kind of proof we find in nearly all

branches of mathematics up until the nineteenth century, especially in new and developing

branches of mathematics. Cauchy's proof of Euler's conjecture on polyhedra is another

good example. As we saw in chapter three, Cauchy's argument implicitly assumed at least

three unproved lemmas concerning plane networks. Proofs of this kind do not begin from a

set of clearly stated first principles or axioms. They may appeal to other theorems, but they

may also implicitly depend on principles which are neither proved nor explicitly stated. The

implicitly assumed premises of such a proof may even turn out to be false, as Lakatos

points out. Clearly, proofs of this kind certainly do not guarantee the certainty of the

theorem proved.

As a mathematical field develops and matures however, proofs become more

rigorous. The principles on which a proof depends are stated clearly and if possible, proved.

In this way, the first principles of the field (~xioms and definitions) are gradually revealed

and stated. A modern proof of Euclid's theorem for example, would appeal explicitly to the

principle of mathematical induction and to other established theorems and axioms of

number theory. A modern proof of Euler's conjecture (considered as a theorem concerning

plane networks, rather than polyhedra) would appeal to established theorems and first

principles of graph theory.

' See [Heath 1956, vol. n, pp. 277-8].
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At least in a mature mathematical theory then, theorems are justified by deducing

them from axioms. Of course, this immediately raises the question of how the axioms are

justified. The descriptive approach to the epistemology of mathematics urges us to try to

answer this question by examining the history and current practice of mathematics, in order

to discover what kinds of e.idence mathematicians actually cite when justifying their

axioms. As we shall see, what such a study reveals is that axioms are very often justified by

showing that they can be used to derive certain theorems.

2. AXIOMS AND DEFINITIONS

2.1 GEOMETRY

Consider Euclid's axiomatization of geometry. In Book I of the Elements, Euclid

lays down five postulates and five common notions. The common notions (such as 'things

equal to a third are equal to each other') are common to all sciences, while the postulates

apply only to geometry. Euclid's postulates are as follows:

(1) It is possible to draw a straight line from any point to any point.

(2) It is possible to extend a finite straight line continuously in a straight line.

(3) It is possible to draw a circle with any centre and radius.

(4) All right angles are equal to each other.

(5) If a straight line falling on two straight lines makes the interior angles on the same

side less than two right angles, then the two straight lines, if produced indefinitely, meet on

that side on which the angles are less than two right angles.

See [Heath 1956, Kline 1972, p. 59].
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From this apparently slender basis, Euclid was able to give proofs of an impressive

number of theorems; on the construction of lines, angles and figures with ruler and

compass, the properties of circles and triangles (including Pythagoras's theorem), as well

as theorems on parallels, area, similar figures and solid geometry (including the

classification of the five regular polyhedra). However, many historians of mathematics

have argued that Euclid did not prove any results that were not already accepted by earlier

geometers.4 The great achievement of his work was not that he was able to prove anything

new, rather it was the tremendous systematization his axioms bought to the subject. A

motley collection of unrigorously demonstrated, unsystematicalry related results were

shown to be derivable from a few simple principles. Euclid's axioms were justified by

showing that they entailed, in a rigorous and systematic way, a large body of previously

accepted results.

This is not to deny that Euclid's axioms have at various times been accorded the

status of certain, self-evident truths. It is doubtful that this was Euclid's view of them

however, or the view of his contemporaries. Recall that Euclid's geometry was proposed as

a physical theory. In accordance with the usage of the word at the time, the postulates of

the theory were intended as hypotheses to be tested by whether the results deduced from

them agreed with physical reality.5 The idea that the postulates were not simply hypotheses

to be justified in terms of their consequences, but immutable self-evident truths only

became widely accepted much later. No doubt this was due in part to the immense success

of Euclidean geometry (considered as a scientific theory of the structure of physical space)

4 See for example [Heath 1956, Kline 1972, pp. 56-7, Crowe 1988, p 265]
5 See [Kline 1972, p. 59, Lakatos 1976, p. 49].
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but perhaps more significant was the absence of any alternative theories, which made it

seem unthinkable that Euclid's postulates could be false.

This attitude was severely shaken by the discovery of the non-Euclidean geometries

of course. I argued in the last chapter that this discovery led to a radical reinterpretation and

reassessment of the status of geometry. From the new perspective, the axioms lost their

status as self-evident truths and came to be seen as merely assumptions designed to yield

the theorems of the geometry of a particular kind of abstract space. Since that time, self-

evidence, or the lack of it, has gradually ceased to play any significant role in the

justification of axioms.

Although Euclid's presentation of geometry was held up as a paradigm of rigour for

many centuries, there are in fact many places where his proofs depend implicitly on

assumptions (especially concerning the ordering of points on a line) which Euclid did not

clearly state or prove.6 These defects in Euclid's proofs, although sometimes noted, were

not considered important until the discovery of the non-Euclidean geometries.

Mathematicians then became acutely aware of the importance of clearly stating every

assumption, no matter how obvious on which a proof depends, for such 'obvious'

assumptions may fail to hold in the non-Euclidean geometries. This led eventually to a

more rigorous axiomatic reconstruction of the Euclidean and non-Euclidean geometries.

This was the motivation for Hilbert's axiomatization of geometry, mentioned in the

previous chapter.7 By giving an entirely formal axiomatization of the relations of

betweenness of points and congruence of lines, Hilbert was able to provide entirely

rigorous proofs of Euclidean theorems. He was also able to show that simply by replacing

6 See [Kline 1972, pp. 1005-7] for some examples.
7 See [Hilbert 1899]
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Euclid's parallel axiom with the Bolyai-Lobachevsky axiom, we obtain the axioms of

hyperbolic geometry. To obtain the axioms of spherical geometry (which had not

previously been treated axiomatically at all) we replace the parallel axiom with an axiom

stating that there are no parallels to a given line through a point not on that line. In fact

there are two possible such geometries; single elliptic geometry (where any two lines meet

at exactly one point) and double elliptic (where any two lines meet at two points). The

straight lines of these geometries have the properties of circles, so we must also modify the

axioms governing the relations of order between points on a line (the axioms of

betweenness), so that they describe the order relations of points on a circle.

Again, Hilbert did not prove anything new about these geometries. His axioms were

justified by showing that they entailed, in a rigorous way, all the accepted theorems of the

Euclidean and non-Euclidean geometries.8

2.2 ANALYSIS

The high standard set by Euclid in the Elements, where theorems are justified by

deducing them from explicitly stated axioms, was more or less ignored by mathematicians

until the nineteenth century. We have seen how the discovery of non-Euclidean geometries

at that time led mathematicians to give a more rigorous axiomatic reconstruction of

geometry. Another nineteenth century development was of course, the project of

constructing a rigorous foundation for analysis.

I described the beginnings of that story in chapter three. Recall that one motivation

for Cauchy's definitions of continuity and convergence was to establish a certain result -

that the sum of a convergent series of continuous functions is continuous - as a means of

8 See [Fline 1972, pp. 1005-7].
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resolving the Fourier question. Further support for Cauchy's reconstruction of analysis in

terms of the limit concept came from his definition of the derivative of a function, which

allowed him to give a rigorous and systematic derivation of the standard rules for

differentiation. In this case, the first principles take the form of definitions rather than

axioms, but they too are justified in terms of their consequences, by showing how they can

be used to deduce already accepted results or a previously unproved conjecture.

Of course, as we saw in chapter three, Cauchy's proof of the conjecture on

convergent series of functions was known to be faulty, since the 'theorem' admitted

counter-examples. Cauchy's definitions also proved to be inadequate in another way.

Cauchy had stated a certain condition for a series to converge to a limit, but was unable to

prove that the condition was sufficient for convergence. The problem is that Cauchy's

definitions cannot be used to establish the existence of limits of series. When he needed to

establish such a limit, Cauchy would often fall back on geometrical intuition. For example,

in the Cours d'Analyse he gives the 'geometrical' argument for the intermediate value

theorem mentioned in chapter one. Although Cauchy attempted a 'purely analytic'

demonstration of the theorem, his proof broke down at a crucial point, where he implicitly

assumed the condition for convergence which he had stated but been unable to prove.

What these problems with Cauchy's reconstruction of analysis revealed was the

necessity of giving an adequate analysis of the real numbers. What was needed was a

characterisation of the real number system which would entail the existence of real

numbers satisfying certain conditions, such as Cauchy's condition for convergence and in

this way establish the required limit existence theorems.

9 For further details see [Kline 1972, p. 963, Kitcher 1984, pp. 259-263).
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Dedekind set about this task in 'Continuity and the Irrational Numbers' [Dedekind

1872].10 He begins by asking what is meant by the continuity of the points on a straight

line. It cannot just be that between any two points there is a third, for the set of all rational

points on the line also has this property but is not continuous since it contains 'gaps'

corresponding to irrational numbers such as \/2. Dedekind argued that the continuity of the

points on a straight line depends on the following principle: '[i]f all points of the straight

line fall into two classes such that every point of the first class lies to the left of every point

of the second class, then there exists one and only one point which produces this division of

all points into two classes, this severing of the straight line into two portions' [ibid. p. 11].

Dedekind proposed to extend this definition of geometrical continuity to

characterise the real numbers. He introduces the idea of a cut on the set of rational numbers

R. A cut is a separation of the set of all rational numbers into two classes Ai and A2 such

that any number in Ai is less than every number in A2. By analogy with his principle of

continuity, Dedekind proposes that we can introduce the real numbers as the unique entity

'corresponding to' or 'produce by' each such cut (Ai, A2). In fact, we can simply identify

the real numbers with these pairs of sets of rationals. For some cuts, there is either a largest

element in Ai or a smallest element in A2 and these cuts represent those real numbers

which are also rational. For example the cut defined by Ai = {xeR: x < V2} represents the

real number 0.5. Here A2 (the set of all rationals not in Ai) contains a smallest element, the

rational number V2. But not every cut corresponds to a rational number. The cut defined by

Ai = {*eR: x2 < 2} for example, represents the irrational number y/2.

Cantor gave an equivalent account of the real number system using a different construction to Dedekind's.
See [Kline 1972, pp. 982-5] for details.
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Having introduced the real numbers as cuts on the rationals, Dedekind shows how

to define an ordering relation on the reals, in terms of a corresponding relation on cuts.

Using this definition Dedekind is able to prove the law of trichotomy for real numbers:

For any two real numbers a and b, either a<b,a = borb<a

By defining the operations of addition and multiplication on cuts, Dedekind is able to prove

such familiar properties as the associative and commutative laws for the addition and

multiplication of real numbers. He then proceeds to establish the continuity of the real

numbers, by proving that any division of the real numbers into two classes Xi and X2 such

that every member of Xi is less than every member of X2 corresponds to a unique real

number.

Dedekind concludes his book by showing how his characterisation of the real

numbers can indeed be used to prove those theorems on the existence of limits which

Cauchy had failed to establish. In particular, he is able to give an elegant proof of the

theorem that any sequence of real numbers which 'grows continuously but not beyond all

limits' approaches a limiting value [ibid. pp. 25-7]. That is if rls r.2, r3 .... is a sequence of

real numbers such that for all «, rn < rn+i and if there is a real number a such that for all n,

N

rn < a then there is a real number b such that lim Y rn = b. This theorem fills the gap in
N

Y
n=l

Cauchy's proof of the intermediate value theorem.11

Once again we see a set of first principles justified by their consequences. Dedekind

justifies his definitions by showing how they can be used to establish previously accepted,

but unproved properties of the real numbers; the continuity of the real number system, the

11 See also [Kline 1972, pp. 985-6, Kitcher 1984, pp. 264-8].
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standard rules for addition and multiplication of real numbers and theorems on the

existence of limits of sequences of real numbers.

2.3 NUMBER THEORY

Dedekind's construction assumes the rational numbers as given. Since the rational

numbers are ratios of natural numbers, the obvious next step was to show how the natural

numbers themselves could be characterised. As we saw in chapter one, Dedekind gave an

account of the natural numbers in Was sind undwas sollen die Zahlen? [Dedekind 1888].

Building on Dedekind's work, Giuseppe Peano gave the first axiomatic treatment of the

natural numbers in his book Arithmetices principia, nova methodo exposita ('The

Principles of Arithmetic, Presented by a New Method') [Peano 1889]. Peano begins with

the undefined concepts 'set', 'belongs to', T , 'natural number' and 'successor'. He then

propose the following axioms governing these last three concepts:

(1) 1 is a natural number.

(2) 1 is not the successor of any natural number.

(3) Every natural number has a successor.

(4) If the successor of a is equal to successor of b, then a = b.

(5) If a set A of natural numbers contains 1, and if whenever A contains any natural

number a, it also contains the successor of a, then A contains all the natural numbers.

Compare this list to the formulation of the Dedekind-Peano axioms given in chapter

one. Notice that Peano starts with the number one, rather than with zero and that axiom (5),
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the principle of mathematical induction, is stated in terms of sets of numbers. Peano then

gives the now standard recursive definitions of the operations of addition and multiplication

on the natural numbers:

(Def.+) a+ l=S( t f )

ax(bxc)=(axb)xc

= (axb)+(axc)

(Def. x) a x 1 = a

a x S(b) = (axb) + a

where S(x) is the successor of x. From these definitions and the above axioms, Peano went

on to prove various familiar results such as:

(1) a + b = b + a

(2)

(3)

(4)

(5)

Given the natural numbers and their properties, the positive and negative integers

can be defined as ordered pairs of natural numbers; if a and b are natural numbers, then the

ordered pair {a, b) represents the integer a-b. With appropriate definitions of addition and

subtraction, we obtain all the usual properties of the integers. The rational numbers can

then be defined as ordered-pairs of integers; if a and b are integers, then the ordered pair

{a, b) represents the rational number —. Again, with appropriate definitions of the

b

operations of addition and multiplication of such pairs, we obtain all the usual properties of

the rationals. Given the rationals, the real numbers can then be defined as pairs of sets of

rational numbers along the lines suggested by Dedekind. In this way the nineteenth century

mathematicians hoped to build up to a rigorous treatment of the real numbers which would

enable them to give rigorous proofs of the fundamental theorems of analysis.
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The nineteenth century mathematicians showed how their characterisations of the

real numbers, rationals, integers and natural numbers could be used to derive the basic

properties of those number systems; properties which were of course, already accepted and

never in any doubt. It was the power to prove certain already accepted results that gave

these axioms and definitions their justification. Morris Kline makes the point like this:

The rigorization of mathematics may have filled a nineteenth centuiy need, but it also teaches us

something about the development of the subject. The newly founded logical structure presumably

guaranteed the soundness of mathematics; but the guarantee was somewhat of a sham. Not a theorem

of arithmetic, algebra or Euclidean geometry was changed as a consequence, and the theorems of

analysis had only to be more carefully formulated. In fact, all that the new axiomatic structures and

rigor did was substantiate what mathematicians knew had to be the case. Indeed the axioms had to

yield the existing theorems rather than determine them.

[Kline 1972, p. 1026]

2.4 SET THEORY

Set theory was invented by Georg Cantor in a series of papers spanning a period of

time from 1874 to 1897.12 Some of Cantor's earliest mathematical work was in a field

which developed out of research on the Fourier question; the representation of functions by

trigonometric series. In particular, Cantor wanted to state conditions for the uniqueness of

such a representation. He first proved that a function is uniquely represented by a

trigonometric series if the series converges at every point. He then generalised this result to

series that converge at all but a finite number of points and then to series that fail to

converge at an infinite number of exceptional points. These sets of exceptional points form

12 Cantor's final and quite accessible summary of his theory [Cantor 1895-7] has been translated into English
by P. E. B Jourdain [Cantor 1955].
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a sequence; infinite sets with one accumulation point, infinite sets with finitely many

accumulation points and so on.13

Cantor's work on these infinite sequences of sets of real numbers led him to an

investigation of the properties of infinite sets in general and ultimately to his theory of

transfinite cardinal and ordinal numbers.14 Now the notion of an infinite set had puzzled

mathematicians for centuries. Galileo, for example in his Dialogues Concerning Two New

Sciences noted that the points on two lines can be put in one-one correspondence, which

suggests there are the same number of points on each, even when one line is longer than the

other. He also pointed out that the set of positive integers can be put in one-one

correspondence with their squares, even though the set of the squares of positive integers is

only a proper part of the set of all positive integers.15 These sorts of puzzles led many

mathematicians to reject the notion of a completed infinite totality; only the potential

infinite was to be allowed. However, the nineteenth century work on the rigorization of

analysis had revealed the need to assume the existence of various infinite sets; infinite sets

of rational numbers in Dedekind's construction of the real numbers, for example.

Cantor's key insight was to use the notion of a one-one correspondence, which

Galileo and others had rejected, as the condition for two sets to be of the same size. He

used this idea to define the notion of the power of a set; a set A has die same power as a set

B (A « B) if and only if there is a one-one correspondence between the elements of A and

the elements of B. On the other hand, the power of A is greater than the power of B (A >-

13 A point/? of a set S is an accumulation point iff every interval containing p contains infinitely many points

in S.Ill U.
14 For further details of Cantor's early work on trigonometric functions and its relation to his transfinite set
theory, see [Jourdain 1955, pp. 24-37, Maddy 1997, pp. 15-17].
13 See [Galileo 1952, pp. 18-40, Kline 1972, p. 993].
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B) if and only if B can be put in one-one correspondence with a subset of A, but A cannot

be put into one-one correspondence with a subset of B. That is:

(Def>-): A > B o 3 C ( C c A & B « C ) & ~ 3 C ( C c B & A « C )

This was immensely significant, because Cantor was then able to show that not all

infinite sets have the same power. In particular, he was able to show that the power of the

set of real numbers is greater than the power of the set of natural numbers16. On the other

hand, he proved that there are just as many rational numbers as natural numbers, by

showing how to match each rational number to a unique natural number. Even more

surprisingly he was able to show that the set of real numbers has the same power as the set

of all «-tuples of real numbers and hence that the set of points on a line is the same size as

the set of points in any ̂ -dimensional space.17

The concept of the power of a set suggested to Cantor a generalization of the

arithmetic of the natural numbers, which would allow for infinite or transfmite numbers.

He introduces this theory with the following words:

The description of my investigations in the theory of aggregates has reached a stage where their

continuation has become dependent on a generalization of the real positive integers beyond the present

limits; a generalization which takes a direction in which, as far as I know, nobody has yet looked.

I depend on this generalization of the number concept to such an extent that without it I could not

freely take even small steps forward in the theory of sets. I hope that this situation justifies, or if

necessary excuses the introduction of seemingly strange ideas into my arguments. In fact the purpose

is to generalize or extend the series of real integers beyond infinity. Daring as this might appear, I

express not only the hope but also the firm conviction that in due course this generalization will be

acknowledged as a quite simple, natural step.

[Cantor 1883, cited in Kline 1972, p. 998]

16
Cantor gave two proofs of this theorem. The one most commonly used today is the famous 'diagonal

argument'. See [Kline 1972, p. 997, Stewart 1987, p. 59, Penrose 1989, p. 84] for details.
17 Cantor apparently spent three years trying to prove that such a correspondence was impossible. On finally
proving that there is such a correspondence, he wrote in a letter to Dedekind, 'I see it but I do not believe it',
[cited in Kline 1972, p. 997].
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Cantor proposes then to think of the power of a set as a number. Hence the cardinal

number of a set A = the cardinal number of a set B if and only if there is a one-one

correspondence between the elements of A and the elements of B.18 If we introduce the

symbol CARD(A) for the cardinal number of a set A then we have:

CARD(A) = CARD(B) <-> A « B

The relation of one set being greater in power than another can then be used to define an

ordering relation on these numbers.

CARD(A) > CARD(B) <r> A >- B

Cantor was also able to show that for any cardinal, there is a greater one. Given a set A, we

can consider the power set of A, P(A), which is the set of all subsets of A. Cantor proved

that the elements of P(A) always outnumber the elements of A, by showing that it is

impossible for there to be a one-one correspondence between the elements of A and the

elements of P(A).19 But since one subset of P(A) consists of the unit set of each element of

A, it is obvious that A can be placed in one-one correspondence with a subset of P(A).

Hence:

(1) CARD(P(A)) > CARD(A)

18 See [Cantor 1955, p. 87]. Notice the formal similarity between Cantor's notion of the cardinal number of a
set and Frege's notion of the number belonging to a concept; the number of a concept F is the same as the
number of a concept G if and only if there is a one-one correspondence between the Fs and the Gs. Cantor in
fact attempted a proof of his principle, by defining the cardinal number of a set to be 'the general concept
which, by means of our active faculty of thought, arises from the [set] when we make abstraction of the nature
of its various elements... and of the order in which they are given' [ibid. p. 86]. If we start with another set
containing equally many members as the first, then we will arrive at the same abstract set by means of this
operation of abstraction. This conception of an 'active faculty of the mind' which can create objects in this
way was shared by many philosophers and mathematicians of the time, including Husserl and Dedekind. The
idea was vigorously demolished by Frege in the Grundlagen [1884, §§29-44]. See also [Dummett 1991, pp.

82-7,50-2].
19 For the details of Cantor's proof see [Kline 1972, p. 999, Suppes 1972, p. 97]. A clear informal version of
the argument can be found in [Quine 1987, p. 96].
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Cantor also showed how to define analogs of the arithmetical operations on these new

numbers20. The sum of two cardinal numbers a and b is the cardinal number of the union of

any two disjoint sets whose cardinal numbers are a and b. The product of a and b is the

cardinal number of the cartesian product of any two sets whose cardinal numbers are a and

b. Finally ab is the cardinal number of the set of all functions from a set B to a set A, where

CARD(A) = a and CARD(B) = b.

The cardinal number of a finite set is a finite or natural number. If we restrict our

attention to finite sets, then Cantor's cardinal arithmetic corresponds exactly to the ordinary

arithmetic of the natural numbers. In fact, if we define the number zero and the successor

operation on cardinal numbers as follows:

0 = CARD( 0 )

S(tf) = CARD( A ' ) - where a = CARD(A) and A' = A U {A}

then we can very easily prove all the Dedekind-Peano axioms for number theory.21 Cantor

remarks that in this way he has given 'the most natural, shortest, and most rigorous

foundation for the theory of finite numbers' [Cantor 1955, p. 98].

The cardinal number of an infinite set is a transfinite number. Cantor introduces the

symbol No (aleph-null) for the cardinal number of the set of all natural numbers and the

symbol c for the cardinal number of the set of all real numbers - the cardinality of the

20

21
See [Cantor 1955, pp. 91-97].
See [Cantor 1955, pp. 97-103, Suppes 1972, pp. 121-3]. The fact that the Dedekind-Peano axioms can be

proved from the principle CARD(A)=CARD(B)oA«B is perhaps not too surprising given the analogy between
this principle and Hume's Principle, which also implies those axioms, as Frege demonstrated in the
Grundlagen.
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continuum . Since the set of all real numbers has a greater power than the set of all natural

numbers, we have:

(2) c> Ko

On the other hand, we can show that the set of all real numbers can be put in one-one

correspondence with set of all functions from natural numbers into the set {0, I}.2 3 By the

definition of the operation of exponentiation on cardinal numbers, this-means that:

(3) c = 2*°

The arithmetic of transfinite numbers is very different to that of the natural

numbers. Although many of the properties of addition and multiplication (such as the

commutative and associative properties) continue to hold, others apply only to the case of

finite cardinal numbers. For example, the principle that for all non-zero a and b, a + b > a

applies only when a and b are finite numbers. If a and b are transfinite numbers, although

we always have a + b £ a, it may happen that a + b = a. In particular, Cantor shows that we

have No + No = No- Given this, if we multiply both sides of (3) by c we have:

= 2 K ° =c

Hence, by repeated multiplication by c, we obtain:

c" =c

where n is any finite cardinal number. This means that the set of points in any n-

dimensional space has the same power as the linear continuum, a result which, as

mentioned above, Cantor had already obtained in his early work on powers. In the same

23 To see this notice Siat any function from the set of natural numbers into the set {0,1} specifies an ordered
sequence of ones and zeros. Every real number, when written out in binary notation, corresponds to such a
sequence and convereely every such sequence specifies a unique real number. See [Cantor 1955, p. 96].
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way, Cantor easily establishes that No • Xo = No and then, raising both sides of (3) to the

power of So, he obtains:

cK0 _ LK0 | K O _ 2^O"^O _ 2^0 _ c

which means that the set of points in any infinite dimensional space also the same power as

the linear continuum. Cantor remarks, '[t]hus the whole contents of my paper in Crelle's

Journal ...are derived purely algebraically with these few strokes of the pen from the

fundamental formulae of the calculation with cardinal numbers', [ibid. p. 97].

Cantor then introduces the ordinal numbers. An order structure (or ordered set) is a

pair (AJO where A is set and R is an ordering relation on A24. Two order structures (AJX.)

and <B,S> are similar «A,R) s (B,S>) if and only if the elements of A can be put into one-

one correspondence with the elements of B in such a way that the order relations are

preserved. That is, there is a 1-1 function j(x) from A to B such that dRb if and only if

f(a)SJ(b). Two order structures which are similar are said to have the same order type.

Cantor then introduces the ordinal numbers as the order types of well-ordered sets, by

means of the principle:

ORD«AJR>) = ORD«B,S» <-> (AJR> & <B,S>

That is, the ordinal number of an well-ordered set (A,R) is equal to the ordinal number of a

well-ordered set (B,S> if and only if <A£> is similar to (B.S).25

24
R must be a simple ordering on A. That is: (i) any two elements of A have a definite order, so that for all

a,beA either aRb or bRa. (ii) R is transitive on A - for all a,b,ceA if aRb and bRc then aRc. For the
introduction of the ordinal numbers, Cantor also requires that R is a well-ordering of A, which means that
every non-empty subset of A contains a least element in the ordering provided by R.
25 See [Cantor 1955, pp. 112-13,151-2].

If we take finite sets of natural numbers in their usual ordering, we obtain the finite

ordinals:

1=ORD(<{0},<>)

and so on. Cantor introduces the symbol co for the ordinal number of the set N of all finite

cardinal numbers, taken in their usual order.26 That is:

co = ORD( < N,< ) )

Cantor then shows how we can define an ordering relation on the ordinal numbers

themselves. If a is any element of a well-ordered set <A .̂> then the segment of A

determined by a is the set of all elements in A which are less than a, according to the

ordering defined by R. We can then define a relation < on the ordinal numbers in an

analogous way to the corresponding definition for cardinal numbers. If a = ORD(<AJl» and

P = «B,S»wehave:2 7

a < p iff there is a segment C of B such that C is similar to A

Hence for the finite ordinals 1, 2, 3,... we have 1 < 2 < 3 since there is a segment of

<{0,l}, < > which is similar to <{0}, < > and a segment of <{0,1,2}, < > which is similar to

({0.1}, < ) . Since there is a segment of co which is similar to any finite ordinal n (namely

the segment determined by n itself) then we have n < co for every finite ordinal n.

Cantor also defines operations of addition and multiplication on ordinal numbers, in

terms of corresponding operations on ordered sets.28 The resulting ordinal arithmetic is

26 See [Cantor 1955, p. 115]
27 See [ibid. pp. 141 , 1 52-3 ]
28 See [ibid. pp . 119-122 ,153-6]
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29even less like the arithmetic of the natural numbers than cardinal arithmetic . In particular,

ordinal addition and multiplication are not commutative. For example, 1 + co * co + 1, since

1 + co = co, but co + 1 > co. Likewise 2 x co * co x 2, since 2xco = co, butcox2 = co + co and

co + co > co30.

Cantor classifies ordinal numbers according to the size of the corresponding ordered

sets and this provides him with a useful means of defining the higher transfinite cardinal

numbers. Consider first the set of all finite ordinals, Zo:

Zo = df {a: a = ORD«AJO) and A is finite }

We can then define aleph-null to be the cardinal number of this set:

No=dfCARD(Zo)

Now consider the set Zi of all countable ordinals:

Zi = df {a: a = ORD«AJR» and A « Zo }

Equivalently:

Zj =df {a: a = O R D « A , R » and CARD(A) = S o }

Zi is the set of all ordinal numbers of ordered sets which can be put in one-one

correspondence with the set of all finite ordinals31. Z\ includes the ordinals co, co+1, co+2

and so on, since each of these is the ordinal number of a set whose cardinal number is So.

We can then define:

Although of course the arithmetic of ihe finite ordinals is exactly the same as the standard arithmetic of the
natural numbers.

More generally, for any finite ordinal n > 1, we have n + co * co + n, since w + co = co for any finite ordinal
n, but co + n > co + (w-1). Likewise, for any finite ordinal n > 1, we have n x co * co x n, since n x co = co, but
co x n ><o x (n-1). See [Cantor 1955, p. 163-4]. See also [Suppes 1972, pp. 195-238] for a modern treatment
of transfinite ordinal arithmetic.
31 Cantor calls Zo the 'first number class' and Zx the 'second number class' [Cantor 1955, pp. 159-60}
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=df CARD(Zi)

That is, Si is the cardinal number of the set of all countable ordinals. In general, we can

define:

=df {ex: a = ORD(<A^>) and A «

Nn=dfCARD(Zn)

-32Cantor was able to prove that Si is not only larger than No but that it is also the next

largest cardinal number after So, in the sense that there is no transfinite cardinal greater

than So but less than Si. That is:

(4) S 0 < S i

We know that Zo - the set of all finite ordinals - is the same size as the set of all natural

numbers (since Zo « N) and therefore, So = CARD(N). HOW big is Zi? Cantor conjectured

that in fact Zi is the same size as the set of all real numbers, that is:

(CH) S i = c

This conjecture, that the cardinality of the set of all countable ordinals is equal to the

cardinality of the continuum has become known as the continuum hypothesis. Given (2)

and (4) above, we can show that (CH) is equivalent to the claim that there is no transfinite

cardinal greater than So but less than c:

32 See [Cantor 1955, pp. 169-73]
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(CH') ~3a(X0<a<c)

hi terms of sets, (CH') says that there is no infinite set which is bigger than the set of all

natural numbers, but smaller than the set of all real numbers. This in turn implies that there

are exactly two kinds of infinite sets of real numbers; those which contain countably many

real numbers and those which can be put in one-one correspondence with the set of all real

numbers.33 Given (3) above, it is obvious that (CH) is also equivalent to the claim:

(CH") = ? o

which is the usual modern formulation of the continuum hypothesis.34 Despite many

efforts, Cantor was unable to prove the conjecture and it remains unresolved to this day.

Cantor's work was highly original and revolutionary. In fact, it was so revolutionary

that many mathematicians refused to accept it. Poincare, for example, remarked that '[ljater

generations will regard [Cantor's set theory] as a disease from which one has recovered'

and Herman Weyl described the hierarchy of alephs as 'a fog on a fog'.35 The most

vehement opponent of Cantor's set theory was Leopold Kronecker who attacked Cantor's

ideas for many years and left many mathematicians suspicious of it. Nonetheless, as the

tremendous power of set theory in numerous branches of mathematics became clear, the

theory began to gain acceptance.

An early success for Cantor's theory was the explanation of the existence of

transcendental numbers. A number is said to be algebraic if it satisfies some polynomial

This last conjecture was stated by Cantor at the end of an early paper on infinite sets of the same power as
the continuum, but he was unable to prove it [Cantor 1878, see also Jourdain 1955, p. 45]. He stated the
continuum hypothesis in the form (CH) and noted that it implied the conjecture of the 1878 paper in a letter to
Mittag-Leffler. [See Moore 1989, p. 85, Maddy 1997, pp. 63-4].
34The generalized continuum hypothesis is that for all a: Xa+l = 2Ka [see Godel 1947, p. 473].
35 Cited in [Kline 1972, p. 1003].
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equation with rational coefficients. Thus V2 is an algebraic number since it satisfies the

equation x2 - 2 = 0. A number is transcendental if it is not algebraic, that is, if it is not the

root of any polynomial equation with rational coefficients. Until 1844, it was not known

whether there were any transcendental numbers at all. In that year however, Liouville

proved that any number of the form — + —\r + -~H J 1 Q 1 0 2i 1 0 3 i 77 + .... where the ax are arbitrary

integers from 0 to 9 is transcendental. So in particular, the number:

J ..= 0.110001000000000000000001.1 1 1
10 ' 10 2 +10 6 +10 2 4

is transcendental. Then in 1873, Charles Hermite gave a proof that e is transcendental. It

had long been conjectured that % was also transcendental, but Hermite despaired of finding

a proof. Ferdinand Lindemann gave the first proof that % is transcendental in 1882. hi this

way mathematicians came to accept the existence of transcendental numbers although the

proofs involved were complex and not highly explanatory.

Now Cantor was able to supply a simple and explanatory proof of the existence of

transcendental numbers, without constructing a single specific example. He was able to

prove that the set of algebraic numbers can be put in one-one correspondence with the set

of natural numbers. But since there are more real numbers than natural numbers, it follows

immediately that there are real numbers which are not algebraic and which are therefore

36 Lindemann was able to establish that if x is algebraic then ex + 1 * 0. But by Euler's femous resultwe have
e* + 1 = 0 Hence the number in is not algebraic. But since i is algebraic (it satisfies the equation x - -1) and
the product of two algebraic numbers is algebraic, it follows that n is not algebraic. Hence n is transcendental.
See [Kline 1972, pp. 981-2].
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transcendental. In fact, there must be uncountably many transcendental numbers, since

there are uncountably many more real numbers than natural or algebraic numbers.37

Thus Cantor was able to prove, in an elegant and explanatory manner, a known

result. In this way, his theory received an indirect degree of justification. More and more of

this sort of evidence began to accumulate to the theory of transfinite numbers; its important

applications in analysis, algebra, topology and measure theory for example38, until in 1926

Hilbert was able to say "no one shall drive us out of the paradise which Cantor has created

forus"[Hilbertl926,p. 191].

Cantor's set theory was not axiomatic. The first axioms for set theory were

proposed by Ernst Zermelo.39 Zermelo had at least two motives for axiomatizing set theory.

One motivation was to avoid the paradoxes. Cantor himself had already noted that some

sets can have inconsistent properties. Consider the set of all sets, U. Now consider the set of

all subsets of U, ?(U). By Cantor's theorem (1) above, we know that CARD(P(U)) >

CARD(U). But clearly, every member of P(U) is a set. Therefore, every member of P(U) is

also a member of U - since U is the set of all sets. This means that P(\J) is a subset of U.

But it is easy to show that if A is a subset of B, then CARD(A) < CARD(B). Hence,

CARD(P(U)) < CARD(U). This is a contradiction: we have shown that P(U) is both larger

than U and less than or equal to U.40

For a discussion of Cantor 's proof that there only countably many algebraic numbers see [Kline 1972, p p .
996-7 and Stewart 1987, pp. 59-60].
38 Some of these applications are described in [Kline 1972, p. 1003 ;1040-52; l 158-82].
39 In [Zermelo 1908].

Cantor also pointed out that the set of all cardinal numbers would have a cardinal number greater than any
cardinal. But there cannot be such a cardinal number because for any cardinal number , there is a greater one.
Likewise, Burali-Forti pointed out that the set of all ordinal numbers , s ince it can be well-ordered, would have
an ordinal number, but this ordinal number would be greater than every ordinal, including itself. [Burali-Forti
1897].
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The most famous of the paradoxes was formulated by Russell and is analogous to

his derivation of the contradiction from Frege's Axiom V. In terms of sets (as opposed to

extensions of concepts) Russell's paradox can be stated in the following way. Consider the

set of all sets which are not members of themselves. Call this set R. By the definition of R,

a set a is an element of R if and only if a is not an element of a. If we take a to be R itself,

then we have: R is and element of R if and only if R is not an element of R.

Contradiction.41

By this time the concept of a set had come to be seen as indispensable in

mathematics. As we have seen, the nineteenth century mathematicians made frequent use of

the concept in their reconstruction of analysis on the basis of arithmetic. Cantor's work

suggested that this entire development could be carried out from within the framework of

pure set theory. From within this framework, the basic concepts of mathematics, such as

'number' and 'function' could be precisely defined and the fundamental principles of the

number systems and of analysis could all be given rigorous proofs. In this way, the idea of

set theory as a foundation for the entire body of classical mathematics began to emerge.

Given this climate of opinion, the discovery of the paradoxes came to be seen as a very

serious impediment to the progress of mathematics.

Before the paradoxes, mathematicians had simply assumed without % proof that

certain sets exist. In particular, they had made frequent use of definition by abstraction,

whereby a set is defined as the collection of all objects having a certain property. Cantor

made frequent use of such definitions in his development of set theory (for example: the

41 See [Russell 1903, p. 101].
42 H e n c e Cantor ' s remark that ' pu r e mathemat ics . . . is nothing other than pure set theory [Cantor 1884, p . 84J.
M a n y other mathematic ians came to see set theory in a similar way. See for example [Zermelo 1908, p. 200,
Hilbert 1926, p . 191].
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power set of A = the set of all subsets of A) and the nineteenth century mathematicians had

also used them in their reconstruction of analysis on the basis of arithmetic (for example:

V2 = the set of all rational numbers whose squares are less than 2). No one had thought it

was necessary to prove that a set defined by abstraction actually exists, but the paradoxes

had shown that some definitions of this form can lead to contradiction (for example: A =

the set of all sets). On the other hand, assumptions about the existence of certain sets had

become indispensable in mathematics. The problem then was to find criteria governing the

existence of sets which would allow mathematicians to avoid the 'inconsistent' sets and

rigorously establish the existence of all the sets required for classical mathematics.

Zermelo's approach to this problem was to take the existent body of Cantorian set

theory and find axioms which would entail everything that was useful and well founded in

the theory but which would not generate any of the known paradoxes:

... in view of the "Russell antinomy" of the set of all sets that do not contain themselves as elements, it

no longer seems admissible today to assign to an arbitrary logically definable notion a set, or class, as

its extension....Under these circumstances there is at this point nothing left for us to do but to proceed

in the opposite direction and, starting from set theory as it is historically given, to seek out the

principles required for establishing the foundations of this mathematical discipline. In solving the

problem we must, on the one hand, restrict these principles sufficiently to exclude all contradictions

and, on the other, take them sufficiently wide to retain all that is valuable in this theory.

[Zermelo 1908, p. 200 in van Heijenoort 1967]

It is clear from what Zermelo says here that his axioms are to be justified in terms of

what they enable us to prove. The axioms must be strong enough to enable us to prove

everything valuable in set theory while at the same time they must not be so strong as to

entail the paradoxes.
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According to Zermelo, the principle that leads to the paradoxes is the principle of

naive comprehension. This principle states that for any condition there is a set which

consists of every object which meets that condition:

(NC) 3xVy(yex+>$(y))

Here the quantifiers are assumed to be restricted to sets. Given (NC) we can derive

Russell's paradox as follows. Let <|)(y) the formula^ € y. Then by (NC) we have:

(1) 3x\/y(yex+>y €y )

This says that there is a set x with a certain property. Call that set R. Then we have:

(2) VX^eRo^y)

Hence, in particular:

(3) ReRoRgR

which is a contradiction. In the same way by taking <J>(y) to be the formula y = y, (NC)

entails that there is a set which contains everything - the set of all sets in other words - and

we can then derive Cantor's paradox.43

Zermelo replaces the principle of naive comprehension the axiom of separation.

This axiom states that for any property <J> and any set x, there is a set y, which contains

every element of x for which (j> holds:

(AS) \/x3y(Vz(zey+>(zex&b(z))))

43 Although mathematicians had frequently assumed the existence of sets defined by abstraction, it would be
misleading to say that they had implicitly assumed (NC). As far as I know, Frege is the only mathematician
ever to have explicitly relied on a principle equivalent to (NC). Certainly -Cantor did not. His definition of a
set as 'a collection, gathered into a whole, of certain well-distinguished objects of our perception or our
thought' [Cantor 1955, p. 85] is not an implicit statement of NC. This definition is in fact akin to Euclid's
definition of a point as 'that which has no part', it is something which gives us a general idea of what we are
talking about, but plays no role at all in the formal development of the theory. Indeed Cantor must have
known that (NC) cannot be true in general, since he himself proved that there is no set of all sets and hence
that the condition 'x is a set' does not determine a set
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This axiom does not by itself imply that there are any sets at all. Hence, as Zermelo points

out, it cannot be used to deduce any of the known paradoxes: '...sets may never be

independently defined by means of this axiom but must always be separated as subsets

from sets already given.' [Zermelo 1908, p. 202]. For example if we already have a set A,

then (AS) tells us that there must be a set consisting of all the elements of A which are not

members of themselves. Call this set R. Then we have:

(1) Vz(zeRo(2eA&z^))

But we cannot get a contradiction from this as before. If we take z to be R itself, we obtain:

(2) R e

which is perfectly consistent and implies that R is not a member of itself or of A.

However, the axiom of separation does entail that there is no universal set, no set

which contains every set. For if there were such a set U, there would be, by the axiom of

separation, a subset of U which consists of all and only those elements of U which are not

members of themselves. This subset would then be the set of all sets which are not

members of themselves; a set which is a member of itself if and only if it is not a member

of itself. This a contradiction, so there is no universal set. As noted above, this result - that

there is no set of all sets - had already been established by Cantor in a different way.

Of course we do need to assume the existence of some sets in order to get the theory

off the ground. Zermelo introduces special axioms which assert the existence of various

sets: the axiom of elementary sets, which asserts the existence of the empty set 0 and for

all a and b, the sets {a} and {a, b), the power set axiom, which asserts the existence of the

set of the set of all subsets of any set and the axiom of union, which asserts that given any

family of sets A, there is a set which consists every element of every set in A. [ibid. pp.
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202-3]. Although these axioms give us infinitely many sets, they are not enough to ensure

the existence of any sets with infinitely many members. Hence Zermelo introduced the

axiom of infinity, which states that there is a countably infinite set.

The most controversial of Zermelo's axioms was the axiom of choice. This states

that for any family of non-empty, mutually disjoint sets, there exists a set which contains

one and only one element from each of those sets. Given such a family of sets, in other

words, we can always choose one element from each set and form another set from the

elements we choose [ibid. p. 204]. The axiom of choice was controversial at the time, since

it implies the existence of certain sets without telling us how such sets can be independently

defined or constructed in any particular case. How did Zermelo justify this axiom?

I mentioned that Zermelo had two motivations for axiomatizing set theory. The first

was the avoidance of the paradoxes. The second motivation was his desire to prove a

certain theorem, that every set can be well-ordered. Cantor had wanted to establish that any

two sets can always be compared as to size, in the sense that for all sets A and B, either A

>- B, A = B or A •< B. That, is given any two sets A and B either A can be put into one-one

correspondence with a subset of B or B can be put into one-one correspondence with a

subset of A. Cantor was unable to prove this result in general, but was able to show that it

holds for well-ordered sets. Cantor conjectured that in fact, the result holds in full

generality, since every set can be well-ordered. In 1900 Hilbert included the discovery of a

proof of the well-ordering theorem in his list of the twenty three most important problems

confronting the mathematical world.

44 More precisely the axiom states that there is a set I which contains 0 and for all a, if a s I then {a} e I [ibid,
p. 104]. This formulation of the axiom stems from Dedekind, who had attempted to prove it by means of a
rather curious argument [Dedekind 1888, §66].
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In 1904 Zermelo was able to prove the well-ordering theorem, using the axiom of

choice [Zermelo 1904, 1908b]. This establishes Cantor's conjecture and allow us to prove

the principle of trichotomy for cardinal numbers:

(T) For all cardinal numbers a and b: either a>b,a = b ova<b

Obviously, this principle is necessary if we are to have an adequate transfinite arithmetic

and so a great deal of indirect justification accrued to the axiom of choice by Zermelo's

proof that it implied this principle.45

Nonetheless, many mathematicians objected to Zermelo's proof. Peano for

example, objected to the proof on the grounds that it was based on an unproved assumption.

In response, Zermelo pointed out that since we cannot prove everything, every proof must

begin from certain unproved principles. How are these principles to be justified? Zermelo's

answer is clear: '[e]vidently by analysing the modes of inference that in the course of

history have come to be recognized as valid and by pointing out that the principles are

intuitively evident and necessary for science - considerations that can be urged equally well

in favour of the disputed principle.' [Zermelo 1908b, p. 187].

Although Zermelo mentions self-evidence here, he regards it as too subjective to

carry much weight. He continues '..the question that can be objectively decided, whether

the principle is necessary for science, I should now like to submit to judgement by

presenting a number of elementary and fundamental theorems and problems that, in my

opinion, could not be dealt with at all without the principle of choice', [ibid. pp. 187-8].

Zermelo then lists seven theorems from set-theory and analysis which depend on his new

axiom. Hence for Zermelo, it is the power of the axiom of choice to prove important results

45 In fact, it turns out that the trichotomy principle also implies the axiom of choice and so the two are in tact
equivalent.
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that provides the main source of its justification. Zermelo's view of the matter has since

been amply vindicated; the axiom of choice is now a fundamental and indispensable

principle in numerous and diverse branches of mathematics.46

In 1938 Godel established that the axiom of choice is consistent relative to the other

axioms of set-theory. Using the same technique, he was also able to establish that the

continuum hypothesis is also consistent relative to the other axioms, which means that the

continuum hypothesis is not disprovable from those axioms. [Godel 1938,1939]. Godel

conjectured that continuum hypothesis was in fact undecidable on the basis of the standard

axioms. In 1963 Paul Cohen proved Godel right by showing how to construct models of the

axioms in which the continuum hypothesis is false [Cohen 1963-4] ,47 Hence neither (CH)

nor its negation is provable from the standard axioms of set-theory. Since then, many other

questions in set-theory have turned out to be undecidable on the basis of the standard

axioms.48

Godel had already canvassed the possibility of introducing new axioms which

would allow us to settle such independent questions. But how would such axioms be

justified? Godel answers as follows:

....even disregarding t he intrinsic necessity of some n e w axiom, and even in case it has no intrinsic

necessity at all, a probable decision about its truth is poss ible also in another way, namely inductively

by studying its ' success ' . Success here means fruitfulness in consequences , in particular in 'verifiable'

consequences , i.e consequences demonstrable without t he n e w axiom, whose proofs with the help of

the new axiom, however, are considerably simpler and easier to d iscover . . .There might exist axioms

so abundant in their verifiable consequences, shedding so much light upon a whole field, and yielding

46 See [Moore 1982] for a discussion of the history of t he axiom of choice and a list of its important
consequences and equivalents. For a more detailed analysis of t he justification of the standard axioms for set
theory (including the axioms of replacement and foundation which were added later by Skoiem, F raenke l ,
von Neumann and Zermelo ) see [Maddy 1997, pp . 36-62].
47 See [Maddy 1997, pp. 64-6] for further details.
48 For some examples see [Maddy 1997, pp . 63-72].
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such powerful methods for solving problems...that, no matter whether or not they are intrinsically

necessary, they would have to be accepted at least in the same sense as any well-established physical

theory.

[G6dell947,p. 477]

A great deal of contemporary work in set-theory consists of just his kind of investigation of

new axiom candidates. Penelope Maddy has investigated the sort of arguments

mathematicians use in justifying such axioms.49 These come in several forms. Firstly, there

are what Maddy calls intrinsic justifications. These appeal to various intuitions concerning

the concept of a set; most frequently to the 'iterative conception' of the universe of sets.50

Secondly, there are what Maddy calls extrinsic justifications. These appeal to the deductive

power of the axioms in proving certain theorems. Maddy gives the following summary:

The extrinsic evidence cited in previous sections came in a bewildering variety of forms, among them:

(1) confirmation by instances (the implication of known lower-level results,... principles known to be

provable in ZFC);51 (2) prediction (the implication of previously unknown lower level results ... later

proved from ZFC alone); (3) providing new proofs of old theorems...; (4) unifying new results with

old, so that the old results become special cases of the new...; (5) extending patterns begun in weaker

theories; (6) providing powerful new ways of solving old problems...; (7) providing proofs of

statements previously conjectured... (8) filling a gap in a previously conjectured "false, but natural

proof... (9) explanatory power... (10) intertheoretic connections.

[Maddy 1988b, p. 759]

Notice how justifications (1) to (4) appeal to the power of the new axioms to entail

theorems that were either previously accepted or which were later shown to be acceptable

independently of the new axioms. Justifications (5) to (10) also appeal to the deductive

power of the new axioms, in generalizing or explaining the current body of results, or by

49 In 'Believing the Axioms' [Maddy 1988ab]. See also [Maddy 1997, pp. 73-81].
50 For a discussion of the iterative conception see [Boolos 1971] and [Parsons 1977].
51 ZFC is Zermelo-Fraenkel set theory with the axiom of choice.

273

filling gaps in intuitively acceptable proofs. In contemporary set theory then, we find the

same pattern that we have seen throughout our brief tour of the history of mathematics;

axioms are justified in terms of their consequences, by their power to prove theorems.

3. REFLECTIVE EQUILIBRIUM

Axiomatization usually only occurs in mathematics once there is a fairly large body

of results already available. In general, axiomatization is justified by the way in which it

brings system and generality to a collection of accepted mathematical results. Particular

axioms are justified if they yield all the theorems we already accept and none which we do

not accept.

This seems to involve us in a vicious circle. Theorems are justified if they can be

deduced from axioms and definitions, but axioms and definitions are justified if they entail

the theorems. This situation is reminiscent of another apparently vicious circle noticed by

Nelson Goodman in a different context:

I have said that deductive inferences are justified by their conformity to valid general rules, and that

general rules are justified by their conformity to valid inferences. But this circle is a virtuous one. The

point is that rules and particular inferences alike are justified by being brought into agreement with

each other. A rule is amended if it yields an inference we are unwilling to accept; an inference is

rejected if it violates a rule we are unwilling to amend. The process of justification is the delicate one

of making mutual adjustments between rules and accepted inferences; and in the agreement achieved

lies the only justification needed for either.

All this applies equally well to induction. An inductive inference, too, is justified by conformity

to general rules, and a general rule by conformity to accepted inductive inference?.

[Goodman 1983, p. 64]
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According to Goodman, general rules of inference, both deductive and inductive are

justified by showing that they yield all, or most of the particular inferences we accept and

none or few which we do not. Particular inferences in turn are justified by showing that

they conform to such general rules. The process of bringing our general rules and

judgements about particular instances of them into agreement with each other has become

known as the process of reflective equilibrium.

I argued in chapter one that the relationship between our logical intuitions and

theories is indeed one of reflective equilibrium. A logical tlieory is justified to the extent

that it provides us ,vith a systematic account of the particular inferences we find intuitively

acceptable or unacceptable and our intuitions about particular inferences may themselves

be evaluated in terms of their conformity to our logical theories.

Consider, for example, classical first-order logic. Criticisms of this theory are of

two main kinds; firstly, that it counts as valid particular inferences which are intuitively

invalid, secondly, that it counts as invalid particular inferences which are intuitively valid52.

As an example of the first kind, we have criticisms of various classically valid principles of

deduction; that every statement follows from a contradiction or that every statement entails

every logical truth. These principles license particular inferences which many find to be

intuitively invalid, since the premises may have nothing in common with the conclusion.53

On the other hand, it can be argued that classical first-order logic fails to license

particular inferences which we do want to accept. First-order logical entailment is compact.

This means mat if a statement follows from an infinite set of sentences, it follows from a

52 A different kind of criticism of this theory concerns not so much the inferences which it licenses or fails to
licence, as its descriptive c: expressive power. The main rival theory here of course, is second-order logic. For
a criticism of first order logic along these lines, see [Skolem 1922].
53 See for example [Read 1988;1994] and [Haack 1978 pp. 197-203].
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finite subset of those sentences. Consider an infinite set of sentences, each of which

ascribes some property P to each natural number: {P0, PI, P2, P3, P4, P5 .... }. Now

consider the sentence a: every natural number has the property P. If every sentence in the

infinite set is true, it seems that a must also be true. So the infinite set of sentences seems to

validly entail the sentence a. However, the infinite set of sentences does not classically

entail the sentence a. For if it did, by compactness, some finite subset of the infinite set of

sentences would entail A. But no finite subset of such sentences entails that every natural

number has the property P, since it is possible that some, but not all natural numbers have

the property P.54 Here then, we have a case where our logical theory fails to license an

inference which seems intuitively valid. Both types of criticism of deductive inference rules

conform to Goodman's account. We can criticise a proposed rule either if it yields

particular inferences we are unwilling to accept or if it fails to yield inferences which we do

accept.

Similar remarks apply to inductive inference rules. Many such rules have been

proposed and many criticisms of them have been put forward. Again these criticism have

been of two main kinds. Either the proposed rule over-generates, yielding inferences which

are intuitively unacceptable, or it under-generates, failing to yield inferences which are

intuitively acceptable. We saw some examples in our discussion of the HD account of

confirmation in the previous chapter. For example, (HD') implies that a confirms p for all

a and P, provided that a and p are consistent. It therefore appears to license the inference

from any statement to any other statement consistent with it. On the other hand, if the

explanation criterion of confirmation is correct and if entailment is not necessary for

54 See [Read 1994, pp. 42-49].
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explanation, then there will be many intuitively valid inferences which (HD') fails to

license.55 Just as in the case of deductive logic, general principles of inductive inference are

justified to the extent that they agree with our intuitions about the validity of particular

inferences, while those intuitions themselves gain support from their agreement with our

general principles.56

In exactly the same way, general principles in ethical and political theories (such as

the principle of utility or the principle of equality) are justified by showing that they uphold

our intuitions about the right or just action in particular cases. By the same token, such

principles may be criticised on the grounds that they fail to conform to our intuitions about

particular cases. But of course, our moral intuitions themselves are equally open to

justification or criticism in the light of theoretical principles. The fact that a general

principle conflicts with an intuition does not mean that the theory must be incorrect; it may

be the intuition itself which needs to be abandoned.

We can also see the process of reflective equilibrium at work in many other

branches of philosophy, where we find for example, proposed analyses of concepts such as

knowledge, causation, explanation and so on, defended and criticised on the grounds that

See also [Putnam 1975h,1975i] for a criticism of C a m a p ' s system of inductive logic along similar lines.
56 Stich and Nisbett [1980] have argued that Goodman ' s account of the justification of inference rules cannot
be correct, s ince many people actually reason according to patently invalid inference rules. A person who
reasons according to the gambler 's fallacy for example, adopts a general rule which conforms to the particular
inferences they actually make and those inferences are in turn licensed by the rule. Hence, the rule is in
reflec tive equilibrium with their inferential practice. Yet the rule is invalid and so reflective equilibrium is no t
sufficient to justify inductive inference rules. I believe that this criticism can in fact be met, although a full
discussion of it would take us too far afield. It is worth pointing out that Stich and Nisbett d o not abandon
Goodman ' s account completely. Their solution to the problem they describe is to attempt to widen the notion
of re f leOve equilibrium so that it is sensitive to the inferential practice of appropriate community authorities
57 The method of reflective equil ibrium in political and ethical theory is most commonly associated with t he
work of John Rawls . T h e phrase reflective equilibrium was in fact coined by Rawls who cites Goodman as the
original source of the idea. See [Rawls 1971, pp. 20,48-50].
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they agree or fail to agree with our intuitive judgements concerning the application of these

concepts in various contexts.

In a very general sense, the method of reflective equilibrium equally applies to the

development of science. Here theories and laws play the role of general principles and

observation and experiment correspond to intuitions. Our theories must agree with the

results of observation, but observations themselves are not infallible and may be rejected,

or at least treated with suspicion, if they are inconsistent with firmly established scientific

theories. On the other hand, an observation which conflicts with theoretical principles may

be accommodated by modification of auxiliary hypotheses or laws. The considerations

which guide us in this process of bringing our theories and observations into agreement

with each other are of course very complex and do not admit of a simple statement as a set

of general principles of 'scientific method'. Nonetheless, the process does not seem

essentially different to the rational assessment of theories by reflective equilibrium in other

areas.

4. REFLECTIVE EQUILIBRIUM IN MATHEMATICS

What I want to suggest now is that Goodman's concept of reflective equilibrium is

also applicable to the justification of our mathematical beliefs. Just as an inference rule is

justified if it yields particular inferences we are willing to accept and none which we are

unwilling to accept, while particular inferences are justified if they conform to such rules, I

suggest that in mathematics, axioms and definitions are justified if they yield theorems we
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are willing to accept and none we are unwilling to accept and that theorems are justified if

they can be deduced from such axioms or definitions.58

So for example, we can justify the associative law of addition by proving it from the

axioms and definitions of number theory. But those axioms and definitions are themselves

justified because we need to assume them in order to prove the accepted theorems of

number theory, including the associative law itself, hi the same way, Euclid provided a

justification for Pythagoras's theorem by proving it from his axioms. But Euclid's axioms

are justified by showing that they can be used to prove such accepted theorems of

geometry. In general, a theorem may be justified by deducing it from axioms and

definitions, while the axioms and definitions are justified by showing that they entail many

statements we already accept and none that we would not accept

Why is this kind of justification of axioms, definitions and theorems not viciously

circular? To answer this question, we need to take into account the point stressed by

Lakatos and Kitcher, that mathematics is a subject with a history of change and evolution.

This evolution does not consist merely in the fact that new results are proved as time goes

on. It also consists in the fact that the same result can receive different justifications at

different times. That is., to use Kitcher" s terminology, the evolution of mathematics includes

changes in the set of accepted reasonings.

Consider an axiom that is justified by showing that it entails a result we already

accept. This sort of justification need not be circular because the result in question may

58 Godel seems to have arrived at a similar position. For him, some basic truths of mathematics can be known
by intuition, a faculty akin to sense: perception. More theoretical principles are justified in terms of their
consequences. Moreover, the relationship between the first principles of a mathematical theory and the
intuitive truths is something like the relationship of reflective equilibrium, [see Godel, 1944, pp. 449-50 and
1947, pp. 477,483-5]. The account I develop below differs from Godel's in replacing the somewhat vague
notion of intuition with various kinds of non-deductive evidence, of a'sort familiar from the natural sciences.
For a more detailed discussion of GddePs thinking on these matters see [Maddy 1997, pp. 89-94,172-6]. See
also [Brown! 997, p. 168].
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have been previously accepted on independent grounds. Proof from explicitly stated axioms

is not the only source of justification in mathematics. We can have proofs, like Euclid's

proof that every composite number is divisible by a prime number from implicit, unstated

first principles. There are also what Kitcher calls unrigorous reasonings, such as the

derivations of the derivatives of polynomial functions mentioned in chapter three.

A result which becomes accepted by appeal to arguments of this unrigorous kind,

may later receive a rigorous justification by showing how it can be deduced from certain

axioms. The axioms themselves are justified by showing that they entail such accepted

results. But there is no vicious circle involved here, because the reason the result was

initially accepted may be independent of the new reason provided by the derivation from

axioms. What may happen then is that the old unrigorous justification of the result is

removed from the set of accepted reasonings and replaced by the new more rigorous

derivation from the axioms.

The following (artificial) example illustrates the sort of process I have in mind.

Consider the following statement about the sum of the first n natural numbers.

1 + . ...+n = -n(n +
2

This result was well known to the Pythagoreans, even though it is doubtful they had a

rigorous proof of it.59 It is possible to justify the claim in other ways however. Here is one

way the Pythagoreans might have justified it.

Consider the diagram shown in figure 1. Each square in the diagram is a unit square,

so the area of each is one unit. The total area of the figure is equal to the sum of the first six

natural numbers. In this case then, we have n = 6. Now the area of the triangular part of the

59 See [Kline 1972, p. 30].
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figure, by elementary geometry is equal to half its base times its height. The base and

height of the triangle are both equal to «, so the area of the triangle is equal to — n1. To get

the area of the whole figure we need to add the areas of the remaining shaded triangles.

There are n of these and the area of each one of them is one half, so their total area is — n .
2

Thus the total area of the triangle, equal to the sum of the first n natural numbers is:

1 + 2 + 3 + 4 + .. . + n =— /72+— n = — n(n + \)

2 2 2 v J

This is not of course, a rigorous proof. We inferred from a particular diagram, involving the

first six natural numbers that the result holds for all natural numbers. Nonetheless, it seems

that we have given quite a good intuitive argument for the result.

z
P ^

1 2 3 4 5 6

Figure 1
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Suppose the Pythagoreans came to accept this result on something like these

grounds. Given that the result has become accepted, we can imagine introducing an axiom

that is justified by showing that it entails the result. As an example, suppose we introduce

the principle of mathematical induction as an axiom. We can then use mis axiom to prove

our result more rigorously. First we show that the result holds for the case n = 0. But in this

case:

1 + 2 + 3 + 4+ ....+ «= 0

and:

= 1.0(0 +

= 0

Now we show that if the result holds for any number n, it also holds for n + 1. So we

assume that:

(1) 1 + 2 + 3 + 4 + .. ,. + n = -n(n

and we need to show that (1) entails:

(2)

But if we add (n + 1) to both sides of (1) we obtain:
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-

which estabhshes (2) as required.

We began with a perceptual, intuitive justification of a statement. We then

introduced a new axiom, the principle of mathematical induction. This principle was

justified by showing that it could be used to deduce our previously accepted statement. At

the same time, that statement itself received a new and more rigorous justification. The old

intuitive argument may then come to be replaced by the derivation from the new axiom.

This example is not of course meant to be historically accurate. It is simply meant to

be illustrative of the process of reflective equilibrium at work in mathematics. It shows that

this process need not involve a vicious circle, since an axiom may be justified in terms of a

theorem which was accepted for some other, perhaps less rigorous reason.

This process is well illustrated by the examples from the history of mathematics

considered in section two. Sometimes the evidence for an axiom or definition is that it

entails a result that has already been proved independently. An example would be the

evidence for Cantor's set theory provided by his proof of the existence of transcendental

numbers; a result which had already been proved, along different lines, by Liouville and

others. In the same way, the axiom of separation gains some support by showing that it

entails that there is no universal set, a result which had already been proved by Cantor via

the power-set argument. Such independent proofs may be more or less rigorous of course;
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Hilbert's axioms for example, are supported by showing how they entail theorems of

Euclidean and non-Euclidean geometry which had already been proved less rigorously.

Similarly, Cauchy's definition of the derivative is supported by showing how it can be used

to derive the standard rules of differentiation, rules which had previously been established

only been means of a various unrigorous arguments.

Sometimes, however, the evidence for an axiom is that it entails an accepted result

that has never been proved before, not even by means of an unrigorous argument. An

examples would be Zermelo's proof of the well-ordering theorem, which provided evidence

for the axiom of choice. In the same way, evidence for the Dedekind-Peano axioms is

provided by the derivation of the such principles as the associative law of addition -

principles which no one had ever proved before. Similarly, Dedekind's theory of cuts is

supported by the derivation of the limit existence theorems which had defeated Cauchy.

But for such derivations to count as evidence for the axioms and definitions, there

must be some independent reason for accepting these results. That is, there must be some

independent evidence for them. That evidence is not provided by a proof, for here we are

considering results which are being proved for the first time. This points to the existence of

a kind of evidence in mathematics other than that provided by rigorous or not so rigorous

deductive argument - non-deductive evidence, in fact.60 In chapter four, I suggested that

there can be empirical evidence for mathematical statements. On the other hand, we also

find quasi-empirical evidence in mathematics; evidence which is derived from other

mathematical statements (rather than from empirical ones) by means of such familiar

60 Of course, the evidence for axioms must be of this kind, since axioms are not proved. So we have already
seen one kind of non-deductive evidence in mathematics; an axiom or definition can be supported by showing
that it implies an accepted result The present point is just that those accepted results may themselves be
supported by various kinds of non-deductive evidence.
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patterns as induction and analogy.61 hi the case of such principles as the associative laws of

addition and multiplication, we can say that although these had no proof prior to their

derivation from the axioms of number theory, they were certainly well supported by a large

body of this kind of evidence. Non-deductive mathematical evidence comes in a wide

variety of different forms, some of which I would now like to discuss in more detail. Let us

begin by taking a closer look at induction in mathematics.

5. NON-DEDUCTIVE EVIDENCE

5.1 INDUCTION

Here we find evidence for a universal statement derived from the verification of a

number of its instances. Inductive evidence of this kind is exceedingly common in

mathematics.62 Number theory provides a rich source examples, i '40, Fermat

investigated numbers of the form:

22" + l

When n = 0, we have 22 +1 = 3 which is a prime number. When n — 1, we have

22 + 1 = 5 and 5 is also prime. For n = 2, we obtain 2" + 1= 17 and 17 is prime. The next

two numbers in the sequence are 257 and 65537 and Fermat verified that these are also

prime numbers. On the basis of this evidence, Fermat conjecture that every number of the

form 22" + 1 is prime, hi fact, Fermat's conjecture turned out to be false. Euler, in 1732,

61 T h e term quasi-empirical was introduced by Hilary Putnam. See [Putnam 1975c, p. 62]
62 In fact, it is much easier to find real examples of induction in mathematics than it is to find such examples
in the natural sciences.
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showed that the very next number in the sequence 232 + lis not prime, since it is divisible

by 641.63

Fermat did claim to have proved his famous 'last theorem', that the equation:

x" = y"+z"

has no positive integer solutions when n > 3, but as is well known, his proof was never

found and it now seems unlikely that he had a proof. Evidence for Fermat's conjecture

however, came in the form of verification of particular instances. Fermat claimed to have

proved it for the case n = 4. Euler later gave a proof for this case and for the case n =3.64

These results already show that Fermat's conjecture is true for an infinite number of values

of n. Since it is true for n = 3, for example, it must also be true for any multiple of 3. For

suppose the conjecture is false for some n which is a multiple of 3. Then there would be

integers x, y, z and m such that:

xim =y3m+z3m

But then we would have:

ir. \ 3 , / _ m \ 3+ (zm)3

and the conjecture would fail for n = 3. The case of n = 4, on the other hand, shows that

Fermat's last theorem is true for any n which is not divisible by an odd prime.65 But it is

easy to show that if Fermat's conjecture is true for every prime number greater than two,

63Infact,232+ 1 =4294967297 = 641 -67OO417.See also [Kline 1972, pp. 277,609, Polya 1954a p. 9, Scarlau
andOpolkal985,p. 9].
64 See IKline 1972, pp. 276-7,609, Devlin 1988, pp. 187-9].
65 For suppose that Fermat ' s last theorem is false for some n which is no t divisible by a pr ime/? > 2 . Since
every number is divisible by some prime number, n must be divisible by 2. Hence n is either 2 or a power of
2. Since n is greater than 2, n must be of the form n = 4m. But by the same reasoning as that given above for
the case of n = 3, the case of n = 4 establishes that Fermat's equation has no solutions for any n which is a
multiple of 4. Hence Fermat's conjecture is true for any n which is not divisible by an odd prime.

'* A.
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66then it is true for any n which is divisible by an odd prime. Hence, if we could establish

that Fermat's equation has no solutions when n is an odd prime number, we would have a

proof of the conjecture. Mathematicians therefore set about showing that Fermat's

conjecture is true for particular prime values of n. In 1825, Dirichlet and Legendre

independently proved the case of n = 5 and in 1839 Lame gave a proof for n - 7.67

The first general result along these lines however, was given by Sophie Germain in

1823. She proved that the equation:

has no solutions when p is a prime number which does not divide the product xyz and

where 2p + 1 is also prime. Many similar results, for various kinds of prime exponent

were obtained in the nineteenth century. Ernst Kummer, for example, established that there

are no solutions when p is a so called regular prime69. The only irregular primes less than

100 are 37, 59 and 67 and Kummer was able to show that there are no solutions to Fermat's

equation for these values of n. This establishes that Fermat's Last Theorem is true for all

values ofw up to 100.70

With the invention of the computer in the twentieth century, mathematicians were

able to use this kind of technique to establish that Fermat's Last Theorem held up to larger

66 Suppose n is divisible by an odd prime. Then n = ap for some a and some prime p > 2. If Fermat ' s
conjecture was false for such an n we would have integers, x , y and z such that x v + y v = zv. But then we
would have (x°f + (y°f - (z°f and the conjecture would be false for some prime > 2. Hence if Fermat 's
conjecture is true for every odd prime, it is true for every number divisible by an odd prime.
67 An accessible account of these proofs (and the proofs for n = 3 and n = 4 )can be found in [Devlin 1988, pp.
182-92]. See also [Kline 1972, pp. 609, Stewart 1987, p. 27, Burton 1998, p. 490].
68 See [Devlin 1988, p . 196-7, Silverman 1996, p . 22 ] .

The following definition is equivalent to (but s impler than) the one K u m m e r gave. A pr ime p is regular if
and on ly if it does no t divide t he numerators o f t he Bernoulli numbers B 2 , B 4 , ... Bp.3 where B k is the
coefficient of x* in the infinite series expansion ofx/(ex- 1). See [Devlin 1988, p. 194].
70 See [Kline 1972, p. 818-820, Devlin 1988, pp. 192-5, Stewart 1987, pp. 29-30, Burton 1998, pp. 491-2].
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and larger values of n. By this means S. Wagstaff in 1978 established that there are no

solutions to Fermat's equation for all values of n up to 125,000.71

Euler published many papers in which he stated hypotheses which he could not

prove, along with as much inductive evidence for them as he could find. A beautiful

example is the short piece 'Discovery of a most extraordinary law of numbers concerning

the sum of their divisors', translated in full by Polya [1954a, pp. 91-8]. Euler begins his

paper as follows:

Till now the mathematicians tried in vain to discover some order in the sequence of the prime numbers

and we have every reason to believe that there is some mystery which the human mind will never

penetrate. To convince oneself, one has only to glance at the tables of the primes... and one perceives

that there is no order and no rule... I am myself certainly far from this goal, but I just happened to

discover an extremely strange law governing the sums of the divisors of the integers which, at the first

glance appear just as irregular as the sequence of the primes, and which, in a certain sense, comprise

even the latter. This law... is in my opinion, so much more remarkable as it is of such a nature that we

can be assured of its truth without giving it a perfect demonstration. Nevertheless, I shall present such

evidence for it as might be regarded as almost equivalent to a rigorous demonstration.

[ibid. p. 91]

Euler then introduces the sigma function, o(ri) equal to the sum of the divisors ofw. So for

example o(2) = 1+2 , <r(6) = 1 + 2 + 3 + 6 = 15 and so on. Clearly, if p is a prime number

then o(p) -p + 1. Euler gives a table in which he calculates the values of a(«) for all values

of n from 1 to 99. The first few values are 1,3,4,7,6,12,8,15,13,18.... Here the values of

o(n) for which n is prime are marked in bold. Euler remarks that if we examine this

sequence '...we are almost driven to despair...The irregularity of the primes is so deeply

involved in it that we must think it impossible to disentangle any law governing this

71 See [Wagstaff 1978]. For further information on the history of Fermat's Last Theorem see [Singh 1998,
Kline 1972, pp. 276-7,609,818-20, Stewart 1987, pp. 24-34, Burton 1998, pp. 489-93, Devlin 1988, pp. 177-
200]. See also [Silverman 1996, Chapter 37] for an account of Wile's final proof.



sequence.' [ibid. p. 93]. Nonetheless, Euler claims that in fact each number in this sequence

can be computed from earlier ones by means of a certain rule he has discovered. The rule

is:

a(«)= CT(«-1) + a(«-2) - a(w-5) -CT(«-7) + CT(«-12) + CT(«-15) - a(w-22) - o(«-26) + ....

To apply this rule we add up the terms of this sequence, ignoring those for which the

argument of the sigma function is less than zero and substituting the value n if the argument

is equal to zero. So for example, according to Euler's rule, the value of a(7) is given by:

a(5)-a(2)-a(0) = - 3 - 7 = 8

which is correct. The difference between consecutive terms in the sequence of numbers 1,

2, 5, 7, 12, 15, 22 ... which we have to subtract from n is given by the sequence

1,3,2,5,3,7,4,9,5.... where we have, alternatively, all the integers 1, 2, 3, 4,.... and the odd

numbers 3, 5, 7, 9,.... Hence, as Euler remarks '...it is not difficult to apply the formula to

any given particular case, and so anybody can satisfy himself of its truth by as many

examples as he may wish to develop. And since I must admit that I am not in a position to

give it a rigorous demonstration, I will justify it by a sufficiently large number of

examples.' [ibid. p. 93]. He then shows that his rule gives the correct answer for the first

twenty values of n. He notes however, that these cases only make use of the first six

numbers in the sequence 1, 2, 5, 7, 12, 15 ... and so he also shows that his rule gives the

correct answer for the case of CT(IOO) (which uses the first 16 of these numbers) and a(301)

(which uses the first 28 of them). These examples, says Euler, 'will undoubtedly dispel any

qualms which we might have had about the truth of my formula.' [ibid. p. 95].
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Euler does not end there however. He goes on to explain how he discovered this

strange rule and the same time, cites further evidence for it. He begins with the infinite

product:

/«\ AI \ /1 2 \ /i 3 \ /1 4 \ /i S \ /1 6 \
I I I i I . ^ Y ll I i Y II I - -• Y II I ^~ Y If I i Y II I *™~ Y I

By multiplying out larger and larger numbers of terms in this sequence, Euler came to the

conclusion that (I) expands out to:

Notice that the exponents of x in (2) are exactly the same as the numbers used in Euler's

rule for the sigma function. Euler then shows that indeed, on the assumption that the

infinite product in (I) is equal to the infinite sequence given by (2), we can prove that his

rule is correct. But he cannot prove this assumption - the only evidence he has for it is

inductive evidence, found by multiplying out finite numbers of the terms in (I).

Nonetheless, '...each of us can convince himself of this truth by performing the

multiplication as far as he may wish; and it seems impossible that the law which has been

discovered to hold for 20 terms, for example, would not be observed in the terms that

follow.' [ibid. 96]. Euler concludes that '[t]his reasoning, although still very far from a

perfect demonstration, will certainly lift some doubts about the most extraordinary law that

I explained here.' [ibid. p. 98].

In a letter to Euler of 1742, Christian Goldbach made a conjecture which is

equivalent to the following claim:

Every even number greater than two is the sum of two primes
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Euler was convinced the conjecture was true, although he could not prove it.72 Again, we

can acquire some evidence for the conjecture by checking particular cases:

4 = 2 + 2

6 = 3 + 3

8 = 3 + 5

10 = 3 + 7

12 = 5 + 7

and so on. Goldbach's conjecture has now been confirmed in this way for every even

number up to 4 • 1014. [See Richstein 2000]. No one has been able to prove that it holds for

all even numbers however, although it is known that every even number is the sum of not

more than six primes and that 'almost all' even numbers are the sum of two primes. 3

A related hypothesis is the twin-primes conjecture:

There are infinitely many prime numbers p such that p + 2/5 also prime.

for which there is also a great deal of inductive evidence of a similar land. Although the

conjecture remains unproved, computers have been used to establish the existence of larger

and larger twin-primes. A recent record was set by Giovanni La Barbera74, who found the

pair 1693965 -26 6 4 4 3±1. In addition, Chen Jing-run has shown that something close to the

twin-primes conjecture is true: there are infinitely many primes p such that p+2 is either

prime or the product of two primes.75

By examining tables of prime numbers, Gauss, Legendre and others noticed that the

number of primes less than n is roughly equal to «/log(«). More precisely, as n gets larger
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72 See [Kline 1972, p. 610].
73 If P(w) is any property of integers and #P(N) is the number of integers n less than N which satisfy P(n), then
if the ratio #P(N)/N approaches 1 as N approaches infinity, P is said to hold for 'almost all' integers. For more
information on Goldbach's conjecture see [James 1949].
74See[Caldwell2000,p. 1]
75 Chen Jing-run also proved a similar result on the Goldbach conjecture: every even number n > *s the sum
of a prime and a number which is either prime or the product of two primes. See [Silverman 1996, 78-9].

and larger, the ratio of the number of primes less than n to «/log(n) gets closer and closer to

1 (see Table 1). These observations provided inductive evidence for the prime number

theorem:

lim w = l
n/\og(n)

where 7r(«) gives the number of primes less than or equal to n. The prime number theorem

was proved first by Hadamard and Poussin in 1896 using methods from complex analysis,

and then again in 1948 by Paul Erdos using only 'elementary' methods.76

n

10

100

1000

104

106

7l(«)

4

25

168

1229

78498

w/logO?)

4.34

21.71

144.76

1085.74

72382.41

n(n)
n/\og(n)

0.921

1.151

1.161

1.132

1.084

TABLE 1

Inductive evidence for
the prime number theorem

In their proofs Hadamard and Poussin had made use of the so called zeta function:

X . I 1 1
s) = l + — + —+—+...

first introduced by Euler in 1737 and then generalized by Riemann "in 1859 to the case

where s is an arbitrary complex number. The solution to the problem of finding a proof of

76 See [Kline 1972, pp. 830-2, Stewart 1987, p. 125-7]. Table 1 has been compiled from data in [Silvertnan

1996, p. 77].
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the prime number theorem depends on the nature of the values of s for which C(s) = 0, the

zeros of the zeta function. The Riemann hypothesis is that:

All the complex zeros of the zeta function have the form V2 + iy.

Riemann established that this hypothesis implies the prime number theorem, but offered no

proof of it77. It remains one of the most important outstanding problems in mathematics,

having far reaching implications for many questions in number theory, especially those

concerning the distribution of the primes. One kind of evidence for the Riemann hypothesis

is purely inductive; one can calculate the zeros of the zeta function and check that they all

have real part lA. Computer calculations have been used to establish that Riemann's

hypothesis holds for the first 1.5 billion zeros of the zeta function.78

This kind of evidence is not considered very compelling however. For example, R.

F Churchhouse and I. J Good have argued that there are reasons to believe that the first zero

of the zeta function with real part not equal to V2, if there is one, might have an imaginary

1 f\ AHA

part as large as 10 . I f so, then it might never be practically possible to find this zero by

calculation.79 The calculations have also revealed some 'near misses', values of the zeta

function which are very close to zero, but with real part not equal to V2. Various kinds of

more compelling non-deductive evidence for the Riemann hypothesis are mentioned

below.80

Inductive evidence is not confined to number theory. For example, noticing that a

second degree equation has two roots, a third degree equation has three roots, a fourth

77 In [Riemann 1859]. T h e independent proofs of the pr ime number theorem d u e to Hadamard and Poussin do
not depend on the Riemann hypothesis of course. The pr ime number theorem turns ou t to be equivalent to the
claim that none of the complex zeros of the zeta function have real part £ 1.
78 See [van de Lune et al 1986].
79 See [Davis and Hersh 1981 , p . 364 ].
80 For further details of the history and evidence for Riemann ' s hypothesis see [Edwards 1974, Kline 1972, p.
8 3 1 , Stewart 1987, pp. 43,125-7, Kolata 1974, Franklin 1987, pp. 4-8, Brown 1999, pp. 166-7].
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degree equation has four roots and so on, Albert Girard inferred that an wth degree

polynomial equation has n roots, if we include what he called the 'impossible' (complex)

roots.81

We have already seen one example for geometry; Euler's evidence for his

conjecture on polyhedra was obtained by verifying that the formula V- E + F = 2 holds for

the regular polyhedra, as well as a various prisms and pyramids.82 Another example, is the

isoperimetric theorem, stated by Descartes:

Of all plane figures of equal area, the circle has the least perimeter.

We can gain some inductive evidence for this by making comparing the perimeter of a

circle of area one unit with the perimeters of various other shapes with the same area (see

Table 2). On the basis of this kind of evidence, Descartes was convinced: '[i]n order to

show by enumeration that the perimeter of a circle is less than that of any other figure of the

same area, we do not need a complete survey of all the possible figures, but it suffices to

prove this for a few particular figures whence we can conclude the same thing, by

induction, for all the other figures'.

81 See [Kline 1972, p . 270]
82 In [Euler 1750]. See also [Polya 1954a, pp. 35-43].
83 From Descartes' 'Rules for the Direction of the Mind' [1628] cited in Polya [1954a, p. 168] from which
Table 2 has been compiled. For a discussion of the inductive evidence for this and related conjectures, see
[Polya 1954a, pp. 168-189].
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Figure
Circle
Square
Rectangle 3:2
Semicircle
Rectangle 2:1
Equilateral Triangle
Isosceles right triangle

Perimeter
3.55
4.00
4.08
4.10
4.24
4.56
4.84

TABLE 2

Inductive evidence for
the isoperimetric theorem

Finally, we might mention Euler's famous result, mentioned in chapter three, that:

1 J_ _L JL _L 7t2

l2 + 2 2 + 3 2 + 4 2 + 5 2 + " - ~ 6

and hence ^(2) = %2/6. Euler's argument for this result, discussed below, was based on

analogy, rather than induction. However, Euler verified the result by calculating sums of

finite segments of this infinite series and comparing them to the value of n2/6 (see Table 3).

This technique works inductively, we acquire evidence that the infinite sum is correct by

checking that a sufficiently large finite segment of the series adds up to a value which

agrees sufficiently with our answer.

84 For further examples of inductive evidence in number theory, geometry and analysis, see [Polya 1954a, pp.
43-52,59-70,76,7,79-83,1954b, p. 3-4]. See also [Stewart 1987, p. 31,127] for a discussion of the inductive
evidence for the Mordell conjecture in algebraic geometry and the Bieberbach conjecture in geometric
function theory. On the role of inductive evidence in the classification of the finite simple groups see
[Franklin 1987, pp. 9-13].
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n

10
20
30
40
50
100
150

1.549
1.596
1.6121
1.6202
1.6251
1.6349
1.6382

7t2 A 1

6 V«2

0.095
0.048
0.032
0.024
0.019
0.009
0.006

TABLE 3

Inductive evidence for
Euler's theorem

All these examples seem to instantiate a common pattern. But what is that pattern?

The obvious thing to say is that a statement of universal form is confirmed by any of its

instances. Using the notation of the previous chapter, we might express this idea with the

following schema:

(I) a • Vx(Ox -» Tx) & P s (Oa & 4^) => pCa

from which we can derive:

(Fcr2 & Ga2) C VJC(F* -* Gx)

(Fan&Gan)CV;r(Fx->Gx)

Unfortunately, as is well known, the obvious thing to say is incorrect. For example, as

instance of (I) we have:

a s VJC(~G* -> ~F*) & p = (~Ga & ~Fa) => pCa

But then if we take a = Vx(Fx -» Gx) and P = (~Fcr & ~Ga) we can infer that:

(RP) (~Fa & ~Ga)CVx(Fx -> Gx)
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which means tliat an object which is neither F nor G confirms the universal statement that

all Fs are Gs. This is the well known paradox of the ravens, mentioned in the previous

chapter. To see how it applies in the mathematical case, let Vx be the predicate 'JC is an even

number greater than two' and let Gx be the predicate '* is the sum of two prime numbers'.

Then VX(FJC ~-» GJC) is Goldbach's conjecture - every even number greater than two is the

sum of two primes. (I) entails tliat this is confirmed by the instances F4 & G4, F6 & G6, F8

& G8 and so on. But we have just shown that according to (I), Goldbach's conjecture is

also confirmed by any statement of the form ~Fa & -Go, that is, by any object a which is

not an even number greater thaui 2 and not the sum of two primes. The irrational number

\jl is an example of such an object; it is neither an even number, nor is it the sum of two

primes. This observation provides evidence for Goldbach's conjecture according to (1). Any

other irrational number would do just as well of course, as would an infinite number of

other mathematical objects (the set of all real numbers, the unit circle, Kepler's 'urchin' and

so on). Worse, the mug of coffee on my desk is an object which is not an even number and

not the sum of two primes, so again, this observation also confirms Goldbach's conjecture

according to (I). Similar statements about desks, tables and chairs would also confirm it, for

the same reason. The problem with (I) is that it entails that all sorts of statements which

appear to be completely irrelevant to Goldbach's conjecture actually provide evidence for

it. But that is not all. Notice tliat just as y/2 is not the sum of two primes, it is not the sum of

three primes either. So %]2 is also an instance of the generalization 'all numbers not the

sum of three primes are not even numbers greater than two'. So according to (I) y/2

confirms not only Goldbach's conjecture, but also the conjecture that all even numbers

greater than two are the sum of three primes. In exactly the same way, it will confirm every
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hypothesis of the form 'every even number greater than two are the sum of n primes', for

any n. In general, (I) entails that any object which is not a natural number will provide us

with evidence fur an infinite number of incompatible hypotheses.

Another very famous problem with the induction schema (I) is Goodman's 'grue'

paradox. Let us consider a mathematical example. Above, I mentioned that Goldbach's

conjecture has been confirmed for all even numbers up to 4 • 1014. Let Fx and Gx be as

before and let Hx be the predicate 'x is the sum of three primes'. Suppose we then introduce

the predicate GRUE(X) defined by:

GRUE(x) <-> (Gx &x <:4 • 1014) v (Hx & x > 4 • 1014)

That is, a number is GRUE if and only if it is either less than or equal to 4 • 1014 and the sum

of two primes or greater than 4 • 1014 and the sum of three primes. It is not hard to show that

if«^4-101 4 then:

(1) F« & Gn = F« & GRUE(«)

That is, if n <. 4 • 1014, then the statement that n is F and G is equivalent to the statement that

n is F and GRUE.86 Now, as an instance of (I) we have:

(2) a s Vx(Fx -» GRUE(x)) & P s (F« & GRUE(n)) => (3Ca

so if we let a = Vx(Fx -» GRUE(x)) and pn = (Fw & G»), then we have, for all n < 4 • 1014:

(Fw & Gw)CVx(Fx - • GRUE(x))

and in particular:

83 See [Goodman 1983, pp. 81-83].
8 6 Suppose n < 4 • 1014. If (Fw & Gn) then we have Gn & n < 4 • 1014. By v-introduction, we have: (Gn
& n <, 4 • 1014) v (Hn & n > 4 • 1014). Hence n is GRUE and so we have (Fn & GRUE(n)). Conversely, if (Fn &
GRUE(«)) then we have In and (Gn & n <> 4 • 1014) v (On & n > 4 • 1014). But since, by our supposition., n <
4 • 1014, the second disjunct is false and we can infer that (Gn & n <. 4 • 1014). Hence, n is G and so we have
(Fn & Gn).
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F4 & G4 CVx(Fx -> GRUE(x))

F6 & G6 CVx(Fx -» GRUE(X))

F8 & G8 CVx(Fx -> GRUE(x))

F(4 • 1014) & G(4 • 1014) C Vx(Fx -> GRUE(x))

Hence, according to (I), all the inductive evidence we have for Goldbach's

conjecture is equally confirming evidence for the conjecture that every even number greater

than two is GRUE. But Goldbach's conjecture implies that every even number greater than

4 • 1014 is the sum of two primes, while the latter conjecture implies that every even number

greater than 4 • 1014 is the sum of three primes. In other words, our evidence confirms

mutually incompatible hypotheses. Of course, we can replace Hx in the definition of

GRUE(x) with any thing we like ('x is the sum of four primes', 'x is not divisible by any

prime number', 'x is the largest city in Australia' and so on) and then (I) will imply that the

inductive evidence which supports Goldbach's conjecture also provides us with evidence

that every even number greater than 4 • 1014 has any of these properties too.

These difficulties should not be taken to imply that a mathematical statement can

never be confirmed by inductive evidence of the kind we have been discussing. Rather,

they show that our initial statement of the relevant rule (I) needs to be reformulated. I shall

say something about how we might approach this problem in the final section.

1 1 j :,•;•!:
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5.2. ANALOGY

Another important kind of non-deductive evidence in mathematics is based on

analogy. Here we obtain evidence that an object (or class of objects) has a certain property

by arguing that it is analogous to some other object (or class of objects) known to have the

property. The most famous example is Euler's derivation of sum of the series:

, 1 1 1 1
1 + - + - + —+ — + ...

4 9 16 25

Euler found the sum of this series by means of an argument based on an analogy with

polynomial equations. To explain Euler's reasoning we need to review some facts about

such equations. A polynomial equation has the general form:

(1) a0 +a3x3 +... =0

An H-th degree polynomial equation has n roots; ri, r2, ii, ..., rn. Furthermore, it can be

shown that any such polynomial can be factorised in the following way:88

(2) a

That is, we can express the polynomial as a product of n linear factors, with a factor

corresponding to each root. Now suppose our polynomial equation is of the form:

(3) 2na0 + a2x
2 + a4x4 + a6x

6 + + a2nx
2n = 0

Such an equation of degree In will have 2« roots of the form: ri, -ri , r2, -ii, ...rn, -rn. By

(2) the polynomial on the left hand side of this equation can be written as a product of In

linear factors:

87 Eu le r ' s a rgument has been widely discussed. See for example [Polya 1954a, pp. 17-21,30-4, Putnam 1975c,
pp. 67-8, Steiner 1975, Kitcher 1984, pp. 196-7 Kline 1972, pp. 448-9, Franklin 1987, p. 4, Brown 1999, pp.
168-70]. Euler's original argument and his response to critics such as Daniel Bernoulli can be found in his
Opera Omnia [1911-36, series 1, vol. 8, p. 168 and vol. 14, pp. 73-86,138-55].
88 Provided only that ao* 0.
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a2x
2 V II Y

_ 1
. 1 — •

'i A (~ri)A '2

....|i-ih—L

r 2 A r2. rnA V

Writing out the last line again, we have:

( 4 ) a0 + a 2 x 2 + aAxA + + a 2"
2n

So, for example a fourth degree equation of the form:

a4jc
4 + a2x

2 +a0 = 0

has four roots, ri, -r i , T2, -Tz- Hence, by (4) we have:

(5) a4x
4 + a2x

2 + aQ=ac

The reader may care to verify, for example, that the equation x - \3x + 36 = 0 , which has

the four roots 2, -2 , 3, -3 can indeed be written in the form 36

multiplying out the right hand side of equation (5), we obtain:

.Now,

a4x4 + a2x
2 + a0

. x2 x2 x4

2 2 2
1

-2M2

Comparing the coefficients of x2 on the left and right hand sides of this equation, we obtain

the relation:

( 1 1
^ + ^

In fact, this relationship between the roots and coefficients is quite general By comparing

the coefficients of x2 on the left and right hand side of (4), we can deduce that for an

arbitrary polynomial of the form (3), we have:

(6)
1 1 1 1

We can now explain Euler's argument. Euler begins with the power series expansion of the

function sin(x):

* 1 3-2-1 5-4- 3-2-1 7-6---3-2-1

Euler proposes to think of this as a polynomial of infinite degree. Support for this analogy

comes from the fact the equation has an infinite number of roots, corresponding to the

values of x for which sin(x) = 0, namely, 0, TC, -TC, 2K, -2TC, 3%, -3TI and so on. Dividing the

equation through by x, we obtain:

sin(x)
= 1 -

3-2-1 5-4-3-2-1 7-6---3-2-1

hi the same way, we can think of this as an infinite polynomial with roots TC, -TC, 2TI, -2n, 3%,

-37t....Notice that the expression on the right hand side of this equation has the form of (3)

above. In this case we have ao = 1, a2 = - T - T - T and so on. By analogy with (4) then, Euler

concludes that the infinite polynomial on the right can be expressed as an infinite product

of factors, with one factor corresponding to each double root:
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(7)
sin(x)

\ — 1 -
71 (2*y

1- 1 -
(Anf

71 9TI
 : 1 -

16TT 2

But then by equation (6) - the relation between the roots and coefficient of x2 - we have:

-a2

1
2-3

1 1 1 1

i 1 1
y (2TX)2 + (3TC)2 + (4TI)2

1 1 1 1i i
V + 4 T C 2 + 9TI2 ' 16TI2

Multiplying through by n2, we obtain the conclusion:

(8)
71'

4 9 16 25

Euler's argument is ingenious. It does not amount to a proof however, since Euler could

give no rigorous argument for the identity (7) - his evidence is based entirely on the

analogy with the case of (4) for ordinary finite polynomials. Nonetheless, as mentioned

above, Euler was able to verify his solution by calculation. Furthermore, he used the same

technique to derive further results, such as:

n_ = JL A. JL 1
8 l 2 + 3 2 + 5 2 + 7 2

JL = i_ _L _L JL
90 ~ l 4 + 2 4 + 3 4 + 5 4 + ' ; "

which could also be checked by calculation. Euler was also able to use his technique to

derive a result obtained independently89 by Leibniz:

(9)
7C
-
4

1 1 1
+ _ _ _

3 5 7

Hence Euler's technique could be used to establish a known resist. Euler comments: '[f]or

our method, which may appear to some as not reliable enough, a great confirmation here

comes to light. Therefore, we should not doubt at all of the other things which are derived

by the same method'.90 Euler eventually found a proof of the sum given by (8) along more

usual lines, which was accepted as a rigorous demonstration. Again, this independent

verification of a consequence of Euler's method provided further evidence for the analogy

and the results obtained from it.

Newton also made use of analogical evidence in his work on the calculus. In order

to differentiate or integrate certain functions, Newton would use infinite series

representations and then differentiate or integrate term by term.91 For example, when faced

with the problem of integrating a function such as:

y==
l

Newton starts by expanding the function as a power series:

(10)

and then integrates term by term, obtaining:

i - = l-x2+x4-x6+..

fir, 3 5 7

89 Though not of course rigorously, at least by modem standards. See chapter three, section five.
90 Cited in [Polya 1954a, p. 21].
91 See [Kline 1972, pp. 360-1, Kitcher 1984, pp. 233-4].
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But how did Newton obtain the infinite series representations of functions like that in (10)?

Here he made use of the binomial theorem:

(BT)

which had long be known to hold when n is any positive whole number.92 So for example,

to evaluate (\+x2f we can set n = 2 and substitute x2 for x in (BT). We then obtain:

2 ) 2+ x2)

which we can check is correct by multiplying out the right hand side. Now we can write our

difficult function in the form:

1
y=~ 2

•X

\ - l

By analogy with (BT) then, we ought to have:

1 - l

2* * 1

.4 (-6)

2-T 3-2-1 +

which is the series in (10). In the same way, if we want to differentiate or integrate the

function:

.1/2

92 See [Kline 1972, pp. 272-4] for a discussion of the early history of the binomial theorem.
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Then again, by analogy with (BT) we have:

2-1 3-2-1

>+m
8J3-2-14J2-1

, 1 1 2 1 3
= 1 +—A:—x + — x +.

2 8 16

and we can then differentiate or integrate the function term by term. Newton became

convinced that (BT) is true when n is any negative number or fraction, but gave no proof.

His evidence was based partly on the analogy with the case when n is a positive whole

number and partly on inductive verification of the result for special cases. For example, he

multiplied out many terms in the product of the above series with itself and verified that the

result does appear to yield (1+x).93

Mathematicians often appeal to the proof (or disproof) of an analogous theorem as

evidence for (or against) an unproved conjecture. For example, one of the reasons many

mathematicians are suspicious of the inductive evidence for the Riemann hypothesis is that

a related conjecture concerning the rate of growth of the Mobius function (see next section)

which was supported by a similarly huge amount of inductive evidence, was eventually

proved false.94 On the other hand, in 1947 Andre Weil considered various generalizations

of Riemann's zeta function and conjectured that the analogue of the Riemann hypothesis

holds for these zeta functions. The Weil conjectures were eventually proved in 1975 and

93 See [Kline 1972, p. 273, Kitcher 194, p. 234]. Euler also appears to have accepted the generalized binomial
theorem on similar grounds; by analogy with the case where n is a positive whole number and by verification
of the series obtained in particular cases by multiplication. See [Euler 1770, pp. 120-6].
94 This was the so calledMertens Conjecture. See [Devlin 1988, pp. 216-221, Stewart 1984, p. 126].



306

many mathematicians have taken this as providing strong evidence that the Riemann

hypothesis itself is also true.95

5.3 STATISTICS

In more recent years, a fruitful source of evidence for conjectures in number theory

has been based on an analogy between certain properties of the natural numbers and the

properties of random sequences studied by probability theory. Many of the special

functions studied in number theory, such as TE(H) - the number of primes less than n and

Euler's function (p(«) - the number of integers less than n which have no common factor

with it, yield sequences which appear to be random in the statistical sense. Hence

probability theory can be used to cast some light on the properties of such functions. This

analogy has developed into a completely rigorous branch of mathematics, known as

probabilistic number theory?6 The analogy can also be used to provide various plausibility

arguments for unproved conjectures. For example, the twin-primes conjecture has been

argued for by noting that the occurrence of twin-primes in the sequence of primes appears

to be random. This suggests that if we pick a number x at random, the probability that it is

prime is independent of the probability that x + 2 is prime. Now the prime number theorem

implies that if n is large enough then the number of primes less than n is about «/log(«).

Hence, if we choose a number x at random between 0 and n, the probability that x is prime

will be approximately:

n/log(«) 1

n

95 See [Edwards 1974, p. 298. Franklin 1987, p . 6 ] . Wei l ' s conjectures were themselves supported by var ious
analogous theorems in topology, before they were proved. See [Stewart 1984, pp . 32-3] for more information.
96 See [Hardy and Wright 1979, Kac 1959, Kubilius 1964].
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Thus, if the probability that x is prime and the probability that x + 2 is prime are

independent of each other, the probability that both x and x + 2 are prime, will be the

product of these independent probabilities:

1 1 1
(«) log(« + 2) log(«)log(« +

But this function approaches l/log(M)2 asymptotically. That is:

1

B-+OD

and therefore the probability that both x and x + 2 are prime is approximately equal to

l/log(n)2. In other words, the expected number of twin-primes between 0 and n is

approximately:

n

Since this fraction gets infinitely large as n goes to infinity, we can conclude that there are

an infinite number of twin-primes in all.

A similar argument has been suggested in support of the Riemann hypothesis.

Suppose we toss a fair coin N times. For large values of N we would expect to find roughly

equal numbers of heads and tails, although in any particular trial would not expect the

numbers to be exactly equal. In fact, it can be shown that on the average, the difference

between the number of heads and the number of tails is JN. We can express this fact

precisely as follows:

97 For further details of this . ment see [Caldwell 2000]. Caldwell also shows h o w w e can construct similar
plausibility arguments for Goldbach 's conjecture and many other conjectures concerning primes. See also
[Hardy and Wright 1979, 22.20, Putnam 1975c, p . 68-9, Davis and Hersh 1981, p 364]
98 This argument was first suggested b y Denjoy [see Edwards 1974, pp . 268-9] and by Churchhouse and
G o o d [1968]. See also [Franklin 1987, pp. 6-7, Davis and Hersh 1981 , p p . 364-7].
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(11) ForallNandanye>0,|NUMN(H)-NUMN(T)|<N1/2+E

where NUMN(H) is the number of heads and NUMN(T) the number of tails obtained in N

tosses. Consider any random sequence of heads and tails obtained in a trial ofN tosses. For

example:

H H T T H H T T H H T H H T H T H H H H I I T H H T H H H H T

Suppose we introduce a function s(x) which takes the value 1 if there is a H at position x in

this sequence and takes the value -1 if we find a T at position x in the sequence. The

function s(x) then replaces every H with a 1 and every T with a -1 so that we get the

sequence:

1 1 - 1 - 1 1 1 - 1 - 1 1 1 - 1 1 1 - 1 1 - 1 1 1 1 1 1 - 1 1 1 - 1 1 1 1 1 - 1

Now suppose that we add up all the values of s(x) from 1 to N. Obviously the result will be

equal to the number of heads in the original sequence minus the number of tails. So if we

introduce the function:

sum(N)=

Then we have:

sum(N) - NUMN(H) - NUMN(T)

Which allows us to rewrite (11) as:

(12) For all N and any e > 0, | sum(N) | < N1/2+ 8

and this will hold for any function sum(N) which is defined in this way in terms of some

random sequence of two equiprobable independent events.

Now consider the Mdbius function /<«), defined to be 0,1, or -1 , if in the prime

factorization of n there is a repeated factor, an even number of factors or an odd number of
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99factors respectively. If we look at the first sixteen values of ju(ri), we discover the

sequence:

1 - 1 - 1 0 - 1 1 -100 1 - 1 0 - 1 1 1 0

This sequence of Is, Os and - I s is apparently random (see also table four). If we calculate a

large number of further values of the function /4n), we find this random pattern continued;

Is and - I s occurring with roughly equal probability. Furthermore, it seems likely that the

successive values of (iii) are independent of each other, since knowing the value of /J(«)

does not seem to give us any information about the value of fj(n+\). Hence, if we define the

function M(N) as follows:

71=1

Tl/2+e

Then by analogy with (12), we ought to have:

(13) For any N and any e > 0, | M(N) \ < N1

But (13) is in fact equivalent to the Riemann hypothesis! In this way, the statistical analogy

provides us with at least a plausible argument for the truth of Riemann's conjecture.

5.4. VERIFICATION OF A CONSEQUENCE

Perhaps the most common form of non-deductive evidence for a mathematical

statement is obtained by the verification of one or more of its consequences. We have

already seen this kind of evidence at work in the justification of axioms and definitions.

Verification of a consequence can equally provide evidence for lower level conjectures.

99 We treat n — 1 as a special case; by definition ju(l) - 1.
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n

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Factors

1
2
3
2-2
5
2-3
7

2-2-2
3-3
2-5
11

2-2-3
13
2-7
3-5

2-2-2-2

m
_ i

~i
-i
0
-1
1

^1
0
0
1

-1
0
^1
1

—.JL_-
0

TABLE 4

Values of the Mo'bius Function

We have come across several examples already. Recall that Euler argued for his

conjecture on polyhedra by showing that it implies a known result; that there are exactly

five regular polyhedra. In the same way, identities such as (7) above, which Euler obtained

by means of the analogy with polynomials, are supported by showing that they imply

known results such as Leibniz' identity (9) T = 1 ' T + T " ' 7 + F u r t h e r support for (7)

comes from Euler's independent proof of the consequence (8) JL + + +

We also saw how Newton obtained evidence for the generalized binomial theorem by

verification of some of its consequences, by checking for example that it implies the right

answer for the expansion of (l+x)>A . Similar evidence can be found for the Riemann

hypothesis; we have already mentioned the fact that it implies the prime number theorem
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for example, which was proved independently by Hadamard and Poussin.100 Another

consequence of the Riemann hypothesis was established by Hardy in 1914; that there are

infinitely many zeros of the zeta function of the form V2 + iy.

We can also think of induction and analogy as special cases of this form of non-

deductive evidence. A conjecture of the form 'all Fs are Gs' entails that if a is F, then a is

G. So given some object a which is F, establishing that a is also G verifies this

consequence of the conjecture and hence confirms it. On the other hand, since the

generalized binomial theorem implies the restricted binomial theorem for positive integer

exponents, we can think of Newton's analogical evidence for the former as being derived

from the latter known consequence of it. In the same way, since Euler's identities for

'infinite polynomials' imply the known results for finite polynomials as a special case, and

so we can think of his analogy as providing evidence for those identities via the verification

these consequences of them.

I would like to mention one final example, which played an important role in the

acceptance of complex numbers by the mathematical community. By examining the series

expansions of e\ sinx and cosx, Euler obtained the fundamental identity relating the

complex numbers to the exponential and trigonometric functions:

ei0 =cos0 + /sin8

from which, if we let 9 = it, we obtain the celebrated result:

Now from (14) we can derive the identity known as De Moivre 's theorem:

101 See [Kline 1972, p. 831, Edwards 174, pp. 226-9].
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(15) (cos 9 + / sin 0)" = cos «9+/ sin «9

This was an important result for the developing theory of complex numbers because it has

implications concerning properties of the trigonometric functions which do not involve

complex numbers at all; properties which can therefore be verified independently. In

particular, we can use De Moivre's theorem to obtain the standard expressions for the sine

or cosine of any given multiple of an angle. For example, if we set n = 2 in (15) we have:

(16) (cos 8 + / sin 8)2= cos 29+/sin 29

Multiplying out the left hand side, we have:

(17) /sin0)2
= (cos 9)2 + 2 cos 8/ sin 9 + (/sin9)2

= cos29 + 2/ sin 9cos8 - sin2 9

= (cos28 - sin2 9)+ /(2sin 9 cos9)

By comparing the real and imaginary parts of (16) and (17), we obtain the identities:

cos 29 = cos2 9 - sin2 9

sin 29 = 2sin9cos9

which can of course be proved without the use of complex numbers, by elementary

trigonometry. By taking « = 3, 4, 5,.... in (15) and comparing real and imaginary parts of

the resulting expressions, we can also derive the known trigonometric identities for sin39,

cos39, sin40, cos40 and so on. The verification of these consequences not only provided

some support for De Moivre's theorem itself, but also indirectly provided evidence for the

existence of complex numbers, by showing how they can be used to explain, in a

systematic way, various known properties of the trigonometric functions.102

102
This example is discussed by Frege in the Grundlagen in the context of his critique of formalism [Frege

1884, §97]. See also [Dummett 1991, pp. 178;284]. For more information on Euler's identity, De Moivre's
theorem and the history of complex numbers see [Stewart 1987, p. 119-130, Kline 1972, pp. 253-4408-
ll;628-32, Crossley 1980, pp. 131-232 and Nagel 1979].

I

i

313

5.5 VISUALIZATION

The final source of non-deductive evidence I would like to discuss is that provided

by visualization. Here we acquire evidence for a statement by the use of the visual

imagination, perhaps aided with a picture or diagram. I described one example in section

four above, the derivation of the sum of the first n natural numbers by means of the

diagram in figure I.103 This technique was frequently used by the Pythagoreans; they

represented numbers as collections of dots or pebbles and classified them according to the

various shapes that could be made with the dots.104 So for example, they called the numbers

1, 3, 6, 10 ... triangular numbers because the dots can be arranged into the shape of a

triangle, while the numbers 1, 4, 9, 16, ... were square numbers because the dots could be

arranged into squares (see figure 2).

Figure 2
Triangular and Square

Numbers

See [Giaquinto 1993, pp. 386-7] for an alternative visual demonstration of this theorem
104 See [Kline 1972, pp. 28-34].
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From these geometrical arrangements of dots, the Pythagoreans were able to obtain

some simple properties of the natural numbers. For example, looking at figure 3a, it is

obvious that the triangular numbers form the sequence 1,1 + 2, (1 + 2) + 35 (1 + 2 + 3) + 4

... which is to say that the wth triangular number represents the sum of the first n natural

numbers. Looking at figure 3b, on the other hand, it becomes clear that the square numbers

form the sequence, 1, 1 + 3, (1 + 3) + 5, (1 + 3 + 5) + 7... which is to say that the wth

square number represents the sum of the first n odd numbers. That is:

Figure 3 a Figure 3b

My favourite example of visual reasoning in elementary arithmetic is the

following.105 Why is that two even numbers make an even number, ah even and an odd

number make an odd number and two even numbers make an even number? If we imagine

the even numbers as rectangular arrays of squares, two squares high and any number of

squares long, then the odd numbers will be represented by rectangular arrays with one extra

square on the end. If we then think of addition as the result of putting two such arrays of

1051 discovered this example in [Sawyer 1964, pp. 8-11].
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squares together, we can see immediately why these facts about the addition of even and

odd numbers must hold (see figure 4).
106

Even numbers

Odd numbers

• d odd + odd = even

even + even = even

even + odd = odd

Figure 4
Even and odd

numbers

The use of visual reasoning is most readily apparent in geometry of course. Imagine

a triangle oriented so that the longest side is the base b. Now draw in the perpendicular

from the upper vertex to the base; this represents the height h of the triangle. If you then

embed the triangle in a rectangle of the same base and height, we get a figure with twice the

area of the original triangle. Since the area of the rectangle is bxh, the area of the triangle

must be Viibxh). (see figure 5).

As another example, consider the following claim:

106 It might be objected that this kind of reasoning cannot provide us with knowledge of general theorems in
arithmetic, because any picture or visual image will be of some particular finite number of dots or squares and
will therefore not apply to all numbers. For a response to this objection see [Giaquinto 1993].

HiU 1
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It is impossible to completely cover a circle (so that there are no gaps) with a finite number

of non-overlapping smaller circles.

Most people find this claim obviously true on the basis of visual intuition, although it might

be quite difficult to prove (see figure 6).107

Area= Vi

<r- b
v u

bxh

N
Figure 5

The area of a
triangle

Figure 6
Covering a circle

We have already mentioned an example of visual reasoning in analysis; the

'geometric' argument for the intermediate value theorem. If we imagine any continuous

curve which is negative at point a and positive at point b, it just seems obvious that the

curve must cross the x-axis at some point (figure 7). Here is another example (figure 8).

Imagine a unit square. Now divide it vertically in half, making two rectangles. Now

imagine shading in the left hand rectangle. The area of the shaded rectangle is obviously

equally to half the original area. Now take the unshaded rectangle and divide that in half

with a horizontal line, making two squares. The area of each of these squares is obviously

equal to one quarter of the original area. If we shade in the lower square, then the total area

of the shaded region is equal to /4 + V*.

107 This example was described to me by Marcus Giaquinto, in conversation. See also [Giaquinto 1992].
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!;:••: I :

Figure 7
The intermediate value theorem

Now consider the upper unshaded square and divide it in half with a vertical line, making

two smaller rectangles again. If we shade in the right hand rectangle, we will now have a

total shaded area equal to Vz + V* + Vs. We can imagine repeating this process ad infinitum.

Clearly the area of the shaded region increases slightly at each stage, and covers more and

more of the original square, but equally clearly, the shaded region can never exceed the

area of the original square. From this we can infer that:

1 1 1 1
— + — + - + — + ... = 1
2 4 8 16

sliSilsiSlii

Sttii

Si

.•^flS1-*'?-:'^^".'

•rV.-:-'>"-:v4''-S"-;

Figure 8



318

Of course, it is well known to mathematicians that visual reasoning, especially in

analysis can be misleading. Visual intuition may also suggest that a continuous function

ought to be differentiable at all but a finite number of points; the existence of continuous

but nowhere differentiable functions (functions which are not fully visualizable of course)

shows that here our intuition has led us astray.

But it would be a mistake to infer from this that visualization cannot provide us with

any evidence for conjectures in analysis. Ordinary perception can sometimes be misleading

too, but that does not prevent it from being a source of evidence. Rigorous symbolic

reasoning is no doubt a more reliable source of evidence for theorems in analysis than

visualization, but it is not infallible either - witness the subtle error that crept into Cauchy's

attempted proof that a convergent series of continuous functions is continuous.

In 'Epistemology of Visual Thinking in Elementary Real Analysis' [1994] Marcus

Giaquinto argues that in analysis, unlike the case of geometry and number theory, the

unreliability of visualization prevents it from being a route to knowledge of analytic

theorems of a certain level of generality, although he does suggest that restricted theorems

can be known in this way. But even if visualization cannot provide us with knowledge of

theorems, this would not seem to prevent it from at least providing a defeasible kind

evidence for conjectures in analysis.

A visual argument does not rigorously demonstrate a theorem, but it can make it

more plausible; the visual demonstration of the intermediate value theorem is a case in

point. Furthermore, although visualization in mathematics can sometimes mislead us, as

our knowledge and experience of a mathematical field improves, we gain a better

understanding of when visualization is reliable and when it is not. As Giaquinto remarks:
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weThere is no doubt that we can be fooled by our visual intuitions. The practical moral is not that

should avoid visualizing in analysis, but that we should try to improve our grasp of the conditions

under which visualization is misleading...With experience in analysis one surely develops a more

discriminating attitude to the promptings of one's visual imagination; thus visualizing becomes more

useful with expertise, not less.

[Giaquinto 1994, p. 812]

Visualization in mathematics is not infallible and is certainly defeasible in the light

of theoretical knowledge. But exactly the same point could be made with respect to

observational evidence in the natural sciences. That being so, the fact that visualization can

sometimes mislead us does not prevent it from being an important source of non-deductive

evidence in mathematics.108

6. PROBLEMS

To a first approximation, the account of the development of mathematics which I

have been building up to can be stated as follows. We begin with a body of mathematical

results - some basic facts of geometry or arithmetic for example - which are initially

accepted by appeal to the various kinds of non-deductive evidence mentioned above or on

empirical or perceptual grounds. Axioms may then be introduced in order to systematize

such a body of results. We saw how this account applies to the introduction of axioms for

geometry, number theory and set theory. In each case we have a set of accepted results and

we introduce axioms which will enable us to derive those results from a few basic

principles in a systematic way. The axioms are justified by showing that they entail the

108 See also [Brown 1997,1999, pp. 25-45] for a vigorous defence of the thesis that visual reasoning can
provide us with evidence for mathematical statements and is n v \ simply a heuristic or pedagogical device.
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results to be systematized. At the same time, some of the accepted results will be given a

more rigorous justification.

We can explain this by making a distinction between a proof and a derivation. A

derivation is an argument which serves to justify its premises, rather than its conclusion, by

showing how those premises entail a result that we already accept.109 An example would be

Peano's derivation of the numerical equations and laws from his axioms for number

theory. This derivation initially provided evidence for the axioms, rather than the equations

and laws, which had come to be accepted on other, non-deductive grounds. As the premises

of a derivation become better and better supported by this kind of evidence, the premises

may come to be accepted as true. The reasoning involved in the derivation then serves to

establish its conclusion, since it shows that the conclusion can be deduced from premises

we now take to be firmly established. In this way, a derivation can become a proof. The

original reasoning which supported the conclusion of the derivation may then be

abandoned. So for example, once Peano's axioms had become accepted, the original non-

deductive, quasi-empirical justification for the numerical equations and laws is replaced by

the axiomatic proof.

In the same way, Zermelo's deduction of the well-ordering theorem from the axiom

of choice was initially taken by many mathematicians to show only that the axiom of

choice implies the well-ordering theorem. But of course, the fact that the axiom implies this

result can be taken as providing a partial justification for it. That, is Zermelo's argument

was initially taken to be a derivation, rather than a proof. As the power of the axiom of

choice as a tool for deriving important results became clearer, the axiom gradually came to

109 This kind of argument was recognized by Russell;
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be accepted as true. Once that had happened, Zermelo's argument became a proof of the

well-ordering theorem.110

In general, new first principles, axioms and definitions are adopted on the grounds

that they allow us to give systematic and rigorous proofs of a prior body of accepted results.

The attempt to construct such a systematic theory may reveal that some of our accepted

results need to be rejected or more carefully stated. In this way, our understanding of those

results is improved and more rigorous justifications for them provided. This is the process

of reflective equilibrium at work in mathematics. We aim to construct our theory which

accounts for as many of our beliefs as possible, although in the process, we may discover

that some of those beliefs need to be abandoned.

Of course, once this has been done, the new principles, axioms and definitions may

be used to deduce new results, not previously accepted. The mathematicians who came

after Euclid, for example, used his axioms to establish many new geometrical theorems. In

the same way, once the axiom of choice had been accepted, it could be used to prove not

only the well-ordering theorem, but many new theorems in set theory. In this way,

genuinely new knowledge is added to the set of accepted results.

But the process of reflective equilibrium need not end there. We will now have a

new set of accepted results on which the process can start to work again. It is in this way

that mathematical knowledge is continually extended and improved. Beginning perhaps,

110 In Kitcher's framework, we can think of a derivation as a fourth kind of member of the set of accepted
reasonings; an argument which is neither a proof, an unrigorous argument or a non-deductive argument, since
all of these serve to establish their conclusions, rather than their premises. The derivation supports its
premises by showing that they entail a statement which is itself supported by an independent argument, an
accepted reasoning which is of one of the latter three kinds. There is then another kind of change which can
occur in the set of accepted reasonings; a derivation may become a proof and the original reasoning which
supported its conclusion is dropped from the set of accepted reasonings.
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from a small collection of empirically justified mathematics, this iterative process has led to

the full body of contemporary abstract mathematics.

It is a consequence of this account that we have something like a hypothetico-

deductive justification of axioms in mathematics. Just as in science, we confirm a

hypothesis or law by deriving empirically testable consequences from it, we confirm

mathematical axioms by deriving known mathematical consequences from them.

The problem with this account, and the reason it can only be a first approximation

to an adequate description of mathematical evidence, should now be readily apparent. For I

argued in chapter four that the hypothetico-deductive account of confirmation is

inadequate; logical entailment alone is not sufficient for confirmation. All the problems

with the H-D account discussed in chapter four apply equally to the case of mathematics.

The fact that a proposed axiom entails an already accepted result is not enough for that

axiom to be confirmed by it. Suppose I were to propose the following new axiom for

arithmetic:

(A) 2 + 2 = 4 - » ( F & Z , )

where F stands for Fermat's Last Theorem and L for the associative law of addition. Given

that we accept the antecedent, (A) entails a known result (L) and in addition we get a neat

three line proof of Fermat's Last Theorem. Of course we could replace L in (A) with any

number of accepted statements of number theory, including statements which we have good

reason to believe are true, but which cannot be proved on the basis of the existing axioms.

Our proposed axiom will then entail any number of statements for which we have a great

deal of independent evidence. But surely none of this would be sufficient to justify the

axiom.
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Given any derivation of a known result from a set of axioms, we can add any

number of arbitrary statements to the set and the derivation will still go through. Hence if

the original derivation served to confirm its premises, so will the new derivation. This is

just the problem of irrelevant conjunction again. Of course, we can make the same moves

here that we considered before; we may require the premises of the derivation to be

consistent and for them to contain no subset of statements which entail the conclusion. But

we have already seen that this is not enough. Instead of (A) above, we could introduce the

axiom (B):

(B) F&(F->L)

This axiom allows us to derive any number of known results L, it is consistent and each

conjunct is indispensable in the derivation of I . As a bonus, (B) also implies Fermat's Last

Theorem. But clearly such a derivation of L would not confirm (B) - in particular, it would

not provide us with any evidence for Fermat's Last Theorem.

We have seen that this sort of problem is a general one for the hypothetico-

deductive account of confirmation. In chapter four, I argued that the solution to this

problem may be to replace the H-D account with an explanation criterion for confirmation:

if a deduction of a certain known result from a hypothesis explains that result, then that

result counts as evidence for the hypothesis.

On this account, what is wrong with axiom (A) is not that it is not self-evident or

knowable a priori. Rather, the problem is that it does net explain its consequences. In

particular, it does not provide even a possible explanation of Fermat's Last Theorem. The

same applies to axiom (B). If we take L to be the associative law of addition, it is clear that

111 Compare this to the derivation of (U') in chapter four, section three.
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the axiom does not explain why the law is true and that is why the derivation of L from (B)

does not provide any confirmation of (B).

Axioms in mathematics are justified by showing not merely that they entail the

body of results being systematized, but by showing that they provide explanations of those

results. This means that we must have something like inference to the best explanation in

mathematics. If this is right then a theory of mathematical explanation will be needed in

giving an account of the nature of mathematical evidence.

We can arrive at the same conclusion by considering the role of non-deductive

evidence in mathematics. I have argued that this kind of evidence plays a crucial role in the

development of mathematics, by providing the main source of independent evidence for the

statements which serve to justify axioms and other first principles. However, the summary

account of the various kinds of non-deductive evidence given in section five will not quite

do as it stands. We saw there that one important kind of non-deductive evidence -

verification of a consequence - applies not only to the justification of axioms, but also to

the justification of lower level mathematical conjectures. Clearly then, the problems

described above with respect to the justification of axioms will also apply here; the fact that

a conjecture entails a known result is not sufficient for it to be confirmed by that result. To

the extent that induction, analogy and so on can also be thought of as special cases of

verification of a consequence, my account of these forms of non-deductive evidence will

face many of the same difficulties. Again, the solution may be to say that a conjecture must

explain its consequences for it to be confirmed by them.

Consider the problems with the induction schema mentioned towards the end of

section 5.1. We found that our initial characterisation of the way in which a universal
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statement is confirmed by its instances had unintended consequences; that statements

concerning objects which are not even numbers and not the sum of two primes (irrational

numbers, equilateral triangles, coffee mugs) provide us with evidence for Goldbach's

conjecture for example.

By applying Goodman's 'grue' construction, we also saw that the numerical

evidence for Goldbach's conjecture equally confirms an infinite number of other, mutually

inconsistent hypotheses. But notice that Goldbach's conjecture cannot be used to explain

why certain things which are not even numbers are not the sum of two primes. We could

then argue that this is why the latter observation does not confirm Goldbach's conjecture;

only those statements which are explained by a hypothesis can confirm it. In the same way,

we could argue that the conjecture all even numbers greater than two are the sum of two

primes provides a better explanation of the numerical evidence than that provided by the

alternative hypotheses of the form all even numbers greater than two are GRUE and that is

why we take the numerical evidence to support the first conjecture and not the second.

Clearly, in order to make these ideas more precise, we will need an account of what it

means to explain a mathematical statement.

The existence of non-deductive evidence in mathematics raises an interesting

further question. If we have all this evidence for mathematical statements, evidence of a

kind which seems to satisfy other scientists, why do we need proofs at all? An answer to

this question which seems promising is to say that we seek proofs in mathematics because

they provide us with better explanations of the mathematical facts. The numerical evidence

for the Riemann hypothesis for example, provides us at most with some reason for thinking

K,
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that it is true, but a proof would give us an insight into why it is true. It is this concept of an

explanatory proof which we must now investigate in the final chapter.
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CHAPTER SIX

MATHEMATICAL EXPLANATION

1. EXPLANATORY PROOFS

Like other scientists, mathematicians aim to do more than simply accumulate truths.

Where possible, they also seek to achieve a better understanding of their subject matter.

That is, they look for explanations of the facts under investigation.

There is a common perception amongst mathematicians that some proofs are more

explanatory than others. Some proofs of a theorem p, show not only thatp is true, but also

reveal to some extent, why p is true. That a proof provides an explanation of a theorem is

considered an epistemic virtue and that a proof is non-explanatory a failing, though not one

which necessarily detracts from the certainty of the theorem. This is why mathematicians

often provide new proofs of old theorems. It may not be the truth of the old theorem that is

in question, rather the mathematician may be attempting to give a better explanation of an

already established result.

For example, the Pythagorean theorem on right-angled triangles has been proved in

hundreds of different ways. E.S Loomis published a book listing 370 such proofs.1 Only a

few of these proofs however, provide anything like an explanation of why the theorem

holds. We will consider one explanatory proof of the theorem in what follows.

Further examples of the distinction between explanatory and non-explanatory

proofs can be given. Equations of degree 1, 2, 3 and 4 can be solved by an exact formula,

1 See [Loomis 1968].
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but the equation of degree 5, the quintic cannot. This fact seems to cry out for an

explanation. What is so special about the number five? Abel gave the first proof of the

insolubility of the quintic in 1824, but it was not until the group-theoretic proof of Galois

that the result was given an explanation.2

Another example of the distinction, due to Mark Steiner, is provided by the prime

number theorem, mentioned in the previous chapter. Recall that the first proofs of this

theorem made use of sophisticated techniques of complex analysis and mat an alternative

'elementary' proof was later given by Erdos. This proof is called elementary, not because it

fails to be long and complicated, but because it uses only arithmetical and combinatorial

notions and does not require the theory of complex analysis. Despite this, the analytic

proofs are considered by many mathematicians to be more explanatory, since they provide

a much better estimate for given n, of how much n(n) differs from «/log(»).3

The existence of explanations in mathematics suggests a philosophical question;

what is the difference between an explanatory and a non-explanatory proof? Obviously this

problem is related to the more general issue of explanation in the philosophy of science.

Perhaps we can look to the various accounts of scientific explanation offered by

philosophers working in this field, for an answer to our question.

Many such accounts however, are clearly not going to work. Consider Hempel's

deductive-nomological account, according to which to explain something is to deduce a

sentence describing it from a set of sentences which must contain at least one general law.4

This account of scientific explanation fails spectacularly in the mathematical case, since all

mathematical proofs can be thought of as D-N arguments A popular type of solution to the

2 See [Kline 1972, pp 752-771, Stewart 1987, pp. 80-92].
3 See [Steiner 1978, pg 137].
4 See [Hempel 1965, chapters 9,10,12; 1966, pp. 47-69; Salmon 1989, pp. 12-25].
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difficulties which face the 1>N account is to invoke causal notions. To explain something

on such an account is to cite one or more of its causes.5 Such accounts seems inappropriate

for mathematics, given the assumption that mathematical objects are causally inert.

Accounts of explanation which make use of modal notions or ideas from probability theory

and statistics seem similarly inappropriate.

It may be that mathematical explanation is a special variety of explanation, bearing

only a family resemblance to other forms of scientific explanation. Presumably however, it

would be a good thing to have a unified account of scientific explanation; one which

applied both to empirical science and mathematics. This suggests that philosophers of

science, who want to give an account of scientific explanation, need to pay attention to

examples of explanation in mathematics in addition to explanation in physics, biology and

so forth.

It is perhaps surprising then, that the distinction between explanatory and non-

explanatory proofs seems to have received very little attention in the philosophical

literature. One of the reasons for this may be that our intuitions in this area are not very

strong and so there is often disagreement on what does and what does not count as an

explanatory proof. But this only makes the problem more interesting; a good account of

mathematical explanation should try to explain this phenomenon.

In this chapter I will describe and evaluate various suggestions for characterizing

the distinction between explanatory and non-explanatory proofs. In the next section, I

consider some ideas suggested by the seventeenth century debate on the status of proofs by

reductio ad absurdum. In section three, I look at the idea that it is the generality of a proof

that serves to make the distinction.

1 See for example [Lipton 1993].
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The most fully worked out account of mathematical explanation I know of is that

due to Mark Steiner. I will describe Steiner's account in section four and discuss a criticism

of it made by Michael Resnik and David Kushner. Resnik and Kushner propose a purely

pragmatic account of explanation in mathematics, which I examine in section five. In

section six, I describe an account of scientific explanation proposed by Philip Kitcher,

according to which explanation is to be characterised in terms of the concept of unification.

I examine the prospects for using this account to make the distinction between explanatory

and non-explanatory proofs. In the final section, I further develop these ideas and attempt

to show how an account of mathematical explanation along these lines can be used to solve

some of the problems connected with mathematical evidence discussed in the previous

chapter.

2. DIRECT vs. INDIRECT PROOFS

In the seventeenth century, a debate arose amongst some mathematicians over the

status of proofs by reductio ad absurdum.6 In a letter to Mersenne of 1638, Descartes

wrote that such proofs are '...the least esteemed and the least ingenious of all those of

which use is made in mathematics'.7 Other mathematicians criticized the Greek geometers

for using proofs by reductio, on the grounds that such proofs do not reveal the way in

which the result was initially obtained.

The criticism that is most relevant to our subject however, is that of Arnauld who

argued that although proofs by reductio are just as certain as other forms of proof, they are

6 This debate is described in detail by Paolo Mancosu in 'On the Status of Proofs by Contradiction in the
Seventeenth Century'. [Mancosu 1991].
7 Cited in [ibid. p. 15]. See Descartes' Oeuvres, vol. I, p. 490.
8 See [Mancosu 1991, pp. 23-4]
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less explanatory, since although they convince us that a theorem is true, they do not tell us

why it is true.9 hi the Port-Royal Logic, Arnauld wrote:

The geometers are worthy of all praise in seeking to advance only what is convincing: but it

would appear that they have not sufficiently observed, that it does not suffice for the establishment of a

perfect knowledge of any truth to be convinced that it is true, unless beyond this, we penetrate into the

reasons, derived from the nature of the thing itself, why it is true,....

Those kind of demonstrations which show that a thing is such, not by its principles, but by some

absurdity which would follow if it were not so, are very common in Euclid. It is clear, however, that

while they may convince the mind, they do not enlighten it, which ought to be the chief result of

knowledge; for our mind is not satisfied unless it knows not only that a thing is, but why it is, which

cannot be learnt from a demonstration which reduces it to the impossible.

[Amauld and Nicole 1872, pp. 338,340, cited in Mancosu 1991, pp. 31-2]

Although proof by reductio might sometimes be the only possible means of

establishing a theorem (proofs of the non-existence of certain objects in infinite domains

for example) Arnauld was surely right to point out that there is often something

unsatisfying about proofs by reductio from an explanatory point of view. This suggests the

following conjecture: a direct proof is always more explanatory than a proof of the same

theorem which proceeds by reductio ad absurdum.

This conjecture however, is false. Consider the following two proofs of the

irrationality of yjl. The first proof I will call the standard proof, although it is often

referred to as the Pythagorean proof. Suppose that s/2 is not irrational. That is, suppose we

have:

- for some pair of integers a and b.

' See [ibid. pp. 30-3]
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a .We can further assume that — is reduced to its lowest terms, which is to say that there is no
b

integer (>1) which divides both a and b. Squaring both sides of (1) we obtain:

a

a(3) F =

(4) a2=2b2

From (4) it is obvious that a2 is even. But if a2 is even, a itself must be even. Hence:

(5) a = 2k - for some integer k.

Substituting (5) in (4), we have:

(6) (2k)2 = 2b2

(7) 4A:2=2Z>:

(8) b2=2k2

From (8) it is obvious that b2 is even. But if b2 is even, b must be even also. Hence:

(9) = 2m - for some integer m

But from (5) and (9) we have it that a and b are both divisible by 2, which contradicts our

assumption that there is no number (>1) which divides both a and b.

Although this proof succeeds in establishing the theorem, it does not seem very

explanatory. A crucial lemma required for the proof is that for all integers x, if x2 is even,

then x is also even. However, we can give a more explanatory proof of the irrationality of
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y/2 without the use of this lemma. Instead, we can use the so called fundamental theorem of

arithmetic, which states that every integer has a unique prime factorization.10

Again, suppose that v2 = —, for some pair of integers a and b. As before, this gives
b

us:

(1) a2 = 2b2

Now consider the power of 2, as it occurs in the prime factorization of a2 and b2. In both,

the power of 2 must be even, since (2") = 22". So we will have an even power of 2 on the

left hand side of the equation. But since the power of 2 in the prime factorization of b2 is

even and the right hand side of the equation is 2b2, we will have an odd power of 2 in the

prime factorization of the right hand side.

So there will be an even number of 2s on the left hand side of the equation and an

odd number of 2 s on the right hand side of the equation. But this means that the left hand

side cannot equal the right hand side. We have a contradiction, so our initial assumption

must be false; there are no integers a and b such that a2 = 2b2 and hence V2 is irrational.11

Clearly, an exactly analogous proof will establish the irrationality of sjp where p is any

prime number. A further generalization quickly yields the result that for any integer n, V«

will be irrational, unless n is a perfect square (1,4,9,16,25, 36,...).

We have two proofs of the same theorem, of which the second seems to be more

explanatory. Yet both are proofs by reductio. So the use of reductio is not by itself

sufficient to make the distinction between explanatory and non-explanatory proofs,

contrary to the conjecture suggested by the remarks of Arnauld.

10 For example, 360 can be uniquely fectorised as 23 • 32 • 51. See also table 4 in chapter five, section 5.3.
11 See also [Steiner 1978, pp. 137-8].
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A closely related conjecture might be that the right way to make the distinction is to

use the notion of constructive proof. A constructive proof of the existence of objects having

a certain property must proceed by giving an example of such an object. A non-constructive

proof of the same result on the other hand, might proceed by proving (perhaps by reductio)

that not every object fails to have the property, without giving any examples. This suggests

the idea that of two proofs of the same theorem, the constructive proof is the more

explanatory. In a stronger form, this idea might be used to motivate intuitionism. The idea

would be that only constructive arguments are explanatory and only explanatory arguments

count as real proofs in mathematics.

This conjecture too, is susceptible to counter-examples. In the previous chapter, we

saw how Liouville gave the first proof of the existence of transcendental numbers.

Liouville begins by proving a theorem to the effect that any rational approximation of an

algebraic irrational must be less accurate than a certain fixed amount. He men shows how

to construct irrational numbers which can be so closely approximated by rational numbers

that they cannot be algebraic. One example of such a number was mentioned in the last

chapter:

Liouville's result was followed by proofs that e and TC are also both transcendental. These

proofs of the existence of transcendental numbers are constructive; we infer that there are

transcendental numbers by giving examples of various irrational numbers which we can

prove are not algebraic.12

1
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Compare this to Cantor's cardinality argument to the same conclusion. Recall that

Cantor established that the algebraic numbers are countable. But since there are

uncountably many real numbers, there must be real numbers which are not algebraic and

hence transcendental. This is a highly non-constructive argument, it establishes the

existence of transcendental numbers without giving a single example. Nonetheless,

Cantor's proof is far more explanatory than Liouville's; it gives us a much better

understanding of why there must be irrational numbers which are,not algebraic. Indeed, as

argued in the previous chapter, the explanatory power of Cantor's set-theory in this and

other areas was one of the factors which led to its eventual acceptance by the mathematical

community. I take mis example then, to count against the idea that constructive proofs are

more explanatory than non-constructive proofs. We must seek the basis of the distinction

between explanatory and non-explanatory proofs elsewhere.

12 See [Kline 1972, pp. 980-2] for further details of these proofs.

3. GENERALITY

An alternative account of mathematical explanation appeals to the notion of

generality - the explanatory proof is the more general proof. This is an idea that Steiner

considers in bis paper 'Mathematical Explanation' [Steiner 1978]. He suggests several

motivating examples.

Consider again the two proofs of the irrationality of yj2. We can easily restate the

proof which goes via the fundamental theorem of arithmetic so mat it establishes the

irrationality of y/n for any integer n which is not a perfect square. The irrationality of 72 is

then just a special case of this more general theorem. Steiner argues [ibid. p. 138] that the

thing cannot be done with the standard proof of the irrationality of s/2, because we
same
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would need to prove appropriate generalizations of the lemma required for the standard

proof and these proofs become increasingly complex.13

Steiner also makes use of a certain proof of the Pythagorean theorem, that in any

right-angled triangle, the square on the hypotenuse is equal to the sum of the squares on the

other two sides. Consider an arbitrary right-angled triangle with hypotenuse c and legs a

and b (figure 1).

cs

s r
b

a

Figure 1

We want to show that c2 = a2 + b2. What I will call the standard proof of this

theorem makes use of the diagram shown in figure 2. This shows a square with sides of

length a + b, which has been subdivided into four right-angled triangles congruent to the

original triangle and a square whose sides are equal to its hypotenuse. Clearly the total area

of the figure is equal to the sum of the areas of the triangles and the area of the centre

square. The total area is (a + b)2, while the area of the centre square is c2. The area of each

13 For example, to prove the lemma: if x2 is even, then x is also even, we show that if we square an arbitrary
odd number, the result is also odd. If x - 2m + 1, then (2m + lf = (2m)2 + 2(2m) +1 = Am2 + 4m + 1 = 2(2m2

+ m) + 1, which is clearly an odd number. We can use the same technique to show individually, for each
prime number p, that if*2 is divisible byp then so is x, but the proofe for each case get longer and longer. For
the case of p = 5 for example, we have to square 5m + ], 5m + 2, 5m + 3 and 5m + 4 and verify that we
always get a number which is not divisible by 5.

337

«i,

. 1triangle is -ab (half the base times the height) and there are four such triangles. Hence we

have:

(1) ab\

(2) a2 + lab + b2 = lab + c:

(3) c2=a=a2+

Figure 2

I hope to have convinced you that the theorem is .rue, but I also hope you are not satisfied

with this proof as an explanation of (he theorem. Steiner claims (and I agree) that the

following proof is more explanatory.
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There is a generalization of the Pythagorean theorem which is also true: any three

similar figures14 (not necessarily squares) constructed on the sides of a right-angled triangle

are such that the area of the figure on the hypotenuse is equal to the sum of the areas on the

other two sides (see figure 3).

Figure 3
Tfie Pythagorean theorem for

various similar figures

14 Recall that twc figures are similar when the ratios of corresponding sides are equal. In other words, if we
multiply all the lengths in one figure by a constant factor k, either enlarging the figure (if k > 1) or reducing it
(if k < 1), then the result is a figure which is similar to the first
15 The right-angled triangle with the busts oi i-^hagoras is reproduced from [Jacob 1987, p. 412].
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Clearly, if we can establish this more general theorem, the usual Pythagorean theorem will

follow immediately, by taking the constructed figures to be squares.

Surprisingly though the Pythagorean theorem turns out to be equivalent to this

generalization of it. Furthermore, the generalization is equivalent to any of its instances.

Hence we can prove the general theorem (and by the equivalence this will simultaneously

prove the Pythagorean theorem ) if we can prove any of its instances. We do not have to

restrict our attention to squares constructed on the right-angled triangle. If a proof using

some other shape can be established, this will also prove the result. Indeed, one instance of

the general theorem is easy to prove:

Figure 4

Figure 4 shows a right-ar.g.ed triangie with an aHitude drawn from the right angie to

I constructed on side *, triang.e II constructed on side
hypotenuse. We have

the whole
ABC can be regarded as constructed on its own hypotenuse, c.

to snow . a , Mang.e I ,s * * , to
n and tha, both are
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similar to the whole triangle ABC. So we have three similar figures constructed on the

sides of a right-angled triangle and clearly the area of the figure constructed on the

hypotenuse (triangle ABC) is equal to the sum of the areas of the figures constructed on the

other two sides (triangles I and II). So we have established a particular instance of the

general theorem, which suffices to prove the general theorem itself. The usual Pythagorean

theorem then follow immediately as a special case.16

Steiner takes these two examples as motivation for the suggestion that '...of two

proofs, the more explanatory is the more general. To deduce a theorem as an instance of a

generalization, or as a corollary of a stronger theorem, is more explanatory than to deduce it

directly.' [Steiner 1978, p.139]. Philip Kitcher attributes a similar claim to Bolzano,

according to which '[a] proof is explanatory if and only if its premises are at least as

general as its conclusion'. [Kitcher 1975, pp. 252-267], Let us consider Bolzano's criterion

first.

The suggestion is that in an explanatory proof, the premises cannot be less general

than the conclusion. This suggestion seems to be well supported by the two motivating

examples. In the explanatory proof of the irrationality of V2, we first prove the general

result, that V« is irrational when n is not a perfect square and then derive the irrationality of

yjl as a special case. So the premises of the proof are more general than the conclusion.

The same is true when we derive the Pythagorean theorem as a special case of the more

general theorem.

What is less clear is that the non-explanatory proofs fail to meet the criterion. Are

the premises of the standard proof of the Pythagorean theorem less general than the

conclusion? What of the premises of the standard proof of the irrationality of V2?

Obviously, to answer this question properly, we need to say more precisely what we mean

by one statement being more or less general than another.

An obvious answer suggests itself: A is more general than B if and only if A entails

B but B does not entail A. But the obvious answer will not work. We can deduce the usual

Pythagorean theorem from the general theorem and this seems to be an explanatory proof.

But recall that the general theorem is equivalent to any of its instances. So we could also

deduce the general theorem from the usual Pythagorean theorem. I take it that such a proof

would be non-explanatory. However both proofs would meet Bolzano's generality

criterion, interpreted in terms of deductive strength. In both cases, the premise is at least as

general as the conclusion, since in fact the premise and conclusion are equivalent.

The case of the generalization of the Pythagorean theorem shows that A is more

general than B can be true even though A and B are equivalent. Perhaps some other account

of generality can save Bolzano's thesis.

Kitcher argues that this is unlikely. Consider proofs by mathematical induction.

Here the premises are:

(1) The number 0 has property F.

(2) For all numbers n, if n has property F, then n + 1 has property F.

From which we infer that:

(3) All numbers have the property F.

17

16 For more information on this proof of the Pythagorean theorem see [Polya 1954a, pp. 16-17, Steiner 1978,
pp. 138-139].

This problem seems to be analogous to the asymmetry problem in deductive accounts of scientific

explanation. See for example [Salmon 1989, pp. 46-50].
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Proofs by mathematical induction occur throughout mathematics, but Bolzano's thesis

seems to have the consequence that no proof by mathematical induction can be explanatory,

for as Kitcher puts it, '...whatever account Bolzano gives ... [he] would surely be hard put

to avoid the consequence that the proposition expressed by '[0] has F ' is less general than

that expressed by 'Every number has F " [Kitcher 1975, p. 264].

What then of Steiner's more modest claim that 'to deduce a theorem as an instance

of a generalization, or as a corollary of a stronger theorem, is more explanatory than to

deduce it directly'? Steiner himself provides the following counter-example, which is yet

another proof of the irrationality of y/l. We can prove the general result that

a2=nb2

a .implies that n is a perfect square as follows. Assume that ^ is reduced to its lowest terms.
b

0 0 O

If a prime p divides b, it must also divide b . Suppose then that b =kp for some k. Then a

= nkp from which it is obvious that p divides a2. But if p divides a2, it must also divide a.

Hence p divides both a and b, which is a contradiction. So no prime divides b. But the only

number not divisible by a prime is 1. So ft must be 1 and hence n is a perfect square (a2 in

fact). Specializing to the case where n = 2, we get the result that y/2 is irrational as desired.

But this proof, though more general, is not obviously more explanatory than the standard,

proof.

Steiner also considers two proofs of an identity of Euler's, concluding that the more

general proof is in fact less explanatory.18 He concludes that the generality criterion fails

and this brings me to Steiner's own account of the distinction between explanatory and

non-explanatory proofs.

18 [ibid, pp 139-142]

4. STEINER'S ACCOUNT

Steiner describes his account of mathematical explanation as follows:

My view exploits the idea that to explain the behaviour of an entity, one deduces the behaviour from

the essence or nature of the entity. Now the controversial concept of an essential property of x (a

property x enjoys in all possible worlds) is of no use in mathematics, given the usual assumption that

all truths of mathematics are necessary. Instead of 'essence', I shall speak of 'characterizing

properties', by which I mean a property unique to a given entity or structure within a. family or domain

of such entities and structures ... My proposal is that an explanatory proof makes reference to a

characterizing property of an entity mentioned in the theorem, such that from the proof it is evident

that the result depends on the property. It must be evident, that is, that if we substitute in the proof a

different object of the same domain, the theorem collapses; more, we should be able to see as we vary

the object how the theorem changes in response.
[Steiner 1978, p. 143]

According to Steiner, then, a proof is explanatory if and only if it meets the

following two conditions:

(1) The proof depends on a
characterizing property of the objects referred to in the

proof, where a characterizing property is one which uniquely picks out the object from a

family of related objects. 'Depends on' here means that the proof fails to go through if we

substitute another object of the same domain.

(2) By suitably 'deforming' the proof while holding the 'proof idea' constant, we can

get a proof of a related result.

Let us see how Steiner's account copes with the examples given so far. Consider the

explanatory proof of the irrationality of y/2, which proceeds by considering the number of
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2s in the prime factorization of each side of the equation a2 = 2b2. This proof makes use of

a characterizing property of objects mentioned in the theorem, namely the prime

factorization representation of the numbers involved. Furthermore, if we replace 2 with 4

(or any other square), the proof fails, since the prime factorization of 4, contains an even

number of 2s, allowing a2 = 4b2. Finally by 'deforming' the proof in various ways, we get

related theorems; the irrationality of V/> for any prime p, for example.

The explanatory proof of the Pythagorean theorem also fits Steiner's account. The

proof makes use of a characterizing property of right-angled triangles, namely that they are

the only triangles decomposable into two triangles similar to each other and to the whole.

So substituting an acute or obtuse triangle will prevent the proof from going through. But

Steiner points out that as we vary the right angle, we get related theorems, which for each

such triangle tell us the difference between the sum of the squares constructed on the " -*

and the square on the opposite side. [ibid. p. 144]. Steiner goes on to show his account

applies to further examples, including the explanation of the impossibility of a sixth regular

polyhedron by means of Euler's equation V - E + F = 2 a n d Galois's group-theoretic

explanation of the insolubility of the quintic [ibid. pp. 145-50].

hi 'Explanation, Independence and Realism in Mathematics' [1987] Michael Resnik

and David Kushner offer several objections to Steiner's account. I will briefly describe just

two of their objections. Both take the form of counter-examples.

The first counter-example is a proof which meets Steiner's two conditions, but is

not explanatory. For this purpose, they use the standard proof of the irrationality of V2. As

a characterizing property they suggest 'being the least integer x such that any integer that x

divides is also divisible by 2'. This does single out 2 from the other integers and varying it
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appropriately yields all the related results that Steiner notes in favour of the proof based on

prime factorization [see ibid. p. 147].

Steiner criticized the standard proof on the grounds that the appropriate version of

the required lemma (if x2 is even, then x is also even) must be reproved in each case to get

the related results and the proofs become increasingly complex. Resnik and Kushner

remove this difficulty by proving the general lemma, that if a - kn + i, where 0 < / < k (that

is, k does not divide a) and k is not a perfect square, then k does not divide a2, [ibid. p. 147].

The second counter-example suggested by Resnik and Kushner is a proof which is

explanatory, but does not meet Steiner's conditions. Here they make use of a modern proof

of the intermediate value theorem, which they state in the form: if a real-valued function/is

continuous on the closed interval [a, b] and if j{d) < c <j{b), then there is an x in [a, b] such

The proof is based two fundamental principles. The first of these is a consequence

of the continuity of the real number system:

(1) Every non-empty set of real numbers which is bounded above has a least upper

bound.

The second principle is simply one standard definition of what it means for a function to be

continuous:

(2) A function / is continuous at a point x, if and only if, given any open interval J

around fix), we can fmd an open interval I around x such that for every point y in lfiy) lies

19 In the previous chapter, we looked at the special case where c = 0, sometimes called the intermed.ate zero
theorem In feet, the intermediate zero theorem also implies the more general theorem [see for example
Giaquinto 1994, pp. 809-10]. Here then, we have here another example of a generalization which is
equivalent to one of its instances.
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in the interval J. A function is continuous on the interval [a, b] if and only if it is

continuous at every point in the interval [a, b].

Figure 5
Proof of the intermediate

value theorem

The proof is then as follows. Let/be any function continuous on the closed interval

[a, b] and let c be any point lying between/a) and f(b) (see figure 5). We have to show that

there is a point * in the interval [a, b] such that f(x) = c. Consider the set A of all the points

p in [a, b] for which/p) < c. The set A is not empty, since it contains a and it is bounded

above by b. Hence, by (1) A has a least upper bound x. This means that every element of the

set A is less than x and further, x is the least number with this property. Now since / is

continuous on [a, b], it must have a value at the point*. In fact it can be shown tha t^ ) = c.
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Suppose thatX*) < c. Since/is continuous, (2) implies that there is an open interval

/ around x such that for every point p in l,J{p) < c. So we can pick a point y in / which is

just to the right of*, for which we havey(y) < c (see figure 6). But this contradicts the fact

that all such points are to the left of*, since * is an upper bound of A.

Suppose on the other hand, that fix) > c. Then again, since / is continuous (2)

implies that there is open interval / around * such that for each point p in /, fip) > c. Now

we can pick a point z in 1 which is just to the left of*, for which we have^) > c (see figure

6). Clearly every element of A is less than z, so z is an upper bound of A. But z is also less

than *, which contradicts the fact that * is the least upper bound of A. Since the assumption

thaty(*) < c and the assumption that/*) > c have both led to a contradiction, we must have

A*) = c.

Of this proof, Resnik and Kushner say:

We find it hard to see how someone could understand this proof and yet ask why the theorem is

true (or what makes it true). The proof not only demonstrates how each element of the theorem is

necessary to the validity of the proof but also what role each feature of the function and the interval

plays in 'making' the theorem true. Moreover, it is easy to see that the theorem fails to hold if we drop

any of its conditions.
[Resnik and Kushner 1987, p. 149]

However, the proof fails to meet Steiner's conditions for a proof to be explanatory:

Although the theorem has trivial expansions and much more abstract versions ... .neither the theorem

nor our proof is known to be 'deformable' to yield genuinely new results. In addition, as clear as the

proof is, we find it hard to identify the characterizing properties on which it depends.

[ibid. p. 149]
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A

J{x)<c

A

x y z x

Figure 6

Of course, in a sense, the proof does depend on characterizing properties of the

objects referred to in the theorem, namely the properties mentioned in the principles (1) and

(2) above; (1) states a characterizing property of the real number system, which serves to

distinguish it from non-continuous number systems like the rationals, while (2) states a

characterizing property of continuous functions. But this is not enough to show that the

proof also meets Steiner's second condition, since the proof is not generalizable or

'deformable' in the required way. That is, we do not obtain any related results by varying
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the objects referred to in the proof and seeing how the theorem changes in response; if we

were to replace 'real-number' with 'rational number' or 'continuous function' with

'discontinuous function', the proof would simply collapse.20

5. PRAGMATICS

Resnik and Kushner make some more general remarks concerning the notion of

mathematical explanation. They endorse the pragmatic account of scientific explanation

given by Bas van Fraassen. On this account, the conditions governing the success of an

attempt at explanation are entirely pragmatic. According to van Fraassen, an explanation is

an answer to a why-question. A why-question consists of three parts; a topic p (where the

question asks why pi) a contrast-class (why p rather q, r, s ...?) and a relevance relation,

which determines the respect in which a given proposition would count as an answer to the

question. In explaining a mathematical fact by giving a proof, the appropriate relevance

relation would be the relation of logical consequence.

The context in which a why-question is asked determines its topic, contrast class

and relevance relation. For example, if I ask why is the Pythagorean theorem is true! then

in one context I might have in mind the contrast-class, why does the theorem hold for right-

angled triangles and not acute or obtuse triangles'}. Alternatively, I might have in mind the

contrast class why does the theorem hold in Euclidean space and not in various non-

Euclidean spaces! An answer to the first question may not be a good answer to the second

question and vice versa. Differing contexts make different answers to the question

* 1977
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explanatory; what is explanatory in one context may not be so in another. Resnik and

Kushner put the point like this:

...nothing is an explanation simplidter but only relative to the context-dependent why-question(s) that

it answers....Whether or not a given proof counts as explanatory depends upon the why-question with

which it is approached. If you simply wanted to know why a result is true (rather than false) and were

prepared to accept any proof as an answer then you would count all its proofs as explanatory. But you

might want to know more. For instance, in addition to wanting to know why the Pythagorean theorem

holds you might want to know why it holds only for right triangles. Then not every proof of the

theorem will contain an answer for you.
[Resnik and Kushner, 1987, p. 153]

On this view, being explanatory is not an objective feature of a proof, since whether or

not a proof can be used to answer a question depends on the particular why-question being

asked and that depends on the interests and expectations of the questioner, for it is these

which determine the topic, contrast class and relevance relation which define the question.

Resnik and Kushner then account for the idea that some proofs are more illuminating than

others in the following way:

...the so called explanatory proofs ... present more information and do so more perspicuously than do

'nonexplanatory' proofs of the same results. Thus they provide the ingredients for answering more

why-questions than other proofs of the same results. But they are not explanatory in and of themselves.

[ibid. p. 154]

Exactly how do we judge the relative explanatory merits of different proofs on this

account? In van Fraassen's view, there are two aspects to the evaluation of explanations.

Firstly, the explanation must obviously provide an answer to the ^-question it is a

response to. Given a question Q = <T, C, R) (where T is the topic, C "' the contrast class
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and R the relevance relation) a direct answer to Q has the form 'T in contrast to C because

A'. For this to actually provide an answer to the question, A and T must both be true, no

member of the contrast class (other than T) must be true and A must bear the relation R to

(T, C). In fact, asking the question Q presupposes that that there is a proposition A which

meets these conditions. If this presupposition is false (if for example, the topic of the

question is false) then the request for an explanation is rejected, for in this case there is no

answer to the corresponding question.

Of course, there may be many different answers to a particular why-question, all of

which meet these conditions. Furthermore, some of these answers will provide better

explanations of the topic than others. Some answers to a question may be more telling than

others. This brings us the second aspect of van Fraassen's account of the evaluation of

explanations; the theory of telling answers. For an answer to be telling it must satisfy three

conditions: (i) it must be probable in the light of our background knowledge (ii) it must

make the topic more likely than the other members of the contrast class and (iii) it must be

better in these respects than other potential answers.

However, David Sandborg has argued that in the case of mathematical explanation,

this account is a complete failure, since it implies that any proof of a mathematical

statement/? provides a perfectly telling answer to the question why pi He writes:

Consider a why-question for which the contrast class consists of mutually exclusive members, such as

)—, rather than some other real number?'. Let us call such a

i Fraassen's theory, any proof of the topic at all will

tion. The answer itself will be judged as

_ - + - - — + ... convergeto-'why does

qoesdon -

=2=============
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have probability 0. No other answer can be more probable, favour the topic better, or screen it off

Therefore, van Fraassen's theory of evaluation of answers trivially recognizes any proof that

establishes the truth of the topic of the question as completely telling. Thus, at least for exclusive-

contrast questions, a proof must be either explanatory or not; there is no middle ground. But surely in

mathematical cases, as in scientific ones, some explanations seem better than others.

[Sandborgl998,p.613]

This is related to a more general problem with van Fraassen's account of

explanation. Notice that van Fraassen places no constraints at all on the allowable relevance

relation R which can be used to answer a question. Potentially men, R can be any kind of

relation we like. Kitcher and Salmon [1987] show that this completely trivializes van

Fraassen's theory; given any proposition we can 'explain' it by means of any other

proposition, by finding an appropriate relevance relation. Furthermore, they show how to

construct the relation so that the answer is completely telling according to van Fraassen's

three criteria. They illustrate the point by showing how, according to van Fraassen's

theory, we can explain why John F. Kennedy died on 22nd November 1963 in terms of

'astrological influence', by deducing that he died on this date from a true description of the

position of the stars and planets on the date of his birth by means of an appropriate

'astrological theory'. But surely we want to say that this is not an adequate explanation,

because the facts adduced in support of the fact to be explained are not really relevant to it.

That is to say that some relations R are (objectively) more relevant than others to the

explanation of certain facts. Hence van Fraassen's account cannot avoid the problem of

describing an objective relation of explanatory relevance; pragmatic considerations alone

are insufficient for an adequate account of explanation.

22
See [Kitcher and Salmon 1987, Salmon 1989, pp. 135-146] for further details of the construction.
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David Sandborg, in the paper mentioned above, goes on to argue that this general

approach to the concept of explanation is misguided. The fundamental thesis of this

approach is that an explanation is an answer to a why-question. The problem is that this

entails that to explain something, we must already know in advance what an acceptable

answer to the corresponding why-question would be; 'to understand a question is to know

what would count as an answer to it.' [Belnap and Steel 1976, p. 35]. On this view, as

Sandborg puts it:

...an explanation must respond to a question, which implies a fixed way of looking at the topic. But

our initial state of puzzlement may be due to not even knowing how best to regard the topic. An

explanation can gain most of its virtue by responding to this state of affairs - showing us an effective

way to understand the subject-matter - rather than through any particular why-questions it happens to

answer. In so far as asking a why-question fixes a way of looking at the explanandum and demands an

explanation in those terms, the why-question approach will be subject to this problem.

[Sandborg 1998, p. 622].

Sandborg gives an example from the history of science: 'Isaac Newton provided an

explanation for the movements of the planets, but not one which answers the question

posed by his predecessors; they demanded mechanical explanations without reference to

action at a distance...Indeed, it would have been impossible to specify a Newtonian answer

as an appropriate answer to a question posed before the Principia, the pertinent concepts

couldn't yet be given to indicate that kind of answer was appropriate.' [ibid. p. 622]. This

suggests that an explanation may be successful even though it fails to answer any

antecedently available why-questions. Rather '...an explanation may be significant because

it deploys relevant conceptual resources not previously available', [ibid. p. 622]. Hence,
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although some explanations may be best thought of as answers to why-questions, perhaps

not all are.

This certainly seems to be true in the case of many mathematical explanations.

When we ask why the general fifth degree equation is not solvable by means of a general

formula in radicals, while the first, second, third and fourth are, we are unlikely to know in

advance what an appropriate answer to this question would even look like. Galois'

explanation of this fact works by showing how we can gain a new perspective on the

problem by applying the concept of the group of permutations of solutions to the equation.

From within this conceptual framework, we can give a far more illuminating account of the

phenomenon than that provided by the long and complicated proof given by Abel. But who

would have suspected, before Galois, that the concept of a group could be relevant to

problems in the theory of equations? Certainly no one had ever framed the question 'why,

in terms of the concept of a group, is there no general formula for solving the quintic?'

Indeed, they could not have done so, because the relevant concepts did not yet exist.

Galois' explanation is significant because it provides new conceptual tools for tackling

problems, not because it provides answers to questions which could have been formulated

in advance of the explanation.

We should certainly admit that there are context-dependent, pragmatic constraints

on explanation. Furthermore, it may be that such pragmatic features of explanation might

go some way towards explaining some of the difficulties we have in assessing

mathematical proofs for explanatory relevance. Van Fraassen (and Resnik and Kushner at

least in the case of mathematical explanations) claim that once we have taken into account

all the pragmatic constraints on explanation, nothing substantive remains. On this view,
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'explanatory power' is not an objective feature of theories and can therefore play no

significant role as evidence for them. It is these further claims which we should reject.

Despite the problems involved in characterizing an objective relation of explanatory

relevance, I am not yet convinced that a more substantive account of explanation is not

possible, one in which there can be context-independent features of an argument which can

make it explanatory. In the next section, I consider a theory of this sort due to Philip

Kitcher and assess its potential for providing an account of explanation in mathematics.

6. EXPLANATION AS UNIFICATION

In 'Explanatory Unification' [Kitcher 1981] Philip Kitcher proposes to account for

scientific explanation in terms of the concept of unification. The idea that science explains

phenomena by showing how they can be derived from a systematic or unified theory had of

course, already been suggested by many philosophers of science, especially in discussions

of theoretical explanation.23 Hempel, for example, wrote that:

What scientific explanation, especially theoretical explanation, aims at is not [an] intuitive and highly

subjective kind of understanding, but an objective kind of insight that is achieved by a systematic

unification, by exhibiting the phenomena as manifestations of a common underlying structures and

process that conform to specific, testable, basic principles.
[Hempel 1966, p. 83]

Kitcher's account begins from the observation that a good scientific theory explains

by providing a unified account of a large and diverse range of phenomena. He cites

23 The first explicit formulation of a theory of explanation as unification was that proposed by Michael
Friedman. [Friedman 1974]. For a discussion and critique of Friedman's account see [Kitcher 1976, Salmon
1989, pp. 94-101,131].



354

although some explanations may be best thought of as answers to why-questions, perhaps

not all are.

This certainly seems to be true in the case of many mathematical explanations.

When we ask why the general fifth degree equation is not solvable by means of a general

formula in radicals, while the first, second, third and fourth are, we are unlikely to know in

advance what an appropriate answer to this question would even look like. Galois'

explanation of this fact works by showing how we can gain a new perspective on the

problem by applying the concept of the group of permutations of solutions to the equation.

From within this conceptual framework, we can give a far more illuminating account of the

phenomenon than that provided by the long and complicated proof given by Abel. But who

would have suspected, before Galois, that the concept of a group could be relevant to

problems in the theory of equations? Certainly no one had ever framed the question 'why,

in terms of the concept of a group, is there no general formula for solving the quintic?'

Indeed, they could not have done so, because the relevant concepts did not yet exist.

Galois' explanation is significant because it provides new conceptual tools for tackling

problems, not because it provides answers to questions which could have been formulated

in advance of the explanation.

We should certainly admit that there are context-dependent, pragmatic constraints

on explanation. Furthermore, it may be that such pragmatic features of explanation might

go some way towards explaining some of the difficulties we have in assessing

mathematical proofs for explanatory relevance. Van Fraassen (and Resnik and Kushner at

least in the case of mathematical explanations) claim that once we have taken into account

all the pragmatic constraints on explanation, nothing substantive remains. On this view,

355

'explanatory power' is not an objective feature of theories and can therefore play no

significant role as evidence for them. It is these further claims which we should reject.

Despite the problems involved in characterizing an objective relation of explanatory

relevance, I am not yet convinced that a more substantive account of explanation is not

possible, one in which there can be context-independent features of an argument which can

make it explanatory. In the next section, I consider a theory of this sort due to Philip

Kitcher and assess its potential for providing an account of explanation in mathematics.

6. EXPLANATION AS UNIFICATION

In 'Explanatory Unification' [Kitcher 1981] Philip Kitcher proposes to account for

scientific explanation in terms of the concept of unification. The idea that science explains

phenomena by showing how they can be derived from a systematic or unified theory had of

course, already been suggested by many philosophers of science, especially in discussions

of theoretical explanation.23 Hempel, for example, wrote that:

What scientific explanation, especially theoretical explanation, aims at is not [an] intuitive and highly

subjective kind of understanding, but an objective kind of insight that is achieved by a systematic

unification, by exhibiting the phenomena as manifestations of a common underlying structures and

process
that conform to specific, testable, basic principles.

[Hempel 1966, p. 83]

Kitcher's account begins from the observation that a good scientific theory explains

by providing a unified account of a large and diverse range of phenomena. He cites

23 The first explicit formulation of a theory of explanation as unification was that proposed by Michael

Friedman. [Friedman 1974]. For a discussion and critique of Friedman's account see [Kitcher 1976, Salmon

1989, pp. 94-101,131].



356

Newtonian mechanics and Darwin's theory of evolution as examples of theories which

were accepted on the basis of their ability to unify and hence explain the phenomena under

investigation. Newtonian mechanics allows for the motions of a wide range of objects in

different situations to be calculated in essentially the same way, from a few fundamental

principles, while Darwin's theory of evolution suggested that wide and varied range of

biological phenomena could all be explained in terms of the operation of the process of

natural selection.

On Kitcher's account, theories such as these unify our beliefs by providing a few

basic patterns of argument which can be used to derive a large number of accepted

sentences. The concept of a pattern of argument which Kitcher uses here is not quite the

same as that familiar from formal logic. Arguments can be similar in at least two different

respects; they may have a similar logical form (this is the sense of 'pattern' which interests

the logician) or they may be similar with respect to their subject matter; that is they may

share some non-logical vocabulary. The arguments which are used in unified scientific

theories will generally involve both kinds of similarity; they will be represented by

argument schemas which contain some non-logical vocabulary (force, mass, organism,

population and so on) in addition to logical vocabulary and schematic letters.

The patterns of arguments we aim for in science are hence what Kitcher calls

stringent patterns; arguments instantiating such are pattern are required to have a similar

logical structure and to make use of a common set of non-logical concepts. So for example,

Kitcher represents the pattern of argument introduced by Newtonian mechanics for deriving

the equation of motion of an object a as follows:

(1) The force on a is p
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(2) The acceleration of a is y

(3) Force = mass • acceleration

(4) (Massofa)'(y) = p

(5) 5 = 6

The final equation (5) represents the co-ordinates of a as a function of time. (1) represents

the force on a as a function of its co-ordinates and of time and (2) represents the

acceleration on a in terms of its co-ordinates and their time-derivates (e.g acceleration =

d2x/d/2). Lines (1) to (4) are the premises of the argument and (5) is obtained from them by

means of the techniques of the calculus. Arguments instantiating this pattern will not only

have a similar logical form, they will also make use of the same theoretical concepts (non-

logical vocabulary) at corresponding places.

The requirement that patterns of argument should be stringent allows Kitcher to rule

out spurious unification. We could, for example, achieve a complete systematization of all

our accepted statements by introducing a theory T which employs a pattern of argument

such as:

From a & T infer a

where a can be replaced by any sentence we accept. However, this pattern of argument

fails to be stringent. Although arguments instantiating it will be similar with respect to their

logical form, they will not all be similar with respect to their non-logical vocabulary, since

any vocabulary whatever can appear in the place of a. In general, if a pattern of argument

can be generalized so that we can use it to derive any sentence whatsoever, then the pattern

fails to be stringent. '[a]s previous writers have insisted that genuine explanatory theories

24 See [Kitcher 1981, pp. 515-9]
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should not be able to cater to all possible evidence, I am demanding that genuinely unifying

patterns should not be able to accommodate all conclusions.' [ibid. p. 529].

In general, Kitcher sees science as providing us with a set of arguments - the

explanatory store - which can be used for the purposes of explanation. The set of

arguments which can be used as explanations will obviously change over time as we

modify our beliefs about the subject matter to be explained. Given that we have come to

accept a certain set of statements K, the problem is to find a characterisation of the set E(K)

of arguments which are acceptable as explanations of the members of K. Kitcher proposal

is then that E(K) is the set of arguments which best unifies K.25

For any set of accepted statements K, there will be a great many possible

systematizations of K; sets of arguments which derive members of K from other members

of K by means of valid rules of inference. Given any such systematization S, there will also

be many sets of argument patterns such that every member of S is an instance of some

pattern in the set. From these sets of argument patterns, we choose the one which does the

best job of unifying S. This set is called the basis of the systematization S. Kitcher then

defines E(K) to be that systematization whose basis has the greatest the greatest unifying

power. The unifying power of a set of argument patterns is assessed in terms of the number

and stringency of the patterns in the set and the number of accepted statements in K which

are generated by it. Hence the best unifier of K is that set of patterns which can be used to

generate the greatest number of accepted statements in K from the fewest, most stringent

patterns. Then the set E(K) of arguments which are acceptable as explanations of members

25 [ibid. p. 512]
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of K will be the systematization whose basis is the best unifier of K. A particular argument

will count as an explanation if and only if it is a member of E(K).26

Kitcher's account has several attractive features. For example, he shows how it

avoids many of the problems which beset the deductive-nomological account of scientific

explanation. Consider the problem of asymmetry. We can deduce the period of a simple

pendulum from a specification of the length of the pendulum and the mathematical law

relating the two. We can also deduce the length of the pendulum from the period in exactly

the same way. However, only the latter argument would explain its conclusion. Kitcher

argues that his account can explain this asymmetry:

We have general ways of explaining why bodies have the dimensions they do. Our practice is to

describe the circumstances leading to the formation of the object in question and then to show how it

has since been modified. Let us call explanations of this kind "origin and development derivations"...

Suppose now that we admit as explanatory a derivation of the length of a simple pendulum from a

specification of the period. Then we shall either have to explain the lengths of wonswinging bodies by

employing quite a different style of explanation (an origin and development derivation) or we shall

have to forego explaining the lengths of such bodies ... Admitting the argument which is intuitively

nonexplanatory saddles us with a set of arguments which is less good at unifying our beliefs than the

set we normally choose for explanatory purposes.

[ibid. p. 525]

Kitcher also shows how his theory can deal with the problem of irrelevance, which

the D-N account is susceptible to and how it rules out 'explanations' which proceed from

accidental generalizations.27 For my purposes, the account is attractive because it makes no

26 [ibid. pp. 519-22].
27 See [ibid. pp. 522-6] . T h e problem of irrelevance can be stated as follows. Given any general law ot the
form Vx(Fx - » Gx) - 'a l l metals expand when heated ' for example - w e can introduce a n e w generalization
of the form V x ((Fx&Hx) -* Gx) - 'all metals which have had a spell cast on them by Merl in the magician
expand when heated ' . W e can then 'expla in ' why this iron bar expanded by deducing it from the fact that the
bar is a metal, that it was heated and that Merl in has cast a spell on it. Although such a deduct ion would fit the
D-N account, it fails to be an explanation because the premise 'Merl in cast a spell on the iron bar ' is really
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use of the concept of causation or related notions. This opens up the possibility that the

account will work for mathematical as well as empirical explanations and hence promises a

unified account of scientific explanation.

Let us see then, how well Kitcher's account does with some of the examples of

mathematical explanation we have been considering. The idea would be that a proof is

explanatory if and only if it instantiates a pattern of argument which could be part of that

set of patterns which provides the best unification of the relevant branch of mathematics.

Now the pattern instantiated by the proof of the irrationality of -Jl via the

fundamental theorem of arithmetic can be seen as a better unifier than that of the standard

proof, since exactly the same pattern of argument can be used to generate the same

conclusion for any prime number and indeed for any other integer which is not a perfect

square. As for the proof of the Pythagorean theorem, this too can be seen as instantiating a

unifying pattern, since the same pattern (where we deduce the Pythagorean theorem from

the general theorem) can be used to prove analogous results for similar figures other than

squares.

Furthermore, the explanatory proof of the intermediate value theorem given by

Resnik and Kushner seems to fit Kitcher's account, for the argument instantiates a pattern

common to many used in a systematic and well-unified theory, namely analysis. Similar

remarks apply to Cantor's proof of the existence of transcendental numbers and the group-

theoretic proof of the insolubility of the quintic. Analysis, set-theory and group theory are

all examples of theories which unify mathematics, providing patterns of argument which

can be used to derive many and diverse mathematical statements.

irrelevant to the effect to be explained. Notice that this is analogous to th"e problem of irrelevant conjunction
for the H-D account of confirmation, discussed in chapter four.
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Consider Cantor's proof. He shows that there must be real numbers which are not

algebraic by establishing that while there are uncountably many real numbers, there are

only countable many algebraic numbers. This general pattern of proof turned out to be very

widely applicable. To show that there are Fs which are not Gs, show that there are

uncountably many Fs but only countably many Gs. So for example, we can show that there

are properties of natural numbers which cannot be determined by means of a mechanical

decision procedure as follows. Firstly, there must be uncountably many properties of

natural numbers, since any such property can be represented by a function from the natural

numbers to the set {True, False} and the set of all such functions has the cardinal number

2K° = c . However there can be only countably many decidable properties of natural

numbers, since the set of all possible decision procedures can be enumerated. Hence not

every property of the natural numbers is decidable.

I have here only very roughly sketched how Kitcher's account would apply to

mathematics. It is clear that more work would need to be done for it to become convincing

that the account will succeed. In particular, we would need to show how explanatory

theories in mathematics have the features Kitcher describes. That is, we would have to

show how such theories allow for the derivation of a large number of accepted statements

by means a few stringent patterns of argument. We would need to exhibit those patterns in

more detail and show how the proofs which are intuitively classified as explanatory can be

seen as instantiating such patterns. I gave one illustration of such a pattern above; the

pattern of cardinality arguments provided by Cantor's set theory. The discussion of the

development of geometry, analysis and number theory in the previous chapter should make
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it plausible that these theories can also be seen as unifying mathematics by providing

patterns of argument which can be used to derive a wide range of accepted statements.

Some additional support for this account of mathematical explanation can be found

by looking at another set of examples. Recall the distinction discussed in chapter three,

between problem-solutions and confirmation techniques. A problem-solution is a method

that allows us to discover answers to questions, while a confirmation technique only allows

us to confirm that a given answer is correct. The technique of proof by induction is an

example of a confirmation technique. If we have a question like 'what is the sum of the first

n natural numbers?' mathematical induction will not generate an answer for us, although as

we saw in the previous chapter, we can use it to confirm that an answer obtained by some

other means is correct. There is in this case, a problem-solution technique that will generate

the answer to this question for us. It can be shown that the sum to n terms of an arithmetical

progression with first term a and common difference d, is given by the equation,

S = —\2a + d(n-\)]. To answer our question, we simply put a = d — 1, and rearrange to

getS = — n{n +1). This technique thus generates an answer to our question, even if we start

from a condition of ignorance, unlike the technique of mathematical induction.

Notice that we can use the same technique to generate answers to further questions

of the same form. If we ask, for example, 'what is the sum of the first n odd numbers?', we

can find an answer by setting a = 1 and d — 2 in the above equation to get

S = — [2 + 2(n -1)] and then rearranging to get S = «(l + (n -1)) = n2. Hence our method

28 See [Kitcher 1984, pp. 182-3].
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tells us that 1 + 3 + 5 + 7 + . . . + ( 2 M - 1 ) = M2 a result which can be confirmed, but not

discovered by, a proof using mathematical induction.

In the same way, if we have already conjectured that the roots of the equation

x2 + Ix + 12 = 0 are -3 and -4, we can confirm this answer by substitution: we can check

that (-3)2 +7(-3) + 12 and (-4)2 + 7(-4) + 12 are both equal to zero. But the technique of

substitution will not give you the answer if you have not already guessed it. A problem-

solution technique for this sort of problem would be to use the quadratic equation

x - — z to generate the answer by setting a = 1, b = 7 and c = 12^
2a '

What is significant about this distinction is that in general a problemrsolution,

seems to provide an explanation of a result, while a confirmation technique does not.

Consider the technique of substitution for checking solutions to equations. Clearly there is

no problem here about the validity of the reasoning, but one might say that substitution is

not a proof but a verification (or demonstration) that the equation has certain roots, since it

does not tell us why the equation has those roots, in the way that the argument which makes

use of the quadratic equation does. Similarly, the proof by induction confirms that the sum

of the first n natural numbers is VatQi+l) but the proof from the general formula for the sum

of any arithmetic progression give us some insight into why this is true.

Since problem-solutions and confirmation-techniques need not be rigorous

arguments, this distinction will also allow us to account for explanatory arguments which

are not proofs. Euler's analogical technique for finding the sums of infinite series (a

problem-solution technique) is certainly more explanatory than the verification by

computing partial sums (a confirmation-technique) even though neither are proofs.
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Computing partial sums provides us with sum evidence that the sum is correct, but the

analogical argument goes some way toward explaining it.

The connection between this distinction and the idea of explanation as unification

can be made in the following way. As we have seen, a problem-solution will instantiate a

general pattern of argument which can be used to derive solutions to a variety of similar

problems. We can use the problem-solution technique offered by the arithmetic progression

formula for example, to derive results concerning the sum of the first n odd numbers, as

well as many other similar results. In the same way, the problem-solution technique

provided by quadratic equation provides us with a way of finding the roots of any equation

of this form. A problem-solution therefore corresponds to a pattern of argument which

allows to answer many related questions in a unified way. Hence, arguments which make

use of a problem-solution technique are more explanatory than arguments which make use

of a confirmation-technique because they instantiate a pattern which is a better unifier of

the set of accepted mathematical statements.

We can also appeal to this distinction to explain why there is aprimafacie case for

saying that proofs by reductio are less explanatory than direct proofs. For notice that the

general pattern of proof by reductio is a confirmation-technique, rather than a problem-

solution. To describe the general pattern of proof by reductio, we would say something

like: 'assume the negation of the statement to be proved, then attempt to derive a

contradiction'. But clearly, in order to do this, we have to know wh?t statement to negate.

That is, we must already have an answer to our question to hand. A proof by reductio will

then confirm that our answer is correct, but will not generate it for us, in the way that a

direct proof might.

365

On the other hand, as we have already seen, this does not mean that no proof by

reductio can be explanatory. We can explain this as follows. Whether or not an argument

provides a problem-solution depends on the particular question we are asking. If the

question is just 'is p true?' then reductio is a problem-solution - for in many cases (not all

of course) we can use it to answer this question, even if we do not already know the truth-

value of p. But if the question is more specific, then reductio is not a problem-solution. If

our question has the form 'what is the value of (j)(a)?' where- §(x) is some functional

expression, then unless we have already conjectured a value for <J>(a), that §{a)=b say, we

will not be able to begin the proof by reductio by assuming that §{a) *b. In general,

problem-solutions provide better explanations than confirmation techniques because they

29

allow us to answer more questions.

Similar remarks apply to various non-deductive patterns of argument. Consider the

patterns of verification of a consequence and inductive confirmation of a universal

statement. Clearly, we need to already have the statement to be confirmed to hand, before

we can derive any consequences from it or verify any of its instances. Hence, for many

questions, these patterns will not provide a problem-solutions but only a confirmation-

technique. So we can say that in general, an argument which instantiates a problem-solution

pattern will be more explanatory than an argument by induction or verification of a

consequence.

However, the distinction between problem-solutions and confirmation-techniques is

not enough to account for all of our judgements concerning the relative explanatory merits

of different proofs of the ae theorem. Even among proofs which are not problem-

29 Another point to notice is that since a problem-solution allows us to generate related results using the same
pattern of argument, we can explain why the idea behind Steiner's account - that an explanatory proof must
be generalizable - has the appeal that it does.



366

solutions (with respect to a certain question) we can still distinguish between better and

worse explanations, as we saw in the case of the two proofs of the irrationality of y/2. On

the other hand, given two arguments, both of which instantiate a problem-solution pattern,

one may be more explanatory than another.

I would suggest that the source of our difficulties in accounting for all the many

examples of explanation in mathematics is the attempt to find a hard and fast distinction

between explanatory and non-explanatory proofs or arguments. Notice first of all that any

proof seems to be explanatory relative to an inductive argument to the same conclusion.

The inductive evidence for the prime number theorem for example, gives us some reason

for thinking that it is true, but any of the known proofs of the theorem provide us with a

better explanation of why it is true. Showing how a statement can be deduced from axioms

or first principles contributes to the unification of our mathematical beliefs by showing how

the statement can derived from a well-established, systematic theory, which allows for the

derivation of large number of diverse theorems from a few basic principles. In this sense,

any proof of a theorem will contribute more to the unification of mathematics and hence be

more explanatory than an inductive argument for the same conclusion.

But not all proofs need be from axioms for them to improve out understanding and

provide explanations - Cantor's proof of the existence of transcendental numbers is a good

example. Even within an axiom system, we can distinguish between better and worse

explanations of the same theorem. Both proofs of the Pythagorean theorem mentioned in

section three can be derived in Euclid's axiomatization of geometry, but one is more

explanatory than the other.
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The concept of an explanatory proof is highly context dependent. No proof can be

said to explanatory or non-explanatory in isolation. A proof is only explanatory or not

relative to another proof of the same theorem. Polya's proof of the Pythagorean theorem is

more explanatory than the standard proof, but the standard proof is certainly more

explanatory than many others which have been given and Polya's proof might appear non-

explanatory compared to others.

The foregoing remarks suggest that in seeking an account of mathematical

explanation, we should not concentrate exclusively on proofs, but should consider

arguments in general, non-deductive and unrigorous arguments as well as proofs.

Furthermore, rather than attempting to classify mathematical arguments as either

explanatory or non-explanatory, we should first try for something less ambitious; given two

arguments A and B for the same conclusion p, we should seek to define the comparative

relation 'A gives a better explanation of p than B', or more briefly, 'A is more explanatory

than B' .30 Following up on Kitcher's lea^, I suggest that in general we have:

A is more explanatory than B if and only if A instantiates a pattern of argument which is a

better unifier of the relevant set of accepted statements than B.

We can then make further distinctions concerning the different ways in which a

pattern of argument can contribute to the goal of unification. One way in which a pattern of

argument can be a better unifier than another is by providing a problem-solution technique

as opposed to a confirmation-technique. Hence an argument which derives its conclusion

30 Given such a comparative relation, we could then define the concept of explanatory proof by saying that a
proof is explanatory simpliciter iff it is the best explanation of its theorem, that is, if its more explanatory than
any other proof of the same theorem. This would of course make all proofs of theorems which have only one
proof explanatory, for such proofs would trivially be the 'best explanation' we have. But this is perhaps not
too serious a problem; when we say of such a proof that it is not explanatory we mean something like 'there
could be a more explanatory proof - and we start looking for one.
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by means of a problem-solution technique will generally be more explanatory than an

argument which derives its conclusion using a confirmation-technique.

On the other hand, an argument which shows how its conclusion can be deduced

from established principles (a proof) will clearly do more for unification than an unrigorous

or inductive argument for the same conclusion, since it will provide us with a clearer view

of the logical relationships which hold between members of the set of accepted statements.

Of course, the unification provided in this way may be more or less systematic, depending

on the state of development of the theory in question. The more systematic and rigorous the

theory, the better unification we will have. So even though a proof will generally be a better

explanation, in this respect, than a non-deductive argument, some proofs will still be better

than others. A proof in a mature, rigorous, axiomatic theory for example, will be more

explanatory in this respect than a proof in a developing theory, in which assumptions are

not explicitly stated and some of the arguments are unrigorous.

Notice that these two ways in which one argument may be more explanatory than

another are independent. One argument may be unrigorous and yet provide a problem-

solution technique. Another argument to the same conclusion might be rigorous, although it

provides only a confirmation-technique. So in one respect the first argument will be less

explanatory than the second (on the rigorous/unrigorous dimension) while in another

respect (the problem-solution/confirmation-technique dimension) it will be more

explanatory than the second. In assessing the relative explanatory merits of two such

arguments, we need to weigh up the degree of unification contributed in each of these

respects in order to find the overall contribution to unification achieved by each proof. It

may happen that the contribution to unification achieved through the provision of a

problem-solution technique outweighs the contribution to unification achieved by the

provision of a rigorous argument. In that case, the first argument would be more

explanatory overall than the second. Of course, it may turn out the other way; the

unification achieved by rigor might be greater than the unification achieved by the

provision of a problem-solution for a set of questions. Then the second argument would be

more explanatory overall than the first. Then again, it might be, that overall, the two

arguments come out roughly equal. Then we cannot say that either argument is more

explanatory than another, although we can still say that the first argument is more

explanatory than the second in one respect, while the second is more explanatory than the

first in a different respect.

We have seen then that arguments may contribute to unification and hence be

explanatory in a number of different ways. An argument may be more explanatory than

another in some respects and not in others.31 Other things being equal however, a proof will

be a more explanatory than a non-deductive argument and a proof in a systematic,

axiomatized theory will be more explanatory than a proof in a developing, unaxiomatized

theory. Among proofs in the same axiomatic system we can distinguish between those that

provide problem-solutions and those that provide confirmation-techniques for sets of

questions. We can make yet finer distinctions between proofs which instantiate a member

of a set of patterns which provide us with varying degrees of unification, along the lines

suggested by Kitcher's account. Recall that the unification achieved by a set of patterns is

measured in terms of the number of patterns in the set (the fewer the better) the stringency

31 I would argue that this is in feet an advantage of my account, for it explains why there is often some
confusion in our intuitive judgements about what counts as an example of an explanatory proof. People
disagree about the explanatory value of different proofc because they are focusing on differing respects in
which one proof may be more explanatory than another.
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of the patterns (the more stringent the better) and the number of accepted statements we can

derive as conclusions of arguments instantiating some pattern in the set (the more accepted

statements we can account for the better). Obviously one proof can do better than another in

any other these three respects independently. Again we assess different proofs for relative

explanatory power by weighing up all these different factors, to arrive at an overall

contribution to unification. Having taken all the factors into consideration, we may find

that one proof may then contribute more to unification overall than another. In that case, the

first proof will be more explanatory than the second.

We have already seen how this account does quite a good job of account for the

examples discussed in previous sections. However, an account of mathematical

explanation ought to do more than simply allow us to account for the difference between

explanatory and non-explanatory proofs. As I argued at the end of the last chapter, we

require an account of mathematical explanation in order to develop an adequate account of

evidence in mathematics. Let us now see how well our account of explanation as

unification does on this score.

7. EXPLANATION AND EVIDENCE

Notice first of all that we are now in a position to give a more detailed answer to the

question raised at the end of the last chapter, concerning ihs point of proof. Mathematicians

prefer proof to mere inductive confirmation of a conjecture because a proof provides a

better explanation of a statement than non-deductive confirmation of it. Proofs achieve this,

on my account, by contributing to the unification of the subject matter under investigation.

This is not to deny mat mathematicians also prove theorems because by doing so they can

be more sure that the statement is true. By deriving a statement from well established

theory, we achieve a greater degree of certainty. But this is no absolute certainty, for the

axioms on which the proof is based will themselves have been established on the basis of

non-deductive evidence.

As we saw in the previous chapter, the evidence for the, first principles of

mathematical theories is that they can be used to derive statements which can be

independently verified. However, as we have seen, that a statement entails a known result

is not enough for it to be confirmed by it; the simple hypothetico-deductive account of this

kind of evidence is inadequate. I have suggested an alternative to this account, the thesis

that it is what is explained by a statement that provides the evidence for it. Hypotheses are

confirmed not simply because they entail statements which can be independently verified,

but because they provide us with explanations of them. Now the thesis that explanation is

unification fits quite neatly into this account of evidence. Certainly the derivations of

known results from axioms and first principles described in the pervious chapter will

explain those results on this account of explanation. By showing how our accepted results

can be derived from a few basic principles in a systematic way, we gain an improvement in

the unification of those results and thereby provide explanations of them. Hence the

verification of those results confirms the principles used to derive them.

Consider the case of De Moivre's theorem. I argued that this provided evidence for

the theory of complex numbers, by allowing for the systematic derivation of a large number

of independently verifiable results. Notice that here we use the same basic pattern of

argument (substitution in De Moivre's theorem of a particular value of n, multiplying out

one side of the equation, then comparing coefficients) to derive the formulae for the sine
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and cosine of a given multiple of an angle. Hence, De Moivre's theorem provides us with a

good explanation of these properties of the trigonometric functions. So our account

supports the judgement that in this case, the derivation of a known result from a hypothesis

provides us with evidence for it.

What is less clear is that our account can avoid the problems of spurious

confirmation which beset the hypothetico-deductive account. Can our account distinguish

between those derivations which confirm their premise and those that do not? To answer

this question, we need to show that the derivations which intuitively fail to confirm their

premises are not explanatory according to our account of explanation.

Consider the problem of irrelevant conjunction. We can deduce a known result from

a set of premises which includes many irrelevant statements. Intuitively, the result is not an

explanation.32 Can our theory account for this?

Here I think we can use the same general strategy that Kitcher employs in showing

that his account of explanation avoids the problems of asymmetry, irrelevance and

accidental generalization. Given an argument that we want to show is not explanatory, we

try to show that any set of argument patterns instantiating it could not provide us with the

best unification of our beliefs according to the criteria of the fewest number of most

stringent patterns yielding the greatest number of accepted statements.33

Suppose then that we have a set of axioms a\, <Xi, 0:3 ... otn which allow us to

deduce the known result p. We then add some irrelevant statement y to our set of axioms, to

32 This is a general problem for accounts of scientific explanation of course . On the D - N account , g iven any
deduct ion of a statement from a set of premises which includes o n e law, we can add as many irrelevant
premises as w e like and the conclusion will still follow. B u t the deduct ion will then fail t o be an explanation.
See [Salmon 1989, p. 102].
33 See [Kitcher 1981, p. 523].
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obtain another equally valid derivation of the same result. So we have two arguments to the

same conclusion:

(1)

(2)

& ... oin h-

& a 2 & a 3 & . . . o t n & Y l - p

Suppose we were to admit the argument in (2) as an explanation of p. How we would we

then explain the other known results mat we can also derive from our axioms? For

definiteness, suppose that <Xi, a2, a3 ... o^ are the Dedekind-Peano axioms for number

theory and that P is the statement 2 + 2 = 4. In the first argument, we derive this result from

the axioms in the usual way. The second argument is exactly like the first except that it

contains some redundant premise y. The question is then, if we were to use this second

argument to derive 2 + 2 = 4, what kind of argument would we use to derive other

numerical equations, such as 7 + 5 = 12? If we use the usual derivation from the axioms

without the additional irrelevant premise 7 in this case, then we will have two different

patterns of argument instead of one for deriving the same set of conclusions. So the set of

arguments we admit as explanatory will fail to provide us with the best unification of our

beliefs.

On the other hand, if we adopt argument (2) as a general strategy, then although we

will have one pattern of argument that can be used to derive the same number of conclusion

as the first, the pattern will fail to be stringent. For in principle, we can replace y with any

statement whatsoever without affecting the ability of our pattern to derive statements we

accept. So in either case, adopting argument (2) will fail to provide us with the best

unification of our beliefs and will therefore fail as an explanation.
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What of the non-explanatory axioms mentioned at the end of the last chapter? These

were:

(A) 2 + 2 = 4->(F&L)

(B) F&(F->L)

Axiom (A) is meant to be confirmed because it entails the known result L - the associative

law of addition. But clearly adding (A) to our current set of axioms for number theory

would result in a less unified system of beliefs, for we can already derive L from the

existing set of axioms. Our current axiom system provides us with a general pattern for

deriving results such as (L) - we use the recursive definitions of the operations concerned

and apply the principle of mathematical induction. If we were to admit the argument

corresponding to (A) as a way of deriving the particular law L, then if we explain other

laws in the usual way, we will be using an inflated set of patterns of argument; one pattern

for the case of L and another pattern for other laws.

If on the other hand, we propose to explain all laws L in this way, the pattern

involved will be:

(1) 2 + 2 = 4 - > ( F & a )
(2) 2 + 2=4
(3) F&a
(4) a

Axiom
Theorem
From (1) and (2)
From (3)

where a is to be replaced with the law we want to explain. But as before, such a pattern will

fail to be stringent, since it can be generalized so as to allow for the derivation of any

sentence whatsoever in the place of a. Hence the unification achieved by this pattern of

argument is spurious and the derivation fails to be an explanation. "

Similar remarks apply to (B). If we use pattern B to explain the associative law for

addition and use the standard pattern to explain other laws, we will have an inflated set of

patterns. So introducing axiom (B) will result in a less unified set of arguments for deriving

ipted statements. But if we propose to explain all laws on the pattern:
acce

(1)
(2)
(3)
(4)

F&(F-+a)
F
(F->«)
a

Axiom
From (1)
From (1)
From (2) and (3)

where a can be replaced by any law, then pattern will not be stringent, since it can be

generalized to allow for the derivation of any statement whatsoever. A pattern of argument

which in principle, would allow us to derive any conclusion at all achieves only a spurious

unification of our beliefs. Although arguments instantiating this pattern share a common

logical form, the non-logical vocabulary here is idling; it plays no significant role at all in

the derivation of the conclusion from the premises, since essentially the same pattern can be

used to derive any conclusion.34

We can use the same idea to give a better account of inductive evidence in

mathematics. The simple account of induction implies that any statement of the form ~Fa

& ~Ga confirms V.x(~G;c -» ~F;c) and hence confirms Vx(Fx -> Gx). So the fact that y/2 is

not an even number greater than two and not the sum of two primes provides us with

evidence for Goldbach's conjecture. But then in the same way, any object which is neither

an even number greater than two nor the sum of two primes will also provide us with

inductive confirmation of Goldbach's conjecture.

34 See also [Kitcher 1981, p. 528]

Kii .•-*.„ -
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We can think of this problem in the following way. From Goldbach's conjecture

and the auxiliary statement that 6 is an even number greater than two, we can infer that 6 is

the sum of two primes. Verification of this latter statement then provides us with some

inductive support for Goldbach's conjecture. But from Goldbach's conjecture and the

auxiliary statement that y/2 is not the sum of two primes, we can infer that -Jl is not an

even number greater than two. Intuitively, this fails to confirm Goldbach's conjecture. I

propose to account for the difference by saying that the first derivation provides a better

explanation of its conclusion than the second35. Does our account of explanation as

unification support the proposal?

Consider first, the argument:

All even numbers greater than 2 are the sum of two primes

6 is an even number greater than 2

Therefore: 6 is the sum of two primes

Now clearly this is not a very informative explanation of why 6 is the sum of two primes. A

proof of Goldbach's conjecture would improve it, because it would presumably give us

some insight into the connection between being even and being the sum of two primes. But

compare this argument to:

All even numbers greater than 2 are the sum of two primes

y]2 is not the sum of two primes

Therefore: J2 is not an even number greater than 2

It is clear that this argument does not provide us with an explanation of its conclusion. If

we were to ask why V2 is not an even number, the obvious thing to say would be that s/2 is

35
I recently discovered a very similar solution to the paradox of the ravens in Alexander Bird's Philosophy of

Science. Bird also makes use of the concept of unification in his account of confirmation as explanation. See
[Bird 1998, pp. 91-4].
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not an even number because there is no positive integer x such that *j2 = 2-x. Let us say

that this is the standard pattern of argument we use in such cases. If we now admit the

above argument as an alternative explanation for this same conclusion, then how we will

explain why -J3 for example is not an even number? If we use the standard pattern in this

case, then we will be using an inflated set of patterns of argument and so this set will not be

the best unifier of our beliefs. But if we propose to use the general pattern:

All even numbers greater than 2 are the sum of two primes

a is not the sum of two primes

Therefore: a is not an even number greater than 2

then we will be using a less stringent pattern than the standard pattern, since here a can be

replaced by an expression referring to any object at all, provided only that it is not even and

not the sum of two primes. So we can use the same pattern of argument to explain why this

triangle, this circle, this mug of coffee, the sun and the moon are all of them objects which

are not even numbers. On the other hand, we could replace the predicate lx is the sum of

two primes' in the above argument with 'x is the sum of three primes' or 'x is the same of

five primes' and so on. Then we can use the same general pattern of argument to explain

why a huge variety of unrelated objects also fail to have these properties too. Such a pattern

seems to be an obvious example of spurious unification.

What about Goodman's problem? Can we say that Goldbach's conjecture gives us a

better explanation of the numerical data than the hypothesis that all even numbers greater

than two are GRUE? (Recall that a number is GRUE if and only if it is less than or equal to

4 • 1014 and the sum of two primes or greater than 4 • 1014 and the sum of three primes).

Perhaps we can say something like this. We have two patterns of argument:
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(1) VX(FJC -> Gx), Fa 1- Ga

(2) VJCQFJC-> GRUE(x)), Fa, a<4-1014 H Ga

In more detail (2) has the form:

(2) Vx(Fx->[(Gx&x<4-1014)v(Hx&jc>4-1014)]),Fa, a<;4-1014 h- Ga

Now in (2) the predicate Ex - 'JC is the sum of three primes' could be replaced by any

predicate at all without impairing our ability to derive the numerical data. Furthermore, by

suitably replacing Hx in (2) we can generate any conclusion at all concerning numbers

greater than 4 • 1014. Arguments of this form certainly seem to be less stringent than

arguments of the first form. If so then arguments of type (1) will have a greater unifying

power than arguments of type (2) and so that they will be more explanatory on our account.

The concept of explanation as unifica'ion also holds out some hope of explaining

how there can be empirical evidence for mathematics. I argued in chapter four that the

problem here is to show that mathematics can be used to explain physical phenomena. For

if mathematics can help to explain empirical facts, then it can be confirmed by them. But

how can mathematics provide us with explanations of physical facts if mathematical

objects play no causal role in accounting for the phenomena? Given an account of

explanation as unification however, we can answer that mathematics contributes to the

explanation of physical phenomena by providing a framework which allows us to construct

highly unified theories of the physical world. The use of the techniques of the calculus in

Newton's theory of gravitation for example is essential to the unification of the phenomena

achieved by that theory. Of course, the representation of physical systems by differential

equations and the use of the calculus to derive the behaviour of those systems from such a
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representations is now ubiquitous in science. The immense unification of our beliefs this

provides should be obvious.

In the same way, the theory of complex numbers (especially complex analysis)

allows us to give a unified and systematic account of such diverse phenomena as the

behaviour of alternating currents in electrical circuits, aerodynamics, fluid dynamics and

the properties of quantum mechanical systems. The role of complex numbers in unifying

mathematics itself also has an indirect effect on the unification of our physical theories, by

providing us with a powerful set of techniques for solving a wide variety of mathematical

problems which arise in applications.

In general, unification in mathematics contributes in a significant way to unification

in the rest of science. It is not simply that mathematics allows us to deduce the observed

phenomena from our theories. Mathematics also plays a significant role in the explanation

of the phenomena provided by those theories, by providing us with very powerful patterns

of argument which we can use in our physical theories to account for a wide and diverse

range of phenomena. In this way mathematics contributes to the unification of our beliefs

about the physical world that any explanatory theory must provide.

36 For a more detailed discussion of the unifying role

[Colyvan 1991].

•»
ics and science, see
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[Colyvan 1991].

in mathematics and science, see



380

CONCLUSION: MATHEMATICS AS A SCIENCE

I would like to conclude with a few remarks on the thesis that mathematics is a

science. In the introduction, I said that mathematics is a science because it is sensitive to

evidence. A better way of putting it is to say that mathematics is a science because the

evidence we have for our mathematical beliefs is not fundamentally different in kind to the

evidence we have for our scientific beliefs.1 The evidence we have for our beliefs about

sets, numbers and functions is of exactly the same kind as the evidence we have for our

beliefs about atoms, genes and galaxies. This is not to say that the evidence for our

mathematical beliefs is always empirical; as we have seen, a great part of that evidence is

not empirical, but purely mathematical.

One of the ways in which mathematics is often distinguished from science is by the

role of proof in mathematics. In science, it is said, there are no deductive proofs. A

scientific hypothesis can be supported by evidence, but such evidence rarely (if ever)

entails the hypothesis in the way that the premises of a mathematical proof entails the

conclusion. The methodology of mathematics is deductive, while the methodology of

science is not.2

1 Nor is the evidence we have for our scientific beliefs fundamentally any different to the evidence we have
for many of everyday beliefs about more mundane matters. Science (and mathematics) is. simply an extension
and elaboration of ordinary rational inference. By saying that mathematical evidence is of essentially the same
kind as scientific evidence, I mean to rule out differences that have only to with subject matter, The fact that
biology treats of different kinds of things to cosmology does not mean that biological and cosmological
evidence are of different kinds. In the same way, I am suggesting that the only differences between
mathematics and science are differences in their subject matter. That is the sense in which mathematics is a
science like any other.
2 Here is a particularly clear expression of this view: "We use "induction" to name the form of reasoning that
distinguishes the natural sciences of chemistry, meteorology, and geology from mathematical subjects such as
algebra, geometry, and set theory.. Somehow or other the scientist or mathematician reaches a conclusion
about the subject matter, and will seek to justify the conclusion... It is the nature of the justification...that
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A related distinction between science and mathematics is that in mathematics we

can achieve certainty regarding our beliefs, while in science we cannot. For in mathematics,

we can prove our claims in a way that is not possible in science. Correspondingly

mathematics is cumulative in a way that science is not. A mathematical truth, once

established is never rejected at a later date. Mathematical theories, unlike scientific theories

are never overturned by rival theories that give us a better account of the phenomena, in the

way mat Einstein's general theory of relativity overturned Newton's theory of gravitation.3

We have seen however, that all three of these supposed differences between science

and mathematics are illusory. Certainly one kind of evidence we can have for a

mathematics is deductive; we may come to accept a mathematical statement on the grounds

that it can be deduced from certain axioms and definitions for example. But for this to

count as establishing the truth of the statement, there must be some evidence that the

axioms are true. And we have seen that the evidence for the axioms is non-deductive. The

axioms are accepted on the grounds that they can be used to explain a large body of

independently acceptable statements. On the account of mathematical explanation

developed in the previous chapter, axioms achieve this by providing a unification of our

beliefs about the mathematical facts; they allow us to derive a large number of accepted

results, by means of a few basic patterns of argument. Of course, this justification for

differentiates the two cases. The mathematicians justification will be a proof. ....The point about deductive
arguments, like mathematical ones, is that their assumptions or premises entail their conclusions. ...In
science, inferences from data to generalizations or to predictions typically do not entail their conclusions; they
do not carry the logical inevitability of deduction." [Bird 1998, pp. 10-12].
3 As Bird puts it "A proof is a chain of reasoning each link of which proceeds by deductive logic. This fact
lends certainty to the justification. If what we really have is a mathematical proof, then it is certain that the
theorem is true so long as the premises are true. Consequently, a proof is final in that a theorem once
established by proof cannot be undermined by additional data. No one is going to bring forward evidence
contrary to the conclusion of Euclid's proof that there is no largest prime number. This contrasts with the
scientific case....however strongly the evidence is shown to support a hypothesis, the logical possibility of the
hypothesis being false cannot be ruled out. The great success of Newtonian mechanics amounted to a vast
array of evidence in its favour, but this was not sufficient to rule out the possibility of its being superseded by
a rival theory." [ibid. 1998, p. 11].
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axioms is no different to the justification of the fundamental principles of our scientific

theories. They too are accepted on the grounds that they provide us with explanations, by

giving a unified and systematic account of a wide and diverse range of phenomena. In

science, the evidence for the fundamental principles of our theories is the facts that they

explain. Exactly the same is true of the evidence for the axioms of mathematical theories.

Of course, we will also require some independent evidence that the statements a

theory explains are indeed true. In science, this is usually achieved by observation and

experiment. Empirical evidence may also play this role in mathematics. Some kinds of

deductive justification may also serve this function - calculation for example, or more

generally, confirmation-techniques of various kinds. The independent evidence for the

statements which confirm the axioms of a mathematical theory may also be of various non-

deductive kinds; induction, analogy, verification of a consequence and so on.

On my account, these all conform to the same basic pattern; the evidence which

supports a statement is explained by it. Instances of a universal statement which are

explained by it provide us with inductive evidence. Statements concerning observable

features of the world which are explained by a mathematical statement provide us with

empirical evidence for it. More generally, any consequence of a mathematical statement

which is also explained by it provides us with evidence for that statement. And in each

case, the better the explanation, the stronger the evidence.

Since the evidence for the premises of a mathematical proof is at root non-

deductive, proof in mathematics cannot provide us with absolute certainty. A proof in a

developing theory may implicitly appeal to premises which are dubious or even false.

Proofs from axioms, though more certain (since the premises are better established) cannot
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provide us with conclusive evidence, since the evidence for the axioms, being non-

deductive, does not establish them conclusively.

The illusion that there is a difference between mathematics and science in this

respect is generated by the fact that mathematics tends to throw away its props.

Mathematicians have a tendency to leave out all the non-deductive evidence which led to a

theorem when they publish a proof of it. The presentation of mathematics in textbooks

tends to leave out the long and painful historical process which led to the theory and simply

presents the final polished deductive structure. These practices tend to create the illusion

that in mathematics we simply begin from self-evident principles and then deduce theorems

from them. But we have seen that the real history of mathematics presents a very different

picture of evidence in mathematics.

Consider also the way in which a derivation can turn into a proof. A body of

mathematical results are initially supported by a heterogeneous collection of empirical and

non-deductive evidence. A systematic theory (axiomatization) is then proposed to account

for all these results. The evidence for the axioms of the theory is that they can be used to

explain those results. At this point the axioms are supported by the lower level results and

the latter are supported by induction and observation. But once the axioms have become

well supported by this kind of evidence, we throw away the scaffolding and the derivations

which once supported the axioms turn into proofs. We are left with an apparently free

standing structure, one in which the theorems are justified by the axioms and the axioms

appear to rest on nothing at all, except perhaps themselves.

4 Reuben Hersh has described some of the ways in which mathematics presents a felse image of itself in
'Mathematics has a Front and Back'. [Hersh 1991].
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We have also seen how accepted mathematical statements may later come to be

rejected on the basis of counter-examples, or in the light of an improved theory. Recall, for

example, the case of Leibniz' and Euler's claims about the sums of divergent series or

Cauchy's assertion that a convergent series of continuous functions is continuous.

Mathematical theories may also be superseded by others, perhaps more rigorous or

systematic. It is certainly rare for a mathematical theory to be simply rejected as false.

What more commonly happens that the theory is reinterpreted, as in the case of Euclidean

geometry, or subsumed under a more general theory, as occurred with Hamilton's theory of

quaternions.5

But this is often what happens in science too. Kepler's laws of planetary motion

were superseded by Newton's theory of gravitation, by showing that those laws could be

derived from the more general theory as a special case. In the same way, although

Newtonian mechanics has been superseded by the theory of relativity, it has not been

rejected in its entirety as simply false. Rather, it has been subsumed under the theory of

relativity as a special case; an approximation to the truth which holds when velocities are

small in comparison to the speed of light.

Is mathematics nonetheless more certain than empirical science? Perhaps it is so.

The reason, I suspect, has to do with the nature of the objects of mathematics. In empirical

science, we have an independent, perceptual access to the objects of theories; we can see

them, touch them and measure them. We have no such perceptual access to the objects of

mathematics; a number is not something you can see or touch. This does not mean that we

can have no empirical evidence for the existence of such objects, just as the fact that many

of the objects studied by science are not directly observable does not mean we cannot have

5 See [Crowe 1985,1988, p. 263, Fisher 1966]
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empirical evidence for them. For we can have evidence for statements which refer to

objects of a certain kind, even though we have no direct access to those objects.6 (Think of

our beliefs about dinosaurs for example). The independent access we have to physical

objects makes our theories about them highly liable to falsification by recalcitrant

experience. Mathematical objects on the other hand are known mostly through our theories

of them.7 We have no independent access to those objects, and so our mathematical

theories are far less liable to falsification man empirical theories. That, I would suggest is

why mathematics seems to provide us with greater certainty. Of course this does not imply

that our mathematical knowledge is infallible. Although we cannot refute a mathematical

theory by examining its objects under a microscope, we have seen that the evidence we

have for those theories is certainly not of a kind which makes them immune from revision.

Despite appearances then, there is no strong disanalogy between science and

mathematics which respect to proof. Certainly there are no proofs in science in the sense of

arguments which provide us with absolute certainty. But there is no such thing as proof in

this sense in mathematics either. Another way of stating this same fact is to say that there is

proof in a science, in exactly the same sense that there is proof in mathematics.

A large part of the activity of the working scientist consists in showing that the

currently accepted theory can be used to predict and explain new phenomena. But this is

precisely what a mathematician is doing when he or she proves a new theorem; using a well

established theory to derive a new result.

6 This, perhaps, is the lesson of Frege's context principle; we do not 'grasp' numbers, but this does not mean
we can know nothing about them - our knowledge of numbers consists in our knowledge of their laws, that is,
in our knowledge of propositions referring to them.
7 See also [Hart 1979, pp. 61-2].
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So in the sense that there is proof in mathematics, there is equally proof in science.

Newton proved Kepler's laws of motion in exactly the same sense that Dedekind proved

the associative law of addition. Scientific proofs are usually called explanations. The fact

that we speak of proof'in mathematics does not alter the fact that a proof of a theorem is

really an explanation of it. A proof in mathematics is a derivation of a statement from an

accepted mathematical theory, just as a scientific explanation may be a derivation of a

statement from a physical theory.

Mathematicians prefer proof to inductive confirmation of a conjecture, because a

proof gives us a better explanation of why the conjecture is true. In exactly the same way,

observation and experiment may confirm a physical hypothesis, but we get a better

explanation of it by showing how we can derive it from a system of scientific laws or

theory. Kepler's laws were well-confirmed by observation, but Newton's derivation of

those laws from his theory provides us with an explanation of them. This kind of

explanation is analogous to proof in mathematics. In both cases, explanation is achieved by

unification; we look for a few basic principles which allow us to give a systematic account

of as many of the facts as possible.

Explanation by unification is certainly very common in science. We can explain the

physical world by showing how a wide and diverse range of phenomena can be deduced

from a few fundamental laws. This may not be the only kind of explanation in the empirical

sciences , but I suggest it is the rule in mathematics.

A different kind of scientific explanation consists in describing a mechanism; a causal process underlying
the phenomena to be explained, [see Salmon 19xx, p. y]. This kind of explanation is unavailable in
mathematics. Again, I would suggest that this diflFerence between science and mathematics can be accounted
for entirely in terms of differences in their subject matters.
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The historical development of mathematics reveals a continual drive towards ever

increasing unification of the field. At any stage of mathematical inquiry, there is collection

of accepted results or statements, and a set of problems or questions. The accepted results

will be supported by evidence of various kinds, which we can represent as a set of

arguments or justifications for those results. In the very early stages of mathematics, the

accepted statements may be empirical, a set of observed regularities in the relations

between shapes of physical objects and the ways in which they can be grouped or counted

perhaps. The problems and questions are likewise empirical; concerned with solving

various practical problems of measurement and distribution. We then introduce some

simple rules and principles of arithmetic and geometry which are justified empirically or

pragmatically, on the grounds that they can be used to explain those regularities or solve

those practical problems. This gives us a basis of mathematical facts on which the process

of unification can set to work.

Some of the statements we come to accept in this way may later be given a

deductive justification, by showing how they can deduced from other accepted statements,

perhaps by means of certain general principles, which may or may not be explicitly stated.

Recognising those principles and adding them to our store of accepted statements results in

an improvement in the unification of our mathematical beliefs. At the same time, adding

those statements may raise new questions.

These deductive justifications may provide us only with a set of confirmation-

techniques (rules for calculation for example) for answering questions. New concepts and

statements may then be introduced into mathematics on the grounds that they provide

problem-solutions to those questions. On my account, the evidence for these new

X
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statements is that they explain many of the prior results by providing a general pattern of

argument which we can use to derive a large number of related results. Again, what this

achieves is an increase in the unification of mathematics.

As mathematics continues to develop, we see the creation of increasingly unified

theories of the mathematical facts discovered so far. Now, there is an ambiguity in the term

'theory' as applied in mathematics. There is a difference between for example, theories in

the sense of number theory, set theory, analysis, Euclidean geometry and so on and theories

in the sense of the theory of the distribution of primes, the theory of partial differentiation,

the theory of equations, solid geometry and so on. The former are deductively closed,

systematic, axiomatized sets of sentences about a certain fundamental kind of mathematical

structure. These correspond to fundamental theories in science such as quantum mechanics

and general relativity. The latter are collections of results and theorems about a more

specific area of mathematical research. These correspond to physical theories such as

electrical circuit theory, fluid dynamics, optics and so on. This kind of theory is often

embedded in a more general theory of the first kind, but need not be.

Theories of this second kind can contribute to the unification of mathematics in

various ways, by introducing new general principles or concepts which allow us to give a

more systematic treatment of the field in question; by replacing confirmation-techniques

with problem-solutions; by providing a more rigorous or general treatment of the field by

means of new basic principles and definitions; and so on. In all cases, the justification for

these additions to mathematics is that they provide explanations of the body of prior results

by increasing the unification of the field in various different ways.9 Of course, they also
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serve a second goal of mathematics; that of discovering new mathematical truths by

allowing us to derive new statements, not previously accepted.

Theories in mathematics always begin as theories of the second kind. We have seen

that before the nineteenth century, there were no theories in the first kind, except perhaps

for Euclidean geometry. Arithmetic, algebra, calculus and set theory all began as' theories in

the second sense; none of them were embedded in a rigorous, axiomatic theory. Similar

remarks apply to many theories in the rest of science of course. Nonetheless, just as in the

case of science, theories of this kind tend to gradually become incorporated into more

fundamental theories of the first kind. Just as in physics, the theory of heat became

incorporated into atomic theory and mechanics and the latter becomes incorporated into

quantum mechanics; so in mathematics, elementary arithmetic gets incorporated into

number theory and the latter comes to be incorporated into set theory. In the same the

various different kinds of group structures which had been studied by mathematicians

(permutation and substitution groups, transformation groups and so on) all became

incorporated into abstract group theory, which in its turn came to be subsumed under set

theory.10 The general pattern is the same in both science and mathematics; disparate results

from different theories get incorporated into increasingly unified and fundamental theories.

This drive towards unified theories in mathematics is not different to the search for

unified theories of the fundamental forces of nature in physics. In mathematics, the drive

towards unification seems now to have reached its peak in axiomatic set-theory, from

which all known braches of mathematics can be derived. But current set theory is not the

9 In this way I hope to have shown how the patterns of change in mathematical practices described by Kitcher
can all be seen as being justified in essentially the same way.

10 See [Kline 1972, pp. 772-791,1136-11561.
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end of this story. We know that there are many questions it leaves unanswered. Who knows

where the search for explanatory unification in mathematics will lead us next?

I argued in chapter one, that in mathematics, there are no foundations, only better

and worse kinds of evidence. We can now, I hope, see more clearly what mis comes to. The

distinction between better and worse kinds of evidence in mathematics corresponds to the

distinction between better and worse kinds of explanation. We have better evidence for a

mathematical statement when we have a better explanation of it, and on my account, the

better explanation is the one that contributes more to the unification of our mathematical

beliefs.

I have argued that mathematics is a science on the grounds that this is the view

which makes ihe most sense of the practice of mathematics. If we look at what

mathematicians actually do we find that they present evidence of various kinds for

mathematical statements, attempt to construct explanatory, unified theories of the known

mathematical facts, attempt to show mat the resources provided by those theories can be

used to derive new results, struggle with problems created by tensions within and between

different theories, propose hypotheses and conjectures, find counter-examples to them,

modify their beliefs in the light of new evidence and theories and so on. All of this is no

different to the activity of scientists working in fields such as physics, chemistry and

biology and other sciences.

Man}7 of the philosophers whose views on the epistemology of mathematics I have

examined here can be seen as advancing the thesis that mathematics is a science, albeit in

different ways, corresponding to their differing conceptions of the nature of science in
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general. Frege, for example, often referred to mathematics as a science11, but he operated

with a Cartesian or rationalist conception of science. On Frege's account, the theorems of a

branch of mathematics are justified by deducing them form first principles. But in this

respect, mathematics is no different to any other science. What distinguishes mathematics

from the other science is not that justification in mathematics is deductive, while

justification in the empirical sciences is not, for in Frege's view all justification is

deductive; every science has its first principles from all the truths of that branch of science

can be deduced. What distinguishes the science of mathematics from sciences such as

physics and chemistry is the mode of justification of the first principles involved; the

principles of the empirical sciences are justified by observation and perception, while the

principles of mathematics are justified either by pure logic (in the case of arithmetic and

analysis) or by pure intuition (in the case of geometry).

Hilbert's formalist account of mathematics, by contrast, can be seen as an

expression of a very different view of science; the operationalist or instrumentalist view

favoured by the positivists. On this view, the only meaningful propositions - certainly the

only ones whose truth it is the business of science to establish - are those that can be

directly verified or falsified by observation. Scientific theories that refer to unobservable

objects and mechanisms are to be thought of as no more than useful instruments for

deriving statements about observables. Analogously, on Hilbert's account, the only

meaningful propositions are those that can be verified or falsified by finitary computation

Mathematical theories that go beyond what is verifiable in this way, by treating of

11 For example: 'It is applicability alone that raises arithmetic from the rank of a game to that of science'.
[Grundgesetze, vol. n, §91]. See also [Grundlagen, p. II] were Frege describes our inability to say what the
number 1 is as a scandal to the science of mathematics.
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completed infinite totalities, are no more man useful instruments for deriving true finitary

propositions.12

In the same way, Lakatos's account of mathematics as a science on the other hand,

is informed by Popper's falsificationist model of science, while Kitcher gives an improved

account by making use of a more realistic picture of the development of science, based on

the concept of the evolution of scientific or mathematical practices.

We saw in chapter four how Quine also arrives at the conclusion that mathematics

is a science (or more accurately an integral part of science) by reflecting on the

inadequacies of reductionist accounts of scientific theories, according to which the

theoretical portions of out theories can be eliminated in favour of statements referring only

to what is directly observable. We also saw how the problems with Quine's account of the

epistemology of mathematics are connected with problems with his overall account of

science in general; in particular problems with his hypothetico-deductive account of

scientific evidence. Similar remarks apply to Lakatos's account, which inherits many of the

problems with falsificationism in the philosophy of science more generally.

I think that the general pattern here is clear. The better account of mathematics

corresponds to the better account of science in general. They key to progress in the

epistemology of mathematics is to improve our understanding of the nature of science in

general. Equally, our understanding of science will be improved by a closer examination of

mathematics.

No doubt there are a great many problems with the account of mathematical

evidence which I have offered. I hope to have at least pointed out the right way to approach

the solution of such problems; by confronting the account with mathematical practice and

12 See [Giaquinto 1983, pp. 125-7].

393

methodology, as revealed in its historical development I hope also to have shown that

many problems and issues in the epistemology of mathematics are fundamentally the same

as problems and issues in the philosophy of science more generally - especially those

connected with the related concepts of evidence and explanation.
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