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Abstract

The importance of testing for and modelling structural change of possible
unknown timing in econometric relationships is well recognized. There is a well-
developed literature on testing and modelling when a structural change may be
present and a lesser literature on forecasting. Unforiunately, almost no work has
been reported on model selection procedures for detecting the presence of a
structural change with changepoint of unknown timing. In this thesis we investigate
the use of modei selection and develop a new model selection procedure which
involves of maximizing the average mean probability of correct selection (AMPCS).
New results are also presented for testing and forecasting with possible structural
change in mind.

The first contribution of this thesis concerns the use of the likelihood ratio
(LR) test statistic to test for the presence of structural change when there is a possible
unknown changepoint in the data. Since this test does not have a known distribution
for finite sample sizes, we calculate exact critical vaiues for the test by simulation for
different sample sizes, numbers of regressors and types of regressors. We find that
the critical value clearly depends on sample size, number of regressors and to a lesser
extend on the type of explanatory variables. We develop formulae for critical values
using a response surface approach and check the accuracy of these formulae by
Monte Carlo simulations. Overall the actual sizes of the test using our formulae to
calculate appropriate critical values are quite satisfactory.

As a second contribution, this thesis demonstrates that model selection
procedures can be used to detect a possible changepoint in the data. It cautions

against the use of one particular information criteria (IC) procedure in order to detect
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the presence of a structural change because none of the IC procedures stand out as a

clear best method. In order to assess different selection strategies, we use our
criterion AMPCS that summarizes the quality of different IC procedures. The results
of the Monte Carlo experiment show that in terms of our AMPCS criterion,
Hocking’s S, criterion (HSPC) is the best IC procedures for small samples and
Schwarz’s Bayesian information criterion (BIC) for large samples. Findings also
show that BIC outperformed all existing IC procedures considered when there is no
structural change, and Theil’s R-squared criterion (TRSC) performed best overall
when a changepoint is present.

The third contribution is to outline methods for finding optimal penalties for
different changepoint medels in such a way that no one model is favoured
unwillingly. We propose four new methods which are the complete grid search
algorithm (CGSA), a block grid search algorithm (BGSA), polynomials of degree
four algorithm (PDFA) based on a grid search and a relativelv new global
optimization algorithm called the simulated annealing algorithm (SAA). Our
simulation results show that the CGSA is the best, BGSA second, SAA third and
PDFA fourth best as measured by maximum AMPCS. We have found that all of our
four suggested procedures dominate the existing IC procedures considered in terms
of having higher AMPCS.

Finally, we investigate random changes in the coefficients of linear
regression models and their effect on prediction models. We derive the distributional
pattern especially the mean, variance and covariance structure of different linear
regression models for stochastic changes in either slope or intercept parameters in
turn by a fixed amount with a very low probability. We find that this results in a
linear regression with a nonscalar variance-covariance matrix, which allows standard

approaches to estimation and prediction to be used.
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CHAPTER 1

Introduction

1.1 Background

Econometricians, economists, statisticians and researchers of a number of
other disciplines use the term model to mean a simplifying approximation of the real
data, which captures the relevant features of a particular phenomenon. Grassa (1989,
pl) defined an econometric model as “an analytical characterisation of the joint
probability distribution of some random variables of interest which yields some
information on how the actual economy works”. On the other hand, a mathematical
economic model describes the behaviour of an economy within the framework of a
set of assumptions. In other words, an economic model typicallv involves some
degree of abstraction from reality whereas an econometric model reflects this
abstraction in practice (see for example, Zarembka (1974)).

Bergstrom (1993) indicated that economic models are usually less precise
than other models used for statistical fitting and testing. Econometric models are
usually more precise in the sense that parameters of such models can be estimated
and tested through statistical techniques using available data. In other words, we are

able to see how well the model fits the data. Much of the literature in econometrics
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is mainly concerned with the problems of estimation and inference from a sample of
data. The properties of estimation techniques, and the quality of inferences, are
heavily dependent on the correct specification of the model under consideration.
There is the problem, that for one modelling situation, there might be many different
specifications that constitute different alternative models. Thus an obvious question
arises as to which model provides the best characterisation from the viewpoint of the
data. The term model selection emerges from this simple idea.

Econometricians usually expect that economic theory will help them to find
causal links and formulate appropriate models. But unfortunately, existing economic
theory often fails to suggest an adequate functional form of such relationships.
Because of this weakness in economic theory, econometricians often use their own
methods for deciding on the functional forms of models. In doing so, they typically
propose a range of alternative models to reflect the relationship between dependent
and independent variables. The question arises; how should one model be selected
from a number of alternative possible models using the available data? This is
typically known as the model selection proble.n in the econometrics literature.

During the 1950's and 1960's, regression analysis became the principal too!
for economic data analysis. It was not long until there was a concern about the
assumption that parameters in the regression are constant over the cntire sample
period. It is quite common to observe occasional changes in economic systems,
which alter the underlying relationships between variables of interest. As a result,
these changes must be considered while forming the model. This realization has led
to a large literature on the possibility, detection and modelling of structural change in
econometric models.

Modern econometric practice advocates that while modelling any

econometric problem; researchers shouid test their models for misspecification,
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especially for structural change. The problem of testing for structural change
basically involves testing for the consistency of regression coefficients in two or
more separate subsampies. In the case of time series data, the subsamples may be
different economic situations, such as particular government policy periods or
particular foreign exchange regimes. In the case of cross sectional data, the
subsamples may correspond to different groups of observations such as large and
small firms, developed and underdeveloped countries or men and women. Many
researchers have shown th:: proper consideration of possible structural change is
needed while analysing data, otherwise poor estimates, inferences and forecasts can
result.

Over the last few decades, there has been considerable interest in the
problem of testing for structural change. Some of the literature covers the case when
the timing of the changepoint is assumed known. This is not aiways a realistic
assumption because for example in economics, some economic changes can take
place when the timing of the changepoint is unknown. The difficulty with the
problem of testing for a structural change with an unknown changepoint is that it
does not fit into the traditional testing framework. The reason is that the timing of
the changepoint appears only under the alternative hypothesis but not under the null
hypothesis. As a result, standard tests such as the Wald (W), Likelihood ratio {LR)
and Lagrange multiplier (LM) tests do not possess their usual large sample
distributions under the nuil hypothesis. One of the main aims of this thesis is to
provide a small sample based LR test procedure for structural change in the linear
regression model when the changepoint is unknown.

In the literature there have been a number of model selection procedures
suggested by researchers. These procedures can mainly be classified into four

categories: (1) procedures based on hypothesis testing, (2) procedures based on
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minimum sum of squared residuals, (3) procedures based on Bayesian criteria and (4)
procedures based on information criteria (IC). However, if we look at the
development of the model selection literature, we see there is a wide range of
research related to 1C based procedures. These particular procedures are probably
the most workable, popular and widely used methods for model selection in
econometrics.

Clayton et al. (1986) showed that IC based procedures can be regarded as a
more substantial approach to model selection than any other procedures. In addition,
Granger et al. (1995) noted that IC based procedures involve fewer limitations than
hypothesis test based procedures, and hence have become more popular with
practitioners. Thus, the focus in this thesis will be on IC based procedures which can
be defined as choosing the model with the largest maximized log-likelihood function
minus a penalty term, where the penalty is a function of the number of parameters
included in the model and possibly also sample size.

One can easily design a new IC procedure by slightly changing the value of
the penalty function. As such, interest in introducing various IC based procedures
for different types of models continues to grow and that make the users confused as
to which IC procedure to use for a particular problem in hand. Therefore, an IC
based procedure that would work well for any kind of model selection problem is a
current disparity in the IC literature.

King, Forbes and Morgan (1995) and Forbes, King and Morgan (1995)
proposed 2 new approach for estimating penalties through simulation. This method
is known as the controlled probability approach. Hossain and King (1998) applied
this approach to Box-Cox transformation models and found that it produces high
selection rates in picking the true (data generating) model. Kwek and King (1997a,

1997b, 1998), and King and Bose (2000) considered mode! selection problems in
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conditional heteroscedastic models, and linear regression models, respectively, in the
context of maximizing the average mean probability of correct selection (AMPCS).
The AMPCS is calculated by averaging the mean probabilities of correct selection
for all models in the plausible group. All of these applications produced, on average,
a high probability of selecting the true model. For the sample size and plausible
models under consideration, this new model selection approach maximizes the
AMPCS through the estimation of penalty values numerically.

This has motivated us to develop a model selection approach for the
detection of the possible presence of structural change in the linear regression model.
In this thesis we discuss in detail the idea of model selection for this problem both
using existing IC procedures and the new approach of maximizing the AMPCS.

Finding penalty values that maximize the AMPCS is a difficult numerical
problem. The AMPCS is a step function, and hence, it may not be easy to maximize
using standard methods. The grid search algorithm (GSA) could be one way of
estimating penalty values so that the AMPCS is maximized. Because we are dealing
with so many models based on the position of the changepoint, to ease the
computational burden, we investigate the use of a block grid search algorithm
(BGSA) and a polynomial of degree four algorithm (PDFA) based on grid search.
We also use a relatively new global optimization algorithm called the simulated
annealing algorithm {SAA) to maximize this AMPCS. The SAA works well as an
optimization algorithm, even when optimizing very complicated functions such as
functions with a large number of local maxima (see Corana et al. (1987), Kirkpatrick
et al. (1983) and Goffe et al. (1994)). A contribution of this thesis is to investigate
the use of the BGSA, PDFA and SAA to find optimal penalties for a small or large

number of models when the data contain a possible structural change.
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In making policy decisions, forecasting is becoming an increasingly
important issue both in the regulation of developed economies as well as for the
planning of the economic development of the underdeveloped countries. Goldfeld
(1976) and Zellner (1979) showed that forecasting without taking possible structural
change into account may provide misleading or poor forecasts. Also, a test
procedure that does not account for the possible presence of structural change may
reject some well-established econometric theories (e.g., the Lucas hypothesis), see
Iimakunnas and Tsurumi (1985). In this thesis, we also discuss in detail the idea of
forecasting in presence of possible stochastic change of unknown timing in the
parameters with a low probability.

In summary, the main aims of this thesis are to study the problems of testing
for a structural change in the linear regression mode! with an unknown changepoint,
model selection in the presence of possible structural change where there is a large
number of models each based on the position of the changepoint in the data, finding
optimal penalties for such model selection problems and forecasting in the presence
of structural change.

The specific objectives of this thesis are to:

(i) Develop the ability to calculate critical values for the LR test for
structural change of unknown timing by developing formulae using
the response surface method. We also check the usefulness of the
proposed formulae by conducting a small Monte Carlo experiment.

(i) Investigate the use of IC model selection procedures to detect a
structural change when there is large number of models each with a
different timing for the changepoint. We also examine which

criterion among existing IC has the best ability to detect a
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changepoint in the context of a linear regression model when the
timing of the changepoint is unknown.

(iii) Consider the use of AMPCS as a method of obtaining optimal
penalties. We also examine how such optimal penalties might be
calculated in practice, particularly when there are a large number of
alternative models involved.

(iv) Investigate how to incorporate possible future structural change as a
stochastic element in linear models with possible stochastic changes
in their parameters and to compare predictions from different

strategies for such models.

1.2 Outline of the Thesis

In Chapter 2, we briefly review the testing for structural change literature
from an econometric and statistical viewpoint covering likelihood ratio tests,
Bayesian procedures, nonparametric approaches, CUSUM and CUSUM of squares
tests, the Chow test, the sup F test for time series and linear regression models.

We briefly survey the mode] selection literature in econometrics beginning
with a short discussion on some cbvious demerits involved with model selection
through hypothesis testing, The survey reveals that there is a large body of literature
on model selection ranging from stepwise hypothesis testing to IC based model
selection procedures. However, the discussion on IC based procedures mainly
focuses on the penalty term that is one of the main ingredients of such procedures.
We also briefly survey the literature on the simulated annealing algorithm and the
varying coefficient model.

Chapter 3 develops a small-sample test procedure that allows the use of the

LR test statistic based on maximization of the likelihood function of the linear

I A LT
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regression model in the presence of structural change. Under the null hypothesis, the
regression parameters are constant across all periods. Under the alternative, a
particular regression parameter changes at an unknown changepoint. In our case, the
critical values of the LR test statistic depend on the number of regressors, types of
regressors and the sample size. Unfortunately, the LR test statistic does not have a
known finite sample distribution. although the critical values for the test can be
calculated by Monte Carlo estimation. We develop formulae for critical values of
the LR test for different sample sizes, different significance levels, number of
regressors in the model and types of regressors using a response surface approach
applied to estimated critical values obtained via simulation.

In Chapter 4, we argue that the problem of detecting a changepoint of
unknown timing can be viewed as a model selection problem. In particular, we
examine which criterion has the best ability to detect a changepoint in the context of
a linear regression model when the timing of the changepoint is unknown. We use
the average mean probability of correct selection (AMPCS) criterion as a measure of
accuracy in detecting a changepoint.

In Chapter 5 we develop algorithms that compute optimal penaities in such
a way that the AMPCS is maximized for different models involving structural
change. We use grid search, polynomial of degree four combined with grid search,
and simulated annealing optimization algorithms that estimate optimal penalties for
different models. We give a working version of each of the algorithms and evaluate
them by discussing their advantages and disadvantages. We perform a small Monte
Carlo experiment to calculate the penalties for different models using these
algorithms. We look for the algorithm that gives the optimal penalties in a sense that
these penalties will provide maximum AMPCS with minimum computational cost

and effort.
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In Chapter 6, we investigate how to incorporate possible future structural
change as a stochastic element in different linear models with stochastic changes in
parameters. We consider the case in which there are two possibilities of a changing
parameter. One is a change in the slope parameter by a fixed amount with a very low
probability, keeping the intercept constant and another is a change in the intercept
parameter by a fixed amount with a very low probability, keeping the slope
unchanged. We use linear regression models with single or multiple time changing
coefficients but with low probabilities of a change at any point in time. We find that
this results in a linear regression with a nonscalar variance-covariance matrix, which
allows standard approaches to estimation and prediction to be used. We perform a
Monte Carlo experiment to investigate whether our forecast procedures are likely to
be useful.

We conclude this thesis with Chapter 7. It summarises t_he results,
conclusions and contributions of this thesis, and gives some suggestions for future

research.




CHAPTER 2

Literature Review

2.1 Introduction

There are four main themes in this thesis. These are testing for structural
change when the timing of the changepoint is unknown, model selection as a method
of detecting a possible changepoint. the use of the special optimization procedures to
find optimal penalties for model selection and prediction in the linear regression
model in presence of possible random change of unknown timing in the parameters.
The purpose of this chapter is to review the literature relévant to these four topics
with particular emphasis on the problem of structural change when the changepoint
is unknown.

The structural change problem can be considered to be one of the central
problems of statistical inference, linking together the theory of estimation and testing
using classical and Bayesian approaches, and fixed sample and sequential
procedures. We survey the literature on testing for a structural change when the

changepoint is unknown and discuss the developments of related topics in the

structurai change literature.
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In applied work, model selection is a frequently occurring problem of great
importance, as inferences, forecasts, interpretations, and policy decisions etc. can
depend critically on the ;:;articular model selected from the range of models
examined. Most often, model selection {s done by mechanical application of one or
several of the criteria that have been deveroped for this purpose. Among these, we
review some of the commonly used IC procedures.

Tie maximised likelihood and the penalty function are the two main
ingredients of IC based model selectica procedures which involve choosing the
model with the largest maxiinised log-likelihood function minus a penalty term, that
is, the largest penalized maximum likelihood. The penalty term is a function of the
number of parameters included in the model under consideration and typicaily also
the sample size. Unfortunately, there is little agreement about the best form of this
penalty function. To find the penalties for different mode’: ihat maximize the
average mean probability of correct selection, a globa! optimization method needs to
be used. One relatively new optimization method that we will find useful in later
chapters, is a method called the simulated annc- g algorithm (SAA). We also
briefly review this topic in this chapter.

We begin the survey in Section 2.2 with a brief discussion of the structural
change literature in econometrics and statistics with an emphasis on hypothesis
testing. In Subsection 2.2.2 we survey the likelihood ratio approach and diagnostic
tests for structural change are outlined in Subsection 2.2.3. Subsection 2.2.4
summarizes the Chow test and Subsection 2.2.5 the Sup F test. Subsection 2.2.6
discusscs some other approaches.

In Seetion 2.3 we survey the literatre on information criterion based model
selection. In Subsection 2.2..2 we discuss the consequences of model selection

through testing. In Subsect'on 2.3.3 we survey the historical development of some
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existing IC based model selection procedures namely, Akaike’s information criterion
(AIC), Schwarz’s Bayesian information criterion (BIC), generalized cross validation
criterion (GCVC), Hannan and Quinn’s criterion (HQC), Theil’s adjusted R-square
criterion (TRSC), Mallow’s C, criterion (MCPC), Hocking’s S, criterion (HSPC),
and Amemiya’s prediction criterion (APC). We end this section discussing the work
of King and others. In Section 2.4 we review simulated annealing algorithms.

Finally, some concluding remarks are made in the Section 2.5.

2.2 Brief Review of Testing for Structural Change

2.2.1 Introduction

The problem of possible structural change in economic relationships has a
long history in econometrics. Parameter constancy is especially important when one
wants to use a model for forecasting and policy implementation. Generally, it is
essential in policy anafysis that the parameters of the model be invariant with respect
to the possible policy intervention if the effect of such a policy change is to be
predictable.

The aim of this section is to provide a literature survey of various test
statistics for structural change. Since the literature in this area is vast and growing

rapidly we will in particular focus on those tests which are widely used in practice,

2.2.2 Likelihood Ratio Approeach

The likelihood ratio test has practical and theoretical importance, because it
provides a unified approach to the problem of testing for structural change. In this

survey we review some tests which can be applied to hypotheses about regression
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coefficients containing possible structural change of a known or unknown
changepoint.
Consider the standard linear regression model
yi=xB+u, r=1--.n, .0
where y, is the dependent variable at time ¢, x, isa k x1 vector of observations of
the independent variables at time ¢ and £, is a k£ x1 vector of unknown parameters
of the model that may change over time. The error term z, is assumed to be
independenily normally distributed with constant variance, i.e., 4, ~ IN(0,0%).
The null hypothesis of interest is
Hy:fy=py==p, =Pua="=5, (2.2)

where n, is the time of the changepoint.

2.2.2.1 Testing when the Alternative is Specified

One particularly important alternative hypothesis is the one time discrete

change, which can be expressed as
H! :ﬂi =ﬂ2 z'"=ﬂnl ;ttBn,-rl == P (23)
where #, is the time of the changepoint.

Quandt (1958) derived a method of estimating the changepoint of a linear
regression model where there are two regimes and when it is known that time period
under consideration contains one changepoint. He considered the problem under the
assumptions that the data are free of error, error terms are independent of each other

and the errors are independent of explanatory variables. He suggested a LR test of

H, against a more general alternative, where the variance is also allowed to change.

When the sample size is finite, », is discrete and takes values from n, =(k+1)/n to

TV T B L L. 3, TEF PR
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n,=(n-k)/n. For such n, values, suppose the observations in the time segment

(1,---,n,,n, +1,---,n) come from two different regressions, then the likelihood ratio is

Sy -

G, T,

~n

max likelihood under H, _
max likelihood under

LR =2log 2log 2.4)

where &, and &, are the standard errors of estimate of the regressions before and

after the changepoint respectively, and & is the standard error of estimate of the
overall regression based on all n observation. For this reason, expression (2.4) is
often called a Quandt ratio, and the resulting test is referred to as the Quandt test.
This test requires re-estimating the model for each subsample. Therefore, a natural
answer to such a testing problem is to calculate the LR test statistic at every possible
changepoint, then examine the largest test statistic. This may be quite time

consuming or difficult in the case of non-linear regression models,

The estimated n, corresponds to the value of », at which LR attains its
maximum. Unfortunately, the likelihood function here is not differentiable with
respect to the parameter », and the distribution of maximum LR is unknown. In
other words, the problem of testing for a one-time structural change with unknown
changepoint does not fit into the standard testing framework, see Davies (1977,
1987). The reason is that the parameter », only appears under the altemative

hypothesis and not under the null hypothesis.

Quandt (1960) tested the conjecture that the distribution of maximum LR is
asymptotically chi-squared. Based on Monte Carlo simulation results, he rejected it
and concluded that the proposed approximation to the null distribution of the LR test
is very poor, thus the LR procedure suffers from a lack of knowledge of the

appropriate distributional theory. Such a problem is only partly overcome by either

e mew
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using an approximation method or constraining to some special data generating
process.

Farley and Hinch (1970) and Farley, Hinch and McGuire (1975), partitioned
the unknown parameter vector of (2.1) 8, =(8,,5.), where B, is a (k, x1) vector
with k, <k, and f, isa ((k -k )x1) vector, they approximated the discrete change
in the coefficient at an unknown point by a linear continuous change

B, =08, +5t (2.5)
where & is a scalar. Then under the alternative hypothesis, we have an augmented
model, which is still linear in the parameters

Y=XB+Z6+u ' 2.6)
where Z is an nxk, matrix. Their procedure rejects H; of no structural change
whenever

_ (SSEO - SSE)/ k
SSEO/(n-2k)

(2.7

is significantly different from zero. Under the null hypothesis, the statistic
((n~2k)/k)R has a conventional F distribution with (k,, n—2k) degrees of
freedom. Here SSEQ is the sum of squared residuals in (2.6) and SSE is the swiz: of

squared residuals in (2.6) subject to the constraint § = 0. They also proved that their

test is asymptotically more powerful than the mid-point Chow test if the structural

change occurs in the intervals 0 < % <042 or 058 <2 <1.
n n

Hinkley (1969) derived the asymptotic distribution of the maximum likelihood
estimate of the changepoint #,. He discussed computational aspects of the
asymptotic distribution of the likelihood ratio statistic and compared the asymptotic
results with some empirical finite sample results. He concluded that the asymptotic

distributions are poor approximations in small samples.
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Hinkley and Hinkley (1970) considered models of the form (2.1) and
showed that the maximum likelihood estimate of the changepoint converges in
distribution based on an infinite sample. They considered a sequence of random
variables at which the probability distribution changes and derived the asymptotic
distribution of the likelihood ratio statistic based on random walk techniques for
testing hypotheses about the changepoint and compared it with finite sample
empirical distributions. They used the maximam likelihood method to estimate »,
and derived exact and asymptotic distributions of #,. They used the LR test to make
inferences about the changepoint and conciuded that the asymptotic distribution of
the test statistic is not consistent.

Hawkins (1977) studied the likelihood ratio test for the alternative of a
location change, found its distribution under the null hypothesis, and gave tables of
standard percentiles along with asymptotic results. Worsley (1979) used likelihood
ratio test statistics for location of the changepoint of normal population. Brown et al.
(1975) suggested a way to test whether regression coefficients changed without
specifying a changepoint.

Worsley (1983) gave an iterative procedure to determine the exact null and
alternative distributions of the likelihood ratio statistics in the context of a change in
& binomial probability. He provided approximate upper bounds for the p-value of the
LR test and his numerical results indicate that such bounds are reasonably good in
small samples.

Srivastava and Worsley (1986) used the LR statistic to test the null hypothesis
H, of no change against the alternative there is a change. The unknown changepoint
n, is estimated by the maximum likelihood method. They showed that the LR test

statistic is a maximum Hotelling 77 statistic, and the estimate of the change point is

the point at which this is a maximum. Their main result is a conservative
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approximation for Hotelling 77 statistic’s null distribution. They used the binary
segmentation procedure by Vostrikova (1981) for detecting more than one
changepoint. The disadvantage of this procedure is that it relies on the assumption of
equal variance throughout the whole data period and also depends on the order in
which data were split.

James, James and Siegmund (1987) considered likelihood rafio tests to
detect a changepoint. Instead of directly addressing the problem under general linear
regression model, they considered the simple linear regression

ay+ fByx, + u, fort<n
= (2.8)

", + B, +u, fort>n,
to test Hy: 5, = f,, and a, = a,, against one of the alternatives, H,: 5, =, = f, and
there exists an n, (1<n <n) such that ¢, a, or there exists an unknown
changepoint n, (1<n <n) such that H,:5, = f,, or a,#a,. They investigated
some tests, including the LR test, for a sequence of independent normal random
variables with constant, known or unknown variance for no change versus the

alternative of a single changepoint.

Andrews and Fair (1988) extended Chow’s (1960) classical test for

structwal change in linear regression models to a variety of nonlinear models,
estimated by a variety of different procedures. They introduced Wald, Lagrange :j
multiplier-like, and likelihood ratio-like test statistics, and provided a compact

presentation of general unifying results for estimation and testing in noniinear

parametric econometric models.

Kim and Siegmund (1989) derived analytical likelihood ratio tests of
constancy of a regression model over time and obtained an approximate p-value |
under reasonably general assumptions about the empirical distribution of the

independent variable. A difficulty associated with this problem is that under the null |
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hypothesis, the distribution (even the asymptotic distribution) of the test statistic
depends on the values of the independent variable. They estimated approximations
to the p-vaiues of the likelihood ratio tests of H,:f, = f, against H;:8, =, = or
H:fp,#pB,.

Nyblom (1989) proposed tests for deteciing possible changes in parameters
when the observations are obtained sequentially in time., He mentioned when the
starting point is unknown, an efficient estimate is substituted for it. In addition, he
established the corresponding limiting distribution. The proposed tests turn out to be
based on cumulative sums of the score function (the derivative of the log-likelihood).

Henderson (1990) considered testing the null hypothesis of no change,
against the alternative of change at an unknown changepoint. Under the nuli
hypothesis H,, the variables are identically distributed, but under the alternative
hypothesis H, there is a change in distribution at some unknown point », in the
sequence (1<m <n). That is, the first n observations are drawn from one
distribution and the remaining (#—n,) are drawn from a different distribution. Thus
H,, contains a family of alternatives indexed by a parameter n, that disappears
under the null hypothesis. He considered a likelihood ratio test and mentioned that
additional information in the maximum likelihood estimate of the changepoint can
seriously affect the interpretation of test results. He considered some modifications,
derived exact percentage points and performed Monte Carlo power and mean
squared error comparisons. He concluded that his results were encouraging.

Loader (1992) considered a changepoint model of the form (2.1) and used
likelihood ratio tests for testing for the presence of a changepoint, for which standard
asymptotic theory is not valid. He developed the log-likelihood ratio statistic for

testing H, and showed that under the null hypothesis, the log-likelihood ratio
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statistic is distributed approximately y?/2. He mentioned that for small § this
approximation is not very good without giving a proof. Applying large deviation
methods, hé approximated the p-values, and gave power approximations. He also
derived confidence regions for the changepoint and illustrated the methodology using
a British coal mining accident data set.

Muller (1992) proposed estimators for location and size of a changepoint in
smooth regression model. The assumptions he made are much weaker than those
made in parametric models. His estimators apply to the detection of changepoints of
slope and of higher order curvature based on a comparison of left and right one-sided
kernel smoothers. He illustrated the methods by means of the well-known data on
the annual flow volume of the Nile River between 1871 and 1970.

Andrews (1993) considered tests for parameter instability and structural
change with an unknown changepoint for a wide class of parametric models
estimated by generalized methed of moments (GMM). He considered test statistics

of the form

sup Wald(n, }, supLM(#,) and supLR({n,) 2.9

mell myel el
where Wald(n,), LM(n)and LR(r,) are the Wald, Lagrange multiplier, and
likelihood ratio test statistics for testing A, versus H, and I is a subset of the
integers {I,---,n}. The LR test statistic for the case of a specified parameter #,
within the parameter space [1. Andzews justified the test statistics of the form (2.9)

as the test statistics supWald{n,), supLM(n,) and supLR(n,) correspond to the
m el mell nyell

tests derived from Roy's type I principle, see Roy (1953) and Roy, Gnanadesikan and
Srivastava {1971, pp 36-46).

Andrews under some regularity conditions, proved that under H
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sup K(n,) =d:~ sup B(n, ) B(n,)/ (n, (n -n )) 2.10)

mell m el

y
is same as Wald, LM or LR, where K is any of these test statistic, = means

convergence in distribution, B(n,)=W(n,)- nIW(I) is a vector tied-down Brownian

moticii on (0,1). In other words, the sup Wald(n, ), supLM(n,) and supLR(n,) tests

mel mell n el
have the same asymptotic distribution which is free of nuisance parameters. In

particular, in the case of a full structural change,

sup F = sup F(n,) = sup B(n,) B(m)/ (n,(n—n,)) (2.11)

m eIl n el

where F(n,) is the conventional F test statistic which we discuss further in Section
2.2.5.

He noted that the asymptotic distributions of the test statistics are
nonstandard because the changepoint parameter only appears under the alternative
hypothesis and not under the null. He showed that the asymptotic null distributions
of his test statistics are the supremum of the square of a standardized tied-down
Bessel-process. This allowed him to provide tables of critical values based on this
asymptotic null distribution. He found the tests performed quite well in a Monte

Carlo experiment.

Kim and Cai (1993) examined the distributional robustitess of the likelihood
ratio test for a changepoint in a simple linear regression of type (2.8). They checked
whether the level and power of the test remain unchanged when the underlying error
distribution is nonnormal. They summarized the normal theory of the likelihood
ratio tests for no change in the regression coefficients versus the alternatives with a
change in the intercept alone and with a change in the intercept and slope, then

discussed the robustness of these tesis. Using the convergence theory of stochastic
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processes, they showed that the test statistics converge to the same limiting
distributions regardless of the underlying error distribution. They performed
simulations to assess the distributional insensitivity of the test statistics to a Weibull,
a lognormal, and a contaminaied normal distribution in two different cases: fixed and
randomn independent variables. Their numerical examples showed that the test has
correct size and retains its power when the distribution is nonnormal. They
performed simulation experiments and observed that the LR tests achieved almost
the same level, and power regardless of the distributional assumption. They also
found that the approximations for the p-values of the test achieved almost the same
accuracy for each of the selected nosnormal errors.

Other related work includes Miller and Siegmund (1982) who considered a
special case of maximally selected chi-square statistics. Vostrikova (1983)
established the weak convergence of the likelihood ratio statistics in a very general
case. Bhattacharya (1987) studied the problem of estimation of a changepoint in a
general multiparameter case. Haccou, Meelis and van de Geer (1988) obtained the
timit distribution of the maximally selected likelihood ratio in the exponential case
and they showed that the test is optimal. Gombay and Horvath (1990) studied the
changepoint problem when the observaiions are from a one-parameter exponential
family. Yao (1993a,b) obtained approxizuations for a modified likelihood ratio test
in the .iormal case. The result in Horvath and Serbinowska (1995) covers the case
when the maximum is taken with respect to all possible changepoints. Rukhin
(1994) and Hu and Rukhin {1995) computed the asymptotic minimaxity of the LR
test in the context of changepoint problem. Baron and Rukhin (1997) constructed
confidence regions for the estimated changepoint.

There have also been extensive studies on the analysis of structural change

in a variety of models such as dynamic, nonlinear, simultaneous and time-series
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models. For example, see Bacon and Watts (1971), Feder (1975), Deshaves and
Picard (1982), Lo and Newey (1985), Sen (1985), Huskova (1988a,b), Kramer,
Ploberger and Alt (1988), Lutkepoh! (1988, 1989), Miao (1988), Antoch and
Huskova (1989), Ploberger, Kramer and Kontrus (1989), Huskova (1990a,b, 1991),
Mills (1992), Antoch and Huskova (1993), Huskova (1994a,b), Chu, Homik and
Kuan (1995), Watson (1995), Huskova (1996) and Horvath, Huskova and
Serbinowska (1997) for details.

2.2.2.2 Testing when Alternative is Random
Coefiicient

One of the important specifications of £, in context of one discrete
changepoint of (2.1) under the alternative is to treat its variation as random. In this
situation a test for parameter constancy reduces to a zero restriction on the variance
of the innovations moving the random parameters. The reason behind this
specification is that if the regression coefficients are to be regarded as the true partial
derivatives of the dependent variable with respect to the independent variables, then
it is unlikely that these partial derivatives will be identical for two different
observations (Rosenberg (1973)). A number of varying parameter models have been
proposed in the context of time series medels. Among them, three major types of
varying parameter models are of particular interest. They are, respectively, the
random coefficient models of Hildreth-Houck (1968), the random walk models and
the retumn to normalcy models of Rosenberg (1973). A detailed survey of testing
varying coefficient regression models can be found in Brooks and King (1994).

The linear regression model (2.1) can be written under a specification of one

random coefficient as
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Y, =x B +zja+¢,, (2.12)
in which y, is the dependent variable, x, is the non-stochastic regressor with the
single varying coefficient f,, z, is a kx1 vector of non-stochastic explanatory
variables with fixed coefficient vector a, &, ~ IN(0,06%) and 1 = 1, 2, ..., n. The
null hypothesis is (2.2).

The Hildreth and Houck (1968) random coefficient model states that the

single verying coefficient S, from (2.12) follows the process,

B, =B+u,, (2.13)
in which B is a constant parameter, u, ~IN(0,1,0°) and is independent of &,.
Testing for regression coefficient stability is equiva’ent to testing

Hy: Ay =0 against H:1,>0.
It B, follows this process then by substitution, model (2.12) becomes,

¥, =x,B+za+v,, (2.14)

in which v, = ¢, +x,u4,. The properties of v, are that it is normally distributed with,

E(v) =0, Var(b,) = o(l + Ayx}) and Cov(v,, v,) = 0, t#s.

Therefore, the effect of introducing random coefficient variation is to give
the dependent variable a different variance at each observation, the testing problem
can thus be considered as testing for heteroscedasticity in the standard linear
regression model. A large variety of test statistics have been developed in the
literature. Among them, the .M test of Breusch and Pagan (1979) and the point
optimal test of Evans and King (1985, 1988) appear to be most appropriate.

Rosenberg’s (1973) return to normalcy random coefficient mode: assumes

the coefficient following a first-order stationary AR process,

B,=¢ B +(1-$)B+a, (2.15)
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in which a, ~ JN(0,4,0) and is independent of &,. For (2.15) to be a stationary
process, it is required that |gl<1. It incorporates some of the best features of the

random walk and random coefficient models and 1s therefore of great importance.

Watson and Engle (1985) pointed out that the standard tests, (e.g. LR, Wald
or LM tests) cannot be used in the regular approach since the transition parameter ¢
is only identified under the alternative hypothesis but not under the nuli hypothesis.
This 1s because under the null hypotliesis the information matrix will be singular. To

overcome this difficulty they applied the testing approach as suggested by Davies
(1977).

Nyblom (1989) introduced the martingale formulation for the general
problem of testing for structural change. Under the martingale specification, a test
for constant coefficients reduces to a zero resiriction on the variance of the
innovations disturbing the random parameters. Such an approach possesses
substantial flexibility. It allows, for example, S, to be a random walk or o bave 2
specified or unknown number of discrete jumps during the observation period.
Based on the martingale specification, it is therefore possible to develop a test, which
is sensitive to different types of nonconstancy of parameters (see Nyblom (1989) for
details). Using a Taylor's series expansion, Nyblom first formed the approximation
of the joint density function of the observations under the altemative. Then, by
evaluating the ratio of the joint density functions respectively under null and

alternative hypotheses, he achieved a locally most powerful test statistic.
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2.2.3 Diagnostic Tests for Structural Change

In the previous section we discuss the test procedures which are intended to
test against a specified form of structural change, there is also a need for an
explanatory procedure aimed at being sensitive to a wide variety of non-stability
patterns without specifying any particular alternative. It is possible to detect possible
structural change by defining test statistics on the basis of various types of residuals
and inspecting their probability distributions. Belsley, Kuh and Welsch (1980) called
this approach an analysis of residuals and Box and Jenkins (1970) called it diagnostic
checking.

Brown, Durbin and Evans (1975) introduced CUSUM and CUSUM of squares
tests based on recursive residuals to test the stability of regression coefficients over
time, they have become the standard diagnostic procedures when the timing and type
of structural change are unknown. They considered the simple linear regression
model of type (2.1). The null hypothesis of interest is H,:f ==, = 8. Tests are
constructed on the basis of recursive residuals. The recursive residuals, are defined

as

PV», = (yn, _x;llz?n,—l)/vll'{-xn, (x;,-—l.xn,-—l)-] x::. » M= k+ L-yn (216)

where ,AB,,I_, is the OLS estimate of £ from the first n ~1 observations and the

CUSUM test statistic is defined as

h

Jn-k

CUSUM = -1— max

OF k+lsmsn

/(1+2"‘”k), 2.17)
n-k

2

Z(y, -x,-'ﬁ) is a consistent estimate for 6*. The CUSUM of

i=]

|
n—-k

where &% =

squares test statistic is of the form

e e Mt o my s
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CUSUMSQ = max ,,||-"l , (2.18)

k+l$n‘$n

"

where V|, ==kl

L H

The advantage of this test is that under the null hypothesis the recursive
residuals are independent under the normality assumption. The major disadvantages
of the CUSUM test is the requirement that al} the regressors be independent of the
disturbances which excludes the lagged dependent variable from being included in
the model. The CUSUMSAQ) test is recommended if there is instability of a random
fashion rather than of a systematic nature and the sample size is small.

Hsu (1977) investigated two tests for variance change in a sequence of
independent normal random variables, when the initial level of the variance is
unknown. He investigated two methods, namely the locally most powerful test and
the test based upon CUSUM of squares values, He approximated the distribution
functions of the two test statistics through the use of Edgeworth expansions and/or
the beta distribution by matching the first few moments. He gave critical points of
both test statistics for various sample sizes and also compared the powers of the two
tests using a Monte Carlo experiment. His results showed that both tests behave
almost the same. The power of the tests is relatively high when the changepoint
located in the middle position of the data rather than at the end or beginning of the
data.

Hackl (1980) constructed a test called the MOSUM test which is based on

the moving sums rather than cumulated sums of recursive residuals. The MOSUM

e g .
test statistic is based on: M, =— Z w, for any fixed constant G. Obviously, the
Jen =G+l
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null hypothesis of no structural change is Hy: E(M, )= 0. Similar to the CUSUM of

squares test, Hackl also constructed the MOSUM-SQ test, which is based on

"

2
Z Wy

MO _ Jem—G+l

McCabe and Harrison (1980) developed a test using the cumulative sum of
squares of OLS residuals. Their test has the advantage of being computationally
simple and comparable in power with Brown et al.’s (1975) CUSUM of squares test
when the degree of instability is high and/or the sample size is large. A major
drawback of their procedure is that the critical value of their test depends on the
particular set of observations. They thus derive bounds for their test following the
approach of Durbin and Watson (1951). Because of the existence of an inconclusive

region, their test has not been widely accepted in empirical work.

Pettitt (1980) considered a simple CUSUM type statistic for the changepoint
in the case of zero-one observations. He introduced a conditional test of the null
hypothesis of no change against the alternative there is change and compared his test
with the likelihood ratio test. He also considered the estimation of the changepoint
using a simple statistic and showed that the method is asymptoticaily equivalent to
the maximum likelihood estimator in certain circumstances and almost equivalent in
others. To investigate its small sample behaviour, he carried out simulation
experiments and showed that the new estimator is generally superior to the maximum

likelihood estimator.

Dufour (1982) pointed out that a major drawback of the CUSUM test is the
requirement that all regressors be independent of the disturbances. In particular, this

excludes the lagged dependent variable from being included in the equation. In this
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case, he suggested replacing the coefficients of lagged dependent variables by their
consistent estimates from the fuil sample, and hoping that the resulting recursive
residuals and any tests based on them will have approximately the same properties as
those based on the true coefficients of lagged dependent variables.

Westlund (1985) conducted a Monte Carlo experiment and showed that the
MOSUM test has some advantages over the CUSUM test, the CUSUM of square test
and the MOSUM-3Q test. However, the choice of G is somewhat arbitrary, the null
distribution of the MOSUM test is very complicated and depends on the number of
observations. Such a shortcoming prevents the MOSUM test from widespread use.

Kramer et al. (1988) investigated the CUSUM test in the context of
structural change when there are lagged dependent variables among the rzgressors in
a linear model. They showed that both a modified CUSUM test, suggested by
Dufour (1982), and the straightforward CUSUM test retain their ‘asymptotic
significance levels in dynamic models. They showed that, asymptotically, one can
disregard the dynamic character of the regression and proceed with the CUSUM test
as in the static model.

McCabe (1988) attempted to justify the use of CUSUM type procedures
based on OLS residuals rather than recursive residuals using the analysis of multiple
decision theory. Ploberger, Kramer and Kontrous (1989) considered the fluctuation
test that is based on successive OLS parameter estimates. They derived the limiting
null distribution of the test statistic, and showed that it compared favourably to both
the CUSUM and CUSUM or squares tests. Ploberger and Kramer (1992) extended
the CUSUM procedure to the case of OLS residuals. They found the power of the
CUSUM test to be similar to that of their test, except for changes late in the sample

when their test has more power.
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Ploberger, Kramer and Alt (1989} showed that under some regularity
conditions, Dufour's (1982) approach is asymptotically valid if the coefficients of
lagged dependent variables are estimated under the null hypothesis of no structural
change. Any choice between Dufour's approach and that of Kramer et al.'s is a
marter of power and of the accuracy of the nominal size of the test. Their Monte
Carlo results also showed that the dynamic CUSUM test performs much better than

Dufour's approach.

Some related works are Johnson and Bagshaw (1974) who obtained the
limit processes for partial sums of observations from ARMA processes and explored
the effect of ARMA noise on CUSUM statistics. Bagshaw and Johnson (1975)
examined the effect of ARMA noise on the run length distribution for CUSUM
statistics. Tang and MacNeill (1993) give theoretical results and report simulations
on the effect of correlation. Bai (1994b), Antoch, Huskova and Pragkova (1997),
Horvath (1997) and Lombard and Hart (1994) used the least squares method to
construct consistent, asymptotically normal and efficient estimators of the error
spectral density function and covariances. Boldin (1982) and Bai (1994a) obtained
the weak convergence of empirical processes of residuals, in stationary ARMA
processes, while Koul and Levental (1989) studied the explosive case of

autoregression.

2.2.4 The Chow test

A very widely used test in the literature for detecting structural change when
the changepoint is known, is the Chow test named after Chow (1960). The statistic

can be explained using the regression model (2.1). Under the altemative hypothesis
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the regression coefficient vector #, changes to f, after the n,th observation. Under

this model, the statistic for the Chow test can be given as

_ (SSE-(SSE,, +SSE,_, )/ k
o2k = (SSE, +SSE,_, )/ (n-2k)

H=n

(2.19)

where SSE=(y- Xfi’)'(y - XB) B=(XX)' Xy .23: =(X, X)) X},

SSEN‘ = (yn, - anBl)'(}’"‘ - Xn,ﬂl) SSE::-N, = (y::-m - Xn-—n,ﬁz)’(yn-n, - Xn—nlﬁz)

r 3

B, =( Xy Koo )" Xyn Vo » Vo a0d X, are the parts of y, and X up to the

f-m »

change point n, respectively and, y,_, and X, , arethepartsof y,and X after the

change point #, respectively.
This statistic has an F distribution with & and n-2k degrees of freedom
under H,. According to the Chow test, if the calculated value of the test statistic

(2.19) is greater than critical value we reject the null hypothesis and we conclude that

structural change has occurred.

Chow (1960) developed this test to test the equality of two sets of
coefficients in the linear regression model. Despite its simplicity and hence its
widespread popularity, the test suffers a serious limitation. It is, in general, valid
only under the rather strong assumpticn that the disturbance varianices in the two
regressions are equal. There has been a lot of research conducted on investigating
the non-robustness of the Chow test, or on proposing new competitive tests that do

not require the assumption of equal variances.

Another limitation of the Chow test is that the timing of the break is
assumed known. This is not always a realistic assumption because, for example in
economics, it could take some unknown period of time before the influence of

international events, be they political or environmental, are felt. This is especially
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true for countries such as Australia, which is geographically isolated from the rest of
the world. Unanticipated decisions may also happen when agents have rational
expectations or when policy announcements are partially predicted. Also, in the
study of impacts of treatments (say, of a drug treatment or an advertising campaign),
the point when the treatment might take effect is usuvally unknown. The difficulty
with the problem of testing for a structural break with an unknown break point is that
it does not fit into the "regalar” testing framework. The reason is that the break point
only appears under the alternative hypothesis, and not under the null.

The Chow test suffers from serious distortion in size even with moderate
heteroscedasticity, for example see Toyoda (1974), Schmidt and Sickies (1977) and
Ohtani and Toyoda (1985) for details. Attempts have been made to approximate the
null distribution of the Chow test by Toyoda (1974), Ali and Silver (1985) and

Conerly and Mansfield (1989), among others.

2.2.5 The Sup F Test

The model for this test is the same as the one given in (2.1) where n, is an

unknown. The test statistic can be written as follows

SupF = Sup F, (2.20)
ksm s~k
(SSE —(5SE, +SSE,_. Nk
where F, = : ‘ .
' (SSE, +SSE,_, )/ (n—2k)

An alternative test, which is equivalent to the Sup F test depends on the idea
of maximizing the likelihood, function with respect to n,. For fixed n,, and given
the model for the unknown changepoint, the likelihood function can be written as

follows




)
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(B, s o) = 2) (0?2 exp{—,,—i;z-{(ym ~X,8) (v - X, 5.)

=*1

(221
+ (yn—u, - )"ﬂ-nlﬁ 2) (yn—ﬂ1 - '(Yn—ul/g 2 )]}'
For fixed », the maximum likelihood estimator for the variance is
., OSSE,+SSE, .
o) = .
n
The maximized loglikelihood function can be written as
nHon n n
I(nl)=—-2——-2—log27r——ilogo'f. (2.22)

The maximum likelihood estimate of the changepoint can be found by maximizing
the above loglikelihood over n,. Then, for that n, the F statistic can be found.

The problem with the Sup F test and als) the other tests considering the
changepoint endogenously is that the changepoint appears only under the alternative
hypothesis but not under the null hypothesis as a parameter. Asymptotic analysis of
such problems can be found in Davies (1977, 1987), Andrews and Ploberger (1991),
Hansen (1991) and King and Shively (1993). They show that the asymptotic
distributions differ from the standard ones.

Andrews (1990) determined the asymptotic distributions of the W, LM and
LR test statistics under the null hypothesis of parameter stability and under the
alternative hypothesis of parameter instability including one time structural change.
Since the W, LM and LR test statistics are extensions of the Sup F test statistic, the
same asymptotic distribution applies for the Sup F tesi. Moreover, he compared this
test with tests such as the CUSUM and the CUSUM &£ squares of Brown, Durbin
and Evans (1975) and the fluctuation iesi of Sen (1980) and Ploberger, Kramer and
Kontrus (1989) in terms of power and concluded that Sup F test is a more powerful

test.
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Andrews and Ploberger (1992) derived a class of test statistics which has an
optimality pronerty based on weighted local asymptotic power. They considered
non-linear models with non-trending observations, and showed that the asymptotic
null distribution is an exponential average of the square of a standardized tied-down
Bessel process of appropriate order.

Andrews and Ploberger (1994) derived asymptotically optimal tests for
testing problems in which a nuisance parameter exists under the alternative
hypothesis but not under the null. Thev mentioned that the testing problem is
nonstandard and the classical asymptotic optimality results for the Lagrange
multiplier, Wald, and likelihood ratio tests do not apply and used a weighted average
power criterion to generate optimal tests. This criterion is similar to that used by
Wald (1943) to obtain the classical asymptotic optimality properties of Wald tests in
"regular” testing problems. In fact, the optimal tests they introduced reduce to the
standard LM, Wald, and LR tests when standard regularity conditic.is hold. They
gave a new optimal test in the nonstandard cases and found that LR test is not an
optimal test

Andrews, Lee and Ploberger (1996) derived a class of finite sample optimal
tests for one or more changepoints at unknown times in a multiple Iinear regression
mrdel. Their tests can be used to test the null hypothesis of parameter consistency
against the alternative of multiple parameter change at unknown times. They
considered a weighted average power criterion function and obtained a class of test
statistics indexed by a scalar measure ¢ of the magnitude of the parameter changes.
They checked the sensitivity of their optimal tests to the scalar measure ¢ and the
relative power of the tests to other tests such as likelihood ratio test, the midpoint F
test, the CUSUM test of Brown et al. (1975) and a test introduced by Nyblom (1989)

for martingale parameter changes. They concluded that their test statistics are not

T
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very sensitive to the choice of ¢ and their asymptotic F statistic is preferable to the

likelihood ratio statistic.

2.2.6 Other Approaches

In this section we discuss Bayesian and nonparametric approaches to
structural change in the literature. There were many Bayesian contributions to the
changepoint literature during the mid 1970’s and early 1980’s, particularly for
univariate and multivariate linear models.

Sen and Srivastava (1975) considered a procedure for testing whether the
means of each variable in 2 sequence of independent random variables are the same,
against altermatives that a change might have occurred after some point. They
provided Bayesian test statistics as well as some statistics depending on estimates of
the changepoint. They derived the exact and asymptotic distribution functions for
some of the Bayesian statistics. They compared the relative powers of the Bayesian
procedure ard the classical LR test using Monte Carlo simulations and showed that
the latter has superior power when the change is close to 1 or to n, and the former
has more power when the change is near the middle of the sample period.

Broemeling and Choy (1980) studied the linear regression of type (2.1) with
1<n,<n-1 as the unknown changepoint. They used Bayesian analysis based on
the marginal posterior distribution of the changepoint, #,. In the discussion of their
simulation study, they mentioned that the posterior probability is sensitive to the
corresponding prior probability.

Feder (1975) discussed the asymptotic distribution theory of least squares
estimators in regression models having different analytical forms in different regions

of the domain of the independent variable. He showed that the unrestricted least
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squares estimator is consistent under suitable assumptions. He assigned a uniform
prior distribution to the unknown regression parameters and assigned three different
prior distributions to »,. He used the Monte Carlo method to compare the mean
squared error (MSE) and the mean biases of the Bayesian estimates of the
changepoint corresponding to the three different prior distributions, with that of the
maximum likelihood estimate. He found the MSE of each of the three Bayesian
estimates are smaller than those of the maximum likelihood estimates.

Smith (1975) considered a Bayesian approach to the problem of making
inferences about the unknown changepoint »,. He derived the posterior probabilities
of the occurrence of changepoint being at various posstble points 1<#, <n, used
these probabilities to calculate Bayesian estimates, and derived hypothesis tests using
posterior odds. His inferences are based on the posterior probabilities of the possible
changepoints and he gave a detailed analysis for the cases in which the distributions
are binomial and normal with some numerical illustrations.

Nonparametric methods play an active role in the estimation and testing of
changepoints, With respect to change in location, following Page (1954, 1955),
Blum (1987), and Bhattacharya and Johnson (1968), Pettitt (1979) obtained the first
theoretical results on changepoint detection using nonparametetric methods. He
described how to use the Mann-Whitney statistic to detect a changepoint and derived
approximate significance probabilities for testing no change against change. He gave
exact and approximate results for testing the null hypothesis of no change. The
methods he gave were illustrated by the analysis of three sets of data for zero-one
observations, binomial observations and continuous observations. He made some
comparisons with other methods based on differences of means. He concluded that
his techniques for continuous data are highly efficient when normal or near normal

data is used.

L aatama = L oo . .
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Some related changepoint problems solved using the non-parametric
approach can found in Darkhovsky (1976), Csorgo and Horvath (1987), Lombard
(1983), Csorgo and Horvath (1988), Praagman (1988), Yao (1990), Gombay (1994),
Gombay and Horvath (1995), Gombay and Huskova (1996), and Horvath and Shao
(1996).

Lombard (1988) adapted the Fourier expansion of Brownian bridges to
handle problems of changepoint analysis. Ferger (1994a,b) constructed changepoint
estimators when small disorders occur and studied the power of some nonpararmetric
changepoint tests. Boukai (1993), Ferger (1994c), and Antoch, Huskova and
Veraverbeke (1995) discussed the applications of bootstrap to the estimation of the
time of change. Stute (1996) and Horvath (1998) investigated the properties of U-

statistics.

2.3 Brief Review of Information Criteria (IC) Based
Model Selection

2.3.1 Introduction

Model selection plays an important role in econometric and statistical
modelling. In the literature, many methods of model selection have been suggested
over the last few decades. Indeed, the area of model selection is now quite vast in its
scope. A full treatment is really beyond the scope of this section. Thus we will
confine our attention ri- “inly to a particular type of model selection technique which

is called IC based model selection.

The organisation of this section is as follows, Subsection 2.3.2 discusses the

consequences of model selection through testing. Subsection 2.3.3 presents the
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historical development of some IC based model selection procedures. Some

concluding remarks are made in the final subsection.

2.3.2 Consequences of Model Selection through
Testing

Over the last few decades, various testing mechanisms have been proposed
for model selection in the literature. A partial list includes Gaver and Geisel (1974),
Atkinson and Fedorov (1975), Leamer (1978), White (1982a, 1982b, 1983, 1990),
MacKinnon (1283), Davidson and MacKinnon (1984), Bunke and Droge (1985),
Linhart and Zuchini (1986), McAleer (1987), Grassa (1989), Brownstone (1990),
Potscher (1991), Maddata (1992), Hurvich and Tsai (1993) ard Wess and Indurkhya
{1996). Despite the fact that hypothesis tests have been widely used in the model
building process, there are many opportunities to make mistakes when selecting the
best possible model by using such testing mechanisms. We discuss this problem in
the remainder of this subsection.

In the early days of econometric model building, models were formulated
taking into account highly parsimonious relationships in accordance with the
contemporary sophisticated economic theories, then using statistical procedures,
these mode!ls were estimated and tested for model adequacy. If the models were still
found to be inadequate, further terms were added and the process was repeated until
an adequate model was found. This model building procedure is often known as
specific-to-general methodology. In contrast to this idea, general-to-specific
methodology, also known as the Hendry methodology (Hendry, 1989) has became
popular. This procedure involves the formulation of a genreral model and then
sequentially testing the model for various parameters under some specified criteria

until a desirable model is found. The disadvantage of this procedure is that there are
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a number of problems in such a long sequence of testing procedures. Pretesting is
one such problem.

If a type 1 error occurs as a consequence of the test, the estimated
parameters of the model will be less efficient. On the other hand, if a type I error
occurs, then the parameter estimates suffer from an omitted variable bias. The
second problem involves the assumption of the error distribution of the mocel. For
diagnostic testing, it is frequently assumed that the error term of the model is
normally distributed. But in many situations, this assumption is violated. As a
result, the test may have incorrect size and may also lack power. One more problem
with such a sequential testing mechanism is that the size of the overall procedure is
often difficult to control.

Granger et al. (1995) noted that model selection through hypothesis testing
has a number of limitations, For example, two investigators working on the same set
of data could easily end up with different models just because they performed their
tests in different orders or used different tevels of significance. In their view, model
selection decisions should be based on a well-thought-out model selection procedure
rather than a series of classical pairwise hypothesis tests. They noted a number of
advantages of this approach. These are that no one model is favoured due to the
choice of null hypothests, it does not matter in what order the calculations have been
done, using an information criterion is equivalent to testing each model against all
other modeis by the likelihood ratio (LR) test and selecting the model which is
accepted against all other models, no pretesting problem arises if the model selection
criterion is consistent as the sample size n tends to infinity, the judgement of
significance level is no longer needed although there is a big issue of what penalty

function is appropriate.
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2.3.3 Historical Development of Some Existing IC
Based Model Selection Procedures

During the last few decades, many researchers have worked on IC based
model selection procedures in the literature. A partiai list includes Akaike (1973,
1974, 1981), Teng (1975), Hocking (1976), Bhansali and Downham (1977),
Thompson (1978), Schwarz (1978), Leamer (1979), Hannan and Quinn (1979),
Amemiya (1980), Rissanen (1986, 1987, 1988), Quinn (1988), Nishii (1988), Franses
(1989), Sin and White (1992, 1996), Mills and Prasad (1992), Hurvich and Tsai
(1993), Grose and King (1994), Fox (1995), King ef al. (1995) and Granger ef al.
(1995). These articles cover both Bayesian and non-Bayestan approaches for IC
based model selection procedures. Very recently, Hughes (1997), Hossai&(l998),
Kwek (1999) and Billah (2001) provided reviews of 1C based model selection

procedures in their Ph.D. dissertations.

In this section, we firstly discuss the usual definitions and limitations of
some of the important IC based model selection procedures. Then we review the IC
based model selection work so far reported in the literature during the last few
decades. In fact, the range of work on the development of model selection
procedures in econometrics is very wide today. It ranges from stepwise hypothesis
testing to IC based model selection procedures. Qur purpose is to highlight some of

the tmportant points.

The maximised likelihood function and the penalty function are the two
main ingredients of IC based model selection procedures which involve choosing the
model with the largest maximised log of the likelihood function minus a pepalty

term. The penalty term is a function of the number of parameters included in the
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model under consideration and typically the sample size. But unfortunately, there is
little agreement about the best form of this penalty function.

We review in the following section, commonly used important IC
procedures, namely, Akaike’s information criterion {AIC). Schwarz’s Bayesian
information criterion (BIC), generalized cross validation criterion (GCVC), Hannan
and Quinn’s criterion (HQC), Theil’s R-squared criterion (TRSC), Mallow’s C,
criterion (MCPC), Hocking’s S; criterion (HSPC), and Amemiya’s prediction
criterion (APC).

2.3.3.1 Akaike’s Information Criterion (AIC)

Akaike (1973) proposed a simpie and very useful criterion called Akaike’s
information criterion for selecting the best-fitting model among alternative models.
AIC was developed incorporating Kullback-Leibler (KL} information with the use of
maximum likelihood principles and negative entropy. The form of AIC varies form
author to author. In this study we use the penalized maximized log-likelihood form

given by Fox (1995) as

AIC= L(§)~k, (2.23)
where L( é) is the maximized log-likelihood of the model, 6 is the estimated
parameter vector and £ is the penalty term which is the number of free parameters

inciuded in the model under consideration. Another maximized log-likelihood form

of AIC in the case of a linear regression model (2.1) under H; is
nlog(6?)+2k (2.24)

where & is the maximum likelihood estimate of the residual variance for %

parameters. We select the model with maximum AIC among alternative models.
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Akaike’s (1969) paper was the basis of the development of AIC; for
selecting the best order of an AR process using the minimum final prediction error
(FPE) criterion. Papers on applications of AIC to particular model selection
problems include Akaike (1977) on factor analysis and polynomial fitting and

Akaike (1978) on choosing AR processes.

Ozaki (1975) proposed an effective algorithm for the fitting of nonstationary
autoregressive models. Ozaki (1977) applied the AIC procedure to ARMA model
selection from series A-F of Box and Jenkins {1970), and found that when only the
models with orders of AR greater than 0 and MA greater than 2 are considered, the
procedure nearly always selects the models identified by the graphical method

recommended by Box and Jenkins (1970).

Tong (1975) developed a procedure for determining the order of an AR
signal process from noisy data by employing AIC. The procedure was illustrated
through some numerical examples using both artificially generated and real data. His
proposed procedure gives the asymptotic properties of the maximum LR statistics

and KL information for discriminating between two distributions.

Shibata (1976) analysed the statistical properties of Akaike’s (1973, 1974)
proposed method. In particular, the author examined the property of consistency of
AIC and pointed out that AIC does not provide consistent model order selections for

an autoregressive model of finite order.

Soderstrom (1977) investigated two criteria, AIC and FPE, by using the F-
test to choose between two models where the smaller model is nested within the

larger one and concluded that these two procedures are asymptotically equivalent.

Hurvich and Tsai (1989) found that as the dimension of the candidate model

increases with the size of sample, AIC tends to provide a negatively biased estimate
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of the KL information. They argued that this under estimation is due to the fact that
AlC tends to overfit in very small samples.

Kozin and Nakajima (1980) showed that the AIC procedure is applicable to
a class of time-varying non-stationary AR processes. A similar issue has also been
considered by several other autlors, see for example, Tong (1978), Stone (1979),
Shibata (1980, 1981), Sakai (1981), Woodroofe (1982), Breiman and Freedman
(1983), Ronchetti (1985), Shiba:a (1986), Kabaila (1995) and P&tscher and Novak
(1996).

2.3.3.2 Schwarz’s Bayesian Information Criterion
(BIO)

The Schwarz’s (1978} Bayesian information criterion (BIC) provides a
simple reference method for choosing between competing models. The problem
with AIC is inconsistency in the sense that it does not always select the model having
maximum information with probability tending to one as the sample size tends to
infinity. This problem seems to be overcome by BIC, which is usually recommended
for large sample cases. BIC is a widely used criterion in econometrics today and is

given by penalized maximized log-likelihood form

BIC = L(0)-

klog(n)
5 (2.25)

where L( @’) is the maximized log-likelihood of the model and 8 is the estimated
parameter vector. When the number of observations is large, BIC penalizes
additional parameters much more than AIC, leading to more parsimonious models
being chosen.

Akaike (1981) indicated that in many practical situations, the use of the BIC

procedure is problematic if there is no clearly defined proper prior distribution of the
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parameters. However, this difficulty has been solved by Rissanen (1936, 1987,
1988) who derived a criterion based on stochastic complexity and the associated
minimum description length (MDL) principle which is similar to BIC but with more
general applicability.

Stone (1979) remarked that Schwarz’s (1978) work was a special case of
earlier criteria for model discrimination by Jeffreys (1967). Kohn (1983) showed

that BIC consistently chooses a minimal dimension in a large class of models.

2.3.3.3 Hannan and Quinn’s Criterion (HQC)

The criterion due to Hannun and Quinn (1979), which is less commonly

used, can be written in penalized maximized log likelithood form as

HOC = L(8) - klog(log(n)). (2.26)

This procedure is particularly employed to choose the overall lag length in a

vector autoregressive model. Hannan (1981} extended the results of Hannan (1980)
to multivariate ARMA processes.

Fox (1995) noted that HQC shares a common property with AIC and BIC,

i.e., the marginal penalties for these three criteria are constant as the number of

purameters increases for a fixed n. For the general form of a regression model, HQC

is equivalent to:

log(c?)+

2k log(log_@ (2.27)
n

where &; is the maximum likelihood estimate of the error variance of the model

with k& parameters.
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2.3.3.4 Theil’s R-Squared Criterion (TRSC)

In the history of econometrics, perhaps the first model selection procedure
in the case of the linear regression model was the coefficient of multiple

determination called R-squared which is given as

H 2
(}’f - j’:)
T (2.28)

where RSS is the residual sum of squares, 78S is the total sum of squares of the
model of interest and ¥ is the mean of the y;s. This procedure involves choosing
the model with the largest R*. But the problem is that the addition of an extra
regressor in a model usually increases (and never decreases) the value of R,

Theil (1961) proposed the adjusted R® denoted, as R’ that takes into
account the number of estimated parameters for model comparison yielding a

criterion, which is sensitive to the number of remaining degrees of freedom. The R*

criterion is given by

§2=1-—R2( " ) (2.29)
n—-k+1

where n is the sample size and k& is the total number of parameters included in the
model.

Theil (1971) showed that a decision rule which favours the model with the
largest R2will result ‘on average’ in the correct choice of model. It takes into
account the goodness of fit of the model, as well as its parsimony. But a difficulty
arises when the model that fitted the data well does not seem to have a good

predictive performance. Schmidt (1973, 1975) has shown that the R’ criterion does
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not help us in selecting the true model when the regression contains both the

variables of the true model plus some extra imrelevant independent variables.

Moreover, it has been suggested that RZ2does not penalize the loss of degrees of

freedom heavily enough in practice (see for example, Amemiya, (1985)).
Fox (1995) showed an equivalent procedure to maximizing R’ is to
maximize

TRSC = L(d) + g-log(n —k+1) (2.30)

where L(8) is the maximized log-likelihood.

2.2.3.5 Mallows’ C, Criterion (MCPC)

Mallows (1964) suggested a variable selection criterion that has been used
in economics, econometrics and many other social sciences. Commeon references to

this criterion include Gorman and Toman (1966) and Mallows {(1973).

Fox (1995) expressed Mallows’ statistic in the penalized maximized log-

likelihood form as,

MCPC:L(&)—%nln(H 2k } 2.31)

(n-k)
where £* is the number of free parameters in the smallest model which nests all

models under consideration. The model with highest MCPC in chosen.

AIC can also be viewed as an extension of MCPC in the linear context
(Atkinson, 1980). However, a closer link is through FPE (Akaike, 1969) as it is
based on the mean square error. Although the MCPC and the PRESS (prediction

sum of squares) criterion of Allen (1974) have been around much longer, they have
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not been as popular as AIC. Also see Akaike (1974) for a discussion on MCPC and
Young (1982) for further discussion on the generalized MCPC.

2.3.3.6 Amemiya’s Prediction Criterion (APC)

Amemiya’s (1972, 1980) PC was derived as an alternative method to
estimate the variance in Mallows’ criterion within a hypothesis-testing framework.
Expressing APC as the average prediction variance based on regression models, we

choose the model that minimizes:
&*((n+k)/(n=k)). (2.32)
It is interesting to note that both FPE and APC evaluate the mean squared
prediction error of the predictor derived from each model. Then using Fox’s

generalization, we can express APC as the penalized maximized log-likelihood of the

form:
APC= L(é)—--;—n(log(n-i- k))-l—%n(log(n—-k)). (2.33)

This criterion was also suggested by Rothman (1968) and Akaike (1969)

(Rothman called it J, and Akaike called it FPE). It is interesting to note that

Mallows’ criterion is the same as APC as both have an identical penaity term.

Chan et al. (1974) proposed a criterion that resembies the FPE statistic for
order estimation of ARMAX systems. Its interpretation as an FPE type criterion
may, however, be questioned because the calculations in the paper contain some
flaws (see, e.g., Soderstrom (1977)).

Nevertheless, the proposed criterion appears to be a compromise between
small residual variance and accurate parameter estimates (like, for example, the

criteria of Rissanen (1976), Maklad and Nichols, (1980), etc.) and it was reported to
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behave well in a number of Monte Carlo simulations. Comparisons with the F-test
and Akaike's FPE criterion are included. Chan et al. (1975) gave a discussion of
some order selection procedures of ARMAX systems with emphasis on the F-test

and Akaike's FPE criterion.

2.3.3.7 Hocking’s Sp Criterion (HSPC)

Hocking (1976) suggested a criterion that was reviewed by Thompson

(1978) and can be expressed in penalized maximized log likelihood form as
HSPC = L(@)+g—10g(n—-k)+-glog(n—k—l). (2.34)

Thompson (1978) examined methods for variable selection according to whether the
regressors included in the models are fixed or random. One major limitation of

HSPC is it is not applicable for nonstochastic regressors.

2.3.3.8 Generalized Cross-Validation Criterion
(GCVO)

Schmidt (1971) suggested cross-validation (CV) which involves splitting
the sample inio roughly two equal parts. The first part is used for fitting a model and
the second part is reserved for assessing the predictive ability of the model (often-
called model validation).

In fact, the CV procedure is used to determine the loss of efficiency in
parameter estimation of the model by providing a measure of future prediction error.
Nevertheless, one of the main probiems is that, like AIC and MCPC, this criterion is
inconsistent, Another problem is that the calculation of CV is really cumbersome.

Moreover, this criterion is rather different in nature from the other criteria mentioned




fﬁd

Chapter 2 Literature Review 48

above. However, a good approximation to CV, called the generalized cross-
validation criterion (GCVC) has been derived by Golub et al. (1979). When applied

to regression models it has the form,

k -2 Z(yf".}’;:')z
(1——) e (2.35)

n n

The model with the minimum GCVC is chosen. Fox (1995) derived the penalized

maximized log-likelihood form that is given as
. k
GCVC = L(9) +nlog[l - —). (2.36)
n

Other studies related to CV are Schmidt (1974, 1975) and Allen (1971a,
1974). Stone (1974) re-introduced and systematized CV procedures, and Geisser
(1975) discussed predictive sample re-use methods. Schmidt calied the CV score,
the sum of squared predictive errors (SSPE) and Allen called it the PRESS. Stone
(1977a) showed the asymptotic equivalence between AIC and a cross-validation
criterion.  Stone (1977b) analyzed the asymptotic properties (consistency and
efficiency) of the one-item-out cross-validatory assessment scheme of Stone (1974)
mainly in the context of some particular applications. Other forms of CV are found

in Craven and Wahba (1979).

2.3.3.9 The Works of King and Others

King et al. (1995) developed general model selection procedures in which
one can calculate the penalties by controlling the probabilities of correct selection so
that no one model is unnecessarily favoured. In doing so they proposed two
methods; one called the common model approach and the other the representative

fixed points approach. They also provided an algorithm for calculating the penalties
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based on fixing probabilities of correct selection according to both of these
approaches.

Forbes et al. (1995), presented three 1C based model selection procedures of
which the first two (one is called FIC (IC based on the F distribution) and the other is
called QFIC (IC based on the quasi F distribution)) are explicitly designed for
regressor selection and the third one is for general model selection. For the FIC
procedure, they derived a new penalty function on the basis of sums of critical values
from particular F distributtons whilst for QFIC, they calculated penalties from
particular chi-squared distributions. Both penalties come from a desire to control the
probability of incorrectly choosing additional regressors.

The consistency property of one-sided AIC (OSAIC) and a bias corrected
OSAIC (OSAICc) for small sample regression problems involving knowledge of
signs of parameter values is discussed by Hughes (1997) (also see Hughes and King
(1994)). He conducted a Monte Carlo study to investigate OSAIC and showed that
there is no reason for practitioners to uniformly favour a consistent criterion, such as
BIC. Examples of bias-corrected versions of IC are AICc by Hurvich and Tsai
(1989) and AIC, by Hurvich, Shumway and Tsai (1990).

Rahman and King (1997) and Rahman, Bose and King (1998) developed
other forms of penalty functions where the functions consist of composite variables
of n and k. Hossain (1998) proposed simulation based information criterion called
controlled information criterion (CIC) for selecting between Box-Cox transformation
models and compared the performance of AIC, BIC and CIC and found that CIC
performs better than the existing IC procedures considered in his study.

Kwek and King (1997a) explored a set of IC-based model selection
procedures and compared their small sample performance by their relative

performance as measured by the AMPCS in the context of choosing between
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autoregressive conditional heteroscdastic (ARCH) and generalized autoregressive
conditional heteroscdastic (GARCH) models. In terms of AMPCS, they found that
TRSC has the best penalty function for small sample performance but not always for
very large samples. AIC did not perform as poorly as BIC for small samples. In
large samples, AIC performed relatively better than TRSC in terms of AMPCS.

Kwek and King (1997b) introduced the conditional heteroscedastic IC
(CHIC) as the criterion with an optimal penalty function for ARCH and GARCH
models and concluded that this criterion has a better performance than IC procedures
for finite sample mode! selection problems.

Kwek (1998) considered model selection in the context of ARCH and
GARCH models and derived optimal penalties based on maximizing the AMPCS.
She claimed that her results provides a good way to evaluate different procedures and
is more efficient compared to other approaches which give higher average mean
probabilities of correct selection.

Kwek (1999) compared the performances of penalized log-likelihood based
IC procedures (AIC, BIC, HQC, MCPC, GCVC, TRSC, HSPC and APC) and found
that in terms of AMPCS, TRSC is the best criterion and BIC is the worst. On the
other hand, when the sample size is large TRSC losses its efficiency to AIC and the
latter become comparatively a better criterion. The performance of the optimal
AMPCS procedure was found to be clearly better than all the other existing IC
procedures.

King and Bose (2000) considered model selection problems in linear
regression models using optimal penalties in the sense of choosing the model with
largest penalised maximized log-likelihood function. They use simulation methods
to estimate probabilities of correct selection and suggested choosing penalties that

optimize the average of these probabilities. Results from their Monte Carlo
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experiment showed that AMPCS gives better average probabilities than other IC
procedures considered.

Billah and King (1998) considered optimal AMPCS penalties for choosing
between different time-series processes for linear regression disturbances. Their
Monte Carlo results show that optimal AMPCS penalties provide the best criterion
for both model selections for shorter and longer forecasting horizons.

Billah and King (2000) studied the application of AMPCS to time series
model selection. They claim from their Monte Carlo results that the optimal AMPCS
penalties consistently dominate all existing 1C procedures.

Billah (2001) investigated several important issues concerning IC based
small sample model selection for exponential smoothing models as well as regression
models with ARMA error processes. He introduced conditional likelihood (CL)
based IC procedures for selecting between exponential smoothing models and
improved conditional likelihood (ICL) based IC procedures. He found that optimal
AMPCS penalties provide the best procedure compared to existing IC procedures in
the sense that it gives higher average probabilities of correct selection.

In this thesis, we aim to develop a simulation based model selection
procedure in the presence of structural change when the possible changepoint is
unknown and compare our method with existing IC procedures discussed above.
Clearly AMPCS penalties are worth investigating. Unforiunately the studies to date
have only been for circumstances where there are only 3 or 4 competing models. We
are interested in seeing how it works when there is a very large number of competing

models.
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2.4 Brief Review of the Simulated Annealing
Algorithm (SAA)

In this section, we introduce a global optimization algorithm called SAA,
which works well to maxiraize complex functions. More specifically, we wish to
investigate whether this algorithm can be used to estimate penalty values when
dealing with many models.

To locate the real giobal minimum with certainty, a giobal optimization
method has to be used. In this section, we will introduce a global optimization called
the simulated annealing algorithm (SAA) which is capable of even maximizing very
complex functions. More specifically, we wish to investigate whether this algorithm
can be used to estimate penalty values of the model selection procedures.

The algorithm is based upon that of Metropolis et al. (1953), which was
originally proposed as a means of finding the equilibrium configuration of a
collection of atoms at a given temperature. The minimization of the objective
function corresponds to the energy state of the solid. Therefore, the name of the
algorithm 1s drawn from an analogy between solving an optimization problem and
simulating the annealing of a solid. In econometric literature methods used to
estimate parameters of a model, for example, the generalized method of moments the
maximum likelihood method and nonlinear least squares, depend upon optimization
algorithm, such as Newton-Raphson, to estimate parameters in the model. However,
almost all-conventional algorithms occasionally fail to estimate the optimum value of
parameters. Popular statistical and econometric packages use these algorithms to
solve optimization problems. Reviews on these packages can be found in Judge et

al. (1985) and Press et al. (1986).
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Generally traditional optimization algorithms assume approximately
quadratic nature of the function to be optimized. Unfortunately, some functions
frequently do not follow this assumption. A common problem to the classical
algorithms is that although these algorithms converge; yet they may converge to
local maxima instead of the global maxima. In this situation, researchers generally
try to solve these problems by using different approaches, for example, trying
different starting values (see Cramer {1986) and Finch et al. (1989)). Fortunately,
the SAA, assumes very liitic about the function, can tackle the optimization problem
very efficiently (see Corana et al. (1987) and Goffe et al. (1994)). The advantage of
this algorithm is that it is explicitly designed for functions with multiple maxima and
also works well for complex functions. The SAA discovers the function's complete
surface and while moving both up hill and downhill tries to optimize the function.
Therefore, the SAA is much more user fiienc'ly than traditional algorith:ns found in
econometric literature.

The connection between this algorithm and mathematical optimization was
first noted by Pincus (1970) and Kirkpatrick et al. (1983) who proposed that the SAA
form the basis of an optimization technique for combinatorial (and other) problems.
Extensions of simulated annealing to the case of functions defined on continuous sets
have also been introduced in the literature (e.g., Geman and Hwang (1986), Gidas,
(1985), Holley, Kusuoka and Stroock (1989), Jeng and Woods, (1990), Kushner
(1985), Cerny (1984), Fox (1988a,b), Hajek (1988) and Otten (1989)).

Geman et al. (1984) first gave a necessary and sufficient condition for the
convergence of the annealing method to the global minimum. Their methed is
usually called either Boltzmann annealing (BA) or classical simulated annealing.
Szu et al. (1987) proposed the fast annealing method, which is a semi local search

and consists of occasional long jumps. They made some improvements to the
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Boltzmann form. Ingber et al. (1989) presented the very fast-simulated re-annealing
method. They argued that their algorithm permits a fast exponential cooling
schedule, while fast annealing has only an inverse cooling schedule, and Boltzmann
annealing has only an inverse logarithmic cooling schedule.

In a comprehensive study of the SAA, Johnson et al. (1990, 1991, 1992)
discussed the performance of the SAA on four problems: the travelling salesman
problem, graph partitioning problem, graph colouring problem and number
partitioning problem. In general, the performance of the SAA was mixed: in some
problems, it outperformed the best known heuristics for these probleins, and, in other
cases, specialized heuristics perforimed better.

Many researchers have considered the SAA as a tool in the development of
optimal experimental designs. Some examples include Van Laarhoven (1987) and
Meyer and Nachtsheim (1988). Variants of SAA based on Bayesian ideas have been
proposed by Laud, Berliner and Goel (1989), Van Laarhoven et al (1989) and Aarts
et al. (1989).

In the initial stage SAA was known as the combinatorial SAA because it
was introduced in combinatorial optimization problems. This SAA has been
successfully used in image processing (Carnevali et al. (1985), reconstruction of
pollycrystalline structures (Telly et al. (1987)), pollution control (Derwent (1988)),
neural networks (Wasserman and Schwartz, (1988)), and computer and circuit design
(Wong et al. (1988))). Other SAAs proposed in the optimization literature are as
follows: adaptive random search (Pronzato et al. (1984)), fast SAA (Szu and Hartly
(1987)), down hill simplex with annealing (Vetterling et al. (1994)) and direct search
SAA (Ali et al. (1997)). Corana et al. (1987) derived a new SAA for optimization of
functions of continuous variables from the SAA introduced in combinatorial

optimization. This new SAA has been found to be more reliable, being nearly
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always able to find the optimum, or at least a point very close to it. However, this
alzorithm appears to be the best with respect to the combination of ease of use and
robustness.

For estimation of econometric models Goffe et al. (1994) compared four
algorithms introduced by Corana et al. (1987) with that of the SAA. Compared to
the three traditional algorithms, the SAA was found to have several advantages. The
most important advantage is that it can maximize functions with which traditional
algorithms have extreme difficulty or simply cannot maximize at ail. This algorithm
can also be used as a diagnostic tool to understand how conventional algorithms fail.

The SAA has a number of other advantages over existing traditional
optimization procedures. For any function, if there are more than one maxima then
the SAA can escape from a local maxima by moving both up hill and down hill to
find the global maxima. In classical optimization, one of the conditions is that the
function to be optimized should be approximately quadratic and it needs to be
differentiable, but in case of SAA these conditions are not necessary {see Corana et
al. (1987)). Second, the SAA can handle a very complex function. Another
advantage of this algorithm is that it provides valuable information about the
function through the step length vector. The most important advantage of the SAA is
that it can properly optimize functions that arc very complex and nearly impossible
to optimize (see Goffe et al. (1994)). The only drawback of the SAA is that the
required very high powered computer. On the other hand, because of the availability
of high-powered computers now a day, this problem seems not to be a major
problem. As a consequence, the SAA is an attractive optimization algorithm for
difticult functions. In this thesis, we implement the SAA (o estimate penaity
functions, (by optimizing what is a step function) for a small and large numbers of

alternative models. Overall, the SAA is a generally applicable and easy-to-
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implement probabilistic approximation algorithm that is able to produce good
solutions for an optimization problem, even if we do not understand the structure of

the problem well.

2.5 Conclusions

This chapter is devoted to three areas of the literature; testing for structural
change, IC model selection procedures and the simulated annealing optimization
algorithm.

In Section 2.2, some developments of related areas in the literature on
testing for structural change were briefly discussed in context of econometrics and
statistics. The survey revealed that there is a large body of literature on changepoint
testing problems. From our review, we see that LR tests are widely used in practice
when data may possess a possible changepoint of uniknown timing. Unfortunately,
the finite sample distribution of the LR test statistic is unknown, although the critical
values for the test can be calculated by simulation. We can develop formulae for
critical values of the LR test for different sample sizes, different significance levels,
number of regressors in the model and types of regressors. We can apply a response
surface approach to estimate formulae for critical values. When there is a possible
structural change with an unknown changepoint in the data, we consider the use of
the LR test statistic in Chapter 3.

In Section 2.3, we reviewed of some existing IC procedures for model
selection. Due to the enormous literature on meodel selection contributed to by
mathematicians, statisticians and econometricians, we are not able to review all the
statistical properties that come with each criterion. We therefore highlighted only the

salient points for some leading criteria. In this section we also discussed some of
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their asymptotic and finite sample properties. Most of these statistical properties
were derived out of model selection problems in linear regression and time series
models. This section begins with a brief discussion on some obvious demerits
involved with model selection through hypothesis testing. The survey reveals that
there is a large body of literature on model selection ranging from hypothesis testing
to IC based model selection procedures.

The evidence so far supports the contention that model selection decisions
should be based on some well-thought-out model selection criteria rather than
classical hypothesis testing. However, the discussion on IC based procedures mainly
focuses on the penalty term that is one of the main ingredients of such procedures.
We also reviewed model selection based on optimal penalties. This penalty has the
ability to select a model from a group of alternative models by estimating mean
probabilities of correct selection of a model and choosing the penalty that maximizes
the average mean probability of correct selection (AMPCS). Unfortunately, it
appears that almost no work has been reported on the use of IC based model
selection procedures for detecting the presence of structural change. Chapter 4 of
this thests aims to concentrate on this particular issue.

If the differences between the penalty values of an IC procedure are large,
keeping other things the same, then smaller models are favoured. On the other hand,
for a small difference in penalty values, the larger models are favoured. Thus, it is
difficult for a given problem to assess which IC is best. Regardless of these
limitations, improvements in existing IC procedure may be possible by estimating
penalty values numerically. We briefly reviewed the simulated annealing
optimization algorithm in Section 2.4 and wiil use it to calculate optimal penaities for

model selection in Chapter 5.




CHAPTER 3

Testing for Structural Change when
the Changepoint is Unknown

3.1 Introduction

In this chapter we consider the problem of testing for structural change in
the presence of an unknown changepoint. The presence of a structural change in
data that is not detected is a hazard for applied economists, econometricians and
statisticians, with serious consequences for model performance and forecasting, If
the model selected is misspecified, that is, if the data possess a structural change at
some point then the model chosen may not perform well in the sense that it will not
provide good forecasts. For this reason, it is important to test from the beginning
whether the data possesses a significant structural change or not. If the changepoint
is known (such as World War II, 1973 oil shock etc.), one can use Chow's (1960) F
statistic to test for possible structural change in the linear regression model.

Since economic conditions are constantly changing, it is not always
possible to know with certainty, which of the changes, and with what timing, affect

the performance of a linear regression model applied to economic time series data.
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It is helpful 10 have a test for structural change that does not require the knowledge
of the changepoint in advance. In other words, we need to be able to test for
structural change when the changepoint is unknown. In response to this need, many
tests for structural change have been developed. A number of these tests were
discussed in Chapter 2. Among these, the CUSUM and the CUSUM of squares test
of Brown, Durbin and Evans (1975), and the fluctuation test of Sen (1980) and
Ploberger, Kramer and Kontrus (1989) are well known. In the former two tests,
recursive residuals are used and in the latter, recursive estimates of parameters are
used.

As mentioned in Chapter 2, Andrews (1990) compared the likelihiood ratio
(LR) test with tests such as the CUSUM and CUSUM of squares tests and the
fluctuation test of Sen (1980) and Ploberger, Kramer and Kontrus (1989) in terms of
power. He concluded that the LR test is more powerful than these other tests.
Andrews (1993) determined the asymptotic distributions of the LR test statistics
under the null hypothesis of parameter stability and for the alternative hypothesis of
parameter instability including one time structural change. He mentioned that the
Wald and Lagrange multiplier test statistics are generaily asymptotically equivalent
to LR test statistic under the null and local alternatives.

Seber and Wild (1989) showed that under the nuil hypothesis of parameter
stability, the finmite sample nuil distribution of the LR statistic does not depend on
the parameters and error variance of the model although it does depend on the
explanatory variables in finite saniples (but not asymptotically). Therefore, it is
possible to simulate the null distribution of the LR test for any particular data set
and arbitrary values of the parameters including the error variance of the model. A
critical vaiue for any significance level can be found from this simulation. The null

hypothesis is rejected if the value of the test statistic is greater than this value.
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King and Shively (1993) worked on hypothesis testing problems in which
the nuisance parameter is present only under the alternative hypothesis. They
reparameterized the testing problem in such a way that the reparameterized testing
problem involves testing a greater number of parameters. They started by

considering testing H,: #=86,, where &, is a known px1 vector, against
H,:0#6,. They reparameterized = 66, so that the testing problem becomes

one of the testing H,: 6 =0 against H: 0 0. Then they reparameterized g into

— ’“l
polar  coordinates 4, =rcosy,, 6&,= r(nSin}’k)COSYM Jj=2,,p-1,

k=1
— p-1 — —
e, = r'H siny, with r=+/8'@ in such a way that the null hypothesis H,: 8 =0 is
k=l

now equivalent to H:» =0 and H,: 8+ 0 is equivalent to H:r = 0. Under the
null hypothesis 7> **»¥ -y are not defined, so we now have a test of r = 0 in which

Y1, »Y poi are nuisance parameters and present only under the alternative.

King and Shively’s main contribution was to observe that for testing
problems in which nuisance parameters are present only under the alternative
hypothesis, we may be able to reparameterize to a higher dimensional testing
probiem by the reverse of the above transformations. For the LR test, this will have
consequences with respect to which critical value should be used.

Tan and King (1994) considered King and Shively’s approach for testing
structural change when the changepoint is unknown. They conjectured that for the
case of a change only in one parameter under standard regularity conditions, the LR

test statistic follows an asymptotic distribution under the null hypothesis of no

structural change that is a probability mixture of ¥ and z; and suggested

expressions for the respective probability weights.  Through simulation
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experiments, their critical values were found to be misleading for both one-sided
and two-sided tests when the range of possible changepoints is wide compared to
the total period. They also found that the small-sample distribution of the LR test
statistic might be quite sensitive to the regressors making a useful asymptotic
solution difficult to find.

Andrews (1993) gave asymptotic critical values based on the asymptotic
nuil distribution that covers 1%, 5% and 10% levels of significance, different
numbers of regressors and changepoint or point of structural change for any value of
the changepoint expressed as a proportion of the sample between 0.05 and 0.30.

From the above discussion and related literature survey in Chapter 2 we
can conclude that the finite sample distribution of the LR test statistics is unknown,
and sensitive to the number and kind of regressors used in the model. The evidence
appears to be that it is more powerful than other tests for testing for_structural
change of unknown timing. Our aim is to develop a small-sample test procedure
that allows the LR test to be applied with confidence in finite samples. Under the
null hypothesis, the regression parameters are constant across all the periods. Under
the alternative, a particular regression parameter changes at an unknown
changepoint. In our case, critical values of the LR test statistic depend on the
number of regressors, types of regressors and the sample size.

Because the LR test statistic does not have a known finite sample
distribution, the critical values for the test must be found by Monte Carlo
estimation. An applied econometrician using the available data can estimate the
critical value specific to that setting. A few decades ago it was relatively expensive
in terms of computer time and effort to do this, but today, due to the availability of
high-powered computers, it is easier to find critical values via simulation. We

develop formulae for critical values of the LR test for different sample sizes,

ey e . e
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different significance levels, different numbers of regressors in the model and iypes
of regressors. We will check whether estimated critical values of the LR statistic
depends on these factors in the context of our framework of analysis. We will apply
a response surface approach to estimate formulae for critical values. To check the
accuracy of these response surface formulae, we will conduct a small Monte Carlo
experiment.

The remainder of this chapter is organised as follows. In Section 3.2, we
discuss the model and construct our test statistics based on maximization of the
likelihood function for different changepoints of the linear regression model. In
Section 3.3, we calculate critical values of the test statistics for different sample
sizes, significance levels, numbers of regressors and types of regressors. Estimation
of the response surfaces formulae for critical values of the test statistic from
simulated critical values is outlined in Section 3.4. The accuracy of the response
surface formulae is checked through a Monte Carlo study which is outlined in
Section 3.5. Section 3.6 contains a brief discussion of results of the Monte Carlo

study. Section 3.7 presents some conciuding remarks.

3.2 The Model and the Test Statistic
3.2.1 The Model

We consider the linear regression model for f=1,---,n, with a possible

change of unknown timing in one coefficient,

_ B+ wy +u, for f<n;
Yy X B +w,(y+8) +u, for t2n, 3G.D

where Y, is the dependent variable at time ¢, x, is a kx1 vector of regressors at

time f, W, is a scalar variable that is of interest, f, isa kx1 vecior of regression

I
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coefficients, and ¥ and & are unknown scalar parameters.

The error term 1is

assumed independent, identically distributed N(0, o). We have chosen to work

with this simple form with a possible change in one coefficient in the hope of

making progress which can be applied to other more complicated models at a later

time. Model (3.1) can be written jointly as

y, =X fo+wy+z,6+u, for =1, ...

where Z, is a dummy variable defined as

__10 1<n,
I w,, i>n.
Denoting
Yi
y=1:i1
y.ﬂ
1 x, X, w,_‘
X, = :
1 xnl lul.{' "’nJ
“
I oxy e W &
! ‘xnl xnk wn zn
[
u=[u, uﬂ]

0, =[ﬁo 4 '5]1,

model (3.2) can be rewritten in matrix form as

1 (3.2)

N

T
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X6, +u, under H,,
- X,0, +u, under H,,

where u~ N(0,0°1,).

3.2.2 The Test Statistics

The null hypothesis of interest is
Hy: 6=0,
and the alternative hypothesis is
H: 6=0
The likelihood ratio test of a structural change of unknown timing can be described
as follows. The loglikelihood function of the sample under the alternative
hypothesis that there is a changepoint in the data after period #, is
I = -glog(zmg) _f};'"(y_ X,0,) (y-X,6,) 3.5)
The loglikelihood function under the null hypothesis of no changepoint in

the data 1s

n 2 1 '
Io=—-510g(2ﬂ0'i')_3}_2'(y'X191)(y“Xl GI) (36)

“=1
Differentiating (3.5) with respect to the parameters 3,, 7, § and o3, and
equating the resultant equations to zero, we obtain the conditional maximum
likelihood (ML) estimates of B, 7, §, and ¢ under the alternative hypothesis
that there is a changepoint in the data after period », as
b, =(X1x,)" Xy,

R ~ N 3.7
O'§=(y—X292)'(y—X292)/n. S

i e =
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Differentiating (3.6) with respect to the parameters f,, ¥ and ol and

equating the resultant equations to zero, we obtain the ML estimates of B, ¥ and
o under the null hypothesis that there is no changepoint in the data as
8, =(X;x)" X1y,
~2 2 \t rop (3‘8)
o =(-X6,)(¥y-X,0)/n.

Substituting the estimates of (3.7) into (3.5), we obtain the concentrated
log-likelihood function under the alternative hypothesis of the sample given a

changepoint in the data after period n, as

~ H ~% n
/, =-—-2-Iog(27r0'2)—-;)~. (3.9

-

Substituting the estimated values from (3.8) into (3.6), we obtain the maximized
log-likelihood function under the null hypothesis of no changepoint

Aﬂ:—glog(Zx&f)—g. | (3.10)

When the changepoint #, is unknown, a naturally, intuitive approach would

be to estimate », and then apply the LR test at that estimate of n,. Given n,, (3.9)

is maximized by substituting in the estimated value of o} from (3.7). Maximizing

(3.9) with respect to n, is equivalent to finding the », for which &3 is minimum.

The LR test statistic can be obtained by substituting minimum values of &2 in (3.9)
which we will denote by /, and then taking twice the difference between it and the

log-likelihood of (3.10) that is, LR =2(I -1)).
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3.3 Calculation of Critical Values via Simulation

Analytically it 1s difficult, if not impossible, to find the distributional form
of the test statistic; therefore, in this section we calenlate critical values for the LR
test statistic via simulation. It is possible to simulate the nall distribution of the test
statistic LR for any particular regressor set. Becaugse critical values are invariant to
a change of parameters and error variance of the medel, any arbiirary values of the
parameters and error variance of the medel can be used in the simulation. We
conducted a iv.aber of simulanua experiments to find the critical vaiaes of the LR
test statistic in a range of circumstances. These ciitical values will allow us o get a
formula that can be applied to the LR test for structural change of unknown

changepoint with some degree of coniidence.

3.3.1 Design of Simulation Experiments

Our main purpose is to calculate the critical values by simulation. Under

the null hypothesis, vaioes of the dependent variable y, were generated frem the

following equation

Y. =x Bytwy+u, for 1=1 ...,n,
where u, ~ N(0,]), w, is a scalar variable, B, is a kx] vector of regression
coefficients, and y is a constant coefficient. The & x1 independent variables are

generated followlag Engle et al.’s (1985) Monte Carlo experimental design; that is

eXplanatory variables (excluding the constant term) were generated from the first

order autoregressive process x, =g, , +¢,

i

with ¢, ~IN(0,]) for ¢=1,...,n,

where ¢ takes values ¢, 0.7, 1.0 2nd 1.02 which covers white noise, autoregressive,

T R T S
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random walk and explosive processes, respectively. The number of regressors #
was allowed to range from | to 15 in turn with ¢ being the same for each regressor
and w, was generated from the uniform distribution with range from O to 1.

We set initial values of the parameters as one throughout because under

null hypothesis, the distribution of the LR statistic does not depend on [, and y .

Four different sample sizes of 25, 50, 75 and 100 were used. We generated 10000

LR test statistics for the linear regression model for each set of ¢’s, k and n. We
then ordered the calculated LR from the lowest to the highest values, and obtained
the 90™, 95® 975" and 99" percentiles, which are the required critical values for
the 10%, 5%, 2.5% and 1% level of significance respectively. Throughout, we use
the GAUSS 3.2.12 software (GAUSS is a mathematical and statistical programming
language, produced by Aptech Systems, Inc., Kent, Washington) to estimate the
parameters of the model by the method of ML estimation. In the model, error terms
were simulated using pseudo random numbers from the GAUSS function RNDNS
that generates standard normal variates for regression errors. The seed for the

random number generator for each experiment was 1786.

3.3.2 Results of the Simulation

Tables 3.1 to 3.4 report the critical vaiue calculation results of the Monte
Carlo simulations. We wili now ciscuss the results. We discuss the cverall trends in
the critical values in four stages. The first stage involves the patterns or trends with
respect to sample size variation, the second involves patterns as the number of
regressors in the model changes, the third considers changes in the type of
autoregressive regressors and the fourth discusses some general patterns with regard

to the significance level.
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A noticeable feature is that the simulated critical values of the LR test
increase as the sample size increases from 25 to 75 for small £ =1 and 2. and it
decreases as the sample size increases from 75 to 100 at the 1% level of significance
for different values of @ considered. At the 2.5%. 5% and 10% levels of
significance, critical values of the LR test increase as the sample size increases from

25 to 50 and they decrease as the sample size increases from 50 to 75. They

decrease as » increases from 75 to 100 for the different values of ¢ considered.
The critical values of the LR test increase as the sample size increases for £ =3 or
more at different levels of significance for different values of ¢.

The largest calculated critical value of the test occurs at the 1% level of
significance when ¢ =102 and » =25 and takes the value 17.453 whereas when
n =100 it takes the value 6.633. The largest critical values of the test at the 2.5%,,
5% and 10% levels of significance occur when ¢ = 1.02 and »# =25 and are 13.903,
11.386 and 8.995, respectively, whereas when »n =100, the critical values are
respectively, 5.615, 4.662 and 3.838. The minimum critical values of the test
statistic at the 1%, 2.5%, 5% and 10% levels of significance occur when ¢ =0 and
n =235 ard are respectively, 4.779, 3.814, 3.136 and 2.446, whereas when n =100
these critical values are respectively, 4.906, 4.059, 3.497 and 2.818.

The critical values of the test almost always increase with an increase in the
number of regressors 4. The largest increases occur for small » and for small ¢.
The smallest increases occur for 1 =100 and for large levels of significance. For a
large number of regressors in the model when ¢=0 and k =15 at the 1%, 2.5%.

5% and 10% levels of significance, the maximum value of the critical values are

16.196, 12.477, 10.209 and 7.698, respectively.
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The simulated critical values of the LR type test statistic appear to be

practically unchanged as the type of autoregressive regressors change with
everything else held constant. The critical values are typically the same for ¢ =0
and for ¢ =0.70 at different levels of significance and are also roughly the same for
¢ =1.0and ¢=1.02. The latter are almost always slightly bigger than the former.
Obviously the critical values decrease as the level of significance increases.
This decrease is largest for large 4. This variation in critical values with , &, ¢,
and @ suggests the need for formulae for critical values of the test statistic, which

will be developed in the next section.

3.4 Estimation of Critical Values via Response
Surface Approach

The simulated critical values calculated in the previous section show that

they vary reasonably systematically with the number of explanatory variables &, the

autoregressive parameter ¢ of the regressors and the sample size n. For large
samples, it can be very time consuming to calculate the critical values via
simulation even on fast computers. For example, it took a Pentium-IIl personal
computer several days to perform relevant computations for » =400 and 10,000
replications for the one-regressor case. To reduce the computational load, we use
the critical values of Tables 3.1 to 3.4 as data to estimate formulae for critical values
at different levels of significance by using a response surface approach.

The advantages of response surfaces are (i) they reduce computational
costs and effort using specific factors to calculate critical values in a simole
regression; (ii) they allow casy calculation of critical values for sample sizes not

included in the experimental design; and (iii) response surfaces for commonly used
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significance levels are easily programmed so as to provide estimated finite sample
critical values directly.

In our case, the response surface approach involves developing formulae to

estimate critical values using various functions of k&, ¢ and n. Normally,
researchers have tabulated critical values at different levels of significance for
different sample sizes. Such tabulations recognize the dependence of the critical
values on the sample size, significance level and other factors. That dependence can

be approximated by regressing the Monte Carlo estimates of the critical values on

functions for different factors suchas &, ¢ and n.
The response surface approach determines the combination of levels of
different factors, which will produce the best-fitting model. The regressors are an

intercept, four inverse powers of the sample size »n, four-power functions of the
number of regressors k& and types of autoregressive regressor ¢. We also

considered other plausible interactive terms between n, k& and #. We considered a

total of 80 regressors inciuding intercept for the response surfaces given below:

ky, ky, ky, koo, ony, oy, ony, @, kiky, KRy, Rk, Kky, Kk, KKy,
mi,, mny, MR, NNy, LN, nang ki, kiny, king, kg, ko, kon,, kong,
kong, kyny, kyng, kony, king, kony, kong, kong, kg, k@, k@, ki, ké, ng,
mg, g, ng, kkky, kkk,, kkk,, nnn,, nmn,, nnn,, ke, ki,
kk g, kks@, bokd, kK ko, ninyd, nnyd, nin,d, nynig, myn g, nin g, kng,
kin,@, kg, kng@, kong, kg, ks, kg, kang, kand, king, kg,

ki, ki, knyg kg, where ky =k k,=k*, ky=k>, k, =k*, n =1,

o2 3
n, =1/n, ny=n;,and n =n-

o
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The estimation process involved estimating many equations of penalty
responses using the above factors. The coefficients that are clearly insignificantly
different from zero wers eliminated using smallest absolute t-statistic {well below 1
in absolute value) or highest p-vaiues of the coefficients.  After obvious

insignificant regressors were dealt with, we then used criteria such as A]C, BIC, the

Durbin-Watson (DW) test and R’ to help make the decision of choosing a final
formulae for critical values at a certain leve! of significance. In the following
subsection we will discuss the estimated response surface formuia for critical value

at different levels of significance.

3.4.1 Formulae for Critical Values

We fitted models using all regressors and by applying the criteria
mentioned in the above section. Our finally selected estimated models for 193,
2.5%, 5% and 10% significance levels respectively are as follows:

CV,, = 02699 + 04508k, - 0029k, + 62.630n, - 5930n,¢ —47.859n,k,
(0.034)  (0.099) (0.007) (19.790) (1.919) (i0.962)
+ 1256mk,¢ +2.376m,k, +0007n,k, —1405.684n, + 1730065n, k,
(0.161)  10.508)  (0.002)  (353.493)  (361.239)
~0.708n, k, —18060.632n, k, —136468n,k, + 20841nk, + 4360
0.127)  (4688.339)  (21.206) (2.833) (0.208)

(3.13)

R? =0997, s> = 0125, SSR = 3519, DW = 1830, AIC = -1251, BIC = -1.019.
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CV, . =0.709¢+0.153k, —0.044k,¢+0.061k, + 0.002k,4~0.007k,
(0123)  (0.048) (0016) (0.024)  (0.001)  (0.003)
+ 000021k, + 62332n, - 37.173n¢ + 2429k p~11712n,k,
(000043)  (14254) (10139)  (0302)  (2851)
+ 1159k, ~0.029n,k, + 4653d5m,¢ +527363n,k, ~43.750m,k,  C-14)
0297y  (0009)  (189372)  (124.038)  (10245)
+ 0.723n,k, — 6367.748n,k, — 1346942, + 431051k, + 3383
(0178)  (1725869)  (274.105)  (131.999)  (0.159)

R? =0996, s* =0115, SSR = 2.892, DW =2.025, AIC = ~1406, BIC = ~1.101.

CV,, = 04464 + 0346k, - 0017k, + 00004k, + 44.285n,

(0074)  (0073) (0.008) (000082)  (14.436)

— 26594 — 4123nk, + 164nk,¢ + 102nk, —113029n,
(0.728)  (6.667)  (0.108)  (0.395)  (255.864)

+ 431363n,¢ + 1885226m,k, —0157mk, — 25012300k, (.15
(139.141)  (200.446)  (0.045)  (2635.103)

- 52549m,k, + 7.003nk, + 3044
(16.174) (1497)  (0.158)

R? =0996, s* =0.084, SSR = 1590, DW = 1752, AIC = -2.037, BIC = -1.791.

CVi, = 0201k, + 0041k,g + 27.95n,¢ — 3045nk, 11984181,
(0018) (0009) (6655)  (3.042)  (343590)
+ 215219n,k, — 130.46mk, +13.69m,k, — 0.468n,k, — 6941371,
(211473)  (41808)  (4151)  (0135)  (12849)
— 3741153nm, +3795375n,k, — 407.256m,k, +1517Tn k, (3.16)
(44229) (108838)  (107.74) (3493)
+372674.501n,8 +9.706n,k, 6 — 9.041n,k,§ - 0001k, ¢ +2.752
(1215978)  (2481)  (4113)  (0001) (0.030)

e ma s L = = .. B

ey o mala . ..,
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R? =0995, s° = 0071, SSR = 1129, DW = 1402, AIC = -2.363, BIC =-2.087.
Figures in parenthesis indicate standard errors, SSR is the regression sum of
squares and s is the estimated error variance of the model.

The response surface formula for the 1% level of significance is (3.13)
which consists of 16 factors inciuding an intercept of which there are five individual
factors, 9 two-factor interactions where most of the interactions are functions of »
and & and one three-factor interaction. The response surface formula for the 2.5%

level of significance is (3.14) which consists of 21 factors including the intercept of

which there are 7 individual factors, 12 two-factor interactions and one three-factor

interaction. gi

The response surface formula for the 5% level of significance is given by ’
(3.15) which consists of 17 factors including the intercept of which there are six 5
individual factors, 9 two-factor interactions where most of the interactions are
functions of » and & and one three-factor interaction. The response surface
formula for the 10% level of significance is (3.16) which consists of 19 factors

including an intercept of which there are two individual factors, 14 two-factor

interactions and two three-factor interactions. QOverall, out of the three main factors

n, k and ¢, the first two factors are found to feature much more than the last

factor.

3.5 How to Use the Estimated Response Swurface
Formulae

The response surface formulae (3.13) to (3.16) given above quantify the

straightforward dependencies of the critical values of the test on &k, ¢ and » and

they therefore offer a simple way to estimate critical values when Tables 3.1-3.4 are
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not available or do not apply. For any particular values of ¥, ¢ and » and using

formulae (3.13) to (3.16), desired critical values can be found. The choice of %.

and n are straightforward but the decision of what to use for ¢ may be a little more
problematic. ~ We suggest using the average of the estimated first order

autocorrelation coefficients of each of the nonconstant regressors. For example, if

x, i=)--,k are k regressors and X;, is the intercept, then fit AR(1) models to

each nonconstant regressors excluding the intercept. Suppose &2,---.&k are the

estimates of the coefficients in the AR(1) models. Then replace ¢ with the mean

d=( {32 +-- -+g‘3‘.) /(k=1). As we will see, the formulae are not particularly sensitive

to the value of ¢.

3.5.1 Monte Carlo Experiment

In order to check whether there are problems caused by our choice of
variables and to evaluate the practical usefulness of our proposed response surface
formulae for critical values, we conducted a Monte Cario experiment. We
considered testing the null hypothesis

Hy: =0,
against the alternative hypothesis

Hy,: =0
Under the nult hypothesis, the n observations of the dependent variable y, were
generated from the following equation

Y, =x!By+wy+z,8+u, for t=1,...,n with6=0,

N A b e s
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where ¥, is the dependent variable at time ¢, x, is a £ x1 vector of regressors at
time ¢, w, is a scalar variable that is of interest, z, is a dummy variable defined as
in (3.3), B, is a kx1 vector of regression coefficients, and ¥ and & are unknown
scalar parameters. The error term is assumed independent, identically distributed
Moo

Under the null hypothesis of parameter stability, the distribution of the LR
statistic does not depend on the parameters S, and ¥ . Therefore it is possible to
simulate the distribution of LR for any particular data set and arbitrary S, and 7

values. We set all elements of the B, vector and y as unity throughout. The error

term #, is assumed independent, identically distributed N(0,07) and we set
o’ =1. The following design matrices were used in this experiment:
X A constant, monthly US seasonally adjusted total volume of real

retail sales on domestic trade (in billion 1992 USD) and {agged

one month commencing 1960(1).

X, A constant, monthly US interest rate, the same interest rate lagged
one month, real personal income (in billion 1995 USD), and the
same variable lagged one month commencing 1960(1).

These design matrices were chosen to reflect a variety of economic and
statistical phenomena. In this case, X, and X, show some long term fluctuations.
We used as W, monthly US seasonally adjusted total volume of real retail sales on
domestic trade (in billion 1992 USD) in the case of X, and the monthly US interest
rate in the case of X,. After the disturbances were generated, and given the

appropriate design matrix, the y’s were generated. The LR test statistics were

calculated for each of the sample sizes 30, 60, 120 and 240 with 2000 replications.
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Note that sample sizes 120 and 240 are outside the range of our sample sizes used to
fit our critical value formulae. One of them, n= 120, is close to the sample range
while #= 240 is quite distant. It will therefore be interesting to see how well the
formulae work for these two values. When the null hypothesis is true, the
proportion of replications in which the test statistic LR rejects the null gives an
estimate of the size of the test.

We calculated critical values at the 2.5%, 3% and 10% levels of

significance using the response surface formulae given in the previous section.
Three parameters »n, k and ¢ are central to the test statistic’s distributional
properties. The first two are known from the data and the problem is how to choose
the v:lue of the last one namely ¢. We calculated ¢ as a discussed in Section 3.5.
We also checked the sensitivity of ¢ on critical values at different levels of

significance using response surface formulae (3.13) to (3.16). We used ¢= 0, .02,
05, .1, .2, 3, ..., 1.02 keeping the sample size »n as 60 and the number of
regressors k& as 6 and found that the critical values generally are not sensitive 0
changes in ¢. All computer programs were written in GAUSS (see Aptech, 1997,

version 3.2.17) and computations were carried out on a Pentium I with a 933 Mhz

CPU.
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3.6 Discussion of Results

In this section we report the Monte Carlo results for sample sizes of 30, 60,
120 and 240 for design mairices X, and X, using response surface equations given
by equations (3.14) to (3.16) respectively. We calculated the estimated critical
values using the formulae at the 2.5%, 5% and 10% significance levels and present
the results in Table 3.5.

We observe that large sample sizes give smaller critical values and as the
number of regressor increases, the critical values also increase. Obviously critical
values decrease as levels of significance increase.

Using the critical vaiues from Table 3.5, we estimated the sizes of the test.
The results are given in Table 3.6. The estimated sizes for the design matrix X, are

closer to the nominal significiince level than those for the design matrix X,. One
possible explanation for this behavior is that the design matrix we used here only
has one variable and its lag as regressors. Thus, the results seem to indicate that
when regressors involved lagged independent variables, increasing the sample size
increases the reliability of the test.

Tables 3.7 and 3.8 give lower and upper bounds of the 95% confidence

interval of the estimated sizes of Table 3.6 for design rnatrices X, and X, using
different sample sizes. We find that all estimated sizes of Table 3.6 are within the
bounds indicating the estimated sizes are not significantly different from the
nominal sizes. There is a clear sign of improvemert as the sample size increases
from 30 to 240. Thus, from this Monte Carlo study, we found that the critical
values calculated from our response surface formulae have very acceptable sizes, at

least for the design matrices we used in the study. Overall, we have seen that
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increasing the number of observations improves the reliability of the critical value
formulae. We note that in both design matrices the regressors include lagged

independent variables which may be helpful with respect to reliability.

3.7 Conclusion

While there are so many ways to develop a test statistic to test for the
presence of structural change when there is a possibie unknown changepoint in the
data, we recommend the use of the LR test. Since this test does not have a known
distribution for finite sample sizes, we calculated exact critical values for the test by
simulation using 10000 replications for different sample sizes, numbers of
regressors and types of regressors. We found that the critical values clearly depend
on sample size, the number of regressors and to a less extend on the type of
explanatory variables. A portion of this finding supports King and Tan’s (1994)
finding that the LR test statistic is sensitive to the number of regressors used in the
model.

We found that the calculation of critical values via simulation is very time
consumning and the computational cost is very high, particularly for very large
samples. To overcome this difficulty, we developed formulae for critical values
using a response surface < pproach, which helps to estimate critical values of the test
statistic directly avoiding the use of a table at a desired level of significance when
the sample size and the number of regressors are known. Response surfaces provide
complementary summaries of the vast array of results from the Monte Carlo study
undertaken. The response surfaces highlight some simple dependencies of the
critical values on the number of regressors, the degree of autocorrelation in the

regressors and the sample size.
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The problem of how to choose ¢ is the main concern in using our formula.
We suggest the use of the average of estimated coefficients from fitted AR(1)
models to each of the nonconstant regressors. The reported response surfaces
provide a computationally convenient way of finding finite sample critical values at
the 1%, 2.5%, 5%, and 10% levels.

We checked the accuracy of the critical vziue formulae by performing a
small Monte Carlo experiment. We calculated the estimated sizes of the test using
response surface formulae for critical values at the different nominal levels. We
found that the estimated sizes are not significantly different from the nominal size
regardless of the sample sizes. Overall the actual sizes of the test are quite
satisfactory. We recommend using the LR test stauistic for testing structural change
of unknown timing with our critical value formulae.

One question we have not answered here is how to make inference about

the changepoint #, when parameters of the models have to be estimated. This

problem is the subject of the next two chapters.
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Table 3.1 Empirical Critical Values of the LR Test for Different Numbers of
Regressors and ¢ when =25

a 1% 3.5%
k =6 9=07 ¢=10 ¢=1.02 ¢=0  ¢=07 $=1.0 $=1.02
1 3779 4.766 4759 4837 3814 3840 38290 4022
2 5113 5162 5403 5500 4137 4111 4266 4252
3 5402 5395 5724 5765 4356 4353 4531 4534
4 5761 5754 6093 6172 4679 4673 4803  4.845
5 6.082 6058 6441 6732 4778 4811 5217 5416
6 7.002  6.899 6952 6810 5429 5432 5588  5.650
7 7069  7.126 7402 7261 5462 5436 5860  5.856
8 7.509  7.323 7454 7469  6.005  6.033 6098  6.203
9 8291 8254  8.68 8702 6573 6622 7144 7279
10 8710 8652 9454 929  7.006 7.004  7.651  7.590
11 9.766  9.993 10354 10278 8.123  8.036 8412 8423
12 10633 10749 11513 11302 8783  8.830 9309  9.549
i3 11.808 11912 12569 12570 9.136  9.107 10578 10.725
14 13871 14053 14695 14852 11.128 11153 11955  12.163
15 16196 16.169 17.106 17453 12477 12567 14.090  13.903
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Table 3.1 (cont’d) Ewmpirical Critical Values of the LR Test for Different

Numbers of Regressors and ¢ when n=25

o 5% 10%

k 3=0  ¢=07 ¢=10 4=102 $=0  ¢=07 ¢=10 ¢=1.02
i 3136 3.039  3.179  3.356 2446 2455 2463  2.636
2 3338 3373 3.524 3494 2480 2480 2590  2.685
3 3445 3462 3741 3863 2590 2587 2884  2.832
4 3720 3737 3946 3968  2.823 2806  3.039  3.080
5 3.938 3962 4298 4435 3031 3016 3331 3514
6 4338 4347 4622 4784 3220  3.198  3.632  3.698
7 4358 4388  4.843 4822 3230 3204 3785  3.825
8 4763 4756 5066 5170 3432 3448 3985  4.067
9 5182 5111 5754 5993 3717 3727 4456  4.691
10 5478 5485 6285 6299  4.026 4020 4715 4877
11 6298 6346 6973  T.14 4705 4737 5339  5.588
12 6952 6986 7744 7838 5165 5204 5961  6.109
13 7363 7478 8502 8577 5609 5654 6577 6914
14 8.801 8822  9.651 9998 6479 6585  7.509  7.712
15 10209 10.182 11249 11386 7.698 7735  9.033  8.995
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Table 3.2 Empirical Critical Values of the LR Test for Different Numbers of

Regressors and ¢ when n= 50

a 1% 3.5%

k $=0 §=07 4=10 $=1.02 ¢=0  ¢=07 ¢=10 g=1.02
j 5.044 775046 3153 5359 4237 4243 4338 4509
2 5117 5133 5364 5526 4247 4272 4391 4.566
3 5420 5352 5605 5.641 4555 4547 4596  4.760
4 5636 5430 5758 5795 478  4.583  4.862  4.852
5 5350 5.689 5775 5881 4603 4677 4932  4.993
6 5731 5755 582 5053 4643 4770 4945 5108
7 5923 5944 6060 6192 4898 4930 5223  5.191
8 6.222 6255 6440 6362 4995 5054 5534 5390
9 6.351 6398 6737 6563 5428 5448 5587  5.507
10 6438 6489 6785 6674 5440 5512 5701  5.673
11 6.708  6.638 7150 7.161 5515 5588  6.066 6.113
12 6773 6924 7227 7271 5583 5613 6.139 6123
13 7158 6.957 7267 7320 5957 5804 6236  6.166
14 6955  7.135 7640 7532 5799 5978 6483 6370
15 7232 7263 7643 7787 6166 6140  6.602 6568
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Table 3.2 (cont’d) Empirical Critical Values of the LR Test for Different

Numbers of Regressors and ¢ when 7= 50

P 5% 10%

k ¢= $=0.7  4=10 ¢=102 ¢=0 ¢=07 ¢=10 ¢=1.02
i 3570 3511 3.665  3.791 2820 2829 2980  3.129
2 3497 3567  3.678 3796 2900 2917  3.107  3.177
3 3.805 3792 3914 4036 3065 3.082 3264  3.305
4 3.985 3839 4172 4225 3167 3130 3363  3.5l11
5 3.824 3995 4212 4267 3112 3152 3367 3516
6 3.970 4025 4242 4321 3199 3214 3438  3.531
7 4103 4140 4495 4465 3255 3241 3.696  3.659
8 4286 4320 4634 4608 3435 3437 3808  3.782
9 4468 4510 4790 4668  3.585 3608 3951  3.894
10 4697 4682 4875 4813 3724 3741 4048  4.034
11 4667 4694 5215 5146 3763 3768 4231  4.198
12 4664 4709 5239 5212 3743 3797 4291  4.248
13 5076 4945 5399 . 5340  4.074 4044 4494  4.495
14 4967 5084 5557 5566 4051 4087 4649  4.620
15 5280 5296 5621 5587 4300 4355 4678  4.689
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Table 3.3 Empirical Critical Values of the LR Test for Different Numbers of
Regressors and ¢ when n="75

o 1% 3.5%
k 3=0  ¢=07 ¢=10 4=102 4=0 ¢=07 =10 4=1.02
i 5153  5.140 5328 5203 4.168  4.161 4313 4.464
2 5229 5233 5304 5330 4261 4263 4503 4.574
3 5283 5274 5535 5448 4307 4300  4.601  4.629
4 5342 5297  5.624 5554 4310 4323 4.665  4.684
5 5353 5344 5660 5700 4458 4439  4.686  4.760
6 5.424 5491 5690 5835 4524 4516 4778  4.888
7 5482 5472 5757 6111 4570 4551  4.833  4.966
8 5590 5565  6.125 6131 4600 4610 4993  5.085
9 5660 5731 6142 6147 4648 4625 5127 5.173
10 5764 5803  6.158 6266 4757 4734  5.134 5250
1 5846 5812 6159 6331 4981 4988 5228 5369
12 6177 6127 6222 6402 5051  5.032 5275  5.464
13 6.178 6230 6504 6586  3.062  5.056 5512 5.558
14 6405 6453 6550 6742 5072 5106 5539  5.565
15 6.457 6468 6569 6911 5212 5180 5597  5.741
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Table 3.3 (cont'd) Empirical Critical Values of the LR Test for Different

Numbers of Regressors and ¢ when 7= 75

o 5% 10%
k =0 =07 $=10 =102 ¢=0 =07 ¢=1.0 ¢=1.02
i 3486 3484 3.609  3.780  2.783  2.787 2962  3.062
2 3.527 3514  3.826 3913 2836 2842 3146  3.210
3 3.569 3571 3.859 3958 2859 2862  3.148  3.258
4 3.653 3671 3.866 4014 2956 2953 3165 3.8l
5 3.683 3674 3933 4077 2968 2968  3.186  3.310
6 3701 3702 4081 4164 2969 2982 3342 3418
7 3.809 3818  4.145 4238  3.019  3.027 3426  3.527
8 3.840 3863 4299 4369  3.076  3.080 3452  3.564
9 3982 3963 4348 4378 3174  3.184 3515 3.613
10 4051 4043 4380 4465 3210  3.189  3.582  3.665
11 4076 4089 4476 4562 3230 3239 3599  3.711
12 4.151 4150 4553 4579 3348 3332 3687  3.808
13 4243 4243 4619 4751 3397 3405  3.791  3.898
14 4249 4258 4645 4769 3422 3417 3800  3.946
15 4304 4284 4697 4872 3450 3468  3.863  3.957
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Table 3.4 Empirical Critical Values ¢f the LR Test for Different Numbers of

Regressors and ¢ when n= 100

o 1% 2.5%

k §=0 =07 ¢=10 ¢=1.02 ¢=0 ¢=0.7 ¢=10 ¢=1.02
1 4506 4017 4829 5302  4.059  4.060  4.105  4.451
2 5055 5098 5310 5372 4199 4218 4335 4543
3 5227 5219 5313 5492 4362 4379 4497 4615
4 5257 5272 5600 5492 4385 4392  4.581 4784
5 5284 5281 5658 5659 4444 4424 4656  4.824
6 5366 5358 5717 5749 4492 4509 4782  4.864
7 5376 5407 5744 5800 4578 4564 4833 4972
8 5567 5593 5830 5964 4583 4564 4945 5107
9 5665 5.633 5894 6068 4656 4646 4961 5154
10 5678 5744 5981 6071 4696 4715 5068  5.171
11 5691 5760  6.068  6.134 4764 4792 5075 5227
12 5753 5781  6.168  6.151 4803 4801 5125 5259
13 5761 5786  6.18¢ 6311 4895 4927 5251 5297
14 5983 6064 6192 6375 4945 4965 5300 5358
15 6017 6072 6610 6633 4989 5029 5543 5615
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Table 3.4 (cont’d) Empirical Critical Values of the LR Test for Different

Numbers of Regressors and ¢ when n= 100

a 5% 10%
k #=0  ¢=0.7 ¢=10 ¢=102 ¢=0 $=07 ¢=10 ¢=1.02
] 3497 3511 3.508  3.800 2818  2.826  2.863  3.129
2 3594 3607 3675 3.897 2924 2936 2938  3.202
3 3.643 3630 3.824 3934 2943 2939 3176  3.225
4 3753 3762 3921 4009  3.012  3.009 3257 3337
5 3.757 3777 3972 4046 3016 3.016 3310  3.340
6 3.842 3850  4.081  4.123 3041 3.066 3333  3.377
7 3.868  3.856  4.139  4.190  3.108  3.111 3337 3432
8 3876 3872 4176 4319 3161 3162  3.435  3.523
9 3.924 3927 4245 4335 3173 3172 3500  3.624
10 3.994 4004 4304 4403 3237 3249 3516  3.639
1 4008  4.018 4412 4435 3250 3258  3.603  3.643
12 4096 4120 4443 4504 3328 3339  3.697  3.690
13 4115 4125 4502 4622 3351 3363 3761  3.800
14 4211 4193 4616 4626 3367 3369 3790  3.834
15 4219 4232 4644 4662 3448 3450 3.820  3.838

i
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Table 3.5 Estimated Critical Values from Response Surface Formulae at

Different Levels of Significance for Design Matrices X and 2 for

Different Sample Sizes

X, X,
n 25% % 10% 25% 3% 10%

30 4588 3846 2.927 5227 4221 3542
60  4.456 3.735 3.102 4897 4.037 3.423
126 4416 3.617 3.013 4.609 4.009 3.372
240 4296 3.575 3.187 4.488 3.962 3.338

Table 3.6 Estimated Sizes of the LR Test Based on Critical Values from Response
Surface Formulae at Different Levels of Significance for Design
Matrices X, and X for Different Sample Sizes

X, X,

n 25% 5% 10% 25% 5% W%

30 0.0313 0.0527 0.1190 0.0340 0.0614 0.1201
60 00270 0.0518 0.1110 0.0327 0.0582 0.1098
120 0.0259 0.0511 0.0986 0.0279 0.0542 0.1020
240 0.0235 0.0508 0.0949 0.0270 0.0510 0.0998
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Table 3.7 The 95% Lower and Upper Bounds of the Estimated Sizes of the LR
Tes: Based on Exact Critical Values at Different Level of

Significance Using Design Matrix X, for Differcat Sample Sizes

Nominal 2.5% 5% 10%
Size

Sample Lower Upper Lower Upper Lower Upper
size Bound Bound Bound Bound Bound Bound
30 0.0196 0.0430 0.0377 0.0677 0.0919 0.1461

60  0.0161 0.0378 0.0369 0.0667 0.089% 0.1320
120 0.0153 0.0366 0.0363 0.0659 0.0786 0.1186
240 0.0133 0.0337 0.0361 0.0655 0.0753 0.1146

Table 3.8 The 95% Lower and Upper Bounds of the Estimated Sizes of the LR
Test Based on Exact Critical Values at Different Level of

Significance Using Design Matrix X, for Different Sample Sizes

Nominal 2.5% 5% 10%
Size

Sample Lower Upper Lower Upper Lower Upper
size Bound Bound Bound Bound Bound Bound
36 0.0219 0.0462 0.0453 0.0775 0.0983 0.1419

60  0.0208 0.0447 0.0425 0.0739 0.0888 0.1308

120 0.0168 0.0389 0.0390 0.0693 0.0817 0.1223
240 0.0161 0.0378 0.0362 0.0658 0.0797 0.1199

P A e el Y e s T



CHAPTER 4

The Use of Model Selection for
Detecting Unknown Changepoints'

4.1 Introduction

The conventional approach to linear regression analysis involves the
formulation of 2 model with constant coefficients across the entire time domain. As
we have seen in Chapter 2, the appropriateness of this framework is highly
questionable in many econcmic applications. Because of changes that often occur in
the structure of the economy and importani institutions in the economy,
econometricians need to be mindful of the possibility of a structural change although
there can be considerable uncertainty as to the timing of the changepoint. It is
therefore desirable to be able to detect a changepoint when the timing of the change
is unknown. The use of hypothesis testing to do this has gained a great deal of
attention frorn econometricians in recent years. A difficulty with this approach, as
we have seen in Chapter 2, is that the timing of the change is a nuisance parameter,

which is present only under the alternative hypothesis.

' The preliminary findings of this chapter were presented at the Third Annual Doctoral Research
Conference, Faculty of Business and Economics, Monash University. See Azam and King (1997).
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In this chapter we argue that the problem of detecting a changepoint of
unknown timing can be viewed as a model selection problem. There is a history of
the use of hypothesis testing to make decisions about model specification in the
econometric literature (for more details, see Section 2.3.2). In this regard, Granger et
al. (1995) argued model selection decisions should be based on some well-thought-
out model selection procedure rather than a series of classical pairwise hypothesis

tests.

The purpose of this chapter is to investigate the use of IC model selection
procedures to detect a structural change when the changepoint is unknown. To the
best of our knowledge, this has not yet been investigated in the literature. A
disadvantage of this approach is that we have many different models that have to be
estimated, one for each different timing of the possible changepoint, and we are not
snre about the quality of inferences from model selection procedures in cases where a
high number of models are involved. In particular, our aim is to find which criteria
zmong existing IC has the best ability to detect a changepoint in the context of a
linear regression model when the timing of the changepoint is unknown. The fust
and foremost aim of this chapter is to see if model selection can be successfully used

in this case,

A comprehensive investigation of the application of all possible IC
procedures to the problem of detecting structural change with unknown timing is not
feasible because of the size of the task, Therefore, we have had te narrow the
number of criterion functions. Under these constraints, we use a unified strategy to
find a best choice of IC model selection; that is, we choose a number of prominent IC
(among AIC, BIC, HQC, RSC, MCPC, HSPC and GCVC) and apply them to

simulated DGPs. We use as our measure of the ability of a criterion to deter: a
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changepoint the average mean probability of correct selection (AMPCS) when the

model is being selected from a group of alternative models.

The plan of this chapter is as follows. Section 4.2 looks at the use of model
selection procedures to detect structural change and discusses our measure of
AMPCS as a method of assessing different procedures. In Section 4.3 the design of
our Monte Carlo experiment is provided. Section 4.4 discusses the results of this

experiment. Concluding remarks are given in Section 4.5.

4.2 Model Selection Procedures to Detect
Structural Change

Consider the following multiple linear regression model

J’:=x;ﬁ+z:71+3: ’ (41)
where Y, is an observation on the dependent variable at time 7, X, isa t x1 vector

of regressors at time ¢, Z, is a scalar variable, £ is a f x1 vector of regressor

coefficients, and 7, is an unknown scalar parameter. The residuals & of the »

observations are assumed to be independent and identically normally distributed with

mean zero and a constant variance g?. Our interest is in detecting whether ¥, has
changed in value at some point in time. This means we arc interested in selecting

between the following » different models:
Model -1 Y, =x8+2,y,+¢ for 1=12,...,n,
Model -2 Y, =x,f+z,y,+2p,7,+E, for =12,....n,
(4.2)

Model —» Y, =B+ 2y + 2y e for £=12,...,n,
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where z,,, i=1,...,n denotes zeros up to the ith observation and z,

afterwards.

In obvious matrix notation, model-i/ can be rewritten as

y=sXT+e (4.3)
where X, represents the nx(k+]) matrix of observations on the regressors in
m.odel-1 in the case of no changepoint; X, i=2, ..., n, represents the nx(k +2)
matrix of observations on the regressors in model-/ when there is a changepoint in
the observations. In this case, X, consists of & columns made up of the rows of x',,
t=1,...,n,acolumn of z, values and an additional column consisting of zeros up
to the /th element and z, afterwards. Also /" isa (k+2)x1 [(k+1}x1 in the case

of model-1] vector of coefficients.

The log-likelihood function of the model is

L(6)= (0" y) =~ log(27) -~ log o - '2‘(1;3()’ ~X.IY(y-X.I) (4.4)

and is maximised for /"= (XX, j)_'X 'y, the ordinary least squares (OLS) estimator

of I', and o7 =(y—Xif")’(y—Xif')/n, i=1, ..., n. Therefore, under the null
hypothesis of no changepoint in the model (i.e., model-1), the maximised log-

likelihood is
- - n n o -~ 2 n
L (9) =3 log(2n) - 3 logo, — > (4.5)

where 67 =(y-X ,f")'( y-X ,f") /n is the estimated error variance of the model
without a changepoint. On the other hand, also under the alternative hypothesis of a

changepcint in the model (i.e., model-7 ), the maximized log-likelihood is

o F n -~ n
L,.(a)=-510g(2;r)--510go-§ -3 (4.6)
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~2

where o; =(y— X, ,f")’(y—X,.f")/ n; i=2,...,n,Iis the estimated error variance
calculated after modelling the changepoint.

In the simulation study reported below, we included only m=(n-4)
changepoint models because it is extremely hard to detect models when there is a
changepoint right at the beginning or right at the end of the data period. Therefore,
we dropped off models 2 and 3 that have changepoints at the beginning and also

models #-1 and » which have their changepoints at the end of the data period.

Let L,(é), ey L (9) correspond to the maximised log-likelihoods of the

]

models M,,---, M, , respectively, with o being the maximum likelihood estimate of
the parameter vector #. Here M, corresponds to the model without siructural
change, M, corresponds to the model with a changepoint at the third time period
and so on, with M,, corresponding to the model with a changepoint at the (n~2)th
period.
In Chapter 2 we discussed various IC based model selection procedures.
The usual form of almost all IC based model selection procedures is to select the
model with the largest penalised maximised log-likelihood function, namely
IC, = L{B)-p, @7
where p; is the penalty function for the / thmodel, M,, for i=1,---,m, dependent
on the number of parameters, among other things. For example, p, in case of AIC
takes the value k;, BIC takes the value £ log(n)/2, HQC takes the value
—k; log(log(n))/n, RSC takes the value -nlog((n-+£,))/2, GCVC takes the value
—-nlog((n—k,;)/n}, HSPC takes the value —nlog((n—k }rn—k —1))/2 and MCPC
takes the value nlog(1+2k,/(n—k"))/2 where k" is the number of free parameters

in the smallest model that includes all models under consideration as special cases.
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For each model under consideration and for a given choice of penalty
function, we estimate the probability of correctly selecting this model when it 15
indeed the true model. Under repeated sampling we count how many times these
models come up as the true model and then divide the total count by the number of
repetitions which gives us an estimate of the mean probability of correct selection
(MPCS). For the same penalty set, we then average these probabilities across the
different models to find the average mean probability of correct selection (AMPCS).

In order to understand more closely what is involved, let
Pr(CSM,IM;.8,,p, ... ,p,) denote the probability of correctly selecting
Model- j when it is true with parameter vector 8, and using penalties p,, .. ., p,, -
This protability can be given by

PI'(CSMJ'MJ,GP p]) - :‘pm)

. R o (4.8)
=Pr(L;(8,)~p; > L(6)~ p,i # ji=1,-,mM,,60).

The problem with this probability is that it is not fixed but varies as ;. An

alternative way to overcome this difficulty is to work with the MPCS for the

J thmodel which is given by
MPCS/(py, . . ., Pa)= | PHCSM,\M,, 6,:p,, . .., p,)f(8,)d8, (49)

where f(8)) is a weighting density function rather like a prior density function used

in Bayesian methods. Its purpose is to weight different parameter vector values
when calculating MPCS. Further, we can take the average of MPCS to obtain the
overall AMPCS over m models and for a given set of penalty values p,-+-,p,,

namely,

AMPC.S‘:-;—?ZJPr(CSMJIMj, 8,,P1s - - > Pa)(6,)d6,.  (4.10)
J=1
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Unfortunately, it is very difficuit to calculate (4.9) and (4.10) analytically.
To make our approach operational, we need a method of estimating (4.8). Given that

f(8,) is a joint density function, the Monte Carlo estimate of (4.9) can be found by
taking a large sample of drawings fom the distribution represented by f(4,),

denoted by 8(i), i=1,...,R, where R is the number of drawings and then
calculating
1 .
Ez‘:Pr(CSMJIMj,Q(z), Prree D). @.1D
This then requires estimating Pr(CSM,|{M,,8(),p,, ... ,p,) for given
M;, g(i) and p,, ..., p, by a Monte Carlo simulation. Some recent research, for
example, King and Bose (2000), in this context has confirmed that for a fixed total
number of replications, good results are achieved by using only one replication but

the maximum number of drawings of &(i) from f(8;). In the following section we

discuss a procedure for estimation of MPCS and consequently the AMPCS.

4.3 Procedure for Estimation of AMPCS

The selection of a best information criterion among existing IC can be based
on the relative performance of the criteria or the power to pick the correct model.
QObviously, the best choice of IC may differ from model to model, with the
dimensions of the models or the values of the parameters, sample sizes and the
timing of changepoints in the data. The evaluation of these IC procedures is based
on the AMPCS discussed in the previous section. Therefore, we propose to take the
average of the mean probability of correctly choosing models for a given set of

penalty values p,, . . . ,p, asour measure of accuracy of the resultant IC procedure,




Chapter 4 Model Selection jor Detecting Changepoint 97

——

Our Monte Carlo study involves simulating models in the presence of
structural change. For data simulated from a particular DGP, maximizing the log-

likelihood function fits the different models. Estimation is by maximum likelihood

(ML), under the assumption that ¢, ~ IN(0,c?) so that the likelihood is easily
specified. Table 4.1 gives all the possible outcomes of the fitted maximized log-

likelihood values, given the true models. The maximized log-likelihood function is
denoted by Lﬁ(@), where i denotes “fitted” for model i=1, ..., m and ; denotes
M, is the true model for j=1, ..., m. For example, a typical element in the first

row and second column of the matrix of all possible outcomes, L, (6), denotes that

M, has been fitted when the actual true model is Af,. The diagonal elements of the
matrix would give the outcomes of the correctly fitted models. The upper and lower

triangles of the off-diagonals are outcomes of wrongly fitted models.

Table 4.1 Experimental Design: Values of the Maximized Log-likelihood

True Fitted Model

Model M, M, M,
Ml Ll ! (é) L]Z (9) e le (é)
M, Ly(®) L, (®) o Ly (B)
Mm Lmi (é) Lml (a) ol me(é)

We then penalize each of these estimated maximized log-tikelihoods with a

penalty term from a particular IC and compute the number of times the true model is

selected. Evaluating (4.9) requires random drawings of @, from f(8,), for model

M, in order t0 compute this MPCS. For each of the m models, R random
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drawings of @, are obtained from f(f;) and then for each drawing the mode! (4.3)

is used to generate a dependent variable y. Then the log-likelihood functions for
each of the models is maximized and the maximized values are stored. This is
repeated for each model so that a file of Rm® maximized likelihoods is generated.
This can then be used to estimate (4.11) for different values of p,, ... ,p,. The
selection process can be represented by an indicator function:

L(p, ...,p,:0()=1 (whenmodel j ischosen)
) {4.12)
=0 (whenmodel j is not chosen).

Given this first set of parameter values for true model M,, j=1,... ,m,
we can keep a count of the number of times each of the true models is selected. As
we are only interested in correct selection, we aggregate the /;s for correct selection
of the true models by summing all the ones. Because there are a total of m

competing models, and a total number of R replications, we thus can obtain the

MPCS over m models and R replications for a given set of penalty values

Dys - - - D, Thatis, using indicator functions, (4.12) can be estimated by

R
D3N KO B 1))
MPCS(M \p,, . . . ,p,) = = . (4.13)

and (4.10) can be estimated as

i

ZMPCS(MJIPU . vy spm)

AMPCS = 4 ~ . (4.14)
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4.4 The Monte Carlo Experiment

In order to find the best model selection procedure for detecting linear
regression models with a structural change of unknown timing, we conducted a
Monte Carlo experiment. The experiment aimed to evaluate the relative performance
of some existing IC model selection procedures (namely, AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC) in terms of AMPCS.

4.4.1 Experimental Design

Our aim is to estimate the probabilities of correct selection for each of the
models as the true DGP and for a range of different procedures. We are able to
compare the results for different IC procedures and select the best procedure that
gives the largest average mean probability of correct selection. We performed the

following simulation:

The y’s are generated from the following equation

Y, =B+ By x, vy iz, ¥V, FE (4.14)

where ¢, ~ IN(0,0?%). The regressors chosen here are influenced by Engle et al.’s
(1986) Monte Carlo study; that is, x, is generated from the AR(l) process
x, = @x,_, +u,, where u, ~ IN(0,6%).

We set ¢=0,07,10and 12 which covers white noise, autoregressive,
random walk and explosive processes, respectively. In each case, x, is generated
artificiaily and held fixed from replication to replication. z, is generated from the

uniform distribution ranging from 0 to 1. z, takes the value zero up to and

including the changepoint and z, afterwards. Five different samples sizes of
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15, 25, 50,75 and 100 were used for comparison purposes. For the estimation of
AMPCS, we considered 11 models when 7 =15, 21 models when n =25, 46 models
when » =50, 71 models for n= 75 and 96 models for »n=100.

For each model M|, note that all MPCS are invariant to the values taken by

B> B, 7, and depend only on y, /o . Consequently weset f, =1, f,=1, o=1,
71=1. The f(8,) prior distribution was only required for 8=y,/0. As we have

seen, the MPCS is very sensitive to the choice of values for #. Therefore, we would
like to draw parameter valves from a distribution, which allows each pararmeter to
take a range of realistic values. Basod on this argument, we decided to use a uniform
distribution so that values are drawn from a uniform spread of small, medium and
large values. The uniform distribution seems {0 be a natural choice but there is the
question of how to choose the limits of the distribution. We have seen that if the
bound of the distribution is very large, the AMPCS tends to one, and if the bound is
very small the AMPCS tends to zero. Therefore, we choose parameter values that
give some randomness in the selection, but provide a good coverage of admissible
parameter values. This approach resulied in 8 being generating uniformly from the
interval —10 to 10.

Throughout, when ML estimation was needed it was conducied using the
GAUSS 3.2.12 software. All simulations were carried out using R =2,000
replications for five different samples sizes mentioned earlier. All the models were
simulated using pseudo random numbers from the GAUSS function RNDNS that
generates standard normal variates for regression etrors. The seed for generating
random numbers for each experiment was 1786. To evaluate our model selection

criterion, we averaged our estimated MPCS to three decimals.
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4.5 Results of the Monte Carlo Data Analysis

Tables 4.2 — 4.26 contain the Monte Carlo results for the selection

probabilities of AIC, BIC, HQC, RSC, MCPC, HSPC and GCVC for different

sample sizes (i.e.,n=15, 25, 30, 75and 100), and different wvalues of the

autoregressive coefficient for the exogenous regressor (¢=0,0.7,1.0and 1.2). We
summarize the probabilities of correct model selection by each of the IC methods
along with their average mean probability of correct selection when there is no
changepoint and when there is a changepoint. In terms of overall probabilities, we
calculate the average of MPCS for no changepoint models and changepoint models
for different sample sizes and different values of ¢.

The performance of the IC procedures in the context of changepoint and no
changepoint models will be discussed in this section. Tables 4.2 to 4.26 contain
calculated MPCS and AMPCS for changepoint and no changepoint models for
different values of @ for the autoregressive exogenous variable. In order to discuss
this massive set of resuits, we have presented the results for individual MPCS for
each model for different values of ¢, and different sample sizes for each changepoint
model. We then computed AMPCS along with their standard deviation for different
models for different IC procedures. These AMPCS, standard deviations and ranking
of different IC procedures were also tabulated for different sample sizes and different
¢’s. From these general results we will proceed to take a closer look at the
performance of the IC procedures and will highlight any peculiar cases. But first,

some general results.
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4.5.1 Results for Models with Changepoints
4.5.1.1 For n=15

For models with changepoints and for ali values of ¢, the MPCS of the
seven [C procedures considered here show a general downward trend as the
changepoint moves forward in time. Also as ¢ increases from 0 to 1.02, there is a
slight tendency for the AMPCS to decrease, ceteris paribus.

A closer examination of the results shows that the AMPCS of all the seven
IC procedures are very similar with the difference of AMPCS between any pair of IC
procedures being no more than 0.0500, 0.0429, 0.0728 and 0.0630, respectively, for
¢ values of 0, 0.7, 1.G and 1.02. Overall, the difference of AMPCS between the best
and worst IC procedure is 0.0527 irrespective of the effect of different ¢ values.

Overall, RSC is statistically the best choice among the IC procedure for all
¢ values considered, becaus: it gives the largest AMPCS. The ranking of the other
procedures are AIC ranked second, MCPC ranked third, HQC ranked fourth, GCVC
ranked fifth, HSPC ranked sixth and BIC ranked last. We can group these IC
procedures into three major groups based on similar performances, these are RSC
and AIC as the best group, MCPC, HQC and GCVC as the second best group, and,
HSPC and BIC as the worst group.

4.5.1.2 For n=25

In the presence of structural change, the MPCS of the various IC procedures
indicate a general downward tendency as the changepoint moves forward in time,
with a few exceptions. A closer look at the pattern reveals very low MPCS when the
changepoint is at the beginning or the end of the time period. The MPCS is highest

when the changepoint is situated in the middle of the data period.
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When the ¢ value is 0, 0.7, 1.0 and 1.02, then the AMPCS of ali the seven
I1C procedures are very similar with the difference of AMPCS between any two 1C
procedures being with no more than 0.0700, 0.0526, 0.0620 and 0.0834, respectively.
The difference of the overall mean of the AMPCS between the best and worst 1C
procedure is 0.067( irrespective of the effect of different ¢ values.

The overalt ranking of the IC procedures are RSC ranked first, AIC second,
MCPC third, HQC fourth, GCVC fifth, HSPC sixth and BIC seventh. The three
major groupings in terms of performance are the same as for »=15, namely RSC
and AIC as the best group, MCPC, HQC and GCVC as the second best group, and,
HSPC and BIC as the worst group.

4.5.1.3 For n=50

For models with changepoints and for all values of ¢, the MPCS of the
seven IC procedures considered ' .-¢ show almost a bi-modal pattern as the

changepoint moves forward in time. When the $ value is 0, the difference of

AMPCS between any two {C procedures is no more than 0.0595. Also when the ¢
value is 0.7, 1.0 and 1.02 then the AMPCS of all the seven IC procedures are similar
with the difference in AMPCS between any two IC procedures being no more than
0.1003, 0.1079 and 0.1196, respectively. The difference of the overall mean of the
AMPCS between the best and worst IC procedure is 0.G268 irrespective of the effect
of different ¢ values.

The ranking of IC procedures is the same as for sample size 25. We are able
to group these IC procedures into four major groups based on their performances,
these being RSC as the best group, AIC, MCPC and HQC as the second best group,
GCVC and HSPC as the third best group and BIC as the worst group.
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4.5.1.4 For n="175

In the presence of a structural change, the MPCS of the various IC
procedures indicate a general upward tendency as the changepoint moves forward in
time, with a few exceptions. When the ¢ value is 0, 0.7, 1.0 and 1.02, then the
difference in AMPCS between any two IC procedures is no more than 0.0501,
0.0696, 0.1161 and 0.1073, respectively. The difference of the overall mean of the
AMPCS between the best and worst IC procedure is 0.0858 irrespective of the effect

of different ¢ values.

The ranking of 1C procedures is the same as for sample size 50. We again
can group these IC procedures inte four major groups based on their performances,
these being RSC and AIC as the best group, MCPC and HQC as the second best

group, GCVC and HSPC as the third best group and BIC as the worst group.

4.5.1.5 For n=100

In the presence of structural change, for different ¢ values, the MPCS of the
seven IC procedures considered here indicate a general downward trend with greater
MPCS values observed at the beginning of the data period with a gradual decrease as
the changepoint moves forward in time. A closer examination of the results indicates
that when the ¢ valueis 0, 0.7, 1.0 and 1.02, then the difference in AMPCS between
any two IC procedures is no more than 0.0930, 0.0819, 0.1215 and 0.1219,
respectively. The difference of the overall mean of the AMPCS between the best and

worst IC procedure is 0.1046 irrespective of the effect of different ¢ values.

The ranking of IC procedures is the same as for sample size 50. We can

group these IC procedures into three major groups based on their performances, these
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being RSC, AIC and MCPC as the best group, HQC, GCVC and HSPC as the second

best group and BIC making up the worst group.

4.5.1.6 For ¢=0

In the presence of a structural change for an autoregressive exogenous
regressor with a coefficient of ¢ =0, the performance of different IC procedures in
terms of AMPCS is consistently increasing as the sample size increases from 15 to
25, 50, 75 and 100. That is, the AMPCS generally increases with an increase in
sample size. When the »n value is 15, 25, 50, 75 and 100, then the difference in
AMPCS between any two IC procedures is no more than 0.0500, 0.0700, 0.0595,
0.0501 and 0.0930, respectively. The difference of the overail mean of the AMPCS
between the best and worst IC procedure is 0.0645 iurespective of the effect of
different » values.

Overall, RSC is statistically the best choice among the IC procedures for all
n values considered, because it gives the largest AMPCS. The rankings of the other
procedures are AIC ranked second, MCPC third, HQC fourth, GCVC fifth, HSPC
sixth and BIC seventh. We can group these IC procedures into three major groups
based on their performances, these being RSC, AIC and MCPC as the best group,
HQC, GCVC and HSPC as the second best group, and BIC as the worst group.

4.5.1.7 For ¢=0.70

In the presence of a structural change for an autoregressive exogenous
regressor with coefficient ¢=0.7, the performance of different IC procedures in

terms of AMPCS is consistently increasing as the sample size increases from 15 to
100, When the » value is 15, 25, 50, 75 and 100 then the difference in AMPCS
between any two IC procedures is no more than 0.0429, 0.0526, 0.1003, 0.0696 and
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0.0819, respectively. The difference of the overall mean of the AMPCS between the
best and worst IC procedure is 0.0695 irrespective of the effect of different » values.

The ranking of IC procedures is the same as for ¢ = 0. We can group these
IC procedures into four major groups based on their performances, these being RSC
as the best group, AIC, MCPC and HQC, as the second best group, GCVC and

HSPC as the third best group and BIC as the worst group.

4.5.1.8 For ¢=10

In the presence of a structural change for an autoregressive exogenous
regressor with coefficient ¢ =10, the performance of different IC procedures in
terms of AMPCS is consistently increasing as the sample sizes increase from 15 to
100. When the » value is 15, 25, 50, 75 and 100 thei. the difference in AMPCS
between any two IC procedures is no more than 0.0728, 0.0620, 0.1079, 0.1161 and
0.1215, respectively. The difference of the overall mean of the AMPCS between the
best and worst IC procedure is 0.0961 irrespective of the effect of different » values.

The ranking of IC procedures is the same as for ¢=0.7. We can group
these 1C procedures into four major groups based on their performances, these being
RSC as the best group, AIC, MCPC and HQC, as the second best group, GCVC and
HSPC as the third best group and BIC as the worst group.

4.5.1.9 For ¢=102

In the presence of a structural change for an autoregressive exogenous
regressor with coefficient ¢ = 1.02, the performance of the different IC procedures in

terms of AMPCS is consistently increasing as the sample size increases from 15 to

100. When the n value is 15, 25, 50, 75 and 100 then the difference in AMPCS
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between any two IC procedures is no more than 0.0630, 0.0834, 0.1196, 0.1073 and
0.1219 respectively. The difference of the overall mean of the AMPCS between the
best and worst IC procedure is 0.0990 irrespective of the effect of different » values.

The ranking of 1C procedures is the same as for ¢=10. We can group

these 1C procedures into four major groups based on their performances, these being
RSC as the best group, AIC, MCPC and HQC, as the second best group, GCVC and

HSPC as the third best group and BIC as the worst group.

4.5.2 Results for Models without Changepoints
4.5.2.1 For n=18§

For models without changepoints and for all values of ¢, the MPCS of the
seven IC procedures considered here show an increasing trend as the ¢ value
increases from 0 to 1.02, except for BIC, which has a decreasing trend, ceterts
paribus. A closer examination of the results shows that the difference of MPCS
between any pair of IC procedures is no more than 0.1230, 0.0831, 0.0755 and
0.0825 respectively, for ¢ values of 0, 0.7, 1.0 and 1.02. The difference of the
overall mean of MPCS between the best and worst IC procedure is 0.0910
irrespective of the effect of different ¢ values.

QOverall, BIC is statistically the best choice among the IC procedures for all
¢ values considered, because it gives the largest MPCS when there is no
changepoint. The ranking of the other procedures are HSPC second, GCVC third,
HQC fourth, MCPC fifth, AIC sixth and RSC seventh. We can group these IC
procedures into three major groups based on their performances, these being BIC,
HSPC and GCVC as the best group, HQC and MCPC as the second best group, and
AIC and RSC as the worst group.
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4.5.2.2 For n=235

When no changepoints are present and for all values of ¢, the MPCS of the
seven IC procedures considered here show an increasing trend as the ¢ value
increases from 0 1o 1.02, except for BIC, which exhibits a decreasing trend, ceteris
paribus. A closer examination of the results shows that the difference in MPCS
between any pair of IC procedures is no more than 0.1385, 0.0770, 0.0846 and
0.0795 for ¢ values of 0, 0.7, 1.0 and 1.02, respectively. The difference of the
overall mean of MPCS between the best and worst IC procedure is 0.0949
irrespective of the effect of different ¢ values. The ranking of IC procedures is the

same as for n =15, We can group these IC procedures into three major groups based
on their performances, these being BIC and HSPC as the best group, GCVC, HQC

and MCPC as the second best group, and AIC and RSC as the worst group.

4.5.2.3 For n=50

For models without changepoints and for alt values of ¢, the MPCS of the
seven 1C procedures considered here show the same pattern as for n=25. A closer
examination of the results shows that the difference in MPCS between any pair of IC
procedures is no more than 0.1277, 0.0821, 0.0811 and 0.0813 for ¢ values of 0, 0.7,
1.0 and 1.02, respectively. The di ference in the overall mean of MPCS between the
best and worst IC procedure is 0.0931 irrespective of the effect of different ¢ values.

The ranking of IC procedures is the same as for n=15. We can group these
IC procedures into four major groups based on their performances; these groups are
BIC as the best group, HSPC, GCVC and HQC as the second best group, MCPC and
AIC as the third best group, and RSC as the worst group.
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4.5.2.4 For n=175

In the presence of no structural change and for all values of ¢, the MPCS of
the seven IC procedures considered here show the same patteni as for n=50. A
closer examination of the results shows that the difference in MPCS between any
pair of IC procedures is no more thar 0.1328, 0.0870, 0.0861 and 0.0778 for ¢
values of 0, 0.7, 1.0 and 1.02, respectively. The difference of the overall mean of
MPCS between the best and worst 1C procedure is 0.0959 irrespective of the effect of
different ¢ values.

The ranking of IC procedures is the same as for n=15. We can group these
IC procedures into three major groups based on their performances, these being BIC
and HSPC as the best group, GCVC, HQC and MCPC as the second best group, and

AlIC and RSC as the worst group.

4.5.2.5 For n=100

For models without changepoints and for all values of ¢, the MPCS of the
seven IC procedures considered here show the same patternt as for n=75. A closer
examination of the results shows that the difference in MPCS between any pair of IC
procedures is no more than 0.1083, 0.0804, 0.0749 and 0.0832 for ¢ values of 0, 0.7, |
1.0 and 1.02, respectively. The difference of the overall mean of MPCS between the
best and worst IC procedure is 0.0867 irrespective of the effect of different ¢ values.

The ranking of IC procedures is the same as for n=75. We can group these
IC precedures into four major groups based on their performances, these being BIC
as the best group, HSPC, GCVC and HQC as the second best group, MCPC and AIC

as the third best group, and RSC as the worst group.
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4.5.2.6 For ¢=0

When there is no structural change for an autoregressive exogenous
regressor with coefficient ¢ = 0, the performance of different IC procedures in terms
of MPCS are consistently increasing as the sample sizes increase from 15 to 25, 50,
75 and 100. That is, the MPCS generally increases with an increase in sample size.
When the n value is 15, 25, 50, 75 and 100 then the difference in MPCS between
any two IC procedures is no more than 0.1230, 0.1385, 0.1277, 0.1328 and 0.1083
respectively. The difference in the overall mean of the MPCS between the best and

worst 1C procedure is 0.1261 irrespective of the effect of different n values.

Overall, BIC is statistically the best choice among the IC procedures for all
n values considered, since it gives the largest MPCS when there is no structural
change. The ranking of the other procedures are HSPC second, GCVC third, HQC
fourth, MCPC fifth, AIC sixth and RSC seventh. We can group these IC procedures
into four major groups based on their performances, these being BIC as the best
group, HSPC GCVC and HQC as the second best group, MCPC and AIC as the third

best group and RSC as the worst group.

4.5.2.7 For ¢=0.70

In the presence of no structural change for an autoregressive exogenous
regressor with coefficient ¢=0.7, the performance of different IC procedures in
terms of MPCS is the same as for ¢ =0 when the sample size increases from 15 to
25, 50, 75 and 1060. When the n value is 15, 25, 50, 75 and 100 then the difference
in MPCS between any two IC procedures is no more than 0.0831, 6.0770, 0.0821,
0.0870 and 0.0804, respectively. The difference of the overall mean of MPCS
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between the best and worst IC procedure is 0.0819 irrespective of the effect of
different » values.
The ranking of IC procedures is the same as for ¢ =0. We can group these

IC procedures into three major groups based on their performances: these groups are
BIC, HSPC and GCVC as the best group, HQC, MCPC and AIC as the second best

group and RSC as the worst group.

4.5.2.8 For ¢=10

In the presence of no structural change for an autoregressive exogenous
regressor with coefficient ¢ =10, the performance of different IC procedures in
terms of MPCS is the same as for ¢ = 0.7 when the sample size increases from 15 to
25,50, 75 and 100. When the n value is 15, 25, 50, 75 and 100, then the difference
in MPCS between any two 1C procedures is no more than 0.0755, 0.0846, 0.0811,
0.0861 and 0.0749, respectively. The difference of the overall mean of MPCS
between the best and worst IC procedure is 0.0804 irrespective of the effect of

different » values.

The ranking of 1C procedures is the same as for §=0.7. We can group
these IC procedures into three major groups based on their performances; these
groups are BIC, HSPC and GCVC as the best group, HQC, MCPC and AIC as the

second best group and RSC ar the worst group.

4.5.2.9 For ¢=102

In the presence of no structural change for an autoregressive exogenous
regressor with coefficient ¢ =102, the performance of different IC procedures in

terms of MPCS is the same as for ¢ =1.0 when the sample size increases from 15 to
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25, 50. 75 and 100. When the n value 1s 15, 25, 50, 75 and 100 then the MPCS
between any two 1C procedures is no more than 0.0825, 0.0795, 0.0813, 0.0778 and
0.0832, respectively. The difference of the overall mean of MPCS between the best
and worst IC procedure is 0.0809 irrespective of the =ffect of different n values.

The ranking of IC procedures is the same as for ¢=10. We can group
these IC procedures into three major groups based on their performances, these being
BIC, HSPC and GCVC as the best group, HQC. MCPC and AIC as the second best

group and RSC as the worst group.

4.5.2.10 Results Based on AMPCS

When we do not have any knowledge of the presence or absence of a
structural change in the data, for smali samples (15 and 25) the overall performance
of different IC procedures in terms of AMPCS, HSPC is statistically the best choice
among the IC procedures. The ranking of the other procedures are GCVC second,
BIC third, MCPC fourth, AIC fifth, HQC sixth and RSC seventh. On the other hand,
when the sample size is large (more than 50}, the overall performance of different 1C
procedures in terms of AMPCS is that BIC is statistically the best choice among the
IC procedures. The ranking of the other procedures are HQC second, AIC third,
HSPC fourth, MCPC fifth, GCVC sixth and RSC seventh.
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4.6 Concluding Remarks

This study investigated the relative performance of 1C model selection
procedures when detecting the possible presence of a structural change. It was
limited in scope, which suggests that one has to take care in making too many
generalized conclusions from the results. In particular, because it was based on a
Monte Carlo study, the results are specific to the choice of models and, within that
set of models, the choice of the autoregressive exogenous regressor coefficient ¢,
sample size # etc. used. However, subject to these limitations, there are a number of
conclusions that may be reached. Overall, the important conclusions are:

i.  BIC outperformed all existing IC procedures considered when there is
no structural change but its performance is the worst of 21l procedures
in the presence of structural change.

ii. RSC’s performance is the worst of all existing IC procedures in the
presence of no structural change however it outperformed all other IC
procedures considered when there is structural change.

iii. Based on AMPCS, HSPC is the best IC procedures for small samples
and BIC for large samples.

iv. In the presence of no structural chance, the ranking of the relative
performance of the other IC procedures is HSPC > GCVC > HQC >
MCPC > AlC.

v. In the presence of structural change, the ranking of the relative
performance of the other IC procedures is AIC > MCPC > HQC >
GCVC > HSPC.

vi. The AMPCS of all IC procedures decreases as the ¢ value increases,

ceteris paribus.
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vil. The AMPCS of all IC procadures increases as the sample size
increases, ceteris paribus.

viii. The performance of two groups of IC procedures, that is, BIC, HSPC
and GCVC, and HQC, MCPC and AIC are more or less the same.

ix. None of the IC procedures considered stands out as a clear best
method for modelling involving structural change.

X.  As we use more sample observations, we deal with a greater number
of models. As we deal with more models, the average probability of
choosing the true model tends to increase.

xi.  Models with changepoints at the beginming or at the end of data points
give comparatively high MPCS.

This chapter demonstrates that model selection procedures can be applied to
detect a possible changepoint in the data. As a policy lesson, this chapter cautions
against the use of one particular IC procedure in order to detect the presence of a
structural change because none of the 1C procedures stand out as a clear best method.
Findings showed that BIC outperformed all existing IC procedures considered when
there was no structural change, and RSC performed best overall when a changepoint
was present.  When there is no structural change, the performance of AIC is
generally the worst of all procedures. The AMPCS criterion summarizes the quality
of different IC procedures and suggests HSPC is the best IC procedures for small
samples and BIC for large samples. Clearly we cculi use AMPCS to determine an
optimal pe.ialty function that will maximize the probability of correctly selecting the

true model on average. We will discuss this topic in detail in the next chapter.
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Table 4.2 Mean Probabilities of Correct Selection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting from 11 Models, =0, for n=

15t
Model AlC BIC HQC RSC MCPC HSPC GCVC
i 0.1130 0.2430  0.1115 0.1040  0.1505 0.2900  0.2675
2 0.7155 0.7090  0.7155 0.7190  0.7130  0.7015 0.7055
3 0.5750  0.5690  0.5755 0.5755  0.5745 0.5665 0.5655
4 0.5435 0.5400  0.5435 0.5445  0.5430  0.5365 0.5390
5 0.6430  0.6390  0.6430  0.6450  0.6430  0.6355  0.6375
6 0.6195 0.6155  0.6195  0.6260 0.6:80 06110 06140
7 0.6320  0.6225  0.6320  0.6370  0.6300  0.6200  0.6210
8 0.6580  0.6505 06580  0.6640 06570  0.6460  0.6485
9 0.3825 0.3700  0.3825 03890 03805 03640  0.3675
10 0.4270 04170 04270 04335 04255 04125 0.4145
i1 0.4475 0.4260  0.4475 0.4575 04455 04200 04220

Table 4.3 Mean Probabilities of Correct Selection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 11 Models, ¢ =0.70, for

n=1s.
Model AIC BiC HQC RSC MCPC HSPC GCYC
i 0.1630 0.3020 0.1620 0.1725 0.1985 0.3555 0.3275
2 0.7170 0.7105 0.7175 0.7220 0.7160 0.7080 0.7095
3 0.5665 0.5630 0.5665 0.5670 0.5655 0.5600 0.5620
4 (.5590 0.5560 0.5590 0.5600 0.5580 0.5530 0.5545
5 0.6445 0.6395 0.6445 0.6480 0.6435 0.6370 0.6395
6 0.6330 0.6300 0.6330 0.6360 0.6330 0.6290 0.6295
7 0.6575 0.6510 0.6575 0.6600 0.6560 0.6460 0.6490
8 0.6830 0.6745 0.6830 0.6885 0.6815 0.6725 0.6745
9 0.4235 0.4140 0.4235 0.4295 0.4225 04110 0.4130
10 0.4610 0.4530 0.4610 0.4655 0.4610 0.4485 0.4515
11 0.5220 0.5035 0.5220 0.5320 0.5195 0.4965 0.5010

| Model 1 is the only model without changepoint

2 Model 2 is for changepoint at 3" observation, Model 3 changepoint at 4® observation, last model

changepoint at (n - 2)™ observation and so on.
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Table 4.4 Mean Probabilities of Correct Selection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting from 11 Models, ¢ =1.00, for n=

15.

Model AlC BIC HQC RSC MCPC HSPC GCVC
1 0.1695 03080  0.1670  0.1076  0.2080  0.3565 0.3310
2 0.7025 0.6960  0.7025  0.7035 0.7005 0.6875 0.6915
3 (.5805 05755 05805  0.5815 0.5800  0.5740  0.5750
4 0.5625 0.5550  0.5625  0.5635  0.5605  0.5545 0.5550
5 0.6530 06495  0.6530  0.6535  0.6520  0.6475  0.6490
6 0.5905 0.5855 0.5905  0.5945 0.5890  0.5835  0.5845
7 0.6370  0.6340  0.6370  0.6395 0.6365 0.6305  0.6315
8 0.6800  0.6745 0.6800  0.6845 0.6790 06715  0.673C
9 045006  0.4440  0.4505  0.4555 0.4490  0.4405  0.4415
10 04740  0.4695 0.4740 04780 04720 04655 0.4690
11 0.5215 0.5065 05225 0.5320 05185 0.4995 0.5020

Table 4.5 Mecan Probabilities of Correct Selection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 11 Models, ¢ =1.20, for

n=1s,

Model AlC BIC BQC RSC MCPC HSPC GCVC
1 0.2050 0.344¢ 0.2025 0.1005 0.2405 0.3950 0.3685
2 0.7310 0.7235 0.7315 0.7330 0.7295 0.7185 0.7205
3 0.5780 0.5750 0.5780 0.5800 0.5770 0.5730 0.5740
4 0.5705 0.5650 0.5705 0.5715 0.5690 0.5640 0.5640
5 0.6585 0.6540 0.6585 0.6600 0.6580 0.6530 0.6540
6 0.6095 0.6065 0.6095 0.6110 0.6095 0.6045 0.6045
7 0.6415 0.6345 0.6415 0.6440 0.6385 0.6320 0.6330
8 0.6865 0.6810 0.6865 0.6890 0.6850 0.6760 0.6785
9 0.4210 0.4140 0.4215 0.4275 0.4195 0.4080 0.4105
10 0.4735 0.4680 0.4735 0.4780 0.4725 0.4630 0.4670
3 0.5265 0.5110 0.5265 0.5385 0.5225 0.5030 0.5080
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Table 4.6 Average Mean Probabilities of Correct Selection for AIC, BIC, HQC,

RSC, MCPC, HSPC and GCVC for Different ¢ when n=13.

¢ AlC BIC HQC RSC MCPC HSPC GCVC
) With and without structural change
Average 0.5547  0.5615  0.5545 05485 053565 0.5627  0.5620
Rank 5 3 6 7 4 1 2
Stdev 0.1477 01170  0.1483  0.1735  0.1392  0.1084¢  0.1125
With structural change
Average 05897 05833  0.5898  0.5933  0.5881 05795  0.5814
Rank 3 5 2 ! 4 7 6
Stdev 0.0964 00972 0.0964 0.0945 0.0965 0.0981 0.0973
Without structural change
Average (02050 03440  0.2025 0.1005  0.2405  0.3950  0.3685
Rank 6 3 6 7 4 ! 2
0.70 With and without structural change
Average 0.5475  0.5544  0.5473  (.5420 0.5495 05555  (.5548
Rank 6 3 6 7 4 ] 2
Stdev 0.1491  0.1156  0.1497 0.1738 0.1393  0.1050 0.1104
With structural change
Average 0.5853  0.5790  0.5853  0.5886  0.5837 0.5755  0.5772
Rank 3 6 2 1 4 7 6
Stdev 0.0850 00862 00850 0.0837 0.0854 0.0860 0.0861
Without structural change
Average 0.1630 03020 0.1620 0.0725  0.1985  0.3555 03275
Rank 6 3 6 7 4 1 2
1.0 With and without structural change
Average (.5475  0.5544 05473 05420  0.5495  0.5555  0.5548
Rank 6 3 6 7 4 1 2
Stdev 0.1491  0.1156  0.1497  0.1738  0.1393  0.1050 0.1104
With structural change
Average 0.5853  0.5790  0.5853  0.588¢  0.5837 0.5755 0.5772
Rank 3 6 2 ] 4 7 6
Stdev 0.0850 0.0862 0.0850 00837 0.0854 0.0860 0.0861
Without structural change
Average 0.1695 03080  0.1670  0.0760  0.2080  0.3565  0.3310
Rank 6 3 6 7 4 1 2
1.02 With and without structural change
Average (0.5233 05274 05232 05205  0.5255  0.5277 0527
Rank 6 3 6 7 4 } i
Stdev 0.1723  0.1440 0.1726 01905  0.1632  0.1346 0.1392
With structural change
Average 05644 05559 0.5644 0.5686  0.5630  0.5515  0.5537
Rank 3 6 2 1 4 7 6
Stdev 0.1113  0.1147 01113 0.1097 01115  0.1150  0.1151
Without structural change
Average 0.1130 02430 ©0.1115 0.0395 0.1505 02900 0.2675
Rank 6 3 6 7 4 1 2
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Table 4.7 Mean Probabilities of Correct Selection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 21 Models, ¢ =0, for n=

25.

Model AlC BIC HQC RSC MCPC HSPC GCVC
| 0.1270 0.3635 0.1915 0.2028 0.1435 0.2205 0.2050
2 0.3465 0.3195 0.3410 0.3520 0.3450 0.3375 0.3390
3 0.3735 (.3535 0.3695 0.3815 0.3720 0.3665 0.3675
4 0.6255 0.6095 0.6225 0.6305 0.6255 0.6195 0.6210
3 0.7030 ¢.6950 0.7015 0.7060 0.7020 0.7000 0.7000
6 0.6315 0.6265 0.6300 0.6330 0.6315 0.6250 0.6250
7 (.5265 0.5245 0.5265 0.5270 0.5265 0.5260 Q.5265
8 0.5560 0.53535 0.5555 0.5580 0.5560 0.5555 0.5355
9 0.3325 0.3310 0.3325 0.3325 0.3325 0.3320 0.3320
10 0.3565 0.3550 0.3555 0.3570 0.3560 0.3550 0.3530
1 0.6460 0.6440 0.6460 0.6475 0.6460 0.6460 (.6460
2 0.4835 0.4825 0.4830 0.4835 0.4830 0.4830 0.4830
13 0.4885 0.4870 0.4880 0.4890 0.4885 0.4880 0.4880
14 0.7420 0.7395 0.7420 {.7440 0.7420 0.7420 0.7420
15 0.5330 0.5295 0.5325 0.5330 0.5330 0.5320 0.5320
16 0.5185 0.5150 Q0.5180 0.5200 0.5185 0.517¢ 05170
17 0.7100 0.7010 0.7085 0.7115 0.7100 0.7080 0.7080
i 0.5170 0.5105 0.5155 0.5205 0.5170 0.5155 0.5155
19 0.2695 0.2630 0.2685 0.2730 0.2695 0.2675 0.2675

20 0.2845 0.2310 0.2835 0.2855 0.2845 0.2830 0.2830
21 0.4410 04135 0.4350 (.4500 0.4395 0.4335 0.4340

Table 4.8 Mean Probabilities of Correct Selection for A1C, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 21 Models, ¢ =0.70, for

=25,

Model AIC BIC HQC RSC MCPC HSPC GCVC
] 0.1255 0.3655 0.1930 0.1255 0.1365 0.2260 0.2130
2 0.3490 0.3260 0.3420 0.3550 0.3480 0.3385 0.3400
3 0.3555 0.3330 0.3535 0.3615 0.3555 0.3505 0.3515
4 0.6050 0.5915 0.6015 0.6140 0.6045 0.6005 0.6010
5 0.6590 0.6940 0.6985 0.7035 0.6990 0.6980 0.6985
6 0.6220 0.6175 0.6215 0.6245 0.6220 0.6210 0.6210
7 0.5470 0.5450 0.5465 0.5475 0.5470 0.5460 0.5465
8 0.5665 0.5655 0.5655 0.5685 0.5660 0.5655 0.5655
9 0.3345 0.3325 0.3340 0.3350 0.3345 0.3340 0.3340
10 0.3525 0.3515 0.3520 0.3535 0.3525 0.3515 0.3520
1 0.6505 0.6485 0.6500 0.6520 0.6505 0.6500 0.6500
12 0.4750 0.4740 0.4750 0.4750 0.4750 0.4750 0.4750
13 0.4885 0.4860 0.4885 0.4890 0.4885 0.4880 0.4885
14 0.7350 0.7315 0.7340 0.7360 0.7340 0.7340 0.7340
15 0.5160 0.5120 0.5160 0.5170 0.5160 0.5155 0.5155
16 0.4925 0.4905 0.4920 0.4930 0.4925 0.4915 0.4520
17 0.6890 0.6795 0.6875 0.6910 0.6885 0.6860 0.6865
18 0.5125 0.5050 0.5110 0.5150 6.5120 0.5011 0.5105
i9 0.2680 0.2615 0.2670 0.2690 0.2675 0.2655 0.2660
20 0.2835 0.2775 0.2825 0.2840 0.2835 0.2810 0.2815
21 0.4445 0.4170 0.4400 0.4525 0.4440 0.4355 0.4380
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Table 4.9 Mean Probabilities of Correct Selection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 21 Models, ¢=1.6 for n=

25.

Maodel AlC BIC HQC RSC MCPC HSFC GCYC
1 0.1299 0.30065 0.1420 0.1019 0.1060 0.1725 01615
2 0.3500 0.3345 0.3575 0.3530 0.3495 0.3455 (1.3465
3 0.3775 0.3560 0.3735 0.3810 0.3775 0.3190 0.3715
4 0.6195 0.6055 0.6170 0.6240 0.6190 0.61535 0.6155
3 0.7105 0.7040 0.7095 0.7135 0.7100 0.7090 0.70%0
6 0.6250 0.6255 0.6285 0.6305 (.6290 0.6275 0.6280
7 0.55355 0.5530 0.5550 0.5560 0.5555 0.5545 0.5545
8 0.5640 0.5635 0.5635 0.5645 0.5640 0.5635 0.5635
9 0.3310 0.3310 0.3310 0.33235 0.3310 03310 0.3310
10 0.3520 0.3515 (.3520 0.3530 0.3520 0.3515 0.3515
11 0.6465 0.6440 0.6455 0.6470 0.6460 0.6455 0.64535
12 0.4835 0.4825 0.4835 0.4840 0.4835 0.4835 0.4835
13 0.5005 0.5000 0.5000 0.5015 0.5005 0.5000 0.5000
14 0.7465 0.7420 0.7465 0.7480 0.7465 0.7465 0.7465
15 0.5220 0.5190 0.5220 0.5230 0.5220 0.5220 0.5220
16 0.5175 0.5135 0.5170 0.517> 0.5170 05170 0.5179
17 0.6995 0.6940 0.6985 0.7005 0.6990 0.6980 0.6980
i3 0.4980 0.4920 0.4970 0.5020 0.4930 0.4965 0.4970
19 0.2670 0.2590 0.2650 0.2695 0.2665 0.2630 0.2645
20 0.2745 0.2680 0.2735 0.2760 0.2745 0.2725 0.2735
21 0.4235 0.3980 0.4175 0.4335 0.4225 0.4155 0.4160

Table 4.10 Mean Probabilities of Correct Selection for AIC, BiC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 21 Models, ¢ =1.02 for n=

25.

Model AlC BiC HQC RSC MCPC HSPC GCVC
I 0.2765 0.328% 0.3131 0.3016 0.3186 0.3155 0.3147
2 0.3550 0.3420 0.3520 0.3585 0.3540 0.3505 0.3510
3 0.3695 0.3560 0.3670 0.3735 0.3690 0.3640 0.3660
4 0.6160 0.5980 0.6135 0.6180 0.6160 0.6115 0.6125
3 0.7100 0.7050 0.7095 0.7110 0.7100 0.7080 0.7090
6 0.6295 0.6260 0.6280 0.6295 0.6295 0.6270 0.6275
7 0.5465 0.5450 0.5465 0.5470 0.5450 0.5460 0.5460
8 0.5640 0.5605 0.5640 0.5640 0.5640 0.5640 0.5640
9 0.3300 0.3290 0.3295 0.3305 0.3300 0.3295 0.3295
10 0.3555 6.3530 0.3555 0.3565 0.3555 0.3550 0.3555
I 0.6520 0.6485 0.6520 0.6525 0.6520 0.6510 0.6515
12 0.4800 0.4780 0.4800 0.4800 0.4800 0.4795 0.4800
13 0.4995 0.4965 0.4990 0.4995 0.4990 0.4980 0.4990
14 0.7440 0.7340 0.7435 0.7455 0.7440 0.7430 0.7430
15 0.5360 0.5325 0.5360 0.5385 0.5360 0.5355 0.5355
16 0.5275 0.5230 0.5270 0.5285 0.5270 0.5265 0.5265
17 0.7070 0.7000 0.7060 0.7085 0.7070 0.7040 0.7055
18 0.5015 0.4875 0.4390 0.5045 0.5015 0.4965 0.4970
19 0.2610 0.2520 0.2580 0.2625 0.2610 0.2575 0.2575
20 0.2615 0.2570 0.2605 0.2620 0.2610 0.2595 0.2600
21 0.3770 0.3510 0.3700 0.3850 0.3770 0.3675 (.3680

T S
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Table 4.11 Average Mean Probabilities of Correct Selection for A1C, BIC,
HQC, RSC, MCPC, HSPC and GCVC for Different ¢ when 17 =25,

p) AlIC BIC HQC RSC MCPC  HSPC GCVC
0 With and Without structural change
Average 04863 04905 04879 04840 04868 04884  0.488]
Rank 6 1 4 7 5 2 3
Stdev 0.1629  0.1451  0.1565 0.1748  0.1612  0.1540  0.1549
With structural change
Average 05043 04967 05028 0.5068  0.5039 05018  0.5021
Rank 2 7 4 i 3 6 5
Stdev 0.1442  0.1459  0.1446  0.3438  0.1444  (.1449  0.1448
Without structurai change
Average 01270 03655  0.1915  0.0280  0.1435 02205  0.20%0
Rank 6 1 4 7 5 2 3
0.70 With and without structural change
Average 04815 04860 04834 04791 04818 04836 04838
Rank 6 I 4 7 5 3 2
Sidev 0.1607  0.1433  0.1540  0.1733 0.1594 01513 0.1524
With structural change
Average 0.4993 04920 04979  0.5018  0.4991 04964  0.4974
Rank 2 7 4 [ 3 6 5
Stdev 0.1421 0.1443  0.1424  0.1423  0.1420 0.1429  0.1428
Without structural change
Average 0.1255  0.3655 0.1930  0.0255  0.1365 02260 02130
Rank 6 1 4 7 5 2 3
1.0 With and without structural change
Average 04799  0.4878  0.4855  0.4824  0.4843 04858  0.4855
Rank 7 1 4 6 5 2 3
Stdev 0.178¢  0.1498  0.1624 01772  0.1665 0.1599  0.1608
With structural change
Average 0.5034 04968 05027 05055 05032 05015  0.5017
Rank 2 7 4 1 3 6 5
Stdev 0.1459  0.1476  0.1457  0.1455  0.1458  0.1467 0.1464
Without structural change
Average 0.0099 03065 0.1420 0.0190 01060 0.1725  0.l1615
Rank 7 | 4 6 5 2 3
1.02 With and without structural change
Average 04809 0.4840 04823 04796 04812 04823 04325
Rank 6 { 4 7 5 3 2
Stdev 0.1728  0.1534  0.1671  0.1801 01717  0.1645  0.16%5
With structural change
Average 0.5012 04937 04998 05028 05009 04987  0.4992
Rank 2 7 4 1 3 6 5
Stdev 0.1496  0.1506  0.1503  0.1492  0.1497 0.1503  0.1503
Without structural change
Average 00765 02885 0.1310 0.0160 00860 0.1550  0.1470
Rank 6 ] 4 7 5 2 3
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Table 4.12 Mean Probabilities of Correct Selection for AIC, BIC, HGC, RSC,
MCPC, HSPC and GCVC for Selecting From 46 Models, ¢ =0 for n=

50.

Madel AlIC BIC HQC RSC MCPC HSPC GCVC
1 0.1550 05270 0.3080 0.2215 0.1585 0.2040 0.1980
2 0.8055 0.7850 0.8015 0.8100 0.8055 0.8025 0.8035
3 0.5415 0.5395 0.5405 0.5425 0.5415 0.5415 0.5415
4 0.5535 0.5485 £1.5530 0.5540 0.5535 0.5535 0.5535
5 0.6475 0.6470 0.6475 0.6485 0.6475 0.6475 0.6475
6 0.4625 0.4605 0.4615 0.4630 0.4625 0.4620 0.4625
7 0.2640 0.2630 0.2635 0.2640 0.2640 0.2640 0.2640
8 0.2745 0.2733 0.2745 0.2745 0.2745 0.2745 0.2745
9 0.4675 0.4670 0.4675 0.4680 0.4675 0.4675 0.4675
10 0.4155 0.4155 0.4155 0.4155 0.4155 0.4155 0.4155
1 0.5105 0.5095 0.5105 0.5105 0.5105 0.5105 0.5105
12 0.7315 0.7290 0.7310 0.7330 0.7315 0.7315 0.7315
13 0.6980 0.6955 0.6955 0.6980 0.6975 0.6970 0.6970
14 0.6940 0.6925 0.6935 0.6940 0.6940 0.6940 0.6940
15 0.7500 0.7470 0.7485 0.7505 0.7495 0.7495 0.7495
16 0.7430 0.7410 0.7430 0.7430 0.7430 0.7430 0.7430
17 0.7990 0.7960 0.7990 0.7995 0.7990 0.7990 0.7990
18 0.7400 0.7385 0.7400 0.7405 0.7400 0.7400 0.7400
19 0.7380 0.7360 0.7375 0.7380 0.7380 0.7380 0.7380
20 0.7185 0.7170 0.7185 0.7185 0.7185 0.7185 0.7185
21 0.6960 0.6955 0.6960 0.6960 0.6960 0.6960 0.6960
22 0.6840 0.6830 0.6835 0.6840 0.6340 0.6835 0.6835
23 0.7320 0.7310 0.7315 0.7330 $.7320 0.7320 0.7320
24 0.8470 0.8440 0.8460 0.8475 0.8470 0.8470 0.8470
25 0.8510 0.8480 0.8505 0.8510 0.8510 0.8510 0.8510
26 0.5385 0.5370 0.5385 0.53%0 0.5385 0.5385 0.5385
27 0.5140 0.5110 0.5135 0.5145 0.5140 0.5135 0.5135
28 0.8190 0.8170 0.8190 0.8195 0.8190 0.8190 0.8190
29 0.6405 0.6385 0.6400 0.6405 0.6405 0.6405 0.6405
30 0.6130 0.6125 0.6130 0.6130 0.6130 0.6130 0.6130
31 0.7025 0.7015 0.7015 0.7025 0.7025 0.7025 0.7025
32 0.7855 0.7850 0.7855 0.7855 0.7855 0.7855 0.7855
33 0.7385 0.7385 0.7385 0.7385 0.7385 0.7385 0.7385
34 0.7730 0.7720 0.7725 0.7730 0.7730 0.7730 0.7730
35 0.8295 0.8265 0.8280 0.8300 0.8295 0.8290 0.8290
26 0.8290 0.8250 0.8280 0.8305 0.8290 0.8290 0.8290
37 0.7330 0.7315 0.7325 0.7330 0.7330 0.7325 0.7325
38 0.5130 0.5125 0.5130 0.5130 0.5130 0.5130 0.5130
39 0.5080 0.5070 0.5080 0.5080 0.5080 0.5080 0.5080
40 0.6450 0.6445 0.6445 0.6450 0.6450 0.6450 0.6450
41 0.5230 0.5210 0.5225 0.5240 0.5230 0.5230 0.5230
42 0.5175 0.5165 0.5175 0.5180 0.5175 0.5175 0.5175
43 0.8180 0.8140 0.8190 0.8190 0.8180 0.8140 0.8170
44 0.8330 0.8285 0.8380 0.8350 0.8330 0.8225 0.8215
45 0.8355 0.8305 0.8345 0.8370 0.8345 0.8350 0.8350
46 0.8340 0.8265 0.8345 0.8355 0.8245 0.8340 0.8340
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Table 4.13 Mean Probabilities of Corvect Selection for AIC, BIC, HOC, RSC,
MCPC, HSPC and GCVC for Selecting From 46 Models, ¢ =0.7 for n=

50.

Model AlIC BIC HQC RSC MCPC HSPC GCVC
i 0.1550 0.5270 0.3080 0.1215 0.1385 0.2040 0.1980
2 0.9055 0.7850 0.8015 0.8100 0.8055 0.8250 0.8035
3 0.5415 0.5395 0.5405 0.5425 0.5415 0.5415 0.5415
4 0.5535 0.5485 0.5530 0.5540 0.5535 0.5535 0.5535
5 0.6475 0.6470 0.6475 0.6485 0.6475 0.6475 0.6475
6 0.4625 0.4605 0.4615 0.4630 0.4625 0.4620 0.4625
7 0.2640 0.2630 0.2635 0.2640 0.2640 0.2640 0.2640
! 0.2745 0.2735 0.2745 0.2745 0.2745 0.2745 0.2745
9 0.4675 0.4670 0.4675 0.4680 0.4675 0.4675 0.4675
10 0.4155 0.4150 0.4155 0.4155 0.4155 0.4155 0.4155
11 0.5105 0.5095 0.5105 0.5105 0.5105 0.5105 0.5105
12 0.7315 0.7290 0.7310 0.7330 0.7315 0.7315 0.7315
13 0.6980 0.6955 0.6965 0.6980 0.6975 0.6970 0.6970
14 0.6940 0.0925 0.6935 0.6940 0.6940 0.6940 0.6940
5 0.7500 0.7470 0.7485 0.7505 0.7495 0.7495 0.7495
16 0.7430 0.7410 0.7430 0.7430 0.7430 0.7430 0.7430
17 0.7990 0.7960 0.7990 0.7995 0.7990 0.7990 0.76%0
8 0.7400 0.7385 0.7400 0.7405 0.7400 0.7400 0.7400
9 0.7380 0.7360 0.7375 0.7380 0.7380 0.7380 0.7380
20 0.7185 0.7170 0.7185 0.7185 0.7185 0.7185 0.7i83
21 0.6960 0.6955 0.6960 0.6960 0.6960 0.6960 0.6960
2 0.6840 0.6830 0.6835 0.6840 0.6840 0.6835 0.6835
23 0.7320 0.7310 0.7315 0.7330 0.7320 0.7320 0.7320
24 0.8470 0.8440 0.8460 0.8475 (.8470 0.8470 0.8470
25 0.8510 0.8480 0.8505 0.8510 0.8510 0.8510 0.8510
26 0.5385 0.5370 0.5385 0.5390 0.5385 0.5385 0.5385
27 0.5140 0.5110 0.5135 0.5140 0.5140 0.5135 0.5135
28 0.8190 0.8170 0.8190 0.8195 0.8190 0.8190 0.8190
29 0.6405 0.6385 0.6400 0.6405 0.6405 0.6405 0.6405
30 0.6130 0.6125 0.6130 0.6130 0.6130 0.6130 0.6130
31 0.7023 0.7015 0.7015 0.7085 0.7025 0.7025 0.7025
32 0.7855 0.7850 0.7855 0.7895 0.7855 (.7855 0.78355
33 0.7385 0.7385 0.7385 0.7385 0.7385 0.7385 0.7385
34 0.7730 0.7720 0.7725 0.7730 0.7730 0.7730 0.7730
35 0.8295 0.8265 0.8280 0.8300 0.8295 0.8290 0.8290
36 0.8290 0.8250 0.8280 0.83065 0.8290 0.8290 0.8290
37 0.7330 0.7315 0.7325 0.7330 0.7330 0.7325 0.7325
38 0.5130 0.5125 0.5130 0.5130 0.5130 0.5130 0.5130
39 0.5080 0.5070 0.5080 0.5080 0.5080 0.5080 0.5080
40 0.6450 0.6445 0.6445 0.6450 0.6450 0.6450 0.6450
4] 0.5230 0.5210 0.5225 0.5240 0.5230 0.5230 0.5230
42 0.5175 0.5165 0.5175 0.5180 0.5175 0.5175 0.5175
43 0.8130 0.8140 0.8180 0.8190 0.3180 0.8180 0.8180
44 0.3130 0.8285 0.8310 0.8390 0.8330 0.8325 0.8325
45 0.8155 0.8305 0.8345 0.8395 0.8355 0.8350 0.8350
46 0.8145 0.8265 0.8325 0.8355 0.8345 0.8340 0.8340

e e
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Table 4.14 Mean Probabilities of Correct Selection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 46 Models, ¢ = 1.0 for n=

50.
Medel AIC BIC HQC RSC MCPC HSPC GLYC
— 0.1815 0.5580 0.3430 0.1445 0.1835 0.2340 0.2275
0.8065 0.7870 0.8025 0.8095 0.8065 0.8045 0.8045

0.5420 0.5385 0.5410 0.5435 0.5420 0.5415 0.5415
0.5480 0.5455 0.5470 0.5490 0.5480 0.5480 0.5480
0.6415 0.6415 0.6415 0.6420 0.6415 0.6415 0.6415
0.4665 0.4645 0.4655 0.4670 0.4665 0.4665 0.4665
0.2630 0.2625 0.2630 0.2635 (.2630 0.2630 0.2630
0.2730 0.2720 0.2730 0.2730 0.2730 0.2730 0.2730
0.4663 0.4665 0.4660 0.4670 0.4665 0.4665 0.4665
0.4160 0.4155 0.4160 0.4165 0.4160 0.4160 0.4160
0.4910 0.48935 0.49035 0.4910 0.4910 0.4910 0.4910
0.7195 0.71%0 0.1195 0.7200 0.7195 0.7195 0.7195
0.6940 0.6930 0.6935 0.6540 0.6940 0.6940 0.6940
0.6905 0.6905 0.69035 0.6910 0.6905 0.6905 0.6905
0.7440 0.7425 0.7435 0.7445 0.7440 0.7440 0.7440
0.7430 0.7380 0.7400 0.7400 0.7400 0.7400 0.7400
0.7890 0.7885 0.7880 0.7895 0.7890 0.7885 0.7885
0.7345 0.7315 0.7330 0.7350 0.7345 0.7340 0.7340
0.7330 0.7315 0.7325 0.7330 0.7330 0.7325 0.733¢

A mM o L E O MoSDSY® U s W —

p1y 0.7080 0.7070 0.7080 0.7080 0.7080 0.7080 0.7080
21 0.6940 0.6935 0.6940 0.6940 0.6940 0.6940 0.6940
2 0.6745 0.6735 0.6745 0.6750 0.6745 0.6745 0.6745
23 0.7150 0.7145 0.7150 0.7150 0.7150 0.7150 0.7150
24 0.8400 0.8395 0.8395 0.8400 0.8400 0.8400 0.8400
25 0.8515 0.8505 0.8515 0.8515 0.8515 0.8515 0.8515
26 0.5235 0.5225 0.5235 Q.5235 0.5235 0.5235 0.5235
27 0.5070 0.5055 0.5065 0.5670 0.5070 0.5070 0.5070
28 0.8135 0.8125 0.8130 3.8135 0.8135 0.8135 0.8135
29 0.6295 0.6285 0.6295 0.6295 0.6295 0.6295 0.6295
30 0.5990 0.5980 0.5990 0.5990 0.5990 0.59%0 0.5990
31 0.6835 0.6835 0.6835 0.6840 0.6835 0.6835 0.6835
2 0.7775 0.7770 0.7775 0.7775 0.7775 0.7775 0.7775
33 0.7345 0.7345 0.7345 0.7345 0.7345 0.7345 0.7345
34 0.7790 0.7780 0.7785 0.779¢ 0.7790 0.7785 0.7785
35 0.8255 0.8240 0.8255 0.8260 0.8255 0.8255 0.8255
36 0.8220 0.82035 0.8215 0.8225 0.8220 0.8220 0.8220
37 0.7395 0.7375 0.7385 0.7400 0.7395 0.7395 0.7395
38 0.5165 0.5160 0.5160 0.5160 0.5160 0.5160 0.5160
39 0.5105 0.5100 0.5105 0.5115 0.5105 0.5105 0.5105
40 0.6510 0.6505 0.6510 0.6515 0.6510 0.6510 0.6510
4] 0.5300 0.5280 0.5295 0.5300 (.5300 0.5300 0.5300 .
42 0.5100 0.5095 0.5100 0.5105 0.5100 0.5100 0.5100 ]
43 0.8125 0.807s 0.8120 0.8125 0.8125 0.8125 0.8125 1
44 0.8255 0.8225 0.8240 0.8265 0.8255 0.8255 0.8255 ;
45 (.8325 0.8255 0.8310 0.8335 0.8325 0.2310 0.8310
46 0.8335 0.8230 0.8335 0.8375 0.8335 0.8345 0.8345 i
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Table 4.15 Mean Probabilities of Correct Selection for A1C, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 46 Models, ¢ =1.02 for 1=

50.

Model AlC BIC HQC RSC MCPC HSPC GCVC
1 0.3086 0.4360 0.3208 0.3072" 0.3088 0.3175 0.3113
2 0.8015 0.7870 0.7980 0.8030 0.8015 0.8010 0.8010
3 0.5390 0.5380 0.5380 0.5390 0.5390 0.5390 0.5390
4 0.5500 0.5485 0.5380 0.5390 0.53%0 0.5390 0.5390
5 0.6480 0.6475 0.6480 0.6480 0.6480 0.6480 0.6480
6 0.4625 0.4615 0.4620 0.4625 0.4625 0.4625 0.4625
7 0.2640 0.2640 0.2640 0.2640 0.2640 0.2640 0.2640
3 0.2745 0.2740 0.2740 0.2745 0.2745 0.2740 0.2745
9 0.4780 0.4770 0.4780 0.4780 0.4780 0.4780 0.4780
10 0.4190 0.4180 0.4190 0.4195 0.4190 0.4190 0.4190
1 0.5120 0.5120 0.5120 0.5120 0.5120 0.5120 0.5120
12 0.7270 0.7260 0.7270 0.7275 0.7270 0.7270 0.7270
13 0.6953 0.6945 0.69535 0.6955 0.6955 0.6955 0.6955

14 0.6970 0.6960 0.6970 0.6970 0.6970 0.6970 0.6570
15 0.7480 0.7475 0.7475 0.7480 0.7480 0.7475 0.7475
16 0.7395 0.7385 0.7393 0.7395 0.739% 0.7395 0.7395
17 0.7935 0.7920 0.7935 0.7935 0.7935 0.7935 0.7935
18 0.7385 0.7395 0.7400 0.7400 0.7400 0.7395 0.7395
19 0.7405 6.7400 0.7405 0.7405 0.7405 0.7405 0.7405
20 0.7340 0.7320 0.7340 0.7345 0.7340 0.7340 0.7340
2] 0.6940 0.6940 0.6%40 0.6940 0.6940 0.6940 0.6940
22 0.6905 0.6895 0.6900 0.6910 0.6905 0.6905 0.6903
23 0.7350 0.7350 0.7350 0.7355 0.7350 0.7350 0.7350
24 0.8455 0.8435 0.8455 0.8465 0.8455 0.8455 0.8455
25 0.8490 0.8455 0.8485 0.8490 0.8490 0.8485 0.8485
26 0.5385 0.5385 0.5335 0.5385 0.5385 0.5385 0.5385
27 0.5100 0.5080 0.5095 0.5100 0.5095 0.5095 0.5095
28 0.8180 0.8145 0.8170 0.8195 0.8180 0.8175 0.8175
29 0.6320 0.6310 0.6315 0.6325 0.6320 0.6320 0.6320
30 0.6015 (6005 0.6015 0.6015 0.6015 0.6915 0.6015
3l 0.6990 0.6960 0.6985 0.6990 0.6990 0.6990 0.699%0
32 0.7855 0.7830 0.7845 0.7855 0,7855 0.7855 0.7855
33 0.7365 0.7345 0.7355 0.7370 07365 0.7365 0.7365
34 0.7760 0.7740 0.7745 0.7765 0.7760 Q.7160 0.7760
35 0.8230 0.8195 0.8230 0.8245 0.8230 0.8230 0.8230
36 0.8220 0.8160 0.8200 0.8225 0.8220 0.8210 0.8210
37 0.7250 0.7190 0.7225 0.7265 0.7250 0.7250 0.7250
38 0.5055 0.5015 0.5040 0.5060 0.5053 0.5050 G.5050
is 0.4560 0.4945 0.4960 04960 0.4960 0.4960 0.4960
40 0.6420 0.6385 0.6405 0.6420 0.6420 0.6420 0.6420
41 0.5315 0.5280 0.5300 0.5330 0.5315 0.5310 0.5310
42 0.5065 0.5030 0.5050 0.5075 0.5065 0.5055 0.5055
43 0.8085 0.8015 0.8065 0.8105 0.8085 0.8085 0.8085
44 0.8130 0.8000 0.8100 0.8145 08130 0.8120 0.8120
45 0.8125 0.8000 0.8090 0.8150 0.8125 0.8115 0.8120
46 0.7955 0.7860 0.7933 0.7970 0.7955 0.7950 0.7950
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Table 4.16 Average Mean Probabilities of Correct Selection for AIC, BIC,
HQC, RSy, MCPC, HSPC and GCVC for Different ¢ when »n= 50.

P AlC BIC HQC RSC MCPC HSPC GCVC
0 With and without structural change
Average (.6535 0.6593  0.6562  0.6511  0.6536  0.6544  0.6543
Rank 6 I 2 4 5 3 4
Stdev 0.1675  0.1500  0.1583  0.1775  0.1673  0.1643  0.1647
With structural change
Average 0.6646  0.6622  0.6639  0.6651  0.6646  0.6644  0.6645
Rank 2 7 6 ! 3 5 5
Stdev 0.1514 01504  0.1511  0.1517 0.1514  0.i1513  0.1513
Without structural change
Average 0.1550  0.5270  0.3630  0.02i5  0.1585 02040  0.1980
Rank 6 1 2 7 5 3 4
0.70 With and without structural change
Average (0.6557 0.6593  0.6563  0.6511 0.6536 0.654%  0.6543
Rank 3 ] 2 7 5 4 5
Stdev 0.1702  0.1500  0.1584  0.1775  0.1673  C.1643  0.1647
With structural change
Average 0.6668  0.6622  0.6641  0.6651  0.6646  0.6649  0.6645
Rank 2 7 6 I 3 5 5
Stdev 0.1543  0.1504  0.1512 0.1517  0.1514  0.1518  Q.i513
Without structural change _
Average 0.1550  0.5270 03080  0.0215  0.1585  0.2046  0.1980
Rank 6 1 2 7 5 3 4
1.0 With and without structural change
Average 0.6497  0.6559  0.6526 0.6466  0.6496  0.6506  0.6504
Rank 5 1 2 7 5 3 4
Stdev 0.1649  0.1489 01559 0.176}  ©0.1647 0.1616 0.1619
With structural change
Average 0.6601  0.6581 06595 06604 0.6600 0.6598  0.6598
Rank 2 7 6 ! 3 5 5
Stdev 0.1507 0.1498  0.1505 0.1508 0.1507 0.1506  0.1506
Without structural change
Average 0.1815  0.5580 0.3430 00245  0.1835  0.2340  0.2275
Rank 6 ! 2 7 5 3 4
1.02 With and without structural change
Average 0.6487  0.6536 0.6504 0.6473  0.6485  0.6490  0.6489
Rank 5 1 2 7 5 3 4
Stdev 61701 0.1496  0.1617 01766  0.1701  0.1679  0.1682
With structural change
Average 06612  0,6584  0.6602 0.6615 0.6610 0.6608  0.660%8
Rank 2 7 6 H 3 S 5
Stdev 0.1491 0.147%6  0.1450 0.1496 0.1493  0.1492 0.1492
Without structural change
Average 0.0860 04360 0.2080 0.0070 0.0875 Q1175 0.1130
Rank 6 1 2 7 5 3 4
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Table 4.17 Mean Probabilities of Correct Seiection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 71 Models, ¢ =0 for n =

75.

Model AlC BIC HQC R5C MCPC HSPC GCVE
1 0.1190 0.5735 0.3080 0.2063 0.1200 0.1460 0.1420
2 0.8365 0.8395 0.8345 0.5365 0.8365 0.8365 0.8365
3 0.6510 0.6475 0.6500 0.6515 0.6510 0.6510 0.6510
4 0.6650 0.6635 0.6645 0.6655 0.6650 0.6650 0.6650
5 0.8955 0.8940 0.8955 0.8950 0.8955 0.8955 0 2955
6 0.4945 0.4945 $.4945 0.4945 0.4945 0.4945 0.4945
7 0.4875 0.4860 0.4375 0.4875 04875 0.4875 0.4875
§ 0.8850 0.8825 0.3850 G.885¢ 0.8350 0.8850 0.8850
9 0.8970 0.8960 0.8970 0.8970 0.8970 0.8970 0.8970
10 0.7160 0.7160 0.7160 0.7160 0.7160 0.7160 0.7160
1 0 470 0.4665 0.4670 0.4670 0.4670 0.4670 0.4670
12 0.4995 0.4995 0.4995 0.4995 0.4995 0.4995 .4995
13 0.8825 0.8820 0.8825 0.8825 0.8825 0.8825 0.8825
i4 0.8330 0.8330 0.8330 0.8330 0.8330 0.8330 0.8330
15 0.8295 0.8285 0.829% 0.8295 0.8295 0.8295 0.8295
16 0.87535 0.8750 0.8755 0.8755 0.8755 0.8755 0.8755
17 0.8780 0.8770 0.8780 0.8780 0.5780 0.8780 0.8780
18 0.3865 0.8860 0.8865 0.8865 0.8865 (.8865 0.8865
19 0.6195 0.6185 0.6190 0.6195 0.6195 0.6195 0.6195

20 (.6290 0.6280 0.6290 0.62%90 0.6290 0.6290 0.6290
21 0.8850 0.8845 0.8850 0.8850 0.8850 0.8850 0.8850
22 0.6750 0.6750 0.6750 0.6750 0.6750 0.6750 0.6750
23 0.6125 0.6125 0.6125 0.6125 0.6125 0.6125 0.6125
24 0.7160 0.7160 0.7160 0.7160 0.7160 0.7160 0.7160
25 0.8810 0.8810 $.8810 0.8810 0.8810 6.2¢10 0.8810
26 0.8680 0.8675 0.8680 0.8680 0.8680 0.8650 0.8680
27 0.8560 0.8560 0.8560 08560 0.8560 0.8560 0.8560
28 0.5990 0.5990 0.5990 0.5990 4.5990 0.5990 0.5690
29 0.5735 0.5735 0.5735 0.5734 0.5735 0.5735 0.5735
30 0.7875 0.7870 0.7870 0.7875 0.7875 0.7875 0.7875
31 0.8830 0.8830 0.8830 0.8830 0.8830 0.8830 0.8830
32 0.8935 0.8915 0.8925 0.8935 0.8935 0.8935 0.8935
33 0.8175 0.8175 0.8173 0.8175 0.8175 0.8175 0.8175
34 0.8045 0.8045 0.8045 0.8045 0.8045 0.8045 0.8045
35 0.8745 ~ 8745 0.8745 0.8745 0.8745 0.8745 0.8745
36 0.8113 0.8110 0.8115 0.8115 0.8115 0.8115 0.R113
37 0.6635 0.6635 0.6635 0.6635 (.6635 0.6€335 0.6637
8 0.5235 0.5235 0.5235 0.5235 0.5235 0.5235 0.5235
39 .5915 0.5913 0.5915 0.5915 0.5915 0.5915 0.5915
40 0.5665 0.8660 0.8665 0.8665 0.8665 0.8665 0.3665
41 0.8. 15 0.8570 0.8575 0.8575 0.8575 0.8575 0.8575
42 0.50.0 0.9045 0.9050 0.9050 0.9050 0.9050 0.9050
43 0.8130 0.8:°9 0.8130 0.8130 0.8130 0.8130 0.3130
44 077335 0.7735 Q.7735 0.7735 0.7735 0.7735 0.7735
45 0.8270 0.8270 0.827¢ 0.8270 0.8270 0.8270 0.8270
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Table 4.17 (cont’d)

Mode! AlC BIC HQC RSC MCPC HSPC GCVC
46 0.8685 0.8685 0.8685 0.8685 0.8685 0.8685 0.8685
47 0.8755 0.8755 0.8755 0.8755 0.8755 0.8755 0.8755
48 0.8760 0.8760 0.8760 0.8760 0.8760 0.8760 0.8760
49 08110 0.8110 0.8110 0.8110 0.8110 0.8110 0.8110
30 0.7850 0.7850 0.7850 0.7850 0.7850 0.7850 0.7850
51 0.8340 0.8340 0.8340 0.8340 0.8340 0.8340 0.8340
52 0.8555 0.8555 0.8555 0.8555 0.8555 0.8555 0.8555
33 0.7270 0.7270 0.7270 0.7270 0.7270 0.7270 0.7270
54 0.7310 0.7310 0.7310 0.7310 0.7310 0.7310 0.7310
55 0.8715 0.8705 0.8715 0.8715 0.8715 0.8715 0.8715
56 0.8570 0.8565 0.8570 0.8570 0.8570 0.8570 0.8570
57 0.8465 0.8465 0.8463 0.8465 0.8465 0.8460 0.8465
58 0.8715 0.8715 0.8715 0.8715 0.8715 0.8715 0.8715
59 0.8630 0.8630 0.8630 0.8630 0.8630 0.8630 0.8630
60 0.8045 0.8030 0.8040 0.8050 0.8045 0.8045 0.8045
o1 0.8225 0.8215 0.8220 0.8225 0.8225 0.8225 0.8225
62 0.8920 0.3910 0.8920 0.8620 0.8920 0.8920 0.§920
63 0.8270 0.8270 0.8270 0.8270 0.8270 0.8270 0.8270
64 0.4505 0.4500 0.4500 0.4505 0.45035 0.4505 0.4505
65 0.4095 0.4095 0.4095 0.4095 (.4095 0.4095 0.4095
66 0.8430 0.8440 0.8410 0.8430 0.8430 0.8425 (0.8425
67 0.8245 0.8235 0.8245 0.8230 0.8245 0.8245 0.8245
68 0.8605 0.8585 0.8600 0.8610 0.8605 0.8605 0.8605
69 0.8025 0.7995 0.8025 0.8025 0.8025 0.8025 0.8025
10 0.7995 0.7975 0.7985 0.7993 0.7995 0.7995 0.7995
fl 0.8670 0.8610 0.8655 0.8670 0.8670 0.8670

0.8685
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Table 4.18 Mean Probabilities of Correct Selection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 71 Models, ¢=0.7 for n=

75.

Model AlC BIC HQC RSC MCPC HSPC GCVC
1 01095 0.5780 0.3040 0.1085 0.1115 0.1315 Q.1315
2 0.8350 0.8295 0.8335 0.8350 0.8350 0.8350 0.8350
3 0.6470 0.6435 0.6460 0.6475 0.6470 0.6465 0.6465
4 0.6595 0.6585 0.6895 0.6600 0.6595 0.6595 0.6595
5 0.8965 0.8930 0.8955 0.8965 0.8965 0.8960 0.8963
6 0.4915 0.4915 0.4915 0.4915 0.4915 04915 0.4915
7 0.4920 0.4910 0.4920 0.4920 0.4920 0.4920 0.4920
8 0.8845 0.8825 0.884¢ 0.8845 0.8845 0.8845 0.8845
9 0.8980 0.8980 0.8980 0.8980 0.8980 0.8980 0.8980
10 0.7020 0.7020 0.7020 0.7020 0.7020 0.7020 0.7020
il 0.4640 0.4635 0.4640 0.4640 0.4640 0.4640 0.4640
12 0.4920 0.4905 0.4915 0.4920 0.4920 0.4920 0.4920
13 0.8795 0.8790 0.8795 0.8795 0.8795 0.8795 0.8795
14 0.8340 0.8340 0.8340 0.8340 (.8340 0.8340 0.8340
15 0.8280 0.8275 0.8280 0.8285 N.8280 0.8280 .8280
16 0.8725 0.8720 0.8720 0.8725 0.8725 0.8725 0.8725
17 0.8775 0.8765 08770 0.8775 0.8775 0.8775 08775
18 0.8865 0.8865 0.88565 0.8865 0.8865 0.8865 0.8865
19 0.6240 0.6235 0.6240 0.6245 0.6240 0.6240 0.6240

20 0.6255 (.6245 0.6250 0.6255 0.6255 0.6255 0.6255
2l 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850
22 0.6775 0.6770 0.6770 6.6775 0.6775 0.6770 0.6770
23 0.6120 0.6120 0.6120 0.6120 0.6120 0.6120 0.6120
24 0.7175 07175 07175 0.7173 0.5 0.7175 0.7173
25 0.8840 0.8840 0.8840 0.8840 0.8840 0.8840 0.8840
26 0.8670 0.8665 0.8670 0.8670 0.8670 0.3670 0.8670
27 0.8555 0.8555 0.8555 0.8555 0.8555 0.8555 0.8555
28 0.6010 0.60035 0.6005 6.6010 0.6010 0.6010 0.6030
29 6.5710 0.5705 0.5710 0.5710 0.5710 0.5710 0.5716
30 0.7830 0.7830 0.7830 0.7830 0.7830 0.7830 0.7830
3l 0.8830 0.8820 0.8830 0.8830 0.8830 0.8830 0.8830
32 0.8945 (.89435 0.8945 0.8945 0.8945 0.8945 0.8945
33 0.8150 0.8150 0.8150 0.8150 0.5150 0.8150 0.8150
34 0.8050 0.8050 0.3¢50 0.8050 0.8050 0.8050 0.8050
35 0.8740 0.8740 0.8740 0.8740 0.8740 0.8740 0.8740
36 0.8110 0.8105 0.8105 0.8110 0.8110 0.8110 0.8110
37 0.6615 0.6615 0.6615 0.6615 0.6615 0.6615 0.5615
38 0.5305 0.5305 0.5305 0.5305 0.5305 0.5305 0.5305
39 0.5955 0.59535 0.5955 0.5955 0.5955 0.5955 0.5955
40 0.8615 0.8615 0.8615 0.8615 0.8615 0.8615 0.8615
41 0.8550 0.8550 0.3550 0.8550 0.8550 0.8550 0.8350
42 0.9040 0.9035 0.9040 0.9040 0.5040 0.9040 0.9040
43 0.8115 0.8110 0.8110 0.8115 0.8115 0.8115 0.8110
44 0.7750 0.7745 0.7750 0.7750 0.7750 0.7750 0.7750
45 0.8215 0.8215 0.8215 0.8220 0.8215 0.8215 0.8215

e o it e 2t AL
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Table 4.18 (cont’d)

Model AIC BIC HQC RSC MCPC HSPC GCVC
a6 0.8600 0.8600 0.8600 0.8600 0.8600 0.8600 0.8600
47 0.8720 0.8715 0.8720 0.8720 0.8720 0.8720 0.8720
48 0.8720 0.3720 0.8720 0.8720 0.8720 0.8720 0.8720
49 0.8120 0.3120 05120 0.8120 0.8120 08120 0.8120
50 0.7870 0.7865 0.7870 0.7870 0.7870 0.7870 0.7870
51 0.8355 0.8355 0.8355 0.8355 0.8355 0.8355 0.8355
52 0.8555 0.8555 0.8555 0.8555 0.8555 0.8555 0.8555
53 0.7290 0.7285 0.7290 0.7290 0.7290 0.7290 0.7290
54 0.7325 0.7325 07325 0.7325 0.7325 0.7323 0.7325
55 0.8685 0.8675 0.8685 0.8685 0.8685 0.8685 2.8685
56 0.857C 0.8570 0.8570 Q.8570 0.8570 0.8570 0.8570
57 0.8465 0.8465 0.8465 0.8465 0.8465 0.8465 0.8465
38 0.8725 0.8725 0.8725 0.8725 08725 0.8725 0.8725
59 0.8610 0.8605 0.8610 D.8610 08610 0.3610 0.8610
60 0.8075 0.8065 0.8075 0.8075 0.8075 0.8075 0.8075
61 0.8265 0.8265 0.8265 0.8265 0.8265 0.8265 0.8265
62 0.8955 0.8940 0.8950 0.8955 0.8955 0.8955 0.8955
63 0.8210 0.8260 0.8270 08270 0.8270 0.8270 0.8270
64 0.4465 0.4455 0.4460 0.4465 0.4465 0.4460 (.4465
65 04165 0.4165 0.4165 0.4165 0.4165 0.4165 0.4165
66 0.8450 0.8425 0.8430 0.8455 0.8450 0.8445 0.8445
67 08235 0.823¢ 0.8230 0.8240 0.8235 0.8235 0.8215
68 0.8600 0.8570 0.8590 0.8600 (.3600 0.8600 0.8600
69 0.8030 0.8030 0.3030 (.8030 0.8030 0.8030 0.8030
70 0.7995 0.7980 0.7995 0.7993 0.7995 0.7995 0.7995
7 0.8660 0.8600 0.8640 0.8675 0.8660 0.8655 0.8655
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Table 4.19 Mean Probabilities of Correct Selection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 71 Models, ¢ =1.0 for n=

75.

Model AlC BIC HQC RSC MCpPC HSPC GCVC
! 0.2155 0.4813 .2010 0.2025 (12555 0.2755 (.2745
2 0.8340 0.8250 0.8330 0.8340 0.8340 0.8340 0.8340
3 0.6460 0.6440 0.6455 0.6460 0.6460 0.0646 0.6460
4 0.6590 0.6590 0.65%0 0.6595 0.6590 0.6590 0.6590
5 0.8905 0.8865 0.8900 0.8905 0.8905 0.8905 0.8905
6 0.4900 (.4895 0.4900 0.4900 0.4900 0.4900 0.4900
7 0.4840 0.4820 0.4835 0.4840 0.4840 0.4840 0.4840
8 0.8870 0.8835 0.3860 0.8875 0.8870 0.8870 0.8870
9 0.8955 0.8945 0.8955 0.8955 0.8955 0.8955 0.8955
10 0.7070 0.7065 0.7065 0.7065 0.7070 0.7070 0.7070
1 0.4755 0.4750 0.4750 0.4755 0.4755 0.4755 0.4755
12 0.4835 0.4825 0.4830 0.4835 0.4835 0.4835 0.4835
13 0.8805 0.8795 0.8800 0.8805 0.8805 0.8805 0.8805
14 0.8320 0.8305 0.8320 0.8320 0.8320 0.8320 0.8320
15 0.8280 0.8280 0.8280 0.8280 0.8280 0.8280 0.8280
16 0.8740 0.8730 0.8740 0.8740 0.8740 0.8740 0.8740
17 0.8760 0.8755 0.8760 0.8760 0.8760 0.8760 0.8760
i8 0.8795 0.8795 0.8795 0.8795 0.8795 0.8795 0.8795
19 0.6125 0.6115 0.6125 0.6125 0.6125 0.6125 0.6125

20 0.6215 0.6205 0.6215 0.6215 0.6215 0.6213 0.6215
21 0.8810 0.8805 0.8810 0.8810 0.8810 0.8810 0.8810
22 0.6710 0.6695 0.6705 0.6710 0.6710 0.6710 0.6710
23 0.6140 0.6140 0.6140 0.6140 0.6140 0.6140 0.6140
24 0.7155 (.7155 0.7155 0.7155 0.7155 0.7155 0.7155
25 0.8800 0.8795 0.8800 0.8800 0.8800 0.8800 0.8800
26 0.8640 0.8630 0.8640 0.8640 0.8640 0.8640 0.8640
27 0.8520 0.8520 0.8520 0.8520 0.8520 0.8520 0.8520
28 0.6000 0.5995 0.5995 0.6000 0.6000 0.6000 0.6000
29 0.5720 0.5715 0.5715 0.5720 0.5720 0.5720 0.5720
30 0.7865 0.7855 0.7865 0.7865 0.7865 0.7865 0.7865
31 (.8865 0.8865 0.8865 0.8865 0.8865 0.8865 0.8865
32 0.8215 0.8910 0.8910 0.8¢15 0.8915 0.8910 0.8910
33 0.8155 0.8145 0.8150 0.8155 0.8155 0.8155 0.8155
34 0.8120 0.8115 0.8115 0.8120 0.8120 0.8120 0.8120
35 0.8745 0.8740 0.8740 0.8745 0.8745 0.8745 0.8745
36 0.1070 0.8070 0.8070 0.8070 0.8070 (.8070 0.8070
37 0.6615 0.6615 0.6615 0.6615 0.6615 0.6615 0.6615
38 0.5290 0.5280 0.5290 0.5290 0.5290 0.5290 0.5290
19 0.5920 0.5915 0.5915 0.5920 0.5920 0.5920 0.5920
40 0.8575 0.8560 0.8575 0.8575 0.8575 0.8575 0.8575
41 0.8520 0.8505 0.8520 0.8520 0.8520 0.8520 0.8520
42 0.8970 0.8945 0.8970 0.8970 0.8970 0.8970 0.8970
43 0.8075 0.8060 0.8075 0.8075 0.8075 0.3075 0.8075
4 0.7730 0.7725 0.7730 0.7730 0.7730 0.7730 0.7730
45 0.8255 0.8245 0.8255 0.8255 0.8255 0.8255 0.8255
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Table 4.19 (cont’d)

Model AlC BIC HQC RSC MCPC HSPC GCVC
46 U.8620 0.8605 (.8620 0.8620 0.8620 0.8620 (.8620
47 0.8713 0.8705 0.8715 0.8715 0.8715 0.8715 G.8715
48 0.8705 0.8700 0.8705 0.8705 0.8705 0.8705 0.8705
49 G.8075 0.8075 0.8075 0.8075 0.8075 0.8075 0.8075
50 0.7805 0.7805 0.7805 0.7805 0.7805 0.7805 0.7805
51 0.8350 0.8350 0.8350 0.8350 0.8350 0.8350 0.8350
52 0.8515 0.8515 0.8515 0.8515 0.8515 0.8515 0.8515
53 0.7290 0.7285 0.7296 0.7250 0.7290 0.7290 0.7290
54 0.7335 0.7335 0.7:75 0.7335 0.7335 0.7335 0.7335
35 0.8670 0.8665 0.8670 0.8670 08670 0.8670 0.8670
56 0.8570 0.8565 0.8570 0.8570 0.8570 0.8570 0.8570
57 0.8485 0.8480 0.8485 0.8485 08485 0.8483 0.8485
58 0.8705 0.8705 0.8705 0.8705 0.8705 0.8705 0.8705
59 0.8600 0.8590 0.9600 0.8600 0.8600 0.8600 (.8600
60 0.8140 0.8140 0.8i40 0.8140 0.8140 0.8140 0.8140
61 0.8260 0.8260 0.8260 0.8260 0.8260 0.8260 0.8260
62 0.8920 0.8895 0.8920 0.8920 0.8920 0.8929 0.8920
63 0.8225 0.8210 0.8220 0.8225 0.8225 0.8225 0.8225
64 0.4410 0.4400 0.4410 04410 0.4410 04410 0.4410
65 0.4155 0.4155 0.4155 0.4155 0.4155 0.4155 0.4155
66 0.8415 0.8385 0.8410 0.8415 0.8415 0.8415 0.8415
67 0.8220 0.8215 0.8220 0.8220 0.8220 08220 0.8220
68 0.8590 0.9580 0.8590 0.8590 0.8590 0.8590 0.8590
69 0.7975 0.7950 0.7970 0.7975 0.7975 0.7975 0.7975
70 0.7970 0.7955 0.7965 07970 0.7970 0.7970 0.7970
71 0.8625 0.7590 (.8620 0.8635 0.8625 0.8625 0.8625
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Table 4.20 Mean Probabilities of Correct Selection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 71 Models, ¢ =1.02 for n=

75.

Model AIC BIC HQC RSC MCPC HSPC GCVC
[ 0.3065 0.4980 0.3215 0.3055 0.3166 0.3785 0.3760
2 0.8405 0.8330 0.8385 0.8405 0.8405 0.8405 (.8405
3 0.6510 0.6475 0.6495 0.6510 0.6510 0.6500 0.6500
4 0.6665 0.6645 0.6660 0.6665 0.6665 0.6660 0.6660
5 0.8955 0.8945 0.8955 0.8955 0.8955 0.8%55 0.8955
6 0.4950 0.4950 0.4950 0.4950 0.4950 0.4950 0.4950
7 0.4810 0.4810 0.4810 0.4810 0.4810 0.4810 0.4810
3 0.8845 0.8830 0.8835 0.8845 0.8845 0.8845 0.8845
9 0.8960 0.8945 0.8960 0.8960 0.8960 0.8960 0.8960
10 0.7150 0.7150 0.7150 0.7150 0.7150 0.7150 0.7150
1 0.4700 0.4695 0.4700 0.4700 0.4700 0.4700 0.4700
12 0.4940 (.4940 0.4940 0.4940 0.4940 0.4940 0.4940
13 0.8825 0.8825 0.8825 G.8825 0.8825 0.8825 0.8825
14 0.8350 0.8350 0.8350 0.8350 0.3350 0.8350 0.8350
15 0.8290 0.8290 0.8290 0.8290 0.8290 0.8290 0.8290
16 0.8740 0.8740 0.8740 0.8740 0.8740 (.8740 0.8740
17 0.8775 0.8770 3775 0.8775 0.8775 0.8775 0.8775
18 0.8825 0.8810 0.8815 0.8815 0.8825 0.8825 0.8825
19 0.6195 0.6190 0.61935 0.6195 0.6195 0.6195 0.6195
20 0.6250 0.6235 0.6240 0.6250 0.6250 0.6250 0.6250
21 0.8840 0.8835 0.8835 0.8840 0.8840 0.8840 0.8840
22 0.6780 0.6780 0.6780 0.6780 0.6780 0.6780 0.6780
23 0.6050 0.6085 0.6090 0.6090 0.6090 0.6090 0.6090
24 0.7205 0.7205 0.7205 0.7205 (.7205 0.7205 0.7205
25 0.8833 0.8835 0.8835 0.8835 0.8835 0.8835 0.8835
26 0.8665 0.3660 0.8665 0.8665 0.8665 0.8665 0.8665
27 0.8575 0.3575 0.8575 0.8575 0.8575 0.8575 0.8575
28 0.6020 0.6015 0.6020 0.6020 0.6020 0.6020 0.6020
29 0.5725 0.5720 0.5726 0.5725 Q.5725 0.5725 0.5723
30 0.7860 0.7855 0.7860 0.7860 0.7860 0.7360 0.7860
3 0.8860 0.8855 0.8855 0.8860 0.8860 0.8860 0.5460
32 0.8935 0.8935 0.8935 0.8935 0.8935 0.8935 0.8935
33 0.8170 0.8170 0.8170 0.8170 0.8170 0.8170 0.8170
34 0.8140 0.8140 0.8140 0.8140 0.8140 0.8140 0.8140
35 0.8765 0.8765 0.8765 0.8765 0.8765 0.8765 0.8765
36 0.8095 0.8085 0.8095 0.8095 0.8095 0.8095 0.8095
37 0.6635 0.6630 0.6635 0.6635 0.6635 0.6635 0.6635
38 0.5325 0.5325 0.5325 0.5325 0.5325 0.5325 0.5325
39 0.5960 0.5960 0.5960 0.5%60 0.5560 0.5960 0.5960
40 0.8630 0.8625 0.8630 0.8630 0.8630 0.8630 0.8630
41 0.8575 0.8575 0.8575 0.8575 0.8575 0.8575 0.8575
42 0.9040 0.9035 0.9035 0.9040 0.9040 0.9040 0.9040
43 0.8205 0.8200 0.8205 0.8205 0.8205 0.8205 0.8205
44 0.7755 0.7755 0.7755 0.7755 0.7753 0.7755 0.7755
45 0.8270 0.8270 0.8270 0.8270 0.8270 0.8270 0.8270
46 0.8700 0.8693 0.8700 0.8700 0.83700 0.8700

0.8700
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Table 4.20 (cont’d)

Model AIC 8IC HQC RSC MCPC HSPC GCVC
47 0.8715 08710 0.87110 0.8715 (.8715 0.8715 0.8715
48 0.8715 0.8705 0.8705 (.8715 0.8715 (0.8710 0.8710
49 (.8095 0.3095 0.8095 (.8095 0.8095 0.8095 0.8095
50 0.7860 0.7855 0.7855 0.7860 0.7860 0.7860 0.7860
51 0.8320 0.8320 0.8320 0.8320 0.8320 0.8320 0.8320
52 0.8520 0.8513 0.8520 0.8520 0.8520 0.8520 0.8520
53 0.7260 0.7255 0.7260 0.7260 0.7260 0.7260 0.7260
54 0.7290 0.7290 0.7290 0.7250 0.7290 $.7290 0.7290
55 0.8665 0.8660 0.8660 0.8665 (.8665 0.8665 0.8665
56 0.8585 0.8580 0.8585 0.8585 0.8585 0.8585 0.8585
57 0.8470 0.8465 0.8470 0.8470 0.8470 0.8470 0.8470
58 0.8675 0.8675 0.8675 0.8675 0.8675 0.8675 0.8675
59 0.8600 0.8585 0.8600 0.8600 0.8600 0.8600 0.8600
60 0.8085 0.8070 0.8080 0.8090 0.8085 0.8085 0.8085
61 0.8275 0.8245 0.8275 0.8295 0.8275 0.8275 0.8275
62 0.8500 0.8845 0.8885 0.8900 0.8900 0.8900 0.8900
63 0.8185 0.8155 0.8175 0.8i85 0.8185 08185 0.8185
64 0.4400 0.4360 0.4390 0,4400 0.4400 0.4400 0.4400
65 0.4120 04115 0.4120 0.4120 04120 04120 04120
o6 0.8330 0.8300 0.8325 0.8335 0.8330 0.8330 0.8330
67 0.8220 0.8190 0.8205 0.8220 0.8220 0.8220 0.8220
68 0.8545 0.8500 0.8530 0.8555 0.8545 (.8540 0.8540
69 0.7635 (0.7565 0.7610 0.7640 0.7635 0.7635 0.7635
70 0.7870 0.7820 0.7870 0.7875 0.7870 0.7870 0.7870
71 0.7545 (.7465 0.7530 0.7560 0.7545 0.7545 0.7545
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Table 4.21 Average Mean Probabilities of Correct Selection for AIC, BiC,
HQC, RSC, MCPC, HSPC and GCVC for Different ¢ when n2=75.

¢ AIC BIC HQC RSC MCPC HSPC GCVC
0 With and without structural change
Average 0.7645 07703 07670 0.7630  0.7645  0.7649  0.7649
Rank 6 ] 2 7 5 3 4
Stdev  0.1525  0.1332  0.1424  0.1598  0.1525  0.1509  0.1511
With structural change
Average (.7738  0.7732 07736  0.7738  0.7738  0.7737  0.7738
Rank 2 7 6 1 2 5 5
Stdev  0.1322  0.1321  0.1322  0.1322  0.1322  0.1322 0.1322
Without structural change
Average 0.1190  0.5735 03080 0.0065 0.1200 0.1460  0.1420
Rank 6 1 2 7 5 3 4
0.70 With and without structural change
Average 0.7638  0.7697  0.7667 0.7624  0.7638  0.7640  0.7641
Rank 6 1 2 7 ) 4 3
Stdev 0.1529  0.1330 0.1420 0.1594  0.1527 0.1516  0.1515
With structural change
Average 07731 07725 0.773¢ 07732 07731 07731 0.7731
Rank 2 7 6 I 2 5 5
Stdev  0.1320 0.1319  0.4316 0.1320 0.1320 0.1320  0.1320
Without structural change '
Average 0.1095  0.5780  0.3040 0.0085  Q.1115  0.1315  0.1315
Rank 6 ] 2 7 5 3 4
1.0 With and without structural change
Average 07615  0.7665 0.7648 0.7607  0.7615 0.7536  0.7617
Rank 5 ] 2 6 4 7 3
Stdev 01563  0.1364  0.1490 01598 01562 0.'752  (Q.1550
With structural change
Average 07600  G.7666  0.7634  0.7593  0.7600  0.7520  0.7603
Rank 2 7 6 1 2 b S
Stdev  0.1569  0.1374  0,1496  0.1604  0.1569 0.1760  0.1557
Without structural change
Average 00550 04815 02010 0.0025 0.0555 0.0755  0.0745
Rank 6 ! 2 ? 5 3 4
1.02 With and without structural change
Average 0.7610 07660  0.7629  0.7603  0.7610 0.7612  0.7611
Rank 6 ! 2 7 5 3 4
Stdev 0.1551 01344  0.1459  0.1591 0.1551 0.1543  0.1544
With structuzal change
Average 0.7710 07698 0.7706 0.7710 09710 07709  0.7709
Rank 2 7 6 1 2 5 5
Stdev  0.1315 0.1314 01315 01315  0.1315 01315 0.1315
Without structural change
Average 0.0650 0.498¢ 02215 0.0055 0.0660 0.0785  0.0760
Rank 6 1 2 7 5 3 4
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Table 4.22 Mean Probabilities of Correct Selection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 96 Models, ¢ =0 for n=

100.

Modet AIC BIC HQC RSC MCPC HSPC GCVC
! 0.3575 0.5450 0.3415 0.3015 0.1258 0.1740 0.2715
2 0.9015 0.8960 0.5005 0.9020 0.9015 0.9015 0.9015
3 0.9065 0.9065 0.9063 0.9065 0.9065 0.9065 0.9065
4 0.9030 0.9005 0.9020 €.9030 0.9030 0.9030 0.9030
5 0.8945 0.8930 0.8945 0.8945 0.8945 0.8945 0.8945
6 0.9005 0.5005 0.9005 0.9005 0.9005 0.9005 0.9005
7 0.8770 0.8765 0.8770 0.8770 0.8770 0.8770 0.8770
8 0.8655 0.8645 0.8655 0.8655 0.8655 0.8655 0.8655
9 4.5790 0.5785 4.5790 G.5790 0.5790 0.5790 0.5790
10 0.5590 0.5385 0.5590 0.55%0 0.5590 0.55%0 0.5590
11 (.8975 0.8970 0.8975 0.8975 0.8975 0.8975 0.8975
12 0.9165 0.9160 0.9165 0.9165 0.9165 0.9165 0.9165
13 0.83760 0.8760 0.8760 0.8760 0.8760 0.8760 0.8760
14 0.8790 0.8785 0.8790 0.8790 0.3790 0.8790 0.8790
15 0.9105 0.9105 0.9105 0.9105 0.9H)5 0.9105 0.9105
16 0.8575 0.8575 0.8575 0.8575 0.8575 0.8575 0.8575
17 0.7705 0.7700 0.7705 0.7705 0.7705 0.7705 0.7705
18 0.7795 0.7795 0.7795 0.7795 0.7795 0.7795 0.7795
19 0.7210 0.7295 0.7200 0.7210 0.7210 0.7210 0.7210
20 0.7115 0.7110 0.7115 0.7115 0.7115 0.7115 0.7115
21 0.9145 0.9145 0.9145 0.9145 0.9145 0.9145 09145
22 0.9245 0.9240 0.9245 0.9245 0.9245 0.9245 0.9245
23 0.9305 0.9295 0.9300 0.9305 0.9305 0.9305 0.9305
24 0.9215 0.9215 0.9215 0.9215 0.9215 0.9215 0.9215
25 0.8915 0.8%15 0.8915 0.8213 0.8915 0.8915 0.8915
26 0.8390 0.8390 0.8390 0.8390 0.8390 0.83%0 0.8390
27 0.8415 0.8415 0.8415 0.8415 0.8413 0.8413 0.8415
28 0.8880 0.8880 0.8880 0.8880 0.8880 0.8880 0.8880
29 (.8985 (.8980 (.8980 0.8085 0.8985 0.8985 0.8985
30 0.9110 0.9110 0.9110 09110 0.9110 0.9110 09110
k3| 0.8915 0.8915 0.8915 0.8920 0.8915 0.8915 0.8915
32 0.5325 0.5325 0.5325 0.5325 0.5325 0.5325 0.5325
33 0.5370 0.5370 (.5370 0.5370 0.5370 0.5370 0.5370
34 0.8810 0.8810 v.8810 0.8810 0.8810 0.8810 0.83810
35 0.8405 0.8405 Q.8405 0.84G5 0.8405 0.8405 0.8405
36 0.7775 0.7775 0.7775 0.7775 0.7775 0.7775 07775
37 0.7700 0,7700 0.7700 0.7700 0.7700 0.7700 0.7700
38 0.8685 0.8685 0.8685 (8685 0.8685 0.8685 0.8685
39 0.9120 0.9115 0.9120 0.9120 0.9120 0.9120 0.9120
40 0.8880 0.8870 0.8875 0.8880 0.8880 0.3880 0.8830
41 0.9030 0.9025 0.9025 0.9030 0.9030 0.9G30 0.9030
2 0.9225 0.9220 0.9225 0.9225 0.9225 0.9225 0.9225
43 Q.8970 (.8950 0.8965 0.8970 0.897G 0.8270 0.8270
44 0.91135 0.9105 09115 0.9115 0.9115 0.9115 0.9115
45 0.9255 0.9250 0.92535 0.9255 0.9255 0.9255 0.9255
46 0.9295 0.9285 0.92%0 0.9295 0.9295 0.9295 0.9295
47 0.9210 0.9200 0.9205 0.9210 0.9210 0.9210 0.9210
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Table 4.22 (cont’d)

Model AlIC BIC HQC RSC MCPC HSPC GCVC
43 0.9255 0.9250 0.9255 0.9255 0.9255 (.9255 0.9255
49 0.8445 0.8435 0.8440 0.8445 0.8445 0.8440 0.8440
50 0.8440 0.8440 0.3440 (.8440 0.8440 0.8440 0.8440
51 0.8713 0.8715 0.8715 08712 0.8715 0.8715 0.8715
52 0.6330 0.6325 0.6330 0.6330 0.6330 0.6330 0.6330
53 0.6125 0.6125 0.6125 0.6125 0.6125 0.6125 06125
54 0.9265 0.9265 0.9265 0.9265 0.9265 0.9265 0.9265
55 0.5225 0.5225 0.5225 (.5225 0.5225 0.5225 0.5225
56 0.49835 0.4985 0.4985 (.4985 (0.4385 0.4983 0.4985
57 0.9300 0.9295 0.9300 0.5300 0.9300 0.9300 0.9300
38 09175 0.9165 0.917¢ 09175 0.9175 0.9175 0.9175
59 0.3540 0.8530 0.8540 0.8540 0.8540 0.8540 0.8540
60 0.8520 0.8520 0.8520 0.8520 0.8520 0.8520 0.83520
6] 0.9135 0.9135 0.9133 0.9135 0.9135 09135 0.9135
62 0.6455 0.6750 0.6450 0.6455 0.6435 0.6455 0.6455
63 0.6385 0.6380 0.8380 0.6385 0.6385 0.6385 0.6385

=1 0.8930 0.8920 0.8930 {(.8930 0.8930 0.8930 0.8930
65 0.7720 0.7720 0.7720 ).7720 0.7720 0.7720 0.7720
66 0.7285 {.7285 0.7285 0.7285 0.7285 0.71285 0.7285
a7 0.8000 0.7995 0.8000 0.3000 0.8000 0.8000 0.8000
68 (0.9155 0.9155 0.9155 0.9155 09155 0.9155 0.9155
69 0.8765 0.8765 0.8765 0.8765 0.8765 0.8765 3.8765
70 0.8830 0.8830 0.8830 0.8830 0.8830 0.8830 0.8830
N 0.9360 (.9345 0.9355 0.9360 0.9360 0.9360 0.9360
72 0.7720 0.7715 0.7715 0.7720 0.7720 0.7720 0.7720
13 0.5730 0.5725 0.5730 0.5730 0.5730 0.5730 (.5730
74 0.2940 0.29335 0.2940 0.2940 0.2940 0.2940 0.2940
75 0.2990 0.2083 0.2950 0.29%0 0.2990 0.2990 0.2990
76 0.9155 09155 0.9155 0.9155 09155 0.9155 0.9155
77 0.5560 0.5560 0.5560 0.5560 0.5560 0.5560 (.5560
78 0.5680 0.5670 0.5675 0.5680 0.5680 0.5680 (.5680
79 0.7570 (.7565 0.7570 0.7570 0.7570 0.7570 0.7570
80 Q.7750 0.7740 0.71740 0.7750 0.7750 0.7750 0.7750
81 0.9100 0.9090 0.9095 0.9100 0.9100 0.9100 0.9100
82 0.8950 0.8935 0.8950 0.8950 0.8950 0.8950 (.8950
23 0.8895 0.8895 0.8895 (.8895 0.8895 0.8895 (.8895
84 0.9080 0.9060 0.9075 0.9080 0.9080 (.9080 0.9080
85 0.8950 0.8920 0.8940 0.8950 0.8950 0.8950 0.8930
86 0.8975 0.8%40 0.8965 0.8980 0.8975 0.83975 0.8975
87 0.9105 0.9080 0.9100 0.9115 0.9105 0.9105 0.9105
a8 0.9035 0.8985 0.9030 0.9035 0.9035 0.5035 0,9035
89 0.5190 0.5165 0.5190 0.5190 0.5190 0.5190 0.51%0
90 0.5183 0.5160 0.5180 0.5180 0.5190 0.5185 0.5185
| 06615 0.6655 0.6605 0.6620 0.6615 0.6615 0.6615
92 06770 0.6730 0.6760 0.6770 0.6770 0.6765 0.6765
93 0.8235 0.3170 0.8230 0.8235 C.8235 0.8235 0.8235
94 (.8090 0.8050 0.8085 0.8095 0.8090 0.80%0 0.8090
95 (.4800 (0.4755 0.4795 0.4805 0.4800 (.4300 0.4800
96 0.4270 0.4225 0.4265 0.4275 0.4270 0.4270 04270
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Table 4.23 Mean Probabilities of Correct Selection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From $6 Models, ¢ =0.7 for n=

100.

Mode} AIC BIC HQC RSC MCPC HSPC GCVC
] 0.1965 (.5790 0.3000 0.1004 0.1980 01115 0.1100
2 0.8995 0.8970 0.8995 0.8995 0.8995 0.8995 0.89%5
3 0.9060 0.9010 09055 0.9070 0.9060 0.9060 0.0060
4 0.9015 0.9010 0.9015 0.9015 0.9015 0.9015 0.9015
5 0.8925 0.8910 0.8925 0.8925 0.8925 0.8925 0.8925
6 0.8990 0.8985 0.8990 0.8990 0.8990 £.8990 0.8990
7 0.8795 0.8790 0.8790 0.8795 0.8795 0.8795 0.8795
8 0.867) 0.8655 0.8665 0.5675 0.8670 0.8670 0.8670
9 0.5643 0.5640 0.5645 0.5645 0.5645 0.5645 0.5645
10 0.5565 05565 0.5565 0.5565 0.5565 0.5365 0.5565
11 0.8955 08955 0.8955 0.8955 0.8955 0.8955 0.8955
1 0.9150 0.9145 0.9145 0.9150 0.9150 0.9150 0.9150
13 0.8740 0.8740 0.8740 0.8740 0.8740 0.8740 0.8740
14 0.8790 0.8790 0.8790 0.8790 0.8790 0.8790 0.8790
15 0.9095 0.5090 0.9090 0.9095 0.9095 0.9095 0.9095
16 0.8565 0.8565 0.8565 0.8565 0.8565 0.8565 0.8565
17 0.7690 0.7685 0.7690 0.7690 0.7690 0.7650 0.7650
i3 0.7755 0.7755 0.7755 0.7755 0.7755 0.7755 0.7755
19 0.7205 0.7207 0.7205 0.7210 0.7205 0.7205 0.7205
20 0.7125 0.7120 0.7125 0.7125 0.7125 0.7325 0.7125
21 0.9150 0.9145 0.9150 (.9150 0.9150 0.9150 0.9150
22 0.9250 0.9240 0.9250 0.9250 0.9250 0.9250 0.9250
23 0.9285 0.9285 0.9285 0.9285 0.9285 0.9285 0.9285
Z4 0.9205 0.9205 0.9205 0.9205 0.9205 0.9205 0.9205
25 0.8915 0.8915 0.8915 0.8915 0.8915 0.8915 0.8915
26 0.8395 0.8395 0.8395 0.8395 0.2395 0.8395 0.8395
27 0.8450 0.8450 0.8450 0.8450 0.8450 0.8450 0.8450
28 0.3850 0.8850 0.8850 0.8850 0.8850 0.8850 0.8850
29 0.8975 0.8975 0.8975 0.8975 0.2975 0.8975 0.8975
30 0.9105 0.9100 0.9105 0.9105 0.9105 0.9105 0.51C5
31 0.8875 0.8875 0.8875 0.8875 0.8880 0.8875 0.8875
32 0.5355 0.5355 0.5355 0.3360 0.5355 0.5355 0.5355
33 0.5280 0.5280 0.5280 0.5280 0.5280 0.5280 0.5280
34 0.8750 0.8745 0.8750 0.8750 0.8750 0.8750 0.8750
35 0.8385 0.8385 0.8383 0.8385 0.8385 0.8385 0.8285
36 0.7770 0.7770 0.7770 0.7770 0.7770 0.7770 0.7770
37 0.7650 0.7650 0.7650 £.7650 0.7650 0.7650 0.7650
38 0.8705 0.8705 0.8705 0.8705 0.8705 0.8703 0.8705
39 0.9670 0.9070 0.9070 0.5070 0.9070 0.9070 05070
40 0.8900 0.8850 0.8890 0.3900 0.890¢ 0.8900 0.8900
41 0.9015 0.9015 (.9015 0.9015 0.9015 0.9015 0.9015
42 0.9235 0,9235 0.9235 09235 0.9235 0.9235 09235
43 0.8980 0.8970 0.8970 02970 0.5§980 0.8980 0.8980
44 0.9100 0.5095 0.9100 0.9100 0.9100 0.9100 0.8100
45 0.9265 0.9260 0.9265 0.9265 0.9263 09265 0.9265
46 0.9340 0.9335 0.9335 09340 0.5.540 0.9340 0.9340
47 8.9225 0.9215 £.9220 0.9225 09225 09225
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Table 4.23 (cont’d)

NMaodel AlC BIC HQC RSC MCPC HSPC GCVC
48 0.9260 0.9255 0.9260 0.9260 0.9260 0.9260 0.9260
49 0.8455 0.8450 0.8450 0.8453 (.8455 0.8455 0.8435
50 0.8455 0.8455 0.8455 0.8455 0.8455 0.8455 0.8455
51 0.8705 0.8705 0.8705 0.8705 0.8705 0.8705 0.8705
52 0.6305 0.6300 0.9305 0.6305 0.6305 0.6305 0.6305
53 0.6130 0.6130 0.6130 0.6130 0.6130 0.6130 0.6130
54 0.927¢ 0.9270 0.9270 0.9270 0.9270 0.9270 0.9270
55 0.5215 0.5210 0.5210 0.5215 0.5215 0.5215 0.5215
56 0.4990 0.4990 0.4990 0.4990 0.4990 0.4990 0.4990
57 0.9305 (.9305 0.9305 0.9305 0.9305 0.9305 0.9305
58 09170 0.9155 0.9165 0.9170 0.9170 0.970 0.9170
59 0.8525 0.8515 0.8520 0.8525 0.8525 0.8525 0.8525
60 0.8515 0.8515 0.8515 0.8515 0.8515 0.8515 0.8515
61 0.9135 09135 0.9135 0.9135 0.9135 0.9135 0.9135
62 0.6450 0.6445 0.6450 0.6450 0.6450 0.6450 0.6450
63 0.6325 0.6320 0.6325 0.6325 0.6325 0.6325 (.6325
64 0.8925 0.3915 0.8920 0.8925 0.8925 0.8925 0.8925
65 0.7660 (L7660 0.7660 0.7660 (.7660 0.7660 0.7660
o6 0.7285 0.7285 (.7285 0.7285 0.7285 0.7285 0.7285
67 0.7950 0.7945 0.7945 €.7950 0.7950 0.7950 0.7950
68 0.9140 0.9140 0.9140 0.9140 0.9140 0.9140 0.9140
69 0.8810 0.8810 0.8810 0.8810 0.8810 0.8810 0.8810
70 0.8833 0.8825 0.8830 (.8815 {.8335 0.8835 0.8835
71 0.9360 0.9355 (.9360 0.9360 0.9360 {.9360 0.9360
72 0.7675 0.7665 0.7665 0.7675 0.7675 0.7675 07675
73 0.5680 0.5680 0.5680 0.56380 0.5680 0.5680 0.5680
74 0.2885 0.2885 0.2885 0.2885 0.2885 0.2885 0.2885
75 0.2920 (.2020 0.2920 0.2920 0.2920 0.2920 0.2920
76 (0.9145 0.9145 0.9145 0.9145 0.9145 0.9145 0.9145
77 (.5495 0.5495 0.5495 0.5495 0.5495 0.5495 {1.5495
78 0.5665 0.5665 0.5665 0.5665 0.5665 0.5665 0.5665
79 0.7570 0.7570 0.7570 0.7570 0.7570 0.7570 0.7570
30 0.7770 0.7765 0.7765 0.7770 0.7770 0.7770 0.7770
81 0.9125 0.9125 09125 0.9125 0.9125 0.9125 0.9125
&2 0.8965 0.8960 (.8965 {.8970 {1.8965 0.8965 0.8965
83 0.8910 0.8900 0.8905 0.8910 0.8910 0.8910 0.8910
84 0.9090 0.9090 0.90%0 09050 0.9090 0.90%0 0.9090
85 0.8935 {.8920 0.3935 0.8935 0.8935 0.8935 0.8935
86 0.8965 {.8955 0.8960 0.8970 0.8965 (.8965 0.8965
87 0.9100 0.9085 0.9095 0.9095 (.9095 09100 0.910¢
83 0.9050 0.9025 0.9045 0.9050 0.9050 0.9050 0.9050
89 0.5235 0.5225 0.5230 0.5240 0.5235 0.5235 0.5235
30 0.5290 0.5280 0.5285 0.5285 0.5250 0.5290 0.5290
9] 0.6680 0.6665 0.6675 0.6685 0.6685 0.6680 0.6680
] 0.6900 06870 0.68%0 0.6890 0.6900 0.6900 0.6900
93 0.8350 0.8315 0.8345 0.3360 0.8350 0.8350 0,3350
94 0.8185 0.8140 0.83180 0.8195 0.8185 0.8185 0.8185
95 0.4975 0.4945 0.4965 0.4980 (4975 0.4975 0.4975
96 0.4380 0.4360 0.4380 0.4380 0.4380 0.4380 0.4380
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Table 4.24 Mean Probabilities of Correct Selection for AIC, BIC, HQC, RSC,
MCPC, HSPC and GCVC for Selecting From 96 Models, ¢ = 1.0 for n=

100.

Model AlC BIC HQC RSC MCPC HSPC GCVC
1 0.3047 0.5135 0.1965 0.2205 0.2475 0.1575 0.1550
2 0.9000 0.8970 0.5000 0.9000 0.9000 0.5000 0.5000
3 0.9055 0.9035 0.9055 0.9060 0.9055 0.9055 0.9055
4 0.9020 0.9005 0.9020 0.9020 0.9020 0.9020 0.9020
5 0.8900 0.8885 0.8895 0.8900 0.8900 0.8900 0.8200
6 0.8990 0.8990 0.8950 0.8990 0.8590 0.8990 0.8990
7 0.8775 0.8765 0.8770 0.8775 0.8775 0.8775 0.8775
8 0.8655 0.8640 0.8650 0.8655 0.8655 0.8655 0.8655
9 0.5770 0.5765 0.5770 0.5770 0.5770 0.5770 0.5770
10 0.5565 0.5560 0.5565 0.5565 0.5565 0.5565 0.5565
1 0.8945 0.8945 0.8945 0.8945 0.8945 0.8945 0.8945
i2 0.9150 0.9150 0.9150 0.91,0 0.9150 0.9150 0.9150
13 0.8775 0.8765 0.8775 0.8775 0.8775 0.8775 0.8775
14 0.8820 0.8815 0.8820 0.8820 0.8820 0.8820 6.8820
15 0.9040 0.9040 0.9040 0.9040 0.9040 0.9040 0.9040
16 0.8525 0.8525 0.8525 0.8525 0.8525 0.8525 0.8525
17 0.7610 0.7610 0.7610 6.7610 0.7610 0.7610 0.7610
18 0.7730 0.7730 0.7730 0.7730 0.7730 0.7730 0.7730
19 0.7230 0.7225 0.7230 0.7230 0.7230 0.7230 0.7230

20 0.7025 0.7015 0.7025 0.7025 0.7025 0.7025 0.7025
24 0.9105 0.9100 0.9105 0.9105 0.9105 0.9105 0.9105
22 0.9225 0.9210 0.9225 0.9225 0.9225 0.9225 0.9225
23 0.9280 0.9270 0.9289 0.9280 (.9280 0.9280 0.9280
24 0.9195 0.4185 0.9195 0.9195 0.9195 0.9195 09195
25 0.8890 0.8890 0.8890 0.8890 0.8890 0.88%0 0.8890
26 0.8420 0.8410 0.8420 0.8420 0.8420 0.8420 0.8420
27 0.8460 0.8450 0.3460 0.8460 0.8460 0.8460 0.8460
28 0.8830 0.8825 0.8830 0.8830 0.8830 0.8830 0.8830
2¢ 0.8975 0.8960 0.8975 0.8975 0.8975 0.8975 0.8975
30 0.9085 0.9085 0.9085 0.9085 0.9085 0.9085 Q.9085
n 0.8875 0.8875 0.8875 0.8875 0.8875 0.8875 03875
32 0.5280 0.5275 0.5280 0.5280 0.5280 0.5280 0.5280
3 0.5310 0.5305 0.5305 0.5310 0.5310 0.5310 05310
34 0.8790 0.8790 0.8790 0.8790 0.8790 0.8790 0.8790
35 0.8395 0.8390 0.8390 0.8395 0.8395 0.8395 0.8395
36 0.7720 0.7720 0.7720 0.7720 0.7720 0.7720 0.7720
37 0.76%0 0.7685 0.76%0 0.76%0 0.7690 0.7650 0.7690
38 0.8655 0.8655 0.8655 0.8655 0.8655 0.8655 0.8655
39 0.9080 0.9075 0.9080 0.9080 0.9080 0.9080 0.5080
40 0.3865 0.8865 0.8865 0.8865 0.8865 0.8865 0.8865
4] 0.9010 0.9005 0.9010 0.9010 0.9010 0.9010 0.9010
42 0.9215 0.9210 0.9215 0.9215 0.9215 09215 0.9215
43 0.8945 0.8945 0.8945 0.8945 0.8945 0.8945 0.8945
44 0.9070 0.9070 0.9070 0.9070 0.9070 0.9070 0.9070
45 0.9265 0.9265 0.9265 0.9265 0.9265 0.9265 0.9265
46 0.9280 0.9275 0.9280 0.9280 0.9280 0.9280 0.9280
47 0.9220 0.9215 0.9220 .9220 0.9220 0.9220 0.9220
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Table 4.24 (cont’d)

Model AlC BIC HQC RSC MCPC HSPC GCYC
48 0.9270 (.9265 0.9270 ¢.9270 0.9270 0.9270 0.9270
49 0.8453 0.8450 0.8455 0.8455 0.8455 0.8455 0.84355
50 0.8430 0.8425 0.8425 0.8430 0.8430 0.8430 0.8430
51 0.8740 0.8740 0.8740 0.8740 (.8740 0.8740 0.8740
52 0.6355 0.6355 0.6355 0.6355 0.6355 0.6355 0.6355
53 0.6130 0.6130 0.6130 0.6130 0.6130 0.6130 0.6130
54 0.9280 0.9280 0.9280 0.9280 0.9280 0.9280 0.9280
55 0.5155 0.5155 0.5155 0.5155 0.5155 0.5135 (.5155
56 0.4985 0.4985 0.4985 0.4985 0.4985 0.4985 0.4985
57 0.9275 0.9270 0.9275 0.9275 0.9275 0.9275 6.9275
58 0.9160 0.9155 0.9160 0.9160 0.9160 0.9160 0.9160
59 0.8520 0.8515 0.8520 0.8520 0.8520 0.8520 0.8520
60 0.8535 0.8535 0.8535 0.8535 0.8535 0.8535 0.8535
61 0.9125 0.9120 0.5120 0.9125 0.9125 0.9125 0.9125
62 0.6380 0.6375 0.6380 0.6380 0.6380 0.6380 0.6380
63 0.6360 0.6355 £.6360 0.6360 0.6360 0.6360 0.6360
64 0.8920 0.8915 0.8920 0.8920 0.8920 0.8920 0.8920
65 0.7670 0.7670 0.7670 0.7670 0.7670 0.7670 0.7670
66 0.7310 0.7310 0.7310 0.7310 0.7310 0.7310 0.7310
o7 0.7980 0.7975 0.7980 0.7980 0.7980 0.7980 0.7980
68 0.9145 0.9145 N.9145 0.9145 0.9145 0.9145 0.9145
69 0.8830 0.8825 0.8825 0.8830 0.8830 0.2830 0.8830
70 0.8830 0.8830 0.8830 0.8830 0.8830 0.8830 0.8830
T 0.9335 ©.9330 0.9335 0.9335 0.9335 0.9335 9335
72 0.7725 0.7715 0.7720 0.7725 0.7725 0.7725 0.7725
73 0.5M5 0.575 0.5715 0.5745 0.5715 0.5715 0.5715
74 0.2925 0.2925 0.2925 0.2825 0.2925 0.2925 0.2925
75 0.3013 0.3015 0.3045 0.3015 0.3015 03015 0.3015
76 0.9130 0.9130 0.9130 0.9130 0.9130 0.9130 0.9130
77 0.5555 0.5555 0.5555 0.5555 0.5555 0.5555 0.5555
78 0.5680 0.5675 0.5680 0.5680 0.5630 0.5680 0.5680
79 0.7615 0.7615 0.7615 0.7615 0.7615 0.7615 0.7615
80 0.7770 0.7770 0.7770 0.7770 0.7770 07770 0.7770
]| 0.9140 0.9440 0.9140 0.9140 0.9140 0.9140 0.5140
82 0.8960 0.8955 0.8960 0.8960 0.8960 0.8960 0.8960
83 (.8895 0.8890 0.8890 0.8895 0.8895 0.8895 0.8895
24 0.9075 0.9075 0.9075 0.9075 0.9075 0.9075 0.9075
85 0.9005 0.8975 0.8995 0.9005 0.9005 {.9005 0.9005
86 0.8980 0.8965 0.8930 0.8980 0.8980 0.8980 0.8980
87 0.9125 09100 0.9115 0.9130 0.9125 0.9125 09125
88 0.9045 0.5030 0.9045 0.9045 0.9045 0.9045 0.9045
89 0.5245 0.5235 0.5245 0.5250 0.5245 0.5245 0.4525
90 0.5250 0.5230 0.5245 0.5250 0.5250 0.5250 0.5250
91 06740 0.6715 0.6730 0.6740 0.6740 0.6740 0.6740
92 0.6845 0.6815 0.6845 0.6850 ¢.6845 0.6845 0.6845
93 0.8340 0.8295 0.8330 0.8340 0.8340 0.8340 0.8340
94 0.8205 0.8180 0.8600 0.8220 0.8205 0.8205 0.8205
95 0.4935 0.4895 0.4930 0.4940 0.4935 04935 0.4935
96 0.4355 0.4340 0.4155 0.4355 0.4355 0.4355 0.4355
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Table 4.25 Mean Probabilities of Correct .. -lection for AIC, BIC, HQC, RSC,
MCPC, HSPC aud GCVC for Sclecting From 96 Models, ¢ = 1.02 for n=

106.

Model AlC BIC HOC RSC MCPC HSPC GCve
1 0.1965 05750 0.2970 0.2765 0.1972 0.1090 0.1085
2 0.9025 0.8985 0.9020 0.9025 0.9025 0.9025 0.9025
3 0.9075 0.9030 0.9065 0.9085 0.9075 0.9075 0.9075
4 0.9035 0.9025 0.9035 0.9040 0.9035 0.9035 0.9035
5 0.8930 0.8915 0.8920 0.8930 0.8930 0.8925 0.8925
6 0.8995 0.8990 0.8995 0.8995 0.8995 0.8995 0.8995
7 0.8795 0.8795 0.8795 0.8795 0.8795 0.8795 0.8795
8 0.8670 0.8650 0.8665 0.8670 0.8670 0.8670 0.8670
9 0.5685 0.5680 0.5685 0.5685 0.5685 0.5685 0.5685
10 0.5585 0.5580 0.5585 0.5585 0.5585 0.5585 0.5585
1 0.8960 0.8955 0.8960 0.8960 0.8960 0.8960 0.8960
12 0.9160 0.9135 0.9155 0.9160 0.9166 0.9160 0.9160
13 0.8765 0.8763 0.8765 0.8765 0.8765 0.8765 0.8765
14 0.8785 0.8775 0.8785 0.8785 0.8785 0.8785 0.8785
15 0.9100 0.9095 0.9100 0.5100 0.9100 0.9100 0.9100
16 0.8585 0.8585 0.8585 0.8585 0.8585 0.8585 0.8585
17 0.7695 0.7685 0.7695 0.7695 0.7695 0.7695 0.7695
18 0.7740 0.7740 0.7740 0.7740 0.7740 0.7740 0.7740
19 0.7180 0.7175 0.7175 0.7180 0.7189 0.7180 0.7180
20 0.7105 0.7100 0.7105 0.7105 0.7105 0.7105 0.7105
21 0.9145 0.9135 0.9145 0.9145 0.9145 0.9145 09145
2 0.9240 0.9235 0.9240 0.9245 0.9240 0.9240 0.9240
23 0.9300 0.9295 0.9300 0.9300 0.93(0 0.9300 0.9300
24 0.9230 0.9230 0.9230 0.9230 0.9230 0.9230 0.9230
25 0.8915 0.8915 0.8915 0.8915 0.8915 0.8915 0.8915
26 0.8415 0.8415 0.8415 0.8415 0.8415 0.8415 0.8415
27 0.8445 0.8445 0.8445 0.8445 0.8445 0.8445 0.8445
28 0.8860 0.8860 0.8860 0.8860 0.8860 0.8860 0.8860
29 0.8975 0.8975 0.8975 0.8975 0.8975 0.8975 0.8975
30 0.9105 0.9100 0.9105 0.9105 0.9105 0.9105 0.9105
31 0.8905 0.8900 0.8900 0.8905 0.8905 0.8900 0.8900
32 0.5385 0.5375 0.5380 0.5385 0.5385 0.5380 0.5380
13 0.5355 0.5350 0.5355 0.5355 0.5355 0.5355 0.5355
34 0.8790 0.8785 0.8790 0.8790 0.8790 0.8790 0.8790
35 0.8375 0.8370 0.8375 0.8375 0.8375 0.8375 0.8375
36 0.7705 0.7705 0.7705 0.7705 0.7705 0.7705 0.7705
37 0.7685 0.7685 0.7685 0.7685 0.7685 0.7685 0.7685
38 0.8670 0.7670 0.7670 0.7670 0.7670 0.7670 0.7670
39 0.9075 0.9075 0.9075 0.9075 0.9075 0.9075 0.9075
40 0.88%0 0.8880 0.8880 0.8890 0.8890 0.8890 0.8850
4 0.9025 0.9020 0.9020 0.9025 0.9025 0.9025 0.5025
42 0.9230 0.9230 0.9230 0.9230 0.9230 0.9230 09230
43 0.8995 0.8985 0.8985 0.8995 0.8995 0.8995 0.8995
44 09115 0.9110 09115 0.9115 0.9115 09115 09115
45 0.9265 0.9260 0.9265 0.9265 0.9265 0.9265 0.9265
46 0.9290 0.9285 0.9285 0.9290 0.9290 0.9290 0.9290
47 0.9215 0.9205 0.9205 0.9205 0.9215 0.9210 0.9210
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Table 4.25 (cont’d)

Model AIC BIC HQC RSC MCPC HSPC GCVC
438 0.9353 0.9250 0.9355 0.9255 0.9255 0.9255 0.9253
49 0.8465 0.8465 0.8465 0.8465 0.8465 0.8465 0.8465
50 0.8435 0.8435 0.8435 0.8435 0.8435 0.8435 0.8435
51 0.8720 0.8720 0.8720 0.8720 0.8720 0.8720 0.8720
52 0.6325 0.6325 0.6325 0.6325 0.6325 0.6325 0.6325
53 0.6174 0.6140 0.6140 0.6140 0.6140 0.6140 0.6140
54 0.9275 0.9275 0.9275 0.9275 0.9275 0.9275 0.9275
55 0.5230 0.5225 0.5230 0.5230 0.5230 0.5230 0.5230
56 0.5020 0.5020 0.5020 0.5020 0.5020 0.5020 0.5020
57 0.9280 0.9275 0.9280 0.9280 0.9280 0.9280 0.9080
58 0.9165 0.9150 0.9165 0.9165 0.9165 0.9165 0.9165
59 0.8525 0.8525 0.8525 0.8525 0.8525 0.8525 0.8525
60 0.8510 0.8510 0.8510 0.8510 0.8510 0.8510 0.8510
61 0.9085 0.9075 0.9085 0.9085 0.9085 0.9085 0.5085
62 0.6415 0.6415 0.64i5 0.6415 0.6415 0.6415 0.6415
63 0.6380 0.6375 0.6380 0.6380 0.6380 0.6380 0.6380
64 0.8930 0.8920 0.8925 0.8930 0.8930 0.8930 0.8930
65 0.7700 0.7700 0.7700 0.7700 0.7700 0.7700 0.7700
66 0.7290 0.7290 0.7290 0.7290 0.7290 0.7290 0.7290
67 0.7985 0.7985 0.7985 0.7985 0.7985 0.7985 0.7985 __
68 0.9175 0.9175 0.9175 0.9175 0.9175 0.9175 09175 '
69 0.8820 0.8820 0.8820 0.8820 0.8820 0.8820 0.8820 g
70 0.8840 0.8835 0.8840 0.8840 0.8840 0.8840 0.8840 ;
7 0.9365 0.9355 0.9365 0.9365 0.9365 0.9365 0.9365
7 0.7720 0.7710 0.7720 0.7720 0.7720 0.7720 0.7720
73 0.5675 0.5670 0.5675 0.5675 0.5675 0.5675 0.5675
74 0.2920 0.2920 0.2920 0.2920 0.2920 0.2920 0.2920
75 0.2910 0.2910 0.2910 0.2910 0.2910 0.2910 0.2910
76 0.9130 0.9130 0.9130 0.9130 0.9130 0.9130 0.9130
77 0.5545 0.5545 0.5545 0.5545 0.5545 0.5545 0.5545 ;
78 0.5675 0.5675 0.5675 0.5675 0.5675 0.5675 0.5675 3
79 0.7570 0.7565 0.7570 0.7570 0.7570 0.7570 0.7570 '
80 0.7780 0.7775 0.7775 0.7780 0.7730 0.7780 0.7780 :
81 0.9130 0.9120 0.9125 0.9135 0.9130 0.9130 0.9130 3
82 0.8955 0.8950 0.8955 0.8955 0.8955 0.8955 0.8955 ?;
83 0.8900 0.8890 0.8895 0.8900 0.8900 0.8900 0.8900 ]
24 0.9095 0.9090 0.9095 0.9085 0.9095 0.9095 0.9095 -
85 0.8945 0.8930 0.8945 0.8945 0.8945 0.8945 0.8945 3
86 0.8990 0.8970 0.8975 0.8990 0.8990 0.8985 0.8985 j
87 0.9115 0.9095 0.9100 0.9125 0.9115 0.9115 0.9115 j
88 0.9020 0.8990 0.9015 0.9020 0.9020 n.9015 0.9015 :
89 0.5320 0.5305 0.5310 0.5320 0.5320 0.5320 0.5320
90 05245 0.5230 0.5240 0.5250 0.5245 0.5245 0.5245
91 0.6715 0.6695 0.6715 0.6720 0.6715 0.6715 0.6715 ~:
92 0.6875 0.6850 0.6860 0.6875 0.6875 0.6875 0.6875
93 0.8335 0.8305 0.8330 0.8340 0.8335 0.8335 0.8335
94 0.8165 0.8140 0.8155 0.8170 0.8165 0.8165 0.8165 ;
95 0.4950 0.4900 0.4930 0.4950 0.4950 0.4950 0.4950
96 0.4305 0.4290 0.4305 0.4305 0.4305 0.4305 0.4305
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Table 4.26 Average Mean Probabilities of Correct Selection for AIC, BIC,
HQC, RSC, MCPC, HSPC and GCVC for Diffecrent ¢ when 17=100.

b AlIC BIC HQC RSC MCPC HSPC GCVC
0 With and without structural change
Average 0.7914  0.7946 0.7922  0.7895  0.7904  0.7905  0.7903
Rank 3 1 2 7 5 4 6
Stdev 0.1694  0.1550  0.1617  0.1733  0.1692  0.1687  0.1686
With structural change
Average 0.7988  0.7969 0.7974  0.7977 0.7977 0.7976  0.7974
Rank | 7 S 2 3 5 6
Stdev 0.1543  0.1542  0.1542  0.i542  0.1542  0.1542  0.1540
Without structural change
Average 0.0965  0.5750 02970 0.0065 0.0970  0.1090  0.1085
Rank 6 1 2 7 5 3 4
0.70 With and without structural change
Average 0.7909  0.7953  0.7960  0.7900 07909  0.7911  0.7911
Rank 6 2 1 7 5 3 4
Stdev 0.1697  0.1555  0.1618 01739 01697  0.1691  0.1692
With structural change
Average 07982 07976 08012 0.7983  0.7982  0.7982  0.7982
Rank ! 7 5 2 3 5 6
Stdev 0.1547  0.1547  0.1543  0.1547 01547  0.1547  0.1547
Without structural change
Average 00965 0.5790 0.3000 0.0040 0.0980  O.1115  0.1100
Rank 6 1 2 7 5 3 4
1.0 With and without structural change
Average 0.7902  0.7944  0.7921 0.7898 0.7902 07903  0.789%6
Rank 5 1 2 6 4 3 7
Stdev  0.1713  0.1559  0.1652 0.1735 01713  0.1708  0.1723
With structural change
Average 07981 0.7974  0.7984  0.7981 0.7981  0.7981  0.7973
Rank 1 7 5 2 3 5 6
Stdev 0.1540 01540  ©.1541  0.1540  0.1540  0.1540  0.1555
Without structural change
Average 0.0470 05135 0.1965  0.0005  0.047 0.0575  0.0550
Rank 6 1 2 7 5 3 4
1.02 With and without structural change
Average 0.7906 07953  0.7944  0.7901 0.7906 0.7908  0.7908
Rank 6 1 2 7 5 3 4
Stdev 0.1715 0.1558  0.1633  0.1741  0.1714  0.1707  0.1709
With structural change
Average 0.7983  0.7979  0.8002  .7984  0.7984  0.7983  0.7983
Rank 1 7 5 2 3 5 6
Stdev 0.1547  0.1544  0.1539  0.1547 0.1547  0.1547  0.1547
Without structural change
Average 0.0575  0.5450 02415 0.0000 0.0580  0.0740 0.071C
Rank 6 1 2 7 5 3 4

Cin bt mm



CHAPTERSS

An Optimal Method for Finding
Penalties for the Problem of
Detecting Structural Change'

5.1 Introduction

In Chapter 4, we investigated the use of several IC model selection
procedures for detecting simple structural change in the linear regression model. QOur
simulation results showed that BIC outperformed all existing IC procedures
considered when there was no structural change but was the worst performer in the
presence of structural change, and RSC performed best overall when a changepoint
was present. When there is no structural change, the performance of AIC is
generally the worst of all procedures. The results also revealed that none of the IC
procedures considered stand out as a clear best method for this model selection
problem.

As is well known, the penalty function suggested for different IC procedures

depends very much on the number of parameters ( k) of the model and generally also

! Some of the preliminary findings of this chapter were presented at the Australasian Meeting of the
Econometric Society, Australian National University, Canberra. See Azam and King (1998).
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on the sample size (n) of the data. An obvious question then is can we use
simulation methods to find the optimal penaities for model selection of possible
structural change in a linear regression model? In Chapter 4, we used the AMPCS
criteria to assess the quality of different IC procedures. Clearly, we could use this to
determine an optimal penalty function. By an optimal penalty function, we mean one
that maximizes the average mean probability of correctly selecting the true model. It
can then offer an appropriate solution to a wide class of selection problems for
structural change models. In particular, this penalty function would balance
penalizing additional parameters while being sensitive to give a small enough penaity
to select bigger models when they are true. The optimal penalties have a special
property in that they are constructed in such a way that no one model is favoured
unknowingly. Kwek (1999), King and Bose (2000), and Billah and King (2000a)
have employed this approach with some success in the cases of selecting between
ARCH, linear regression and time series models respectively. Unfortunately, none
of these studies involved choosing between a larger number of different models, such

as 96 models in the previous chapter when n=100.

Existing 1C procedures penalise changepoint models equally although the
changepoint models vary from one to another by the position of the changepoint in
time. This is a weakness of these procedures. It may be that different changepoint
models should be penalised differently because changes in some cases are easier to
detect. With this view in mind, our aim is to develop an algorithm that would
compute optimal penalties for different models involving s-tmctural change. We
investigate the use of grid search, polynomial of degree four combined with grid
search, and simulated annealing optimization algorithms that will estimate optimal
penalties for different models in such a way that the AMPCS is maximized. The

latter is a difficult maximization problem that can be very time consuming to solve.
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We performed a small Monte Carlo experiment to calculate the penalties for different
models using these algorithms. We look for the algorithm that gives the optimal
penalties in a sense that these penalties will provide maximum AMPCS with
minimum computational cost and effort.

An outline of this chapter is as follows. In Section 5.2, we discuss the
issues in finding optimal penalties. Section 5.3 describes the algorithm for { nding
optimal penalties for different models that includes the grid search method,
polynomial of degree four based on grid search and simulated annealing. Section 5.4
gives a working version of eaci: of the algorithms and evaluates them by discussing
their advantages and disadvantages. Section 5.5 gives the details of the simulation
experiments. The results of these experiments are reported in Section 5.6 and the

final section contains some concluding remarks.

5.2 Derivation of the Procedure for Finding Optimal
Penalties

In the literature on 1C based model selection procedures, there is
disagreement about the proper form of the penalty function. This is because, from
the definition of IC, obviously, one can easily suggest a new criterion by slightly
changing the value of the penalty function. For this reason, researchers introduced
various IC based procedures for different types of models. As a result, there has
been a huge growth in the literature that may make the users confused as to which IC
procedure to use for a particular problem in hand. Further, the small sample
performance of these new IC procedures may not be satistactory, Therefore, an IC
based procedure that would perform well for any kind of model selection problem is

of interest,
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As explained in Chapter 4, the AMPCS is calculated by averaging the mean
of the probabilities of correct selection (MPCS) for all models in the plausible group.
All of these applications produced, on average, a high probability of selecting the
true model and can be used to find penalties in such a way that the probabilities of
correctly choosing the right model at each of these points are the same. In other
words, optimal penalties are constructed in such a way that no one model is being
favoured unknowingly. In our proposed procedure, we use this philosophy with a
modification that will result in the optimal penalties that maximize the AMPCS for
the set of models under consideration. This allows us to find a data driven penalty
that depends on the nature of the data and the sampie size. This approach can also be
used for other model selection problems with a large number of alternative models.
For the sample size and plausible models under consideration, this model selection
approach will maximize the AMPCS through the estimation of penalty values
numerically. The AMPCS is a step function, and hence, it may not be easy to
maximize it using standard methods.

Our interest is in finding a suitable algorithm for estimating appropriate
optimal penalties that will save computing time and at the same time, giving
penalties, which outperform all existing IC model selection procedures when looking
for changepoints of unknown timing. Our approach involves an optimization
principle with a simple probabilistic algerithm, i.e., finding penalties that maximize

the AMPCS discussed in Chapter 4.
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5.3 Optimization Methods for Optimal Penalties

Analytically we are not able to outline how to find optimal penalties
Dys - - - » P, for changepoint models. In this section, we outline how to use the
computer to maximize AMPCS so that optimal penalties are obtained. Note that
because the IC procedure involves looking at differences in penalties, one of these
penaities can be fixed. We set p, =0 without loss of generality. The derivative
methods of the optimization, such as the Newton-Raphson type procedure, are not
entirely satisfactory for finding global maxima because they might sometimes end up
with local maxima, so other methods need to be used. We use the derivative-free
grid search, polynomial equation based on grid search and simulated annealing
methods for finding optimal penalties, and these are discussed in the following

subsections.

5.3.1 Complete Grid Search Algorithm (CGSA)

This section discusses the development of the CGSA for finding optimal
penalties. We can maximize AMPCS with respect to the penalties by a trial and
error method. The disadvantage is that it takes a long time to find the global
optimum and might end up giving a local optimum instead of the global maximum.
A CGSA can be used to find the global optimization point. It evaluates the function
at grid points thar vover the entire range of possible penalty values. The CGSA
inspects the results and repeats the process with a finer grid over a selected zone,
which is centred at the penalty values for the largest calculated value of AMPCS. In

this section, we outline and discuss the grid search algorithm.

L LT A
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We set p, =0 as mentioned earlier so that the AMPCS is maximized with
respect to the remaining penalties, i.e,, p,, ..., p,. Thus, the optimal penalties are

found when the AMPCS is at its global maximum. In order to understand more

closely what is involved in the grid search algorithm, we consider a set of penalty

values (i.e., p;, Jj=2,--,m). Let I, and u; be preselected lower and upper limits
(/; and u; could be the same or different for different values of ;) for the penalties.
Beginning from the lower value /;, a sequence of penalties is generated such that the
difference between any two successive elements of the sequence is equal 10 £, where
£ is a small number.

We evaluate the AMPCS at grid points that covers the entire area or a likely
area, inspect the result, and repeat the process over a selected zone with a finer grid.

For each set of penalties, the AMPCS is calculated and then recorded. We then

check for which penalty set the AMPCS is a maximum. Let p; be the selected
penalty set. We then generate a new sequence p,—¢ to p,+& and for each j

where & is a new value other than £ and such that ¢ <¢&. Using the same
procedure discussed earlier, we select the maximum AMPCS. We change &’ to £

such that £" <¢  and repeat the above process. We continue the grid search
procedure until changing the £ values does not change the maximum AMPCS with
in a prescribed level of tolerance. Ultimately the search converges to the global
maximum giving optimal penalties. The algorithm we applied in the experiments

described below is as follows:

Step 1. Set p, =0. Set upper and lower limits of the grid points for the penalty of
each model. The spacing and number of grid points depend on the choice of

the researcher. For computational convenience, we recommend equal
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spacing. The larger the number of grid points for each penalty, the more

computational time needed. If the number of grid points for each penalty is

m-|

¢ penalty combinations and therefore

n, then frr = models, we need n

n"! evaluations of AMPCS.

Step 2. Calculate maximised log-likelihoods for different models assuming each of
the models is true in turn. These maximized log-likelihoods are stored.
Subtract each set of penalties considered in step 1 from these maximised
log-likelihoods for different models. The one that is the maximum is our
chosen model. Perform this process for R replications, calculating Rm sets
of penalised maximised log-likelihoods for each model as the true model in
turn and count how many times the true model gives the largest value.
Calculate MPCS by dividing these counts by R. This is done with each
model being the true model in turn.

Step 3. For each set of penalties, calculate AMPCS using (4.10) and check for
which penalty set the AMPCS is a maximum. The penalty values
corresponding to the highest calculated value of AMPCS is recorded, then a
new, but much finer, grid of penalty values is calculated and the process is
repeated. The whole process is repeated several times. The CGSA ends by
comparing the last maximum AMPCS with the most recent maximum
AMPCS. Check the difference; if the difference is relatively small, stop the
algorithm.

Step 4. From step 3, check for which penalty set the AMPCS is a maximum. This is

the required optimal penalty set.




Chapter 5 Optimal Method for Penalty 151

5.3.1.1 Block Grid Search Algorithm (BGSA)

The CGSA takes a huge amount of computational time even with a high-
speed computer. If the number of grid points per penalty is small then the total
number of penalty sets will be small and the cost of computation will be less.
Literally, 2 grid points per penalty set is the minimum required points to start with a
grid search, but in practice more grid points per penaity set will help to locate the
global maximum. The disrdvantage of taking more grid points per penalty is a
relatively high computational cost. A naturally arising question is how to choose the
minimum number of grid points per penalty that will provide minimum

computational cost with little sacrifice of AMPCS.

If we have m—1 penalties with »n, grid points for each penalty set and if m

m-1

and n, are large, therefore we have n,

penalty combinations that will give a huge
number of computations and take an enormous amount of computational time.
However, we might not need all n;f’“’ penalty combinations. In this section, we
discuss a modification to the CGSA and develop BGSA that gives almost the same

solution as CGSA but has a significant improvement in speed of computational time

over CGSA. In this algorithm, we use five grid points and five model groups giving

5° penalty combinations. The algorithm involves the following steps:
Step 1. Without any loss of generality, we set p, =0.

Step 2. Divide the rest of the models into 5 groups such that each group consists of
(n—4)/5 models. Figures 5.1 to 5.8 shows plot of estimated optimal

penalties for n=15 and 25 for different values of ¢ by CGSA. These plots

give us an indication that penalties for different models follow more or less
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a symmetric pattern at the beginning and end period of the data duration,

therefore we set penalties for different models as illustrated below:
Forn=15,or m=12:
=0, p, =ppy; Py = Pys

Pa= P> Ps = Py Ps =P =D
For n=25,or m=22:

p =0 Pr =D =Dy =P
P = DPs = g = Pyps Pe =P = P13 = P
Ps = Do = Dis = Pigs Po=DPhn=Pu=Pi3=Pa-

For n=50,0r m=47:
=0
Pr=Dh =Py =P =0y = Py = Pyy = Pis = Pag = Pars
Pr=Ds =Py = Pro= Py =DPig = Py = Py = Py = Par>
Pu=P3 =P T Pis=DPe =Py = Pu ™ Py = Py = Pas
Pv =Py = Do = Py =Py = Py = Py = Py = Py = Pags
P = Py = Py = Pys = Dy = Py
For n=75,or m=72:
n=0
D=0y =P =Ps TP = Pr =P = Pes = Por = Peg = Pes
= Pw = DPn = Pn>
Po=Pu=Pnu=Pu=Pi3=Puu~=Pis=Psw = P = Po1 = Pe2
= Pg3 = Pss = Pess
P =P P =D TP = Pu=DPn = P = Px = Psg = Pss
= Ps¢ = D57 = Psgs
P23 = P T Pas ¥ Py = P2y = Prg = Pao = Pys = Pae = P = Py
= Pag = Psp = Psy5
P =Py =Py =P =Py =D = Dy = P =P = Dy = Py
= P4i T Py = Pa3 = Puss

PN PR
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For n=100,0r m=97:
n=0
P =P S =0 =D =0 =P = Po= P~ P = Py
= Pov = Pa1 = Poy = Po3 = Poy = Pos = Pos = Pors
Pu=Pu=Pu = Pis =P =Py =D = Do =P = Py = Prs = Pag
= Pgo = Pyt = Pay = Py = Pgs ™ Pes = Prs = Pars
P = Pn = Py =P =Py = Pay = Pyg = Pro = Pao = P31 = Pes = Pes
=Dy =P =DPn=Pn=Pi = Pis = Pi=Pns
Pu=Pu=Pu=DPs=DPx=Pn=Py=Pw9w=Pup=Pn~Ps = Ps
= Pev = Po1 = P2 = Pox = Pos = Pes = Poc = Pors
P12 = P33 = Pag = Pys = Pss = Pay T Pag = Pag = Pso = P51 = Psa = Ps3
= Psa = Pss = Psg = Psz-

Step 3. Calculate maximised log-likelihoods for different models assuming each of

the models is true in turn, These maximized log-likelihoods are stored.
Subtract each set of penalties considered in step 2 from these maximised
log-likelihoods for different models. These penalized maximized log-
likelihoods are compared. The one that is the maximum indicates our
chosen model. Perform this process for R replications, calculate Rm sets
of penalised maximised log-likelihoods for each model as the true model in
turn and count how many times the true model gives the largest value.
Calculate MPCS by dividing these counts by R. This is done with each

model being the true model in turn,

Step 4. For each set of penalties, calculate the AMPCS and check for which penalty

set the AMPCS is a maximum. The penalty values corresponding to the
highest caiculated value of AMPCS is recorded, then a new, but much finer,
grid of penalty values is calculated and the process is repeated. The whole

process is repeated several times. The BGSA ends by comparing the last
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maximum AMPCS with the most recent maximum AMPCS. Check the

difference; if the difference is relatively small, stop the algorithm.

5.3.1.2 Polynomial of Degree Four Algorithm (PDFA)

We have many different models, because for each timing of the possible
changepoint we have one model. The optimal penalty for neighbouring models
might be more or less the same. As the timing of the changepoint moves through the
sample, we might except the optimal penalty to change in a smooth manner, which
might be well approximated by a polynomial of some degree, which is not known.
Based on this idea, consider a polynomial of degree four to estimate optimal
penalties, known as PDFA.

PDFA is similar to that of BGSA, but assumes penalties for different models
follow a polynomial function because we are assuming optimal penalties change
slowly as the timing of changepoints change. A polynomial allows gradual but also
substantial change if required. We ask the data to speak in the sense of finding the
best penalties constrained by a polynomial of degree four. The algorithm used for
this purpose in now given.

Step 1. Without any loss of generality, we set p, = 0.
Step 2. We consider the following penalty function
Py =y +a, () +a, () +a, (i) +a, ()’ (5.1)
where i=1,2,...,m-1, denotes the timing of the changepoint we

considered for different changepoint models. Our aim is to find a4, q,, a,,

a,, a, sothat p,,, from (5.1) maximize AMPCS.

Step 3. Choose initial values of p,’s from AIC penalties (or from any other IC

penalties). Solve the polynomial (5.1) for the g,’s with the initial values of
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]

p,’s. Because the number of equations is more than the number of
unknown coefficients, we only consider five equations and solve for the five

unknown coefficients, a;. We used penalties for the equations

t

3m
" 4

aerd

n

i=0,‘—,
4

as the timing of the changepoints and then solved for g, 1

[N

i=0,...4.

Step 4. Perform a grid search on the estimated &, ’'s found in step 3. Consider a set
of different values for g, namely g, =a,,a,,-,a,, =a, for each model so
that a range of g, values from lower limit a, 1o upper limit is g, are

considered. Changes of the grid and the grid search are done using same

procedure discussed in Section 5.3.1. If we consider 5 grid points for 5 sets

of a,’s, then we have 5° sets of @, values. Substitute each set of g, values
in equation (5.1) and calculate different sets of penalties for different ;
models.

Step 5. Calculate maximised log-likelihoods for the different models assuming each
of the models is true. Subfract each set of penalties from these maximised #
log-likelihoods for different models and choose that model which gives the
largest penalised maximised log-likelihood. Perform this process using R
replications, and count how many times the true model gives the largest
value. Calculate MPCS by dividing these counts by R. This is done for
each model as the true model in tun and for each set of a4, values (which
determine the p, values) in the grid. Average the m MPCS values to obtain

the AMPCS for all models. Check for that set of 4, which gives the

maximum AMPCS. The &, set estimated here are the required polynomial

coefficients for use in (5.1) to calculate the required penalties.
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5.3.2 Simulated Annealing A gorithm

In previous sections, we introduced CGSA, BGSA, and PDFA to estimate
optimal penalties for different models that give maximum AMPCS. We have noted
that the CGSA requires a huge amount of computational time. The other two
algorithms save computational time by imposing some restrictions on the penalties.
We now focus our attention on reducing the computational time for finding optimal
penalties using stochastic optimization techniques. Simulated annealing algorithms
(SAAs) have recently gained a great deal of the attention in the optimization
literature. A discussion of the SAA was given in Chapter 2 and we investigate the
use of this class of algorithms to estimate optimal penalties in this chapter.

SAA's major advantage over other methods is tts ability to avoid becoming
trapped at local optima. The algorithm employs a random search, which not only
accepts changes that increase the objective function, but also some changes that
decrease it. As its name implies, simulated annealing exploits an analogy between
the way that a metal cools and freezes into 2 minimum energy crystalline structure

(the annealing process) and the search for an optimum of a general function.

5.3.2.1 KEstimation of Penalties by Simulated
Annealing

We are looking for the penalties that maximize AMPCS. The algorithm can
then be formulated as follows. Let p be the vector of penalties, with
p={(p,,+,p,) andlet f(p) represent penaities which need to be optimized. Let
the initial penalty set be p,. The algorithm moves both up and downhill as the

optimization process is carried out and looks for the area where the optimum is. It

randomly selects a penalty from the neighbourhood of the current penalty and then

bl T e et L o b e e Ay
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calculates the corresponding change in f{p). Let . <p, <u,,i=2, ..., m, where
the values of /. and u, are lower and upper bounds of the penalty values chosen by
the researcher.

At the beginning, using the initial p,, the algorithm randomly chooses a
new point p' within the step length determined by V,_,, a step length vector of order
m—1 selected by the researcher, in the neighbourhood of p,. The function is
evaluated at this new point and its value is compared to that of the initial point p_. If
the change in f(p) is positive, the transition is unconditionally accepted; if the
f(p) decreases, the transition is accepted with a probability based upon the

distribution

Pr= exp(— é%Elj (5.2)

where } is a constant selected by the user, the temperature 7' is a control parameter
and 4f(p) is the change in f(p).

Each element of the step length vector V, _, is adjusted periodically so that
about half of all points are accepted. The standard implementation of the algorithm
requires the specification of a cooling schedule. The initial temperature should be
high enough to ensure that there is little chance of the algorithm moving very quickly
towards a local maximum in the early stages. A fall in temperature is imposed upon
the system with a temperature reduction factor r, ranging from 0 to 1. Finally, a

stopping criterion is imposed to terminate the algorithm.
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5.3.3 Different Factors of the SAA

The basic principle of estimation of penalties using simulated annealing was
discussed in subsection 5.3.2.1. The algorithm randomly chooses a new penalty and
calculates AMPCS, which is compared with the previous estimated value. Out of
these two penalty sets, we check which gives the maximum AMPCS. The choice of
penalties depends on a few factors; a detailed description of how to implement the

algorithm for optimum penalty estimation is given below:

5.3.3.1 Initial Temperature

Initial temperature is an tmportant factor for running the SAA. Kirkpatrick
et al. (1983) suggested that a suitable initial temperature should be chosen so that
about 80% of all positive transitions (i.e., transitions that increase the AMPCS) are

accepted.

5.3.3.2 Temperature Reduction Factor (7;)

The temperature is decreased by multiplication by a constant factor. There
is actually a trade-off between temperature reduction between stages and the number
of iterations per stage. The most common temperature reduction rule is r,. +1 = ary,
where a is a constant close to, but smaller than, 1. Kirkpatrick et al. (1982) used it

with @ =095. The suggested value for temperature reduction by Corana et al.

(1987) is 0.85.
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5.3.3.3 Boundaries for Penalties

Let the lower bound for the allowable penalties be /; and the upper bound

for the penalties be »,, Unless the user wishes to concentrate the search to a

particular region, /. and », should be set to cover a very large range.

5.3.3.4 Number of Cycles (1,)

n, is the number of cycles used before adjusting the step length vector.
When the SAA starts its operation, it evaluates n, cycles of m—1 functions and then

each element of the step length vector (v,) is adjusted in such a way that

approximately half of all functions evaluated are accepted.

5.3.3.5 Number of Iterations before Temperature
Reduction (72,)

Frequently used criteria for n, are a constant number of iterations, or
iterating until a constant number of transitions is accepted. Experiments show that
better results are achieved by considering the physical background of simulated
annealing and the concept of thermal quasi-equilibrium. This means kesping the
iemperature constant until the AMPCS has reached a constant value. After

ny x n. x (m—1) function evaluations, temperature (7') is changed by the factor ;.

The value »; suggested by Corana et al. (1987) is max(:00, 5n).
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5.3.3.6 Termination Criterion (7,)

Since the emphasis of our research is on the quality of the estimated
penalties, we have developed a workable stopping criterion. It is clear that when the

optimal values of the AMPCS for successive stages are constant themselves, the

iterative process can be stopped. Let f; be the most recent function. For every T,

if

1y~ fr| <6 (5.3)

stop the search where & is very small.

5.4 Working Version of Different Algorithms

In the previous sections, we discussed theoretical aspects of different
algorithms and the steps involved in using them. The algorithms we discussed are
different in nature although some are developed on the basis of almost the same
principles with a slight modification and/or alternation. For example, the CGSA,
BGSA and PDFA are based on grid search but the SAA is completely different. In
the following subsection we discuss and evaluate the working performance of these
algorithms. We use the same experimental design as reported in Chapter 4 for this

purpose.

5.4.1 CGSA

We performed a pilot experiment to evaluate the performance of the CGSA
in the sense of investigating how long it takes to find optimal penalties. The number
of models and number of grid points for each penalty set are two main ingredients of

the CGSA. If the number of these ingredients increases, the computational cost of

the CGSA increases.

P
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Table 5.1 shows the CPU time required per penalty for different models,
total number of penalty sets searched, total time required for different models with
different grid points for each group. Note that the experimental design is the same as
the experimental design used in Chapter 4 in the case of random walk regressors
(¢=10). All computer programs were written in GAUSS (see Aptech, 1997,
version 3.2.17) and computations were carried out on a Pentium 1 with a 933 Mhz
CPU. 1t is clear from the table that if the number of grid points for each group and
the number of models increases, then the computational time increases in such a way
that it will be impossible to complete the task. Therefore, in practice, it is almost
impossible to apply the CGSA even using a very high-powered computer.

In addition, the disadvantage of the CGSA is that it works well for a small
number of models and a small number of grid points but is more difficult to apply as
the number of models and grid points grows. In our case, we have a large number of
penalties to be estimated. We need a method that will work well for a large number

of models and grid points.

5.4.2 BGSA

We estimated the total time required for calculating optimal penalties for
different models using five grid points for each penalty. Table 5.2 shows the
estimated total time (in hours) required for different modeis by the BGSA with 5 grid
points for each group comprised of 5° = 3125 penalty sets. We found that for 12
models, the computation time required by the BGSA is only 0.5843 hours whereas
the CGSA takes more than a year to complete the task. We also checked the loss of
AMPCS when the BGSA is used over the CGSA. Table 5.3 gives the comparison
between the computational time for the CGSA and the BGSA, loss of AMPCS and
time saved for using the BGSA over the CGSA. From the table, it is clear that the
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BGSA saves a lot of computational time for a small sacrifice of AMPCS. The
disadvantage of this algorithm is that it considers all penalty points as five groups

instead of considering each point separately.

5.4.3 PDFA

We first estimated coefficients of the polynomial using (5.1) and then used

the CGSA on these coefficients. After performing a fine search for the coefficients
of the polynomial, the estimated formulae for penalties for different values of ¢ and

n are given below:

Pinoys = —00042(7)" + 0117(;)* — 11403()* + 4.4185() — 321
Piargas = —0.0001(7)* + 0.0052(7)° - 0.1089(i)° + 0.9666(/) -—1.0324
Diniose = =0.000003(7)* + 0.0004(7)° —0.0148(7)* + 02308(i)+ 01198
Piaioas = ~0.0000000006(i)* +0.000008()* - 0.0008(i)* +0.0263() +0.9395
Proroass = —0.0000002()* +0.00003(7)’ ~ 0.0015(7)* +0.0113(/) + 3.1645
Piatonss = —00007(7)" +0.0297¢i)° - 0.4363(i)° +2.3942(i) — 1.7925
Pivianas = —0.0001()" +0.0062()* - 0.1267(F)* +1.0389(/) ~1.1535
Piurorso =—0.00002(7)* +0.0002()* - 0.0072(i)* + 0.1344(i)+ 0.4278
Pisioss = —0.0000004(7)" +0.00006(i)° —0.0028(/)* + 0.0508(i)+ 2.8948
Pistosaoe = —0.0000004(7)* +0.00007(/)° —0.0038(/)* + 0.0524(i) +2.0675
Piariors = ~00028()* +0.0773()* ~ 0 .7771()* +3.3041(i) - 2.4422
Pinsoas = —0.000008(7)* +0.0004(/)* - 0.0102(¢5)* +0.136(;) +0.0102

Piniroso = —0.000002(7)* +0.0002(:)° ~ 0.0101(7)* +0.2289(i) + 0.3095
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Dierro7s = —0.0000004(7)* +0.00007(i)* ~ 0.0038(i)* +0.0846(i) +0.6394
Piotiogeo = —0:0000003())" +0.00005()* —0.0026(i)° +0.0433(i) +1.0529
Prevroans = ~0.0026(1)* +0.0743(1)* ~0.7473(i)’ +3.0459(/) -2.228
Divtronas = =0.00009(7)" +0.0052(7)* - 0.1080(i)* +0.9359() —0.9503
Diniiarso = —0:000003(#)* +0.0003(i)’ - 0.0131(i)* +0.2598(/) +0.3158
DPiar 1025 = —0.0000008(/)* +0.0001()° — 0.0063(:)* +0.1956(¢) +1.2134

Provsonson = —0.0000002()* +0.000025(/)° ~ 0.0025(F)* — 0.0348(i) +1.9843.

Here the first suffix indicates i =1,---,m~—1, the second suffix indicates the
values of ¢ and the third suffix indicates the sample size n. These polynomials can

be used to find penalties for different changepoint models for different sample sizes

and types of autoregressive regressors.

S.4.4 SAA

We peitormed a pilot experiment to find the effect of the choice of starting
points of penalties on estimating optimal penalties. We used diffezent IC penalties
such as AIC, BIC, HQC, RSC, MCPC, HSPC and GCVC as initial penaity values for
the SAA to optimize AMPCS for different sample sizes. We found that the choice of
different starting penalties does not affect the maximum AMPCS. In our case, we
used AIC penalties as starting values of the penalties. Considering estimated
AMPCS and total computational time, we used values of different factors as follows:

Initial temperature 7, = 5.

Temperature reduction factor r, = 0.65.

Lower boundary for penalties /; = 0 and the upper boundary », =3.

Number of cycles n_=15.
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Number of iterations before temperature reduction », = 10.

Termination criterion »,= 4.

5.5 Computer Simulation

The performance of the various IC methods and the capabilities of the
CGSA, BGSA, PODFA and SAA, were examined via extensive computer
simulations to evaluate the performance of our methods discussed in the previous
section. Our aim was to estimate the optimal penalties for each of the models as the
true DGP. For our proposed procedure, we empirically estimated penalties for
different models and compared the results of our methods with those of existing

methods. In order to do this, we used the same simulation design as in Chapter 4.

5.6 Results of Simulation

We compared the gain of our procedures over existing IC procedures
considered in Chapter 4. In other words, we evaluated the performance according to
the criterion ‘what percent of times one approach outperforms other approaches’ by
considering the magnitude of gain or losses of the use of different algorithms. The
comparisons are based on AMPCS for different ¢ or » values in the presence of

structural change or no structural change.

5.6.1 Comparison between IC and CGSA

It was mentioned earlier that the CGSA is very time consuming and difficult
to apply for a large sample, that is, for a big number of models. Because of this, we
applied this approach only for sample size 15 when ¢=0. The estimated AMPCS
and the percentage gain of the CGSA over existing IC procedures namely, AIC, BIC,
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HQC, RSC, MCPC, HSPC, and GCVC in the presence of structural change and no
structural change are given in Tables 5.4 and 5.5.

The form of the IC output is similar to that of Chapter 4 with the exception
that the CGSA outperforms all existing IC procedures. In the presence of structural
change, the percentage gain of the CGSA over existing IC procedures is highest for
BIC (23.55 percent) and lowest for RSC (11.03 percent). When there is no structural
change, the percentage gain of the CGSA over all IC is highest for RSC (124.13
percent) and lowest for BIC (11.15 percent). Overall, the CGSA is preferable to the

existing 1C procedures considered in this study.

5.6.2 Comparison between IC and BGSA

The estirnated AMPCS and the percentage gain of the BGSA compared to
existing procedures namely, AIC, BIC, HQC, RSC, MCPC, HSPC, and GCVC in the
presence of structural change and no structural change are given in Tables 5.6 and
5.7. We would like to observe how the results change with changes in » and 4.
The results show that when there is no structurai change, the percentage gain of the
BGSA is highest for RSC (123.38 percent) for ¢ =0 and » =25, and the percentage
gain 1s lowest for BIC (4.22 percent) for ¢ =0 and n=15. The results reveal that as
the sample size n or ¢ increases, the gain over RSC decreases, on the other hand
with respect to BIC, it increases. In the presence of structural change, the percentage
gain of the BGSA is highest for BIC (59.37 percent) for ¢ =0 and n=75 and lowest
for RSC (2.37 percent) for ¢=102 and »n=15. Overall, the BGSA is clearly

preferable to existing IC procedures in terms of always having a better AMPCS,
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5.6.3 Comparison between IC and PDFA

The estimated AMPCS and the percentage gain of the PDFA compared to
existing IC procedures in the presence of structural change and no structural change
are given in Tables 5.8 and 5.9. The results show that when there is no structural
change, the percentage gain of the PDFA is highest for RSC (113.31 percent) when
¢=0 and n=25. The percentage gain is lowest for BIC (1.98 percent) for ¢=0
and n=>50. The results reveal that as the sample size # or ¢ increases, the gain
over RSC decreases while, on the other hand, with respect to BIC it does not foliow
any particular pattern. In the presence of structural change, the percentage gain of
the PDFA is highest for BIC (28.02 percent) for ¢ =1.02 and n =50 and lowest for
RSC (0.83 percent) for ¢=102 and n=100. Overall, the PDFA is clearly

preferable to existing IC procedures in terms of always having a better AMPCS.

5.6.4 Comparison between IC and SAA

The estimated AMPCS and the percentage gain of the SAA compared to
existing IC procedures in the presence of structural change and no structural change
are given in Tables 5.10 and 5.11. The results show that when there is no siructural
change, the percentage gain of the SAA is highest for RSC (114.80 percent) for
¢=0 and n=25. The percentage gain is lowest for BIC (2.58 percent) for ¢=0
and n=100. The results reveal that as the sample size n or ¢ increases, the gain
over RSC decreases while, on the other hand, with respect to BIC it does not follow
any particular pattern. In the presence of structural change, the percentage gain of

the SAA is highest for BIC (28.53 percent) for ¢ =102 and n =150 and lowest for

RSC (1.16 percent) for ¢=102 and n=100. Overall, the SAA is undoubtedly
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preferable 1o all existing IC procedures in terms of always having a better AMPCS

and preferable to the CGSA because of its small computational time.

5.6.5 Comparison between BGSA and PDFA

The percentage gains of the BGSA over the PDFA in the presence of

structural change and no structural change are given in Table 5.12. The results
reveal that as the sample size #n or ¢ increases, the gain for the BGSA increases.
When there is no structural change, the percentage gain of the BGSA over the PDFA
is largest (about 20.06 percent) for sample size #=100 and ¢=0.7, and smallest
(about 2.04 percent) for sample size n=15 and ¢=0. In the presence of structural
change, the percentage gain is a maximum (about 10.14 percent) for sample size
n=100 and ¢=10, and minimum (about 1.26 percent) when the sample size is
n=15 and ¢=102. Overall, the PDFA has a smaller computational time

(approximately 14 minutes) compared to the BGSA but the BGSA has a slightly
larger AMPCS than the PDFA.

5.6.6 Comparisen between BGSA and SAA

The percentage gains of the BGSA over the SAA in the presence of

structural change and no structural change are given in Table 5.12. The results show
that as the sample size n or ¢ increases, the gain for the BGSA increases. When
there is no structural change, the percentage gain is a maximum (about 19.67
percent) for sample size n=100 and ¢ =07, and a minimum (about 1.23 percent)
for sample size n=15 and ¢=0. In the presence of structural change, the gain is
largest (about 9.87 percent) for sample size » =100 and ¢ =10, and smallest (about

0.84 percent) when the sample size is #=15 and ¢ =102. Overall, the SAA has a




Chapter 5 Optimal Method for Penalty 168

smaller computational time compared to the BGSA but the BGSA has slightly larger
AMPCS than the SAA.

5.6.7 Comparison between PDFA and SAA

The percentage gains of the SAA over the PDFA in the presence of
structural change and no structural change are given in Table 5.12. The results
reveal that as the sample size n or ¢ increases, the gain of the SAA over the PDFA
decreases. When there is no structural change, the gain is a maximum (about 0.98
percent) for sample size n=15 and ¢ =10, and a minimum (about 0.46 percent)
when n=100 and ¢=07. In the presence of structural change, the gain is largest
(about 0.46 percent) for sample size n=50 and ¢=0.7, and smallest (about 0.27

percent) when the sample size is #=50 and ¢=10. Overall, the PDFA has a

smaller computational time compared to the SAA but the PDFA has a slightly larger
AMPCS than the SAA.

5.7. Concluding Remarks

In this chapter, we examined a new method for finding penalties for the
problem of detecting possible structural change through model selection procedures.
Our method includes a family of procedures, based on grid search algorithms such as
the CGSA, BGLA and PDFA, and the SAA. These procedures do not require
conditions such as regularity or existence of derivatives. We are interested in
optimizing AMPCS. One of the basic aims of this chapter was to develop an
algorithm for finding penalties that optimize AMPCS, that is completely stable and
does not use too much computational time. It means that we can always find the

penalties that give maximum AMPCS in a reasonable time.
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Grid search is one of the appealing ways to maximize a function, which is
difficult to maximize using other algorithms. The disadvantage of using this
procedure is that it is very time consuming when there is a reasonably large number
of grid points for the penalty vector. The computational time of grid search
algorithms will increase dramatically with an increase in the number of grid points
and so can be exceptionally excessive. To overcome the computational limits
imposed by grid search algorithms, we estimate the optimum penalties that give
maximum AMPCS using the SAA whose performance is similar to that of gnd
search algorithms while its computational time is much lower.

The simulation results show that our procedure outperforms existing IC
procedures, including AIC, BIC, HQC, RSC, MCPC, HSPC and GCVC in small
samples as well as in moderately sized samples. Out of these procedures, the CGSA
involves heavy computation giving the highest percentage gain over all IC
procedures while for the rest of our procedures the highest gain is about 59.37%.

We performed some simulation experiments using the CGSA for n=15 and
25 when ¢ takes the value 1.0. The computational time for optimizing AMPCS by
this algorithm is enormous. On the other hand, from the plot of penalties versus
different changepoint models, we found that for a particular changepoint model and
nearby changepoint model, the estimated penalties are almost the same and these
penalties follow an approximately symmetric pattern.

We also calculated maximum AMPCS for experiments with penalties
corresponding to each model and the same penalties for a mode! and its neighbouring
models. The former is called a compilete list of penalties and the latter is a partial list
of penalties. We found that a partial list of the penalties is enough to get reasonably
optimal penalties without a major sacrifice of AMPCS. These important

considerations motivated us to investigate two alternative appro:..  :s to the CGSA.
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The two alternatives namely, the BGSA and the PDFA, are straight forward
and save computational time. The former gives higher AMPCS than the latter.
However, the computational cost is lower for the latter. The major advantage is that

it does not require detailed analytic knowledge of the function to be optimized.

It was revealed from a comparison of the performance of our procedures
that the CGSA is the best, the BGSA second, the SAA third and the PDFA fourth
best as measured by maximum AMPCS. In the context of computational time for
maximizing AMPCS, the ranking performance of our procedures are the SAA first,

the PDFA second, the BGSA third and the CGSA last.

We have found that all of our four suggested procedures dominate the
existing IC procedures considered in terms of maximizing AMPCS. We therefore
suggest using any one of the procedures when we need to choose optimal penalties
depending on the needs and wishes of the user. In particular, we suggest for very
small samples, the use of the CGSA, for moderately sized samples, the use of the

BGSA or the PDFA, and for large samples, the use of the SAA.
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Figure 5.1 Plot of Penalties {or Different Models when n=15and ¢ =0
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Figure 5.2 Plot of Penalties for Different Models when 7 =15 and ¢=10.7
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Figure 5.3 Plot of Penalties for Different Models when n=15and ¢=1.0
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Figure 5.5 Plot of Penalties for Different Models when n=25 and ¢ =0
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Figure 5.6 Plot of Penalties for Different Models when » =25 and ¢=0.7
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Figure 5.7 Plot of Penaltics for Diiferent Models when #=25 and ¢=1.0 ?
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Table 5.1 Estimated Timing and Number of Penalty Sets for CGSA and BGSA
with 5° Penalty Sets.

Number of 11 21 46 71 98
Models
CGSA
Time per
penalty 0.6714 1.4502 3.3061 3.7581 5.0803
(Seconds)
n, =35
Penalty sets  4.88x 107 4.77x 10"  1.42x10% 424x10%¥  126x10%
Time (years)  1.0385  2.19x10°  1.49x 10% 5.04x 10" 2.05x10%
n, = 3
Penalty sets 177147 1.05x10°  8.86x 10* 7.50x 10¥  6.36x 10%
Time (years)  0.0038  480.959 9.20x 10" 8.95x10* 1.02x10%
n, =2
Penalty sets 2048 2.10x 10°  7.04x 10" 2.36x 10" 7.92x 10%
Time (years)  4.36x 10° 0.096 7.38x 10° 2.81x 10" 1.28x10%
BGSA
Time (hours)  0.5843  1.1474 2.8702 4.3383 6.0853
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Table 5.2 Comparison of CGSA and BGSA on Computational Time and Loss of
AMPCS and Time Saved for Sample Size 15.

Method  AMPCS Time taken Loss of AMPCS  Total time saved
when BGSA used. when BGSA used

CGSA 8.3498 1.0385(yrs)
BGSA 8.0653 0.5843(hours) 3.53% 9096.68(hours)

Table 5.3 Estimated AMPCS and Percentage Gain of CGSA over 1C when there
is no Structural Change for =15 and ¢=0

AIC BIC HQC RSC MCPC HSPC GCVC CGSA

AMPCS 0.1325 0.2440 0.i1805 0.1210 0.1505 0.2195 0.2069 0.2712

%gain 104.68 11.15 5025 12413 80.20 23.55 3L.11

Table 5.4 Estimated AMPCS and Percentage Gain of CGSA over IC in Presence
of Structural Change for n=25 and ¢ =0

AlIC BIC HQC RSC MCPC HSPC GCVC CGSA

AMPCS 04904 0.4433 04765 04933 0.4881 04695 04740 0.5476

Yagain 11.67 23,55 1493 11.03 1220 1664 1553
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Table 5.5 Percentage Gain of BGSA over IC in Presence of no Structural

Change for Different Sample Sizes and Types of Autoregressive
Regressors

AlIC BIC HQC RSC MCPC HSPC GCVC BGSA

$=0
9192 422 4089 11017 6897 1585 2294 025
9770 686  48.15 12339 7700 2866 3574 0.8
91.99  7.64 4435 9632 67.66 3207 3844 030
9623 1485 5174 109.08 63.92 3616 5098  0.34
77.89 1511 5272 7852 6203 4026 51.81  0.35
$=07
4462 660 2340 6877 3007 942 1585 0.4
43.64 887 2631 6172 3240 1216 2037 0.6
59.67 2060 3514 8168 4130 2306 28.93 029
61.60 2506 4054 8870 47.14 3259 3748 032
6423 28.09 4695 8275 5316 37.09 4280 034
/=10
5422 1301 2648 67.13 3374 1795 2535 026
5193 1286 3092 71.83 3254 20.17 2409 028
4938 1593 2982 69.85 37.11 1972 2693 030
5436 1829 3469 7426 4067 2212 3211 032
51.02 2010 3168 6585 3827 2275 27.06 033
¢ =102
4058 042 2155 6112 2739 1103 1675 026
5561 1431 3169 6501 3595 2053 2792 029
5220 1556 3105 66.86 3832 2135 2620 031
4520 1547 2637 6199 3425 1682 2441 03l
5238 19.68 3241 69.19 37.58 2530 2794 0.34
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Table 5.6 Percentage Gain of BGSA over IC in Presence of Structural Change
for Different Sample Sizes and Types of Autoregressive Regressors

AlC BIC HQC RSC MCPC HSPC GCVC BGSA

$=0
a=15 859 2014 1175 796 910 1342 1234  0.53
n=25 1199 2609 1687 933 1428 2248 1946  0.58
a=50 1173 2300 1472 957 1386 17.04 1610  0.60
p=75 4647 5937 5078 4555 49.87 5637 5456  0.64
n=100 1413 2965 22.66 1074 1621 2791 2446 0.7
$=07
n=15 474 1352 877 360 691 1281 1107 0.5l
p=25 477 1661 930 438 901 1396 1207 0.2
n=50 951 3080 1636 764 1159 2077 1803 0.6
n=75 1054 2261 1457 783 1161 1543 1508 0.62
p=100 1537 2418 1959 805 1768 2190 1976  0.68
$=10
n=15 543 2052 928 256 699 1500 1192  0.50
n=25 1234 2602 1348 1056 1567 2330 2137  0.56
n=50 2097 3826 2681 11.90 2663 29.64 3229 0.63
n=75 1333 4028 2273 1234 1816 3775 3472 065
n=100 13.90 4043 2029 1237 1820 2547 24.11  0.68
=102
n=15 510 1827 991 237 748 1545 1273 048
n=25 565 2471 1128 402 783 1890 1624 0.52
n=50 9.60 3169 13.84 388 11.68 2618 1975  0.59
n=75 1114 2829 1463 796 1405 2029 1965 0.73
n=100 920 29.03 1535 748 1074 2105 1743 0.78
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Table 5.7 Percentage Gain of PDFA over IC in Presence of no Structural

Change for Different Sample Sizes and Types of Autoregressive
Regressors

AlIC BIC HQC RSC MCPC HSPC GCVC PDFA

$=0
$8.00 2.09 3801 10587 6552 1349 2043 025
88.78  2.03 4146 11331 69.02 2286 2962 027
81.89 198 3676 86.00 5884 2513 3116 029
7432 202 3479 8573 4562 2096 3412 030
57.66  2.02 3535 5822 4360 2431 3454 031
$=07
3879 231 1842 6196 2482 500 1118 023
3501 234 1872 5200 2445 542 1304 024
3545 230 1463 5412 1986 439 937 025
3499 446 1739  57.62 2290 10.75 1484  0.26
3131 242 1750  46.13 2246 962 1419 028
$=10
3940 215 1433 5108 2089 662 1331 024
3752 215 1849 5553 1996 877 1231 025
3174 224 1449 4979 2091 558 1194 026
3338 222 1639 5058 2155 553 1416 027
2864 230 1216 4127 1778 456 823 028
$=102
3520 235 1690 5495 2251 678 1228 0.5
39.15 222 1776 4756 2157 778 1439 026
3467 225 1595 4763 2239 737 1166 027
2849 2.8 1183 4335 1881 338  10.10 028
3000 211 1297 4434 1737 690 915 029
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Table 5.8 Percentage Gain of PDFA over IC in Presence of Structural Change

for Different Sample Sizes and Types of Autoregressive Regressors

AIC_BIC HQC RSC MCPC HSPC GCVC PDFA
$=0
n=15 165 1246 462 106 213 618 516  0.50
n=25 349 1653 801  1.03 561 1319 1040  0.53
n=50 299 1338 575 100 49 789  7.02  0.55
n=75 161 1056 460 097 397 848 722  0.58
n=100 402 1816 11.79 092 591 1657 1342  0.64
$=07
n=15 214 1070 607 103 426 1001 831  0.50
n=25 141 1287 579 103 552 1030 848 0.1
n=50 267 2262 909 092 462 1322 1066 0.57
n=75 346 1475 722 091 446 803 770  0.58
n=100 779 1603 11.74 095 995 1389 11.89  0.64
$=10
n=15 393 1881 774 111 547 1337 1034 049
n=25 273 1524 378 110 578 1275 1099  0.5!
n=50 919 2479 1445 100 1429 17.01 1940 057
n=75 190 2614 1036 1.01 625 2386 21.14 059
n=100 237 2621 810 099 623 1276 1154 0.6l
$=102
n=15 376 1677 851 107 612 1398 1129 047
n=25 266 2118 813 108 478 1553 1295 0.5]
n=50 654 2802 1067 098 856 2266 1641 057
n=75 381 1983 707 084 653 1236 1176 068
n=100 244 2105 822 083 389 1357 017 0.7
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Table 5.9 Percentage Gain of SAA over IC in Presence of no Structural Change

for Different Sample Sizes and Types of Autoregressive Regressors

AIC _BIC HQC RSC MCPC HSPC GCVC PDFA
$=0
a=15 89.58 295 3917 10760 6691 1444 2144 025
n=25 90.10 275 4245 11480 7020 2372 3053 027
n=50 8297 258 3757 87.10 5978 2587 3194 029
n=75 7542 267 3565 8691 4654 21.72 3497 030
n=100 5852 258 3609 59.08 4439 2499 3527 0.3l
$=07
n=15 3993 315 1939 6330 2585 587 1209 023
n=25 3597 306 1956 53.07 2533 617 1394 024
n=50 3642  3.04 1546 5523 2072 514 1015 025
n=75 3303 295 1569 5534 2112 915 1318 027
n=100 31.89 287 1801 4676 2300 1009 1468 028
$=10
n=15 4081 318 1548 5260 2211 770 1446  0.24
n=25 3872 304 1953 5680 2101 972 1329 025
n=50 3269 298 1532 5087 2179 634 1275 026
p=75 3426 289 1716 5157 2235 622 1491 028
n=100 2933 286 1277 4204 1841 512 881 028
$=102
n=15 3602 296 1760 5580 2325 743 1296 025
n=25 4015 296 1860 4862 2244 855 1521 027
n=50 3556 293 1672 4862 2320 808 1240 027
n=75 2942 292 1264 4438 1967 413 1089 028
n=100 3090 281 1375 4534 1818 7.64 990  0.29

X e e mavin i _
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Table 5.10 Percentage Gain of SAA over 1C in Presence of Structural Change
for Different Sample Sizes and Types of Autoregressive Regressors

AIC _BIC HQC RSC MCPC HSPC GCVC PDFA
$=0
n=15 206 1292 504 147 254 660  5.59 0.50
n=25 3.8 1654 839 140 599 1359 1079 053
=50 335 1377 612 135 532 826 1739 0.55
n=75 201 1100 501 137 438 891  7.64 0.59
n=100 437 1856 1217 127 628 1697 1381  0.65
$=07
n=15 257 1117 652 146 470 1048 8.77 0.50
n=25 183 1334 623 145 595 1076 8.93 0.51
n=50 3.3 2318 959 137 509 1374 1116  0.57
pn=75 392 1526 770 136 493 851  8.18 0.59
n=100 817 1643 1212 130 1033 1429 1228  0.64
¢=10
n=15 429 1922  8.11 145 584 1376 1072 0.50
n=25 306 1560 410 142 611 1310 1134  0.5]
n=50 947 2512 1475 126 1459 1731 1972 0.57
n=75 220 2650 1067 130 655 2422 2149  0.59
n=100 2.67 2658 842 129 654 1309 118  0.62
¢ =102
n=15 422 1729 900 152 659 1448 11.79 048
n=25 309 2168 858 150 521 1601 1342  05I]
n=50 697 2853 1Ll 139 900 23.16 1688 057
n=75 421 2029 748 123 693 1278 1219  0.69
n=100 2.78 2145 857 116 423 1394 1053  0.74

e Bt h e . LA e p
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Table 5.11 Percentage Gain of BGSA over SAA (GOGOS), BGSA over PDFA
(GOGOP) and SSA over PDFA (GOSOP) for Different Sample Sizes
and Types of Autoregressive Regressors

Without Structural Change With Structural Change

GOGOS GOGOP GOSOP GOGOS GOGOP GOSOP

p=0
n=15 123 2.04 0.81 6.02 6.39 0.39
n=25 385 4.50 0.68 7.24 7.58 0.37
=350 472 5.25 0.56 7.50 7.82 0.35
n=75  10.60 11.18 0.64 8.60 8.95 0.38
2=100  10.89 11.37 0.55 8.56 287 0.35
$=07
n=15 326 4.03 0.79 2.05 2.47 0.42
n=25 534 5.97 0.67 2.81 3.22 0.43
n=50 1457 15.19 0.72 5.82 6.25 0.46
n=75 17.67 18.14 0.57 6.00 6.41 0.44
n=100  19.69 20.06 0.46 6.25 6.58 0.35
$=10
n=15 871 9.61 0.99 1.09 1.41 0.33
n=25  8.69 9.49 0.87 8.26 8.54 0.31
n=50  11.18 11.82 0.72 9.49 9.74 0.27
n=75  13.02 13.60 0.66 9.82 10.07 0.28
n=100 1436 14.83 0.55 9.87 10.14 0.30
=102
n=15  3.26 3.83 0.59 0.84 1.26 0.42
n=25  6.78 7.44 0.70 2.43 2.83 0.42
n=50  10.94 11.54 0.68 2.40 2.78 0.39
n=75  10.86 11.49 0.71 6.25 6.59 037

n=100 14.10 14.69 0.69 5.88 6.19 0.33




CHAPTER 6

Prediction with the Linear
Regression Model in the Presence of
Random Structural Change

6.1 Introduction

People have always wanted to predict the future to reduce their fear and
anxiety about the unknown and an uncertain tomorrow. This desire has been since
the dawn of civilization. Today, the need to predict the future is fulfilled in a wide

range of ways, from horoscopes to econometric services. Predictions are simply

extrapolations (or interpolations) of established past patterns and/or existing
relationships.  Prediction techniques play an important role in the fields of
economics, business admisnistration, engineering and meteorological sciences, among
others. The main purpose is to predict at time ¢, the future value of a variable. Like

others, economists are interested to know the possible future values of economic time

series variables. 3
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In formaulating policy decisions, 1t is essential to be able to forecast the
values of important economic variables. Such forecasts will enable the policy-maker
to judge whether it is necessary to take any measures in order to influence the
relevant economic variables. For example, suppose that the government wants to
pursue its employment policy. It is necessary to know what the current level of
employment is, as well as what the level of employment will be, say in five years’
time, if the government takes no new meusures. With econometric techniques, we
are able to obtain such an estimate of the level of employment. Forecasting is
becoming increasingly important both for the regulation of developed economies as
well as for the planning of the economic development of underdeveloped countries.

Wallis (1989) pointed out three main motivations for forecasting. The first
is that in order to make policy decisions when the current situation is uncertain, some
kind of forward-looking prediction is essential, particularly when the decisions
cannot be reversed. The second is to anticipate events for private gains and the third
is to put hypotheses about the behaviour of the world to test. Zellner (1988)
emphasized the importance of prediction in evaluating hypotheses and models in
econometrics. In his opinion, econometricians are overly concerned with estimating
parameters and fail to appreciate the important role of forecasting. We share this
View.

One of the objectives of applied econometric research is to obtain good
numerical estimates of the coefficients of economic relationships and to use them for
the prediction of thc values of economic variables. Before using an estirnated model
for forecasting the value of the dependent variable, there must be an assessment in

some way of the predictive power of the model. [t is conceivably possible that the
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model is economically meaningful, and statistically and econometrically correct for
the sample period for which the model has been estimated, yet it may very well not
be suitable for forecasting dae t6 a change in the parameters of the relationship in the
real world.

In Chapter 4, we discussed the use of mode] selection to detect an unknown
changepoint wheu there is a possible structural change in the data. We also
suggested a procedure that outperformed exising procedures in identifying the
model that best fits the data in the sense that the probability of the modei being
seiected is unit It is natural to ask the question “Does the best fitted model also
produce the best forecasts?” In certain situations, the answer may be “yes” but we
should bear in mind that fitting and forecasting are two dgitferent issues. In practice a
particular model might produce a very good fit, but because of the mathematical
properties of the model involved, may produce ridiculous forecasts {see Bryant
(1960)). In addition, Makridakis (1986) and Miils and Prasad (1992) observe that a
mode] having the best fit for a given series does not necessarily mean it is the best
forecasting model.

Forecasting with a regression model assumes there is no change in any of
the parameters over the forecast period. Unfortunately, it is quite possible that one or
more of the parameters might change at some unknown point in the future. The aim
of this chapter i5 10 iuvestigate how we might incorporate possible future structural
change as a stochastic element of our model. With this view in mind, we consider
different models for stochastic changes in parameters, to compare predictiors from
different strategies. We shall begin with the case in which there are twe possibilities

of a changing parameter. The first is a change in the slope parameter by - fixed
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amount with a very low probability, keeping the intercept constant. The second is a
change in the intercept parameter by a fixed amount with a very low probability,
keeping the slope unchanged. As usual, these estimators depend on nuisance
parameters whose values are unknown. To obtain an operational procedure we
replace these unknown parameters by sample estimates.

We adopt linear regression models with single or multiple time changing
coefficients but with low probabilities of a ~hange at any point in time. The time
changing coefficient approach considered here will provide a simple procedure for
handling possible changepoints in the data. The traditional fixed coefficient linear
regression models can be treated as a special case of the time changing coefficient
linear regression model.

We look at the distributional pattern of the model, derive the distribution of
the changing parameter model, develop the theoretical variance-covariance matrices
for three special situations, and construct ‘out of sample’ forecast procedures. In
order to investigate whether our forecast procedures are likely to be useful, we
perform a Monte Carlo study of forecast performance. We use OLS, maximum
likelihood (ML) and maxtmum marginal likelihood (MML) methods for the
estimation of parameters.

Once the forecasts are made, they can be evaluated by computing the
prediction error (PE) and these errors can tell us a lot about the quality of the
forecasting model. V/¢ use three forecast evaluation statistics: (i) mean error (ME),
(1) mean absolute error (MAE) and (iii) root mean squared error (RMSE), prominent

in the forecasting literature.
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The rest of the chapter is organised as follows. Section 6.2 contains a
theoretical discussion that includes the distribution of time series data for changing
the intercept and slope parameters keeping one fixed while the other may change in a
simple linear regression model. In addition, the variance-covanance matrix for our
model in these two cases is derived for three special situations. In Section 6.3, we
discuss the estimation of parameters and prediction errors in the case of changepoints
and of no changepoints in the model. Section £.4 presents three differ-at schemes
for estimating the parameters of the model to predict consecutive periods with new
data becoming available. Section 6.5 contains a discussion of the Monte Carlo
experiment and includes a description of the experimenta! design and the modeis
used. Section 6.6 discusses the prediction accuracy and some statistical measures for
it. Discussion of the results of the Monte Carlo experiments is presented in Section

6.7. We furnish the concluding remarks of our study in the final section.

6.2 Theoretical Discussion

Consider the simple linear regression model
y=a,+Bx +¢,, r=1...,n (6.1}
where y, is the dependent variable at time ¢, x, is the value of the independent
variable at time ¢ «, and 3, are parameters of the model that may change over
time. We will consider two possibilities of changes. The first is where the intercept
a, is a constant and £, may change at each point ¢ by a fixed amount & but with a

very low probability p. The second is where the slope 8, is a constant and @, may
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change at each point f by a fixed amount & but with a very low probability p. In

other words in the first case, &, = a, forall 7 and
Pr(B,, =B, +6)=p,
Pe(B,., =8, )=1-p,
where p is a small and unknown probability and & is a fixed but unknown value
while in the second case, g, = g, forall 7 and
Pr{a,, =a,+8)=p,
Pr(a,+, =a, )=1——p.
We are interested in finding the distribution of y, for a changing slope and

for a changing intercept. The simple linear regression model (6.1) in these two cases

can be written respectively as
Y, =ay+ (B, +01,)x, +u, t=12,,n, (6.2)
y=a,+0r,+ 0, x,+u, =120, (6.3)
where 7, ~Binomial (t,p). 7, can be approximated by a normal random variable
for large + with mean ¢ p and variance ¢ p(1- p). The error term u, is assumed to
be independently normally distributed with constant variance, i.e., #, ~ IN(0,07)
and we assume u, is independent of r,. We introduce a sequence of independent

random variables z,, i=1,2,---,n, which are allowed to have only two different

t

values, 0 and 1, with corresponding probability (1-p) and p so that 7, = Zz,..

i=t

Then models (6.2) and (6.3) become

T L SRRy
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!
vi=ay+{(By+6Y 5)x, +u,, 1=1,2,-,n, (6.4)
i=l
!
y,=a0+5z::,.+ﬂoxf+u,, 1=1L2,---,n, (6.5)

i=]
respectively. Models (6.4) and (6.5) are characterized as changing slope and

intercept models, respectively.

6.2.1 Distributional Pattern of ): for Changing Slope
Parameters

Consider the slope changing model (6.4) and assume & is fixed. We are

interested in finding the distribution of y,. We note the following:

Period Distribution of y, Probability Values of z
] ¥~ N(a, + B, x,,0%) 1-p z, =0
V ~N(a, +(B, +6) x,,0%) P z =1
2 Yy ~ N(ag+ f3, %1, 0°) (1-p) all z,’s are 0
Yy~ Niay + (B, +8) %,,0°)  2p(1-p) one z is |
Y, ~ N(a, + (B, +26) x,,0%)  p° all z,’s are 1
3 ¥y ~ N{a, + B, x,,0%) (-py all z,’sare 0
Y3 ~ N{a,+(B, +8) x,, %) 3p(l-p)* one z, is |

yy~ N{a, +(B, +28) x;,0%)  3p*(1-p) two z, s are 1
¥y~ N(ay+{(B, +38) x,,0°) p’ all z,’sare 1

4 Vi~ N(@y + By x,,0%) (1~ p)* all z,’s are 0

e ger
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Period Distribution of y, Probability Values of z,
yi~N(@g+(B,+8) x,.07)  4p(l-p)’ one z; is 1
v, ~N(ag+ (B, +28) x,,0?)  6p*(1-p)* two z,’s are |

¥~ N(@y+ (B, +38) x,,0°)  4p’(1-p) 3z sarel

Yo~ Ny +(f,+48) x,,0°)  p' all z;’s are 1.
5 Vs ~ N(ay + B4 x5, 06%) (1-py’ all z,’s are 0
ys ~ N{a, +{f,+9) Xss 0'2) 5p(1—p)4 one z; is |

ys~ N(ag + (B, +28) x,,0°)  10p*(1-p)’  two z,’sare |
¥s~ N(a, + (B +38) x,,0%)  10p°(1-p)* 3z sarel
Vs~ N(a,+(B, +48) x,,0*)  5p*(1-p) 4 z’s are 1

Vs~ N(@o + (B, +58) x5, 07) P’ all z,’s are 1

and so on.

6.2.1.1 Derivation of Covariance Matrix ((2;) when
Slope is Changing in One Direction

Under the same assumptions as stated in the previous section regarding the
probability distribution of z,, the expectation, variance and covariance of z, are
Ez)=p,
var(z;) = p(1- p) ,.and
Cov(z2;)=0,for i+ j.

Under these assumptioas the y, given by (6.4) have expected value

I T L
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E(yy=a,+f,x, +x6 E(Z'l:z,.) =a,+(B,+t pd)x,.
The variance of y, under the assumptions that
E(u)=0, E(uu}=0,fori=j, E(})=0"
and that the x, are fixed is
var(y,) = var(a, +{(fB, +J il:zj)x,) +var(u,)
=1p(1- p)&°x? +o?,
Also the covariances of the y, ’s are
Cov(y,,y,) = min(i, ) p(1- p) 52xixj, foris j.
From the above results, model (6.4) can be rewritten as
Y=o, +(f,+1 po)x, +w,,
where @, =u, +v,; v, =(r, - px,5,
v, ~ N0, p(1- p)5°x}) and
@, ~ N(0, ¢ +1p(1-p)é*x?).
The variance-covariance matrix of y is
p(1-p)8ixi 40" p(1-p)aixyx, p-p)&xzx,
0, = p(:l - p)o*x,x, ?p(l - p)&*xl 4ot 2p(1= p)&’x,x, 66)

L.p(] __p)ézxnx‘ 2p(lﬂ-p)62xux2

np(1- p)&’x} + o |
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6.2.1.2 Derivation of Covariance Matrix (£2,,) when
Slope is Changing in Two Directions

Consider a sequence of independent random variables z, I=12,---n,
which can take three values —1, 0 and 1 with corresponding probabilities g,1~ p~g

and p respectively. In other words z; are defined by

~1 with probability ¢,
% =10 with probability 1-p-gq,
1 with probability p,

where p and ¢ are small and unknown probabilities. The expectation, variance and

covariance of z; are now
E(z)=(p-q),

var(z) = ((p+g)-(p-¢)*) and

Cov(z;2,) =0, for i= j.

Under these assumptions, the Y, given by (6.4) have expected value
EO)=aot fox +x8 B} z) =y +(B, +1 (p-)d) x,.
i\

The variance of Y, under the assumptions that
E(""i) =0, E(U;"f) =0, for isJ, E(u;") =g’

and that the x, are fixed is

var(y,) = var(a, +(f, + & izj)x,) + var(u, )

i=]

=t((p+9) - (p-g)8x? + o7,
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Also the covariances of the y, ’s are
Cov(y,,y;) = min(i, N(p+q)~(p—q)" )& x,x;, for i = j.

From the above results, model (6.4) can be rewritten as

Y=o+ (Bo+1(p-q)d)x, +@,,
where @, =u, +v,; v, =(7, - (p—g))x,6 ;

v, ~ Nt (p+q)~(p-9))5x])

@, ~ N0, +1((p+q) - (p~g)&’x]) .

The variance-covariance matrix of y is
(¢, x24+07 %% e GXX,

. 2, .2
axx, 2o, +0" o 200X, 6.7)

- . 2 2
_CZ.\‘lnxl zch‘lnx2 e NE) Xy +o J

where ¢, =((p+9)-(p—9)")8°.

6.2.1.3 Derivation of Covariance Matrix (£2,) when

Slope is Changing in Two Directions by
Different Amounts

Consider a sequence of independent random variables z., i=12,---,n

iy

which can take three values ~&,,0 and &, with corresponding probabilities

9,1- p—q and p respectively. In other words, the z, are defined by

-0, with probability g,
z;,=4 0  with probability 1-p-gq,
&, with probability p,
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where p and ¢ are small and unknown probabilities. The expectation, variance and

covariance of z;, are now

E(z)=6,p-6y4,
var(z;) = 8iq + 53p~ (8,9 + 5,p)* and
Cov(zfzj) =0,fori=j,

Under these assumptions, the Y, gtven by (6.4) have expected vatue

E(y:) =a, +ﬁ0 X +xr E(Z::) =a, +(ﬂ0 +1(52p_6]q))xr'

i=l
The variance of y, under the assumptions that
E(u)=0, E(uu)=0,fori=j, EG})=¢"
and that the x, are fixed is

var(y,) = var(a, + (B, + 2 2,)x,) +var(u,)

i=|
=(5{q+83p- (8,9 +6,p)) 1 x* + o7,
Also the covariances of the ¥,’s are
Cov(yi,yj) = min(i, j) var(z;)x,x,

=min(i, /)81 + 51 p - (5, + 5,p) )xx;, for i=

From the above results, model (6.4) can be rewritten as
Yo=ay+(By +1(8,p-6,9))x, to,

where @, =u, +v,; v, = (, ~(6,p-69))x,5;

Vi~ NO,(851g+8,p~ (89 +8,p) )t x2)

@, ~ N0, 0" +(5iq +8p-(Sq +8,p)° ) x7).
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The variance-covariance matrix of yis

" 2 2 -

03.\'xl +C CJ.TxI xZ T cﬁ.vllln

2 2
€y Xa X 2, x5, +0" o+ 2e.x.x
R iad | 2 W2y
2= | . 638)
. 2 2 2

_CB.\'xnll chxﬂxZ o nc}.rxn +0o J

where ¢, =8lg+8ip— (6,9 + é,p)°.

6.2.2 Distributional Pattern of ), for Changing
Intercept

Consider the slope changing model (6.5) and assume & is fixed. We are

interested to find the distribution of ¥,. We note the following:

Period  Distribution of y, Probability Values of z,

1 Y~ N(ay + Byx,,0%) I-p z =90
Nh~N({a,+6)+fx,0%) p z=1.

2 Y, ~ N(a, + Bx,, 0?) (1-p)? all z,’sare 0
Yy ~ N((ay +6) + fyx,, 6%) 2p(1- ») one z is |
Y2~ Ny +28) + fox,, 0%y p? all z,’s are 1.

3 ¥s ~ N(a, + Box,, o) (1-p)* all z,’sare 0
Vs~ N((ag +8)+ Byx,, %) 3pQl- p)? one z, is 1
Y3~ N((ay +28)+ Byx,, o?) 3p*(1-p) two z,’s are 1
V3~ N((ay +38) + fyx;, 08 p° all z,’s are 1.

4 Yo~ N(a, +Byx,, %) (1-p)* all z,’s are 0
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Period  Distribution of y, Probability Values of z,
Yo~ N((ap+6)+Byx,,0%)  4p(i-p) one z, is |
Vi~ N({(ay +28) + B,x,, 0%) 6p°(1- p)? two z,’s are |
Yo~ N((ap +36)+ Box,,07)  4p’(1-p) 3z’sarel
Yy~ N((a, +48)+ fyx,, 0%y p* all z,’s are 1.
5 Vs ~ N(a; + Box,, o%) (- p)* all z,'sare 0
Vs ~ N((ay +6)+ Byx,, 07) 5p(t-p)* one z, is |

Vs~ N((@y +28) + S5, 67)  10p%(1-p)*  two z,’s are |
Vs~ N(a, +30)+ foxs,0%)  10p*(1-p)2 3 z,’s are |
Ys~N((a, +46)+ fyx,,0%)  5pi(i-p) 4z, sare 1

Ys~ N((ay+50) + Box;,0°)  p° all z, s are 1

and so on.

6.2.2.1 Derivation of Covariance Matrix (£2.) when
Intercept is Changing ia One Direction

Consider a sequence of independent random variables z, =12, ,n,
which can take two values 0 and 1 with corresponding probabilities 1- p and ¥

respectively. In other words z,, are defined by

0 with probability 1- D
1 with probability p
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where p is a small and unknown probability. The expectation, variance and

covariance of z, are now
E@z)=p,
var(z;) = p(1- p) and
Cov(zz;)=0,for i j.

Under these assumptions, the ¥, given by (6.5) have expected value

EQ) =48 E(Y5)+ fyx, = (@ +1p6) + B

i=|

and the variance of y, is

var(y,) = var(a, +(5’Zzi) +var(u,) =1 p(1- p)§* + a2

i=l
Also the covariances of the y, *s are
Cov(y,, ;) = min(i, /) p(1- p)8? for i = J.
From the above results, model (6.5) can be rewritten as
Ye=Qy+tpd+fix, +w,,

where @, =u, +v,; v, = (r, - pr)éd;

v, ~ N(0,1p(1~ p)&*), @, ~ N(0, 1 p(l -p)8? +o?).
The variance-covariance matrix of yis

[ p(1-p)8? +6*  p(1- p)s? o p(l- )&

Q. =|PA=P"  2p0-p)t 4ot . 2p(1-p)s?
| . .

| p(1-p)6*  2p(1- p)s* o nmp(1-p)&t +o? |

(6.9)
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6.2.2.2 Derivation of Covariance Matrix ((2,.) when
Intercept is Changing in Two Directions

Consider now a sequence of independent random variables
z, i=12,-,n, which can take three values -1, 0 and 1 with corresponding

probabilities g,1—- p—~¢g and p respectively. In other words, z, are defined by

-1 with probability ¢,
z; =< 0 with probability [-p-gq,
1 with probability p,

where p and g are small and unknown probabilities. The expectation, variance and
covariance of z; are now
E@z)=(p-9),
var(z) = ((p+9)—(p~q)’) and
Cov(z,z,)=0,fori=j.

Under these assumptions, the y, given by (6.4) have expected value

E(yYy=a,+06 EQ 2)+ Box, =(ay +1 (p—0)8) + Box,.
i=|
The variance of y, is

var(y,) = var(e, + 6 Z‘:zf) + var(u,)

ial

=t{(p+q)-(p-9)")5* +o°.

Also the covariances of the y,’s are

Cov(y;,y;) = min(i, ))((p+q) = (p—q)*)d°, for i# .
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From the above results, model (€.5) can be rewritten as
Y=y +1(p-q)5+ fx, ta,
where @, = U +v v =(r, —( P=g)t)s;
Vi~ Nt ((p+ )~ (p-g))s?h),

@, ~N(0,6° +1((p+q) - (p-q)?)8%).

The variance-covariance matrix of yis

2
rc2c +0 €ae Tt G
2
o 2c,,+0° - 2¢
2 e 2
=] 7 . e (6.10)
¢y 2¢,. e He o |

where ¢, =((p+9)-(p-q)*)s°.

0.2.2.3 Derivation of Covariance Matriz ((2,) when

Intercept is Changing in Two Directions by
Different Amounts

Consider a sequence of independent random variables Z, i=12,.

u-,n
which can take three values —-0,,0 and &, with corresponding probabilities
9.1-p—gq and p respectively. In other words, the z, are defined by
-9, with probability ¢,
z;=y 0  with probability 1-p-gq,
s, with probability p,
where p and ¢ are small and unknown probabilities. The expectation, variance and

covariance of z, are now
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E(z)=6,p-6yg.
| var(z;) = 81 + 83 p—(8,g + 8, p)? and
Cov(zz;)=0,fori# .

Under these assumptions, the y, given by (6.5) have expected value

EG)=ay+ EQz)+Box, = (ay+1 (5,p~6,9)) + B,

i=]

The variance of y, is

var(y, ) = var(a, + ):z,,) +var(u, )

i={
=1(81q+5:p-(8,+5,p)") + 02,

Also the covariances of the y,’s are
Cov(y,y;) = minGi, j)(81q +S3p—(5,g+8,p)?) , for i # .
From the above results, model (6.5) can be rewritten as
Vi = Qo +H{8,P~06,9)+ f,x, taw,
where @, =y +v,; v, = (7, = (60 =38,9))5 ;
v~ N(O,((8lq +63p— (8,9 +5,p)%)
@~ N, " +1(51g +85p- (5,9 +8,p)))

The variance-covariance matrix of yis

[ 2 7
C3c +o C3c C3c
2
c 2¢,.+0* ... 2¢
3 3 3
03" = . ¢ - ¢ . ¢ (6-1 1)
” 2
e 285, e MG+ 0 |

where ¢;, = 5}g +82p—(6,q +38,p).
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The 2, i=1,2,3 and j=5¢ matrices help in data generation as well ag

in calculating ML and MML estimates with a minimum of computaticnal effort and

time. They are alro needed for prediction.

6.3 Estimation and Prediction Procedures

After making a decision about the form of the model in the presence of
possible changepoints in the intercept or slope, the parameters of the model have to
be determined in the best possible manner from the available data. In other words,
the parameters of the changing parameters of the mode] are unknown and we need to
estimate them from the data available at hand. In the following section, we discuss
some estimation and prediction procedures.

In the previous section, we outlined changepoint models with unknown

parameters @, f, &,, 8,, p, ¢,and & to be estimated. We discussed three special

situations and developed three variance-covariance matrices 2. i=12,3 for

changing slope and three variance-covariance matrices £, =123 for changing

intercept. For simplicity, we denote y=la.fl , w= [6),6,.7.9,6] and 2 for the
variance-covariance matrix and use these variance-covariance matrices to estimate
parameters. We now discuss some prediction procedures below.
We consider the linear regression model
y=Xy+u, u~N(@0,6'y)) (6.12)
where v is nx1, X isan nx k nonstochatic matrix of rank k<n, ¥y isa kx|

vector of unknown parameters, u is an nx1 disturbance vector assumed to be




Chapter 6 Prediction in the Presence of Structural Change 205

normally distributed with expected vaiue 0 and covariance matrix o°£2(y) which is
an nxn known positive-definite matrix. If the disturbances are independent and
homoscedastic then (Xw)=1/ and so u~ N(0,6°7). The main problem in this

context is the estimation of the parameter . Therefore our initial emphasis is on
estimating ¥ and in that case y and o' are regarded as unknown nuisance

parameters. Once y is estimated, ¥ and o’ can be easily estimated as a
consequence.

The OLS predictor of y, 7, is defined as
j}=X}70L.,., (6.13)

where 7., =(XX)" X' is the OLS estimator of . When OLS is applied, we
assume that the errors are independent of each other and do not suffer from
heteroscedasticity.

We are interested in estimating the parameter  and this can be done by

maximizing the log-likelihood. The process can be described as follows. The log-

likelithood function is

y=Xy) ' (yXy - Xy)
207

L(y .y} =const. — g—!og o’ -%log[ﬁ(y/)] S (6.14)

which is a function of ¥, y and o?. Its first derivatives with respect to y and o°
when set to zero, provide the estimated values of y and o as 7 and &°

respectively

P=(X 2 px) X2 wy, (6.15)
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52 o QAP W)y - X7)
n

{6.16)

assunting y fixed. Substituting the estimated values of 7 and &° in the above log-

likelihood function, the maximum log-likelithood (ML) value can be found from
n ay 1 n
ML =const.--2—log0' —Elogfﬂ(;{/)[-—z—, (6.17)

which is a function of . We need to estimate y by maximizing this function.
This can be done by using a suitable computing algorithm namely Newton-Raphson,
Fisher’s scoring method, simulated annealing (Krikpatrick et. al (1983)) or the
method of Brendt, Hall, Hall and Hausman (1974) that maximizes the likelihood for
different values of y by an iterative procedure.

There is a literature which suggests that maximizing the marginal likelihood
gives better results than the maximum likelihood method. Fraser (1967), and
Kalbfleisch and Sprott (1970) introduced maximum marginal likelthood (MML).
Ara and King (1993, 1995), and Rahman and King (1997) used the marginal
likelihood to construct different tests and observed a significant improvement in
small sample properties over those of traditional tests. The main principle is to
transform the dependent variable to another random vector, and a subvector of which
has a likelihood (marginal likelihood) that only contains the parameters of interest
and the remainder of which contains no information about those parameters. From

Tunnicliffe Wilson (1989), our marginal likelihood is

1 I _nk
MGL = Q)| 3| X" 27 (y) X| 252 (6.18)
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where §=(y~X?) 2 (y)(v~X?)and ¥ as given in (6.15). The MML estimate
of the parameter can be obtained by maximizing the marginal likelihood function
with respect to . To obtain a final estimate of ¥ , we need to estimate the value of
w by maximizing either equation (6.17) or (6.18) and then replace ¥ by the
estimated value in equation (6.15). Suppose we wish to find the one-step-ahead
forecasts of y in model (6.12), which can be written as
Vet = Xyt iy (6.19)
where y,,, is the next value of y, x, ., is the £ x1 vector of observations on the
regressors at time n+1 and u,,, is its associated disturbance term, The predicted
value of y ,, can be written as
i =x077 + 0@y 2 G Xy~ X7) (6.20)

-t

where // =[5{,c§§, p.q 0! J , j=1,2, in which j=1 indicates the estimated

value of y comes from the ML method by maximising (6.17) and /=2 indicates
the estimated value comes from the MML method by maximising (6.18) and

following Goldberger (1962) and Toyooka (1982), u(y)=E(x,

¢

#) is the top nx1

vector from the final column of variance-covariance matrices £2,,; i=1,2,3, for
changing slope and $2,.; i=1,2,3, for changing intercept, in the case of a sample

size of #n+1. For example, in the case of a changing slope in one direction

_p(l - p)§2xlet+l
2p(1 —p)52x2x;:+l

oy)=

| np(1~ p)&°x,x

npyt |
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[
o
[o B

in the case of a changing slope in two directions

CoeX) Xyt
2¢,,%,x

U(W) = el

»

’ “'c.'!,\‘xnx

23]

in the case of a changing slope in two directions by different amounts

Cy Xy X

n+

nel

2¢, xx
o(p)=|"

H

R ncl\'x nx +1 |

in the case of a changing intercept in one direction

p(1-pé

2p(1- p)s?
o(w) = p(: p)o

L+ Dp(i- p)s? |
in the case of a changing intercept in two directions

c2c

2c,

o

o(y) =

(n+ l)czd

and in the case of a changing intercept in two directions by different amounts

!‘ c3c

2¢,,
()= .

| (r+1)e;, |



Chapter 6 Prediction in the Presence of Structural ¢ hange 207

6.4. Prediction Schemes

For prediction, which relies on the estimates of unknown parameters, in this
section we discuss three different schemes for estimating the parameters using the

available data. We consider these schemes explicitly and discuss them below.

6.4.1 Scheme-1: Fixed

The first scheme, which we call fixed, and which was used by, for example
Pagan and Schwert (1990), is as follows, Let M5+, y, be generated data from a
model of interest. We divide the total generated data into two parts, i.e., 5= m+n,,
The first », data points are used to estimate the parameters and then predict for n,

observations using information from the fitted model. This scheme estimates 5, just

predictions. In this case, B is the same for all # » anc depends only on n,.

6.4.2 Scheme-2: Recursive

The second scheme, which we call recursive, was used by, for exaraple, Fair
and Shiller (1990). This scheme uses all available data, estimating £ first with data
from 1 to r,, nex: with data from Ito n +1, so on, and finally with data from 1 to

7. In the model y, =Xxf+u,, for example, B is estimated using data from 1 to

- Htr H+r
M+ in the recursive scheme, f,,, =( 2.xx)" Y xry =g, N

=l ¥=]
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6.4.3 Scheme-3: Rolling

The third scheme, which we call rolling, was used by, for example, Akgiray
(1989). This scheme fixes the sample size, say at »,, and drops distant observations
as recent ones are added. Thus, £ is esiimated first with data from 1 to n,, next with
data from 2 to »,+1, so on, and finally with data from n—m+1 to n. In the least

squares model y, = x/f+u,, for example, £ is estimated using data from 1 to n,?2

- H H
o m+1,and n—n+1 to n in the rolling scheme, = ( Zx;x_‘_)" Zx_{. ¥,. In the

S=n=1 +] Ser-n ]

case of a rolling scheme, different regression estirates are used for each sample size.

6.5 The Monte Carlo Experiment

In order to compare average prediction errors for different situations in
linear regression models with structural changes of random timing, we conducted a
Monte Carlo experiment. The experiment aimed to evaluate the predictive
performance of different models, different schemes and different forecasting

methods.
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6.5.1 Experimental Design

The following design matrices were used in the experiment:

%S

A,

X,

A constant dummy plus two independent stationary AR(1)
regressors generated as, X, =05x, ,+n, where
M ~INQD, =1, ... n, i=1 2.

A constant dummy plus two independent trending regressors

generated as x,, = 0.25/+ w., where w,

s =L 000, n, i=2,3,
is an AR(1) time series generated as for X, above,

A constant, monthly US seasonally adjusted total volume of real
retail sales on domestic trade (in billion 1992 USD) and lagged one
month commencing 1960{1).

A constant, monthly US seasonally adjusted personal income (in
billion 1995 USD) and lagged one month commencing 1960(1).

A constant, monthly US interest rate, the same interest rate lagged
one month, real personal income (in billion 1995 USD), and the

same variable lagged one month commencing 1960(1).

These design matrices were chosen to reflect a variety of economic and

statistical phenomena, X, is comprised of stationary regressors, X, and X, have

trending regressors while X s and X, show some long term fluctuations. Afier the

disturbances were generated, and given the appropriate design matrix, the y'’s are

generated from the following equations:
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y,=a0+x,'ﬂ0+u,, t=12,--.n (Model 1)
where u, ~ IN(0,57).
a,+x, Bo+u  for t=1-.- 1
% Yy = ot % ot l (Model 2)
Qo +x; (B, +38) +u, for =t +1,--.n
where u, ~ IN(0, o).
‘
| V=@ + X (B, +6%2) +u,, 1=1,2,---,n  (Model 3)
i=l

where the z, are independently distributed

-
Po—

]

1 with probability J A
0 with probability 1- D,

and u, ~ IN(0, o).

y:=a0+x: (ﬂ{) +5iz:')+un I=1a2:'

i=]

1 (Model 4)

where the z, are independently distributed

-1 with probability g,
z,=¢0 with probability l-p-~gq,
1 with probability p,

and ¥, ~ IN(0, 6%,
Yy =ay+x/ (4, +§z,-)+u,, t=L2,--.,n  (Model 5)
where the z, are independently distributed
-8, with probability 4,

z,=¢ 0 with probability 1- r-q,
o, with probability p,
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and u, ~ IN(0, o).

We performed a pilot experiment where different combinations of «, and
B, values were used and it was found that the prediction error values did not change
for the changes in «, and S, values. In other words, prediction errors are largely
invariant to changes in ¢, and f#,. We set a,, 5, and ¢ to unity. In addition, for

each model M, we set p=0.005 and g =0.005. The values of §, and 5, were

var(d,x,) N

chosen n such a way that
var(u, )

1. In the end we set §, and &, to 0.15 and

0.35 respectively.

After the y's were generated according to each of the above true models,
the parameters of the model were =stimated by using ML, MML and OLS methods
then one-step-ahead predictions were produced by the recursive, rolling and fixed
schemes In turn. Throughout, when ML, MML estimation was needed, it was
conducted using the GAUSS 3.2.12 software.

The overall aim is to assess the performance of each of the above methods
and prediction schemes. The experiment we present involved 2000 replications. In
the case of the fixed prediction method, for each replication, we generated 480 data
points. We throw away some initial observations and then split the remaining into
regression ( », ) and prediction ( n,) samples. The prediction ( »2,) samples were taken
to be 200 in size and the regression (n,) samples of size 25, 50, 100 and 200 were
taken discarding 255, 230, 180 and 80 observations respectively from the generated

data. In the case of Model 2, we use ¢, in such a way that for each regression period

e iaaaaE st e Rt oo o N
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n,, the prediction period n,. contains the changepoint. Based on this principle we

choo. ¢, at the 220" position of the data period.
6.6 Prediction Accuracy

In Section 6.3 we discussed different methods of prediction. Once the
predictions are obtained we need to evaluate their accuracy. The prediction error that
is the difference between the predicted value and the actual value, can be used as the

tool for prediction accuracy evaluation. If y | is the observed valve of y, for the

'
y+

time period 1, +1, and 3, ,, s the predicted value of y given by (6.20), for the same

period, then the prediction error is defined as ¢, ,, = {J/,.,n *j’,.l+.]. These prediction

errors were then compared in terms of the following statistical measures to evaluate

the prediction performance.

6.6.1 Root Mean Square Error (RMSE)

The root mean square error is the square root of the sum of the squared

prediction errors for each observation divided by the number of observations and

RMSE = “-—I—Zéfm
Ry iay )

RMSE i1s popular among econometricians and statisticians, [t is the most

defined as

widely used prediction evaluation criterion in applied and theoretical research.

RMSE is mathematically more amenable than other methods and it has a relationship




Chapter 6 Prediction in the Presence of Structural C hange 213

to the least squares criterion. The strategy that has minimum RMSE is often thought

to be the best strategy in terms of prediction performance.

6.6.2 Mean Error (ME)

The ME is the mean or average of the forecasting errors and is defined as

ME = iié::,ﬁ'

My
In general, MEs have a tendency towards zero in most forecasting  situations,
Positive ME indicates that on average the bias in prediction is downwards and

negative ME indicates upward bias.

0.6.3 Mean Absolute Error (MAE)

The MAE involves calculating the average of the absolute value of the

prediction errors, namely

MAE=LS)s |

ny ia

It is an acceptable measure when the loss of making a prediction error is proportional

to the absolute size of the prediction error.
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6.7 Discussion of Results

In this section we analyse the overall picture of our results separately. We
took averages over the 2000 iterations of prediction errors (root mean square error,
mean absolute error and mean error) using different sample sizes » (25, 50, 100 and
200), schemes (recursive, rolling and fixed), methods (ML, MML and OLS) and
models.

In Tables 6.1 to 6.4 we report the average of ME, MAE and RMSE over
2000 iterations of model-1 considering different design matrices, schemes and
sample sizes. The results show that as the sample size n increases, the average
RMSEs for all predictors decreases. The comparative performances of different
forecasting methods show that thc OLS method outperforms the other methods in the
sense that it has the minimum average RMSE. The performance of the ML based
method was the second best and MML performed the worst. The ME and the MAE
also support the overall good performance of the OLS method. Over the different
design matrices, OLS has the lowest average RMSE for X and the highest for X,.

From Tables 6.5 to 6.8, we observe that the forecasting performance of the
OLS method is the best compared to other methods for model-2 considering the
average of ME, MAE and RMSE for different design matrices, schemes, and sample
size. A trait of model-2 is that the MML method has the second best performance
and the worst performance comes from ML. The difference between the best and
worst performances is (.0218, 0.0235, 0.0001 and 0.0559 in terms of RMSE
respectively when sample sizes are 25, 50, 100 and 200. The above analysis means

that when the sample size increases, the distance between best and worst becomes
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narrow and then wide. The recursive scheme has the best performance and the
rolling scheme has the second best while the fixed scheme has the worst
performance. The difference betwees the best and worst performances of recursive
scheme is 0.0787 in terms of RMSE when the sample size is 50. We have found the
difference is not statistically significant.

The estimated average of ME, MAE and RMSE for different methods
without considering different models, design matrices and sample sizes shows that
OLS performs best, MML is the second best and ML is the worst performed method,
The difference between the best and worst performances is 0.0554 in the context of
RMSE. The recursive scheme gives the smallest prediction errors on average, and
therefore is the best performed scheme, the roliing scheme performed second best
and the fixed scheme works relatively poorly. The difference between the best and
worst performance is 0.0119 in the context of RMSE when the sample size is 25 and
for design matrix X, 5

In Tables 6.9 t0 6.12 we report the average of ME, MAE and RMSE for
model-3 considering different design matrices, schemes and sample sizes. The
results show that as the sample size n increases, the average RMSE for all predictors
decrease. The comparative performances of different forecasting methods show that
the MML estimator outperforms the other methods in the sense that it has the
minimum average RMSE. The performance of the ML estimator was the second
best and the OLS estimator performed worst. The ME and MAE results aiso support
the overall good performance of the MML method. The performance of the
recursive scheme is the best, the rolling scheme is the second best and the fixed

scheme is the worst.
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The estimated averages of MAE and RMSE for model-4 for different design
matrices and sample sizes are reported in Tables 6.13 to 6.16. A characternistic of
model-4 is that the MML method performs best in the sense that it gives minimum
average RMSEs in the case of all schemes and sample sizes. The ML method has the
second best performance. The worst performance is from OLS. A clear feature of
the results is that when the sample size increases, the gap between best and worst
becomes wider. The results also show that as the sample size » increases, the
average RMSEs for all predictors decrease. In other words, the performance of
predictors changes with an increase in the sample size. The performance of the
recursive scheme is the best, the rolling scheme is the second best and the fixed
scheme is the worst.

From Tables 6.17 to 6.20, we observe that the forecasting perfomance of
the MML method is the best compared to other methods for model-5 based the
average of MAE and RMSE for different design matrices, schemes, and sample
sizes. A trait of model-5 is that the ML method has the second best performance.
The OLS method gives the worst performance. The difference between the best and
worst performances is 0.0157, 0.0166, 0.0186 and 0.0459 in terms of RMSE
respectively when sample sizes are 25, 50, 100 and 200. We have found that these
differences are not statistically significant. The above analysis means that when the
sample size increases, the distance between best and worst becomes broader, The
recursive scheme has the best performance and the rolling scheme has the second
best performance while the fixed scheme has the worst performance. The estimated
average prediction errors for different methods without considering different models,

design matrices and sample sizes shows that the MML performs best and ML is the
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second best performed method. The worst performance is from OLS (in terms of
MAE and RMSE). The dijfference between the best and worst performances is
0.01460 in context of RMSE. The recursive scheme gives minimum RMSE, and so
is the best performed scheme, the rolling scheme performed second best and the
fixed scheme works very poorly. The difference between the best and worst
performance is 0.0139 in the context of RMSE, which is not statistically significant.
The estimated predicted errors generally decrease as the sample size increases.

The estimated average prediction errers for different methods without
considering different models, schemes, design matrices and sample sizes shows that
the MML mcthod performs best, ML is the second best and OLS has the worst
performance,

Overall, in the case of models | and 2 OLS, gives minimum average
RMSEs, on the other hand, in case of models 3 to 5, MML methods gives minimum
average RMSEs, The estimated predicted average RMSE and MAE generally
decreases as the sample size increases. Overall, one would have to recommend the
use of MML method for models 3 to 5 and the OLS method for models 1 and 2
because their use can result an improvement in prediction in the sense of the

minimum RMSE and MAE,
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6.8 Conclusions

In this chapter, we investigated the forecasting performance of the linear
regression model with a random change in coefficients. We derived the
distributional patterns and especially the mean, variance and covariance structure of
different linear regression models for stochastic changes in either the slope or
intercept parameters in turn by a fixed amount with a very low probability. We
found that this resulted in a linear regression with a nonscalar variance-covariance
matrix, which allows standard approaches to estimation and prediction to be used.

We compared the predictive performances for three methods of estimation
of parameters, three different schemes, four different sample sizes and five different
models in turn and evaluated the forecasting performance of the estimators using
RMSE, MAE and ME. The simulation results convey that the MML estimator is
clearly better than the other estimator in terms of small sample properties for models
3 to 5, on the other hand the OLS estimator is better than others in the case of models
I and 2. In addition, the MML estimator is quite promising in terms of average ME,
MAE and RMSE. Estimation of covariance matrix parameters in the models
demonstrate that if estimation is based on maximizing the marginal likelthood rather
than the classical likelihood, then the average of ME, MAE and RMSE can be
reduced for model-3 to model-5. In contrast for model-1 and model-2 predictions
from OLS are quite different from those of MML and ML methods.

The results based on different prediction schemes show that recursive
forecasts perform better than other forecasts. From the discussion of the results, we

found that overall, the adaptation of the recursive scheme is always the optimal




Chapter 6 Prediction in the Presence of Structural Change 219

choice. We, therefore, recommend the use of the OLS method and recursive scheme
for models 1 and 2, and the MML method and recursive scheme when we deal with a
situation in which there are possible random changes in either the intercept or slope
of the model.

This study has some limitations that suggest that one has to take extreme
care in making too many generalized conclusions from the resuits based on the
Monte Carlo experiments. The results achieved by Monte Carlo experiments are
often specific to the design of the experiment.

There is thus perhaps scope for further studies regarding the factors
responsible for coefficient changes, testing the significance and censtructing the
confidence intervals of the changing parameters, as well as construction of prediction
intervals. It would also be interesting to see how our predictors behave for different

forecast lead times.
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Table 6.1 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-1 when 177=25

Scheme

Method

Recursive

Rolling

Fixed

ME

MAE

RMSE

ME MAE

RMSE

ME

MAE

RMSE

ML
MML

OLS

ML
MML
OLS

ML
MML
OLS

ML
MML

OLS

ML
MML
OLS

0.0560
0.0558

0.0553

0.0464
0.0468
(.0459

0.0463
0.0473
0.0461

0.0479
0.0483

0.0472

0.0481
0.0479
0.0476

1.0908
1.0912

1.0901

1.0573
1.0567
1.0562

1.0587
1.0590

1.0585

1.0603
1.0596

1.0591

1.0612
1.0605
1.0602

1.3517
1.3514

1.3505

1.3321
1.3321
1.3319

1.3344
1.3341
1.3343

1.3361
1.3362
1.3355

X1
0.0675 1.1750
0.0669 1.1744
0.0668 1.1737

X2
0.0493 1.0621
0.0492 1.0614
0.0482 1.0613

X3
0.0491 1.0654
0.0497 1.0644
0.0485 1.0642

X4
0.0501 1.0619
0.0502 1.0621
0.0493 1.0616

X5
0.0491 1.0615
0.0490 1.0616

0.0487 1.0604

1.4712
14711

1.4701

1.3328
1.3329

1.3323

1.3373
1.3370

1.3368

1.3348
1.3351

1.3347

1.3354
1.3345
1.3342

0.0869
0.0864

0.0857

0.0450
0.0485

0.0481

0.0490
0.0490
0.0480

0.0518
0.0515
0.0509

0.0526
0.0529

0.0522

1.1921
1.1920

1.1918

1.0746
1.0750

1.0737

1.0764
1.0770

1.0757

1.0629
1.0632
1.0622

1.0601
1.0606
1.0593

1.5084
1.5094

1.5081

1.3345
1.3346
1.3339

1.3412
1.3411

1.3408

13354
1.3350
1.3342

1.3147
1.3156
1.3145
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Table 6.2 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-1 when x7=2¢

Scheme

Method

Recursive

Rolling

Fixed

ME MAE RMSE

ME MAE RMSE

ME

MAE

RMSE

ML
MML
OLS

ML
MML
OLS

ML
MML
OLS

ML
MML
OLS

ML
MML
OLS

0.0736
0.0735
0.0726

0.0687
0.0685
0.0676

0.0715
0.0717

0.0706

0.0732
0.0724
0.0720

0.0728
0.0720

0.0717

0.9812
0.9823
0.9810

0.9769
0.9765
0.9761

0.9757
0.9757

0.9748

0.9762
0.9754
0.9751

0.9751
0.9752

0.9744

1.2254
1.2261

1.2249

1.1981
1.1983

1.1972

1.1979
1.1985

1.1973

1.1991
1.1985

1.198%

X1
0.0738 0.99%91
0.0733 0.9987
0.0731 0.9985

X2
0.0744 0.9791
0.0744 09784
0.0739 0.9781

X3
0.0695 0.9777
0.0695 0.9785
0.0692 0.9773

X4
0.0729 0.9768
0.0734 0.9770
0.0727 0.9765

X5
0.0746 0.9788
0.0757 0.9793
0.0744 0.9784

1.2575
1.2580

1.2568

1.2030
1.2037

1.2028

1.2002
1.1990

1.1989

1.1991
1.2000

1.1988

1.1989
1.1985
1.1979

0.074%
0.0756
0.0744

0.0705
0.0703
0.0693

0.0736
0.0730

0.0725

0.0743
0.0744
0.0735

0.0748
0.0742
0.0737

1.0105
1.0112
1.0101

0.9803
0.9799
0.9794

0.9792
0.9792
0.9786

0.9780
0.9779
0.9772

0.9792
0.9793

0.9787

1.2667
1.2661

1.2660

1.2063
1.2057
1.2056

1.1964
1.1960
1.1954

1.1973
1.1967
1.1964

1.1996
119

1.1988
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Table 6.3 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-1 when # =100

Scheme
Method Recursive Rolling
ME MAE RMSE ME MAE RMSE ME MAE RMSE
X1
ML 0.0610 0.0468 0.9292
MML 0.0603 0.0473 0.9293
OLS 0.0599 0.0466 0.9284
X2
ML 0.0629 0.0631 0.9271
MML 0.0630 0.0637 0.926%
OLS 0.0618 0.0630 0.9267
X3
ML 0.0715 0.0702 0.9162
MML (0.0713 0.0703 0.9155
OLS 0.0707 0.0697 0.9154
X4
ML 0.0646 0.0634 0.9104
MML 0.0654 0.0632 0.9100
OLS 0.0644 0.0631 0.9099
X5
M. 0.0654 0.0621 0.9067
MML 0.0657 0.0625 0.9058
OLS 0.0649 0.0613 0.9056
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Table 6.4 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-1 when 11 =200

Scheme

Recursive

Rolling

ME MAE RMSE

ME MAE RMSE

X1
0.0505 0.8726
0.0497 0.8728
0.0492 0.8719

X2
0.0479 0.9581
0.0477 0.9578
0.0468 0.9574

X3
0.0406 0.9012
0.0411 0.9012
0.0403 0.9004

X4
0.0734 1.0938
0.0737 1.0932
0.0726 1.0929

X3
0.0515 0.9126
0.0518 0.9134

0.0511 0.9124

ME MAE RMSE
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Table 6.5 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-2 when 171 =25

Scheme
Method Recursive Rolling Fixed
ME MAE RMSE ME MAE RMSE ME MAE RMSE
X1

ML 0.0479 1.0399 1.2968 0.0564 1.1266 1.4096 0.0758 1.1376 1.4447

MML 0.0479 1.0396 1.2962 0.0565 1.1267 1.4101 0.0757 1.1367 1.4452

OLS 0.0474 1.0389 1.2957 0.0555 1.1260 1.4090 0.0745 1.1364 1.4440
X2

ML 0.0359 1.0120 1.2721 0.0374 1.0128 1.2718 0.0364 1.0234 1.2754

MML 0.0367 1.0124 1.2721 0.0381 1.013% 12723 0.0370 1.0233 1.2751

OLS 0.0354 1.0118 12712 0.0371 1.0121 1.2712 0.0362 1.0225 1.2743
X3

ML 0.0372 1.0119 1.2761 0.0380 1.0145 1.2766 0.0397 1.0259 1.2804

MML 0.0374 1.0121 1.2770 0.0382 1.0147 1.2756 0.0395 1.0260 1.2797

OLS 0.0363 1.0110 1.2760 0.0373 1.0139 1.2755 0.0393 1.0248 1.2792
X4

ML (.0366 1.0093 1.2731 0.0373 1.0140 12740 0.0394 1.0158 1.2754

MML 0.0367 1.0098 1.2726 0.0382 1.0134 1.2749 0.0396 1.0152 1.2748

OLS 0.0357 1.0091 1.2724 0.0372 1.0130 1.2738 0.0391 1.0146 1.2745
X35

ML 0.0363 1.0106 1.2746 0.0374 1.0103 1.2744 0.0414 1.0135 1.2548

MML 0.0362 1.0106 1.2749 0.0373 1.0113 1.2752 0.0412 1.0133 1.2553

OLS 0.0356 1.0096 1.2739 0.0370 1.0100 1.2742 0.0401 1.0129 1.2544
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Table 6.6 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-2 when 77 =50

Scheme

Method

Recursive

Rolling

Fixed

ME

MAE RMSE

ME MAE RMSE

ME

MAE RMSE

ML
MML
OLS

ML
MML
OLS

ML
MML
OLS

ML
MML

OLS

ML
MML
OLS

0.0612
0.0610
0.0605

0.0612
0.0616

0.06067

0.0599
0.0609

0.0597

0.0592
0.0596
0.0585

0.0608
0.0606
0.0603

0.9346 1.1674
0.9350 1.1671
0.9339 1.1662
0.9329 1.1475
0.9323 1.1475
0.9318 1.1473
0.9295 1.1434
0.9298 1.1426
0.9293 1.1424
0.9303 1.1430
0.9296 1.1427
0.9291 1.1419
0.9321 1.1433
0.9314 1.1434

09311 1.1427

X1
0.0639 0.9540
0.0633 0.9534
0.0632 0.9527

X2
0.0630 0.9343
0.0629 0.9336
0.0619 0.9335

X3
0.0589 0.9326
0.0595 0.9316
0.0583 0.9314

X4
0.0599 0.9294
0.0600 0.9296
0.0591 0.9291

X5
0.0623 0.9332
0.0622 0.9333

0.0619 0.9321

1.2052
1.2051
1.2041

1.1482
1.1483

1.1477

1.1446
1.1443

1.1441

1.1429
1.1432

1.1428

1.1439
1.1450

1.1447

0.0638
0.0633

0.0626

0.0604
0.0599

0.0595

0.0631
0.0631

0.0621

0.0609
0.0606
0.0600

0.0617
0.0620
0.0613

0.9655 1.2096

0.9654 1.2106
0.9652 1.2093
0.9347 1.1524
0.9351 1.1525
0.9338 1.1518
0.9325 1.1441
0.9331 1.1440
0.9318 1.1437
0.9324 1.1428
0.9327 1.1424
0.9317 1.1416
0.9321 1.1454
0.9326 1.1463

09313 1.1452
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Table 6.7 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-2 when 17 =100

Scheme

Method

Recursive

Rolling

Fixed

ME MAE RMSE

ME MAE RMSE

ME MAE

RMSE

ML
MML
OLS

ML
MML
OLS

ML
MML
OLS

ML
MML
OLS

ML
MML
OLS

0.0507
0.0505
0.0498

0.0507
0.0500

0.0498

0.0601
0.0594
0.0590

0.0535
0.0540

0.0531

0.0539
0.0544
0.0536

0.8800
0.88G0

0.8787

0.8714
0.8719
0.8710

0.8699
0.8694
0.8690

0.8648
0.8652

0.8645

0.8603
0.8599
0.8595

1.0364
1.0358

1.0352

1.0482
1.0483
1.0477

1.0430
1.0428

1.0419

1.0385
1.0376

1.0373

1.0357
1.0355
1.0353

X1
0.0361 0.8841
0.037t 0.8846
0.0359 0.8839

X2
0.0526 0.8873
0.0527 0.8877
0.0521 0.8870

X3
0.0584 0.8739
0.0594 0.8731
¢.0581 0.8727

X4
0.0558 0.8672
0.0556 0.8677
0.0551 0.8667

X5
0.0549 0.8660
0.0544 0.8653

0.0536 0.8651

1.1062
1.1054

1.1050

1.0574
1.0578

1.0565

1.0490
1.0495
1.0489

1.0420
1.0418

1.0408

1.0384
1.0388
1.0378

0.0289 0.8759

0.0280 0.8758
0.0277 0.8748
0.0606 ©.8877
0.0607 0.8875
0.0596 0.8872
0.0570 0.8794
0.0577 0.8798
0.0565 0.8788
0.0600 0.8722
0.0603 0.8722
0.0591 0.8715
0.0557 0.8684
0.0594 0.8687

0.0592 0.8678

1.1234
1.1243

1.1233

1.0811
1.0821

1.0810

1.0534
1.0531

1.0528

1.0917
1.0926

1.0914

1.0333
1.0337
1.0326
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Table 6.8 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-2 when # =200

Scheme

Method

Recursive

Rolling

Fixed

ME

MAE RMSE

ME MAE RMSE

ME MAE RMSE

ML
MML
OLS

ML
MML
OLS

ML
MML
OLS

ML
MML

OLS

ML
MML

OLS

0.0384
0.0386

0.0380

0.0386
0.038G

0.0374

0.0334
0.0334
0.0328

0.0612
0.0612

0.0602

0.0389
0.0388
0.0381

0.8264
0.8290
0.8286

0.8507
0.8512

0.8504

0.8568
0.8565
0.856!

1.0416
1.0421

1.0409

0.8684
0.8681
0.8672

1.0354
1.0356
1.0346

1.0711
1.0706

1.0703

1.0740
1.0743

1.0730

1.5384
1.5380

1.5371

1.0908
1.0914
1.0905

X1
0.0386 0.8305
0.0382 0(.8308
0.0379 0.8296

X2
0.0358 0.9163
0.0360 0.9173
0.0351 0.9161

X3
0.0330 0.8565
0.0330 0.8577
0.0324 0.8564

X4
0.0614 1.0426
0.0620 1.0430
0.0613 1.0425

X5
0.0418 0.8593
0.0418 0.8704
0.0406 0.8691

1.0355
1.0363

1.0353

1.1394
1.1397

1.1387

1.073%
1.0734
1.0728

1.5381
1.5372
1.5369

1.0915
1.0917

1.0905

0.0375
0.0378

0.0373

0.0351
0.0344

0.0342

0.0341
0.0341
0.0331

0.0624
0.0630

0.0618

0.0420
0.0416

0.0408

0.8277
0.8288
0.8276

0.9204
0.9197

0.9192

0.8562
0.8558

0.8555

1.0420
1.0426

1.0413

0.8721
0.8716
0.8710

1.0350
1.0349

1.0346

1.1497
1.1499

1.1490

1.0754
1.0754
1.0745

1.5396
1.5388

1.0789
1.0779
1.0778
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Table 6.9 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-3 when 7 =25

Scheme
Method Recursive Rolling Fixed
ME MAE RMSE ME MAE RMSE ME MAE RMSE
X1

ML 0.0335 1.0063 1.2669 0.0474 1.0990 1.3791 0.0636 1.1128 1.4138
MML 0.0327 0.9970 1.2566 0.0450 1.0981 1.3648 0.0632 1.1071 1.4105
OLS 0.0418 1.0218 1.2779 0.0499 1.1083 1.3868 0.0687 1.1203 1.4222
X2
ML  0.0308 0.9937 12508 0.0316 0.9947 1.2517 0.0323 1.0045 1.2533
MML 00295 09924 1.2495 0.0314 0.9946 1.2515 0.0321 1.0043 1.2532
OLS 0.0317 0.9946 1.2517 0.0323 09954 1.2524 0.0331 1.0053 1.2541
' X3
‘ ML 00315 0.9946 1.2546 0.0522 0.9957 1.2558 0.0338 1.0069 1.2583
MML 0.0308 0.9939 12538 0.0319 0.9954 12555 0.0337 1.0069 1.2583
OLS 0.0319 0.9950 1.2550 0.0326 0.9961 1.2562 0.0343 1.0074 1.2588

X4

ML  0.0312 09921 1.2523 0.0321 0.9951 1.2531 0.0333 0.9964 12539

MML 0.0304 0.9914 1.2516 0.0318 0.9948 1.2528 0.0333 0.9964 1.2531

OLS 0.0316 0.9925 1.2527 0.0325 0.9955 1.2535 0.0338 0.9969 1.2545
X5

ML 0.0312 09923 1.2524 0.0320 0.9932 1.2532 0.0339 0.9946 1.2336

MME 0.0305 0.9922 1.2517 0.0317 0.9929 1.2529 0.0338 0.9946 1.2332

OLS 0.0316 09926 1.2528 0.0325 0.9936 1.2536 0.0344 0.9952 1.2339
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Table 6.10 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-3 when » =50

Scheme

Method

Recursive

Rolling

Fixed

ME

MAE RMSE

ME MAE RMSE

ME MAE RMSE

ML
MML
OLS

ML
MML
OLS

ML
MML
OLS

ML
MML
OLS

ML
MML
OLS

0.0541
0.0540

0.0544

0.0538
0.0531
0.0552

0.0536
0.0529

0.0542

0.0536
0.0540

0.0529

0.0538
0.0532

0.0545

0.9169
0.9165
0.9183

0.9143
0.9136

0.9157

0.9131
09113

0.9137

0.9135
0.9139

0.9127

0.9134
0.9132
0.9145

1.1433
1.1398
1.1472

1.1242
1.1216
1.1292

1.1229
1.1222

1.1235

1.1234
1.1238
1.1227

1.1239
1.1234
1.1244

X1
0.0576 0.9352
0.0565 0.9350
0.0590 0.9369

X2
0.0534 0.9152
0.0528 0.9141
0.0557 0.9173

X3
0.0543 0.9141
0.0542 0.9138
0.0558 0.9154

X4
0.0547 0.9143
0.0554 0.9150
0.0533 0.9129

X3
0.0553 0.9141]
0.0547 0.9134
0.0561 0.9154

1.1812
1.1804
1.1892

1.1269
1.1233
1.1292

1.1243
1.1230

1.1256

1.1247
1.1254
1.1233

1.1239
1.1235
1.1252

0.0586
0.0582
0.0592

0.0534
0.0529
0.0544

0.0546
0.0545
0.0564

0.0558
0.0568
0.0537

0.0547
0.0546
0.0567

0.9474
0.9465

(.9488

0.9163
0.9151

0.9190

0.9139
0.9131
0.9160

0.9153
0.9164
0.9132

0.9147
0.9143
0.9168

1.1887
1.1876
1.1906

1.1306
1.1301

1.1350

1.1251
[.1241

1.1271

1.1214
1.1207
1.1228

1.1246
1.1242
1.1267
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Table 6.11 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-3 when 1 =100

Scheme

Method

Recursive

Rolling

Fixed

ME MAE RMSE

ME MAE RMSE

ME MAE RMSE

ML

OLS

ML
MML
OLS

ML
MML
OLS

ML
MML
OLS

ML
MML
OLS

0.0439
0.0431

0.0446

0.0436
0.0429
0.0442

0.0490
0.0451

0.0529

0.0453
0.0434

0.0472

0.0462
0.0436
0.0483

0.8624
0.8618

0.8629

0.8546
0.8541

0.8550

0.8504
0.8470
0.8538

0.8475
0.8456
0.8493

0.8441
0.8428
0.8455

1.0171
1.0168

1.0174

1.0291
1.0282
1.0299

1.0216
1.0181

1.0251

1.0185
1.0166

1.0203

1.0170
1.0157
1.0184

X1
0.0320 0.8676
0.0317 0.8673
0.0323 0.8679

X2
0.0452 0.8675
0.0442 0.8631
0.0462 0.8719

X3
0.0492 0.8555
0.0450 0.8511
0.0534 0.8599

X4
0.0478 0.8501
0.0448 0.8471
0.0508 0.8531

X5
0.0466 0.8469
0.0441 0.8443
0.0492 0.83494

1.0863 0.0222

1.0859 0.0219
1.0866 0.0225
1.0362 0.0526
1.0329 0.0482
1.0394 0.0569
1.0275 0.0472
1.0235 0.0429
1.0315 0.0514
1.0213 0.0508
1.0183 0.0465
1.0243 0.0550
1.0197 0.0493
1.0171 0.0455

1.0223 0.0531

0.8594
0.8591
0.8596

0.8686
0.8638

0.8735

0.8603
0.8553

0.8652

0.8533
0.8490
0.8576

0.8499
0.8461
0.853¢6

1.1041
1.1038

1.1043

1.0526
1.0413
1.0639

1.0303
1.0251

1.0346

1.0697
1.0655

1.0740

1.0125
1.0087
1.0162
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Table 6.12 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-3 when 17 =200

Scheme

Method

Recursive

Rolling

Fixed

ME MAE RMSE

ME MAE RMSE

ME

MAE RMSE

ML
MML
OLS

ML
MML
OLS

ML
MML
OLS

ML
MML
OLS

ML
MML
OLS

0.0327
0.0321

0.0332

0.0322
0.0321

(.0323

0.0276
0.0273
0.0279

0.0544
0.0543

0.0544

0.0336
0.0333
0.0338

0.8138
0.8135
0.8142

0.8346
0.8343
0.8349

0.8400
0.8395
0.8404

1.0236
1.0235
1.0237

0.8524
0.8522
0.8526

1.0169
1.0166

1.0172

1.0526
1.0523
1.0529

1.0549
1.0545

1.0554

1.5132
1.5132

1.5132

1.0715
1.0713

1.0717

X1
0.0322 0.8143
0.0319 0.8138
0.0324 0.8149

X2
0.0293 0.8990
0.0287 0.8985
0.0298 0.8995

X3
0.0281 0.8403
0.0278 0.8400
0.0285 0.8407

X4
0.0548 1.0241
0.0546 1.0238
0.0551 1.0243

X5
0.0345 0.8536
0.0343 0.8532
0.0355 0.8540

1.0173
1.0168

1.0177

11215
1.1208

1.1223

1.0553
1.0551
1.0556

1.5138
1.5136

1.5141

1.0727
1.0723
1.0731

0.0321
0.0319

0.0324

0.0285
0.0282

0.0288

0.6282
0.0279
0.0286

0.0556
0.0550
0.0562

0.0347
0.0343
0.0352

0.8139 1.0171

0.8136 1.0168

0.8141 1.0173

0.9023 1.1293
0.9021 1.1290

0.9026 1.1295

0.8412 1.0557
0.8406 1.0555
0.8418 1.0560
1.0245 1.5141
1.0241 1.5138

1.0250 1.5143

0.8546 1.0612

0.8541 1.0608

0.8555 1.0618
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Table 6.13 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-4 when 17 =25

Scheme

Method

Recursive

Rolling

Fixed

ME MAE RMSE

ME MAE

RMSE

ME MAE RMSE

ML
MML
OLS

ML
MML
OLS

ML
MML
OLS

ML
MML
OLS

ML
MML

OLS

0.0390
0.0363
0.0518

0.0358
0.0349

0.0383

0.0391
0.0387

0.0399

0.0349
0.0331
0.0390

0.0372
0.0369

0.0387

1.0109
0.9985

1.0304

1.0039
1.0012

1.0041

0.9983
0.9965
1.0022

0.9995
0.9968
1.0009

0.9976
0.9936

1.0018

1.2717
1.2664

1.2816

1.2534
1.2531

1.2595

1.2586
1.2585

1.2656

1.2575
1.2568
1.2608

1.2591
1.2562
1.2637

Xi
0.0548 1.1067
0.0515 1.1049
0.0598 1.1160
X2
0.0342 0.9999
0.0333 0.9994
0.0410 1.0039
X3
0.0380 1.0035
0.0353 1.0012
0.04i1 1.0067
X4
0.0341 1.0023
0.0336 1.0001
0.0410 1.0055
X5
0.0354 0.9969
0.0348 0.9954
0.0406 1.0016

1.3859
1.3848
1.3965

1.2565
1.2562

1.2588

1.2605
1.2594

1.2634

1.2582
1.2552
1.2628

1.2621
1.2615
1.2634

0.0723
0.0696

0.0785

0.0351
0.0345

0.0384

0.0414
0.0411

0.0434

0.0394
0.0368

0.0435

0.0410
0.0389
0.0448

1.1195
1.1174

1.1245

1.0134
1.0083
1.0146

1.0165
1.0144
1.0170

1.0045
1.0022

1.0074

1.0003
0.9999
1.0056

1.4201
1.4142

1.4303

1.2594
1.2574
1.2632

1.2627
1.2611
1.2681

1.2577
1.2570

1.2632

1.2384
1.2376
1.244]
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Table 6.14 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Medel-4 when 7 =50

Scheme

Method

Recursive

Rolling

Fixed

ME MAE RMSE

ME MAE RMSE

ME

MAE RMSE

ML
MML
OLS

ML
MML
OLS

ML
MML
OLS

ML
MML
OLS

ML
MML
OLS

0.0605
0.0565

0.0651

0.0624
0.0588
0.0648

0.0592
0.0556
0.0637

0.0607
0.0575

0.0626

0.0616
0.0611
0.0646

0.9231
0.9228
0.9266

0.9205
0.9202
0.9249

0.9163
0.9162

0.9221

0.9186
0.9184
0.9226

0.9236
0.9219
0.9247

1.1447
1.1443

1.1565

1.1355
1.1332
1.1372

1.1311
1.1303

1.1332

1.1308
1.1301

1.1330

1.1305
1.1294
1.1329

X1
0.0652 0.9426
0.0636 0.9394
0.0658 0.9451

X2
0.0602 0.9230
0.0593 0.9207
0.0665 0.9268

X3
0.0592 0.9198
0.0578 0.9160
0.0594 0.9244

X4
0.0607 0.9201
0.0596 0.9169
0.0634 0.9225

X3
0.0621 09186
0.0577 0.9181
0.0662 0.9259

1.1836
1.1829

[.1893

1.1351
1.1328
1.1380

1.1336
1.1280

1.1344

1.1311
1.1273

1.1341

1.1313
1.1297
1.1360

0.0633
0.0617
0.0644

0.0616
0.0606
0.0632

0.0620
0.0604

0.0663

0.0623
0.0610
0.0648

0.0578
0.0573
0.0643

0.9544 1.1964

0.9523 1.1911
0.9579 1.1983
0.9234 1.1342
0.9221 1.1338
0.9257 1.1403
0.9231 1.1284
0.9199
0.9247 1.1321
0.9221 1.1311
09212 1.1311
0.9273 1.1323
09213 1.1318
0.9207 1.1299

0.9229 1.1355

1.1281
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Table 6.15 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-4 when » =100

Scheme

Method

Recursive

Rolling

Fixed

ME MAE RMSE

ME MAE RMSE

ME MAE

RMSE

ML
MML
OLS

ML
MML
OLS

ML
MML
OLS

ML
MML
OLS

ML
MML
OLS

0.0518
0.0490

0.0538

0.0512
0.0460
0.0541

0.0530
0.0518
0.0636

0.0511
0.0500

0.0576

0.0522
0.0512

0.0571

0.8693
0.8673
0.8728

0.8639
0.8630
0.8656

0.8574
0.8537

0.8628

0.8565
0.8534

0.8585

0.84%94
0.8455

0.8524

1.0266
1.0236

1.0275

1.0292
1.0211

1.0330

1.0240
1.0222

1.0288

1.0186
1.0184
1.0267

X1
0.0383 0.8747
0.0373 0.8736
0.0387 0.8781

X2
0.0521 0.8726
0.0482 0.8693
0.0567 0.8802

X3
0.0510 0.8630
0.0505 0.8525
0.0613 0.8640

X4
0.0539 0.8571
0.0512 0.8551]
0.0581 0.8589

X5
0.05G2 0.8543
0.0492 0.8541

0.0567 0.8596

1.0931
1.0911

1.0963

1.0426
1.0399
1.0476

1.0352
1.0265

1.0405

1.0241
1.0225
1.0316

1.0244
1.0213
1.0277

0.0290 0.3647

0.0251 0.8628
0.0323 0.8684
0.0587 0.8739
0.0564 0.8733
0.0609 0.8790
0.0539 0.8658
0.0436 0.8646
0.0602 0.8707
0.0564 0.8622
0.0502 0.8527
0.0618 0.8639
0.0538 0.8535
0.0521 0.8526

0.0638 0.8606

1.1130
1.1087

1.1147

1.0621
1.0511
1.0715

1.0354
1.0315
1.0451

1.0757
1.0686

1.0819

10171
1.0150
1.0235
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Table 6.16 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-4 when 17 =200

Scheme

Method

Recursive

Rolling

Fixed

ME

MAE RMSE

ME MAE RMSE

ME MAE RMSE

ML
MML
OLS

ML
MML
OLS

ML
MML
OLS

ML
MML
OLS

ML
MML
OLS

0.0385
0.0365

0.0418

0.0364
0.0362
0.0416

0.0306
0.0303

0.0368

0.0640
0.0615
0.0645

0.0386
0.0370
0.0415

0.8192 1.0232
0.8160 1.0215
0.8226 1.0265
0.8428 1.0586
0.8422 1.0577
0.8449 1.0614
0.8455 1.0591
0.8443 1.0589
0.8508 1.0643
1.0265 1.5202
1.0262 1.5171
1.0324 1.5231
0.8567 1.0759
0.8556 1.0729

0.8604 1.0825

X1
0.0374 0.8225

0.0367 0.8209
0.0425 0.8239
X2
0.0355 0.9064
0.0333 0.9052
0.0396 0.9102
X3
0.0333 0.8426
0.0319 0.3412
0.0355 0.8511
X4
0.0599 1.0323
0.0596 1.0276
0.0660 1.0351
X5
0.0408 0.8579
0.0364 0.8572
0.0448 0.8629

1.0257
1.0235

1.0274

1.1244
1.1243

1.1270

1.0580
1.0579

1.0637

1.5198
1.5192

1.5218

1.0794
1.0765

1.0811

0.0388
0.0388
0.0412

0.0334
0.0328

0.0387

0.0332
0.0321
0.0367

0.0597
0.0585
0.0658

0.0375
0.0368
0.0453

0.8173
0.8165

0.8207

0.9105
0.9074
0.9132

0.8451
0.8438

0.8482

1.0299
1.0275

1.0320

0.8597
0.8585
0.8651

1.0237
1.0234

1.0264

1.1337
1.1324
1.1403

1.0640
1.0632
1.0665

1.5227
1.5170
15244

1.0637
1.0637
1.0673
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Table 6.17 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-5 when n=25

Scheme

Method

Recursive

Rolling

Fixed

ME MAE RMSE

ME MAE

RMSE

ME MAE RMSE

ML
MML
OLS

ML

MML

OLS

ML

MML
OLS

ML
MML
OLS

ML
MML
OLS

0.0493
0.0379

$.0533

0.0394
0.0381
0.0489

0.0404
0.0361
0.0476

0.0455
0.0432

0.0506

0.0480
0.0471
0.0517

1.0272 1.2808

1.0063 1.2727
1.0408 1.2844
0.9995 1.2613
0.9986 1.2570
1.6027 1.2711
1.0054 1.2632
1.0054 1.2588
1.0090 1.2747
1.0028 1.2623
1.0001 1.2605
1.0114 1.2725
1.0098 1.2665
1.0011 1.2659

1.0126 1.2737

X1
0.0616 1.1111
0.05%4 1.1083
0.0672 1.1141

X2
0.0453 1.0082
0.0375 1.0069
0.0505 1.0126

X3
0.0405 1.0026
0.0372 1.0024
0.0511 1.0152

X4
0.0515 1.0072
0.0512 1.0056
0.0526 1.0115

X5
0.0422 1.0055
0.0406 1.0007

0.0519 1.0132

1.3923
1.3850

1.3967

1.2695
1.2653

1.2726

1.2643
1.2614
1.2765

1.2706
1.2629

1.2731

1.2693
1.2608
1.2716

0.0776
0.0689

(.0844

0.0518
0.0462

0.0529

0.0435
0.0404

0.0478

0.0444
0.0428
0.0532

0.0487
0.0404

0.0543

1.1235 14236

1.1173  1.4205
1.1399 1.4351
1.0224  1.2665
1.0164 1.2659
1.0255 1.2713
1.0227 1.2691
1.0162 1.2657
1.0268 1.2794
1.0064 1.2675
1.0051 1.2617
1.0107 1.2718
1.0020 1.2520
1.0008 1.2437

1.0071 1.2534
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Table 6.18 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-5 when 7=50

Scheme

Method

Recursive

Rolling

Fixed

ME

MAE RMSE

ME MAE RMSE

ME MAE RMSE

ML
MML
OLS

ML
MML

OLS

ML
MML
OLS

ML
MML
OLS

ML
MML
OLS

0.0665
0.0644

0.0729

0.0611
0.0600
0.0637

0.0630
0.0626
0.0704

0.0691
0.0612
0.0742

0.0580
0.0578
0.0716

0.9348 1.1571

0.9323 1.1449
0.9373 1.1708
0.9250 1.1431
0.9220 1.1345
0.9296 1.1467
0.9206 1.1352
0.9201 1.1283
0.9301 1.1414
0.9263 1.1362
0.9211 1.1336
0.9300 1.1419
0.9223 1.1310
0.9207 1.1299

0.9266 1.1435

X1
0.0711 0.9426
0.0669 0.9420
0.0730 0.9520

X2
0.0666 0.9272
0.0641 0.9226
0.0740 0.9316

X3
0.0671 0.9271
0.0608 0.9239
0.0720 0.9324

X4
0.0677 0.9302
0.0663 0.9291
0.0748 0.9329

X3
0.0614 0.9288
0.0612 0.9230

0.0752 0.9330

1.1893
1.1878

1.1986

1.1442
1.1372

1.1473

1.1410
1.1367

{.1435

1.1343
1.1336
1.1437

1.1339
1.1298

1.1400

0.0733
0.0731
0.0770

0.0663
0.0624

0.0685

0.0632
0.0623

0.0714

0.0619
0.0611
0.0748

0.0665
0.0617
0.0758

0.9568
0.9534
0.9613

0.9339
0.9302

0.9351

0.9299
0.9245
0.9347

0.9273
0.9266

0.9294

0.9261
0.9240

0.9366

1.2043
1.1981

1.2071

1.1439
1.1355

1.1503

1.1309
1.1308

1.1391

1.1337
1.1302
1.1408

1.1392
1.1330
1.1422
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Table 6.19 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-5 when 77=100

Scheme
Method Recursive Rolling Fixed
ME MAE RMSE ME MAE RMSE ME MAE RMSE
o X1

ML  0.0584 0.8827 1.0265 0.0470 0.8775 1.0906 0.0288 0.8705 1.1192

MML 0.0554 0.8738 1.0248 0.0433 0.8734 1.0899 0.0268 0.8696 1.1176

OLS 0.0601 0.8820 1.0356 0.0499 0.8859 1.0955 0.0400 0.8766 1.1219
X2

ML 0.0555 0.8690 1.0434 0.0531 0.8788 1.0486 0.0642 0.8825 1.0670

MML 00481 0.8664 1.0434 0.0525 0.8772 1.0427 00601 0.8776 1.0557

OLS 0.0633 0.8727 1.0504 0.0630 0.8806 1.0545 0.0715 0.8913 1.0752
X3

ML 00596 0.8601 1.0377 0.0644 0.8682 1.0399 0.0572 0.8718 1.0403

MML 0.0540 0.8569 1.0336 0.0535 0.8650 1.0335 0.0479 0.8692 1.0369

OLS 0.0708 0.8706 1.0420 0.0712 0.8752 1.0432 0.0691 0.8773 1.0525
X4

ML 0.0536 0.8660 1.0343 0.0599 0.8624 1.0363 0.0689 0.8651 1.0811

MML 0.0535 0.8638 1.0339 0.0588 0.8597 1.0300 0.0663 0.8625 1.0751

OLS 0.0647 0.8679 1.0397 0.0617 0.8699 1.0414 0.0737 0.8712 1.0897
X5

ML 00583 0.8596 1.0295 0.0576 0.8584 1.0372 0.0593 0.8586 1.0220

MML 0.0525 0.8520 1.0219 0.0513 0.8565 1.0339 0.0568 0.8528 1.0217

OLS 0.0663 0.8625 1.0336 0.0597 0.8610 1.0423 00683 0.8640 1.0283
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Table 6.20 The Average of ME, MAE and RMSE Using Different Schemes,
Different Methods for Model-5 when 7 =200

Scheme

Method

Recursive

Relling

Fixed

ME

MAE RMSE

ME MAE

RMSE ME MAE RMSE

ML
MML
OLS

ML
MML
OLS

ML

MML

OLS

ML

MML

OLS

ML

OLS

0.0447
0.0420
0.0494

0.0446
0.0425

0.0510

0.0388
0.0373
0.0475

0.0640
0.0631

0.0685

0.0469
0.0456
0.0503

0.8303 1.0307

0.8298 1.0266
0.8315 1.0369
0.8453 1.0595
0.8405 1.0579
0.8464 1.0736
0.8542 1.0667
0.8527 1.0655
0.8602 1.0731
1.0363 1.0209
1.0314 1.0196
1.0428 1.0286
0.8604 1.0854
0.8579 1.0790

0.8671 1.0894

X1
0.0396 0.8257
0.0382 0.8237
0.0510 0.8328

X2
0.0372 0.9068
0.0363 0.9049
0.0493 0.5089

X3
0.0356 0.8527
0.0334 0.8514
0.0410 0.8597

X4
0.0681 1.0306
0.0612 1.0284
0.0719 1.0414

X5
0.0416 0.8614
0.0375 0.8611

0.0522 0.8707

1.0327
1.0306

1.0358

1.1341
1.1321
1.1413

1.0694
1.0693
1.0753

1.0263
1.0213
1.0315

1.0849
1.0840
1.0875

0.0470
0.0469

0.0504

0.04438
0.0419
0.0480

0.0389
0.0370
0.0468

0.0709
0.0664
0.0724

0.0516
0.0421
0.0536

0.8254
0.8210
0.8339

0.9148
0.9078
0.9214

0.8589
0.8557

0.8609

1.0324
1.0317
1.0445

0.8607
0.8598
0.8722

1.0333
1.0263

1.0360

1.0445
1.0427
1.0486

1.0598
1.0594

1.0637

1.0292
1.0271
1.0317

1.0732
1.0767
1.0804




CHAPTER 7

Summary and Concluding Remarks

7.1 Introduction

This thesis has investigated four important issues. The first was to develop
a small-sample procedure for calculating critical values of the LR test statistic for
testing a changepoint of unknown timing in the linear regression model. The second
was to investigate the use of IC model selection criteria for detecting a changepoint
and to find which criteria among some existing IC has the best ability to detect a
changepoint in the context of a linear regression model when the timing of the
changepoint is unknown. We used the average mean probability of correct selection
(AMPCS) criterion as a measure of the ability to detect a changepoint. The third was
to find a suitable algorithm for estimating appropriate optimal penalties that saves
computing time and at the same time, giving penalties which outperform all existing
1C mode] selection procedures when looking for a changepoint of unknown timing,.
This approach involves finding penalties that maximize the AMPCS.

Finally, this thesis investigated the distributional pattern of a linear model

with random changes in the parameter with low probability, derived the distribution

1
|
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of the changing parameter model, developed the variance-covariance matrices for
three special situations, and constructed ‘out of sample’ forecast procedures.

In the section that follows, we give a detailed discussion of the results and
contributions of this thesis. We conclude this chapter by giving aspects related to,
but not covered in this thesis, with some suggestions for potential topics for future

research.

7. 2 Summary of the Thesis

Chapter 2 reviewed three topics with particular emphasts on the problem of
a structural change. The survey began with a brief historical review of the structural
change literature particularly on hypothesis testing from a statistical and econometric
viewpoint. The survey revealed that there is a large body of literature on this
problem, with procedures ranging from non-parametric to classical and to Bayesian
methods.

The literature survey conducted in Chapter 2 highlighted the fact that
hypothesis tests are not always the most advantageous way to choose the best-
specified model. Rather, it was argued following Granger et al. (1995) that, model
selection decisions should be based on some well-thought-out model selection
criteria rather than such classical mechanisms. This provides a justification for
working with information criteria based model selection procedures when faced with
a choice of model to be decided using the available data.

Chapter 2 showed that there are not many comprehensive studies that have
evaluated the relatively small sample performance of various existing IC model
selection procedures. The majority of the research in this area has been related to

asymptotic properties and Monte Carlo studies have mainly been used to illustrate
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the asymptotic results. This led to the identification of the need to develop model
selection procedures for choosing between different possible models with structural
change of different timing.

In Chapter 3 we examined the use of the LR test to test for the presence of
structural change when there is a possible unknown changepoint in the data. Since
this test does not have a known distribution for finite sample sizes, we calculated
exact critical values for the test by simulation using 10000 replications for different
sample sizes, numbers of regressors and types of regressors. We found that the
critical value clearly depends on sample size, number of regressors and to a lesser
extend on the type of explanatory variables. We found that the calculation of critical
values via simulation can be very time consuming. To overcome this difficulty, we
developed formulae for critical values using a response surface approach. This
avoids the use of a table at a desired level of significance when the sample size and
the number of regressors are known. We checked the accuracy of the critical value
formulae by using the Monte Carlo method and found that the estimated sizes based
on the new formulae are not significantly different from :u.minal size regardless of
the sample size. Overall the actual sizes of the test using our formulae to calculate
appropriate critical values are quite satisfactory.

In Chapter 4, we investigated the relative performance of IC model selection
procedures when detecting the possible presence of a structural change. We found
BIC outperformed all existing IC procedures considered when there is no structural
change but its performance is the worst of all procedures in the presence of structural
change. RSC’s performance is the worst of all existing IC procedures in the presence
of no structural change however it outperformed all other IC procedures considered
when there is structural change. In presence of no structural chance, the ranking of

the relative performance of the other IC procedures is HSPC > GCVC > HQC >
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MCPC > AIC. On the other hand, in the presence of structural change, the ranking
of the relative performance of the other IC procedures is AIC > MCPC > HQC >
GCVC > HSPC. None of the IC procedures considered stands out as a clear best
method for modelling involving structural change. We conclude from the resuits that
model selection can be useful when there are a large number of models involved.

In Chapter 5, we proposed new methods for finding optimal penalties for
different models while detecting possible structural change through model selection
procedures by maximizing AMPCS. Our method includes a family «f procedures,
based on grid search aigorithms such as the CGSA, BGSA and PDFA, and the SAA.
These procedures do not require conditions such as regularity or existence of
derivatives. The grid search algorithm is one of the appealing ways to maximize a
function. The disadvantage of this procedure is that it is very time consuming when
there is a reasonably large number of grid points for the penalty vector. The
computatiopal time of grid search algorithms will increase dramaticaily with an
increase in the number of penalties and so can be exceptionally excessive. To
overcome the computational limits imposed by grid search algorithms, we estimated
the optimum penalties using SAA whose performance is similar to that of grid search
algorithms while its computational time is much lower. The simulation results show
that the CGSA involves heavy computation giving the highest percentage gain over
all IC procedures.

We investigated the use of two alternative approaches to CGSA, namely
BGSA and PDFA. These are straight forward and save computational time. The
former gives higher AMPCS than the latter two. However, the computational cost is
lower for the latter two. We have found that CGSA is the best, BGSA second, SAA
third and PDFA fourth best as measured by maximum AMPCS, In the context of
computational time, the rankings are SAA first, PDFA second, BGSA third and
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CGSA last. We have found that all of our four suggested procedures dominate the
existing IC procedures considered in terms of maximizing AMPCS.

In Chapter 6, we investigated random changes in the coefficients of linear
regression models and their effect on predictions. We derived the distributional
pattern especially the mean, variance and covariance structure of different linear
regression models for stochastic changes in either slope or intercept parameters in
turn by a fixed amount with a very low probability. We find that this results in a
linear regression with a nonscalar variance-covariance matrix, which allows standard
approaches to estimation and prediction to be used.

We compared the predictive performances for three methods of estimation
of parameters, three different schemes, four different sample sizes and five different
modeis in turn and evaluated the forecasting performance of the estimators using
RMSE, MAE and ME. The simulation results suggest that the MML estimator is
clearly better than the ML estimation in terms of small sample properties. iIn
addition, the MML estimator is quite promising in terms of ME, MAE and RMSE,

This study has some limitations in that one has to take care in making too
many generalized conclusions from the results based on Morte Carlo experiments.
The results achieved by Monte Carlo experiments are often specific to the design of

the experiment.
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7. 3 Future Work

Given the encouraging results of our research on LR test statistics, model
selection procedures and penalty estimation, they are indeed worthy of further
attention and work. A few suggestions for future research are outlined below.

In Chapter 3 we examined the use of the LR test to test {or the presence of
structural change when there is a possible unknown changepoint in the data and gave
critical values of the LR test empirically. An obviou: extension is to testing
changepoints in more than one coefficient and using the same approach to find
critical values. Comparison of empirical sizes and powers of the test can be done
with other tests,

In this thesis, testing for structural change is confined to the regression
coefficients. We could relax the assumption that the variances of two the subsamples
are the same and let the disturbance variances vary among the different subsamples
and thern. investigate robustness of a structural change test to the presence of
heteroscedasticity or to develop same new tests that account for this situation. Also
further work could be done to develop the corresponding tests for structural change
in dynamic and simultaneous equation models.

Relaxing the assumption that the structural change occurs only once, other
possible extensions to the test include the possibility of multiple unknown
changepoints, a two-sided testing problem, or testing for stability of a vector (as
opposed to a scalar) of coefficients.

Our proposed small sample model selection procedures can be applied to a
number of other model selection problems which have not been considered in this
thesis such as heteroscedasticity and error component regression error models. The

error distribution of the models in this thesis was assumed to be normal. Further

s
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research should be conducted on the robustness of these methods in the presence of
nonnormal errors.

A mathematical derivation of the penalty function for different models may
be of great interest in order to cut computational time for the application of the
model.  There is perhaps some scope for further studies regarding the factors
responsible for coefficient changes, testing the significance and constructing the
confidence intervals of the changing parameters, as well as construction of prediction
intervals. It would also be interesting to investigate the forecast performance for

different lead times (other than oue-period-ahead) for different models. As one can

see, there are many directions ‘or further research,
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