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Addendum

p 146 line 7: "four" is substituted by "six".

p 168: The following paragraph is inserted at the end of Section 10.3:

"With regards to the evolutionary mechanism of application systems on the Web, how to

trace and capture the document changes on the Web is a challenge topic. Further work can

be done in this area to improve the evolutionary mechanism of these systems."

p 117: The following section is inserted after Section 8.1.4:

8.1.5 Evolution Algorithm

This section develops an algorithm for the Life Design evolutionary process described

previously. For the purpose of this algorithm, we only model class genes and life forms as

object identities, not their structure. So let Old be a set of names (object identities) and let GId

be a set of gene names (gene identities).

The function

genome: Old -*• Set (GId)

associates each organism with a set of genes.

If genome(O) = {gh g2,..., gn) then we also write O.gj, O.g^..., O.gn to indicate that O

possesses the genes gh g2,...,gn.

Moreover if G = genome(O) then we call G the main class genome of O (see Sections 6.4.1.2

and 6.4.2.2.2).

Let

organisms: Set(GId) —* Old

such that:

organisms(G)= {O e Old IG = genome(O)}

The function addGene(G, g) adds gene g to G, and the function removeGene(G, g) removes g

from G, using the self-modification functions described in Section 6.4.2.4.3.

Let Tg (0 < Tg < 1) be an arbitrary evolutionary threshold applicable to the presence of gene

g in a set of organisms, and T.g (1 - Tg :< T.g < 1) be an arbitrary evolutionary threshold

applicable to its absence (see Section 6.4.2.4.4).



At each meta-level, the Evolve algorithm is defined for O e Old and g e GId, such that

Evolve (O, g) =
G = genome(O);
L = organisms(G);
Lg={OeL\O.g};

end

if (ge Gaud i p ^ ^ ^ ) then

addGene(G, g);

else if (g e G and
L\L

> T) then

removeGene(G, g);
end
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Abstract

The exponential growth of the Weh in a very short time has resulted in many deployment problems

that stem from inadequate system design. Some major ones are: data management and maintenance,

resource discovery, referential integrity, customisability, adaptability, and evolvability. Many

projects have attempted to correct these problems, but most are adhoc and suffer from the same

design inadequacy. Others have tried to tackle these problems directly at the design level, and have

the potential to correct some of the problems. However, even in these projects, some issues are only

partially addressed, in particular, adaptability and evolvability are still unchecked. The enormous

growth of the Web necessitates an infrastructure that can capture its dynamic characteristic and cope

with future changes.

The principal contributions of this thesis are Life Design and LifeWeb, a design and a data model for

a manageable, maintainable, customisable, adaptable and evolvable (self-evolving) system. LifeWeb

also facilitates resource discovery and enhances referential integrity. LifeWeb is a data model for the

Web document system, implementing Life Design and represented in XML (Extensible Markup

Language). Life Design is an object-oriented system design methodology gleaned from the structure

and working of organic life forms at the molecular, genetic and biological levels. Entities in LifeWeb

possess biologically life-like functionalities, and can evolve themselves in a fashion similar to the

Darwinian evolutionary process, driven by user needs or customisation requirements. These entities

exist in a recursive architecture of multiple meta-modelling levels. Evolutionary changes are

incrementally accumulated, conditionally and gradually propagated from lower to higher levels,

forming groups of entities with increasingly divergent "genes". In LifeWeb, such a group corresponds

to a document type or a "document species". The LifeWeb evolutionary model makes it possible to

derive new document types (including supporting software and tools) from existing ones (which

increases reusability, manageability, maintainability and extensibility), and to maintain their

interoperability. A prototype system for LifeWeb has been implemented, which allows automatic

XI



system evolution, where entities can be dynamically added to or removed from the runtime system.

UfeWebManager, a LifeWeb application and a tool for creating and managing LifeWeb documents, is

also implemented.

We claim that our technology improves on the Web manageability, maintainability and

customisability over existing Web data models, and lays a foundation for the Web adaptability and

evolvability. Our claim is substantiated by deep comparison with existing Web data models.
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Chapter 1 Introduction

1.1 Background

The World-Wide-Web (hereafter also referred to as Web or WWW) has its data model based on

hypertext, a concept originated by Vannevar Bush [BUS45], Scientific Advisor to the U.S. President

Roosevelt, back in 1945. Motivated by the need to assist people to access the huge amount (even

then) of available data, Bush felt that it should be possible to design some mechanism that imitated

the associative memory of the human brain. This imaginary system (which he named "Memex")

should store items of information with associative links between them, and allow data to be accessed

with "exceeding speed and flexibility" [BUS45]. The system was not in fact realised until there were

sufficiently powerful computers available. The first hypertext system was implemented by Doug

Engelbart [CON87] in the 1960s, as part of his AUGMENT/NLS system. In 1965, Ted Nelson

[NEL65a & b] coined the term "hypertext" and began work on his vision of the Xanadu project

[NEL87, NEL90], a universally accessible computer storage and retrieval system for documentation.

Since then hypertext has become increasingly popular. Early milestones were the commercial support



from Apple with the release of the HyperCard system,1 and the first major global hypertext

conference Hypertext'87 [NIE88], both in 1987.

In 1989, a proposal was made by Tim Berners-Lee addressing an internal information management

issue at CERN, the European Particle Physics Laboratory in Geneva, Switzerland [BER89]. Due to

the high personnel turnover at CERN, information of past projects and events was constantly being

lost, wasting a lot of effort in recovering the lost information or even "reinventing the wheels"

altogether. There was a need to create "a pool of information which could grow and evolve with the

organisation and the projects it describes" [BER89]. This idea brought Berners-Lee to discover the

hypertext data model, which had been around for some time. With the need at CERN, this model

found favour over the traditional database or hierarchical structure due to its simplicity and

flexibility. It allows the recording of "random links" between "arbitrary nodes" without any

constraint on data structure [BER89]. The Web was designed as a universal space of shared

information where new relationships between objects could be added at any time without the need of

any major or central control. "The information space will simply reshape to represent the new state of

knowledge" [BER94].

After having obtained CERN's approval, Tim Berners-Lee started working on his first hypertext

browser and editor, a program that he named "WorldWideWeb". In 1991 the first global hypertext

system was released. At this stage only a line-mode browser was available. The Web started to grow

exponentially [INT91, NSF95, GVU95, NGU96, ZAK96, ISCOO] when Mosaic, the first GUI

(graphical user interface) Web browser, developed by the National Center for Supercomputing

Application (NCSA), became available in 1993. Very soon afterwards the Web became

commercialised when Netscape released its browser in 1995 and gained almost three billion dollars

on the first day of stock market trading.

This phenomenal success of the Web, however, has revealed many of its shortcomings that result

from early engineering decisions. Some major ones (which will be analysed in Chapter 2) involve:

data management and maintenance, resource discovery, referential integrity, customisability,

adaptability, and evolvability. If these problems are left unchecked, the Web could eventually become

unmanageable. Although much work has been done to improve the Web (some which relates to our

work will be analysed in Chapter 3), most inherits the weaknesses of the Web infrastructure and

addresses its problems in an adhoc or patchy manner. Recently, the advent of the Extensible Markup

Language (XML) [XML98] and its associated standards has enabled the correction of some of these

1 It has been argued that HyperCard is not really a full hypertext system. However it did popularise the concept

[HAG94].



problems (for example, data management and maintenance, referential integrity, resource discovery,

and extensibility) at the fundamental design level (see Sections 3.2.2,3.2.3 and 3.3). However, some

issues, especially those regarding adaptability and evolvability are still not addressed. The Web is a

highly dynamic system and needs an infrastructure that can capture this dynamic characteristic and

cope with future changes.

The principal contributions of this thesis are Life Design and UfeWeb, a design and a data model for

a manageable, maintainable, customisable, adaptable and evolvable (self-evolving) system. UfeWeb

also facilitates resource discovery and enhances referential integrity. Life Design is a concept drawing

upon natural life at the molecular, genetic and biological levels. It imitates the structure and working

of organic life forms at the molecular and genetic levels to construct entities with biologically life-

like functionalities. These entities can evolve in a fashion similar to the Darwinian evolutionary

process. The evolutionary mechanism is defined specifically in Ufe Design with a multi-layered

meta-modelling, where changes are conditionally propagated from lower to higher levels to form

groups of individuals with increasingly divergent "genes". This design, on which UfeWeb, a data

model for the Web document system, is built, makes it possible for UfeWeb to address a range of

issues that the Web is facing, such as those mentioned in the previous paragraph. A prototype system

for LifeWeb has been implemented, and has shown very promising results. Both Ufe Design and

UfeWeb use object-oriented technology. It may be possible, however, to apply Life Design to some

other design technologies.

1.2 Research Questions

This study attempts to solve or alleviate some major problems with the Web at the design level by

developing an object-oriented data model for the Web. In particular it addresses the following

research questions:

RQ1 Is it possible to develop a data model for the Web document system that has the potential to

solve or alleviate problems concerning iata management and maintenance, resource discovery,

referential integrity, customisability; and especially, adaptability and evolvability, which have not

been addressed?

RQ2 More particularly, is it possible to apply object-oriented technology and biological concepts to

that model?

In order to address these primary research questions, the thesis describes a design and a data model

with its prototype implementation. As the design and the model must capture both the static and

dynamic characteristics of the Web, the following sub-questions arise:



RSQ1 What are the essential static features of the Web that must be captured in the model? How can

they be represented using object-orientation?

RSQ2 What are the essential dynamic features of the Web that must be captured in the model? How

can they be represented using object-orientation and biological metaphors?

RSQ3 What are the evolutionary entities in the Web? What features are required of them, and what

evolutionary mechanism and evolutionary path can be designed for them to evolve themselves?

1.3 Thesis outline

This thesis is organised as follows.

Chapter 2 provides an analysis of current major problems of the Web. It first summarises the main

features of the Web, its architecture and the protocols upon which it operates. Problems with these

features are identified and analysed at both the deployment and design levels, and the connections

between problems at the two levels are established. This problem analysis confirms the problematic

areas, points out where the roots of the problems are, and crystallises the solution direction: an

object-oriented data model to solve problems at the design (root) level, that can capture, among other

things, the dynamics of the Web.

Chapter 3 reviews existing trends in Web data models, pointing out what has and has not been

addressed in the literature with regard to the issues presented in Chapter 2. These unsolved or

partially solved problems are those of statelessness, customisability, and especially, adaptability and

evolvability, which may also be used to tackle other problems. By reviewing existing data models, the

chapter also makes remarks on their advantages and disadvantages, and the essential static features of

the Web that should be captured (in a data model).

The evolvability issue requires a literature review on system evolution, which is provided in Chapter

4. This chapter describes how system evolution has been dealt with in Computer Science, particularly

in the areas relating to our proposed solutions, namely data modelling, object-orientation, and

biological metaphors. It gives insights into how the same issue may be addressed in the Web, and

establishes a literature based on which we can compare our work on Web's evolvability with others'

on system evolution.

Chapter 5, based on the remarks in Chapter 3, identifies the essential static elements of the Web, and

describes our Multimedia Document Model (MDM), which encapsulates these elements. MDM

captures the static and document characteristics of the Web, and is built on established standards in

the publishing industry and library systems. It is the first stage of our two-stage system. Another



model, which captures the dynamic characteristics of the Web, is constructed on top of i t The

chapter also evaluates MDM against comparable document models.

Chapter 6 identifies the essential dynamic elements of the Web and considers different approaches to

capture these elements. The chosen approach is presented in the main part of the chapter, which is

conceptualised in biological metaphors and implemented by object-oriented technology. Evolutionary

entities and their essential characteristics are identified. An evolutionary mechanism and path is

defined for them. This approach is formalised in Life Design, a design methodology for building a

self-evolving system.

Chapters 7 to 9 explain LifeWeb, the model of the second stage of our two-stage system. This model,

which is built upon MDM and follows the methodology set out in Life Design, is described in

Chapter 7. Chapter 8 explains how LifeWeb can evolve (itself). It also compares LifeWeb evolution

with evolution in other systems that were reviewed earlier (in Chapter 4). Chapter 9 describes the

system implementation, showing how XML, a recently emerging standard, has been integrated into

LifeWeb. It also presents the implementation details that address the problems set out in Chapter 2,

and when applicable, evaluates LifeWeb against other comparable systems that have concerns about

the same issues.

Our conclusions are presented in Chapter 10.

1.4 Digest of results

Our problem analysis shows that most of the problems with the Web are rooted in its design. Owing

to the lack of an appropriate model for the data it represents, the Web has outgrown its initial design

and become unmanageable. We have designed a data model for the Web document system, named

LifeWeb, which has the capacity to make improvements on this problem. This abstraction uses proven

object-oriented technology to model the different components of the document and an innovative Life

Design methodology to capture the dynamic characteristics of the Web.

In the LifeWeb prototype, documents can be designed, created, managed and maintained on structural,

presentational, and content bases. A prototype tool has been implemented to perform these tasks

using a simple "drag-and-drop paradigm". Users can customise online documents and LifeWeb is

stateful so that these changes can be saved across sessions. Adaptation is generally an automatic

process in which a LifeWeb document silently accumulates users' inputs and makes changes to itself

according to users' preferences or needs. Adaptation can occur recursively through successive levels

from instance to schema, or higher meta-modelling levels, throughout the whole population of

document objects. This enables a smooth and incremental evolution of the whole system in a bottom-



r
up fashion through all meta-modelling levels. This evolutionary process and the integration of

software and tools to support the evolving system can be automated. System interoperability is

maintained through levels of meta-modelling. Referential integrity is enhanced through the

encapsulation of hyperlinks into objects. It may be ensured using a combined technique of local link

management and dynamic link binding. LifeWeb documents hold infonnation describing themselves,

which can be deployed by search engines for resource discovery.



Chapter 2 The Web and Its Major

Issues

...if future World-Wide-Web development simply consists of ill-considered "bolt-on" extensions to the

existing architecture, then problems are likely to result.

L Relihan [REL94]

2.1 The Web

The Web is a client-server system as depicted in Figure 2-1 [BER94], In this architecture requested

data is served by the server to the client. The data received is then processed and displayed by the

client for the human user to read. The processing of data may involve interacting with other legacy

(existing) information systems such as database, or other organisational systems (using protocols

defined for these systems). Web clients can communicate with servers of all existing functionally

compatible Internet protocols, including File Transfer Protocol (FTP) [FTP85], Network News

Transfer Protocol (NNTP) [NNT86], Wide Area Information Servers (WAIS) [WAI94], and Gopher

[GOP93], providing access to a universal information space on the Internet via a single simple

interface.
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Figure 2-1 : The Web client-server architecture

(From [BER94])

The WWW defines a number of standards and protocols [BER94]:

• Uniform Resource Identifier (abbreviated URT): A scheme defined by the Internet Engineering

Task Force (IETF) Working Group on URI [URI98], which assigns to every Web resource a

world-wide unique identifier, making it possible for the resource to be universally referenced.

URI is designed so that it is generic, appearing to refer to "the same" object although language,

data format, or actual location may vary. The selection of language and data format is carried out

by a negotiation process between the server and the client as explained below. In practice only a

derivative of URI, i.e. the Uniform Resource Locator (abbreviated URL) [URL94] is being used.

The URL is dependent on the physical location of the resource on the file server, and is therefore

largely responsible for the "broken-link" problem described below (see Section 2.2.1.2).

Currently the IETF Working Group on URI has concluded its work, and new Working Groups

have been formed. Among these the most important one is the Uniform Resource Name (URN)

Working Group [URNOO]. URNs are designed to be persistent identifiers for information

resources globally, which also support other legacy (existing) systems.

• Hypertext Transfer Protocol (abbreviated HTTP): An Internet protocol used by Web servers for

receiving requests and transferring hypermedia and other kinds of data across the network. HTTP

is a stateless protocol, that is, the network connection on which it runs is held only for the

duration of one operation, so that the result it returns is ignorant of any previous operations

performed by the client [BER94]. Statelessness is required, according to Berners-Lee [BER94],

for (i) the efficiency needed for retrieving a hyperlinked object regardless of its actual storage



(local or remote), and (ii) the fulfilment of the purpose of the URI that it should always refer to

"the same" object regardless of the client's actions. HTTP was originally designed so that it

could handle any data format and language via the respective format and language negotiation

scheme. The client could specify the preferred format(s), or language(s), and the server would

select a suitable object In this case the URI used to identify such an object is called generic. This

feature, however, is generally not used by clients because "generic URIs have been historically

exceptional and this scheme is expensive to implement" [BER94]. HTTP defines a number of

methods for use by the Web client The most commonly used ones are get and post, which send

parameterised queries to the Web server. It is therefore possible to dynamically generate Web

pages based on the input provided by the client Currently HTTP 1.1 [HTT97] is in use and

HTTP-Next Generation (abbreviated of HTTP-NG) [HNGOO] is under development

• Hypertext Markup Language (abbreviated HTML): A language used by Web clients for the

storage, display and transmission of hypermedia data over the network. All Web clients are

required to understand HTML. HTML is a subset of the Standard Generalized Markup Language

(abbreviated SGML) [SGM86, SGMOO, HER94], a language widely used by the publishing

industry. HTML is an extremely simplified version of SGML, so that it can be easily used by the

general public as well as parsed by programs. Markup languages use tags to mark the start and

end of the various "components" in a document, which are called elements. These tags, which are

called element types, are defined in a Document Type Definition (abbreviated DTD). A DTD

contains the formal description of the schema of a particular document type. HTML, defines a

fixed tag set of a single document type, the first version of which is a collection of primitive

document element types such as paragraph break, several levels of headings, lists, menus, and

anchors to define hyperlinks [HTM92]. Many more element types have been added to this first

HTML specification as the users' and developers' requirements have become increasingly

sophisticated. At the time of this writing, the version currently in use is HTML 4.0 [HTM98], and

Extensible HTML (abbreviated XHTML) [XHT00], has just become a recommended standard.

2,2 Problems with the Wet

Since the initial proposal of the Web only very few years ago, this system has seen a steady

exponential growth rate throughout the whole world in practically every aspect. In terms of quantity,

the statistics collected by Merit Network, Inc. [MER0O] for the NSFNET (National Science

Foundation Network) backbone [NSF95] shows that the Web has made a giant leap from zero to the

highest volume application within only one year (1994-1995), with the traffic in bytes appearing to

increase quadratically [GVU95, NGU96], In more recent datasets, for example, the series of Internet



Domain Surveys conducted at Internet Software Consortium [ISCOO], the number of hosts is shown

to have grown from 313,000 in October 1990 to nearly 8 million in January 2000 (Figure 2-2).

Internet Domain Survey Host Count

Figure 2-2: Internet Domain Survey Host Count

Source: Internet Software Consortium (www.isc.org)

In terms of quality, the Web has undergone fundamental changes in its functionalities, from

(primarily) a simple static document system to one that provides highly dynamic content and support

for sophisticated enterprise and distributed computing requirements. Since the Web was not

originally designed for these complicated technologies, efforts in Web application development

increasingly run into limitations of the Web infrastructure [ING97, MAN98, MAN99]. With its

explosion and increasingly complex enterprise demands, serious problems with the system are

showing.

2.2.1 At the deployment level

WWW space

Figure 2-3 : The hypertext data model

The Web was initially designed as a simple network of documents interconnected with each other by

hyperlinks (see Figure 2-3). Typically hyperlinks are statically embedded within documents, and

activating a hyperlink essentially takes the user from one document to another, similar to the effect of

the "goto" statement in some computer languages [HYP00]. This simplicity has gained the Web

overwhelming success over the last decade, but as the number of documents and hyperlinks grows,
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has resulted in a spaghetti-like network with many shortcomings. Some of the most well known

problems are:

2.2.1.1 Lost in hyperspace

The complex branching structure of the Web makes it conceptually unmanageable. It creates a heavy

cognitive load on users, making navigating Web sites difficult Even in a well-organised Web site,

users are disorientated, lack a sense of size, limits, and current position in the whole. They find it

increasingly hard to have an overview of the site, to locate or relocate the desired information - all of

it and only it, to recognise new, updated or outdated information, or to discover resources [CUN93,

PER98, BOU99, HYPOO].

2.2.1.2 Violation of link integrity

The exponential growth of the Web coupled with the complexity of the hypertext network over a

distributed system makes hyperlink management impossible. As new resources are added, old ones

are required to be removed or migrated to different locations. Thus references to Web resources

become no longer valid, constituting the notorious "broken-link" or "dangling-link" problem. This

problem has been found to waste users' time and discourage them from visiting the problematic Weh

site or from using the Web altogether [REL94, ING95, ING96, DAV98a, HYPOO]. Another true

although less obvious problem is that of "orphan" resources. These are resources that are not

referenced by ai-.y other resources, and thus become unreachable [HYPOO].

2.2.1.3 Difficulties in data management and maintenance

The hypertext data model of the Web does not provide a way to express the structure of the

document. Current practice is to directly (hard) code the document components into the source file

and use the server file system to express the structure. For instance, one might put different chapters

of a hook in corresponding directories. Changes to a structured document often need to be

synchronised among its components. For example, the removal of a chapter would require all the

following chapters to be renumbered, all references to it to be removed, and a new table of contents

to be generated. These maintenance operations are typically carried out manually using commands

and tools native to the server machine, and therefore, orthogonal to the Web. If the file system has

been used to represent the document structure, manipulations to Web resources are required in both

the file system and the Web system, but these are essentially two disjoint domains. This process is

expensive and prone to mistakes and inconsistencies. Its problems are well documented [ING95,

GEL97, ING97, NGU98a].
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2.2.1.4 Difficulties in document design and authoring

The lack of a way native to the Web to express document structure results in a presentation-oriented

mindset in Web design. This has been found to distract an author from the overview of the whole

document structure in order to worry about presentation details at the design stage [HYPOO]. It also

induces the author as well as the authoring tool manufacturer into using presentation tricks to

represent structural components. For example, it is common to use a combination of bold (<B></B>)

and font tags (<FONTx/FONT>) to make a data content appear as a (styled) heading. This

inappropriate use of presentation tags will, in the long term, make the maintenance task of non-

structural elements impracticable.

2.2.1.5 Customisability, adaptability and evolvability

The Web, being stateless (see Section 2.1), cannot by itself make or record changes to Web

documents across sessions. Thus it is not possible to have documents tailored to individual needs in a

native way. Customisation is the problem of "one-size-fits-all", and is becoming increasingly

important with the expansion of the Web, which has to serve millions of different users worldwide.

The same pressure is experienced at the organisational level, where the same set of data must be

served differently or presented in different views to different types of personnel or clients.

Adaptation is a more "advanced" form of customisation, where a Web document "learns" from

previous experience to make changes to itself accordingly. Previous experience is typically provided

from a user's behaviour or input, so that adaptation is made towards betterment for the user. Adaptive

documents are especially useful in the Web, whicl: holds too large a wealth of information for users

to find their way around or to filter out useful pieces. They have been used in the Web primarily to

help with the lost-in-hyperspace problem (Section 2.2.1.1). Examples are the adaptive search engine

[IKE99] and adaptive hypermedia [EKL98, PER98, BRA99a]. Their development and design,

however, are difficult and complicated since, like customisation, are not natively supported by the

Web due to its statelessness [BRA99b].

Evolution is a long-term result of customisation and adaptation. Automatic evolution, as with

customisation and adaptation, is not supported because of the Web's statelessness. Besides, no

evolutionary path has been defined for changes in the Web to follow. (In this respect, evolvability is

itself a design issue.) Most of them have been happening in a non-systematic and unpredictable

manner, arbitrarily driven by users' or organisations' needs, so that the current system cannot deal

with future modifications. This topic will be discussed in detail in the subsequent chapters of this

thesis.
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2.2.2 At the design level

Most of the problems mentioned above can be accounted for in the design of the Web document

system.

2.2.2.1 Structure

As was pointed out in Section 1.1, the Web was proposed as a solution to the knowledge management

problem at CERN due to information being lost because of the high turnover of people. It was

necessary to create a shared information space where people could quickly and easily record

unrestrained relationships between arbitrary objects without any constraints on data structure

[BER89]. That is the picture of the Web today as a cyclic directed graph with documents (essentially

files) acting as nodes and embedded links as arcs. It was emphasised in the initial proposal by Tim

Berners-Lee [BER89] that this form of "web" organisation offered the freedom necessary to describe

a complex and evolving system, whereas others such as hierarchical or relational structures were

inflexible and many systems would simply not fit. Such structures were therefore just not considered.

This concept has been reflected in the design of the Hypertext Markup Language where there are no

tags to express the (usually hierarchical) structure of the document. The (normally called)

"structural" tags such as the heading tags (<H1></H1>), or the division tags (<DrV></DIV>), do

however carry some structural semantics for the single content delimited between the start and end

tags, but do not indicate any (structural) relationships among these components. They therefore

cannot cohesively express the structure of the document as a whole, and are usually treated in a

presentation-oriented manner. Other HTML critiques also share the same point of view [BOS97,

MAN98, MAN99].

The fact is that, while it is true that the /nter-relationships between nodes would be most useful if

unrestrained for the purpose set out in the initial proposal of the Web [BER94], the intra-

relationships between components inside a node are in most cases, structured. Traditional paper-

based documents are almost inevitably hierarchically structured. The same organisational

requirement is also found with electronic documents, even in a highly dynamic environment such as

the Web. Large amounts of unstructured data are simply impossible for the human mind to grasp,

manage or manipulate, especially in the increasingly growing Web. Unrestrained links can be an

extension of structural links, but cannot substitute for them. What is lacking in the Web in this

respect is a way to express the internal structure of a node. This is found to be directly related to the

problems: lost-in-hyperspace, data, management and maintenance, and document design, noted in

Sections 2.2.1.1,2.2.1.3 and 2.2.1.4 above.
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2.2.2.2 ^extensibility

This problem with the Web is demonstrated in the design of HTML, the language used to represent

the Web document system. The tag set defined in HTML is primarily presentation-oriented and fixed

to only one single document type. As technology advances, new tags have to be added to incorporate

new technologies. As the Web has spread throughout the world to different industries and

communities, there arises the need to associate semantics to the tags, and to define different tag sets

that are more specific to each application domain. HTML, however, cannot be extended to satisfy the

demand. This has two major consequences:

• With regard to the evolution of the Web, the inextensibility of HTML requires that any changes

to HTML should be centrally controlled. This generates a global chained effect on related

technologies such as browsers and authoring tools, and has invariably inhibited a smooth

evolution of the Web at the schema level.

• With regard to the lost-in-hyperspace issue (Section 2.2.1.1), the lack of semantics in HTML

makes it impossible to describe the resource captured in a HTML document (without the use of

another mechanism), which can be exploited by search engines or web bots to aid users in

resource discovery.

The advent of the Extensible Markup Language (XML) [XML98] is especially designed to remedy

this problem, as will be explained in Section 3.2.2.

2.2.2.3 Functional behaviour

In contrast to traditional paper-based documents, which are totally static, Web-based documents are

highly dynamic and appear to have a functional behaviour. In fact some authors have considered the

Web to be a simple object-based system with its objects identified by URLs and "behaviour" defined

in the HTTP server [ENG95, MAN99]. This point of view however, is not well founded. The

"behaviour" mentioned above is not defined internally within the Web document object. It is

"borrowed" either from the methods defined in the HTTP server (see Section 2.1 and [HTT97]), or

from external technologies such as CGI-SCREPT [MCC95, RAG97], or embedded OBJECT

[RAG96]. As such, Web documents do not support encapsulation, and remain non-functional entities

in much the same way as paper-based documents, with an added capability to "borrow"

functionalities from external entities. This lack of a functional behaviour of its own disqualifies Web

documents from being "objects" in the object-oriented sense. This means that a Web document (as it

currently is) is not an encapsulation of a self-contained unit complete with well-defined state and

behaviour. This has two major consequences:
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• With regard to system evolvability, Web documents cannot Junction and evolve themselves as

independent, complete units.

• With regard to integration with enterprise systems and the high demand for increasingly

sophisticated Web applications, Web documents lack an Application Programming Interface

(API) for accessing and manipulating their document data and data structure. (The recent release

of the Document Object Model (DOM) [DOM98] is an answer to this issue as will be seen in

Section 3.2.3).

2.2.2.4 Document properties

It is well established in the publishing industry that a document normally possesses three distinct

properties, namely structure, presentation and content. This concept is reflected in the design of

major document processing applications such as LaTeX [LAM86] or Microsoft Y/ord. However the

distinction between these document properties has not been designed into the Web. A Web document

as expressed by the Hypertext Markup Language (HTML) is one in which structum, presentation and

content are intermingled with each other. In the example above, the heading (<H1></H1>) and

division (<DIV></DrV>) element types not only indicate their structural semantics but also dictate to

the browser how to display them. Contents are embedded between tags, which hi turn can contain

other tags, so that any operation on the document becomes heavy and complicated, as it has to carry

the whole bulk of its tags and contents interspersed with each other. All of this has made it very

difficult to manage, maintain, or customise the document, as any change to it will affect the whole of

itself. Since these aspects of structure, presentation and content are not distinguished from each other,

it is not possible to manipulate the document based on any single one of these aspects. This design

problem contributes to the difficulties in data management and maintenance, and Web design noted

in Sections 2.2.1.3 and 2.2.1.4 above.

2.2.2.5 Embedded hyperlinks

When using HTML, hyperlinks are encapsulated within the document data. As has been pointed out

by researches in Open Hypermedia Systems (OHS) [DAV98a], this approach has the advantages of

(i) being simple when editing document data, since the source anchor of a hyperlink can be freely

moved and edited at the same time to synchronise with the changes made in the document data; and

(ii) being efficient and scalable when resolving a hyperlink (for making a hyperlink jump), since the

destination anchor is immediately available from within the document data, and there is no need to

store links in a database. The cost of these advantages is that links are only uni-directional, because

only the node that has the embedded link knows about the link. This has the severely negative
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consequence of making automatic maintenance of hyperlink integrity in the Web both impractical and

impossible. Each movement of a document node requires searching and updating every link to the

moving node in all Web documents worldwide, where we may not have write permission. The

brokeii-iink problem (see Section 2.2.1.2) stems from this design flaw.

2.2.2.6 Statelessness

As mentioned in Section 2.1 above, the Web is built on HTTP, a stateless protocol, as a requirement

for the design of the URI (which should always refer to "the same" object regardless of previous

client interactions), and for the efficient retrieval of hyperlinked objects. These have come at the cost

of not being able to provide objects customised to the needs of individual human Web user.

Consequently adaptation and evolution of Web documents are also not supported (see Section

2.2.1.5).

2.2.2.7 Meta-data

Briefly, document meta-data is information that describes the document's data content It has been

used in the Web for quite some time to aid in the searching and discovering of Web resources. This

intention, however, has had two major hurdles over decades. First, there was no standard framework

established on the Web for describing document data. Second, there was no unified taxonomy or

mechanism to define terms in which documents could be described and classified. Consequently,

even though meta-data has long been used on the Web, it is mainly for human readers, and may be

only partially supported and understood by some user agents (browsers) and search engines. In

addition, authors usually "do not bother" to insert meta-data, mainly because it has not been

standardised, and they do not know what standard to follow. This lack of support for meta-data makes

it difficult for the Web to provide help with the lost-in-hyperspace problem mentioned in Section

2.2.1.1.

2.3 Conclusion

From the problem analysis above, it can be seen that the Web has outgrown its initial design.

Compelling facts about the link between the problems at the deployment and design levels, and the

problems at the design level itself, suggest that a solution should be at the design level. The

complexity of the Web, which is one of the major causes of the above-mentioned problems, strongly

proposes a solution by abstracting the complex entity into a model (or models) [SMA96J. The nature

of the problems, which is closely related to the advantages offered by object-oriented technology

(maintainability, manageability, extensibility), makes object-orientation very attractive for a solution.
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The dynamics and liveliness of the Web have inspired us to investigate some other areas, such as

natural life, for new design ideas.
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Chapter 3 Data modelling on the Web

The Web has become a very complex entity. And to deal with complexity we need to reduce complexity by

a process known as abstraction.

P. Sma»! [SMA96]

Modelling is the process of abstracting the world of our interest, or the Universe of Discourse (UoD),

into some model or specification. One particular set of related facts from which the model is induced

forms an instance of that model. Going from models to instances is like going from factories to

products. Once constructed it can be used to produce an infinite number of instances sharing common

characteristics that have been abstracted in the model. To be usable a conceptual model must be

represented by a precise and unambiguous notation. In software development models are used mainly

for the reduction of complexity, understanding, communication, and testing a physical entity before

building it [RUM91, GIU96]. With the level of complexity of the Web information system, data

modelling promises a satisfactory solution.

Data modelling, especially object-based and object-oriented (which will be generally referred to as

object), is among the approaches towards a better Web. It has been recognised as a solution to

problems of the Web, in particular those of manageability, maintainability, and extensibility, in the

first four years after the coming of the Web [KAP94, ING95, REE95]. Object modelling is becoming
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a major trend in the development of the Web because of the proven advantages of object technology,

the resemblance of the Web to an object system, and the need to integrate the Web with sophisticated

enterprise systems, which perhaps can be best done with the extensibility feature of object technology

[MAN98, MAN99].

This chapter reviews the Web data models currently available, pointing out what has been achieved

and what is yet to be addressed. There are three major groups among the systems providing a data

model for the Web:

• The first group is motivated mainly by the need to incorporate complex services and existing

enterprise systems into the Web. In this group, the Web is used as a front-end to provide services

to users at the inter-net or intra-net levels. Issues such as data structure, flexibility, and

manageability are also addressed here, but are not solved for the Web document system per se.

This group includes such systems as W3Object [ING95], WebObject [WOB00],

WebComposition [GEL97], ILU Requester [ILU91, 1LU96], CorbaWeb [MER96], and

ANSAWeb [REE95]. We shall refer to this group as service-centred.

<•» The second group aims to model the document system intrinsic in the Web and tries to improve

its shortcomings such as those regarding data structure, extensibility, manageability, and

maintainability. Systems such as Hyper-G [AND95], Extensible Markup Language (XML)

[XML98], and Document Object Model (DOM) [DOM98], belong to this category. We shall

refer to this group as document-centred.

• The third group is concerned with constructing models to describe the data content in Web

documents. This group aims at facilitating resource discovery, content rating, cataloguing, and

knowledge sharing and exchange. It includes meta-data projects such as the Platform for Internet

Content Selections (PICS) [PIC97], the Warwick Framework [LAG96], the Dublin Core

[DUBOO], the Resource Description Framework (RDF) [RDF99], and the like. We shall refer to

this group as meta-data.

3.1 Service-centred modelling

Systems in this group focus on providing Web services (W3Objects [ING95, 96, 97],

WebComposition [GEL97]), and integrating existing enterprise systems with the Web (WebObjects

[WOB00], Web* [ALM95], ANSAWeb [REE95], CorbaWeb [MER96], ILU Requester [ILU91,

ILU96]). Their common aim is to remedy the extensibility problem of the Web by means of object-

oriented technology. W3Objects [ING95, 96, 97] also looks particularly at the link management

issue. ANSAWeb specifically attempts to achieve interoperability between the Web and systems
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implementing the Common Object Request Broker Architecture (CORBA) [BEN95], a standard for

distributed object systems developed by the Object Management Group (OMG) [OMG00]. ILU

Requester is directed towards increasing service execution performance caused by the process

forking in the Common Gateway Interface (CGI) [MCC95] technology2.

Except for WebComposition, which is a non-distributed object-oriented system, most of these

systems use distributed object technology. In particular Web* [ALM95], CorbaWeb, and WebObject

are all CORBA applications. ILU Requester employs a CORBA compatible technology, the Inter-

Language Unification (ILU) [ILU91], with its own Interface Specification Language (ISL), to capture

HTTP daemons as distributed objects. W3Objects implements distributed object-orientation using

C++ and the Remote Procedure Call (RPC) protocol [RPC95], although standards defined in CORBA

and ILU can also be used. Commercial applications such as WebObjects can integrate with a wide

range of industry standards such as CORBA, COM/DCOM (Component Object Model/Distributed

Component Object Model) [BEN95, BEN97, MOW97], and major Database Management Systems

(DBMS) such as Oracle, Sybase and Informix.

The data models in these systems, if provided, are basically designed to encapsulate services into

objects (CorbaWeb, WebComposition, W3Objects, Web*, WebObjects), and decompose a Web

application into screen elements or application-specific components (WebComposition, WebObjects,

W3Objects). CorbaWeb also captures databases into objects. ILU Requester is different from the

other systems in that it models the HTTP server, not the Web documents or services provided at the

client. ANSAWeb does not have a data model, but only provides interoperability between a CORBA

system and the Web.

Access from a Web client to objects defined in these systems is usually provided through CGI scripts

[MCC95], written in a scripting language defined for each system. CorbaWeb creates CorbaScript to

allow for dynamic invocation of operation on CORBA objects. Similarly Web* has TclDII, an

extension of Tel [OUS94], that uses CORB A's Dynamic Invocation Interface (DII) to provide access

to Orbix services [ORB00]. (Orbix is a commercial CORBA application.) WebObjects designs its

own environment, which includes a CGI Script written in its own scripting language, a HTML

Template that may contain WEBOBJECT markup elements, and a Declaration file to specify the

binding between WEBOBJECT and HTML markup elements. There are some good design ideas in

these systems, for example WebObjects introduces a separation between business logic (CGI Script),

presentation (HTML Template), and data access (Declaration file). However the scripting languages

defined for these systems may be difficult to use. For example, TclDII requires CORBA knowledge

1 Every invocation of a CGI script causes a new process to be created, resulting in a performance penalty.
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since the user has to precisely define the DDL (Interface Definition Language) [IDL97] type for each

parameter. More importantly, each language is specific to a proprietary system so that there is no

standard way to access objects in the underlying object system, and objects in different systems

cannot communicate with each other.

Some other approaches have been used in other systems. W3Objects provides Web access to its

objects through a gateway implemented as a plug-in module to an extensible server such as Apache

[APCOO]. URLs beginning with /w3o/ are passed to the gateway module, which binds tjie requested

named object to a W3Object within a nameserver, and invokes the appropriate methods. In

WebComposition a Web client accesses WebComposition components only indirectly through the

normal file system. These files are generated by the WebComposition's Resource Generator and

Component Server using "incremental publishing". This technique incrementally maps

WebComposition components stored in the Component Server to HTML elements for the requested

file, and generates the corresponding HTML file. This is done not on the user's request but at a time

decided by the system itself when some change to the file is detected. These approaches also provide

valuable input, but as with the scripting approach, cannot be standardised.

Systems in this group offer advantages obtained from object-oriented technology. In particular, they

all attempt to repair the manageability, maintainability and extensibility problems of the Web. Their

common approach is to "extend" the Web with services, either by developing new applications or by

integration with existing enterprise systems. As this is done using object-orientation, the extension

itself possesses the well-known advantages of object-orientation. Consequently the Web as a whole

appears to be manageable, maintainable and extensible. As a matter of fact, however, these systems

never really change the Web system as such, but only apply a "patch" to it. The Web infrastructure

still suffers from problems of manageability, maintainability, and extensibility.

As pointed out in Section 2.2.2, these problems stem from a design issue of HTML, which is

fundamentally a notation derived from SGML [SGM86], a standard from the publishing industry, to

represent a document. A solution for them, therefore, should be an improved design for the Web as a

document system. The service-centred systems, however, focus only on providing services using the

Web as a front-end. Consequently their models do not capture the Web as a document system, and do

very little in solving the design problems mentioned in Section 2.2.2. In addition, when the Web

infrastructure is changed, they are greatly affected because there is no proper mapping between their

models and the model implied in the Web document system.

Service-centred systems are also limited in terms of extending themselves because of the

complication involved in developing Web applications. The Web gained enormous success because

of the simplicity inherited from well-understood concepts of a document. Although this simplicity
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causes us many problems (see Section 2.2), it is necessary to preserve it (as much as practically

possible). The data models of service-centred systems, on the other hand, are built on complex

software development concepts.

hi brief, extending the Web in the service-centred way is both limited and fragmented because it is

complicated and cannot be standardised. Service-centred systems do fulfil their objectives of

integrating complex services and enterprise computing with the Web, but to solve the design

problems of the Web, we need another approach: document-centred.

3.2 Document-centred modelling

The systems in this group provide data models that capture the "document characteristics" of the

Web. There are three major systems in this category: HyperWave [HYPOO], the Extensible Markup

Language (XML) [XML98], and the Document Object Model (DOM) [DOM98].

3.2.1 HyperWave

HyperG [AND95], which was later commercialised into HyperWave [HYPOO], was the first system

to attempt to improve the document structure inherent in the HTML design. It does this by

introducing the concept of an abstract container, which can be one of four types: Collection,

Sequence, MultiCluster, and AlternativeCluster.

Collections are overlapping sets of items, and an item can be a document (content or material) or a

Collection itself. Thus an item can belong to one or more Collections, and Collections can be nested.

A Sequence is a Collection whose items are sequentially ordered. Collection and Sequence together

map well into the traditional hierarchical document structure of unordered, or ordered, nested

structural components, respectively. In addition, due to the "soft" characteristics of an electronic

document, an item can also logically belong to (or strictly speaking, be associated with) many

Collections. This allows for reusability and the ability to define multiple views, where a Collection

corresponds to such a view.

MultiCluster and AlternativeCluster act like terminal Collections in the document hierarchy with all

their items unfolded at once for display. (As a comparison, a Collection or Sequence is displayed as a

menu of closed folders or document items.) A set of (ordered or unordered) paragraphs and images is

an example of a MultiCluster. This allows a finer granularity of the document structure in the sense

that a document (or structural component) can be broken down into non-structural components, or the

"raw materials" that build it. In this respect, a cluster can be considered to have captured another type

of document "structure": unstructured documents. In HyperWave clusters are useful in collaborative
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authoring, where each author can independently supply (relatively small) pieces of materials into a

cluster, and let the container assemble and display them as one document An AlternativeCluster is

like a MultiCluster, but returns only one of its elements instead of a combination of all elements. An

AlternativeCluster is useful for selecting between available options, for example, languages.

With these abstract containers, a document can be organised into a coherent structure meaningful to

its author. Items in a container can be managed and maintained by the system. For example, an item

can be inserted into or removed from a Sequence, and the system automatically adjusts the relevant

attributes such as numbering, structural links, and table of contents, to reflect the change. This can be

done because of the distinction between structure and content, two of the three document properties

mentioned in Section 2.2.2.4. Both static and dynamic customisation in structure and content can also

be supported by the use of views. Such a view can be a statically designed Collection, or a Collection

of structural components selected by their access permissions (so that different users or user groups

with different access permissions will see different views), or a Collection that is dynamically

generated from a stored query (which is a search query). A stored query can be a member of a

Collection, and is itself a (dynamic) Collection, whose members are not statically linked to it, but

generated on the fly by evaluating the query. A view generated from a stored query generally does not

have any structure but contains only the materials (leaves in the collection hierarchy) that satisfy the

search criteria stored in the query. An identified user can also have a personal Collection called Home

Collection, which acts like a sophisticated bookmark list, where he/she can choose which Collections

(including stored queries) to add or remove.

The use of the structural elements also allows HyperWave to control the document presentation to a

certain extent by defining different styles for structural layout and navigation. A presentation style

can be configured for a user (by the system administrator or the user him/herself), which has a global

effect in all Collections. (For example, if "Partial Tree" is selected, all collection listings will be

displayed in the browser as partial trees.) In this way, customised presentation can be catered for,

although a user or author is limited by the styles pre-defined by the system (or the HyperWave

application developer who has modified the system). Customisation can also be provided hi

HyperWave by the use of cookies [COO00]. This technology however, is criticised for privacy

invasion [LIN98]. In addition, since cookies does not define a model upon which customisation

services are performed, the types of services provided are arbitrary and limited, and customisation

information cc-riiot be deployed to drive a systematic evolution of the Web.

All HyperWave objects (for example, document contents, collections, queries, hyperlinks, and users)

are stored at the server in an object-oriented database maintained by the server. HyperWave can thus

23



keep referential integrity among its components using this database,3 and has built-in search facilities

based on meta-data. These meta-data are simply attribute names and values of HyperWave objects

stored in the database. Customisation on hyperlinks is also supported by assigning hyperlinks with

different access permissions (similar to what is done with structural elements), so that different users

or user groups will follow different navigational paths. HyperWave provides a HyperWave API for

application programmers to extend the server's functionalities (using HyperWave's own language).

The major advantage of HyperWave is in solving the problems of document structure and document

properties (Sections 2.2.2.1 and 2.2.2.4), and consequently other derived ones, namely document

management and maintenance (Section 2.2.1.3), document authoring and design (Section 2.2.1.4),

and customisability (Section 2.2.1.5).4 It also offers advanced features in maintaining link integrity by

the use of external links (relating to the referential integrity and embedded link problems described in

Sections 2.2.1.2 and 2.2.2.5) and facilitating search by the use of meta-data (relating to the lost-in-

hyperspace and meta-data problems described in Sections 2.2.1.1 and 2.2.2.7), albeit with the help of

a database. Recently, HyperWave provides the Document Class, an extension of the container

classes, whose instances can be made persistent and stored in the server (rather than in volatile

memory as in conventional object-oriented systems).5 Programmers can override attributes and

methods defined in this class, as well as derive subclasses from it (in the object-oriented way). The

Document Class is designed to provide a way to develop special document types, for instance, one

with specific behaviour. HyperWave however, does not deal with problems concerning adaptability

and evolvability (Section 2.2.1.5). We also note that HyperWave is not an object-oriented system,

although it uses an object-oriented database.

3.2.2 Extensible Markup Language (XML)

Extensible Markup Language, abbreviated XML [XML98], is an effort by the World-Wide-Web

Consortium (W3C) FW3C] to repair the design problems of HTML. Like HTML, it is also a subset of

the Standard Generalized Markup Language (SGML) [SGM86], allowing the use of tags (including

nested tags) to describe elements in a document. Unlike HTML, however, which defines only a fixed

3 Referential integrity across HyperWave servers that belong to a particular server pool may also be maintained

[HYPOO].

4 HyperWave also deals with other issues such as collaborative authoring and security. These are not included in

the scope of our project, and thus are not reviewed in this thesis.

5 This simply means instances of a Document Class are stored in the server in the same way as those of other

types of abstract container such as Collection.
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tag set for a single document type, XML is really a meta-language that defines the grammar. It

permits the definition of tags and other markup syntax (including the definition of HTML in terms of

XML). An XML document for example, may look as follows:

<?xml version="l.0" encoding=*UTF-8"?>
<!DOCTYPE book System="http://lifeweb.org/book.dtd">
<book>

<chapter id="chapter1" heading="CHAPTER 1">
<section id="sectionl-1" heading="Section

This is the text of section 1
</section>

</chapter>

</book>:

Figure 3-1: Extract of an XML document

This example shows the <chapter> and <section> tags that are not present in HTML. Such tags are

defined in a Document Type Definition (DTD).6 The DTD for the above example is named book,

which is declared in the <!DOCTYPE> clause, and its name is used as the "covering tag" that

encloses all other elements in the document. XML calls <book> the document's root element. A DTD

is a single file, or several files, which formally defines a particular type of document. It describes the

schema of the corresponding document type, specifying factors such as what element types there are,

their attributes and attribute types, their possible nesting, and so on. The DTD for the XML document

in the above example defines the two elements <chapter> and <section> as follows:

<!ELEMENT chapter
<!ATTLIST chapter

id
heading

<!ELEMENT section
<!ATTLIST section

id
heading

(section)>

ID
CDATA
(section |

ID
CDATA

#REQUIRED
#IMPLIED>
CDATA)

#REQUIRED
#IMPLIED>

Figure 3-2: Extract of a Document Type Definition (DTD)

When a DTD is declared in an XML document (with the <!DOCTYPE> clause) as the file

"http://www.lifeweb.org/schema/book.dtd" in the above example (Figure 3-1), it is used to validate

the XML document when the document is parsed. Such a DTD is called an external DTD. Element

type definitions may be declared locally in the XML document that uses them, as illustrated in the

example below (Figure 3-3). In this example, the DTD "greeting" defines one single element,

6 XML also permits a document without a DTD, called a well-formed document. In this thesis we discuss only

valid XML documents, that is, those with their own DTDs.
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"greeting", that contains character data (PCDATA). The element "greeting" is used immediately in

the same XML document to mark up the text "Hello, world!". A DTD declared this way is called an

internal DTD.

<?xml version="1.0" encoding="UTF-8
<!DOCTYPE greeting [

<!ELEMENT greeting (#PCDATA)>
]>
<greeting>Hello, world!</greeting>,

Figure 3-3: Example of an internal DTD

In addition, an XML document may use element types that are defined in several DTDs, via the

namespace mechanism [NAM99]. Namespace allows an "inline" association of an element name or

attribute name (that is being used in an XML document) with the DTD that defines it. Such a name is

called a qualified name. Thus, an XML document may use element types or attributes that are not

defined for its own document type (that is, in the DTD declared in the <!DOCTYPE> clause). It may

also use element types or attributes defined in multiple DTDs. In this thesis, we differentiate the DTD

declared in the <!DOCTYPE> clause from other DTDs used in a document, and call it the main DTD.

Figure 3-4 shows an example of the use of XML namespace. In this example, the namespace

declaration in the first line binds the "chem" prefix to "http://chemistry.org/schema.dtd" for the "e"

element and contents. In the second line, the "molecule" element is qualified by "chem", thus

assumes the namespace "http://chemistry.org/schema.dtd".

<e xmlns:chem='http://chemistry. org/schema.dtd'>

<chem:molecule>C6H6</chem:molecule>

Figure 3-4: Example of the use of XML namespace

As can be seen from the above examples, since XML allows nested structures, it can easily be used to

represent a document hierarchical structure. Its extensibility comes from the expressive power

derived from its meta-level. Various document types can be defined and domain-specific "jargon"

specified, meaningful to the respective communities. In addition, XML also forces the separation

between structure (that is, structural contents) and presentation, imposing the use of stylesheets to

specify how the user-defined element types are presented on the browser. These advantages of XML

convert the Web infrastructure into one that can be managed, maintained, and extended.

XML (currently in version 1.0) is tt - base member in the XML family, and the first to reach the W3C

Recommendation status. Some other important members include:
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• XLink: XML Linking Language [XLKOO] provides advanced hyperlinking functionality such as

links to multiple destinations, bi-directional links, inline and out-of-line links, associating meta-

data with links, and databases of links. XLink is represented hi the XML syntax. It has been

mainly influenced by established standards hi HTML, HyTime [HYT97], and Text Encoding

Initiative Guidelines [TEI94]. Many other linking systems such as Microcosm [DAV93], PRESS

[DER99], Dexter, [DEX94] have also provided input to the design of XLink.

• XPointeT: XML Pointer Language [XPTOO] is a language used to identify a fragment for any

URI-reference that locates an XML resource. It supports addressing into the internal structure of

an XML document. This includes traversing the document tree and selecting internal parts based

on various properties such as element types, attribute values, character content, and relative

position. XPointer and XLink were split from the former XLL project to separate the Unking

functionality from the addressing of the objects bemg linked. XPointer is based on XML Path

Language (XPath) [XPAOO], a language used for addressing parts of an XML document, which is

a newly released W3C Recommendation in the XML family. XPointer has been influenced by

other standards including HTML, HyTime [HYT97], and Text Encoding Initiative Guidelines

[TEI94]. It also receives input from the Open Hypermedia Systems (OHS) such as Dexter

[DEX94], FRESS [DER99], Microcosm [DAV93], and Intermedia [MEY86, YAN88].

• XSL: Extensible Style Language [XSLOO] defines a language to write stylesheets for XML

documents. XSL consists of two parts: XSL Transformations (XSLT) [XSLTOO] for transforming

XML documents, and an XML vocabulary for specifying formatting semantics. XSL specifies the

styling of an XML document by using XSLT to transform the document into another document

that uses the formatting vocabulary. At the time of writing, XSLT has reached W3C

Recommendation status, but XSL is still a working draft.

• XML Schema: XML Schema [XSCOO] defines a rigorous data model (including a language) to

constraint and validate XML documents. Currently, the XML Schema project consists of two

parts. XML Schema Part 1: Structure specifies the XML Schema Definition Language, which

provides a superset of the capabilities found in XML 1.0 document type definitions (DTDs). This

specification depends on XML Schema Part 2: Datatypes, which defines the data types to be used

in XML Schemas. XML Schema is still a progressing project.

In addition, XML also has some associated standards. Two important ones are (i) the Document

Object Model (DOM) [DOM98] that defines an Application Programming Interface (API) for an

XML document; and (ii) the Resource Description Framework (RDF) [RDF99] that provides a

foundation for using meta-data to describe resources. These will be described in the next two

sections.
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It can be seen that, together, members of the XML family and its associated stiindards have addressed

or attempt to address issues concerning data management and maintenance (including document

structure and document properties as mentioned in Sections 2.2.1.3,2.2.2.1 and 2.2.2.4), extensibility

(Section 2.2.2.2), referential integrity (including embedded links as mentioned in Sections 2.2.1.2 and

2.2.2.5), functional behaviour (Section 2.2.2.3), and meta-data (Section 2.2.2.7). XML has created a

lot of excitement over the Web and many people have seen it as the future of the Web. Usdin et al.

[USD98], however, have reminded us that XML is only an "enabling technology". "Well-designed

XML can provide a valuable tool... but XML by itself is not a solution to any problem." Besides, the

continual growth of the XML family does make a person watching the development of the Web

wonder whether it will lose the simplicity that has won the Web such a phenomenal success. These

issues are perhaps ones to be left with others that still remain unsolved or partially solved, such as

statelessness (Section 2.2.2.6), customisability, adaptability and evolvability (Section 2.2.1.5).

3.2.3 Document Object Model (DOM)

The Document Object Model, abbreviated DOM [DOM98], is another W3C project that defines an

object-oriented Application Programming Interface (API) for a Web document. DOM maps well into

the XML data model, and thereby defines a complementary behavioural model for XML. It allows a

Web application to access and manipulate an XML (or HTML) document's elements, their structural

links, and their attributes.

DOM is a generalisation of Dynamic HTML [DHT97] defined by Microsoft and Netscape. DOM

level 1 has been stabilised and is currently a W3C Recommendation. The major classes of DOM level

1 Core Specifications are shown in Figure 3--5 in UML [UML98] notation. In this system Node is the

base type for all other types that can be found in a document structure tree. Nodes are nested, so that

a Node can have several sequentially ordered child Nodes, and usually a parent Node; except for the

root Node, which represents the document itself. A Docmaent, Element, or Attribute object

represents an XML (or HTML) document, element, aiad attribute respectively (as shown in Figure

3-5). A Text object captures any non-markup values, for example the data contents between the start

and end tags of an XML element. A Comment object corresponds to an XML (or HTML) comment,

which will be ignored by a parser. PI stands for Processing Instruction, a concept derived from

SGML [SGM86]. A PI object identifies by name a helper application that can process an unparsed

entity.

As a complementary functional model to XML, DOM specifically addresses the issue of a lack of

functional behaviour mentioned in Section 2.2.2.3. Other problems, in particular the meta-data issue,

are addressed in the next group of data models as explained below.
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Node

Document JEkmtnt Attribute Text P. Comment

Figure 3-5: DOM level 1 Core

3.3 Meta-data modelling

Systems in this group focus on establishing some mechanism for describing Web resources. Their

objective is to help in services such as resource discovery, knowledge exchange, content rating, and

cataloguing. The most important project is the Resource Description Framework (RDF) [RDF99], a

W3C Recommendation.

RDF provides a foundation for exchanging machine-understandable metadata that describes Web

resources, and thus enables automated processing of Web resources. RDF can be used, for example

[RDF99]:

• in resource discovery to provide better search engine capabilities

• in cataloguing for describing the content and content relationships available at a particular Web

site, page, or digital library

• by intelligent software agents to facilitate knowledge sharing and exchange

• in content rating

• in describing collections of pages that represent a single logical "document"

• in describing intellectual property rights of Web page authors,

• for expressing the privacy preferences of a user as well as the privacy policies of a Web site

• with digital signatures to build a "Web of Trust" for electronic commerce, collaboration, and

other applications.

The basis of RDF is a syntax-independent data model for representing named properties and their

values. RDF properties can represent both attributes of resources (thus correspond to traditional
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attribute-value pairs) and relationships between resources (thus correspond to the traditional entity-

relationship diagram). The core RDF data model is defined in terms of:

1. A set of Nodes (N)

2. A set of Property/Types (P), a subset of N

3. A set of triples called Triples, whose elements are called properties. In a Triple {p, r,v},p is

a member of P, r is a member of N, and v is either a member of N or an atomic value (for

example, a Unicode string).

In this data model, both the resources being described and the values describing them are represented

as nodes in a directed labelled graph. The arcs connecting pairs of nodes are labelled by property

types. This is represented diagrammatically as:

[ r ] [v]

and can be read as "v is the value of property p for resource r", or "r has property p with value v". For

example, the statement "John Smith is the Creator of the Web page http://someweb/somedoc.html can

be represented as:

[http: / / someweb/ somedoc. html ] "John Smith"

RDF statements can be represented in XML (with the use of the namespace mechanism). For

example, the above statement can be written as:

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#'

xmlns:dc="http://purl.org/metadata/dublin_core#">

<rdf:Description about="http://someweb/somedoc.html">

<dc:Creator> John Smith </dc:Creator>'

</rdf:RDF>

Figure 3-6: An RDF statement

More statements can also be included for the same resource to describe the resource in more details.

For example, an XML element such as <dc: Publisher>Addison-Wesley</dc: Publisher> can

be added inside the element <rdf: D e s c r i p t i o n above to give information about the publisher

of the resource. RDF also defines other useful structures such as Bag, Sequence and Alternative to

express collections of RDF statements, and a reification model to express statements about



statements. (For instance, the sentence "Adam Smith believes that John Smith is the author of the

resource http://someweb/somedocJitml" is a statement about another statement).

3.4 Conclusion

The data models described here, especially HyperWave [HYPOO] and those of the XML family, have

solved, or provided a foundation for solving, a range of problems, primarily manageability,

maintainability, and extensibility. This demonstrates the power of the data modelling approach. There

are disadvantages to the approaches that have been taken, however. For instance, HyperWave uses a

commercial database, which is not an open system like the Web, to manage and maintain documents.

XML is only an "enabling technology" [USD98], and therefore only provides a foundation for

solving problems, rather than solutions themselves. More importantly, there are problems that remain

unsolved or partially solved even with the advent of XML and its associated technologies. These are

statelessness (Section 2.2.2.6), customisability, adaptability, and evolvability, which may be summed

up in one single issue,- evolvability (Section 2.2.1.5). Specifically, the existence of XML itself raises

many questions. For instance, XML provides the expressive power that allows for the creation of

various DTDs meaningful to differing communities, but how do these DTDs fit together? Can

elements of different DTDs interact with one another and to what extent? Is it necessary to develop a

separate set of tools and supporting software for each DTD? Is it possible to make the supporting

software and tools interoperable across different DTDs, and to what level is this possible? Is it

possible to derive a DTD from an existing one, or must each DTD be a completely new entity? If this

is possible can the derivation process be automated, and to what extent can automation be supported?

These questions can also be summarised in one issue: the self-evolving capability of the Web, or the

Web evolvability. This topic will be investigated in the subsequent chapters of this thesis.
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Chapter 4 System evolution

There has not been any formal study on Web evolution or Web evolvability that we are aware of to

this date. Literature on system evolution hi Computer Science, however, can be found in some other

areas. Some well-established fields include Database Schema Evolution (DBSE), meta-modelling,

and evolutionary algorithms. This chapter reviews work that is relevant to our study in these fields.

4.1 Schema evolution in Object-Oriented Database

Systems (OODBS)

A database is a collection of related data, which represents some aspect of the UoD (Universe of

Discourse), and is designed for a specific purpose [ELM94]. There are many types of database

systems, depending on how data are organised into logical data models. Some of the most well-

known data models are [ELM94, HAL95]:

• The network data model, which was first defined by the Conference on Data Systems Languages

(CODASYL) Data Base Task Group (1971), is fairly complex. Facts are stored either hi records

or as record links. A record field may contain a single value, a set of values, or even a set of

value-groups. A record link connects record types in an owner-member relationship (for example,

an employee's record is "owned" by a department record). These connections may form
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networks, for example, a record type may have many owners as well as owning many record

types. A query across two record types has to rely on a record link (which provides an access

path) being predefined between them, This makes a database application less flexible and its

management complicated. For example, access paths must be added for some new queries and, as

the application structure evolves, internal optimisation efforts can be easily undone.

• The hierarchical data model, which was developed at IBM, is simpler. It is specifically designed

for application to a hierarchical structure (for example, a computer file system). Facts are stored

in records or record links as in the network model, but record fields can only hold single values,

and record types are linked in a parent-child relationship where a child can have only one parent

This model provides good performance for hierarchical applications, but is less suited to other

applications. In addition, as with the network model, it still depends on predefined access paths

for some queries.

• The relational data model, defined by E.F. Cood in 1970, introduced an even simpler model.

Here all the facts are stored in tables, including their constraints and relationships. This allows

tables to be treated as mathematical relations. Complex queries can be made across multiple

tables in an adhoc manner, and application management is simpler, since there is no need to

separately define access paths.

Object-oriented database systems (OODBS) arrived later, in 1986, pioneered by Stonebraker et al.

[STO86, KEM87] with their product POSTGRESS. These systems represent a merge between object-

orientation and relational databases. They use concepts of class, class hierarchy, inheritance, instance

variable (or attribute in object-oriented terms) and method from the object-oriented paradigm to

describe data in terms of their semantics, behaviour and structure. OODBSs add behaviour to

database objects and offer the well-known advantages of object-oriented technology such as

manageability, maintainability, reusability and extensibility [BRA93]. OODBSs (rather than other

kinds of database systems) are related to our work because we also investigate the use of object-

orientation in our solution. In this section we look particularly at the issue of schema evolution in

OODBSs.

Database Schema Evolution (DBSE) refers to the ability to change the description that models a

particular database system dynamically, and to the consistent management of these changes. In an

OODBS it involves such operations as addition or removal of an instance variable, a method, or a

class. Two fundamental issues have been identified with DBSE, which are (i) taxonomy and

semantics of schema evolution, and (ii) change propagation.
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4.1.1 Taxonomy and semantics of Database Schema Evolution

This issue has been approached in current object-oriented database management systems

(OODBMSs) in an informal way by using invariants to ensure the consistency of the database schema

and rules to guide the maintenance of these invariants [PET97]. The sets of invariants and rules,

however, vary in different OODBMSs, depending on the underlying object system and the choices of

the system designer. Orion [BAN87], which was the first system to introduce this approach, defined a

widely accepted taxonomy and semantics of schema changes, invariants, and rules to be observed

when applying change operations.

4.1.1.1 Invariants of schema evolution

Five invariants have been defined in Orion [BAN87], which are presented in Table 4-1 below:

Invariants

Class lattice

Distinct name

Distinct

identity

(origin)

Full

inheritance

Domain

compatibility

Explanations

The class lattice of the system is a singly rooted and connected, directed

acyclic graph (DAG), with uniquely named nodes and uniquely labelled

edges, where every node is reachable from the root.

All instance variables and methods of a class, whether native (defined in

that class) or inherited, must have distinct names.

Uniqueness and traceability must be ensured for the origin of definition of

all instance variables and methods of a class, whether they are directly or

indirectly inherited from a single or multiple superclasses.

A class must inherit all instance variables and methods defined in each of its

superclasses, except for when this causes a violation of the distinct name

and distinct identity invariants.

The domain (or class) of an inherited instance variable must be either the

same as the original one in the superclass, or a subclass of the original

domain.

Table 4-1: Invariants for Database Schema Evolution in Orion [BAN97]
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4.1.1.2 Rules of schema evolution

As there can be more than one way to maintain the invariants, Banerjee et al. [BAN87] established

twelve rules to guide the preservation of these invariants. These rules fall into four categories: default

conflict resolution, property propagation, DAG manipulation, and composite object

4.1.1.2.1 Default conflict resolution rules

These rules deal with the distinct name and distinct identity invariants by specifying a selection

scheme over the conflicting elements.

Rule 1: A locally defined instance variable or metiiou overrides an inherited one with the same name.

Rule 2: When two or more superclasses of a class C have an instance variable or method of the same

name but distinct origin, C will inherit the variable or method of the first one (i.e. the left-most node

among the nodes representing these superclasses in the, class lattice) among the conflicting

superclasses.

Rule 3: When two or more superclasses of a class C have instance variables of the same origin, C

will inherit the variable of the more specialised domain, or of the first superclass among the

conflicting ones if the first case is not applicable (i.e. the instance variables are over the same

domain, or their domains are not of superclass - subclass relationship).

4.1.1.2.2 Property propagation and change rules

These rules dictate what changes in the contents of a class should propagate to related classes and to

what extent.

Rule 4: Changes to the properties of an instance variable or method in a superclass propagate to all

the subclasses that inherit them, unless these properties have been redefined in the subclasses.

Rule 5: The addition of, or name change to, an instance variable or method in a superclass should

propagate to only those subclasses that do not introduce new name conflicts. This rule aims at

resolving conflicts that may be introduced by Rule 4.

Rule 6 (domain change rule): The domain of an instance variable can only be changed to be more

generalised, and can only be as generalised as that of the original instance variable.

4.1.1.2.3 DAG manipulation rules

These rules deal with the modification of classes and their relationships in the class lattice.
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Rule 7 (edge addition rale): When a class C acquires a new superclass, that superclass will be the

last in the list of the superclasses of C.

Rule 8 (edge removal rule): If a class A is the only superclass of class B, and A is removed from the

superclass list of B, then all of A's superclasses will become immediate superclasses of B in the same

order as they are with A. In this respect if the root class is the only superclass of B, it cannot be

removed from B (class lattice invariant).

Rule 9 (node addition rule): A newly added class will assume the root class as the default

superclass if no other superclass is specified.

Rule 1G (node removal rule): The removal of class C first requires that all edges to it and from it be

removed. Rule 8 must be applied if any edge is the only one from C to a subclass of C. hi addition it

is not possible to delete a system-defined class.

4.1.1.2.4 Composite object rules

In Orion a composite class is one that is connected to one or more classes with the aggregation (or is-

part-of) relationship. Component objects participating in this relationship are dependent on the

composite (parent) object in that they rely on their parent for their existence.

Rule 11 (composition link rule): A composite instance variable may be changed to non-composite

(by dropping its composite link property), but not vice versa.

Rule 12: If a composite instance variable is changed to non-composite, the parent object A disowns

the component object B (referenced by the instance variable). A continues to reference B, but the

deletion of A does not also cause B to be deleted.

4.1.1.3 Taxonomy and semantics of schema evolution

Orion expresses the semantics of schema evolution using the invariants and rules specified above for

each supported schema evolution operation. These operations can be broadly categorised into three

groups: (i) Changes to the class definition, such as adding, removing or modifying instance variables

or methods; (ii) Changes to the generalisation/specialisation relationships between classes; and (iii)

Changes to the class as a whole such as adding or removing an entire class. The schema change

taxonomy is as follows [BAN87]:

1 Changes to the contents of a node (class) (or changes to the class definition)

1.1 Changes to an instance variable

1.1.1 Add a new instance variable to a class
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1.1.2 Drop an existing instance variable from a class

1.1.3 Change the name of an instance variable of a class

1.1.4 Change the domain of an instance variable of a class

1.1.5 Change the inheritance (parent) of an instance \ Triable (inherit another instance

variable with the same name)

1.1.6 Change the default value of an instance variable

1.1.7 Manipulate the shared value of an instance variable

1.1.7.1 Add a shared value

1.1.7.2 Change the shared value

1.1.7.3 Drop the shared value

1.1.8 Drop the composite link property of an instance variable

1.2 Changes to a method

1.2.1 Add a new method to a class

1.2.2 Drop an existing method from a class

1.2.3 Change the name of a method of a class

1.2.4 Change the code of a method in a class

1.2.5 Change the inheritance (parent) of a method (inherit another method with the same

name)

2 Changes to an edge (or changes to the generalisation/specialisation relationships between classes)

2.1 Make a class S a superclass of a class C

2.2 Remove a class 5 from the superclass list of a class C

2.b - aange the order of superclasses of a class C

3 Changes to a node (or changes to the class as a whole)

3.1 Add a new class

3.2 Drop an existing class

3.3 Change the name of a class



4.1.2 Change propagation

Change propagation considers the strategy employed to update instances affected by schema changes

to maintain data consistency throughout the database system. Three major techniques have been used

in current OODBMSs, which are screening, conversion and filtering. All of these techniques

explicitly coerce instances to reflect changes of the schema, but coercion takes place at a different

time and in a different way in different techniques. This section presents a review of these techniques

[PET97].

In screening, each schema change generates a conversion program that can independently convert

objects to reflect the new schema definition. Actual coercion does not happen immediately but is

delayed until the object is accessed. As it is possible to apply multiple schema changes to one class,

multiple conversion programs might be invoked at the same time when an object of that class is being

accessed. Screening suffers from performance penalties during access to object, especially if several

conversion programs need to be applied. It can also increase the system overhead due to the need to

keep track of what objects still need to be applied to a particular conversion program.

The conversion technique converts affected objects immediately on each schema change. This

approach causes processing delay during the schema modification phrase, but not during the object

access.

The filtering approach does not propagate changes to objects, but creates a different version of a

schema for each schema change, and the old objects remain with the old version while new objects

are created for the new version. The filters maintain consistency between versions and handle

problems that arise when objects of different versions try to communicate with each other. In this

respect filters also play the role of coordinating and inter-linking between different versions of

schemata, maintaining the interoperability among their instances. This approach introduces the

overhead for maintaining multiple versions and the filters between them.

4.1.3 Conclusion

In brief, schema evolution in OODBSs is about allowing for dynamic changes in the class definition

and class lattice of an application while still maintaining data and schema consistency. These changes

start at the schema level and propagate down to the affected instances. As a result, an evolution

operation can create a complex chain effect to all affected classes and instances. This is complicated

and difficult to implement, hard to standardise (since the underlying object models differ across

OODBSs) and incurs penalties in performance or overhead. Recently, Peters R. J. et al. [PET97] have

developed an Axiomatic Model of Dynamic Schema Evolution (DSE) in Object-Based Systems
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(OBS). This model provides a formal foundation to describe the semantics of changes in various

OBSs so that they can be compared. But it still does not address problems resulting from the impact

that a schematic change has on the system. The taxonomy for schema evolution described in this

section however, will serve as an additional guideline in the design of our own evolutionary model,

and hi comparing our system with systems such as Orion (hi terms of support for schema evolution)

(see Section 8.8).

4.2 Meta modelling - a formal basis for information

system evolution

DBSE has been made possible because of the availability of a set of information that describes the

database schema, which is commonly referred to as meta-data7, or a data dictionary. Meta refers to

stepping back from something to survey its context and make assertions about it and that context

[MAE88]. Simply speaking, meta-data is "data about data", or "data that describes data". Access to

this set of meta-data allows the OODBMS to maintain the schema consistency and handle version

conflicts during schema changes. Automatic manipulation of schema requires meta-data to be

formally represented in models, by so-called schema repositories or meta-databases. These

repositories can differ across distributed information systems and change over time. To ensure

interoperability and adaptability of these systems, it is necessary to have models that describe these

models (repositories), or meta-models [CON93, JAR98].

Meta-models are models about models, or in data modelling terms, a model is an instance of its meta-

model. As meta-models are models themselves, they provide the abstraction and constraints needed to

interlink the elements of different data models in a heterogeneous environment and along their

evolution. Meta-models can be recursively nested, thus models abstract from instances, meta-models

abstract from models, meta-meta-models abstract from meta-models, and so on [JAR98]. It has been

shown by Kotterman [KOT84], and widely accepted [JAR98, UML98], that four levels of

instantiation are needed for the evolution and definition of complex information system. As [JAR98]

has pointed out, the architecture defined in the ISO/TEC8 Information Resources Dictionary Standard

(IRDS) Framework [IRD90] is designed based on the same principle with four levels interlocking

7 To be more precise metadata should be called meta-information. The term metadata however, has been more

popular and will be used in this thesis.

8 ISO is the International Organization for Standardization. HsC is the International Engineering Consortium.
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each other in pairs (see Figure 4-1). [JAR98] has provided an excellent summary of this architecture

which is described below:

-"<-''" development onvtronmerrt

IRD Definition
Schema Level

Figure 4-1: The ISO/IEC IRDS architecture

4.2.1 ISO/EEC Information Resources Dictionary Standard (IRDS)

Framework: a meta-model architecture

The IRDS architecture is designed to interlock distributed application usage with distributed

application development. This is achieved in a four-level meta-model architecture that we describe

from bottom to top (see Figure 4-1):

• The Application Level includes application data and program execution traces. This coiTesponds

to the instance level of a class-based language.

• The IRD Level includes database schemata and application programs, plus any intermediate

specifications, and also specifications of non-computerised activities (for example, workflows). It

can also contain traces of development processes interlinking these specifications. This

corresponds to the class level of a class-based language.

• The IRD Definition Level specifies the languages in which schemata, application programs and

specifications are expressed, and possibly also include the specification of their static and

dynamic inter-relationships, for example design process models. This corresponds to the meta-

class level.

• Finally the IRD Definition Schema Level specifies a meta-meta-level model (M2-model)

according to which the IRD Definition level objects can be described and interlinked.
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As Rgure 4-1 shows, these four levels are grouped into interlocking level pairs. A level pair can be

intuitively understood as a database where the upper level is the database schema and the lower level

the database instance. The architecture interlocks level pairs in that the schemata of level pairs at the

lower level can be coordinated by the database state of a level pair (dictionary) at the next higher

level, thus creating a distributed database:

• Application Level Pairs correspond to traditional application databases, consisting of a schema

and a database state

• IRD Level Pairs correspond to data dictionaries, meta-databases or repositories. At runtime, they

can serve as coordinators for distributed systems. At system evolution time, they serve as design

databases.

• IRD Definition Level Pairs serve the same purpose for distributed evolution environments,

linking multiple heterogeneous data dictionaries or design environments.

Interlocked application level pairs and IRD level pairs form a distributed application environment,

whereas interlocked IRD level pairs and IRD definition level pairs form a distributed development

environment. Thus, the architecture provides the principal concepts for integrating the usage and

evolution of distributed systems. The concepts implied in this architecture are found in the current

database context as well as in many meta-modelling tools, although they may be only partially

supported.

4.2.2 Conclusion

While schema evolution considers adaptability, and possibly also interoperability, at the schema level

for one particular database system, information system evolution is concerned with the same issues at

the same level for multiple database systems across a distributed information system. In both cases

some description at the meta-level is necessary to maintain system consistency, and to cooperate and

interlink elements in a heterogeneous environment. This concept is very useful in the design of an

evolvable system. Elements or individuals that diverge in the course of evolution may be able to

maintain their compatibility or interoperability through levels of meta-modelling. This idea is

exploited in our design as explained in the subsequent chapters.

4.3 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are "a class of direct, probabilistic search and optimisation

algorithms gleaned from the model of organic evolution" [B&C96]. Thus the problem of EAs is
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optimisation, which has a different focus from the issue of evolvability of the Web. On the one hand,

the ultimate objective of an EA is to find an optimum in a particular search space by applying an

evolutionary strategy. Typically, once such an optimum (or some termination condition) has been

achieved, the algorithm will terminate. In the context of artificial Me, EAs do not answer questions

such as, "how is a new species formed?"9 Or, "how do members of different species interact or

communicate with each other?" On the other hand, evolvability is concerned with the evolutionary

mechanism. Its problem is to identify what features (for example, structural, functional, or genetic)

are required of an individual or a population (an "evolutionary entity") for it to evolve itself, and how

the elements of these features work together for the evolution of the involving entities, Evolvability

necessarily involves designing an evolutionary path, and defining the behaviour and interaction of

evolutionary entities. Thus it can answer the questions above that EAs cannot. In addition, all EAs

work on the basis of probabilistic or random mutation or recombination, which may not be applicable

on the Web, where changes should most likely be directly controlled. They both involve evolution,

however, and knowledge of EAs may be applicable or relevant to our research questions. We

therefore present in this section, a summary of a representative and probably the most widely known

EA, namely the (traditional) Genetic Algorithm (GA).

The Genetic Algorithm (GA) was invented in 1975 by Holland [HOL75], a computer scientist and

psychologist at the University of Michigan. As its name suggests, the GA simulates the Darwinian

evolutionary process at the genetic level. It does this by mathematically representing natural genetic

information using bits and bitstrings. In nature, genetic information is encoded using a quadruplet

system of the four so-called genetic alphabet A, T, G, C. In the GA, the coding system is mainly

binary with two bits 0, 1. For simplicity we shall assume a binary coding system only. An

optimisation problem is represented as a set (population) of bitstrings. These strings are modelled

after chromosome strings, where each string represents an individual in the population of strings, and

has an associated fitness value. Repetitive execution of the algorithm on this population produces

strings with varied patterns to form a new population, progressively selecting the strings with the

highest fitness values in each loop (generation). This process is based on the Darwinian principle of

naturally occurring genetic operations (sexual crossover and mutation) and survival of the fittest.

' This question is actually not yet answered in biology at the genetic level.
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4.3.1 Representation and fitness evaluation

As stated above, using the GA an optimisation problem is represented as a population of bitstrings of

fixed-length. For example, in the "Hamburger Restaurant" problem described hi [KOZ92], a manager

has to find out the best business strategy among three binary decisions for his four restaurants:

• Price: Should the price of the hamburger be 50 cents or $10?

• Drink: Should wine or cola be served with the hamburger?

• Speed of service: Should the restaurant provide slow, leisurely service by waiters hi tuxedos or

fast, snappy service by waiters in white polyester uniform?

In this problem each decision has two possible choices, which can be represented as either 0 or 1.

There are three decisions, therefore a business strategy can be represented as a bitstring of length 3,

and the search space is 23 = 8. This constitutes the representation scheme of the problem, which is

shown in Table 4-2.

Price

High

High

High

High

Low

Low

Low

Low

Drink

Wine

Wine

Cola

Cola

Wine

Wine

Cola

Cola

Speed

Leisurely

Fast

Leisurely

Fast

Leisurely

Fast

Leisurely

Fast

Binary representation

000

001

010

011

100

101

no
111

Table 4-2: Representation scheme for the Hamburger Restaurant problem

Since there are only four restaurants, four strategies from the above are randomly selected and

initially assigned to each of the restaurant as shown in Table 4-3. This is called generation 0, or the

initial random generation.
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Restaurant number

1

2

3

4

Price

High

High

Low

High

Drink

Cola

Wine

Cola

Cola

Speed

Fast

Fast

Leisurely

Leisurely

Binary representation

Oil

001

110

010

Table 4-3: Initial random generation (generation 0)

The fitness function is a decoding scheme that maps a bitstring to a real number. For simplicity, in

this example, the fitness value for each strategy has been made equal to the decimal equivalent of the

bitstring as shown in Table 4-4.

Restaurant

1

2

3

4

Generation 0

String

011

001

110

010

Total

Best

Worst

Average

Fitness

3

1

6

2

12

6

1

3.00

Table 4-4: Observed values of the fitness measure in generation 0

4.3.2 Selection

In the GA an individual is selected (to form a mating pool or to participate in a sexual recombination)

with a probability ps proportionate to its fitness. For instance, in the population represented in Table

4-4 above, the selection probability of string X3 (110) is:

- 6 - Q 5

that is, the string X3 (110) has 50% chances of being selected.
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Applying the GA on the population of generation 0 above, individuals are first selected to form a

mating pool. Since the maximum number of individuals that can participate in the mating pool for our

problem is 4, we expect that string Xj (110) will appear 0.5x4 = 2 times in the pool. Similarly we can

calculate the selection probabilities of other individuals in the population: p, (Xj) = 0.25, ps (X2) =

0.08, ps (X4) = 0.17. We expect to see Xj and X* to appear once each in the mating pool, while X2

would disappear. The overall fitness of the population has increased (from the previous average of

3.00 to 4.25, and the worst-of-generation from 1 to 2) at the cost of a reduction in genetic variety.

Table 4-5 shows the mating pool created after the fitness-proportionate selection process.

i

1

3

3

4

Total

Best

Worst

Average

Mating pool

011

110

110

010

/rx.)
3

6

6

2

17

6

2

4.25

Table 4-5: Mating pool after selection

4.3.3 Recombination

Recombination or crossover in the GA is a sexual operator that selects two parents from the mating

pool and recombines them to form two new individuals. Parents are selected proportionate to fitness,

or can be based on a uniform random distribution if individuals in the mating pool has already been

fitness-proportionate selected. Crossover allows new points in the search space to be tested. It is

controlled by the crossover probability pc, which specifies the percentage of individuals in the mating

pool that participate in the operation. For example, in the mating pool shown in Table 4-5 above,

suppose pc = 0.5, then 4x0.5 = 2 parents will be selected for crossover. (Other individuals are simply

reproduced into the new generation). Since the mating pool has been selected proportionate to fitness,

two individuals can be randomly selected, for example strings X; (Oil) and Xj (110).

45



A crossover point is randomly chosen10 between 1 and the length of the string L — 1 = 2. Two

offspring are created that, contain fragments of the two parents' strings starting from the crossover

point In our example, suppose the crossover point is 2, each parent Xj and X3 will contribute

fragments 01- and 11-, and give remainders —1 and -0 , respectively. An offspring is produced by

combining the fragment of one parent and the remainder of the other. Thus one offspring in our

example will be 010 and the other is 111. A summary of this result for both generations is given in

Table 4-6.

Generation 0

i

1

2

3

4

String

on
001

110

010

Total

Best

Worst

Average

Fitness

3

1

6

2

12

6

1

3.00

Selection

0.25

0.08

0.50

0.17

After selection

Mating

011

110

110

010

Fitness

3

6

6

2

17

6

2

4.25

Generation 1

Cross

2

2

-

111

010

110

010

7

2

6

2

17

7

2

4.25

Table 4-6: Summary of a possible outcome for generations 0 and 1

After crossover, the fitness of the new population is evaluated, and the GA is executed again to

produce new generations of individuals until some termination criterion (for e.g. an optimal

individual is found) is satisfied. As can be seen from Table 4-6, in our example, the overall fitness

has increased for all the best-of-generation, worst-of-generation, and average, from generation 0 to

generation 1. This example illustrates how the GA can improve the population and individual fitness

from one generation to another.

4.3.4 Mutation

The mutation operator in the GA is only a "background operator" that randomly selects a string in the

mating pool, and randomly selects one single bit in the string to invert. The rate of applying the

10 Later development of GA introduced the crossover operator, which implements different strategies for picking

up the crossover point(s). We do not discuss these strategies in this thesis.
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mutation operation is controlled by the mutation probability pm e [0,1], which is usually very small

so that mutation seldom happens in the GA. Mutation was introduced into the GA by Holland

[HOL75] to restore the "lost genes" that have become extinct due to the exploitative effect of the

fitness-proportionate selection and cannot be regained by crossover.

4.3.5 Conclusion

Operating primarily on crossover and fitness-proportionate selection, the GA can. produce

populations with improved average and individual fitness. Mutation is used as a secondary operator

to restore "genes" that have been lost and cannot be regained by crossover. The GA is typically

executed repeatedly until a termination criterion is satisfied: e.g. an optimal solution is found or a

maximum number of generations is reached. The problem of GAs in particular, or EAs in general, is

optimisation. This is different from ours, which is evolvability. The underlying concepts in EAs,

however, which are based on Darwinian evolutionary theory, are closely related to what we propose.

EAs provide very good examples of how we can use biological evolution as an analogy to develop

powerful methods for solving computing problems.
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Chapter 5 The Multimedia Document

Model (MDM)

We now start describing our own work for this project. As has been pointed out in Sections 2.1, 3.1

and 3.2, the Web was initially designed as a document-centred system. Although it has developed

into a highly interactive system, this feature still holds true, as interactive components are only

embedded objects (or scripts) brought to users by means of documents. The document-centred

characteristic is preserved in our system, and developed in two stages. The first stage models the

traditional paper-based document system. The second stage develops the first-stage model into one

with Web-specific characteristics. In this chapter, the Multimedia Document Model (MDM), the first-

stage model of our system, is described.

5.1 Design criteria

The Multimedia Document Model is designed to satisfy the following criteria:

• Simplicity: simplicity has been one of the key factors of the success of the Web, and is preserved

in our model. Simplicity means that our system is easy to understand and can be used by the



general public. The system should be as intuitive as the current Web so that anyone can use it

without requiring any special knowledge.

• Compactness: compactness means that the number of classes, attributes and methods in a class is

kept to the minimum. Compactness contributes to simplicity since there is less to learn, and also

gives room for extensibility and evolvability.

• Completeness: completeness means that the system must cover all existing elements in the

traditional document system.

The system also possesses features of an object-oriented system, which are manageability,

reusability, and flexibility.

5.2 The Multimedia Document Model (MDM)

This model is designed based on the current library document system and publishing systems such as

LaTeX [LAM86], Standard Markup Language (SGML) [SGM86], and Hypertext Markup Language

(HTML) [HTM98]. It follows object-oriented design techniques. Figure 5-1 shows the class diagram

of the top level of the model, using Unified Modeling Language (UML) notation [UML98].

Presentation
dispkys

O..ri
Document

is-i

O
0..* 0..*

Material

0^
composes

0..*
StructuialCornponent

Figure 5-1: MDM class diagram - top level

In this model, a document is decomposed into objects, having internal state and well-defined

behaviour. The object's internal state is defined by a set of attributes and its behaviour by a set of

methods. A document can be viewed in three ways: Structure, Material and Presentation. In the

Structure view (represented by the StructuralComponent class in Figure 5-1), the document is broken

up into structural components, such as volume, part, chapter, and section. The Material view

(represented by the Material class in Figure 5-1) accounts for the raw materials that compose a

document, such as text and graphics (other types of media can be added due to the extensibility

feature of object-orientation). The Presentation view (represented by the Presentation class in Figure

5-1) looks at the various ways (such as table, frame, list, reference entry, and article) information is

presented to human readers.
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5.2.1 The MDM classes

This section explains the model according to five major classes: Document (which represents the

whole document) StructuralComponent, Presentation, Material (which represents tlie three views of

the document) and Publication (which represents a major subclass of document). Figure 5-2 shows

the second level class diagram of MDM.

Presentation

corauns

tisphys

0..*
Document

15-t

composts

Id
1

o~*

Publication

IS-l

Book

Structural
Component

pub lie ttion type

Serial Reference

pet stnuiton type

Table Frame List RefEntiyJI Article

Material

Text Graphics

Figure 5-2: MDM class diagram - second level

5.2.1.1 Document

A Document object represents the entirety of a publication, and is constructed from the basic building

blocks of StructuralComponent objects. Instances of the Document class correspond to the loosest

form of publication. It is designed to completely cover any type of document in the traditional

document system. These loose types can be, for example, unbounded documents, drafts, letters, or

notes. Objects of the Document branch act as the interface of the Web system for human readers.

Internally they are composed of other objects which may be only StructuralComponent objects

(structured documents), or some StructuralComponent objects and some Material objects (semi-

structured documents), or just Material objects (unstructured documents). The only two attributes

that require non-null values are the object id, and heading, which underlines the fact that its content is

semantically complete, that is, it must not contain just fragments of text or graphics which are not

comprehensible to human readers. The heading also serves as a mnemonic identifier to human



readerc, but does not have a significant meaning for the system, and is not required to be unique in

any domain.

5.2.1.2 Structure

As the StructuralComponent class inherits the composition relationship to itself from Document, a

StructuralComponent object can contain other StructuralComponent objects recursively. This forms a

flexible tree structure commonly found in paper-based document systems, such as a book containing

many chapters, or a chapter containing many sections. This structure allows for the whole document

to be modified, extended, or truncated on a component basis, without losing the coherence of its

overall structure. StructuralComponent is the generic class for all structural components of a

document, such as volume, part, chapter and section. Since all these structural components share the

same properties and behaviour, it is appropriate to have one single generic class. This design makes

the model simpler and more compact, and gives authors a larger degree of freedom when defining

their own document, since the model does not differentiate between the various types of structural

component More importantly, the use of generic classes makes it possible for the system to evolve.

(System evolution is discussed in Chapter 8.)

StructuralComponent objects hold two special attributes: numberingScheme and view.

numberingScheme defines whether a collection of StructuralComponent objects should be regarded

as a sequence (possibly numbered), or a simple unordered set, and also specifies the format for

numbering them. The system can thus automatically generates numbers for structural components,

reflecting their order and level within the document hierarchy, and formats them according to the

specified numberingScheme. view assigns to a StructuralComponent object some value(s) that

specifies whether that object should be (functionally) included (visible) in the parent object that it

(declaratively) belongs to in the document tree, view allows for dynamic customisation, which will be

explained in Sections 8.2 and 9.4.2. It is possible for a StructuralComponent object to have more than

one value for view, so tha*, it can be combined with other StructuralComponent objects in different

ways, and different views can be supported for the same set of materials.

5.2.1.3 Presentation

The model also makes presentation components available, by associating objects of the Presentation

branch with those of the Document branch. Presentation is an abstract class from which other

presentation formats are derived. A Document or StructuralComponent object may be associated with

zero or one Presentation objects (at a time), and a Presentation object may be associated with zero or

51



Document 1

more objects in the Document branch.11 It is possible to have a repository of pre-defined Presentation

objects for an author (or user) to choose from when designing (or viewing) a document. A Document

or StructuralComponent object can be presented in a number of different formats such as text chunk,

table, frame, list, reference entry, and article. Text chunk is a sequence of one or more ASCII

characters. It is essentially a section of text, with one or more paragraphs. Table, frame, list, reference

entry and article, are all defined according to the common sense criteria used in the traditional

publishing industry. Text chunk is the default presentation for an object of the Document branch.

5.2.1.4 Material

Material objects hold the real contents that populate objects of the Document branches. They contain

the unstructured, raw materials that are used to fill in the Document objects or their structural

components. The actual data type of the content will be defined in the offspring classes of Material.

In this version of MDM, it can be either text or graphics. This content may be semantically

incomplete, that is, it may not be meaningful to human readers. For

example, it can be a fragment of text from a part of a chapter of a

book. This semantic incompleteness is reflected in the object design

by the fact that no title or heading is required for an object of the

Material branch. Objects of subclasses of Material, which represent

different media types, can therefore be inserted at arbitrary places in

a Document object. This concept is applicable to all media types,

although currently, it is meaningful to Text objects only. This design

makes it possible, for example, to have a chapter in a textbook with

Figure 5-3 : Different media a n i m a g e i n s e r t e d i n th e middle. If the chapter is defined as one

types in a document StructuralComponent object, then it will consist of three Material

objects: two broken text pieces and one image (see Figure 5-3).

5.2.1.5 Publication

Publication is the generic class for all types of published materials. It generally corresponds to any

publication, normally bounded in size, that can be identified by an international identification

number, usually an ISBN (International Standard Book Number) or an ISSN (International Standard

Image 1

Text 2

11 It is possible to allow for the association of more than one Presentation object with a Document or

StructuralComponent object, and to define a scheme to select a suitable presentation. For simplicity, we only

allow the association of at most one Presentation object.



Serials Number). There are other more specific classes inherited from Publication, designed to

handle specific features of different document types. All of these classes are based on the existing

paper-based document systems found in most libraries. For compactness and simplicity, several

library categories are merged into one single class in our model:

• Book includes such publications as textbooks, storybooks, manuals (»?on-reference), the Bible,

edited books, and picture books. A Book object normally has one or several authors, but all

cooperating in the one work, and typically contains items that are closely related to each other.

For example, there are normally references from one section to another in a textbook. A book is

typically a non-collective, non-recursive entity. Some exceptions are the Bible, a book of short

stories, or a condensed book, which can all contain other books.

• Serial includes magazines, newspapers, journals, conference proceedings, research reports,

bulletins, and newsletters. They are published periodically and all have some method for

sequential ordering, either by number or by date, and their contents are usually collectively

authored. They typically contain a collection of independent texts or writings, each of which is

complete and comprehensible without the need to refer to or understand other items in the

collection (although they may use other work outside or within the collection as references).

Examples of such texts are articles, technical papers, reports, lecture notes, advertisements, and

notices. A collection of serials can be bound into a volume, identified by a volume number.

• Reference covers all reference materials, such as dictionaries, handbooks, calendars of events,

directories, and reference manuals. They normally contain many reference entries, which may be

grouped into sections. Each entry usually consists of a reference term and its explanation or

specification. The reference class has a special method, sortEntryf).

The design of our model allows the mapping of all existing document types. The Book, Serial and

Reference classes cover most printed materials found in libraries. The Publication and Document

classes account for any other types, both published and unpublished, structured and unstructured.

Each offspring class of Publication is actually a merger of many library categories, and new classes

are created only if there are important properties or methods that need distinguishing from each other,

such as issue number for Serial objects, or sortEntry() method for Reference objects. The model is

thus both complete and compact, since it covers all document types while the number of classes are

kept to a minimum. Simplicity is achieved by compactness, and also by the fact that the model is

based on familiar and well-understood concepts of the traditional paper-based system. This system

has many defacto standards, for instance, those that are used to design the structural and

presentational classes In our model. This provides a well-founded base, and makes the model robust

in terms of changes and simple to use.
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5.2.2 Three views of the MDM

In our model a document is viewed in three ways: Structure, Material and Presentation.

• In the Structure view, the document is broken up into building blocks, such as volume, part*

chapter, and section, which are generically represented by the class StructuralComponent in our

model (Section 5.2.1.2). By allowing such a mapping for a structured document, this view gives a

solution to the document structure and document properties (these properties are: structure,

material and presentation) problems mentioned earlier (Sections 2.2.2.1 and 2.2.2.4).

Consequently, other derived issues, namely document management and maintenance (Section

2.2.1.3) and document design and authoring (Section 2.2.1.4) are also addressed. MDM does this

by making the structural components of the document accessible, allowing for the document to be

designed, authored, managed, maintained and manipulated structurally on a component basis.

• The Material view accounts for the various media types that compose a document, such as text

and graphics (Section 5.2.1.4). Like the structure view, this view addresses the document

properties issue (Section 2.2.2.4), and other derived problems, namely document management

and maintenance (Section 2.2.1.3), and document design and authoring (Section 2.2.1.4). This is

done due to the encapsulation of Material objects, which allows them to be created independently

(in some editor), managed, maintained and manipulated on a component basis and according to

their specific media types. The document can also be designed and authored separately from

content (and presentation) details (see also Section 9.7).

Another significant benefit is that Material objects can be reused in more than one document.

This is very useful in a distributed environment such as the Web, where the same materials may

be used in many documents (for instance, a company logo), or to produce customised documents.

(Customisation in our system is discussed especially in Sections 8.2 and 9.4.2).

Most importantly, the Material view helps solve the problem of statelessness (Section 2.2.2.6). It

is noted that a document component hierarchy is very similar to a parse tree (or a Directed

Acyclic Graph) of the flat representation of a given document. In this analogy, the materials

associated with a document component become the terminals (leaves) of such a tree. In other

words, every object of the Document branch must be "translated", or "resolved", to one or more

objects of the Material branch. In this way, the Document object can be considered as the virtual

container of system's contents, holding only the references to Material objects, which keep the

real contents of the system. This allows for virtual contents to be distributed, and makes it

possible to retain states at distributed (client) sites. Statefulness in our system is explained in

detail in Sections 7.2.3 and 7.2.5.2.
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• The Presentation view looks at the various ways information is presented to human readers.

Presentation is only supported in a very limited way in this version of MDM. Other format and

presentation issues have been intentionally left out for the next version of MDM, or for use with

other mechanisms such as the Cascading Style Sheet (CSS) [CSS98] or Extensible Style Sheet

(XSL) [XSLOO]. All the offspring classes of the Presentation class, namely, Table, Frame,

RefEntry, Article (Figure 5-2), represent the presentation view in our model. The presentation

view makes it possible to present structural components in different formats, which is useful for

document desiga, management and maintenance (see Section 9.7), and particularly, customisation

(see Sections 8.2 and 9.4.2).

5.2.3 The MDM and HyperWave

The data model for the Web closest to the MDM is that of HyperWave [HYPOO], described in

Section 3.2.1. In the MDM, classes of the Document branch are comparable to the abstract

containers in HyperWave, which are Collection, Sequence, MultiCluster and AlternativeCluster.

Here a StructuralComponent object corresponds to a Collection or Sequence (depending on the value

of numberingScheme), and also to a MultiCluster or AlternativeCluster (depending on the value of

view) if the StructuralComponent object contains Material objects only. There are some differences

between the two data models and/or their respective implementation approaches (which will be

described in Chapter 9):

• Like HyperWave, MDM can support both static and dynamic customisation in a similar way,

based on pre-defined grouping of structural components, or on their view attribute values, or on

some (stored) selection criteria that are (dynamically) evaluated against other (possibly

combined) attribute values. (These are comparable with HyperWave's Collection, access

permission and stored query, respectively.)12 Customisation in our system is explained in more

detail in Sections 8.2 and 9.4.2.

• HyperWave keeps all objects in the server's database, while objects in our system are stored as

flat files (or part of such a file) and Document objects can be wholly distributed at client sites.

The use of a central commercial database does offer advantages such as facilitating link integrity

12 A slight difference between the two systems is that in MDM such a customised document always retain its

structure, whereas in HyperWave a stored query returns an unstructured Collection. Our approach is based on

the design principle that the internal data content of a structural component should be private to the component,

and user customisation should be carried out on a structural component basis only. We only remark the

difference but do not comment oi? the advantages or disadvantages of either approach here.
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maintenance and providing built-in search functionalities, but increases complexity and restricts

the openness (public use) of the system. Most importantly, the distribution of Document objects

allows users to keep multiple customised documents at their client sites (as opposed to only one

Home Collection for a HyperWave user). Such distribution has a significant meaning in our

design as has been mentioned in Section 5.2.2 above (and can be seen in the rest of this thesis).

• HyperWave does not really capture the presentational aspect of a document in its data model and

is thus limited in providing for presentational customisation (see Section 3.2.1). By contrast, in

MDM, presentation is modelled as a class that is associated with the Document class (and all its

subclasses, such as StructuralComponent). This gives MDM the potential to allow its users to

control not only the global presentation of the whole document (as HyperWave does) but also the

local presentation of individual structural components.13 More importantly, the explicit capture of

the presentational aspect has a significant meaning hi the adaptability and evolvability of our

system (see Sections 7.2.5.2,8.2 and 9.4.2).

5.2.4 Summary

In summary, the MDM inherits the features of flexibility, manageability and reusability from object-

oriented technology. It covers virtually all document types, while remaining relatively compact and

simple. This is due to the design principle of using generic classes and a minimal number of attributes

and methods. The three distinguished properties of a document, namely structure, presentation and

material, are identified, and the model is designed to reflect these views. The three views together

make the document components accessible in various ways, and allow for the document to be

assembled or disassembled structurally, its layout suitably controlled for components of different

media types, and various formats presented.

13 When a local presentation directive and a more global one are both effective on a document component, the

effect of one directive on the other may not be the desired one. However, it is not within the scope of this thesis

to deal with these issues (see Section 5.2.2).



Chapter 6 Life Design

The emergence of XML-based formats does not merely represent a slew of new competitors, but an

ecosystem of interdependent document species.

R.Khareetal.[KHA98]

6.1 Preamble

It can be seen from the problem analysis in Section 2.2 that most problems with the Web relate to the

growth of the Web, both in size (quantity) and in the underlying technologies (quality), over time.

Quantitative growth, characterised by the exponential increase in number of Web documents and

Web sites (Section 2.2), is directly related to the issues of getting lost in hyperspace (Section 2.2.1.1),

violation of referential integrity (Section 2.2.1.2), and difficulties in data management and

maintenance (Section 2.2.1.3). Qualitative growth, as indicated by the changes in HTML and the

addition of a myriad of technologies (Section 2.2.2.2), underlines the design issues discussed in

Section 2.2.2.

It can also be seen that deployment trends in the Web have changed increasingly from static to

dynamic ones (Sections 2.2 and 3.1). The Web is no longer simply a shared information space where

new nodes and their relationships can be recorded (Section 1.1). It is now being used as an
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interconnected space where documents can interact with each other and with servers and users, and

generate other documents dynamically.

Keys: Message/Interaction Object Link

Figure 6-1: A schematic view of the Web

These factors of growth and deployment suggest a new view of the Web. It is not so much a static

network of nodes and links (Figure 2-3), but rather a highly dynamic and rapidly growing body, full

of active objects, constantly changing and interacting with one another (Figure 6-1). Here the basic

dynamic elements are Web document objects, in their interconnected network and interactive

environment with users.

As has been pointed out before in several places (Sections 2.2, 2.2.1.5, 2.3, 3.2.2, 3.4 and Chapter 4)

this characteristic of the Web suggests a solution that can capture its dynamics, or liveliness, and

growth. Taking our modelling approach into consideration (Sections 1.1, 2.3, and Chapter 3) such a

solution must be a data model that can deal with future changes, that is, it can evolve itself in a

systematic way.

Two candidate models have been considered for our problem: the socio-economic model, and nature.

Using the socio-economic model as a guide [SMI82, SMI99], the Web can perhaps be considered

analogous to a community, a Web site to a city or village, a Web document to a household, and a user

to a citizen. This model may give an approximation to the reality of the Web, but it naturally captures

the Web's social and economical aspects, rather than the technological one that we are working on.

Besides, its major drawbacks are the complexity inherent in socio-economic-political issues, and the

lack of a well-defined evolutionary theory, which is precisely what is being sought. Nature, on the

other hand, has the compelling advantages of a well-understood and well-established Darwinian

theory on evolution [DAR59, DAR69], and many related scientific evidences (for example, the

discoveries of the gene by Gregor Mendel [COR93], and DNA (deoxyribonucleic acids) by Crick and
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Watson [WAT83]). These provide well-founded knowledge on the mechanisms of biological life.

Here, the Web may be considered analogous to Earth, a Web site to a geographical region, a Web

document to a living organism, a document type to a species, and the communities of users and

developers to the environment

The use of biological metaphors in computer science is not new. About forty years ago, John von

Neumann [NEU58] made one of the first computers by emulating biological systems. The

components of his computer were designed after organs, and logic gates after the activity of neurons.

The Genetic Algorithm (GA), invented in 1975 by Holland [HOL75], benchmarked the first

successful application of Darwinian evolutionary theory in computer science with a simple yet

powerful mathematic model (see Section 4.3). Richard Dawkins [DAW76, DAW95], who is

considered an "astonishingly influential... revolutionary evolutionist" of this time, viewed life as "a

process of digital-information transfer" [SCH95], Dawkins extends Darwinian evolutionary theory

into a unified one, which transcends the boundaries between natural and artificial evolution (by

considering nature as an information processing system), and reaches into multidisciplinary areas of

psychology, ecology, sociology, taxonomy, culture, and beyond. His ideas have particularly

stimulated researchers of artificial life (a-life) and related fields.

With regard to the use of biological metaphors on the Web, Peter Small [SMA98] presented his ideas

about A-Life Avatar, an artificial host cell on the Internet that can take various forms and behaviour,

depending on the artificial life form that resides in it at one particular time. The behaviour of these

life forms can be driven by textual commands sent in email messages. In his analogy, Web documents

are viewed as life forms or intelligent agents. In another book. Small speculated on an analogy

between molecules and objects (in object-orientation), with similar message passing mechanisms

[SMA96]. Rohit Khare et al. [KHA98] used the term document species to denote document type in

their WWW7 conference paper, which discussed the advent of XML as an "evolution" of Web

documents. "Evolution" mentioned there, however, was only at the level of observed facts about

changes in document types (in terms of syntax, style, structure and semantics) over time.14

Work in these areas has inspired, and given many useful insights into the search for a solution to our

problem. In particular, Peter Small's analogies of molecule-object and life-form-document have

14 Interestingly, it was also during this conference that Berners-Lee talked for the first time about the Web's

evolvability [BER98], and our own first papers on this project were presented, proposing the application of

biological concepts for the design of a self-evolving Web [NGU98a & b].
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been used and developed further in our studies (see Section 6.3, in particular, 6.3.1).15 Peter Small,

however, did not consider evolution in his work; and none of the above work has dealt with the

problem of evolvability. An evolutionary mechanism and evolutionary path for artificial life forms

were not identified. The questions posed earlier (see Section 4.3) about what features are required of

an individual or a population for it to evolve itself, and hrw the elements of these features work

together in the course of evolution, have still not been answered.

In this chapter, we explore the many parallels between the Web and the ecological system hi which

life forms exist, interact and evolve. The differences between the two systems are simultaneously

investigated, which help us to learn from nature, the most complex yet perfect system known to us in

terms of evolvability. Section 6.2 summarises findings from relevant biological studies. Section 6.3

presents our observations of the Web as a "living" entity and shows how object-oriented technology

can be applied to bring "life" to the Web. Missing factors in object-oriented design that are essential

for this task are also identified. Section 6.4 attempts to present these concepts in an accurate way in

Life Design, a software design methodology.

6.2 Biological life

Life is the term used to summarise the activities characteristic of living beings and living organisms,

as opposed to dead ones and inorganic matters. These activities fall into two major categories:

reproduction and metabolism. Generally an organism is considered alive if it is capable of performing

both reproduction and metabolism [ALB83].

6.2.1 Reproduction

Reproduction is the process whereby a living organism produces its offspring. This is controlled by

genetic information processing through which the hereditary material contained in the

deoxyribonucleic acids (DNA) is passed from one cell or organism to another [ALB83, DEN83,

KOR80].

Gene is the name given to a unit of heredity, found thanks to the work of the Austrian monk and

scientist Gregor Mendel in 1866 (see [COR93]). The gene, which exists in the nucleus of the cell,

consists of DNA molecules [WAT83], which, in turn, contain coded information capable of directing

15 To be precise, Peter Small's analogy between "life form" and document is different from ours. In his concept

of A-Life Avatar, a life form is really analogous to an embedded object in a document. In our design, a document

itself is analogous to a biological life form.
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the synthesis of specific proteins, and substances that make up the cell itself. A DNA molecule

consists of two strands of four types of nudeotides (subunits of the DNA molecule), linked together

like a twisted rope ladder. The order of these nudeotides determines the order in which amino acids

are synthesised and ultimately all characteristics of the living organism. Through a process known as

template replication, the DNA molecules duplicate themselves during the cell division process to

form two new cells with identical genes. Just before the cell divides, the DNA unwinds and the

nudeotides on opposite strands, which are only weakly bound, pull themselves apart from their pairs,

exposing two separate single strands of nudeotides. Free-floating nudeotides come to combine with

the nudeotides just separated. When all nudeotides have been paired up, the cell division process

begins.

The discovery of DNA reveals its role as both a model from which specifications of proteins are

defined, and as a manufacturer producing these proteins, which subsequently construct and define the

characteristics of the living organism. The DNA is called the code of life since it defines the type

(species) of the living organism and controls its creation and reproduction.

6.2.2 Metabolism

Metabolism refers to the sum of the chemical processes by which the cell transforms energy to

perform life activities such as reproduction, growth, response to stimuli, and elimination of waste

materials. There are two types of metabolic process: anabolism and catabolism.

Anabolism or constructive metabolism synthesises complex molecules from simpler ones with the

storage of energy. This process is required for the growth and reproduction of new cells and the

maintenance of tissues. Catabolism or destructive metabolism performs the reverse of anabolism, and

breaks down complex molecules into simple ones with the release of energy. This process provides

the energy needed for all external and internal physical activities (including response to stimuli), and

is also responsible for maintaining the body temperature and the degradation of complex molecules

into waste substances ready to be removed [ALB83].

6.2.3 Evolution

Evolution is the complex process of gradual change in the characteristics of a population of living

organisms over generations to withstand changes in the environment. The evolutionary process was

not understood until Charles Darwin, in his famous book, On the Origin of Species By Means of

Natural Selection (1859) [DAR69, DAR77], enlightened human understanding on the matter. Since

then, Darwinian theory has undergone many studies and there is still much debate on the evolutionary

process. It has been generally agreed, however, that evolution is a process of repetitive selection of
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the fittest (called "survival of the fittest") among a variety of genes, through reproduction. The

genetic variety comes from the introduction of new genes into the gene pool of a population of a

species. These new genes may be the result of a random genetic combination from each parent in

sexual reproduction, or a series of small gene mutations. (Gene mutations are mistakes in the ordering

of the nucleotide strings when genes are being copied in the reproduction or cell division process.) If

these genetic changes increase the survivability of &s species, they will be retained through the

natural selection process, and multiplied throughout the population, otherwise they will be

disadvantaged and disappear [AYA79, AYA84, SMI93].

It can be seen that evolution, which starts at individual living organisms, can happen only if the

following three conditions are satisfied: (i) a genetic change to seed the process, (ii) a factor to

provide the driving force for the selection of the fittest, and (iii) a population in which individuals can

connect, communicate and interact with each other to spread the change.

6.2.4 Species and speciation

Species is the basic category in the biological classification system, and is an attempt to classify

organisms into groups that reflect the evolutionary processes underlying the similarities and

differences between them. A species represents a distinct type of living organism, with characteristic

shape, size, behaviour and habitat. A species remains stable over a long period of time. Members in a

species can mate and produce offspring with one another, but do not breed with members of other

species. Closely related species are grouped into a genus (plural genera). Genera are then grouped

into families, families into orders, orders into classes, classes into phyla, and phyla into kingdoms

[JEF78, SMI93].

Speciation is the complex process of forming a new species, and is believed to happen along the

evolutionary process. Speciation probably starts first with extrinsic isolation, where a species

becomes subdivided because of some extrinsic event such as a climatic change or a geographical

separation. Secondly, the isolated population becomes genetically differentiated, possibly because its

individuals multiply more quickly than there are chances to mate with individuals in other

populations. Genetic divergence can happen as a result of natural selection or randomly. Thirdly,

intrinsic isolation, some form of isolation within individuals among the differentiated popul&Ions,

develops. This could be the result of some preferences in courtship or some genetic incompatibilities,

making offspring of mating between individuals of differentiated populations no longer viable or

fertile. Finally, the independence of a species is confirmed when newly separated populations

continue to evolve independently, and may subsequently invade each other's habitats without

hybridisation [DAR77, SMI93].
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It can be seen that speciation is an extreme case of the evolutionary process, where extrinsic and

intrinsic isolation maximises genetic divergence, leading to the formation of new groups whose

individuals are no longer genetically compatible for mating.

6.2.5 Life at the molecular level

The above biological characteristics of life forms can be realised thanks to the support provided at the

molecular level. Our body is made up of cells, which in turn, are made up of what are called organic

compounds. All of these organic substances have one common constituent in their composition,

which is carbon (C), an element that exists in all forms that have life. Carbon possesses two special

features that cannot be found in any other elements [AND62, pp.725-749]:

• The first is the ability of carbon to combine with other elements to form numerous complex and

branching chain structures, which are connected together either by skeletal links or as side-

chained functional groups. The presence of a functional group alters characteristic properties of

an organic compound. The -OH group (hydroxide radical) for example, makes the compound

exhibit characteristics of an alcohol.

• The second is that the connections between elements may only be weakly bound. They can

unwind to allow for connections to other elements to be made under certain conditions. In a

molecule, a single bond is stronger than a double bond, which in turn, is stronger than a triple

bond.

It is the composition of these compounds and the complex arrangement of their constituent atoms that

create an almost endless variety of cells differing in hereditary components. The weak bindings in

their structure play a crucial role in all metabolic reactions to form new substances, as well as in other

life processes such as reproduction. The separation of the two strands of the DNA molecule at the

weakly bound base as explained in Section 6.2.1 above illustrates the significance of weak bindings.

6.2.6 Summary

At the molecular level, the element that is central to life is carbon (C), due to its unique ability to

form numerous complex and branching chain structures that are more or less stable, but can also be

broken and changed under certain condition. It is the complex ways of combining molecules that

supplies the vast genetic variety in cells, and the flexibility of these links (weak bindings can be

broken and new ones formed) that allows for life processes such as reproduction and metabolism to

take place.
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At the genetic level, life is guaranteed by complex information processing through which

deoxyribonucleic acid (DNA), "the code of life", controls chromosomes and their genes to be copied

exactly from cell to cell in the reproduction process.

At the biological level, life manifests itself in the capacity to perform two major functional activities,

reproduction and metabolism. Reproduction is the process whereby a living organism produces its

offspring, and is controlled by genetic information processing. Metabolism refers to the chemical

processes by which a living organism transforms energy consumed from outside world to use in

activities such as reproduction, growth, and responsiveness to environment. Metabolism is made

possible through contact with the external environment and an internal network of molecules

interacting with each other via complex chemical reactions.

Over time living organisms evolve into diversified and modified forms to withstand changes in the

living conditions. It can be said that the evolutionary process, which takes place in each individual

living organism, is enabled by internal genetic change, driven by the external forces of natural

selection, and realised by the population's adaptation capabilities. Speciation is the extreme case in

evolution, where individuals of genetically differentiated populations are no longer (genetically)

compatible for mating.

6.3 Bringing "life" into the Web

As was pointed out in Section 2.2, Web documents are continually mounted with rich behaviour, and

static contents are increasingly being replaced by highly interactive and dynamic contents. The Web,

as it is deployed nowadays, in this way, bears many resemblances to the living world. The Web space

is populated with Web objects uniquely identified by their URLs in much the same way our planet is

populated with living creatures, each of which is a unique entity in the universe. Web objects are

created and destroyed, and similarly, living creatures are born and die. The interconnectivity of the

Web inherent in the Internet allows for a network of objects communicating and interacting with each

other through various protocols; likewise, living creatures make connections, communicate and

interact with each other tiirough their own standards. And as living creatures respond to the

environment in which they live, so Web objects can also respond to user inputs.

The Web as a whole appears to be a very lively system, but it is not "alive", hi contrast to the Earth's

inhabitants, who live and thus "breathe" life into the planet, current Web objects never "live". They

do exhibit some "living" qualities, but being stateless (see Section 2.2.2.6) they cannot grow on their

own, nor can they reproduce themselves. Consequently, Web objects cannot evolve themselves

(without human intervention) and direct the evolution of the whole Web in a systematic way, as

biological living organisms do to their biological world. The analogy between Web documents and
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living organisms (introduced hi Section 6.1) on the other hand, allows for the design of Web objects

capable of these "Me" functionalities (grow, reproduce, and self-evolve). This highlights another

important discrepancy between the two systems. In nature, the evolutionary process happens in a

bottom-up fashion, starting in each individual living entity, whereas on the Web only quantitative

growth (change in the number of Web objects) happens at the object level. On the other hand,

qualitative (technological) changes are made to the Web as a whole, in a top-down fashion from the

system level. Examples of these global changes are changes to the HTML tags set, or the emerging

transition from HTML to XML, that affect the whole Web (see Section 2.2.2.2). Changes taking

place at the level of the entire Web will probably result hi major alterations (not "evolution" hi the

proper sense), and "quick and dirty" additions to existing features. Changes taking place at the level

of individual object will result in gradual development of the whole population, which is the same as

the evolutionary process in the biological world.

Biological world

Each individual is uniquely identifiable

Individuals populate the earth

Individuals are born and die

Individuals can interact with each other and

respond to stimuli

Individuals live in groups or communities

where they can communicate with each other

through protocols

Each Web ^biect can be uniquely identified

Web obju,« populate the Web space

Web objects are created and destroyed

Web objects can interact with each other and

respond to user inputs

Web objects belong to sites or communities,

are interlinked on a communication network

and can communicate with each other

through protocols

Table 6-1: Similarities between the biological world and the Web

< Biological world Web

Individuals are stateful

Individuals can reproduce, grow, and evolve

themselves

Growth, change, and evolution happen at

individual level

Web objects are stateless

Web objects cannot reproduce, grow, and

evolve themselves

Growth, change and evolution happen at

system level

Table 6-2: Differences between the biological world and the Web
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Table 6-1 and Table 6-2 summarise the similarities and differences between the biological world tad

the Web, respectively.

If the Web can be regarded as an entity like Earth, then it is possible to populate it with species. The

class hierarchy in the object-oriented paradigm can be compared to the species hierarchy in biology.

To bring "life" to Web objects, it is necessary for them to change, grow and reproduce themselves.

Observations of biological life provide very helpful input for projecting "life" into our model. This

section discusses the requirements for a "living" object. It explains how object-orientation and the

Web can support this design and where there is still a need for further work. It also points out how

evolution and speciation of these objects are possible in the Web environment.

Key: © ancestor objects
£ current object
@ other objects in the

inheritance tree

Link to other
object

Current
object

Link to other
molecule

Link to other
molecuJe

Atom

Key: strong link

weak link

Molecule
boundary

Figure 6-2 : (a) Object structure; (b) Molecular structure

66



6.3.1 Flexible modular structure

3

I

i
I

I

A "living" object should have a flexible modular stracture. This requirement is inspired by observing

the characteristics of the carbon element (see Section 6.2.5), the chemical reactions among molecules

(see Section 6.2.2) and the reproduction process at the genetic level (see Section 6.2.1). It is this

structure that allows for an organic compound to change around the flexible connections on a

component basis. In the object-oriented world, things are very similar. Objects are analogous to

molecules, combined in complex arrangements through relationships such as inheritance, association,

and composition. They also possess properties like molecules, and function through a message

passing mechanism like that of molecular messages passing in chemical substances, which trigger

cascades of chemical reactions. This resemblance has also been noted by Poter Small [SMA96]. In

this respect, modularity can be obtained directly from object-orientation (with some special

considerations, which will be presented in Section 6.4.2.1).

In nature, link flexibility, or in terms of molecular chemistry, chemical bond stability, is the basis of

all life activities. As indicated in Section 6.2.5, it is the weak bonds that allow for the unwinding and

reforming of the two strands of the DNA in the reproduction process, and the numerous metabolic

reactions that happen in an organism. It was also observed that there are several levels of chemical

bond stability, which are dependent on the types of the bonds. For instance, single bonds are stronger

than double bonds, which in turn, are stronger than triple bonds.

In object-oriented technology, link flexibility is a concept that has been formalised and implemented

with such notions as final class in Java [DEI98], or readonly attribute in Sather [STO96, SCH91].

Link type, or relationship, however, is still a debatable issue, and does not relate to link flexibility

[HEN97]. The most commonly used relationships are association, aggregation (or composition), and

generalisation (specialisation, or inheritance) [RUM91, UML98]. Even these relationships may be

defined differently in differing object systems, and their semantics often does not give enough

information to assign a degree of flexibility for the links of its type. Association, for example, may

itself be considered a generic type of many subtypes, such as use, or define. Use, as in the case of

"Calculator uses Memory", and define, as in the case of "Genome defines Organism", however,

would both be categorised as association, but cannot have the same degree of flexibility because of

their semantic differences. ViTiile it is possible to remove or replace the Memory instance from a

Calculator instance (to make a non-memory calculator or to upgrade memory), it is not possible to

remove or replace the Genome instance from an Organism instance (because the removal would make

the Organism instance undefined and the replacement would lose its identity).
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Formalisation of relationships is not within the scope of this thesis. For the purpose of experimenting

with the concepts proposed in this study, some levels of link flexibility will be defined in Section

6.4.2.1.3. Figure 6-2 depicts some similarities and differences between the object's and the

molecule's architectures.

6.3.2 Genes

In order for an object to reproduce, it must "know" its own specifications. In order to grow and

evolve, it must be able to alter its own specifications. These processes should be carried out during

the object's lifetime. This suggests a scheme in which the object carries its own specifications,

similar to a protein carrying its own genetic code of life (DNA). This scheme may also bs relaxed so

that the object may have access to its specifications without actually carrying them In either way,

objects can reproduce, change, grow, and evolve by themselves when certain conditions are satisfied

or some events occur. In a similar way, living organisms reproduce, grow, and evolve in response to

stimuli (Sections 6.2.1,6.2.2 and 6.2.3). Besides, each individual living organism has its own specific

genes, but all belonging to the same species share the same genome (set of genes). This suggests the

notions of individual gene that is specific to an individual object, and group gene that describe a class

of objects.

The genetic requirement entails that a "living" object must be defined by, and has access to, its own

individual "gene" and group "gene". Intuitively, an individual "gene" is a special element that is

embedded in, or linked to, an object. The individual "gene" contains the (compact) core information

specific to the object, which is necessary and sufficient for the creation and reproduction of that

object. It controls these (creation and reproduction) and other "life" processes (growth and evolution)

that take place in the object. A group "gene" defines the common features of similar objects,

including the essential functionalities for the objects to perform 'life" activities (see Section 6.3.4),

and plays the role of a framework, model, or schema, for the objects it describes.

Under this view we can see the strong parallels between the object-oriented and the biological

worlds. An object is an instance of a class in the same way as a creature is an instance of a genome.

What needs further work in object-oriented technology is to design individual "genes", to make the

object carry or have access to its "genes", and to ensure that these "genes" are modifiable and

transferable across objects of the same class (during reproduction). It is also essential to define

methods for "life" functionalities (see Section 6.3.4). For transferability, "genes" are desirably

represented in the most compact form possible.
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6.3.3 Meta-genes

As can be seen in Section 6.2.4, from the genetic point of view, biological speciation happens when

individuals from two populations are no longer genetically compatible, that is, the differences

between their genes have exceeded a certain limit We do now know of any scientific study of to

what extent such differences will trigger the speciation process, or how to measure these differences.

However, it is not impossible to imagine the existence of a meta-gene that controls the process. This

assumption stands up well when applied to the meta-modelling concepts presented in Section 4.2.

Thus, in the same way that a genome defines an individual, a meta-genome defines a species, a meta-

meta-genome (M2-genome) a genus, and so on. Speciation would start when a genome has so

diverged that it no longer conforms to the specifications defined by the meta-genome. Similar

processes would also happen at higher meta-levels.

The recursive abstraction to higher meta-levels of genes forms a pyramid structure in which the

higher the level, the more abstract it is, and the fewer distinct groups it contains. The lowest level at

the bottom of the pyramid, corresponding to the concrete level, is non-abstract (specific) and contains

not groups but (concrete) individuals. The highest level at the top of the pyramid, corresponding to

the union level, is the most abstract, and unifies all groups into one single model. This design, which

we call recursive gene, is reflected fairly well in the biological classification system, where

individuals are grouped into species, species into genera, genera into families, and so on, until there

are only a few kingdoms, and finally one single large group of living organisms (see Section 6.2.4).

With regard to the concept of "living" object, assuming a design for "gene" is in place, it would be

possible to use meta-modelling technique for the construction of object meta-genes and object genes

at higher meta-levels. Recursive gene design also generally agrees with studies of meta-modelling

(Section 4.2). Researchers and practitioners in this field generally accept that four levels of

instantiation are needed to control the evolution of an information system [KOT84, IRD90, UML98].

Meta-modelling technology, however, does not have the concept of the union level, which unifies

"the whole world". In this sense, our recursive gene design extends the architectures proposed and

used in meta-modelling. In our opinion, in practice, the number of necessary meta-levels need not be

restricted to four, but depends on the need to link, unify and cooperate elements across multiple

heterogeneous and distributed systems.

6.3.4 Functionalities

As has been pointed out in Section 6.2.2, biological life is characterised by activities such as

reproduction, growth, metabolism, and response to stimuli. In addition, a life form must also be born
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(created), evolve, and die (be destroyed). These activities establish the functional requirements in our

design. An object gene must define functions for the "living" object to perform the aforementioned

life activities. Here, object-orientation natively provides for this requirement by means of

(appropriate) methods [RUM91].

We have identified a set of genetic functionalities to support the biological life activities

aforementioned (Table 6-3). These form the basic functionalities that an object gene must define, and

a "living" object must perform.

Genetic functionalities Life activities:

N/A

N/A

Self-construction

Self-duplication

Self-evolution

Self-modification

Self-destruction

Metabolism

Response to stimuli

Creation

Reproduction

Evolution

Growth

Destruction

Table 6-3: Genetic functionalities and life activities

Regarding the life activities listed, we make following notes:

• Metabolism and response to stimuli are not supported by life functionalities. This is because

these activities are already natural behaviour of computer software. Metabolism, in the software

engineering context, is analogous to the total of data processing processes in an object by which

inputs (from users or other objects) are transformed into outputs and for use in other software

functionalities (including "life" activities). Response to stimuli is the production of output in

response to a given input.

• Reproduction and evolution are meaningful only in an interconnecting space in which "living"

objects are created, function, interact with each other, and are destroyed.

• It is also noted that growth requires another condition, stateflilness, as explained in Section 6.3.5

below.

6.3.5 Statefulness

Growth is the process of changing from one state to another that is considered an increase or

development. For an object to grow therefore, it is necessary that it be. stateful. Object-oriented

technology provides a native way to define object state by a set of attributes and values, and state
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information can be held inside an object [RUM91, UML98]. The current Hypertext Transfer Protocol

(HTTP) on which the Web is built, however, is a stateless protocol (see Section 2.2.2.6). The

question here is of producing persistent objects, that is, how to maintain object state across Web

sessions. This is an issue specific to the Web and will be addressed in our LifeWeb system (see

Chapter 7, in particular, Sections 7.2.3 and 7.2.5.2)

6.3.6 Evolution

The recursive gene design permits the establishment of an exact evolutionary path. Modelled after

biological evolution (Section 6.2.3), evolution in a system based on our design can be conceptually

described as the process of gradual change over time, from lower to higher meta-levels of genes, on a

population of 'living" objects, to withstand changes in the environment.

As has been pointed out in Section 6.2.3, three essential elements have been identified for the

evolutionary process to happen:

• A gene pool with a variety of genes and a supply of new genes

• A driving force to select the fittest gene or set of genes for a given requirement

• A population of interconnected and self-reproducing individuals in which the favourable genes

can multiply and unfavourable ones become extinct.

Applying these conditions to the Web, provided that suitable designs for "living" objects, object

genes and object genes at higher meta-levels are in place (that is, they satisfy the requirements

outlined from Sections 6.3.1 to 6.3.5 inclusively), it can be seen that the Web is almost ready as an

environment for the evolutionary process to happen. Here, using the analogy between the ecological

system and the Web mentioned in Section 6.1, the driving forces would be users' and developers'

requirements. The communication network on which the Web is built provides for an interconnected

space in which "living" objects, that is, Web documents, interact, reproduce, grow and evolve. The

populations) of 'living" objects (Web documents), each with its own gene, changeable under the

aforementioned driving forces, constitutes the gene pool and is the supply for new genes.

6.3.7 Species and speciation

The formation of a new "species" on the Web would happen as a consequence of the evolutionary

process. Patterned after biological speciation (see Section 6.2.4), and using the same analogy between

the ecological system and the Web as in the previous section, species and speciation on the Web may

be conceptually described as follows:

71



Species on the Web, or document species, is a distinct type of Web document, with characteristic

features pertaining to the community or situation from which it is formed, and which remain stable

over a long period of time. Instances of a species are interoperable and compatible at the genetic

level. In terms of our recursive gene design (see Section 6.3.3), their genes are defined by meta-genes

that conform to each other. Instances of differing species, on the contrary, are genetically non-

interoperable and incompatible, and their genes are defined by non-conforming meta-genes.

Speciation on the Web is the process of forming a new type of Web document that no longer

conforms with the type it derives from. This process would start when some extrinsic factor, such as

the formation of a new Web community with new user requirements, causes the formation of a new

population of Web objects with slightly different genetic traits. Users' preferences and developers'

needs then continue to diverge, leading to a genetic differentiation among the newly formed

populations. A new species would form when "living" objects (documents) belonging to

differentiated populations are no longer interoperable or compatible at the genetic level. In terms of

recursive gene design (see Section 6.3.3), this means the genome of the new species no longer meta-

genetically conforms to the original one from which it was derived. (It is noted that interoperability

and compatibility between species can still be achieved at higher meta-levels of genes.)

It can be seen that the recursive gene design makes it possible to indicate exactly the level of

compatibility and interoperability between "living" objects.

6.3.8 Summary

Biological' life „

Species hierarchy

Species genes

Meta-genes

Molecule

Molecular links

Flexible molecular structures

Weak/strong links

Chemical messages

Cascaded chemical reactions

Object-oriented technology '

Class hierarchy

Class specifications

Meta-model

Object.

Relationships

Flexible modular structures

Derivable/final classes, or read-

write/readonly attributes

Messages

Cascaded reactions

Table 6-4: Similarities between object-orientation and biological life
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Object-orientation is found to have large potential for designing a system with biologically life-like

characteristics. The Web network establishes an interconnected space, necessary for "living" objects

to interact, reproduce, change, grow and evolve. Some new concepts still need to be introduced, and

adjustments made to object-oriented design. The many parallels between biological life, object-

orientation and the Web, however, make it possible for the design of a special object-oriented data

mr/del. This model, using biological metaphors, promises to capture the dynamic characteristic of the

Web, and address the issues of the Web mentioned in Section 2,2.

.'Biological lite Object-oriented technology

Individual and species genes

An organism contains its own genes

Genes in organisms are functional

Only class specifications

An object does not contain its own

specifications

Class specifications are non-functional

Table 6-5 : Differences between object-orientation and biological life

Table 6-4 and Table 6-5 summarise the similarities and differences between object-oriented

technology and biological life respectively.

6.4 Life Design

The observations described in previous sections are used to build a design methodology, called Life

Design. It is not within the scope of this thesis, however, to build a formal software design

methodology. This section presents the core features of Life Design based on object-orientation. This

design will be used as the guideline to build and evaluate the LifeWeb prototype (and like systems),

an implementation constructed to experiment with the concepts proposed in this study. All the

biological terminology used in this section is within the context of Life Design, unless otherwise

stated.

Life Design is centred around the elements that constitute natural life at different levels: molecular,

genetic and biological, where each level contributes aspects of structural, genetic, and functional,

respectively, into our design. These ideas are implemented using object-oriented technology. We use

the concepts of object-orientation described in the book Object-oriented Modeling and Design by

James Rumbaugh et al. [RUM91], and later refined in the Unified Modeling Language (UML)
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[UML98].16 Only minimal features in object-orientation are used to describe the core concepts of Life

Design. This design encompasses two key concepts, life form, ox form for short, and gene, which are

explained below.

6.4.1 Object-oriented foundation

We define/orms and genes (in the context of Life Design) based on the notions of objects and classes

in object-orientation. A form includes all characteristics defined for an object, and a gene a class.

6.4.1.1 Object and Class

An object represents "a concept, abstraction, or thing with crisp boundaries and meaning for the

problem at hand" [RUM91]. (The) CarPGC123, (the) EngineVIN345, John Smith, MyBook, Chapterl

(of MyBook), are all examples of objects. An object has an implicit unique identity. It is always

possible to distinguish one object from another.

A class describes a set of objects with similar properties (attributes), common behaviour

(operations), common relationships to other objects, and common semantics [RUM91, UML98]. In

this respect, we say that a class defines the type or schema of an object, or conversely, an object is an

instance of its class. For example, the classes for the objects in the above example can be Car,

Engine, Person, Book, and StructuralComponent, respectively. An object "knows" its class.

The notion of class in object-orientation also includes abstract classes, parameterised classes, and

interfaces [LUM91, UML98]. For simplicity, Life Design is restricted to non-parameterised, and

instantiable classes (that is, classes that can be instantiated into objects) oMy.

Entity is a generic term for either object or class.

6.4.1.1.1 Object lifetime

Object lifetime is a new concept that is not defined in object-orientation.

An object comes into existence when it starts occupying some physical space, such as computer

memory or disk space, and acquires its unique identity. An object ceases to exist when this physical

space is (considered) permanently released without replacement, or its identity is permanently lost.

We define object lifetime as the duration of the object's existence.

16 UML is a cooperative effort between the three leading object-oriented methodologists: Rumbaugh [RUM91],

Booch [BOO94], and Jacobson [JAC93], and has become a widely accepted industrial standard.
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In most existing object-oriented systems, an object is typically created directly into the computer

memory, and its lifetime starts from the time it takes up some memory space and is assigned a unique

identity, until the time it is permanently removed from the memory (and thus cannot be retrieved by

its identity). In a system such as the Web, an object, for example, a Web document, is realised from a

representation (currently its HTML source code) on a disk. Its lifetime starts from the time this

representation is instantiated from a document type (in this case, HTML), takes up some disk space,

and is assigned a unique identity (currently a URL). Its lifetime ends when it is permanently removed

from the Web, or can no longer be retrieved by its identity (for instance, it has migrated to another

space and does not leave any path from the old to the new URL).

6.4.1.1.2 Properties

The properties of an object are described by a set of attributes. The term attribute refers to a named

slot within a class that describes a range of values that an instance of that class may hold [UML98].

For example, the attributes for Book are title, ISBN, publicationYear, and the valid values for them

are string for title and ISBN, and integer for publicationYear. All objects of the same class share the

same set of attributes (names), but the values for a given attribute are specific to each object, which

may be the same or different for differing objects. Each attribute name ;is unique within a class. An

attribute value should be a pure data value (such as string or integer as in the above example), not an

object. Unlike an object, a pure data value does not have an identity [RUM91].

6.4.1.1.3 Behaviour

An object's behaviour is described in terms of a set of operations. An operation is a function or

transformation that may be applied to or by an object of a class. For example, print, display,

generateTableOfContents, are possible operations on objects of the class Book. All objects of the

same class share the same set of operations. Each operation has a target object as an implicit

argument, and may have additional arguments. A method is the implementation of an operation for a

class. The behaviour of the operation depends on the class of its target. An object "knows" its class,

and hence the right implementation of the operation. The same operation may apply to a different

class. Such an operation is polymorphic, that is, the same operation can take on different forms in

different classes [RUM91].

6.4.1.1.4 Relationships

Relationships among objects (or classes) are established by means of links. A link is a physical or

conceptual connection between objects (or classes). For example, "Chapterl constructs MyBook",

"Person owns Car", "Book is-a Document1. Mathematically, a link is a tuple, that is, an ordered list
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of objects (or classes). Most commonly, it is a pair, that is, a two-tuple. life Design deals with binary

links (pairs) only. In she example above, the link between Chapterl and MyBook can be

mathematically represented as (Chapterl, MyBook).

A relationship describes a set of links with common structure and common semantics. It does this by

establishing a (new) link between the entities that describe those participating in the (existing) link.

The relationship of a link between two objects is a link between their corresponding classes. For

example, the relationship of the link between Chapterl and MyBook is "StructuralComponent

constructs Book." In this respect, we say that a relationship defines the type or schema of a link, or

conversely, a link is an instance of a relationship.

We introduce the term relation as a generic term for either link or relationship.

Association and generalisation relationships

A relationship is itself a link. As mentioned above, the relationship of a link between objects is a link

between their corresponding classes. In this respect, a relationship may be further described by

another (more abstract) relationship.

The relationships of links between classes are association and generalisation.

• Association defines a semantic relationship between classes. An association link between classes,

in turn, defines an association relationship between objects. In this respect, an association link

between classes can be instantiated into an association link between objects. An association link

must be defined by an association relationship (unless it cannot be abstracted further, as

explained in Section 6.4.1.2). Association (at both class and object levels) can be either of two

categories: (i) Ordinary Association, and (ii) Aggregation (or Composition).

• Ordinary association is primarily binary and inherently bi-directional. For example, "Car

(is) Owned-by Person", or "Person Owns Car" are both examples of association links

between classes. Examples of the corresponding links between objects are, "(the)

CarPGC123 (is) Owned-by John Smith", and "John Smith Owns (the) CarPGC123." Life

Design deals only with binary and uni-directional associations, where the single direction

usually implies a subordinate-primary relationship, or direction of navigability (having

access to). This restriction makes association a transitive (if A is subordinate to B and B

is subordinate to C, then A also is subordinate to C), and asymmetric relationship (if A is

subordinate B and B is subordinate to A then A is equal B) between two classes. Between

objects, it is a transitive and antisymmetric (if A is subordinate to B then B is not

subordinate to A) relationship. Association at the object level is thus more restricted than
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the one at the class level. (It does not allow recursive links, that is, an object cannot

associate to itself).

• Aggregation (or composition) is a tightly coupled form of association, representing the

"part-whole", "part-of', or "has-a" relationship. Aggregation is a binary, transitive (if A

is part of B and B is part of C, then A is part of C), and asymmetric (if A is part of B and

B is part of A then A is equal B) relationship between two classes. Similar to ordinary

association, aggregation between objects is also more restricted in that it requires

antisymmetry rather than asymmetry. An example of an aggregation link between classes

is, "StructuralComponent constructs Book", where constructs implies that

StructuralComponent is a part-of Book. An example of a corresponding link between

objects is, "Chapter! constructs MyBook." In UML [UML98], aggregation and

composition are two different kinds of association. Composite aggregate (composition)

has stronger "ownership" than shared aggregate (aggregation). For example, an entity

that is part-of a shared aggregate may participate in another aggregate, whereas one that

is part-of a composite aggregate may not. This distinction is not significant in Life

Design, and the terms aggregation and composition may be used interchangeably in this

thesis.

Since aggregation is a special case of (binary, uni-directional) association, it is possible to consider

the part-whole relationship as a specific type of the subordinate-primary one. A mixture of both

relationships therefore, is also transitive and asymmetric (in the sense of a subordinate-primary

relationship). They are two disjoint sets, which either individually or together, define a Directed

Acyclic Graph (DAG) (at the object level) or a DAG with self-loops (at the class level). "Self-loops"

here means an entity may have a link to itself.

The notion of association defined by Rumbaugh [RUM91] and UML [UML98] also includes

qualified association, derived association, association class, constraint, and multiplicity. For

simplicity Life Design does not consider qualified association, derived association, and association

class. Multiplicity and constraints specify semantic rules to be observed, and they are treated in Life

Design in the same way as prescribed by object-orientation. For simplicity, we generally do not

discuss these rules here, except in some illustrations that relate to them.

• Generalisation (or specialisation, or inheritance) defines a taxonomic relationship between

classes only [UML98], This means, a generalisation link between classes cannot be instantiated

to links between objects. Generalisation is an evolutionary mechanism for classes (see Sections

6.4.2.1, 6.4.2.4.4, and Chapter 8). It is assumed to be always defined for classes, and need not be

defined further by another relationship. It is a binary, transitive and antisymmetric relationship
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between a more general class and a more specific class. The general class is called superclass,

and the specific one subclass. For example, a possible superclass of Book is Publication.

Generalisation represents the "is-a" relationship, that is, an instance of a subclass is

simultaneously an instance of its superclass. A subclass inherits all the features (attributes,

operations, and association and aggregation links) of its superclass, and may contain additional

features. In this respect a subclass is fully consistent, or conformed, with its superclass. A

subclass can inherit from more than one superclass, in which case the relationship between them

is also called multiple inheritance. The terms ancestor and descendent are used to refer to

generalisation of classes across multiple levels. The generalisation relationship defines a DAG

[RUM91, UML98], which may also be referred to as the inheritance tree.

In Life Design, we consider that the subclass-superclass (generalisation) relationship implies the

subordinate-primary (association) one, and restrict the directions of a mixture of then- links so that

they conform to the transitivity and asymmetry of association (and aggregation). That is, if A is a

subclass of B, then B must not be subordinate to A. (It is acceptable if B is primary to A). Thus a

mixture of specialisation, association, and aggregation relationships among classes, can also be

considered transitive and asymmetric (in the sense of a subordinate-primary relationship). They may

overtop, and either individually or together, define a DAG (specialisation, or association and

aggregation at the object level), or a DAG with self-loops (association and aggregation at the class

level).

Since antisymmetry is more restricted than asymmetry (the former logically implies the latter), and

this restriction is not important in Life Design, we shall use asymmetry as the generic condition for all

the generalisation, association, and aggregation relationships at both object and class levels, and a

DAG with self-loops as the generic structur';. defined by these relationships.

The definitions of links and relationships here are different from those described by Rumbaugh

[RUM91] and UML [UML98]. In both Rumbaugh's and UML's methodologies, a link is defined

only between objects, not classes; and a relationship is only a (abstract) term of convenience without

any specific semantics. Consequently, association and aggregation links are defined between objects

only (not classes). These differences arise because of a more fundamental difference between Life

Design and traditional object-oriented design: the recursive meta-model architecture (which has been

informally described in Section 6.3.3).

6.4.1.2 Recursive meta-model architecture

The recursive meta-model architecture in Life Design consists of recursive levels of entities and

relations (that is, objects - links, and classes - relationships). In this way, as a relationship can also
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be a link and described further by another relationship, a class can similarly be an object, and

described further by another class (in the same ^vay as it describes its objects). In this architecture, in

any two adjacent levels, entities and relations in the higher level define classes and relationships for

entities and relations in the lower level. Equivalently, entities and relations in the lower level are

objects and links to entities and relations in the higher level. We call the higher level the schema level

(relative to the lower level), and the lower level the instance level (relative to the higher level). Figure

6-5 shows an example of such architecture across four meta-modelling levels. In this figure, the

entities (represented as labelled boxes) and relations (represented as labelled arrows) in diagram (a)

are described by those in (b), which in turn, are described by those in (c), which in turn again, arc

described by those in (d).

There can be many distinct sets of entities and relations at each level. A given set of entities and

relations at the schema level may have zero or more corresponding sets of entities and relations at the

instance level. A set of entities and relations at the instance level may have at most one corresponding

set at the schema level. We call the set at the schema level the system schema of the set at the

instance level; or equivalently, the set at the instance level a system instance of the set at the schema

level. The terms schema and instance may also be used for short, if there is no danger of confusion. If

an instance refers to the schema of its schema, the term meta-schema may be used. If references to

higher meta-level schemata are required, the prefix meta, or M<n>, where <n> is the number of the

occurrences of the word meta, may be added for each successive higher meta-level. For instance, the

word M2-schema is equivalent to the word meta-meta-schema.

We postulate that there is a lowest level in the architecture in which entities and relations cannot be

instantiated further, that is, they form a schema whose instance is an empty set. This level is called

the concrete levti. There is also a highest level in the architecture in which entities and relations

cannot be abstracted further, that is, they form an instance whose schema is an empty set. This level

is called the union level. Graphically, this architecture forms a pyramid structure of schemata, in

which the higher the level, the more abstract they are, and the fewer distinct instances they define.

Schemata at the concrete level are concrete instances. The single schema at the union level is the

most abstract, and unifies all instances into itself.

A system schema defines most classes and relationships for a system instance of it, but not all. Such a

system schema is called the main system schema, or main schema for short, relative to its system

instance. A system instance may have an entity (and its respective relations) defined in another

system schema. Such an entity is called a hybrid object, its class a hybrid class, and the

corresponding schema a hybrid system schema, or hybrid schema for short. A hybrid class must be

able to form links with classes in the main system schema. For instance, a hybrid class may be a class

79



derived from an existing class in the main system schema, but is not included in the mpin system

schema. According to our postulation about the union level, hybrid objects are not allowed at the

level immediately below the union level (because there is only one schema at the union level).

UML defines a similar architecture, called the Four-Layer Metamodel Architecture [UML98 pp.2-4 -

2-5], resembling the ISO/IEC IRDS architecture [IRD90] described hi Section 4.2. However, there

are differences between the UML meta-model architecture and that of Life Design.

• First, UML does not have the concept of hybridisation. This concept permits entities to

systematically and incrementally evolve themselves, by allowing for a new class to be introduced

into the main system schema. This is done first through one single object in one of its (the main

system schema's) system instances. Through the Life Design evolutionary mechanism, the new

class may multiply hi other system instances, and if passing the "survival of the fittest" test, will

be propagated to a higher meta-level (schema). System evolution is explained in Sections

6.4.2.1.3, 6.4.2.4.4 and Chapter 8. In contrast, UML meta-model architecture can offer

extensibility, but not evolvability.

• Secondly, Life Design's architecture is more generic. It defines two generic levels (schema and

instance) and four generic constructs, two for each level (class and object; relationship and link).

This makes it possible to apply Life Design concepts on any two adjacent levels recursively and

uniformly. UML, on the other hand, defines levels and constructs specific to its problem. For

instance, the four specific levels in UML are: user objects, model, metamodel, meta-metamodel.

Some of the specific constructs in its metamodel layer are: Class, Attribute, Operation; and in its

meta-metamodel layer: MetaClass, MetaAttribute, MetaOperation. As such, the generic

architecture defined in Life Design may be used as a reference model to describe specific

architectures such as the one defined in UML. This explains the differences between Life Design

and UML in the definitions of links and relationships. In Life Design, they are generic terms

across meta-levels, whereas in UML, they are specific to a particular level.17

6.4.1.3 Notation

We use the notation defined for UML Class Diagrams and Object Diagrams [UML98] with some

modifications.

17 Actually, relationship in UML is only a term for convenience, and does not belong to any level.
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6,4.13.1 UML notation

Entity Name

attribute
attribute:data_type
attribute:data_type = init_value

operation
operation (arg_list):result_type

MyBoolcBook

title:String = LifeWeb
ISBNrString = 123^56-7890
publication Year: Integer = 2000

print (filename:String)
displayO
generateTableOfContentsQ

(a) (b)

Figure 6-3: UML Class and Object diagrams - (a) General, (b) Object

hi UML, an entity is represented as a box with three compartments. The first compartment shows the

identifier of the entity. The second compartment contains the set of attrihutes (optionally with data

types for attribute values and initial values). The third compartment holds the set of operations

(optionally with argument lists and result types) defined on the entity. In the first compartment, if the

entity is a class, the class name is shown. Otherwise, if the entity is an object, its name can be

optionally shown in the format of <object name>:<class name>. Either or both of the second

(attribute) and third (operation) compartments may be suppressed. Figures 6-3 (a) and (b) show the

general UML notation of an entity and an object, respectively, with all three compartments.

Class-1
Assoc

Whole Class Name
4

O..1

:iation >lame
Class-2

Superclass Name
L

1
Part Class Name Subclass-1 Name

Legend:

Association
Aggregation +
Generalization i^

Discriminator

1
Subclass-2 Name, Subclass-3 Name

Figure 6-4: UML Class diagram (with relationships)

A relation is shown as a line (association), or an arrow of a distinct shape (aggregation and

generalisation) (see Figure 6-4). Relations are optionally labelled. When shown, a label corresponds

to an association name (for an association), or a discriminator (for a generalisation), which is the

name of a partition of subclasses. Aggregations are not named. (See Figure 6-4). An association may

also have a role name at each association end (not shown in Figure 6-4). Role names are treated in

Life Design as they are in object-orientation, and are not discussed here.
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6.4.13.2 Life-UML notation

Unlike UML, in life Design both entities and relations always have labels. A label is in the format

<instance>:<type>, where <instance> is the name of the object or Unk, and <type> is the name of the

class or relationship, respectively. (For example, the entity labels in Figure 6-5 (a), (c), and (d), or the

relation labels in Figure 6-5 (b), (c), and (d)). If the names for both <instance> and <type> are the

same, then only one of them may be shown (for example, the relation labels in Figure 6-5 (a)). If all

objects have the same class, then the entity labels may be abbreviated to <instance>, and the common

class name is shown in a separate box in the format of :<type> (Figure 6-5 (Jo)). If there is no type

defined for an entity or a relation, the default type, "Any", is used (for example, the entity and

relation labels in Figure 6-5 (d)). In a given class diagram (with relationships), an entity label is

naturally unique, but a relation label may be repeated.

A relation in Life Design is always shown as a labelled, uni-directional arrow. Since a Unk label

includes both the link name and relationship name, it is not necessary to use arrow shapes to

distinguish among different relationships. By convention, however, the different arrow shapes are

still used as they are defined in UML, except for association, which is represented in Life Design as a

plain arrow (instead of a line as in UML), as shown in Figure 6-5. The directions of aggregation and

specialisation links are the same as those in UML. The direction of an association link is from

subordinate (tail) to primary (head) (Figure 6-5). A link can be either flexible, which is indicated as a

dashed arrow, or inflexible, which is indicated as a soUd arrow (see the Legend in Figure 6-5). The

flexibility of a link is dependent on its semantic, and described in its relationship. A dashed line

under a relationship label (link label between classes) indicates that the corresponding link (between

corresponding objects) is flexible. Otherwise, a solid underline on a relationship label indicates an

inflexible link (Figure 6-5 (a), (b), (c), (d)).

Life Design incorporates recursive levels of meta-modelling (see Section 6.4.1.2). For this purpose, a

box with a double-lined border indicates that an entity cannot be instantiated further, and similarly, a

double Une under a relation label means the same for a relation (Figure 6-5 (a)). On the other hand,

the default type "Any" indicates that an entity or link cannot be abstracted further.
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I ChaplTxt:Material

djsplgssiasn

0..1 ^S*

Presentation

| ChaplPresrPresentation

(a) concrete level {MO)

0 * , Book . o..*
/ ^ 1<

constructsihaw

1..*
1 tvpe:isa

Struct
i *

0..*

|| Chap2Txt:Material |
II 1

buildjihasa

^ \ 0..*

Material

| :Class

asn:relation

0 *

(b) m«ta-concrete level (Ml)

Class:Entity

/\ 0..*

0..*

isa:Any, fiasa: relation

(c) meta-meta-concrete level (M2)

Legend:
Flexible relation

Generalization (isa)
Aggreation (hasa)
Association (asn)

Flexible link
Inflexible link

Non-instantiable relation

Entity:Any

/

relation:An\ isa:Any

(d) meta-meta-meta-concrete level (M3)

Inflexible relation

<Wik natnejreJgtionshijL uame>
<link name: relationship natno

<link name:relationship name>

Figure 6-5: Examples of Life-UML diagrams across four levels of meta-modelling



6.4.2 Life Design constraints

This section defines/cm and gene, the two key concepts in Life Design.

A form possesses all the characteristics of an object Either an object or a class (considered as an

object relative to the next higher meta-level) can be a form if it satisfies the following four

constraints: structural, genetic, stateful and functional.

6.4.2.1 Structural constraint

The structural constraint is modelled after the molecular structure. It requires that a form should be

recursively decomposed into & flexible modular structure of forms, connecting with each other via

links, unless it is atomic.

6.4.2.1.1 Flexible modular structure and links

A form's structure is constructed by a set of (component) forms and their links. The relationship of

the links between forms (in such a structure) is called subform. Subform is a transitive and

asymmetric binary relationship between two forms. Subform relationship defines a Directed Acyclic

Graph (DAG) with self-loops.

If a form / is in a subform relationship with m, we call / a subform of m, or equivalently m a

superform of I. For instance, in the example in Figure 6-5 (a), Chapl:Struct is a subform of

MyBook:Book, and conversely, MyBookBook is a superform of Chapl:Struct. Mathematically, a

subform link is represented as a pair, for example, (m, I), where m is the superform and / is the

subform. It is noted that the names of the relationship and the thing (in this case, form) participating

in that relationship are the same (subform). Usually the context clears any ambiguity. If precision is

required, the phrase subform relationship is used to explicitly indicate the relationship.

Subform is a purely structural relationship and is realised by the association, aggregation, or

specialisation relationships (described in Section 6.4.1.1.4). This realisation is possible since subform

has the same generic structure as any of those relationships, or any combination of them. If a subform

relationship is realised as an association or aggregation, it is called a first-order subform

(relationship). Otherwise, if it is realised as a generalisation, it is called a second-order subform

(relationship). Subform (or superform) from now on will be used as a generic term to denote either a

first-order or second-order subform (or superform).
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We also call a subform that is immediately below a form a (first or second-order) direct subform (of

the given form). That is, if A is a first-order (or second-order) direct subform of B, then there is no

intermediate first-order (or second-order) subform between A and B. A form has access to its direct

subforms, for instance, by embedding or containing references to them.

Figure 6-6: First-order and second-order subform relationships (without multiplicity)

In this way, at a particular meta-modelling level, the set of first-order subform links defines the

relationships for the corresponding set of first-order subform links at the lower level, if any. The set

of second-order subform links, if any, forms an inheritance tree and defines a mechanism to evolve

the entities and links at the current level (see Sections 6.4.2.1.3, 6.4.2.4.4 and Chapter 8 for

evolution). Graphically, a second-order subform may be seen as being elevated on another plane

(Figure 6-6).

Since these two sets (first and second-order subform links) may overlap, we define that if a link

belongs to both of them, it is considered as belonging to the first set only. This rule is established

because in this case, a generalisation link may be simply considered as a "short-cut" way to include

the inherited association or aggregation links in the form at the subclass end. hi this sense, the

taxonomic semantics of the generalisation link becomes unimportant. For instance, in Figure 6-6 the

generalisation link (type:isa) between {Document:Class, Struct.Class) may be replaced by two links

displays:asn and builds:hasa between {Presentation:Class, Struct.Class) and {Material:Class,

Struct: Class), respectively.

The set of (first, second, or all-order) subform links emanating from a form constructs the set of (first,

second, or all-order) subform links in that form. For example, in Figure 6-6, the set of first-order

85



subform links in Document:Class is {(Document:Class, Presentation:Class), (Document:Class,

Strucf.Class), (Document:Class, Material:Class), (Struct:Class, Struct:Class), (Struct:Class,

Presentation:Class), (Struct:Class, Material:Class)}. The set of its second-order subform links is

{(Document: Class, Publication:Class), (Publication: Class, Book: Class)}.

A form is said to have the capacity to form a (first, second or all-order) subform link (or the capacity

to be a first, second, or all-order subform of some form) if there is a corresponding (first, second, or

all-order) subform relationship defined for it in the higher meta-level, and semantically this capacity

can be used. A form does not have this capacity when at least one of these conditions is false. For

example, in Figure 6-5 (a), Chap 1: Struct has the capacity to form a first-order subform link since

there is a corresponding first-order subform link for its class, that is, (BooL-Class, Struct:Class). (The

link between Struct: Class and itself also qualifies for this). MyBookBook, on the other hand, does

not have this capacity, since there is no link defined for Book: Class hi which it is a first-order

subform. Also, Book: Class does not have this capacity, although there are two first-order subform

links between Class .'Entity and itself (Figure 6-5 (c)). This is because semantically, Book: Class

cannot be a first-order subform of any form.

6.4.2.1.2 Atomic form, root form, living organism, and free form

Given a set of forms, all connecting with each other via the subform relationship:

We postulate that there exists in the set at least one form which either does not have any subform, or

has only itself as a subform. In the first case, the form is called atomic. In the second case, it is called

recursive atomic. For example, in Figure 6-5 (a), ChaplTxt:Material, ChapIPres:Presentation, and

Chap2Txt:Material are atomic. In Figure 6-5 (b), Presentation: Class, and Material:Class are atomic,

and Struct: Class is recursive atomic.

There must exist in the set at most one form which is neither a first nor a second-order subform of

any other form (except itself), and does not have the capacity to be a first-order subform of any other

form (except itself). Such a form is called the root form. There also exists in the set at least one form

which is not a first-order subform of any other form (except itself), and does not have the capacity to

be a first-order subform of any form (except itself). Such a form is called a subroot form. (This

implies that if there is only one subroot form in a given set, it is the root form). For example, in

Figure 6-5 (a), MyBook:Book is the root form (and also the only subroot. form). In Figure 6-6,

Document: Class is the root form, and Publication: Class and Book: Class are both subroot forms.

The set itself is called a living organism, or organism for short. An organism contains, and therefore,

has access to all forms in its set.
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A form that exists outside an organism is a. free form. This implies that a free form has the capacity to

be a subfonn of some form, and none of that capacity is used. A free form may be a form

disconnected from its organism, or created elsewhere.

The condition that a root or subroot form does not have the capacity to be a first-order subform of any

other form ensures that an organism always represents the whole of a system described at the higher

meta-level. For instance, in the example shown in Figure 6-5, it is not possible to take any subset of

the set of forms shown in the diagram in (a) to construct an organism.

6.4.2.13 Link flexibility

Link flexibility is an attribute of a subfonn link. There can possibly be several degrees of link

flexibility. For simplicity, we specify only two of them: flexible and inflexible. A flexible link can be

removed or added during the lifetime of the participating forms (possibly under certain conditions or

constraints), and an inflexible link remains throughout their lifetime. The • emoval and adding of

flexible links are carried out via the genetic functions, which are explained in Section 6.4.2.4.3. There

must exist at least one flexible link in an organism.

The value of link flexibility is dependent on the semantics of the link. We require that a first-order

subform link may be flexible only at the concrete level. A second-order subform link is always

flexible with the constraint that the addition of a second-order subform link also adds a new form (to

a given organism), and the removal of such a link also removes an existing form (from a given

organism).18 In object-oriented terms, this means that a class cannot change its superclass(es),19 but

the class inheritance tree can be extended or shrunk. In this way, generalisation or second-order

subform relationship defines a system evolutionary mechanism (see Section 6.4.2.4.4 and Chapter 8).

We call the set of all flexible subform links emanating from a form the set of flexible subform links

in that form. The set of inflexible subform links in a form is the set of its subfonn links subtracted by

the set of its flexible subform links.

18 This constraint implies that if the form being removed has second-order subfonn links with other forms (as in

the case of multiple inheritance), these links too, have to be removed.

19 This is because due to the semantic of the generalisation relationship, removing or adding a superclass alters

the internal definition of the subclass. The internal definition of a class here is understood in the entirety of the

class, which consists of its attributes, methods, including inherited ones, and its "subordinate" (in the generic

sense explained in Section 6.4.1.1.4) classes.
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6.4.2.2 Genetic constraint

The genetic constraint is modelled after the same constraint in biological life forms. It requires that a

form should have an individual gene and a group gene, and have access to its own genes and main

genomes (see Figure 6-7). (It is noted that if the form is not a hybrid, having access to its main

genomes also provides access to its own genes).

group
(class) genome

group
(class) gene

individual
(object) gene

individual
(object) genome

form

orcamsm

Figure 6-7: Genetic constraint (connections between forms or genes not shown)

Intuitively, an individual gene is a representation of the (specific) form it describes. For this purpose,

we introduce the notion of object representation, which is also applicable to objects, as below.

6.4.2.2.1 Object representation

Object representation is a new concept in Life Design.

An object may have one or several representations. For example, the object MyBook may be

represented as MyBookfTitle: LifeWeb, ISBN: 123-456-7890, PublicationYear: 2000, Contents:

Chapter!, Chapter2), or as an electronic image in the computer memory, or both. We call these

object representations, or representations for short (if there is no danger of confusion). The object is

presented to the world in one and only one of these representations. We call it the final object

representation, or final representation for short (if there is no danger of confusion). The process of

creating a specific representation, with a unique identity, for an object from its class is called

instantiation. The process of mapping from a representation to the final representation is called

realisation. (These two processes will be defined in more details in Section 6.4.2.4.1). If an object

has only one representation (thus it is final), then its representation need not be realised.
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The choice of the final representation is dependent on a given problem. For example, in a system

analysis problem, the final representation for an object may be in some notation such as in the first

example above. In a system implementation (computer application), on the other hand, it may be an

electronic image in the computer memory as in the second example.

A notable object representation is the syntactic object representation or syntactic representation for

short (if there is no danger of confusion). A class describes its objects in a machine-understandable

language. We call such a description for a specific object a syntactic representation. The first

example above, in which MyBook is represented as MyBook(Title: LifeWeb, ISBN: 123-456-7890,

PublicationYear: 2000, Contents: Chapterl, Chapter2), illustrates a syntactic representation for

MyBook. In this example, the class Book describes its objects as Book(Title, ISBN, PublicationYear,

Contents). A syntactic representation is static, textual, declarative, and typically more compact than

other representations.

We also call the representation of an object in the computer memory a functional object

representation, or functional representation for short (if there is no danger of confusion). In most

existing object-oriented systems, an object is instantiated from its class directly into the computer

memory. In this case, the functional representation is its only representation, and the syntactic

representation is not required. (To be more precise, the syntactic description of the object is

interspersed with that of its class and program code. For this reason, it is not a whole and is not

considered a syntactic representation). In a system such as the Web, an object, for example, a Web

document, has its (currently) HTML source code as its syntactic representation.

6.4.2.2.2 Gene

I

A gene describes its form(s) in terms of its (or their) features (properties, behaviour, and direct

subform relationships), including inherited ones. (Implementation-wise, second-order superforms

may, and should, be included in a gene instead of an explicit listing of aU inherited features.) A gene

must exist during the whole lifetime of the form(s) it describes. (This means, a form exists implies

that its gene exist.) A gene must satisfy all constraints applied on a form, that is, a gene itself is a

form. It is desirably and typically more compact than the form(s) it describes. There are two types of

genes:

• Object gene is a description of an individual form (in terms of its features). It contains the

information necessary and sufficient to realise the form it describes.

• Class gene is a description of a set of similar forms (in terms of their common features). It

contains the information necessary to instantiate the forms it describes. This information can be

used to create the object gene for a particular form, with the supply of attribute values and
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subforms specific to the form being instantiated. It can also be used to validate a given form, for

example, to check the form's type (see Section 6.4.2.2.3 for validation rules).

Gene is a generic term for either object gene or class gene.

In this respect, an object representation of a form (see Section 6.4.2.2.1) can be the object gene of

that form, and its class its class gene, if they (i) exist during the whole lifetime of the form, and (ii)

satisfy all the constraints on form.

The first condition implies that the choice of the gene is dependent on the (predetermined) lifetime of

the form. For example, if a form is an object in a computer application that lasts only during the

execution time of that application, then its object gene and class gene can be the functional

representations of itself and its class, respectively. If a form is a Web document that lasts from the

time its syntactic representation (HTML source code) is created and assigned a URL until the time

this representation is removed, then its object gene and class gene can be the syntactic representations

of itself and its class, respectively.

The second condition means that a gene must satisfy the following constraints:

Structural constraint

A gene has the same structure that a form has (see Section 6.4.2.1). Given a set of genes, all

connecting via the subform relationship, the equivalent of an atomic form and recursive atomic form

(in a similar set of forms) are called atomic gene and recursive atomic gene, respectively. An atomic

gene always generates an atomic form. The equivalent of root form and subroot form are called root

gene and subroot gene, respectively. Only a subroot gene can generate a root form. The equivalent of

organism is genome. These terms are applicable to both object genes and class genes.

Genetic constraint

In the same way as a form, a gene must have its own object gene and class gene, which are accessible

to it. An exception to this is a gene that cannot be abstracted further, for example, one at the union

level. Such a gene is called an ultimate gene.

A class or an object representation can satisfy this genetic requirement in the recursive meta-

modelling arcliitecture described in Section 6.4.1.2:

• A class is also an object (in relation to its own class at the next higher meta-levei), which can

have its own object representation that can be its object gene. Its class gene can be its own class

(meta-class). That means, a class in the Life Design recursive meta-modelling architecture can

satisfy the genetic requirement to be a class gene.
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• An object representation has the same class as the object it describes. That means, its class can be

its class gene. It does not need its own representation (being a representation itself), but in order

to satisfy the genetic constraint, we can consider it the representation of itself, that is, it is the

object gene of itself. Thus, an object representation in the Life Design recursive meta-modelling

architecture can also satisfy the genetic requirement to be an object gene.

The genetic constraint constructs a recursive gene architecture like the recursive meta-modelling

architecture described in Section 6.4.1.2. In this architecture, in any two consecutive levels the

instance level consists of forms and links (represented by their object genes); and the schema level,

class genes and subfonn relationships (represented by their class genes). The term genetic level (and

hence, meta-genetic, M2-genetic, and so on) may also be used interchangeably with the term schema

level. The equivalents of the terms hybrid object, hybrid class, hybrid schema, and main schema are

hybrid form, hybrid gene, hybrid genome, and main genome respectively.

6.4.2.2.3 Validation rules

The recursive meta-modelling architecture in Life Design allows the establishment of a set of rules to

conveniently validate an organism against its main genome and hybrid genomes. These rules can

easily be checked in Life-UML diagrams

Rule 1 (Unique gene). Given a set of organisms and a set of genomes. For each entity (form) at the

instance level, there must exist one and only one corresponding entity (gene) at the schema level.

Rule 2 (Unique entity). Each entity, represented in a Life-UML diagram by its box label, in an

organism or a genome is unique.

Rule 3 (Relationship between gene and form).

Rule 3.1. Given two forms A and B of an organism 0. A is a first-order direct subform of B in one of

association or aggregation if and only if the gexie of A is also a first-order direct subform of the gene

of B in the respective relationship. This relationship (between the genes) may be inherited.

Rule 3.2. If a gene is atomic then its form is also atomic. (It is noted that the reverse is not true. An

atomic form may have a non-atomic gene which has an optional subform.)

Rule 3.3. A form is a root form if and only if its gene is a subroot gene.

Stateful and behavioural constraints are exactly the same for genes as they are for forms, which are

described below.
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6.4.2.3 Stateful constraint

The stateful constraint requires that a form should have a persistent state that can change.

In Life Design, the state of a form consists of its internal state and relational state. The internal state

is defined by the set of attribute names and values of the form. The relational state is defined by the

set of both first and second-order subfonn links of the form.

The function to change a form's state is called self-modification, which is defined by its class gene

(see Section 6.4.2.4).

It is noted that, since an object gene is an exact image of a form, the state of a form is equivalent to

that of its object gene. Furthermore, since an object gene must also be stateful (whereas other object

representations of a given form may not be stateful), the stateful requirement on a form is practically

applied on its object gene, the "persistent representation" of the form. That means, when considering

the statefulness of a form or an object gene, it is sufficient (and practical) to consider it on the object

gene and the object gene only.

6.4.2.4 Behavioural constraint

A form must support the following functionalities: self-construction, self-duplication, self-

modification, self-evolution, and self-destruction (Section 6.3.4). These form the set of genetic

functionalities.

6.4.2.4.1 Self-construction

Self-construction consists of two operations for creating a form from its class and object genes.

Instantiation

Instantiation is an operation that, from a class gene, creates an object gene for a specific form, with a

unique identity, and specific features (attribute values and direct subforms), which are given as

parameters, or generated internally by the operation itself, or set by default.

Instantiation implementing the first approach takes as parameters, attribute values, and references to

the direct subforms of the object gene being created, and assumes that these subforms are already

created. Instantiation implementing the second approach takes attribute values internally computed or

directly (hard) coded in itself, and recursively generates the object gene for each direct subfonn of

the current form. Instantiation implementing the third approach takes, from the class gene, default

attribute values and default references to the object genes of its direct subforms (which may also be
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null). A particular implementation of the instantiation operation may combine all three approaches in

different ways.

A definition for the instantiation operation that implements the first approach is:

Instantiation is an operation defined on a class gene g belonging to a class genome C,

that takes as arguments a set of attribute values and a set of object gene references. It

generates a new object gene g, (for a form /) based on g, whose properties are

assigned to the given attribute values,, and direct subforms are assigned to those

referenced by the given object gene references.

In existing object-oriented applications, a constructor is an approximate implementation of the

instantiation operation. The only difference between a constructor and an instantiation method is that

the constructor does not create an object gene, but the final representation, for the object being

instantiated.

Realisation

Realisation is an operation defined on an object gene gt, that maps g, to the final

representation of I.

In most existing object-oriented applications, the functional representation is the only and final

representation of an object, thus realisation is not necessary. In systems where a form has more than

one representation, it may be instantiated once but realised many times during its lifetime. For

example, the HTML (or XML) source code of a Web document (object gene) may be authored

(instantiated) only once, but the document itself (form) may be displayed (realised) many times on a

client's machine.

6.4.2.4.2 Self-duplication

Duplication of a form I is an operation that produces a new form /' identical to /, but different in

identity. If the form has more than one representation, this is done via the form's object gene. A

definition of the duplication operation for a form that has an object gene is:

Duplication is an operation denned on a form / in an organism O, that retrieves its

object gene g,, and produces an object gene gr identical to g, but different in identity.

It does this by recursively duplicating g, and each of its direct subform. It then

realises a form /' from gr (which is identical to / but different in identity). Duplication

may take, as parameters, some space references which the new form and object gene

will occupy.
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In most existing object-oriented applications, this operation is called deep clone. If the form to be

duplicated has only a functional representation, the cloning process happens entirely in the computer

memory. If the form has, or is, an object gene, the object gene is also duplicated.

6.4.2.4.3 Self-modification

Self-modification consists of operations for adding or removing subform links in a form (changing its

relational state), and for changing its internal state. If the form subject to modification is at a level

higher than the concrete level (that is, it is also a class gene), such addition or removal may have a

chained impact on related forms (on the same level), or instances that it defines (on the lower level).

A class gene is said to be free of dependency if this is not the case. That is, if it can be safely added

or removed without affecting the internal structure or behaviour of related class genes and forms. We

introduce the concept of dependency clearance, applicable to classes (hence, class genes) helow.

Dependency clearance

Dependency clearance ensures data and schema consistency when a system (for example, a genome

and its corresponding organism) is changed (for example, as a result of system evolution).

Schema dependency

A class is free of schema dependency if and only if:

• It is a leaf node in the class inheritance hierarchy, that is, no class is derived from it, and

• It cannot participate in an association or aggregation link with any class in which it is a

"subordinate" (in the generic sense explained in Section 6.4.1.1.4). In implementation terms, no

objects of other classes should hold a variable of its type. It is possible, however, for it to

participate in an association or aggregation link as a "primary" (in the generic sense explained in

Section 6.4.1.1.4). It is also possible for it to have a recursive link to itself.

Clearance of schema dependency is necessary to ensure schema consistency while the system

evolves.

Instance dependency

A class is free of instance dependency if and only if its instances cannot be found in any instance of

any class in the entire system. Clearance of instance dependency is necessary to ensure data

consistency while the system evolves.
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Dependency clearance

A class is said to be free of dependency if and only if it is free of both schema and instance

dependency.

AddLink

AddLink is an operation that establishes a link between two forms. If the form has more than one

representation and the new link is to be made permanent, a corresponding link is also established

between the object genes of the two forms. A definition for AddLink is:

AddLink is an operation defined on a form / belonging to an organism O, that takes as

argument a form m, and adds a new pair (m, I) (or (I, m), depending on whether I or

m is the subform) to the set of flexible subform links in m (or /). m can be a free form

or a form within O. If the change is permanent, the object gena of / is also retrieved

(from /) and the same change is made on it.

The following conditions must be satisfied:

• / and m have the capacity to form a flexible subform link with each other

• Such formation of a subform link between I and m does not violate any rules and constraints

defined in the association, aggregation or generalisation link that is used to realise the subform

link (see example below).

• Such formation of a subform link between / and m does not violate any Life Design constraint*.

For instance, in the example shown in Figure 6-5 (a) and (b), suppose that there is a free form

RumbaughBook:Book. It is not possible to create a subform link between this form and

Chap2Txt:Material, for instance, even though forms of types Book and Material have the

capacity to construct a flexible subform link, and such a construction does not violate any rules

defined at the schema level. This is because forming such a link would violate the structural

constraint in Life Design that there is only one root form in an organism (see Section 6.4.2.1.2).

RemoveLink

RemoveLink is an operation that removes an existing link between two forms. If the form has more

than one representation and the change is to be made permanent, the corresponding link is also

removed between the object genes of the two forms. A definition for RemoveLink is:

RemoveLink is an operation defined on a form / belonging to an organism O, that

takes as an argument a form m belonging to O, and subtracts the pair (m, /) (or (/, m),

depending on whether / or m is the subform), if exists, from the set of flexible
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subform links in m (or I). If the change is permanent, the object gene of i is also

retrieved (from /) and the same change is made on i t

The following conditions must be satisfied:

• The pair (m, Z) (or (/, m)) are in a flexible subform relationship

• Such a removal of the subform link between I and m does not violate any rules and constraints

defined in the association, aggregation or generalisation link that is used to realise the subform

link. For instance, in the example in Figure 6-5 (a) and (b), it is not possible to disconnect both

Chap1.Struct and Chap2:Struct, because a form of type Book must always contain at least one

form of type Struct.

• Such a removal of a subform link between I and m does not violate any Life Design constraints

(see example above).

• The form to be removed is free of all dependency.

The removal of a subform link may exclude a form (with its subforms) from its organism, if that form

does not have any other subform links. Such a form may be considered permanently destroyed (cease

to exist), or become a free form, depending on the rules specified in its gene. For instance, in the

example shown in Figure 6-5 (a) and (b), if Chapl.Struct is disconnected from MyBook:Book, it is

destroyed, because according to the multiplicity constraint between Struct: Class and Book: Class, a

form of type Struct cannot exist outside an aggregate of a form of type Book or Struct. If a

disconnected form is destroyed, its direct subforms also become disconnected, and may be destroyed

or become free forms in the same way. If a disconnected form becomes a free form, it retains all its

subform structure.

A free form may be connected or reconnected with a form hi the organism via a flexible subform link,

using the AddLink operation.

StateChange

StateChange is an operation that modifies the attribute value of a given attribute in a given fonn. A

definition for the StateChange operation is:

StateChange is an operation defined on a form / that takes as parameters an attribute

name and an attribute value, and assign one (value) to the other (name) in the given

form. If the change is permanent, the object gene of / is also retrieved (from /) and the

same change is made on it.
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It is also possible to have a set of StateChange operations defined for each attribute name of a given

form, that takes as parameter an attribute value and assigns it to the attribute name being operated on.

In existing object-oriented systems, methods that implement the StateChange operation are called

mutators. It is also convenient to define the corresponding accessors, which are methods that retrieve

attribute values for given attribute names.

6.4.2.4.4 Self-evolution

Self-evolution is an operation defined on a form that belongs to an organism in a set of organisms of

the same class genome* It conditionally propagates an evolutionary change from the form to its class

gene, that is, from lower to higher meta-levels.

An evolutionary change is an irreversible (that is, the change happens both at the form and its object

gene) addition or removal of a subfonn link in a form belonging to a given organism. This kind of

change may result in an irreversible addition or removal of a subform in the given form (see Section

6.4.2.4.3), which in turn, may propagate to the higher meta-level and result in an irreversible addition

or removal of the corresponding class gene in the class genome of the given organism. Thus evolution

in Life Design happens incrementally in a bottom-up fashion, starting at individual forms, and

propagating up to higher meta-levels.

Since only generalisation links are flexible at a schema level (see Section 6.4.2.1.3), adding or

removing a subform link at this (and any schema) level can happen only in the set of second-order

subform links. Addition of a second-order subform link is prohibited between forms in the same

organism, and removal of such a link is prohibited if the participating forms remain in the same

organism afterwards. Under these constraints, such operations (addition and removal of second-order

subform links) mean extending and truncating, respectively, the class inheritance tree (via the

generalisation relationship). In this respect, the generalisation, or second-order subfonn relationship,

defines a mechanism to evolve the system at the schema level. Schema evolution happens only on a

component (class gene) basis through deriving new class genes from existing ones, or truncating

existing ones.

The propagation of an evolutionary change may happen on two conditions:

• The subform added is the first one of its type in the given organism and its type does not exist in

the organism's main class genome, that is, it is a hybrid subform (see Sections 6.4.1.2 and

6.4.2.2). Alternatively, the subform removed is the last one of its type in the given organism.

• The propagation is controlled by a factor named evolutionary threshold. When the evolutionary

threshold is reached, the change will be carried to the next higher meta-level, resulting in a "more
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genetic" change. The evolutionary threshold is expressed in terms of the fitness of gene, which is

measured by the rate of occurrence (or absence) of a gene in a set of individual organisms defined

under the same class genome.

The evolution operation may be defined as follows:

Given a set L of organisms having the same class genome, the evolution operation is

defined on a form / that belongs to an organism O of the set L. It inspects

evolutionary changes in the organisms in L, and detects whether the rate of

occurrence (or absence) of a particular class gene g has reached the evolutionary

threshold applicable for g. If this is true, gene g will be considered for irreversible

addition (or removal), via appropriate subform links, in the class genome (using the

respective AddLink or RemoveLink operations).

System evolution will be explained in detail through the example of our LifeWeb system in Chapter 8.

6.4.2.4.5 Self-destruction

Destruction is an operation that completely removes a form and its object gene from the universe.

Destruction is an operation defined on a form / that simultaneously releases the space

occupied by / and its object gene, and completely erases its unique identity.

For example, a Web document is destroyed when it is deleted from the file system, or when it is

migrated to a new file system and loses its identity (URL).20

20 This is true only if URL is considered the unique identity of a Web dccaunent.
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Chapter 7 The LifeWeb model

As has been stated in Chapter 5, our system is designed in two distinct stages: the Multimedia

Document Model (MDM) and the LifeWeb model. LifeWeb is the MDM augmented with features

specific to the Web environment (electronic, distributed, and hyperlinked). These features include

other media types (for example, sound and video), hyperlinks, behaviour, schema, and external

services. LifeWeb is an implementation of Life Design. This chapter describes LifeWeb and explains

its features in tbe light of Life Design. All the biological terminology used in the rest of this thesis is

within the context of Life Design, unless otherwise stated.

7.1 LifeWeb classes

Figure 7-1 and Figure 7-2 show the design of the core model (top level), and (part of) the second

level respectively, using Life-UML notation (Section 6.4.1.3). The second level is an extension of the

core model, for the system is expected to be extended as it evolves. LifeWeb is based on the

Multimedia Document Model (MDM) described in Chapter 5, amounted with features specific to the

Web environment. These features are captured in the classes: LifeWebObject, Behaviour, Schema,

Hyperlink, Evolutor, Service, and classes of new media types (Audio, Video, Script).
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Figure 7-1: LifeWeb object diagram - Core model

LifeWebObject

All classes, except for Service and Schema (see below), are derived from the LifeWebObject class,

either directly or indirectly. This class captures the common properties and methods of LifeWeb

objects. LifeWebObject is assumed to be derived from a class, Object, which is the common

superclass for all classes.

Behaviour

Behaviour represents the Application Programming Interface (API) implementation of a given

LifeWeb class. (It is through this API that LifeWeb objects exhibit their "behaviour".) A LifeWeb

object is linked to its behaviour in a 1:1 (one-to-one) inflexible association relationship

(features:asn), whi provides the LifeWeb object with access to its class implementation. In

traditional object-oriented systems, where functional representation is the only object representation

(see Section 6.4.2.2.1), an (runtime) object "knows" its (runtime) class and does not have access to

the (static, or design time) class implementation. Having explicit access to the class implementation

is not a requirement in Life Design. However, a LifeWeb object also has a syntactic representation

(see Section 6.4.2.2.1), which may be (physically and/or syntactically) different from, or the same as,

the class implementation. If they are different, having access to the class implementation allows

dynamic linking of LifeWeb classes, thus making it possible to automate the evolutionary process (see
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Section 9.4.3). In any cases, having references to, rather than embedding, the class implementation

makes the syntactic representation of the object more compact.

Behaviour is a feature essential to satisfy the behavioural requirement in Life Design (Section

6.4.2.4), and to address the problem of lack of functional behaviour of the Web (Sections 2.2.2.3).
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Figure 7-2 : Second level - Extending some LifeWeb classes

Evolutor is a class that captures the evolutionary engine which LifeWeb objects use to evolve

themselves. An Evolutor class is an implementation of the self-evolution operation (described in

Section 6.4.2.4.4). This operation could have been implemented simply as a method (like other

genetic functions), but its complexity justifies a separate encapsulation. Furthermore, such

encapsulation allows for slightly different evolutionary models to be supported. For instance,

different implementations may use different ways to calculate the fitness value of a gene (see

Sections 6.4.2.4.4, 8.1 and 8.5). An Evolutor object is associated with a LifeWeb object through an
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inflexible 1:M (one-to-many) association link (features:am). (This means, a LifeWeb object may not

change its evolutor during its lifetime).21

Schema

Schema is really a meta-class that captures class genes of LifeWeb objects (see Section 6.4.2.2). A

Schema object represents a LifeWeb class gene that is linked with a LifeWeb object through an

inflexible 1:M association link (defines:asri), giving the LifeWeb object access to its own class gene.

(This means, a LifeWeb object may not change its schema during its lifetime). Schema has a recursive

link to itself, that is, a Schema object is associated with its own (meta) schema in the same way a

LifeWeb object is associated with, its Schema object. This constructs the recursive meta-modelling

architecture described in Section 6.4.1.2.

Hyperlink

A Document object and its Hyperlink qualifier together define a single reference to a Document

object, which is a flexible association relationship (referenced:asn). A document can be referenced

by zero, one or more documents. Hyperlink is a class encapsulating the source and an anchor (text or

image) from which the link emanates, a reference to which the link terminates, and a scope to specify

how wide and how deep the link is defined. Hyperlink is subclassed into Hypertext and Hyperimage

(see Figure 7-2). Section 9.5 explains in more details about Hyperlink and the maintenance of

referential integrity in LifeWeb,

Service

Service is an abstract class to be inherited by external services possibly provided by third-party

software developers. As shown in Figure 7-1, a Service object is connected to a Document object via

a M:M (many-to-many) flexible association link (uses:asn). This provides the gateway to extend the

system functionalities with various services acquired from external resources. The use of Service is

explained in detail in Sections 8.2.4,9.4.2 and 9.4.3,

Audio, Video, Script

Audio, Video, and Script are classes that capture the different media types that a Document object

may contain. They are included in the model for completeness purposes, but do not belong to the core

model of LifeWeb, and will not be designed or implemented in the LifeWeb prototype.

21 This decision is subjective. Other implementations may allow the link to be flexible.
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Other classes in LifeWeb that are not explained here have been described in the Multimedia

Document Model (see Chapter 5).

7.2 LifeWeb and Life Design

As has been stated before in the introduction of this chapter, LifeWeb is an implementation of life

Design. This section explains how LifeWeb supports each constraint in Life Design at two adjacent

levels, object and class (in object-oriented terms), or concrete and genetic (in Life Design terms). It

also gives comments on the significance of this design in the context of the Web. Figure 7-3 shows an

example of a LifeWeb Document object, using Life-UML notation (see Section 6.4.1.3).

MyBook:Book

/ constructs
\ constructs

\
\

|| Chap2:Siruct

builds \ displays
\
\

builds.

ChaplTxt:Text || ChaplPres:Table, | || Chap2Txt:Text

Figure 7-3: A LifeWeb Document object

7.2.1 Structural constraint

The structural constraint can be considered with regard to the following conditions (applicable on

both levels): (i) the ability to create subform links; (ii) the existence of at least one atomic form and at

most one root form; and (iii) the existence of at least one flexible link.

Ability to create subform links

The ability to create subform links is inherently included in the object-oriented design of the system.

At both object and class levels, a first-order subform link is realised as an association or aggregation

link. At the class level, a second-order subform link is realised as a generalisation link. Figure 7-4

depicts the decomposition of a part of the LifeWeb class system in first and second-order subform

links (link labels are not shown). In this structure, the first-order subform links are contained in one

plane, and the second-order ones connect one plane to another.
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Existence of at least me atomic (or recursive atomic) form and at most one root form

Atomic form: the existence of an atomic (or recursive atomic) form is inherently included in the

subform structure (DAG with self-loops) of the system. For example, at the object level, the

document component hierarchy (captured by the MDM as described in Chapter 5) is a DAG in

which the materials associated with document components are the terminals, as depicted in

Figure 7-3. In other words, objects of the Material branch (Text, Graphics, Audio, Video, and

Script) have no components (subforms) of themselves, and are atomic. At the class level, these

classes (Text, Graphics, Audio, Video, and Script), by virtue of their semantics, are also atomic

(Figure 7-2 (b)).

Root form: at the object level, a Document object (or an object of any class in the Document

'ranch, except for StructuralComponent), being a subroot gene at the class level (Figure 7-1 and

Figure 7-2 (a)), is also the root form at the object level (Figure 7-3). It represents the whole of a

document, where all other document components (structure, presentation, material, hyperlink,

service, behaviour, schema and evolutor) are either contained in it (through aggregation), or

associated with it (through association). At the class level, Object, the common superclass of all

classes, is the root form of the system.

Figure 7-4: First and second-order subform links in LifeWeb class system

Existence of at least one flexible link

A number of flexible links have been defined in our system at the object level (see Section 7.1). For

instance, links between Service and Document objects are flexible. At the class level, all

generalisation links are flexible, as has been defined in Life Design (see Section 6.4.2.1.3).
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7.2.2 Genetic constraint

The genetic constraint can be considered with regard to the following aspects: (i) the existence of an

object gene and a class gene (for a given LifeWeb object), which are accessible to the object they

describe; (ii) the satisfaction of constraints on a life form; and (iii) the lifetime of the genes.

<?xml version="l.0" encoding="UTF-8"?>
<!DOCTYPE LifeWeb System="http://lifeweb.org/lifeweb.dtd">
<LifeWeb id="http://lifeweb.org/lifewebbook.xml"
behavi our="LifeWeb">

<table id="ChaplPres" row="l" col="2" behaviour="LWTable"/>
<book id="MyBook" heading="LifeWeb and Life Design"
behaviour="LWBook">

<struct id="Chapl" heading="INTRODUCTION"
present="ChaplPres" behaviour="LWStruct">

<text id="ChapterlTxt"
src ="../mybook/data.htm#intro"
behaviour="LWText"/>

</struct>
<struct id="Chap2" heading="LIFE DESIGN"
behaviour="LWStruct>

<text id="Chap2Txt"
src="../mybook/data.htm#lifedesign"
behavi our="LWText"/>

</struct>
</book>

</LifeWeb>

Figure 7-5: The object genome of a LifeWeb document (simplified)

Existence of an object gene and a class gene

A LifeWeb object has the syntactic representation of itself as its object gene and its class its class

gene. For instance, the object gene of a LifeWeb Document object can be its XML source code, and

its class gene the LifeWeb class system (Figure 7-1). Figure 7-5 shows exemplary object genes, using

XML syntax, for the objects depicted in Figure 7-3.

In Figure 7-5, the object genes for MyBootBook, Chapl:Struct, Chap2:Struct, ChaplTxt:Text,

Chapl fres:Table and Chap2Txt:Text are the XML elements with identifications (shown in the

attribute id) matching the respective object names (MyBook, Chapl, Chap2, ChaplTxt, ChaplPres,

and Chap2Txt). In this representation, an attribute is shown as a pair <attribute name>"="<attribute

value>, for instance, heading=''INTRODUCTION"'. The object behaviour, that is, its class API

implementation, is linked to the object in a read-only attribute, for instance, behaviour-"LWBook".

An aggregation link (for instance, between MyBook and Chapl) is represented by nesting the

elements in one another (Chapl is nested in MyBook). An association link (for instance, between
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Chapl and ChaplPres) is represented by including the reference of one element (ChaplPrea) in

another (Chapl).

In this example, the object genes are contained in an XML file, which is the object genome. An

object gene (and hence the object it describes) has access to its object genome \ia the value of the

LifeWeb document's id (http://iifeweb.org/lifewebbook.xml), and to itself via a

combination of the document's id and its own id (for example,

h t tp : //lifeweb.org/lifewebbook.xml#chapi). It has accesstoits class genome by the value

of the <!DOCTYPE> declaration (http://lifeweb.org/lifeweb.dtd), and to its own class

gene by a combination of this value and its own element type name (for instance,

http://lifeweb.org/lifeweb.dtdistruct).

Life form constraints

These constraints include: structural, genetic, stateful and behavioural.

Structural

As can be seen from the above example, such an object genome (as represented hi XML) makes it

possible to represent and preserve the structure of the entire system it describes, in this case, a

LifeWeb document (although with limited typing information).22 Thus, if the system has been

designed to satisfy the structural constraint (as is the case of a LifeWeb document, explained hi

Section 7.2.1), its object genome will also satisfy the same constraint.

The LifeWeb class genome, that is, the LifeWeb class system, also satisfies the structural constraint as

already explained in Section 7.2.1.

Genetic

The genetic constraint is applied recursively on genes, that is, a class gene should have its own object

gene and class gene.

If the object gene of a LifeWeb object is an XML element (as described above), then the object gene

of a LifeWeb class is the corresponding element type definition hi the LifeWeb Document Type

Definition (DTD). Figure 7-6 shows exemplary object genes of some LifeWeb classes, using XML

22 One exception is the Schema object, which is not represented in XML in an association relationship with any

elements (as designed in the LifeWeb data model), but as a global, independent entity in the <!DOCTYPE>

declaration. This however, is only a design choice of XML, and does not invalidate the claim that XML makes it

possible to represent and preserve the entire structure of an object-oriented system, with limited typing

information.
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syntax. (The element types in this example correspond to the elements used in the example shown in

Figure 7-5.)

<!ELEMENT LifeWeb
<!ATTLIST LifeWeb

id
behaviour

(book|struct|text|table)*>

CDATA
CDATA

#RF.QUIRED
#FIXED "LifeWeb">

<!ELEMENT book (book|struct|text) *>
<!ATTLIST book

id
heading
behaviour

<!ELEMENT struct
<!ATTLIST struct

superclass
present
behaviour

ID
CDATA
CDATA

#REQUIRED
#IMPLIED
#FIXED "LWBook">

struct|text)*>

CDATA
IDREFS
CDATA

<!ELEMENT text EMPTY>
<!ATTLIST text

id
src
behaviour

ID
CDATA
CDATA

<!ELEMENT table EMPTY>
<!ATTLIST table

id
row
col
behaviour

ID
CDATA
CDATA
CDATA

#FIXED "book"
#IMPLIED
#FIXED "LWStruct">

#REQUIRED
#IMPLIED
#FIXED wLWText">

#REQUIRED
#IMPLIED
#IMPLIED
#FIXED "LWTable"> .

Figure 7-6: The object genome of the LifeWeb class system (simplified)

In Figure 7-6, the class genes for MyBook:Book, Chap 1:Struct, Chap2:Struct, ChaplTxf.Text,

ChaplTxt:Text, and ChaplPres:Table, are the element types whose names match those of the

respective class names (Book, Struct, Text, and Table). In this representation, a class describes the

attributes of its objects in the corresponding <!ATTLIST> clause(s). Behaviour, which is "described"

(that is, coded) in the class API implementation, is made accessible to the class (hence, its objects) in

the behaviour attribute. Aggregation links between classes are captured in an explicit listing of all

element types (classes) that can be nested in a given element type. For instance, the element type

book has the list (book I struct I text) next to its <!ELEMENT> clause. An association link is

represented by an attribute whose value is of type EDREF or IDREFS (which stands for "id

reference(s)"), for irrtance, the attribute present in the element type struct. A generalisation link is

denoted by a special read-only attribute, superclass, whose value is the name of the element

supertype (superclass) of the current element type. (In 'this case, the element subtype need not

explicitly list the attributes inherited from the element supertype, unless they are redefined).

The class gene for the LifeWeb class system can be the LifeWeb meta-class system. It should be

possible to use some meta-modelling technique to build such a system. However, it is not within the
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scope of this thesis to explain and design genes at higher meta-modelling levels. Briefly, any class at

level n is also an object to level n+1, which may be represented in its own object gene, and described

further by another class at the next higher level (n+1). This higher meta-level class may again be

designed so as to satisfy the life Design constraints applicable to i t

Stateful

The state of a gene can naturally be kept within itself (by the defined notation), and changed (by its

genetic functions). In this respect, a gene has the capacity to be stateful. The Web, however, is a

stateless system, because it does not remember any changes made by the client (see Section 2.2.2.6).

These changes are thus lost before they can reach a gene to be recorded there. This problem is solved

in LifeWeb with the distribution of object genes, which is explained in Section 7.2.3 below.

Behavioural

The behavioural constraint can be inherently satisfied since a gene is itself an object with well-

defined behaviour. A set of methods for each genetic function required can be implemented for it (see

Section 6.4.2.4).

Lifetime of genes

Such genes as described above can be stored permanently on a disk, and their lifetime can be made as

long as that of the objects they describe.

7.2.3 Stateful constraint

As has been mentioned elsewhere, a LifeWeb object (or equivalently, its object gene) is capable of

being stateful (having a well-defined state representing by a set of attributes), but cannot record

changes made to itself (while being online) because of the statelessness of the Web. This problem is

solved in our system by the concept of object gene distribution.

As can be seen from Figure 7-1, on the one hand, the separation of contents (via the use of Material

objects), functional implementation (via the use of Behaviour objects), document type (via the -use of

Schema objects), and external services (via the use of Service objects) from other aspects of a

document (structure and presentation), leaves the LifeWeb Document object with a bare framework of

the document. On the other hand, following Life Design, the Document object is also the root form

that captures the whole organism. This means, despite the possibly large document the Document

object represents, only a minimal amount of information is kept in it. It is simply a holder of virtual

contents and references to other objects. This design makes it practically possible for the Document

object, which is represented by its object gene, to be wholly distributed at client sites. Such a
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distributed Document object alone is sufficient for the reconstruction of the whole document This

concept, which is termed object gene distribution, is about distributing objects with minimal but

sufficient information to reconstruct the object fully.

As object genes can be fully distributed and permanently kept at client sites, changes to their state (as

a result of client actions) can be retained. That is, they are stateful.

7.2.4 Behavioural constraint

The behavioural constraint can inherently be satisfied in the object-oriented design of the system.

7.2.5 Implications on the Web

Life Design in general, and LifeWeb in particular, have remarkable relevance and significance on the

Web, and specifically address the issues mentioned earlier in Section 2.2. This section comments

briefly on some major implications that Life Design and LifeWeb have in the setting of the Web,

considering them hi terms of three of the four Life Design constraints: structural, stateful and genetic.

(The behavioural constraint is significant hi enabling the whole system, designed after other

constraints, to function the way it is supposed to. Its meanings can be seen hi those of other

constraints and need not be considered separately.)

7.2.5.1 A flexible modular structure for manageability, maintainability,

customizability, adaptability and evolvability

The flexible modular structure (DAG) of a LifeWeb document, inherited from object-orientation and

Life Design, permits easy management and maintenance of the document on a component (object)

basis, both during design time and runtime. Easy manipulation of document components also allows

the document to be changed for customisation, adaptation or evolution purposes. In addition, the

specific structure of LifeWeb documents makes it possible for structural links to be automatically

generated by the system during runtime. In this way structural referential integrity can be ensured and

large maintenance costs on structural links eliminated.

The flexibility of links also has a meaning. They preserve the semantics and internal structure of the

evolving entities, whilst giving these entities the necessary "freedom" (flexibility) to change, grow

and evolve. For instance, at the object level, the association link between a Document object and its

Schema object cannot be broken (because doing so will alter the schematic definition, hence

semantics, of the Document object). A link between a Document and a Service object, on the

contrary, can be freely added or removed. At the class level, both association and aggregation links
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cannot be removed if the removing class participates in the internal structure of the other one (that is,

if the removing class is "subordinate" - in the Life Design sense as defined in Section 6.4.1.1.4 - to

the other one). Generalisation links, on the other hand, can be extended or shrunk, allowing the

system to evolve schematically (see Section 6.4.2.1.3). In this way, schema evolution in LifeWeb

occurs only on a component basis (subclass/superclass), which is different from traditional schema

evolution (see Chapter 4). In traditional schema evolution, changes can happen to the internal

structure of an evolving entity, which makes it difficult and expensive to maintain system

consistency.

Sections 5.2.2 and 9.7 explains the manageability and maintainability aspects of LifeWeb.

Customisation, adaptation and evolution in LifeWeb are explained in detail in Chapter 8, and in

Sections 9.4.2 and 9.4.3.

7.2.5.2 A stateful Web for customisability, adaptability and evolvabiIity

As a document's object genes can be kept permanently at client sites, customisation information can

be maintained for each client. Furthermore, the distribution of these object genes (originating from

one server document) allows the formation of a population of Web documents in which individual

members may be slightly different from one another as a result of customisation. Adaptation and

evolution can thus happen over such population (and many others, originating from other server

documents), drawing its options from the varieties presented by each individual, and driven by user

preferences (see Section 6.3.6). Customisation, adaptation and evolution in LifeWeb are explained in

detail in Chapter 8, and in Sections 9.4.2 and 9.4.3.

7.2.5.3 Gene and recursive gene architecture for evolvability

In the Web context, a LifeWeb object genome is a compact and persistent document instance that

retains its state across HTTP connections, and contributes to the "genetic variety" in a population of

similar document instances. Functionally, it controls the realisation of the final representation (see

Section 6.4.2.2.1) of the document instance. A LifeWeb class genome defines a document type, based

on which document instances of a particular type are generated. Functionally, it controls the

instantiation of document instances and allows document instances to validate themselves (thus

ensuring interoperability in the entire population of its document instances).

As can be seen in the examples above (Section 7.2.2), and earlier in the explanation about XML

(Section 3.2.2), the conce^ of document type has actually been applied on the Web witfti the use of

the Document Type Definition (DTD). This notion is especially meaningful in the Web environment,

which has developed into a global network, and must incorporate a wide variety of culture, standards
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and needs. Giving the Web system the ability to define various document types provides for this

requirement We will explain in more detail in Section 9.2 how work on DTD is used in the LifeWeb

prototype to implement class genes.

Higher meta-level genes define constructs that are used in genes at lower meta-levels. ID particular, in

LifeWeb, meta-genes define the language in which genes are expressed, and M2-genes define the

ontology for meta-genes. This recursive gene architecture allows evolutionary changes to be

propagated from lower to higher meta-level, resulting in a "more genetic" change in the entire

system. LifeWeb evolution is explained extensively in Chapter 8.

I l l



Chapter 8 LifeWeb evolution

Evolution in LifeWeb occurs through successive stages, where each stage maps into one

corresponding level of meta-modelling described in Sections 6.4.1.2 and 7.2.5.3. The propagation of

changes from one stage to another is controlled by a factor named the evolutionary threshold. When

an evolutionary threshold is reached, the change will be carried to the next higher meta-level (of

genes), resulting in a more genetic change. Such change propagation may result in the formation of a

new group of the individuals hi the level immediately below, where individuals hi these groups are

genetically differentiated. This is similar to the speciation process in nature [DAR77]. Therefore we

have used the term document species (and similar terms for higher levels) to denote the basic class of

a document taxonomy, which is a distinct group of document types that are genetically interoperable

with each other and conform to the one from which they are derived.

The sections below give a more detailed picture of the evolutionary process in LifeWeb. The first

section explains the various stages of the process in parallel to the different meta-modelling levels.

The second section elaborates the specific types of changes that can occur and propagate to higher

meta-levels. The third section uses a scenario to describe the formation of new document types and

document species. The fourth section explains the mechanism by which a document type or species

becomes extinct or multiplied. The fifth section gives some illustrative examples. Characteristics of

LifeWeb evolution are drawn up and presented in the sixth section. Finally, the last three sections
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evaluate LifeWeb evolution against other comparable technologies, which include the Genetic

Algorithm, meta-modelling, and Database Schema Evolution (see Chapter 4).

8.1 Levels of meta-models and stages of the

evolutionary process

LifeWeb evolves through stages that correspond to the levels of meta-modelling. A level may be

divided into two sub-levels, temporary and. permanent, if the entities in that level are considered both

in their object genes (persistent object representations) and other object representations (usually non-

persistent) (see Section 6.4.2.2.1). (For instance, a document displayed in the browser is in its

functional, and final, presentation. Its source code, that is, its syntactic representation, is its object

gene. The functional representation of a class, however, is not important in our problem, and

practically we only consider its syntactic representation.) Figure 8-1 shows the (simplified) LifeWeb

system through three levels of meta-modelling: concrete, genetic, and meta-genetic, using a LifeWeb

document represented in XML notation (described in Section 3.2.2) as an example.
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Figure 8-1: Three levels of a LifeWeb document (simplified)

The concrete level has two sub-levels: (i) The (concrete) temporary sub-level comprises living

organisms (in Life Design terms) or Web documents (in Web terms) as they appear in full (in their

final object representations, which are functional representations in this case) at the client site (in the
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browser); (ii) The (concrete) permanent sub-level consists of object genomes (in Life Design terms)

or Document objects (in object-oriented terms), which are the XML source code (in Web terms) of the

living organisms at the temporary sub-level. The genetic level contains class genomes (in Life Design

terms) or class systems (in object-oriented terms), which are the DTDs (in Web terms) that define the

schemata for different types of Document objects (object genomes). The meta-genetic level contains

meia-class genomes (in Life Design terms), or meta-class systems (in object-oriented terms), which

are the XML specifications (in Web terms) that define the grammar or notation in which the DTDs

(class genomes) are expressed. (Figure 8-1 shows only a simplified version of the XML

specifications). Further meta-levels can be specified as required (see below). These triplets of terms

may also be used interchangeably in the context of Life Design, Web and object-orientation,

respectively: life form, element, object; and class gene, element type, class. For consistency, we will

use the Web terms as the main ones in this section, accompanied by the Life Design and object-

oriented equivalents (in parentheses) for concept mapping.

The following sub-sections describe stages of LifeWeb evolutionary process. The role that each stage

plays in the whole process is specified, showing what kinds of changes there are, and how they are

accumulated and controlled. These sub-sections also explain when the customisation and adaptation

processes start and how they can seed the evolutionary process. In this model the fitness of gene is

measured by the usage of the given gene, or the rate of its occurrence in individual documents.

8.1.1 The concrete level

The concrete level comprises the documents populating the whole Web. This level is divided into two

sub-levels: the temporary sub-level consisting of Web documents (living organisms or documents in

their final representation), and the permanent sub-level consisting of document's XML source code

(object genomes or Document objects).

8.1.1.1 The temporary sub-level

Web documents in this level are realised from their XML source code (object genomes or Document

objects), fully filled with formatted materials, hyperlinks and other document components, accessible

to human readers through their unique URLs. Customisation and adaptation processes start occurring

at this level as a result of users' interaction. These processes supply the changes necessary for the

evolutionary process to happen. There can be two kinds of change at this level:

• Individual temporary change: changes that alter a Web document (living organism) only from the

time the request for change is made until the time the document is brought offline (that is, when

the user ends a Web session).
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• Individual pennanent change: changes that are recorded at the XML source code (object genome

or Docwmnt object) of a Web document These changes typically result from users' requests or

system adaptive engine and are kept at the client site.

8.1.1.2 The permanent sub-level

This level consists of the (documents') XML source code (object genomes or Document objects),

which can permanently record changes occurring at the temporary level. It has two sub-levels of

itself, server and client The server sub-level consists of original objects created by content providers,

possibly manually. The client sub-level contains copies of server objects generated through the

reproduction process, possibly modified for customisation or adaptation purposes as explained above.

In this respect the set of modified client objects derived from a given server object form a population

of Web documents with a variety of genes differing from that of the original server object. Similar

changes hi client objects are accumulated over time and can trigger a permanent change hi the

corresponding server object so that the change will later be duplicated and distributed throughout the

next generation of the population. The threshold at which this process starts is called the object

evolutionary threshold. There can also be two kinds of change at this level:

• Non-genetic change: changes that affect the document's XML source code (object genome or

Document object) but not its DTD (class genome or class system). These are typically changes to

the presentation of structural components, or to the structure of the document (for instance,

sorting its structural components). They do not modify the way elements are defined (for

example, by adding new attribute types), nor do they add/remove element types (class genes or

classes) in the document. This kind of change will not propagate any further than this level.

• Genetic change: changes that affect not only the document's XML source code (object genome or

Document object) but also its DTD (class genome or class system). The addition or removal of

element types (class genes or classes) exemplifies this kind of change. These changes, if

happening at a large number of document instances of a given document type, can trigger the

formation of a new document type. The threshold at which this process starts is called the genetic

evolutionary threshold. If the newly created document type does not conform to the previous

document type it is derived from, a new document species may have been formed.

8.1.2 The genetic level

This level consists of the DTDs (class genomes or class systems) that describe the genetic

specifications or the schemata of the corresponding document types. A DTD (class genome or class

system) specifies factors such as what element types there are, their attributes and attribute types, and
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their possible arrangement and nesting. The schematic constructs defined in this level are used to

build the XML source code (object genomes or DocumeiJ objects) at the genetic level. Document

type schemata control the diversification of these documents, represented in their XML source code

(object genomes or Document objects), ensuring interoperability and compatibility between them,

unless a new document species or non-confonnal document type is formed. Similar to the previous

level, changes at this level are also classified as genetic (as explained above) or meta-genetic.

Accumulated meta-genetic changes, if reaching a threshold called the meta-genetic evolutionary

threshold can lead to the formation of a new language or notation in which the DTD (class genome or

class system) is expressed. Similar to the speciation process, the new notation may start a new

document genus if it does not conform to the previous notation.

8.1.3 The meta-genetic Bevel

This level consists of the XML specifications (meta-class genomes or meta-class systems) that define

the grammar of the language or notation in which the DTDs (class genomes or class systems) are

expressed. (Formal) XML specifications (meta-class genomes or meta-class systems) control the

speciation process (formation of new document species), ensuring the conformity of various DTDs

(class genomes or class systems) to the specified grammar, unless a non-conformal notation or

document genus is formed. As at the meta-genetic level, there are also two kinds of change at this

level, meta-genetic (as explained above) and M2-genetic. When a threshold called the M2-genetic

evolutionary threshold is reached, accumulated M2-genetic changes can lead to the formation of a

new ontology based on which concepts of the Web document system are formed. As in the previous

level, a new document family may be formed if the newly created ontology does not conform to the

previous ontology.

8.1.4 The M2-genetic level

This level specifies the ontology or the total sum of the concepts used to conceptualise the Web

document system. The ontological constructs defined in this level are used at the meta-genetic level

to define the grammar of the language used to describe the document type schemata, and to ensure

the semantic compatibility between ihe various languages in which the system is represented.

Changes happening at this level are assumed to cause what is called "paradigm shift", in which the

Universe of Discourse (UoD), or the Web in this particular case, is viewed under a different set of

concepts.
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There can possibly be more meta-modelling levels above M2-genetic, but they are deemed not

necessary to include in Life Web. Thus we assume the M3-genetic is the union level that unifies all

ontological systems, and there are no more changes at that level.

M2-genetic level:
Ontology

Meta-genetic level:
Notation

Genetic level:
Document types

0 <&

Server
Permanent:

Document objects
Client

\ .

Temporary:
Web documents

n

Figure 8-2 : Levels of meta-modelling (evolutionary stages)

In the reality of the Web, some changes at high levels may happen without accumulated changes from

lower levels, independent from the ongoing "life" of the Web. These changes are typically made by

top-level Web developers or administrators as needs arise. This process is currently common in most

information systems (for example, in database management systems such as Orion [BAN87],

described in Section 4.1), and we call it top-down evolution. It is opposite to the one described above,

which we call bottom-up evolution, where the system evolves as a result of local changes. In both

cases the system develops in a controlled environment under the supervision of higher meta-levels

with predictable results, giving itself features of maintainability, manageability, and evolvability. The

top-down evolutionary process, however, needs human intervention and is largely dependent on the

system designer for the integrity and consistency throughout the system. It will generally not be

discussed in subsequent .sections of this thesis, unless explicitly mentioned. Most discussions will

deal with the bottom-up evolution, which can be automated.

Figure 8-2 depicts different levels of meta-modelling. Entities in each level are defined, controlled,

linked and coordinated by the entities in the level immediately above them.
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8.2 Change and change propagation

Since explanations in this section are related mainly to object-oriented technology, for readers'

convenience, we will, in this section, extensively use object-oriented terminology with the implicit, or

hi some places, explicit, Life Design and Web equivalents (that are defined in the previous section).

As an overview, in LifeWeb, except for state (attribute or pure data value) change, all changes (in

bottom-up evolution) happen only on a component (object or class) basis at the flexible links. The

addition, removal or modification of a feature (attribute, method or link) hi an existing class requires

that a new class (with the desired feature) be developed and introduced into the system (through an

appropriate generalisation relationship) (see also Section 8.3). An old class may be removed from the

system as a result of the addition of a new class, or co-exist with the new class, depending on each

particular situation (see also Section 8.3). The following sub-sections give explanations specific to

the classes in LifeWeb about how each kind of change happens and how they are propagated.

8.2.1 Compositional change

Compositional changes are those that happen to objects that connect with each other through the

composes:hasa links in the LifeWeb class system (see Figure 8-1). Typical changes of this kind are

reordering, adding or removing StructuralComponent objects (or objects of a derived class thereof, as

explained hi Section 8.2.5) hi the document Such a change is usually the result of a customisation

request direct from the user, or some system adaptation caused directly by the user's interaction,

happening at the temporary sub-level of the concrete level.

This Mnd of change usually propagates up as high as the permanent sub-level (client or server) and

does not result hi a genetic (schematic) modification hi the document instance. An exception to this is

when the object to be removed is the last one in the document, or the first one of a newly introduced

class, that is a hybrid class (see Sections 6.4.1.2 and 6.4.2.2.2. See also Sections 8.2.5, 8.2.6 and 8.5).

In these cases the document Instance will either not exhibit properties and behaviour belonging to the

removed object, or exhibit the added ones belonging to the newly acquired object, respectively. (This

is effectively a genetic or schematic change at the concrete level through the composition link.)

The frequency of the disappearance of an existing class, or appearance of a new (hybrid) class in

client Document objects (object genome or XML source code) (of a given server Document object),

is recorded, and may trigger a similar change in the corresponding server Document object if it

reaches the object evolutionary threshold (see Section 8.1.1). If the same change is found in many

other server Document objects of a given document type (DTD, class genome or class system), a new
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document type may be formed when the frequency of this change reaches the genetic evolutionary

threshold (see Sections 8.1.2). If the change is the disappearance of an existing class, it may be

removed from the relevant document type if and only if it is free of all dependency (see Section

6.4.2.4.3), otherwise no change will be made. If the change is the appearance of a new (hybrid) class,

it will be added to the relevant document type, with appropriate relationships, forming a new

document type.

This is the way that unused classes may be removed and new classes introduced to the system

automatically from the concrete level as a result of users' interaction. Sections 8.3 and 8.5 give

examples of the formation of document types and species.

8.2.2 Presentational change

Presentational changes are, like compositional changes, primarily local to a Web document or

(client) Document object (object genome or XML source code), but may also propagate to higher

levels. These are changes that happen to objects participating in the displays:asn link in the UfeWeb

class system (see Figure 8-1). Typically a presentational change happens as a result of a

customisation request directly from the user, or of some internal system adaptation. Such a request

(or adaptation) essentially alters the presentation directives of the associating object, causing the

object to be displayed in the new format A presentational change propagates in a manner similar to a

compositional change. This means it does not result in a genetic (schematic) change, unless the

involving Presentation object introduces a new (hybrid) class (see Sections 6.4.1.2 and 6.4.2.2.2), or

removes the final occurrence of its class in the document instance, and this change is found in a

sufficiently large number of document instances of a given document type (see also Sections 8.2.5,

8.2.6, 8.3 and 8.5). In this way new presentation classes may be added to, and unused ones removed,

from the system.

8.2.3 Referential change

Referential changes happen and propagate in a manner similar to compositional or presentational

change. Typically a referential change is a system adaptation or user customisation request, which

suppresses or shows Hyperlink objects (thus creates a different navigational path). Referential

changes are also mainly local, and are carried to the genetic (schematic) level only if they introduce a

new (hybrid) Hyperlink class (see Sections 6.4.1.2 and 6.4.2.2.2) or remove the last instance of a

Hyperlink class in the involving document (see also Sections 8.2.5, 8.2.6, 8.3 and 8.5). This is how

new derivatives of the Hyperlink class may be added and unused ones removed from the system.
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8.2.4 Change of external service

The concept of external service is borrowed from a concept in biochemistry where functional groups

are attached to molecules to modify the properties of these molecules (see Section 6.2.S).73 External

services are complete, encapsulated, functional units that can be freely mounted or unmounted onto a

document at any time to extend the document functionalities. External services play an important role

in the LifeWeb evolutionary process in that they allow for the incorporation of third-party software,

dynamic customisation and automatic adaptation and evolution (see also Sections 9.4.2 and 9.4.3).

The use of external services is also significant because it allows the system to accommodate complex

customisation and adaptation processing. A Service object can invoke the primitive methods (for

instance, those implementing the genetic functions) defined in LifeWeb classes to perform more

sophisticated tasks. For example, based on user requests or profile, a Service object can select

structural components that satisfy some specified selection criteria and perform complex format

processing, or it can sort structural components according to different orders based on different

criteria.

Another useful application of external services is to confine customisation information. For example,

the information regarding a customisation request (for instance, formatting a structural component in

a client document as a table) can be fully encapsulated in a Service element (for instance,

TableFormatter). Thus, there is generally no change made to other elements in the document, and

customisation information is kept separate from the original document state. In this way the original

state can be easily restored when required. Besides, this separation makes it simpler to keep the client

document state up-to-date with the server document state, while customisation changes are still

maintained. The implementation and mechanism of Service are explained in Sections 9.4.2 and 9.4.3.

8.2.5 Addition of a new class

A new class can be added at either the concrete level or genetic (schematic) level. It must be derived

from an existing class in the document type being modified. The newly introduced class may have

relationships with other classes, both new and existing, provided that the integrity of the class system

23 A somewhat similar idea is also found in ordinary life. F ir instance, auxiliary equipment (for example, a

diving suite) is used to extend functionalities of the human body (for example, diving).
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is maintained.24 (That is, the class system before or after change must form a DAG with self-loops.)

In this respect, the addition of a class C in the inheritance tree may lead to the addition of, for

instance, another class C that is linked to i t C" may be connected with C by generalisation,

aggregation or association, and the addition of C" must be done together with the addition of C. (This

is effectively an addition of a class subtree or subsystem.)

At the concrete level

The presence of a new class in a document instance without that class being defined in the

corresponding class system (mam class genome or main DTD) is the result of hybridisation (see

Sections 6.4.1.2 and 6.4.2.2.2). In this case, the new class must be defined in another class system

(that is, a hybrid class genome or hybrid DTD). (In XML specifications, this DTD is accessible to the

document either via the XML namespace mechanism, or as an internal DTD that is inserted into the

document, as described in Section 3.2.2.) In this way, the new class (which should be initially

supplied by a schema designer) is first introduced into the system as a hybrid class through a

document instance (possibly by the system or user selection) via the flexible links. This change,

which starts at the concrete level, can subsequently lead to a genetic (schematic) change and the

creation of a new document type, following the same change propagation process as explained in

Section 8.2.1.

It is worth noting that the introduction of a new (hybrid) class into a document instance effectively

changes the document type (class genome or class system) of that particular instance (regardless of

whether it will lead to a genetic change or not). This is the way that LifeWeb supports genetic

(schematic) change from the concrete level on a component (object and class) basis through the

flexible links.

At the genetic level

Classes added directly at the genetic (schematic) level are most likely done manually by Web

administrators or developers in the top-down evolutionary process (see Section 8.1). In this case

document types are created manually. This process is not automated and therefore not supported by

the system. However, the existence of a meta-class system (meta-class genome or XML

specifications) makes it possible to validate the new document type against the specifications defined

for it at the meta-genetic level. This allows for meta-level compatibility and interoperability across

document species of a given document genus (grammar).

24 As a new class must have been designed and implemented by a human programmer, system integrity is

maintained by the development environment (for example, the compiler).
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8.2.6 Removal of an existing class

A class can be removed starting at either the concrete or genetic (schematic) level. In any case, a class

can he removed if and only if it is free of all dependency (see Section 6.4.2.4.3). Any class that

becomes disconnected from the class system, as a result of this removal, will also be removed, and

may become a "free class" (free form) or destroyed (see Sections 6.4.2.1.2 and 6.4.2.4.3).

At the concrete level

A class will be depreciated, that is, disappear hi the server Document object, if it is not used in a

sufficiently large number of client Document objects. It might eventually be removed from the DTD

(class genome or class system) if its degree of depreciation has reached the genetic evolutionary

threshold and it is free of all dependency. This process is described in Sections 8.2.1 and 8.3.

At the genetic level

A class that is not used in any Document objects can be removed manually by Web administrators or

developers provided that it is free of all dependency. As this requires a thorough check at the instance

level, it might not be practical to do so unless supported by some automatic checking mechanism.

It can be seen that a class can seldom be removed permanently from the system due to the strict

constraint of dependency clearance (see Section 6.4.2.4.3). It is more often however, that a class (or a

branch of classes) may be removed from a document type or document species if it is a leaf node hi

the class inheritance tree. This is actually the start of a speciation process, which will be explained in

detail hi Section 8.3 below.

8.2.7 Changes at the meta-genetic and higher level

As classes (class genes or element types) that follow Life Design are also life forms, meta-classes

(meta-class genes) and higher meta-level classes (higher meta-level class genes) can also change and

evolve in the same fashion as life forms, or in this case, Document objects do. It is, however, not

within the scope of this thesis to design the specifications and detail the evolutionary process of meta-

classes and higher meta-level classes.
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8.3 Formation of new document types and document

species

The formation of a new document type or document species starts with the introduction of a new

class to the class system. The following scenario illustrates the speciation process in a Life Design

system, in particular, Life Web.

Suppose, at time To, the class inheritance tree of the document type D* of document species A

consists of only the four core classes of the model, which are Cf to C*, connected with each other

as shown in Figure 8-3 (a).
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Figure 8-3: Speciation and the evolutionary tree

At time Tx a new class C$ , which is derived from one of the four initial classes, for instance C*,

and has been successfully developed from the concrete level, is registered to DQ , forming a new

document type Df (see Figure 8-3(b)(l)). As Df has all the classes in DQ and the extra class
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C A of D* is derived from C A in D A , it conforms to D A , and also belongs to document species A.

The evolution tree has grown from DA to D A as shown in Figure 8-3 (b)(2).

Suppose CA is specialised further so that at time T2, a new class CA, derived from C5
A, is registered

to D A , forming a new document type DA (see Figure 8-3 (c)(l)). The evolution tree also grows

from D A to D A as shown in Figure 8-3 (c)(2).

Suppose further that it is necessary to remove some features in class C / . As this cannot be achieved

by any derivation from C A , a new class C* is derived from the core class C A . There are two

possible cases: in the instances where C* is introduced, C* can either co-exist with CA or substitute

rA

1 Cf co-exists with C5
A: C* and C5

A are simply complimentary to each other, and neither shall

be the cause to remove the other at any level of meta-modelling. The addition of a new media

type (as a derivative of the Material class in the LifeWeb data model, as depicted in Figure 7-1)

exemplifies this complimentary relationship (among different media types). In this case, if C* is

found sufficiently fit at the concrete level to be propagated to the genevc level, a new document

type D3
A will be formed and the evolution tree will also grow as shown in Figure 8-3 (d).

2 C* substitutes C5
A: Cf and C5

A compete with each other starting in the instances that contain

them. An example of this competition relationship is the addition of a modified version of an

existing class in which both new and old classes have the same semantics but different features

and one is meant to replace the other. Figure 8-3 (e)(l) shows the class inheritance tree of one

particular instance in which C* is introduced for this case. (In this instance C* is still a hybrid-

class.) There are two cases in the competition relationship.

2.1 If the new class C* does not find enough favour to survive the environment, that is, it does not

multiply enough in instances, it will never propagate to higher level and may eventually

disappear. In this case the old class (gene) C5
A has defeated the new class (gene) C*.

2.2 If on the other hand, C* is found sufficiently fit to the environment to eventually be

propagated up to the genetic level, it will be registered to DA, forming a new document type.

As the current document type (DA ) does not have all its elements in the new document type
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( C / and C£ are missing), that is, the new document type does not conform to the current

document type, a new branch of document type is formed. This new branch starts from the last

existing document type that the new one conforms with, which is &* in this example (see

^gure 8-3 (e)(l)). This essentially starts a new document species B with the first document

type DQ (see Figure 8-3 (e)(2)). The removal of class C$ at the genetic level is considered in

two cases:

2.2.1 Class Cf completely substitutes class C* in all instances, which means C5
A is now clear of

instance dependency. There are two sub-cases for this:

2.2.1.1.1 Class C* is still used in some instances - In this case C* cannot be removed

due to the schematic dependency constraint. The two document species A and

B co-exist (realised hi two document types D* and D* respectively), having a

common ancestor D*. This is the case where traces of ancestor's genes can still

be found hi the genes of current instances, but not realised. The evolution tree

grows as shown in Figure 8-3 (e)(2).

2.2.1.1.2 Class C£ is not used in any instances - In this case both C$ and C£ are free of

all dependency and will be removed permanently from the system. Consequently

types B-f and D* will also become extinct. The evolution tree hi Figure 8-3

(e)(3) depicts this process, with the blurred nodes and line indicating a branch

that has been terminated. This however can scarcely happen.

2.2.2 Class C* partially substitute class C5
A hi some instances - In this case CS

A cannot be

removed due to the instance dependency constraint. The two document species A and B co-

exist, having a common ancestor D* (see Figure 8-3 (e)(2)).

This example shows how the speciation process in LifeWeb forms the evolution tree, which is very

similar to the tree of life in nature as generally accepted by biologists [DAV98b] (see Figure 8-4). In

the example above, for simplicity, the speciation event happens at a fairly early stage in the process,

so that the branching occurs immediately at the root node of the evolutionary tree. In reality this event

may be delayed much further and the evolution tree would picture the same as the tree of life in

nature.
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8.4 Multiplication and extinction of document types

and document species

In nature a species spreads (multiplies) or becomes extinct through the reproduction cycle of an

organism. It is a process of two opposite events through which the birth and death of an organism

allow the fitter genes to be selected, improve and multiply, and the less adaptable genes dismissed,

depreciated and become extinct. In other words, genes become multiplied or extinct by means of their

instances through the reproduction cycle. In normal cases, the factor that controls this cycle is the life

expectancy. By inducing death, this factor allows for new organisms to be bom, while still

maintaining some equilibrium state of the system.

A similar mechanism is designed in LifeWeb to control the multiplication and extinction of document

types and document species, essentially maintaining scalability in the system. The following

subsections explain this mechanism in terms of life expectancy, reincarnation and the

multiplication/extinction of document types and document species.

8.4.1 Life expectancy and reincarnation

At birth all LifeWeb documents are assigned a life expectancy, which is held in the property

expiration, to control their life span. There are two types of expiration:

• relativeExpiration specifies the amount of time that the object can live from the time it is last

used (accessed)

• absoluteExpiration specifies the maximum amount of time that the object can live
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If an object has not been accede?*! (used) for a relativeExpiration period of time, or if it is still used

but has reached the absoluteExpiration time, it will be destroyed. In the first case, the object is

destroyed forever. In the second case, the object will be immediately reincarnated without changing

its identification but possibly with some updates to reflect the most recent evolutionary change hi the

system. In software engineering terms, this is simply a "restart" operation with updates.

8.4.2 Multiplication and extinction of document types and

document species

The spread of a new document type or document species (class genome) has to be done to both

newborn instances and existing ones.

With newborn instances, when a new document is created (most likely manually), it is possible to

have it fashioned after the fittest, presumably the most recent document type that exists for a chosen

document species (existing or new one).25 This forms a new generation for that document species (or

the first generation of a new species).

With existing instances, the most recent document type will also be assigned to them on

reincarnation, which at the same tune may release their original document type (if the original one is

different from the new one). This assignment is doable because new types always conform to old

ones of the same species, and the reincarnated instance can be validated under the new type. This

process, which is repeated many times over the entire population of the species, eventually replaces

all occurrences of old document types with new ones. That is, the new types are multiplied while the

old types become extinct. A document species becomes extinct when the last document type defined

for it is removed. This should happen only after the last instance defined by the last document type of

that species is destroyed forever.

This mechanism (of using life expectancy to control the spread and extinction of document types and

document species) allows for asynchronous and smooth migration of existing document instances to

new types without creating a sudden heavy load on the system by the time a new type is formed. As

25 Similar to the results of evolution in nature where existing species are proven to sustain better, new document

species or types have also undergone a selection process to prove themselves more favourable. It is therefore

possible to differentiate the fittest document type among many others of a given document species, based on

their time stamp.
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document instances can reproduce themselves, reincarnation can be done by themselves in a

decentralised manner.

It is noted that in bottom-up evolution (which is assumed to be the normal system operation), it is

generally not necessary to migrate individual elements (objects) in a given document instance to a

new element type (class) that substitutes an existing type. This is because in this case, the new

element type can be included in the main document type (main class genome) of the document

instance only after it, as a hybrid type, has successfully competed with an existing type (in the main

document type) from the concrete level. That is, in most cases (depending on the value of the genetic

evolutionary threshold), the element (object) must have been defined hi the new (hybrid) element

type before this new type is (permanently) registered in the mam document type (mam class genome)

of the given document instance.

It is also noted that hi the literature of evolutionary computing, evolution is usually considered in two

aspects: local and global I^UKOO]. We are dealing only with global evolution hi the sense that the

evolutionary process dr,&•*",&&i here is considered to happen over the entire Web, rather than at a

speciiic Web site. Local evoiuuon is not within the scope of this thesis and will not be discussed

here.

8.5 Some scenarios

This section gives some concrete scenarios that illustrate the evolutionary process described hi the

previous sections, hi these scenarios (as well as hi our UfeWeb implementation), the evolutionary

threshold consists of two factors: the minSize factor, which specifies the minimum population size

required before the other factor, minRate, takes effect. The minRate factor dictates the minimum rate

of occurrence (or absence) of a gene for it to be added to (or removed from) the next higher level. (It

is necessary to have the minSize factor to ensure that a reasonably large population is present before

the evolutionary process is applied, since the size of this population is not known from the

beginning). For example an object evolutionary threshold with minSize = 500 and minRate = 0.8

means that there should be at least 500 client documents for a given server document, and at least 400

of them (0.8*500) should bear (or not bear) gene g, for g to be added to (or removed from) the higher

level (the server document).
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8.5.1 Scenario 1

This scenario illustrates the competition of three object genes at the concrete level.26 In this

competition, these genes exist in a population of client documents, but only one of tliem can be

present at a given server document

Suppose that a server document D has a structural component 5 that can be displayed in the format of

a table (7), list (L) or frame (F), subject to user customisation. Each of these formats represents an

object gene that is being considered. Suppose further that in the object evolutionary threshold,

minSize is equal to 5 (a small number for simplicity), and minRate 0.8. Suppose also that the

structural component S in the server document D is originally displayed as a table (T), and there is no

client document to start with. The scenario happens as follows. One day after the server document D

is published, it is visited by several users and three customised client documents are created, all using

L to display the structural component S. The situation is as follows:

Day 1

Gene

X

T

L

F

Total

Number of

occurrences

nx

0

3

0

3

Rate of occurrence (fitness)

.0

1.0

.0

Table 8-1: Observed fitness values after one day

As shown in Table 8-1, gene L has achieved a fitness factor of 1.0, which is above the minRate of 0.8,

but it has occurred in only 3 individuals, which is below the minSize of 5. Consequently, no change is

made to the server document at this stage. After two days, 10 client objects are created, therefore the

minSize requirement is satisfied. However, no gene has achieved the minRate value, thus the server

object is still unchanged (see Table 8-2).

26 This is similar to the competition of class genes (at the genetic level) described in Section 8.3, but happens at

the concrete level and does not make any changes to the evolution tree. It is also noted that although there is

complementary relationship between class genes, no such relationship exists between object genes. (Because a

class gene may define many instances but an object gene defines only one).
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Day 2

Gene

X

T

L

F

Total

Number of

occurrences

%

5

4

1

10

Rate of occurrence

(fitness)/(X) = J ? S -
lunx

.5

.4

.1

Table 8-2: Observed fitness values after two days

After a month, 100 client objects are created, and 80 of them use L to display the structural

component S (see Table 8-3). That means, gene L has achieved a fitness factor equal to the minRate

threshold. As the minSize requirement is also satisfied, gene L will be propagated up to the server

document D, changing the presentation of the structural component S in the server document D from

T (table) to L (list).

In this process, it is remarked that for a given feature (the presentation of the structural component S

in this example), the more variety of genes (formats) there is, the more difficult it is for a change to

propagate up to higher level. T^is is because the competition among the genes is higher. The minSize

factor plays an important role to ensure a sample statistically representative Oarge) enough for the

whole population, which is still growing. The greater value of minSize also delays and reduces the

possibility of change propagation. This example illustrates how the LifeWeb evolutionary model can

be deployed to achieve optimal setting (in terms of user preferences) for a particular feature in a

server document.

Day 30

Gene

X

T

L

F

Total

Number of

occurrences

nx

15

80

5

100

Rate of occurrence

(fitness)/(X)=JJ*-
Zinx

.15

.80

.05

Table 8-3: Observed fitness values after one month
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8.5.2 Scenario 2

This scenario illustrates the propagation of a complementary class gene from the concrete to the

genetic level.

In continuation of the scenario above, suppose that the classes Table (CT) and List (CL) are defined

in the document type DTD1, but the class Frame (CF) is defined in another document type, DTD2.

We will consider in this example, the registration of CF in DTD1, lhat is, its propagation from

document instances (defined in DTD1) to DTD1. Suppose that initially there are three server

documents defined in DTD1, including the server document in the previous scenario. All of these

server documents have a structural component, which may be displayed in the format of a table (7),

list (L) or frame (F), and which they all initially display in T. We now call these server documents

Dl, D2 and D3. The minSize and minRate required for CF to be added to DTD1 is 5 and 0.6,

respectively. (Note that these factors comprise the genetic - not object - evolutionary threshold

applied on the population of the server documents, not the client ones). The object genetic threshold

for all three client document populations derived from Dl, D2 and D3 is still 5 and 0.8 for minSize

and minRate, respectively. The scenario happens as follows.

Day 1

Client

Server

Gene

X

T

L

F

Total

CT

CL

CF

Total

Number of

occurrences

nx

Dl

0

3

0

3

D2

2

1

2

5

D3

0

3

0

3

(Dl, D2, D3) 3

0

0

3

Rate of occurrence

(fitness) /(X) = J J s _
A,nx

Dl

.0

1.0

.0

D2

.4

.2

.4

D3

.0

1.0

.0

1.0

.0

.0

Table 8-4: Observed fitness values after one day

One day after each of the server documents is published, Dl generates 3 client documents, all using

gene L. The client document population of D2 consists of 5 client documents, 2 of those using T, 1

using L and 2 using F. The D3 population is like the Dl one, with 3 client documents, all using L.
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Since none of the client document populations of Dl, D2 or D3 have any gene that passes the object

evolutionary threshold, Dl, D2 and D3 remain unchanged. The situation after one day is shown in

Table

After one week, object gene F in the population of client documents of D2 has passed the object

evolutionary threshold (minSize = 5 and minRate = 0.8). The class gene CT in D2 is thus changed to

CF, increasing the rate of occurrence of CF from zero to 0.35, However, CF is not yet registered in

DTD1, since both the minSize (5) and minRate (0.6) requirements for CF are still not satisfied (see

Table 8-5).

Day 7

Client

Server

Gene

X

T

L

F

Total

CT

CL

CF

Total

Number of

occurrences

nx

Dl

1

5

2

8

D2

1

1

8

10

D3

5

3

2

10

(Dl, D3) 2

0

0>2)l

3

Rate of occurrence

(fitness) / ( X ) = J ? 2 -

Dl

.125

.625

.25

D2

.1

.1

.8

D3

.5

.3

.2

.65

.0

.35

Table 8-5: Observed fitness values after one week

After one month, two more server documents (D4 and D5), which also use only CT, are added to the

population of server documents, and the situation has been changed as shown in Table 8-6.

At this stage, the two newly added server documents D4 and D5 quickly generate two populations of

client documents that highly favour the use of object gene F. Since the object evolutionary threshold

for object gene F is satisfied in both of these populations, the class gene CT in both D4 and D5 are

changed to CF. This increases the rate of occurrence of CF from 0.35 to 0.6 over the entire

population of server documents defined in DTD1. Since 0.6 is also Uie minRate required in the

genetic evolutionary threshold for CF, and the respective minSize requirement (5) is also satisfied,

CF is registered to DTD1.
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Client

Server

Gene

X

T

L

F

Total

CT

CL

CF

Total

Number

Dl

10

50

20

80

D2

30

10

60

100

Day 30

of occurrences

nx

D3

50

30

20

100

D4

1

0

9

10

D5

1

1

8

8

2

0

3

5

Rate of occurrence (fitness)

Dl

.125

.625

.25

D2

.1

.1

.8

D3

.5

.3

.2

D4

.1

.0

.9

D5

.1

.1

.8

.4

.0

.6

Table 8-6: Observed fitness values after one month

This scenario shows that besides the popularity of a gene, the addition or removal of client and server

documents to or from their respective populations can largely affect the chance of a gene being

propagated (its survival).

8.5.3 Scenario 3

This scenario illustrates the competition of combinations of object genes (instead of only one gene as

in Scenario 1) at the concrete level.27 hi this competition, combinations of genes exist in a population

of client documents, but only one of them can be present at a given server document.

Suppose now that the structural component S (in Scenario 1) has two subcomponents containing an

image and an audio file respectively, to illustrate its contents. These subcomponents can be added or

removed in client objects, subject to user customisation. As each subcomponent can be either present

or absent in the document (D), there are 22 = 4 different possibilities, and the genetic patterns are

represented in Table 8-7 below:

27 This example is particularly given to compare evolution in Life Design and Genetic Algorithm (see Section

8.6).
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Possibility number

1

2

3

4

Image

Absent

Absent

Present

Present

Audio

Absent

Present

Absent

Present

Binary representation

00

01

10

11

Table 8-7: Possibilities of customisation

Suppose that initially both the image and the audio files are present in the server document D (genetic

pattern "11"). and the values for minSize and minRate are still the same as in Scenario 1 (5 and 0.8,

respectively). The scenario happens as follows.

After one day, 5 client documents are created from the server document D, but none of the genetic

patterns (X;) has reached the minRate (Table 8-8). Consequently, no change is made to the server

document at this stage.

Day 1

Possibility

number

i

1

2

3

4

Genes

xt

00

01

10

11

Total

Number of

occurrences

nx

1

1

2

1

5

Rate of occurrence

(fitness) / ( X ) = J j £ -

0.20

0.20

0.40

0.20

Table 8-8 : Observed fitness values after one day

After 30 days, there are 100 client documents created. The pattern "01" scores highest in the

population (0.72), but is still under the required minRate (0.8) (see Table 8-9). The server object

therefore, still keeps its pattern of "11", even though at this stage the rate of occurrence for that

pattern is almost zero.

This scenario illustrates how features may be combined to evolve together in LifeWeb. Usually

features are combined when they are related. (In this example, the above features are related in the

sense that they are all used to illustrate the textual contents of the structural component 5). The more

features are combined together, the lower the possibility for any combination to propagate to higher

level (hence, the lower the possibility for changes at higher level). Some combination may also
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disappear at one or both levels (but this does not lessen the genetic variety as hi the case of the

Genetic Algorithm, which is explained in Section 8.6). It is noted that combinatorial explosion (that

is, too many genetic patterns exist so that their fitness evaluation becomes computationally

impossible) is not likely a problem here. This is because what can be combined to evolve together are

only the object genes within one single (server) document (not among documents). (In the above

example, they are the object genes of the Image and audio elements). Furthermore, the number of

object genes in one document that can be meaningfully combined (and propagate together to higher

meta-levels) is quite limited.

!
Day 30

Number

i

1

2

3

4

Genes

00

01

10

11

Total

Number of

occurrences

nx

10

72

15

03

100

Rate of occurrence

(fitness) f(X) —-^r-—

0.10

0.72

0.15

0.03

Table 8-9: Observed fitness values after one month

8.5.4 Conclusion

These scenarios show how LifeWeb can be employed hi a simple way to build adaptive Web

documents. System evolution to higher genetic level also happens in a similar fashion. This simplicity

is achieved due to the fact that user inputs have been used not only to drive the selection of the fittest

genes but also to generate genetic variety, including introducing new genes. This is not the case with

the Genetic Algorithm, explained previously in Section 4.3, and in Section 8.6. The evolutionary

threshold, which in LifeWeb, consists of the two factors minSize and minRate, plays a critical role in

controlling system evolution. Working out appropriate values for these factors can perhaps form an

independent area of study.

135



8.6 LifeWeb evolution and the Genetic Algorithm

LifeWeb consists of populations of self-reproducing entities with various genetic traits, which can be

altered to improve their fitness to user and developer requirements. These have made it feasible to

apply the Genetic Algorithm (GA) (see Section 4.3) to LifeWeb.

Evolution in the GA, however, differs from that in LifeWeb in several aspects.28 In the GA, new genes

are internally generated mainly by crossover (with random recombination) and random mutation

(secondary). In LifeWeb, they are externally produced by human users, authors or developers, and

purposefully introduced into the system through user customisation. For instance, users may create

their own presentational objects hi their client documents to suit their needs; authors may create a

pool of "ready-made" presentational objects in their server documents for users to choose from; and

developers may create a pool of classes (element types) for authors to try on their (server) documents.

This is a major difference between the two systems because they evolve hi manners that are opposite

with each other: one is random (thus is less efficient hi terms of environmental fitness)29 and the other

controlled (thus is more efficient hi the same terms).

Another difference is that the GA may terminate if a termination condition is reached or an optimum

is found.30 In LifeWeb, evolution is a process that lasts as long as the Web system does, unless the

whole process is abolished (for instance, by its creator). There are also some other minor differences,

for Instance, hi the GA, features (parameters) are typically combined together to evolve, whereas in

LifeWeb, they often evolve singly.

The application of the GA to LifeWeb requires some change to the LifeWeb evolutionary model

described hi previous sections. As has been explained, in the GA, genetic strings are generated

internally by the system through crossover or mutation, not from user requests for customisation as hi

28 N o t e that h e r e w e are comparing only LifeWeb evolution, not evolvability, with evolution in the G A . As has

been ment ioned in Section 4 .3 and throughout the previous chapters and sections, evolvability has a larger

p r o b l e m domain than evolution.

29 T h e effect of randomness in G A evolution may b e reduced, but not el iminated, by the application of some

pr ior knowledge [JON88] .

30 In a changing environment, the fitness function may change and a G A m a y b e left continuously running so that

individuals can continuously adapt themselves to the new environment. Typical ly however, a G A is m a d e to

terminate after a certain number of execution cycles. This is because of t ime and resource constraint and also, as

has been ment ioned before (Section 4.3) , the focus of GAs is optimisation, not evolvability.
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UfeWeb. Because these strings must be exposed to all users (the environment) to have their fitness

evaluated, they cannot be instantiated in (personal) client documents, but in a number of server

documents, accessible to all users. (For instance, in the ex&mple in Scenario 3 above we can create a

population of 2 server documents for the 4 different genetic patterns to compete with one another.)

As such, gene fitness can no longer be measured by the rate of occurrence of a genetic pattern

(because there are not enough individuals carrying that pattern to make a statistically significant

figure), but by some other measurement, for instance, its utilisation. The application of the GA on

LifeWeb is probably most suitable to produce a (server) document instance with a set of optimal

genes. The fitness function for this application is yet a question to be investigated.31

8.7 LifeWeb versus meta-modelling

As has been mentioned earlier (Section 4.2.2) and can be seen from the explanations of Life Design

(Sections 6.4.1.2 and 6.4.2.2.2) and LifeWeb (Section 7.2), meta-modelling concepts have been

applied in Life Design and LifeWeb to construct the recursive gene architecture in which individual

entities systematically evolve in a bottom-up fashion (see Section 8.1). This architecture generally

follows the same principles as standard meta-modelling frameworks such as the ISO/DEC IRDS

[IRD90] (see Section 4.2). In addition, it extends the IRDS architecture with the concepts of the

union level, and hybridisation, as explained previously in Section 6.4.1.2. Similarities and differences

are also found between the Life Design recursive gene architecture and the UML Four-Layer

Metamodel Architecture [UML98] (which can be consideicd an implementation of the IRDS). These

are explained before in Section 6.4.1.2.

In brief, existing meta-modelling concepts and techniques have been largely applied in Life Design

and LifeWeb, and extended to introduce new ones useful for system evolution. These concepts and

techniques, combined with object-oriented technology, enable the design of a self-evolving system.

8.8 LifeWeb versus Database Schema Evoiution

Life Design (hence LifeWeb) and Database Schema Evolution (DBSE) share the same concerns about

enabling dynamic changes to the description (system schema) that models a particular system

instance, and the consistent management of these changes (see Section 4.1). In this section, LifeWeb

31 One possible fitness function is measured by the ratio between the number of accesses (hits) to an individual

(document instance) over the number of accesses to all individuals of the population. Such a function however, is

questionable whether the number of user accesses is sufficiently representative of user preferences.
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is evaluated against DBSE in terms of its (LifeWeb's) capacity to (i) observe DBSE invariants and

rules (see Sections 4.1.1.1 and 4.1.1.2), (ii) support DBSE evolution operations (see Section 4.1.1.3),

and (iii) propagate changes (see Section 4.1.2).32

8.8.1 Observation of Database Schema Evolution invariants and

rules

As explained earlier in various places (Sections 6.4.2.1.3, 6.4.2.4.4, 8.2, 8.2.5, 8.2.6, 8.3, 8.5),

LifeWeb does not allow any change to the internal definition of an existing class,33 and a schematic

change in LifeWeb (or a Life Design system) happens only on a component (class) basis. In other

words, a schematic change is carried out only through the addition of a new class or removal of an

existing class (possibly with its "subordinate" classes - see Section 6.4.1.1.4 about the "subordinate"

relationship), via the generalisation link. Because a new class must have been derived from an

existing class to be eligible for addition (see Sections 6.4.2.1.3, 8.2.5, 8.3 and 8.5), and an existing

class must have been free of all dependency to be eligible for removal (see Sections 6.4.2.4.3, 8.2.6,

8.3 and 8.5), both these operations do not introduce any conflicts to the evolving system. This means,

DBSE invariants and rules (as listed in Sections 4.1.1.1 and 4.1.1.2) are either not relevant or

naturally observed in LifeWeb?*

8.8.2 Support for Database Schema Evolution evolution operations

According to Banerjee et al. [BAN87], DBSE evolution operations are categorised into three groups:

(i) Changes to the internal class definition, such as adding, removing or modifying attributes or

methods; (ii) Changes to the generalisation/specialisation relationships between classes; and (iii)

Changes to the class as a whole, such as adding or removing an entire class (see Section 4.1.1.3).

As explained earlier in several places (Sections 6.4.2.1.3, 6.4.2.4.4, 8.2, 8.2.5, 8.2.6, 8.3, and 8.5),

only changes in the third category may happen in LifeWeb. Such changes are also the means to allow

for changes in the first and second categories to happen. That is, the addition, removal or

32 This evaluation is applicable also to Life Design.

33 The internal definition of a class here is understood in the entirety of the class, which consists of its attributes,

methods, including inherited ones, and its "subordinate" classes (see Section 6.4.1.1.4 about the "subordinate"

relationship).

34 To be more precise, DBSE invariants and rules are ensured (where relevant) by the development environment

in which LifeWeb is implemented.
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modification of a feature (attribute, method or link) in an existing class means that a new class (with

the desired feature) must be developed and introduced into the system (through an appropriate

generalisation relationship). For instance, in the example described hi Section 8.3, the new class C*

is developed hi order to remove some features in C/(Figure 8-3 (d)). Cf may also be an

implementation to remove the superclass Cf from C*. The restriction that all schematic changes

must happen through those hi the third category allows LifeWeb to ensure systematic evolution on a

component basis (see Sections 6.4.2.1.3,6.4.2.4.4, and 8.8.1).

DBSE also defines some evolution operations that do not change the definition of a class or a class

system, but only an attribute value that is common in the whole class (that is, global to all objects of

that class). For instance, operations 1.1.6 and 1.1.7 (see Section 4.1.1.3) allow for changes to a

default and shared attribute value, respectively.35 Since these are changes to pure data values only,

they are not required hi LifeWeb to be implemented by a first-category operation (an introduction of a

new class in this case). However, as they are global changes (relative to the objects defined by the

given class), they must start locally first at individual objects at the concrete level (document

instances), and propagate up to the genetic (schematic) level, in the same way any other evolutionary

change is developed hi LifeWeb (see Section 6.4.2.4.4).

8.8.3 Change propagation

UfeWeb and DBSE propagate changes in opposite directions. On the one hand, LifeWeb evolution

starts from individual instances at the concrete level, and propagates up to higher meta-level of genes

(bottom-up evolution). On the other hand, evolution hi a database system starts at the schematic

(genetic) level and propagate down to instances (top-down evolution) (see Section 4.1.2). This

difference is instrumental in providing LifeWeb with a significant advantage over DBSE. LifeWeb

evolution is a gradual, incremental and recursive process, where changes happen and propagate from

individuals to groups, instances to schemata, and local to global. In this way, local and incremental

changes automatically, gradually and recursively reshape the system to represent the new state.

Bottom-up evolution frees LifeWeb from the complication and overhead that incurs hi DBSE due to

the need to propagate schematic and global changes down to affected instances (see Section 4.1). In

the long-terms, it allows for systematic evolution, and prevents adhoc, "quick and dirty" changes to

existing features that have caused many serious problems for the Web (see Sections 2.2.1.2, 2.2.1.3,

2.2.1.4,2.2.1.5).

35 A shared attribute is also commonly referred to as a class variable in the programming environment.
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In brief, LifeWeb can support all DBSE evolution operations, with constraints that allow LifeWeb to

evolve systematically and strictly on a component basis. Changes are propagated in a bottom-up

fashion across levels of meta-modelling, which enables a smooth evolution of the whole system and

eliminates overhead costs for maintaining data and schema consistency that is required in DBSE top-

down evolution.

8.9 Conclusion

Life Design and the evolutionary model in LifeWeb propose an evolvable Web system in which new

document types (DTDs) are derived from existing ones in an object-oriented manner. This means

existing DTDs and their related software and tools can be reused, and the system is maintainable and

manageable both statically and dynamically in its course of evolution. (See also Sections 9.4.2 and

9.4.3 for implementation of automatic evolution.) Evolution is enabled by changes introduced to

individual Document objects (by Web developers and authors), driven by user needs, and

incrementally accumulated and propagated through successive levels of meta-genes, resulting in

changes at the schema or higher meta-modelling levels. System interoperability is maintained through

the architecture of recursive levels of meta-genes (or meta-modelling). System scalability is generally

maintained through the two processes addition and removal, which have cancelling effect to each

other. This evolutionary model makes LifeWeb an open system hi the sense that its evolution accepts

(and calls for) collaborative work among public Web developers/autbors and users worldwide (the

external environment) to introduce changes and derive new DTDs. (This is made possible by the use

of only open standards and technologies in the system implementation as will be described in Chapter

9.) As an analogy to the Darwinian evolutionary theory, where:

The evolutionary process, taking place in each individual living organism, is enabled by its internal gene

mutation and modification, driven by external forces of natural selection, and realised by the population's

adaptation capabilities (Section 6.2.6),

it can be similarly said for LifeWeb that:

The evolutionary process in LifeWeb, taking place in each individual Document, is enabled by its internal

specifications modification, driven by external forces of user requirements, and realised by LifeWeb

adaptation capabilities.
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Chapter 9 LifeWeb Implementation

This chapter describes the implementation of LifeWeb. Two major decisions have to be made: the

programming environment in which LifeWeb is implemented, and the notation in which the LifeWeb

data model is expressed. These are explained in Sections 9.1 and 9.2. Section 9.3 shows the class

mapping between the LifeWeb data model (see Section 7.1) and the LifeWeb implementation. The

system architecture is described in Section 9.4 in three levels: basic, customisable and evolvable.

Sections 9.5 and 9.6 explain how LifeWeb can enhance referential integrity and help in resource

discovery. Finally, Section 9.7 describes LifeWebManager, a LifeWeb application for creating,

managing, and maintaining LifeWeb documents.

9.1 Programming environment

We have chosen to implement LifeWeb as an extension to a Web server. There are several alternative

technologies to implement such an extension, such as JavaServlet4"1 [HUN98], and Common Gateway

Interface (CGI) Script [MCC95]. We have chosen JavaServletta, as it is known to outweigh CGI

Script in terms of performance and flexibility, and is supported by the richly featured Java41"

technology. The LifeWeb data model must also be expressed in a well-defined language that should

be well integrated with the Web, and the implementation must include a parser for the chosen

language. For this purpose, the Extensible Markup Language (XML) (see Section 3.2.2) has been

141



chosen, and an XML parser incorporated in our implementation. The system implementation thus

makes use of the following development tools:

• Java Development Kit (JDK) 1.2: this JDK is distributed free of charge from Sun Pty. Ltd..

LifeWeb is implemented completely in Java1"1.

• HotServ: a Web server written by Scott Milton, a PhD candidate at the School of Computer

Science and Software Engineering, Monash University. HotServ is written in Java and supports

JavaServlet*"1. LifeWeb servlets can thus be developed and interface between the HotServ Web

server and the LifeWeb engine. HotServ is released free of charge by the courtesy of its author.

• XML4J: An XML (see Section 3.2.2) parser, written in Java, that implements the XML

specifications. This parser is developed and distributed free of charge by IBM Alpha Works Pty.

Ltd. [EBM98]. XML4J also supports the Document Object Model (DOM) (see Section 3.2.3).

Figure 9-1 shows the class hierarchy of the relevant XML4J classes, (hi this figure, for brevity,

all the classes shown without a package name are the XML4J classes in the package

"com.ibm.xml.parser". For example, the full name of class "Child" is

"com.ibm.xml.parser.Child".) The LifeWeb engine is built as an extension of XML4J.

The system is developed and tested on a Pentium PC running Linux RedHat version 5.2.

• java.lang.Object
o Child (implements org.w3c.Node)

• Parent
• DTD {implements org.w3c.DocumentType)
• TXAttribute (implements org.w3c.Attr)
• TXDocument (implements org.w3c.Document)
• "IZElement (implements org.w3c.Element)

• TXCharacterData
• TXText (implements org.w3c.Text)

o Parser

Figure 9-1: Class hierarchy for XML4J (simplified)

9.2 Notation - LifeWeb XML

LifeWeb is a data model with multiple levels of meta-modelling, and each level has to be expressed in

a well-defined notation (see Sections 6.4.1.2 and 6.4.2.2). The first two levels, concrete and genetic,

are defined in Sections 7.1 and 7.2. hi this section the notation for these first two levels is presented.

(Detailed design and notation for higher meta-levels are not within the scope of this thesis).
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<?xml version="1.0" encodings"UTF-8"?>
<!DOCTYPE LifeWeb System="http://lifeweb,org/lifeweb.dtd">
<LifeWeb wid=http: //lif eweb.org/lifewebbook.xinl"
behaviour="LifeWeb">

<table id="ChapIPres" row="l" col="2" behaviour="LWTable"/>
<book id="MyBook" heading="LifeWeb and Life Design"
behaviour="LWBook">

<struct id="Chapl" heading="INTRODUCTION"
present="ChaplPres" behavicur="LWStruct">

<text id="ChapterlTxt*
src ="../mybook/data.htm#intro"
behavi our="LWText"/>

</struct>
<struct id="Chap2" heading="LIFE DESIGN"
behaviour="LWStruet>

<text id="Chap2Txt"
src="../mybook/data.htiti#lifedesign"
behaviour="LWStruct"/>

</struct>
</book>

</LifeWeb>

Figure 9-2 : A simple LifeWeb document represented in XML

At the concrete level, a LifeWeb document essentially holds information describing its own structure,

that is, meta-data. It can thus be expressed in a knowledge description language that supports meta-

data &id nesting structure (to satisfy Life Design's structural constraint), such as Telos [MYL90,

LOU92] or XML (Section 3.2.2). XML is chosen because it is an emerging Web standard that shows

large potentials and is increasingly accepted [BOS97, CON97, TRE98, USD98].

At the genetic level, since XML has been chosen to represent document instances at the concrete

level, it must also be used to describe document schemata, according to the XML specifications.

Thus, at the concrete level, a LifeWeb object is generally represented as an XML element, and a

LifeWeb document an XML document. At the genetic level, a LifeWeb class generally corresponds to

an element, type, and the LifeWeb schema (LWS) a Document Type Definition (DTD). As can be seen

in earlier examples (Section 7.2.2), LifeWeb maps fairly well into XML's syntactic model. (For

convenience, the first example in Section 7.2.2 is reproduced in Figure 9-2). There are three

exceptions to this mapping, and a special support for inheritance:

The Behaviour class

A Behaviour object has no corresponding XML element and the Behaviour class no corresponding

element type. For instance, in Figure 9-2, the element <book id="MyBook"> has an association with

the Behaviour object LWBook (represented by the attribute behaviour="LWBook"), but LWBook is

not defined as an element in the given XML document. This is because LWBook really represents the
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API implementation of the class Book (see Section 7.1), which cannot be represented in a

(declarative) document (such as an XML document in this case). It is noted that objects of other

classes, except for Schema (see below), are all represented as XML elements hi the given document

For instance, the object ChaplPres:Table (Figure 7-3) is represented as the XML element <table

id="ChaplPres"> (Figure 9-2).

The Schema class

An individual XML element often does not contain an explicit association to its Schema object as

prescribed hi the UfeWeb data model (Figure 7-1). In addition, a Schema object does not have a

corresponding XML element, nor does the Schema class have a corresponding element type, and a

Schema object is usually not defined within the XML document where it (the Schema object) is used.

<e xmlns:chem='http://chemistry.org/schema.dtd'>
<chem:molecule>C6H6</chem:molecule>

Figure 9-3: XML namespace

<?xml version="1.0" encodings"UTF
<!DOCTYPE greeting [

<!ELEMENT greeting (#PCDATA)>

<greeting>Hello, world! </greeting>.

Figure 9-4: Internal DTD

The first exception, exists because an XML document contains the <!DOCTYPE> construct that

holds a reference to its main DTD, that is, its main system schema, or mam class genome.36 This

gives every element in the document access to the document's main DTD (system schema or class

genome), as well as its own element type definition (Schema object or class gene), without the need

to explicitly associate each element to its own element type definition. For instance, in Figure 9-2, the

element <book id="MyBook"> can access the document's DTD via the reference

h t t p : / / l i f e w e b . o r g / l i f e w e b . d t d , and its own element type definition via the reference

h t t p : / / i i feweb.org/ l i feweb.dtd#book. In the case of a hybrid XML element, however, the

element is explicitly associated with (qualified by) the DTD that defines its type via the namespace

mechanism (Section 3.2.2). For instance, the element <molecule> in Figure 9-3 is associated with the

DTD h t t p : / / c h e m i s t r y . o r g / schema. d t d via the prefix chem.

34 XML also permits a document without a DTD, called a well-formed document. In this thesis we discuss only

valid XML documents, that is, documents with their own DTDs.

144



The second exception exists because in XML, a Schema object (class gene) is an element type (and

the Schema class is really a meta-class, which cannot be represented as an element type), which is

usually declared in a DTD external to the XML document where it (the element type) is used (see

Sections 7.1 and 7.2.2). Besides, even when a Schema object is declared within the given XML

document, as in the case of an internal DTD (Section 3.2.2), it must be represented as an element type

definition, not an element (Figure 9-4).

The <LifeWeb> element

The <LifeWeb> element corresponds to the document's root element defined hi XML., which

indicates the type of the document being defined and encloses every other element in the document

(see Section 3.2.2).37 This root element does not correspond to any LifeWeb object defined hi the

LifeWeb data model (Figure 7-1), but may be considered semantically equivalent to the document's

object genome, because it represents the set of all elements in the document.

It is noted that a LifeWeb object does not directly contain its material or presentational components;

instead it references these. This enforces the complete separation of the structural aspect from other

aspects of the document

Superclass

It is noted that XML does not support inheritance. We provide for this by the use of a special

attribute superclass known to the LifeWeb system. The value of this attribute is the name of the

superclass. In the current implementation, this superclass attribute is simply used as a shorthand

notation to include inherited attributes hi the subclass instead of an explicit listing of them. Similar to

conventional object-orientation, an inherited attribute may be re-defined at the subclass. For instance,

in Figure 7-6, element type struct inherits all attributes of element type doc, which are id, heading

and behaviour. The value of attribute behaviour, however, is re-defined in struct.

9.3 Class mapping

Except for Behaviour, which represents a class API implementation (and thus is not implemented as a

class), each class comprising the LifeWeb core model (Figure 7-1) is implemented as an equivalent

Java class in the LifeWeb prototype. Some classes hi the extended model (Figure 7-2), and some extra

37 Note that the root element in an XML document is not the root form in Life Design. In Figure 9-2, the root

form is the element <book id="MyBook">.
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classes required in our particular implementation are also implemented. There are five packages in

the system: model, service, processor, dbm (database management) and misc (nuscellaneous).

9.3.1 The model package

Rramjir

Document

Material

Presentation

Hyperlink

Evolution

Service

' LifeWebX\A%S •̂__,

LifeWebObject

N/A

Document

Publication

StructuralComponent

N/A

Material

Text

Image

Presentation

Table

List

Hyperlink

Hypertext

Schema

Evolutor

Service

N/A

Java class

LWObject

LifeWeb

LWDoc

LWPub

LWStruct

LWPageBreak

LWMaterial

LWText

LWImg

LWPresent

LWTable

LWList

LWHLink

LWHText

LWS

LWEvolutor

LWService

LWParameter

Table 9-1: Implemented LifeWeb classes

The model package contains all implemented classes in the LifeWeb core and extended models, plus

three extra classes: LifeWeb, LWPagebreak and LWParameter. The package can be subdivided into

four branches: Document, Material, Presentation, Hyperlink, Evolution, and Service (see Table 9-1).

All classes in this package, except for LWS (Schema), are subclasses of the LWObject

(LifeWebObject) class, which, hi turn, extends the XML4J TXElement class that implements the

Document Object Model (DOM) Element interface (see Figure 9-1, Figure 9-5, and also Section

3.2.3). LifeWeb Schema is a DTD (see Section 9.2), therefore it is implemented as a subclass of the

XML4J DTD class (which is an implementation of the DOM DocumentType interface).
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j ava.lang.Obj ect
o com. ibm-xml.parser.Child

• com.ibm-xml.parser.Parent
• com. ibm-xml. parser. DTD

o au. edu.monash. sd. lifeweb.model .LWS
• com. ibm.xml. parser. TXDocument

o au. edu. monash. sd. li feweb. model. Li f eWeb
• com. ibm.xml. parser. TXElement

o au. edu. monash. sd. 1 i f eweb. model. LWOb j ect
• au.edu.monash.sd.lifeweb.model.LWDoc

• au.edu.monash.sd.1i feweb. model.LWPub
• au.edu.monash.sd.lifeweb.model.LWStruct

• au.edu.monash.sd.lifeweb. model.LWMaterial
• au.edu.monash.sd.1i feweb.model.LWText
• au.edu. monash.sd.lifeweb.model.LWImg

• au.edu.monash.sd.lifeweb.model-LWPresent
• au.edu.monash.sd.1i feweb.model.LWTable
• au.-edu.monash. sd. lif eweb.model .LWList

• au.edu.monash.sd.1i feweb.model.LWHLink
• au.edu.monash.sd.lifeweb.model.LWHText

• au.edu.monash.sd.1i feweb.model.LWEvolutor
• au.edu.monash.sd.lifeweb. model.LWService
• au.edu. monash.sd.1i feweb.model.LWPageBreak
• au.edu.monash.sd.li feweb.model.LWParameter

o com.ibm.xml.parser.Parser
• au.edu.monash.sd.lifeweb.processor.LWParser

o au.com.live.httpd.HttpServlet
• au.edu.monash. sd.1i feweb.processor.Li feWebServlet

• au.edu. monash. sd. 1i feweb.proces sor•CustomServlet
o au.edu.monash.sd.li feweb.dbm.DBLink
o java.util.Hashtable

• au. edu.monash. sd. lif eweb. dbm. DBLinkTable
o au.edu.monash.sd.lifeweb.service.Service

• au.edu. monash. sd. lifeweb. service. ComponentSelector
• au.edu.monash.sd.lifeweb.service.TableFormater,

Figure 9-5: Class hierarchy of LifeWeb (simplified)

The LifeWeb class is derived from the XML4J TXDocument class (Figure 9-5), which is an

implementation of the DOM Document interface (see Section 3.2.3). As explained earlier (Section

9.2), this class is required to represent the whole of a LifeWeb document.

LWPageBreak is needed to provide control over the sequential (page continuation) links. Because an

object gene (Document object) is expected to be compact, it is possible for it to capture a large

structure, potentially the whole Web site. The page break element <pb> gives the author the means to

define physical partitions over the entire Document object, so that data can be rendered in a

reasonable amount at a time.

LWParameter is needed to handle the <parameter> elements, which may be required by external

services (<service> elements) (see Section 9.4.2).
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9.3.2 The service package

The service package contains an abstract class, Service, from which external services must be

derived. For testing purposes, two such external services are implemented and included in this

package. They are: ComponentSelector, to select or deselect a structural component; and

TableFormatter, to put a structural component into a table format.

9.3.3 The processor package

The processor package contains three classes: LWParser, LifeWebServlet and CustomServlet.

LWParser is derived from XML4J Parser (Figure 9-5), and is needed to parse an XML document

into a LifeWeb document of LifeWeb elements (see Section 9.4.1 below). LifeWebServlet and

CustomServlet are derived from HttpServlet (defined by the JavaServlettm technology), and are

needed to communicate between the Web server and the LifeWeb engine (see Section 9.4.1 below).

9.3.4 The dbm package

The dbm package, which contains a class DBLinkTable and an interface DBLink, provides database

support to implement a linkbase for maintaining referential integrity (see also Section 9.5.2).

9.3.5 The misc package

The misc package contains other classes that provide some utilities or implement some design

patterns. These classes are considered implementation details and not listed in this thesis.

Figure 9-5 shows the class hierarchy of the relevant classes in the LifeWeb implementation.

9.4 System architecture

This section describes the architecture of the system in three levels: basic, customisable, and

evolvable.

9.4.1 Basic level

The LifeWeb system is implemented as a set of Java classes and servlets. The LifeWebServlet

connects between the Web server and the LifeWeb engine. A request from the client for a LifeWeb

document received by the Web server is sent to the LifeWebServlet, which loads the appropriate

document, and passes it on to the LWParser for necessary processing.

148



Conceptually the processing of LifeWeb elements is done in a manner similar to the well-established

theory of translation scheme known from compiler construction [AHO88]. As has been explained

before (Section 5.2.2), the document component hierarchy is very similar to a parse tree where the

materials associated to a document component are the terminals (leaves) of such a tree. A document

node itself manifests a production rule expressing the sequential composition of the document from

its next lower-level components. As the parser visits a node while traversing the document tree, it

fires off the functions that process that node. In this sense, these functions implement the "semantic

rules" associated with the production being used at that node. In the context of document processing,

these "semantic rules" are the "processing rules" for that document level.

In the current prototype these functions arc implemented as a set of methods with the same name,

handleElement(), defined in XML4J ElementHandler interface, for each LWObject class in the

UfeWeb engine. All LifeWeb elements are processed by ElementHandlers. Additional

ElementHandlers can also be registered to the LWParser before the document is read. Our system has

three groups of ElementHandlers. The ContentHandlers are responsible for loading the contents and

inserting hyperlinks into the document, the StructureHandlers for layout and ordering structural

components; and the PresentationHandlers, which are registered to the StructureHandlers, for

formatting structural components before they are returned to the LifeWebServlet. LifeWeb also

automatically generates structural and navigational links (such as table of contents or index, forward

and backward) based on the structural and page break elements in the document. The fully filled-in

and formatted document is finally returned back to the servlet to be written back to the client. Figure

9-6 depicts the basic system architecture.

It is noted that as elements are processed in a certain order while the document is being parsed, it is

necessary that associated elements be defined before they are being referenced. For example,

Presentation elements must be defined before the associating StructuralComponent elements. For

instance, in Figure 9-2, the <table id="ChaplPres"> element is declared before the associating

<struct id="Chapl"> element.
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Figure 9-6 : Life Web system architecture (basic level)

9.4.2 Customisable level

Customisation has two flavours in LifeWeb, stateful and stateless.38 Stateful customisation are saved

in a client Document object (object gene) and will remain in successive invocations of the same

document by the same client. Stateless customisations are not saved and will be destroyed when the

HTTP connection to that client is closed. As write access is generally not allowed to client machines,

in the current implementation, a directory in the file system of the server machine is reserved for

storing client sites, subdivided into subdirectories, one for each client.

Customisation is handled on the basis of structural units {Document or StructuralComponent objects)

in LifeWeb. According to Figure 7-1, such a unit can be associated with zero, one or several Service

objects. These Service objects can be deployed to provide customisation. Customisation is handled in

a way similar to the processing of a LifeWeb document at the basic level, where Service objects

perform the role of ElementHandlers. Different from an ElementHandler, however, which defines a

static method internal to a LifeWeb class {handleElementQ), a Service object is an external and

complete functional unit, dynamically created and bound to a LifeWeb object. This dynamic creation

and binding is done via an intermediate <service> element internal to the LifeWeb engine (shown as

the box with the label "LWService" in Figure 9-8). A <service> element is the XML representation

of the (executable) corresponding Service object (shown as the box with the label "Service" in Figure

9-8). Such a <service> element and can be directly (hard) coded into the LifeWeb Document object or

dynamically created by the CustomServlet. In the latter case, the document can be dynamically

customised. The explanations below concern dynamic customisation, which also cover the static one.
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CustomServlet

CustomServlet is a class derived from LifeWebServlet (Figure 9-6). It has extra features of being able

to receive specific customisation requests from the user, create and save the corresponding <service>

and other elements as appropriate (see below). These changes can be saved either to a specific client

Document object (stateral customisation) or a temporary Document object (stateless customisation),

as requested by the user. When a request for the document is received, the CustomServlet will pass

the modified Document object (with the added <service> and other required elements) to the

LWParser to be processed in the same fashion as described at the basic level (see Section 9.4.1). This

time, however, all LifeWeb elements (LWObject objects), except for the <service> elements

themselves, will be "served" by the <service> elements (representations of Service objects) first

before they are handled by the ElementHandlers.

Service

<service id="TableFormatter93856721023"
serviceClassName="TableFormatter" appliedClassName="struct">

<parameter name="idrefs" value="table28909823412"/>
<parameter name="view" value="user"/>

</service>,

Figure 9-7 : A <service> element

Figure 9-7 shows the example of a <service> element. It encapsulates a reference to the

implementation of the (external) service, that is, the full class name of the external service

(serviceClassName attribute), the name of the element type onto which the service is applied

(appliedClassName attribute), and a list of parameters required by each particular service

(<parameter> elements). A <service> element is usually generated by the CustomServlet (in dynamic

customisation), or may be manually created (in static customisation). In this particular example, this

service will put in a table format all structural components {appliedClassName=iy struct") whose

attribute view is equal to user. The specifications for such a format is defined in the <table

id="table28909823412"> element. This <table> element (not shown in Figure 9-7) is also

dynamically generated by the CustomServlet (in dynamic customisation), or supplied (hard-coded) by

the author (in static customisation).

38 Also commonly referred to as persistent and non-persistent.
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Figure 9-8: LifeWeb system architecture (customisable level)

During parsing, the ElementHandler for <service> elements dynamic ally instantiates Service objects

(with the specified serviceClassName), creates the corresponding parameter lists for them, and

registers them to the LifeWeb Document object. The Service object will then be invoked to serve the

elements whose type matches the one captured in the appUedCJassName attribute, when these

elements are encountered while the document is being parsed. As Service objects must be created

before they are used to serve other objects, their corresponding <service> elements must also be

declared upfront in the LifeWeb document. Figure 9-8 depicts the architecture for the customisable

system, hi this figure all the ElementHandlers and LifeWeb elements, except for the one concerning

the LWService element, have been simplified (shrunk down to two blocks), and the LifeWebServlet is

not shown.

9.4.3 Evolvable level

Implementation of evolvability requires that the system has the capacity (i) to modify an evolving

entity, that is, in the case of LifeWeb, a document instance (at the concrete level) or a LWS (at the

genetic level); and (ii) to propagate changes from lower (concrete) to higher (genetic) meta-levels.

This section explains the system's capacity in these aspects, and also how the evolutionary process

can be automated.

9.4.3.1 Modifications to an evolving entity

To a document instance (concrete level)

Changes to a document, both client and server, is only required to be done declaratively to the

document's object genome, that is, its XML source code. Such changes can be performed by the self-
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modification genetic functions (see Section 6.4.2.4.3), and written directly onto the XML code. These

are simple changes, either to attribute values or links between objects.

To a LWS (genetic level)

A change to a LWS must be done to both the declarative object (that is, the LWS's object genome or

DTD source code) and the UfeWeb runtime system. This means that (i) such a change must be

appropriately declared in the LWS's source code; and (ii) the relevant class(es) must be integrated

into the runtime system, preferably dynamically (without bringing the system down).

In our prototype system, the first requirement is carried out by the self-modification genetic functions

(applicable to the LWS object) in the same way as it is done at the concrete level (see above). The

second requirement is supported by the Java dynamic class instantiation [DEI98, JDKOO] and

LifeWeb dynamic class registration features. Using these features, information about LWObject

classes is retrieved from the LWS object, which includes the full class names (captured in the

behaviour attribute), and the corresponding element type names. This information is then used to

dynamically instantiate the respective classes and register them to the LWParser. Objects of

registered classes can then be processed by the LWParser, ElementHandler, and Service objects as

appropriate. Thus, if the LWS has been declaratively changed (for instance, a new element type has

been added), the change will be automatically accommodated into the runtime system (the

corresponding class is instantiated and registered). Both of these changes can be done dynamically in

our prototype system.

9.4.3.2 Change propagation

In a LifeWeb document, each element is a life form (Section 7.2), which can be made evolvable by

associating it with an <evolutor> element. Changes are propagated across meta-levels by these

<evolutor> elements, instances of the LWEvolutor class that implements an evolutionary engine (see

Sections 6.4.2.4.4 and 7.1). Figure 9-9 shows the XML declaration of a LifeWeb element (<table

id="table2342198745">) and its associated evolutor. In this example, the evolutor has two parts: the

outer one (id="objectEvolutor") carries the minSize and minRate factors of the object evolutionary

threshold (concrete level), and the inner one (id="geneticEvolutor") carries the factors of the genetic

evolutionary threshold (Sections 8.1 and 8.5.1), In each of the thresholds, the positive values denote

the thresholds for adding a link to, and the negative ones for removing a link from, another element

(subform), respectively. This means, in Figure 9-9, if the element <table id="table2342198745"> is

found custom associated with, for instance, a given structural component S in a server document D in

90 percent or more of the total client documents of D, and the total number of client documents of D

is greater than or equal 200, then 5 will be permanently associated with the element <table
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id="table2342198745"> in the server document D. Conversely, if <table id="table2342198745"> is

found custom de-associated with S in 80 percent or more of the total client documents of D, and the

total number of client documents of D is greater than or equal to 200, then 5 will be permanently de-

associated with element <table id="table2342198745"> in tiie server document D.

<evolutor id="objectEvoiutor"
minSize="200 -200" minRate="0.9 -0.8">

<evolutor id="geneticEvolutor"
minSize="500 -500" minRate="1.0 -1.0"

</evolutor>
</evolutor>

<table id="table2342198745" headings "Table 1"
row="2" column="2" delimitor="struct"
evolutor="obj ectEvolutor"

Figure 9-9 : Evolutor element (represented in XML)

Since evolution in LifeWeb happens as a result of accumulated customisation changes, it always

occurs in conjunction with customisation, that is, when a customisation operation is encountered, or a

Service object is invoked. In the current prototype, therefore, a Service object (after making changes

to the relevant components) directly invokes the LWEvolutor object (if present) of the added or

removed component. The LWEvolutor object then inspects and detects if the same change has

happened at other client Document objects for the same server Document object (or other server

Document objects for the same LWS39) over the entire Web site. If an evolutionary threshold has been

reached, the LWEvolutor object will register the change at the appropriate level (using the self-

modification genetic functions described in Section 9.4.3.1). The architecture for the evolvable

system is shown in Figure 9-10.

39 The propagation of changes from the concrete to the genetic levels is not yet implemented in the current

prototype.
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9.5 Referential integrity

Peferential integrity in the Web is a large issue and an independent field for study, and it is not

within the scope of this thesis to carry out a comprehensive research in this area. LifeWeb thus does

not aim to provide a complete solution to this problem, but seeks to alleviate the problem by its

specific data model design. In particular, we are primarily concerned with referential integrity over a

local system40 only, that is, referential integrity in a system over which a LifeWeb server has control

(at least read and write permissions). Referential integrity across LifeWeb servers is only dealt with in

as far as data modelling is concerned. This section describes the design and implementation of the

LifeWeb Hyperlink class, and explains how referential integrity can be improved in the system.

9.5.1 LifeWeb Hyperlink class

According to the LifeWeb data model (Figure 7-1) and its XML representation (Section 9.2), LifeWeb

hyperlinks are stored within a document as separate XML elements, identified locally by a document-

wide unique id, and globally by this id prefixed by the document's id (currently URL). Hyperlink is a

LifeWeb class encapsulating the source from which the link eminates, a destination to which the link

terminates, and a scope to specify how wide and/or how deep the link is defined.41 Figure 9-11 shows

40 T h e not ion of local system here may not necessarily be restricted to one file system, bu t such a system must be

fully under control of a given LifeWeb server.

41 F o r simplicity, we include only attributes directly relevant to referential integrity.
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an example of a Hypertext element <htext id="oo">, which is a child node of the

StructuralComponent element <struct id="chapterl">.

The source attribute

The source attribute specifies the "hotspot" within the document upon which a user can "click and

jump", for example a text span or an image (button). In the terms used by Hugh Davis [DAV98a], the

source specifies the content reference part of the link. The source, together with the scope attribute,

permits the use of generic hyperlink, which is explained below.42

<struct id="chapter1" heading="CHAPTER 1">
<htext id="oo"

source=°object-oriented"
destination="http://www.oo.org"
scope="global"

/>
<struct id=ssectionl.1"

</struct>
</struct>.

Figure 9-11: A Hypertext <htext> element

The destination attribute

The destination attribute specifies the URL of the node to which the source is linked, hi the terms

used by Hugh Davis [DAV98a], the destination specifies the node part of the link.

The scope attribute

Scope allows hyperlinks to be generic, where one declaration of a Hyperlink element can be applied

at one or more places, or recursively in the document tree. It specifies the exact place or places where

the hotspots are in the document contents. In the current implementation the set of valid values for

scope are:

• "global": starting from the parent node of the (current) Hyperlink element and recursively down

to all child nodes of that node, all occurrences of the content reference specified in the source

will appear as hyperlinks. In the example shown in Figure 9-11, all occurrences of the text

"object-oriented" in "chapterl", including all its subsections, shall be linked to the node specified

in the destination attribute.

42 It may be noted that theoretically the source can also be specified in terms of a region of an image (the

equivalence of IMAGEMAP in HTML), possibly using some offsetting technique. For simplicity, this is

currently not implemented in our prototype.
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• "local": similar to global, but without the recursion. A local hyperlink has effect only if the

parent node of the link has its own contents, that is, it has at least one material node as its

immediate child.

• "self": the hyperlink is self-contained. The system will create a new hyperlink with the content

reference specified in the source and link it to the node specified in the destination. By default

the hyperlink will appear at the bottom of the contents of link's the parent node, although this

may be customised by a presentation element A self hyperlink is similar to a HTML hyperlink in

that both the content reference and the node are tied together in one place (i.e. hi the Hyperlink

element), so that all the information needed to render the link is "right there" and there is no need

to resolve the content reference. The difference, however, is that a se/f hyperlink is a globally

identifiable object, and can be stored in a link database to support the maintenance of referential

integrity (see Section 9.5.2 below).

• A specific number or a range of numbers: these numbers represent some offsetting method to

specify the position(s) of the hotspot(s) within the whole (recursive) contents of the parent node

of the link. In Figure 9-11 for example, if the scope is equal to "5", a hyperlink will be inserted at

the fifth occurrence of the text "object-oriented" in "chapter!". If instead it is equal to "3-5",

three hyperlinks will be inserted ^t the third, fourth and fifth occurrences of the text "object-

oriented" in "chapter 1".

In summary, the object-oriented design of UfeWeb allows hyperlinks to be encapsulated as separate

objects, external to content data, and to make them bi-directional and generic. This approach

improves upon the link integrity and embedded link problems in HTML (see Sections 2.2.1.2 and

2.2.2.5), although at the cost of added complexity due to the need to maintain content references (see

Section 9.5.2.1.2), and to resolve and generate Hyperlink elements (see albo Section 9.5.2.1.1).

Another advantage of this approach is that authoring and maintenance costs can also be considerably

reduced with the use of generic links.

9.5.2 Enhancing referential integrity

Referential integrity vAthin a LifeWeb server can be ensured using the technique of local link

management. Referential integrity across LifeWeb servers may be enhanced by the dynamic link

binding technique. Both of these techniques are explained below.

157



9.5.2.1 Local link management

This technique operates only within a given LifeWeb server (local system). As pointed out by

[DAV98a], there are two potential problems with hyperlinks:

• Dangling link problem: when the system fails to resolve the destination to a valid node. This

problem occurs when the destination node can no longer be accessed (for example, because it has

been moved)

• Content reference problem: when the system fails to resolve the source to the correct hotspot(s).

This problem can happen only when the position of the hotspot is specified external to the data

content (which is the case of LifeWeb and the systems mentioned above). When the data content

is edited the reference may no longer be correct. In LifeWeb, this may happen if the scope

attribute holds an offset value (see Section 9.5.1).

9.5.2.1.1 The dangling link problem

Because hyperlinks are encapsulated objects, separated from content data, it is possible to maintain

them in a central link database (called lirikbose). In the LifeWeb prototype, a link table is

implemented to hold the identifiers (currently URLs) of the source and destination objects. This is

supported by a built-in lightweight database. All insertions, deletions and movements of LifeWeb

objects done under the control of the system (for instance, via a tool such as the UfeWebManager

described in Section 9.743) can be checked and synchronised to maintain link integrity.

By taking such an approach (external link), LifeWeb offers similar link service to some Open

Hypermedia Systems (OHSs) such as HyperWave [HYPOO], HyperDisco [WII96], Microcosm

[DAV93], or by Ashman and Verbyla [ASH93]. It is perhaps potentially more efficient than these

systems in this regard. This is because it stores hyperlink elements within the document, and the

resolution and generation of these elements are done generally only once44 when the document (or a

page) is loaded, by methods internal to the LifeWeb document system itself (see Section 9.4.1). On

the contrary, the other systems store hyperlinks hi external linkbases only, and each link traversal

43 This feature is not yet implemented in the current version of UfeWebManager, but already supported b y the

LifeWeb engine.

44 This excepts when some change breaks a link (already resolved and generated) while the document is being

viewed at the client site. If such a broken link is invoked, it will b e necessary to regenerate the l ink from the

original LifeWeb X M L document. (It is noted that link integrity in the original document can b e always

maintained like records in a database).
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incurs database transaction overheads [DAV98a]. In addition, the UfeWeb linkbase can be

implemented as a simple lookup table (the actual objects are stored in the document itself), and there

is no need for a commercial database support as in the other systems.

9.5.2.1.2 The content reference problem

Since hyperlink resolution is natively provided by LifeWeb, it is comprehensibly relatively simple to

design a "link-aware tool" that is discussed by Hugh David [DAV98a] or implemented in HyperG

[AND95]. Generally, this is an editing tool (such as the material processing application or text editor

mentioned at the end of Section 9.7), which understands the LifeWeb syntax. Hyperlink elements can

therefore be resolved, displayed and freely edited with the data contents while content references are

maintained. For instance, if the data contents are changed hi such a way that the change affects an

offset value used in the scope attribute (see Section 9.5.1), the value can be updated automatically, or

at least the author informed of the possible impact45 It is not within the scope of this thesis to design

or implement this tool.

9.5.2.2 Dynamic link binding

The dangling link problem is most difficult to resolve across systems or servers. This is because

updating all linked resources when a document is moved is notoriously expensive. As has been

mentioned before (Section 9.5), it is not within the scope of this project to find a comprehensive

solution to this problem. We do, however, provide dynamic link binding in our implementation as an

optional way to alleviate it. Using this technique, hyperlinks can be optionally checked for validity

before being inserted into the document contents and rendered at the client agent. This technique is

possible and simple to implement in LifeWeb due to its specific object-oriented design, where

hyperlinks are encapsulated objects (elements), which "know" how to resolve (and validate)

themselves.

Dynamic link validation is a trade-off between link integrity and performance. In the current LifeWeb

implementation, while a valid link generally does not take a noticeable amount of time to validate, an

invalid one can cause considerable delay. The likelihood of invalid links during runtime, however,

can be reduced by using a tool, such as the LifeWebManager described hi Section 9.7, to check link

integrity during design time. Another limitation is that if a Web resource is moved between two

4S If a document is being edited by multiple authors, such a tool should also implement necessary features such

as concurrency control. It is not within the scope of this thesis however, to discuss these features.
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dynamic link validation operations, there will be a time interval in which the link is not valid. The

likelihood of this happening however is comprehensibly very small.

9.6 Resource discovery

A LifeWeb document, or the document's object genome (see Sections 7.2 and 9.2), essentially

contains only information describing itself, or "meta-data". It can thus be deployed by a user agent to

facilitate resource discovery, similar to other meta-data schemes, such as Dublin Core (DC) or

Resource Description Framework (RDF) (see Section 3.3). For instance, a StructuralComponent

object has the attribute heading, which can be used in a search by keyword, or a Publication object

has the attribute author, which can be used in a search by author. If necessary, a searchable entity, for

instance, author, can be described in more details as shown in Figure 9-12 below:

<pub

author=

</pub>

<author

<author

ID="ooBook'

"Rumbaugh,

title='

Blaha">

ID="Rumbaugh" email='

ID="Blaha"

'Object-Oriented Software Design"

'rumbaugh©omg.com"/>

email="blaha@omg.com"/> <

Figure 9-12: Using attributes of LifeWeb elements as meta-data

The design of the LifeWeb DTD (data model) however, does not have a primary focus on facilitating

resource discovery. For instance, the element type <author> in the above example can be defined

another DTD, possibly one specialised in facilitating resource discovery, and imported into a LifeWeb

document via the XML namespace mechanism (see Section 3.2.2). In addition, extensive work in this

area (resource discovery) has been done (see Section 3.3), and most of it can be integrated into

LifeWeb (for instance, RDF and DC).

9.7LifeWebManagen A LifeWeb appiication

The design of LifeWeb allows for LifeWeb objects to be created and managed in a simple "drag-and-

drop" paradigm. Based on this idea, we have designed a LifeWeb application called LifeWebManager,

and with permission of the school, a prototype for it was developed at Monash University by a group

of third-year computing students, as an Industrial Experience project. LifeWebManager allows the
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management and maintenance of a LifeWeb document on (only) three aspects: structure, content

(material), and presentation.46 Figure 9-13 shows a user interface of the application, which is built on

top of the LifeWeh engine. It is designed to be similar to the Windows File Manager. The

LifeWebManager has two views, Material and Presentation. In each view, the Avindow always has

two parts, one containing objects of the Document branch, and the other objects of the Material

branch or Presentation branch (see Figure 5-1).
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Figure 9-13: LifeWebManager - Material View

In the Material View (Figure 9-13) for instance, the Document part shows the structure of (part of) a

Document object, which is very similar to that of a DOS or UNIX file system. The Material part

shows the "raw materials" (actual files) as they are physically located in the authoring file system. In

the Presentation View (not shown), the Presentation part show the available Presentation objects,

which can be associated with objects in the Document part. Generally, an object may be dragged and

dropped onto another one to create an aggregation or association link (including hyperlink) between

them. For instance, dragging and dropping a Material object onto a Document object creates an

aggregation link; and dragging and dropping a Document object onto another one creates a hyperlink

between the two. Object properties can be displayed and edited in a popup window, and hyperlinks

can be validated by the LifeWeb engine. LifeWebManager generates an XML file based on the

information visually presented.

46 For simplicity, the management and maintenance of objects of other types such as Service and Evolutor are not

covered in LifeWebManager.
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We note that UfeWebManager supports the management and maintenance of LifeWeb documents on

a component (object) basis only. In particular, the lowest level of granularity consists of objects

whose classes are atomic life forms (see Sections 6.4,2.1.2 and 7.2) such as Material or Presentation

(see Section 5.2.2).47 It is unaware of, for instance, the "raw materials" contained inside a Material

object, and editing to these "raw materials" must be passed to an appropriate processing application,

such as a text editor. The design and development of such processing application and the processing

of such "raw materials" are outside the scope of this thesis.

47 By software engineering principles, modularisation and/or component-based processing are actually

advantages of LifeWeb. That is, the "limitation" mentioned here is not considered a disadvantage of the system.
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Chapter 10 Conclusion

The phenomenal growth of tbe Web in a very short time has resulted in many deployment problems

that stem from inadequate system design (see Section 2.2). Such growth requires that there should be

a data model for the Web that can capture its dynamic characteristics and cope with future changes.

In Chapter 3, our review shows that the existing Web data models do not satisfy this requirement; in

particular, the problems of adaptability and evolvability of the Web are not yet addressed. For this

reason, we have constructed and implemented LifeWeb, a data model for the Web document system,

which addresses a range of deployment issues of the Web, including adaptability and evolvability.

LifeWeb does this by tackling these issues directly at the Web's fundamental design level. The

deployment problems that LifeWeb has addressed are: data management and maintenance, document

design and authoring, customisability, adaptability and evolvability, referential integrity and resource

discovery. The associated design problems that have been undertaken are: data structure, document

properties, lack of functional behaviour, statelessness, extensibility, evolvability, meta-data, and

embedded hyperlinks.

Our approach to deal with the adaptability and evolvability issues is based on our review of system

evolution (see Chapter 4), and our observations about biological life and its use in computer science

as an analogy (see Chapter 6). We have chosen to use biological metaphors to establish Life Design,

an object-oriented design methodology for constructing evolvable systems. LifeWeb obtains its
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capacity to solve the adaptability and evolvability problems by implementing this Life Design. The

wide range and the nature of the issues addressed by LifeWeb show the strength of the approach it has

taken, which includes data modelling, object-orientation, and biological metaphors. These three

technologies form the underlying philosophy for solving the research questions proposed in this

thesis, and are what make LifeWeb achieve what it has.

10.1 Achievements of thesis

The achievements of this thesis are included in the successful application of data modelling, object-

orientation and biological metaphors to establish Life Design and construct LifeWeb, a system that

has the potential to solve or alleviate the Web's problems mentioned in the previous section,

especially adaptability and evolvability, which have not been addressed.

In terms of data management and maintenance,, and document design and authoring, a LifeWeb

document can be designed, managed and maintained on the basis of any class that is associated with,

or a part of, the Document class. In the current LifeWeb data model, these classes are:

StructuralComponent, Material, Presentation, Hyperlink, Schema, Behaviour, Service, and Evolutor

(including their subclasses).48 In addition, the system can automatically generate navigational and

structural links during runtime, effectively eliminating large maintenance costs (see Sections 7.1,

7.2.5.1, 9.4.1 and 9.7). The particular design features that have brought LifeWeb these advantages are

data structure and document properties. Such features allow LifeWeb to capture the document

structure and separate the different document properties found in traditional document systems (see

Sections 5.2.1,5.2.2 and 7.1).

In terms of customisability, a LifeWeb document can be customised (statically or dynanycaly) on the

basis of any class that is associated with, or a part of, the Document class, where such a relationship

(association and composition) defines a flexible link at the lower (concrete) level. In the current

LifeWeb data model, these classes are: StructuralComponent, Material, Presentation, Hyperlink, and

Service (including their subclasses) (see Sections 7.1, 7.2.5.1, 7.2.5.2, 8.2 and 9.4.2). A document

element whose type is one of these classes can be added to or removed from its respective document

Such a change essentially alters the document's structure, content, presentation, navigational path, or

the way it is customised. Because the separation of document properties makes a LifeWeb document

48 The first four classes (structure, content, presentation and hyperlinks) represent the most common aspects

(from an author's perspective) for document design, maintenance and management. Only these are implemented

in our LifeWeb application, LifeWebManager (see Section 9.7).
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compact, customised documents, which are client documents, can be wholly distributed at client sites.

This allows for customisation information to be maintained (persistent) across Web sessions for

individual users, and statelessness, one of the design issues of the Web, overcome (see Sections 5.2.2

and 7.2.3).

hi terms of adaptability and evolvability, LifeWeb is the only Web data model we know that can adapt

and evolve (including extend) itself systematically. LifeWeb evolution, designed after Darwinian

evolution, occurs over populations of (customised) client documents mentioned above. Such

evolution makes it possible for LifeWeb to adapt itself to user needs in a systematic, gradual and

incremental manner through successive (low to high) meta-modelling levels. By applying object-

orientation, such evolution means that in LifeWeb, new document types (DTDs) as well as their

related tools and software can be derived from existing ones, which increases reusability,

manageability, maintainability and extensibility. The Java implementation of LifeWeb permits

automatic evolution of the system, where classes and DTDs can be dynamically added to or removed

from the runtime system (see Section 9.4.3). The LifeWeb evolutionary model gives rise to a system

which is scalable, interoperable and open (to accept public contributions for its development) (see

Section 8.9).

In terms of referential integrity, our project only attempts to alleviate this problem and does not aim

to offer a comprehensive solution. Within this scope, by eliminating embedded links (a directly

related design problem) and encapsulating them in objects, separate from the document contents, a

LifeWeb server can maintain link integrity within itself. Links across servers can be optionally

validated and broken ones eliminated before document rendering (see Section 9.5).

In terms of resource discovery, a LifeWeb document contains information describing itself, which is

essentially meta-data that can be deployed by other systems such as search engines or robots to help

users locate the desired resources (see Section 9.6).

The system closest to LifeWeb that we are aware of is HyperWave, described in Section 3.2.1. The

most important difference between the two systems is that HyperWave does not deal with

adaptability and evolvability. Some characteristics of the Document Class introduced in the latest

release of HyperWave49 are similar to those of a class gene in Life Design (see Section 6.4.2.2). Here,

the Document Class and a class gene both generate persistent instances, and can both serve as bases

upon which new classes or class gtnes can be derived. The notion of class gene however, is fully

developed into a system design methodology in our research, whilst the HyperWave's Document

49 This release was in November 1999, which post-dated our publication about LifeWeb (1998) [NGU98b].
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Class is simply a way to accommodate some special document types. LifeWeb manageability,

maintainability and customisability, inherent from evolvability, are also carried out in the context of a

richer and meaningfully evolving modeL (For example, presentational management or customisation

in HyperWave is fairly limited and cannot automatically evolve with changes in the data model.)

Customisation in LifeWeb is fully supported in the sense that all server documents can be customised

for each user by the distribution of object genes. (In contrast, HyperWave permits only one Home

Collection per user.) (See Sections 3.2.1 and 7.2.3.)

In comparison to other Web data models such as the service-centred ones reviewed in Section 3.1,

LifeWeb also has extra advantages. The most important one is inherent in its document-centred

approach, in which LifeWeb can map its data model to that implied in the Web document system.

Thus it is less affected when the Web infrastructure is changed, and can even directly address the

design issues of the Web.

We claim that our technology improves on the Web manageability, maintainability and

customisability over existing Web data models, and lays a foundation for Web adaptability and

evolvability.

10.2 Limitations of thesis

A LifeWeb document can be manipulated (designed, managed, maintained and changed) on a

component basis only. For example, the system is not aware of (and cannot manipulate) the character-

level formatting of the "raw material" of a document, such as the font setting of one or a set of

characters or words that does not by itself form a LifeWeb element. Although this places a restriction

on the level of granularity that the system can handle, in terms of software engineering principles,

component-based processing (or modularisation) is both an advantage and a required feature of

quality software.

There are some implementation limitations. An important one is that in LifeWeb evolution, the

propagation of change from the instance to the schema levels requires that an instance (for example, a

document) be able to trigger a write operation to its schema (for example, the document's DTD). In

addition, a schema must "know" about the population of its instances in order to assess whether an

evolutionary threshold has been reached (for a particular evolving feature). With regard to the first

issue, for simplicity, our current system can support change propagation from an instance to its

schema if they both reside on the same machine, but not otherwise. One possible way to overcome

this limitation is to use distributed object technology such as CORBA [BEN95, MOW97] or DCOM

[RED97] to provide support for communication between objects in a distributed network. The second

issue may be resolved by having all documents register themselves to their main DTDs, or by having

166



a DTD log all documents that use i t This may involve drafting a policy effective in the whole Web

and thus requires a global effort and a separate project

Other implementation limitations include the direct (hard) coding of some features such as the

numbering schemes or layout of structural components. These limitations however, are for simplicity,

and can be easily overcome if required. For example, it is possible to develop a set of classes to

handle different numbering schemes or layout (These new classes can then also be added

dynamically as part of the system evolutionary process.)

10.3 Future work

There is an abundant amount of work yet to be done for the future of our project The most immediate

need is perhaps to carry out an empirical study for UfeWeb, especially to test its evolvability in the

real environment Such a study requires first of all that the implementation limitations above be

overcome. Some industrial and practical requirements, such as security and performance, may need to

be considered and supported in the system prototype. Secondly, a UfeWeb come data model must be

accepted by the Web community, or a group of pioneer Web developers, who will also contribute

new element types, document types, or service types to its evolution. Experiments can then be carried

out at a number of sample Web sites. This is a large project which requires not only technical

soundness but also skills in organising, administrating, co-ordinating, and fund-raising.

Local evolution (that is, evolution in the domain of a specific Web site), which has not been

considered in our thesis, is a meaningful topic for further investigation in LifeWeb (see Section 8.4.2).

Because Web sites may serve different communities with differing needs, their evolutions may

diverge towards different directions, and the interactions between them can be quite complicated

"When local evolution is considered, a document type or species may even reverse back to its original

form. For example, a locally favoured element type that leads to the formation of a new document

type in one community may be disgraced hi another, so that the new document type, when imported

to be used in the other community, will eventually regress. Local and global evolution has been an

active research topic, especially in the field of artificial intelligence. Interested readers are directed to

this literature, in particular, evolutionary computing and neural network [KUKOO].

Another area that may eventually need to be considered is evolution at higher meta-modelling levels.

If automatic evolution is required at these levels, we will need formal design and notations fcr the

evolutionary entities (life forms, genes and genomes) there. Researchers in this area will find much

input from, and possibly also interaction to, work done in the meta-modelling and meta-architecture

literature [GIU96, JAR98, MAE88], especially UML [UML98] and XML-Schema [XSCOO], the

emerging standards in the object-orientation and Web fields,
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The evolutionary threshold, which plays a critical role in the LifeWeb evolutionary process (see

Section 8.5), is yet another interesting and necessary topic to be studied in the LifeWeb evolutionary

model. Empirical researches may be done to work out appropriate threshold values for different

evolving features, or categories of evolving features, and/or environments. Such values may even be

adaptively computed during the evolutionary process, which perhaps necessitates an in-depth study in

artificial intelligence, adaptive and evolutionary computing.

It is also highly desirable that work to be done in LifeWeb is targeted at satisfying the more

sophisticated industrial requirements from the Web community, such as enriching the linking model,

maintaining referential integrity across server boundaries, and improving the presentational model

(which has been intentionally simplified in our project). Much work has been done in these areas in

the Web and Open Hypermedia System (OHS) communities, especially in the XML suite. Interested

readers are referred to the OHS literature [DAV93, DAV94, DAV98a, DEX94, ASH93, ASH94,

VER94, NUN99] or the Web and XML literature [CSS98, XLKOO, XPTOO, XSLOO]. Because XML

is in the current development trend of the Web, and LifeWeb has used XML to represent its data

model, integrating LifeWeb with the XML technology is both strongly desirable and highly feasible.
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