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Abstract

Anomaly detection has wide variations in problem formulations, which demand different

analytical approaches. Despite the ever-increasing attention and resources devoted to the

area of anomaly detection, some challenges are not supported by the existing frameworks

and algorithms. This thesis reduces this gap by introducing three new algorithms for

anomaly detection with special reference to their capabilities, competitive features and

target applications.

This thesis offers four fundamental contributions. First, it proposes an improved algorithm

for anomaly detection in high-dimensional data. It outperforms the state-of-the-art methods

in many examples in terms of both accuracy and computational efficiency, while retaining

a valid probabilistic interpretation for the anomalous threshold. Further, many existing

algorithms have been specifically developed for the batch scenario, where it is assumed

that all available data have been collected prior to analysis. However, with the recent

rapid advances in data collection technology, streaming data are now becoming increasingly

important and pose various challenges due to nonstationarity, noisy signals, large volume,

high velocity, incomplete events and online support. To meet these challenges, as a

second contribution, the thesis proposes another algorithm that provides early detection of

anomalies within a large collection of streaming time series data. This algorithm includes

a novel approach that adapts to nonstationarity. Third, it proposes a new algorithm to

detect anomalies, caused by technical issues, in water-quality data from in situ sensors.

Fourth, with the aim of facilitating reproducible research, the first, second and third

algorithms are implemented in three open source R packages: stray, oddstream and

oddwater, respectively. Using various synthetic and real datasets, this thesis demonstrates

the wide applicability and usefulness of the three algorithms.
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In stray, an anomaly is defined as an observation that deviates markedly from the majority

with a large distance gap. This improved unsupervised algorithm for high-dimensional data

is based on distance measures and the extreme value theory. In oddstream, an anomaly

is defined as an observation that is very unlikely, given the recent distribution of a given

system. In this algorithm, a boundary for the system’s typical behaviour is calculated

using the extreme value theory. Then, a sliding window is used to test newly arrived data.

The model uses time series features as inputs and a density-based comparison to locate

nonstationarity. Oddwater involves an application where anomaly detection is performed

using turbidity, conductivity and river level data collected from rivers flowing into the

Great Barrier Reef lagoon, Australia.

The algorithm, stray, which is specially designed for high-dimensional data, addresses

the limitations of the state-of-art-method, the HDoutliers algorithm. Using various

applications, this thesis demonstrates how stray can be used to detect anomalies in

other data types, such as temporal data and streaming data. Applications of oddstream

with data obtained using fibre optic cables showed that the framework has the ability

to provide early detection of anomalies in large streaming nonstationary data. Oddwater

successfully identified abrupt changes caused by technical outliers in water-quality sensors,

while maintaining very low false detection rates.
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Chapter 1

Introduction

Anomaly detection is an important research topic that has been explored within diverse

research areas and application domains. The presence of anomalies in data can lead to

biased parameter estimation, model misspecification and misleading results if classical

analysis techniques are blindly applied (Abuzaid, Hussin, and Mohamed, 2013; Ben-Gal,

2005). Conversely, anomalies themselves can be the main carriers of significant and often

critical information and the identification of these critical points can be the main purpose

of many investigations in fields such as fraud detection (e.g., credit card frauds and network

intrusion), object tracking (e.g., flight tracking), system health monitoring (e.g., machine

breakdown and power cable leakages) and environmental monitoring (e.g., water quality,

bushfire, earthquake and volcanic eruption) (Gupta et al., 2014). Further, owing to rapid

advances in data collection technology it has become increasingly common for organisations

to be dealing with data that stream in large quantities. Therefore, the overall focus of this

thesis is on detecting anomalies in streaming time series data.

1.1 Background

Anomaly detection problems have many different facets, and the detection techniques

can be highly influenced by the way we define anomalies, the type of input data to the

algorithm, the expected output, etc. This leads to wide variations in problem formulations,

which need to be addressed through different analytical approaches. A number of surveys
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CHAPTER 1. INTRODUCTION

of anomaly detection techniques have been done in general (Singh and Upadhyaya, 2012;

Aggarwal, 2017) or for specific data domains such as temporal data (Gupta et al., 2014),

streaming data (Habeeb et al., 2019), network data (Ranshous et al., 2015; Shahid, Naqvi,

and Qaisar, 2015; Kwon et al., 2017), graph data (Akoglu, Tong, and Koutra, 2015),

tensor data (Fanaee-T and Gama, 2016), intrusion detection (Mitchell and Chen, 2014)

and novelty detection (Pimentel et al., 2014). This section however limits the review to

the background work on anomaly detection for streaming time series data and lays the

foundation for the work presented in Chapters 2–5.

1.1.1 Definitions Found in the Literature

Solutions to the problem of detecting unusual behaviours in systems of interest can be

influenced heavily by the way in which anomalies are defined. Three terms are used

commonly and interchangeably in the literature to describe work related to the topic:

novelty (Clifton, Hugueny, and Tarassenko, 2011; Hugueny, 2013), anomaly (Hyndman,

Wang, and Laptev, 2015; Kumar et al., 2016) and outlier (Schwarz, 2008; Wilkinson,

2018). However, Faria et al. (2016) differentiate between these three terms, using the terms

anomaly and outlier to refer to the idea of an undesired pattern but novelty to refer to

the emergence of a new concept that needs to be incorporated into the typical behaviour

of the system. In line with this view, Chandola, Banerjee, and Kumar (2009) define an

anomaly as a pattern in the data that does not conform to the expected behaviour but

a novelty as an unobserved pattern that is typically incorporated into the model of the

typical behaviour of a given system when it is detected. However, Gama (2010) points

out that a substantial number of examples is required as evidence of the appearance of a

novelty before it should be incorporated into the model of the typical behaviour of a given

system. Thus, the sparse examples that differ considerably from the ‘typical’ behaviour

can all be considered anomalies or outliers, since there is no guarantee that they represent

a new ‘typical’ behaviour of the system (Faria et al., 2016). Lavin and Ahmad (2015)

define anomalies in streaming data, with respect to their past behaviour, as patterns that

do not conform to the past behaviours of the system. As a result, a new behaviour may be

anomalous at first, but it ceases to be anomalous if the new ‘typical’ pattern continues to

exist, and ultimately ends up being a novelty rather than an anomaly or an outlier.
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CHAPTER 1. INTRODUCTION

Grubbs (1969) defines an anomaly as an observation that deviates markedly from other

members of the sample. However, this deviation can be defined in terms of either distance

or density. Burridge and Taylor (2006), Wilkinson (2018) and Schwarz (2008) have all

proposed methods for anomaly detection by defining an anomaly in terms of distance. In

contrast, Hyndman (1996), Clifton, Hugueny, and Tarassenko (2011) and Hugueny (2013)

have proposed methods that define an anomaly with respect to either the density or the

chance of the occurrence of observations.

1.1.2 Representations of Time Series

Fulcher and Jones (2014) consider two representations of time series: instance-based and

feature-based.

The instance-based representation of time series is the most straightforward and has been

used by many researchers in the data mining community. Under this representation, if two

time series are to be compared, a distance measure between the two time series is defined

that leads to a direct comparison of the ordered values of the two time series. The methods

proposed by Wilkinson (2018), Clifton, Hugueny, and Tarassenko (2011) and Hugueny

(2013) are all based on this representation of time series.

In contrast to the instance-based representation of time series, the feature-based represen-

tation of time series involves representing a given time series in terms of its properties,

measured using different statistical operations, thereby transforming a temporal problem

into a static problem (Fulcher, Little, and Jones, 2013). After extracting features, further

analysis is based on these extracted features. Thus, this representation can allow an

algorithm to compare time series of different lengths and/or starting points, because it can

transform time series of any length or starting point into a vector of features of a fixed

size. Recently, researchers such as Wang, Smith, and Hyndman (2006), Fulcher (2012)

and Hyndman, Wang, and Laptev (2015) have paid a considerable amount of attention to

the feature-based representation of time series, since it helps to reduce the dimension of

the original multivariate time series problem via features that encapsulate the dynamic

properties of the individual time series efficiently.
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CHAPTER 1. INTRODUCTION

1.1.3 Extreme Value Theory

The algorithms proposed in Chapters 2, 3 and 4 are based on th extreme value theory,

a branch of probability theory that relates to the behaviour of extreme order statistics

in a given sample (Galambos, Lechner, and Simiu, 2013). In contrast to traditional

data analysis, where the primary focus is on the observations in the central region of

the distribution, extreme value theory focuses primarily on modelling the distribution of

extreme order statistics in a given sample (Pinto and Garvey, 2016; Clifton, 2009). The

central limit theorem is one of the most striking limit theorems in statistics. Its ability to

approximate the distribution of the sample mean irrespective of the parent distribution

of the original random variable is the property that makes this theorem so remarkable

(Coles, 2001). Analogous arguments are used in the extreme value theory to approximate

distributions of extreme order statistics in a given sample.

1.1.4 Key Results of Classical Extreme Value Theory

Consider a set of m independent and identically distributed (iid) data, X = {x1,x2, . . . ,

xm}, which has its own cumulative distribution function (CDF), F , and an associated

probability density function (pdf), f . In classical extreme value theory, xi ∈ < (univariate).

Let Xmax = max(X) and Xmin = min(X). The extreme value theory focuses on the

statistical behaviour of these quantities. Hereafter, the discussion will focus on Xmax

(Xmin will be referred to only when necessary), because it simplifies the discussion, but a

similar argument can be applied to Xmin as well.

The distribution of Xmax can be investigated by taking several random samples of size

m from a given distribution, recording the maximum of each sample and constructing a

density plot of the maxima. Figure 1.1 (reproduced from Hugueny (2013), p. 87) shows the

empirical distributions of minima and maxima for the standard Gaussian distribution (left),

and of maxima for the standard exponential distribution (right) for series of sizes m. Each

density plot is based on 106 data points. Consider the case of m = 1, where we observe

only one data point from f in each trial. The corresponding density plot approximates

the generative distribution f , because the maximum of a singleton set {x} is simply x.

4
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However, the density plots for maxima move to the right as m increases, implying that the

expected location of the sample maximum on the x-axis increases as more data are observed

from f . Let H+ denote the distribution function of Xmax. This is termed the extreme value

distribution (EVD), because it describes the expected location of the maximum of a sample

of size m generated from f (Clifton, Hugueny, and Tarassenko, 2011). The Fisher–Tippett

Theorem (Fisher and Tippett, 1928), which is the basis of classical extreme value theory,

explains the possibilities for this H+.

Figure 1.1: Empirical distributions of 106 minima and maxima for the standard Gaussian
distribution (left), and of maxima for the standard exponential distribution
(right). (Reproduced from Hugueny, 2013, p.87.)

Theorem 1.1 (Fisher-Tippett theorem, limit laws for maxima). (Theorem 3.2.3 in Em-

brechts, Klüppelberg, and Mikosch (2013), p. 121; the notations have been changed for

consistency within this thesis.)

Let X = {x1,x2, . . . ,xm} be a sequence of iid random variables and Xmax = max(X). If

there exists a centring constant dm(∈ <) and normalising constant cm(> 0), and some

non-degenerate distribution function H+ (‘+’ refers to the distribution of maxima) such

that:

c−1
m (Xmax − dm)

d−→ H+,

then H+ belongs to one of the following three distribution function types:

5
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Fréchet : Φ+
α (x) =


0, x 6 0

exp{−x−α}, x > 0
α > 0

Weibull : Ψ+
α (x) =


exp{−(−x)α}, x 6 0

1, x > 0
α > 0

Gumbel : Λ+(x) = exp{−e−x}, x ∈ <.

Definition 1.1 (Extreme value distribution and extremal random variable). (Definition

3.2.6 in Embrechts, Klüppelberg, and Mikosch (2013), p. 124)

The distribution functions Φα,Ψα and Λ as presented in Theorem 1.1 are called standard

extreme value distributions and the corresponding random variables, standard extremal

random variables. Distribution functions of the types of Φα,Ψα and Λ are extreme value

distributions; the corresponding random variables are extremal random variables.

�

From Theorem 1.1, it can be observed that the extreme value distributions are implicitly

parameterised by m, the size of the sample from which the extrema is taken. Therefore,

different values of m will yield different extreme value distributions (Clifton, Hugueny, and

Tarassenko, 2011).

Definition 1.2 (Maximum domain of attraction). (Definition 3.3.1 in Embrechts, Klüppel-

berg, and Mikosch (2013), p. 128; the notations have been changed for consistency within

this thesis.)

We say that the rv X (the distribution function F of X or the distribution of X) belongs

to the maximum domain of attraction of the extreme value distribution H+ if there exist

constants cn > 0, dn ∈ < such that:

c−1
m (Xmax − dm) d−→H

+.

We write X ∈MDA(H+) (F ∈MDA(H+)).

6
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�

The following properties, highlighted by Embrechts, Klüppelberg, and Mikosch (2013), will

assist in deciding the maximum domain of attraction of the three extreme value distributions

to which X belongs. Let xF = sup{x ∈ < : F (x) < 1} denote the right endpoint of F .

• All distribution functions F ∈MDA(Φ+
α ) have an infinite right endpoint xF =∞ (the

tail decreases like a power low). The Pareto, F, Cauchy and log-gamma distribution

functions are just a few examples covered by the maximum domain of attraction of

the Fréchet distribution.

• All distribution functions F ∈ MDA(Ψ+
α ) have a finite right endpoint xF < ∞

(truncated tail). The uniform and beta distributions are two examples covered by the

maximum domain of attraction of the Weibull distribution.

• Unlike the Fréchet and Weibull distributions, the maximum domain of attraction of

the Gumbel distribution is not easy to characterise, because all distribution functions

F ∈MDA(Λ+) can have either a finite or an infinite endpoint xF 6∞. Perhaps one

way of thinking of the maximum domain of attraction of the Gumbel distribution is

that it consists of distribution functions whose right tail decreases to zero faster than

any power function (exponentially decaying tail). The exponential, gamma, normal

and lognormal distributions are just a few examples covered by the maximum domain

of attraction of the Gumbel distribution.

Extreme value distributions for minima can be discussed in a similar manner. In Chapter

3, we are particularly interested in the Weibull extreme value distribution for minima,

which is given by

Ψ−α (x) =


0, x < 0

1− exp{−x−α}, x > 0

where ‘-’ refers to the distribution of minima.

7
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Interested readers are referred to the work of Embrechts, Klüppelberg, and Mikosch (2013)

for a detailed discussion of the characterisation of the three classes: Gumbel, Fréchet and

Weibull.

Definition 1.3 (Quantile function). (Definition 3.3.5 in Embrechts, Klüppelberg, and

Mikosch (2013), p.130)

The generalised inverse of the distribution function F

F←−(t) = inf{x ∈ < : F (x) > t}, 0 < t < 1,

is called the quantile function of the distribution function F . The quantity xt = F←−(t)

defines the t-quantile of F.

�

Theorem 1.2 (Maximum domain of attraction of Ψ−α ). (Theorem 1 in Clifton, Hugueny,

and Tarassenko (2011), p. 384; the notations have been changed for consistency within this

thesis)

The distribution function F belongs to the maximum domain of attraction of the minimal

Weibull distribution (Ψ−α ), α > 0, if and only if xF > −∞ and F (xF + x−1) = x−αL(x)

for some slowly varying function L.

If F ∈MDA(Ψ−α ), then

c−1
m (Xmin − xF ) d−→Ψ

−
α ,

where the normalising constant cm and the centring constant dm can be chosen as cm = xF +

F←−(m−1) and dm = xF . Xmin is the minimum of m data. xF = inf{x ∈ < : F (x) 6 0}.

F←−(t) is the t-quantile of F . L is a slowly varying function at ∞; that is, a positive

function for all t > 0 that obeys

limx−→∞
L(tx)
L(x) = 1.

8
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Although these extreme value distributions differ in their purposes for modelling, they are

related closely from a mathematical point of view. The following properties can be verified

immediately (Embrechts, Klüppelberg, and Mikosch, 2013; Hugueny, 2013):

X−1 ∈MDA(Ψ−α ) with shape parameter α

⇐⇒ −X−1 ∈MDA(Ψ+
α ) with shape parameter α

⇐⇒ ln(X)α ∈MDA(Λ+).

�

Let X1,X2, . . . ,Xn be a sample from a distribution function F and let X1:n > X2:n >

· · · > Xn:n be the order statistics. The available data are X1:n, . . . ,Xk:n for some fixed k.

Theorem 1.3 (Spacing theorem). (Proposition 1 in Burridge and Taylor (2006), p. 6 and

Theorem 3 in Weissman (1978), p. 813; the notations have been changed for consistency in

this thesis.)

Let Di,n = Xi:n −Xi+1:n, (i = 1, . . . , k) be the spacing between successive order statistics.

If F is in the maximum domain of attraction of the Gumbel distribution, then spacings

Di,n are asymptotically independent and exponentially distributed with mean proportional

to i−1.

This theorem is illustrated using Figure 1.2, which shows the distribution of the descending

order statistics (Xi:n) and the standardized spacings, (iDi,n), for i ∈ {1, . . . , 10} for 1, 000

samples each containing 20, 000 random numbers from the standard normal distribution.

Figure 1.2 (a) shows the distribution of Xi:n with means of Xi:n depicted as black crosses.

The gaps between consecutive black crosses give the spacings between higher-order statistics

(Di,n). We note that the normal distribution is in the maximum domain of attraction of

the Gumbel distribution and that this example contains no outliers. A consequence of

Theorem 1.3 is that the standardised spacings (iDi,n) for (i = 1, . . . ,K), are approximately

iid (Burridge and Taylor, 2006). Figure 1.2 (b) shows the distribution of the standardised

spacings (iDi,n) for (i = 1, 2, . . . , 10) for 1, 000 samples of size 20, 000. Each letter-value
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CHAPTER 1. INTRODUCTION

Figure 1.2: (a) Distribution of the descending order statistics Xi:n and (b) distribution
of the standardised spacings iDi,n for i ∈ {1, . . . , 10} for 1, 000 samples each
containing 20, 000 random numbers from the standard normal distribution.

box plot (Hofmann, Wickham, and Kafadar, 2017) exhibits approximately the shape of an

exponential distribution.

1.1.5 Calculation of Anomalous Threshold

Chapter 2 and Chapter 4 both use Theorem 1.3 (Spacing Theorem by Weissman (1978))

to estimate a data-driven anomalous threshold to discriminate anomalies. This step sorts

anomalous scores and searches for any large gap at the upper tail of the distribution defined

by the anomalous scores. This search for significant gaps in the upper tail can either be

performed using the top-down algorithm by Burridge and Taylor (2006) or bottom-up

algorithm by Schwarz (2008).

Top-down algorithm

As the name implies, the top-down algorithm introduced by Burridge and Taylor (2006)

starts from the maximum and moves backwards over the sorted array, seeking a significantly

large gap (which may not exist in a typical data set free from outliers). As summarised by

Schwarz (2008), the top-down algorithm is as follows:
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• Let X1,X2, . . . Xn be a sample from a distribution function F , and let X1:n > X2:n >

· · · > Xn:n be the order statistics.

• Let Di = Xi:n −Xi+1:n be the spacing between successive order statistics.

• Calculate the standardised spacings, Si ≡ iDi.

• Find the maximum of the first N/α spacings, Sk, where N is the maximum possible

number of outliers and α is the acceptable false positive rate. The quantity N/α then

represents the number of spacings that must be examined to achieve a significance

level of α.

• If k ≤ N spacings, mark the top k values as anomalies.

• In addition to the gap between anomalous points and the valid data, sometimes there

can be multiple gaps in between different groups of anomalous points. Therefore,

repeat the above steps on the remaining data until no more gaps are found in the top

N values.

However, repeating the process over data until it detects all the discrete groups of anomalies

present in the dataset makes the algorithm inefficient for massive datasets with vast amounts

of data. Further, it is not desirable to set a value for the maximum possible number of

outliers, because this value is not known in advance for many real-world applications.

Ideally, the algorithm should be able to pick all the anomalies present in the data without

having this predetermined number. Further, according to Schwarz (2008), this algorithm

does not use the full power of the spacing theorem; it only employs the fact that the

standardised spacings are iid and fails to use the fact that they are exponentially distributed,

which could have given more information about how unlikely is a given spacing. The bottom-

up algorithm introduced by Schwarz (2008) has the ability to release these unrealistic

assumptions and overcome the limitations of the top-down algorithm. The bottom-up

algorithm is based on the work of Burridge and Taylor (2006) but uses the full power of

the spacing theorem.

Bottom-up algorithm

As in the top-down algorithm, the bottom-up algorithm is also based on the assumption

that anomalies can bring large separations between valid data and anomalies, compared
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with the separations between valid data among themselves. However, in contrast to the

top-down algorithm, the bottom-up algorithm now starts from the middle of the sorted

data array, which represents the valid data, and moves forward towards the upper tail

of the sorted array until it reaches a large gap, which is highly unlikely to occur if it is

generated from the same distribution of the valid data. When a gap is encountered that

is well beyond expectation, it terminates the searching process and marks all the points

above that value as outliers. The specific steps of the bottom-up algorithm proposed by

Schwarz (2008) is as follows:

• Let X1,X2, . . . Xn be a sample from a distribution function F , and let X1:n > X2:n >

· · · > Xn:n be the order statistics.

• Calculate Di = Xi:n −Xi+1:n, the spacing between successive order statistics.

• At each rank i, test the hypothesis that Xi:n is the largest valid data point in the

sample, with the help of the spacings immediately below it (Di+1,Di+2, ..). If Xi:n is

the largest valid data point in the sample, according to the spacing theorem, spacings

Di,Di+1,Di+2, . . . should be proportional to 1, 1
2 , 1

3 , . . ., and so on. This allows us to

use spacings Di+1,n,Di+2,n, . . . ,Di+k,n to predict the spacing Di:

D̂i =
1

k−1
∑k
j=2 jDi+j−1

(Since the spacing theorem applies only to a small fraction of the data ranked near

the upper tail, the entire dataset cannot be used to estimate Di and therefore is used

only k(� n) number of spacings for the estimation process. The value k should be

large enough to obtain a stable estimate for Di, but small compared with the sample

size, n. Schwarz (2008) has recommended 50 spacings as a rough guideline for the

value k and the same has been used by Wilkinson (2018) for large samples). If they

all represent valid points, then all the terms in the summation have the same mean,

which is similar to the mean of Di. Therefore, D̂i serves as an estimator for Di.

• As in the spacing theorem, since Di follows an exponential distribution with mean

proportional to i−1, for a given significance level α, a threshold t that will not be

exceeded by valid data can be obtained using:

t = D̂ilog(1/α)
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• Work upward towards the upper tail of the sorted data array. At the first i where

spacing Di exceeds threshold t, terminate the searching process and flag Xi:n and all

the points above in the sorted array as outliers.

The bottom-up algorithm has been used in the research presented in Chapter 2 and Chapter

4 because of its obvious advantages over the top-down algorithm.

1.2 Motivation and Objectives

In light of the increasing demand for accurate and powerful automated methods for early

detection of anomalies in the streaming data scenario and the lack of attention paid to this

topic, the primary motivation of this thesis is to develop methods for early detection of

anomalies in the streaming data context.

The first motivation of this thesis arises from the recently proposed HDoutliers method

by Wilkinson (2018). The HDoutliers algorithm is a powerful algorithm with a strong

theoretical foundation for anomaly detection in high-dimensional data. However, some

limitations significantly hinder its performance level. The effect of these limitations is a

tendency to increase the rate of false positives and/or rate of false negatives under certain

conditions. Therefore, the first objective is to propose solutions to these limitations of the

HDoutliers algorithm. Chapter 2 addresses this objective. The proposed algorithm, the

stray algorithm, is based on distance measures and the extreme value theory. Chapter 2

also demonstrates how the stray algorithm can assist in detecting anomalies in other data

structures, such as time series data and streaming temporal data. The improved algorithm

is implemented in the open source R package stray.

The second motivation of this thesis originated from the limited research attempts on

detecting anomalous series within a large collection of series in the streaming data scenario

where data flow rapidly in a continuous manner. A few researchers (Hyndman, Wang,

and Laptev, 2015; Wilkinson, 2018) have developed methods to identify anomalous series

within a large collection of series, mainly focusing on the batch scenario where it is assumed

that the entire dataset is available prior to analysis. However, in contrast to the batch

scenario, the streaming data scenario poses many different challenges owing to its complex
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nature evolving over time. In addition to the obvious difficulties caused by the large volume

and velocity of streaming data, highly noisy signals can increase the related complexity.

Nonstationarity (concept drift) is another major topic in the streaming data analysis that

makes it difficult to distinguish new typical behaviour from anomalous events (Faria et al.,

2016). To address this issue, detectors should be able to learn and adapt according to the

conditions present. Early detection of anomalies as soon as they start but before they

end is another major requirement of most applications related to this problem. Therefore,

the second objective of this study is to develop a powerful automated method to detect

anomalous series within a large collection of series in the streaming data context such

that it meets these requirements. Chapter 3 is dedicated to achieving this objective. This

chapter presents a new algorithm based on density modelling and the extreme value theory.

To cope with nonstationarity (concept drift), a density-based comparison approach is

proposed. The proposed algorithm can detect significant changes in the typical behaviour

and automatically update the anomalous threshold upon detecting a nonstationarity. The

proposed algorithm is implemented in the open source R package oddstream.

The third motivation of this thesis arises owing to the non-existence of a customised

method to detect technical anomalies in high-frequency water-quality data from in situ

sensors. Automated in situ sensors have the potential to revolutionise the way we manage

and monitor environmental settings, such as air, soil and water. The data produced by

these sensors enable us to identify fine-scale patterns, trends and extremes over space and

time. Although they represent cutting-edge technology, the data they produce are still

prone to errors because of many reasons, such as miscalibration, biofouling and battery

failures (Horsburgh et al., 2015). Moreover, these anomalies and the ability to detect them

can differ according to the geographic characteristics of the environmental system and the

spatial placement of the sensors. To ensure data quality, we need to automate the real-time

detection of anomalies. Therefore, our third objective is to propose a new framework for

automated anomaly detection in high-frequency water-quality data from in situ sensors.

Chapters 4 and 5 address this objective. In these chapters, an attempt was made to develop

methods that can incorporate the correlation structure of several measurements taken

from each site. This involves an application performing anomaly detection using turbidity,

14



CHAPTER 1. INTRODUCTION

conductivity and river level data collected from rivers flowing into the Great Barrier Reef

lagoon, Australia. The proposed algorithm is implemented in the open source R package

oddwater.

Conclusions are drawn in Chapter 6 with a discussion on potential extensions to the

proposed algorithms introduced in Chapters 2, 3 and 4.

These three main objectives guided the structuring and development of the major chapters

of this thesis. Since this is a thesis by publication that has an introductory chapter and

a concluding chapter with articles in between, the reader may notice some amount of

repetition among chapters. Each article should be self-contained and therefore has been

published with relevant materials for completeness.
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Abstract

The HDoutliers algorithm is a powerful unsupervised algorithm for detecting
anomalies in high-dimensional data, with a strong theoretical foundation. However,
it suffers from some limitations that significantly hinder its performance level, un-
der certain circumstances. In this article, we propose an algorithm that addresses
these limitations. We define an anomaly as an observation that deviates markedly
from the majority with a large distance gap. An approach based on extreme value
theory is used for the anomalous threshold calculation. Using various synthetic and
real datasets, we demonstrate the wide applicability and usefulness of our algorithm,
which we call the stray algorithm. We also demonstrate how this algorithm can assist
in detecting anomalies present in other data structures using feature engineering. We
show the situations where the stray algorithm outperforms the HDoutliers algorithm
both in accuracy and computational time. This framework is implemented in the
open source R package stray.
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1 Introduction

The problem of anomaly detection has many different facets, and detection techniques can

be highly influenced by the way we define anomalies, type of input data and expected

output. These differences lead to wide variations in problem formulations, which need to

be addressed through different analytical techniques. Although several useful computa-

tional methods currently exist, developing new methods for anomaly detection continues

to be an active, attractive interdisciplinary research area owing to different analytical chal-

lenges in various application fields, such as environmental monitoring (Talagala, Hyndman,

Leigh, Mengersen & Smith-Miles 2019, Leigh et al. 2019, ), object tracking (Gupta et al.

2014, Sundaram et al. 2009), epidemiological outbreaks (Gupta et al. 2014), network se-

curity (Hyndman et al. 2015, Cao et al. 2015) and fraud detection (Talagala, Hyndman,

Smith-Miles, Kandanaarachchi & Muñoz 2019). Ever-increasing computing resources and

advanced data collection technologies that emphasise real-time, large-scale data are other

reasons for this growth since they introduce new analytical challenges with their increas-

ing size, speed and complexity that demand effective, efficient analytical and computing

techniques.

Anomaly detection has two main objectives, which are conflicting in nature: One down-

grades the value of anomalies and attempts eliminating them, while the other demands

special attention be paid to anomalies and root-cause analysis be conducted. The presence

of anomalies in data can be considered data flaws or measurement errors that can lead to

biased parameter estimation, model misspecification and misleading results if classical anal-

ysis techniques are blindly applied (Ben-Gal 2005, Abuzaid et al. 2013). In such situations,

the focus is to find opportunities to remove anomalous points and thereby improve both

the quality of the data and results from the subsequent data analysis (Novotny & Hauser

2006). In contrast, in many other applications, anomalies themselves are the main carri-

ers of significant and often critical information, such as extreme environmental conditions

(e.g., bushfire, tsunami, flood, earthquake, volcanic eruption and water contamination),

faults and malfunctions (e.g., flight tracking and power cable tracking) and fraud activities

(Ben-Gal 2005), that can cause significant harm to valuable lives and assets if not detected

and treated quickly.
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High-dimensional datasets exist across numerous fields of study (Liu et al. 2016). Some

anomaly detection algorithms also use feature engineering as a dimension reduction tech-

nique and thereby convert other data structures, such as a collection of time series using

time series features (Talagala, Hyndman, Leigh, Mengersen & Smith-Miles 2019, Hyndman

et al. 2015), collection of scatterplots using scagnostics (Wilkinson et al. 2005) and genomic

micro arrays and chemical compositions in biology (Liu et al. 2016) into high-dimensional

data prior to the detection process for easy control. Under the high-dimensional data sce-

nario, all attributes can be of the same data type or a mixture of different data types, such

as categorical or numerical, which has a direct impact on the implementation and scope of

the algorithm. Much research attention has been paid to anomaly detection for numerical

data (Breunig et al. 2000, Tang et al. 2002, Jin et al. 2006, Gao et al. 2011). Limited

methods are available that treat both numerical and categorical data using correspondence

analysis, for example, as in Wilkinson (2017).

High-dimensional anomalies can arise in all the attributes or a subset of the attributes

(Unwin 2019). If all anomalies in a high-dimensional data space were anomalies in a

lower dimension, then anomaly detection can be performed using axis parallel views or by

incorporating an additional step of variable selection for the detection process. However,

in practice, certain high-dimensional instances are only perceptible as anomalies if treated

as high-dimensional problems and the correlation structure of all the attributes considered.

Otherwise, these tend to be overlooked if attributes are considered separately (Wilkinson

2017, Ben-Gal 2005).

The problem of anomaly detection has been extensively studied over the past decades

in many application domains. Several surveys of anomaly detection techniques have been

conducted in general (Chandola et al. 2009, Aggarwal 2017) or for specific data domains

such as high-dimensional data, network data (Shahid et al. 2015), temporal data (Gupta

et al. 2014), machine learning and statistical domains (Hodge & Austin 2004), novelty de-

tection (Pimentel et al. 2014), intrusion detection (Sabahi & Movaghar 2008) and uncertain

data (Aggarwal & Yu 2008). Some algorithms are application specific and take advantage

of the underlying data structure or other domain-specific knowledge (Talagala, Hyndman,

Leigh, Mengersen & Smith-Miles 2019). More general algorithms without domain-specific
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knowledge are also available with their own strengths and limitations (Breunig et al. 2000,

Tang et al. 2002, Jin et al. 2006, Gao et al. 2011). Among the many possibilities, the

HDoutliers algorithm, recently proposed by Wilkinson (2017), is a powerful unsupervised

algorithm, with a strong theoretical foundation, for detecting anomalies in high-dimensional

data. The study presented by Talagala, Hyndman, Leigh, Mengersen & Smith-Miles (2019)

also verifies its performances through a thorough comparative evaluation of existing state-

of-the-art anomaly detection methods. Although this algorithm has many advantages, a

few characteristics hinder its performance. In particular, under certain circumstances it

tends to increase the rate of false negatives (i.e., the detector ignores points that appear

to be real anomalies) because it uses only the nearest-neighbour distances to distinguish

anomalies. Further, to deal with large datasets with numerous observations it uses the

Leader algorithm (Hartigan & Hartigan 1975), which forms several clusters of points in

one pass through the dataset using a ball of a fixed radius. By incorporating this clustering

method, it tries to gain the ability to identify anomalous clusters of points. However, in

the presence of very close neighbouring anomalous clusters it tends to increase the rate of

false negatives. Further, this additional step of clustering has a serious negative impact on

the computational efficiency of the algorithm when dealing with large datasets.

Through this study, we make three fundamental contributions. First, we propose an

algorithm called stray, representing ‘Search and TRace AnomalY’, that addresses the

limitations of the HDoutliers algorithm. The stray algorithm presented here focuses specif-

ically on fast, accurate anomalous score calculation using simple but effective techniques

for improved performance. Second, we introduce an R (R Core Team 2019) package, stray

(Talagala, Hyndman & Smith-Miles 2019), that implements the stray algorithm and re-

lated functions. Third, we demonstrate the wide applicability and usefulness of our stray

algorithm, using various datasets.

Our improved algorithm, stray, has many advantages: (1) It can be applied to both

one-dimensional and high-dimensional data. (2) It is unsupervised in nature and therefore

does not require training datasets for the model-building process. (3) The anomalous

threshold is a data-driven threshold and has a valid probabilistic interpretation because

it is based on the extreme value theory. (4) By using k-nearest neighbour distances for
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anomalous score calculation, it gains the ability to deal with the masking problem. (5) It

can provide near real-time support to datasets that stream in large quantities owing to its

use of fast nearest neighbour searching mechanisms. (6) It can deal with data that may

have multimodal distributions for typical data instances. (7) It produces both score (to

indicate how anomalous the instances are) and binary classification (to reduce the searching

space during the visual and root-cause analysis) for each data instance as an output. (8)

It can detect outliers as well as inliers.

The remainder of this paper is organised as follows. Section 2 presents the related

work to lay the foundation for the stray algorithm. Section 3 describes the limitations of

the HDoutliers algorithm that hinder its performance. Section 4 presents the improved

algorithm, stray, that addresses the limitations of the HDoutliers algorithm. Section 5

presents a comprehensive evaluation, illustrating the key features of the stray algorithm.

Section 6 includes an application of stray algorithm related to pedestrian behaviour in the

city of Melbourne, Australia. Section 7 concludes the article and presents future research

directions.

2 Background

2.1 Types of Anomalies in High Dimensional Data

The problems of anomaly detection in high-dimensional data are threefold (Figure 1),

involving detection of: (a) global anomalies, (b) local anomalies and (c) micro clusters or

clusters of anomalies (Goldstein & Uchida 2016). Most of the existing anomaly detection

methods for high-dimensional data can easily recognise global anomalies since they are very

different from the dense area with respect to their attributes. In contrast, a local anomaly

is only an anomaly when it is distinct from, and compared with, its local neighbourhood.

Madsen (2018) introduces a set of algorithms based on a density or distance definition

of an anomaly, which mainly focuses on local anomalies in high-dimensional data. Micro

clusters or clusters of anomalies may cause masking problems. Very little attention has

been paid to this problem relative to the other two categories. The recently proposed

HDoutliers algorithm (Wilkinson 2017) addresses this problem to some extent by grouping
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Figure 1: Different types of anomalies in high-dimensional data. Anomalies are represented

by red triangles and black dots correspond to the typical behaviour.

instances together that are very close in the high-dimensional space and then selecting a

representative member from each cluster before calculating nearest neighbour distances for

the selected instances. In this study, we focus on all three of these anomaly types.

2.2 Definitions for Anomalies in High Dimensional Data

Anomalies are often mentioned in the literature under several alternative terms, such as

outliers, novelty, faults, deviants, discordant observations, extreme values/cases, change

points, rare events, intrusions, misuses, exceptions, aberrations, surprises, peculiarities, odd

values and contaminants, in different application domains (Chandola et al. 2009, Gupta

et al. 2014, Zhang et al. 2010). Of these, the two terms anomalies and outliers are used

commonly and interchangeably in the literature describing research related to the topic.

The term inlier also relates to the topic, but rarely appears in the literature on anomaly

detection. Inliers are those points that appear between typical clusters without attaching

to any of the clusters, but still lie within the range defined by the typical clusters (Jouan-

Rimbaud et al. 1999) (Figure 2). In contrast, the corresponding notion of an ‘outlier’ is

generally used to refer to a data instance that appears out of the space more towards the

tail of a distribution, defined by the typical data instances. Some classical methods related

to the topic fail to detect inliers and only focus on outliers (Jouan-Rimbaud et al. 1999).
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Figure 2: Inliers vs outliers. Anomalies are represented by red triangles and black dots

correspond to the typical behaviour.

However, detecting inliers is equally important because they can give rise to interpolation

errors. In this study, we focus on both inliers and outliers. To avoid any confusion, we use

the term ‘anomaly’ for the purpose of nomenclature throughout this paper.

Owing to the complex nature of the problem, it is difficult to find a unified definition

for an anomaly and the definition often depends on the focus of the study and the structure

of the input data available to the system (Williams 2016, Unwin 2019). However, there

are some definitions that are general enough to cope with datasets with various application

domains. Grubbs (1969) defines an anomaly as an observation that deviates markedly from

other members of the dataset. However, this deviation can be defined in terms of either

distance or density. Burridge & Taylor (2006), Wilkinson (2017) and Schwarz (2008) have

all proposed methods for anomaly detection by defining an anomaly in terms of distance.

In contrast, Hyndman (1996), Clifton et al. (2011) and Talagala, Hyndman, Smith-Miles,

Kandanaarachchi & Muñoz (2019) have proposed methods that define an anomaly with

respect to either the density or the chance of the occurrence of observations. Madsen (2018)

also provides a series of distance and density-based anomaly detection algorithms.

In this study, we define an anomaly as an observation that deviates markedly from the

majority with a large distance gap under the assumption that there is a large distance

between typical data and the anomalies compared with the distance between typical data.
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2.3 HDoutliers Algorithm (Wilkinson 2017)

The HDoutliers algorithm is a distance based anomaly detection algorithm. One impor-

tant property of this algorithm is that it has an ability to convert any higher dimensional

anomaly detection problem to a one dimensional problem by taking the nearest neigh-

bour distances of the data instances. There are two published versions of the HDoutliers

algorithm (Wilkinson 2017), summarised below.

Algorithm 1 (HDoutliers Algorithm - Version 1)

Input: D, n×p matrix with n data instances where each data instance is p dimensional

(p ∈ Z+) .

Output: A vector of indices of the anomalous data instances in D

1. Normalize the columns of D. Let D∗ represent the resulting n× p matrix.

2. Compute nearest neighbour distances between all pairs of points in D∗.

3. Sort the resulting nearest neighbour distances and search for any large gap at the

upper tail of the distribution and thereby define an anomalous threshold. This search

for a significant gap in the upper tail is based on extreme value theory.

4. Flag data instances as anomalies using the anomalous threshold.

Algorithm 1 is recommended for small samples. The default maximum size of D for

Algorithm 1 is set to 10000 in the R implementation of the HDoutliers package. The

second version of the HDoutliers algorithm incorporates a clustering step with the aim of

detecting micro clusters.

Algorithm 2 (HDoutliers Algorithm - Version 2)

Input: D, n×p matrix with n data instances where each data instance is p dimensional

(p ∈ Z+) .

Output: A vector of indices of the anomalous data instances in D

1. Normalize the columns of D. Let D∗ represent the resulting n× p matrix.

2. Apply the Leader algorithm (Hartigan & Hartigan 1975). Let r = (.1/(log n)1/p, be

the radius for the Leader algorithm. Based on the value of the radius, the algorithm

clusters the data instances using their nearest neighbour distances.
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3. Select one data instance from each cluster as a representative member for that cluster.

The algorithm selects the first element of each cluster as the representative member for

that cluster. Further analysis is carried out using only those representative members,

M .

4. Compute nearest neighbour distances between all pairs of points in M .

5. Sort the resulting nearest neighbour distances and search for any large gap at the

upper tail of the distribution and thereby define an anomalous threshold. This search

for a significant gap in the upper tail is based on extreme value theory.

6. Flag points in M as anomalies using the anomalous threshold.

7. Flag all data instances in the anomalous clusters (from step 6) as anomalous data

instances.

3 Limitations of HDoutliers Algorithm

Although the HDoutliers algorithm (Wilkinson 2017) has many advantages, a few charac-

teristics limit its possibilities. Next, we discuss these limitations in detail.

3.1 HDoutliers Uses Only the Nearest Neighbour Distance to

Discriminate Anomalies

The HDoutliers algorithm uses the Leader algorithm (Hartigan & Hartigan 1975) to form

small clusters of points, prior to calculating nearest neighbour distance. In the Leader

algorithm, each cluster is a ball in the high-dimensional data space. In the HDoutliers

algorithm, the radius of this ball is selected such that it is well below the expected value of

the distances between n(n − 1)/2 pairs of points distributed randomly in a d-dimensional

unit hypercube.

After forming clusters using the Leader algorithm, the HDoutliers algorithm selects

representative members from each cluster. It then calculates the nearest neighbour dis-

tances for each of these representative members. These distances are then used to identify

the anomalies based on the assumption that anomalies bring large distance separations
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between typical data and the anomalies, in comparison to the separations between typi-

cal data themselves. Therefore, under this assumption it is believed that any anomalous

cluster will appear far away from the clusters of the typical data points. As a result, the

nearest neighbour distance for this anomalous cluster will be significantly higher than that

of the clusters of typical data and thereby identify it as an anomalous cluster. All the data

points contained in the anomalous cluster are then marked as anomalous points within a

given dataset.

However, one further assumption for this method to work properly is that any anomalous

clusters present in the dataset are isolated. For example, imagine a situation in which two

anomalous clusters are very close to one another but are far away from the rest of the

typical clusters. Now, the two clusters will become nearest neighbours to one another and

they will jointly protect them by being anomalous by giving very small nearest neighbour

distances for both clusters that are compatible with the nearest neighbour distances of the

rest of the typical clusters. Figures 7 (c-II) and (d-II) further elaborate this argument. In

these two examples, the HDoutliers algorithm (with the clustering step) declares points as

anomalies only if they are isolated and fails to detect anomalous clusters that share a few

cluster neighbours. Although the HDoutliers algorithm incorporates the clustering step

with the aim of identifying anomalous clusters of points, because of the very small size of

the ball that is used to produce clusters (exemplars) in the d-dimensional space, it fails to

bring all the points into a single cluster and instead produces a few anomalous clusters that

are very close to one another. These anomalous clusters then become nearest neighbours

to one another and have very small nearest neighbour distances for the representative

member of each cluster. Since the detection of anomalies entirely depends on these nearest

neighbour distances and since the anomalous clusters do not show any significant deviation

from typical clusters with respect to the nearest neighbour distances, the algorithm now

fails to detect these points as anomalies and thereby increases the rate of false negatives.

3.2 Problems Due to Clustering Via Leader Algorithm

After forming clusters of data points, the HDoutliers algorithm completely ignores the

density of the data points. Once it forms clusters of data points using the Leader algorithm,
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it selects a representative member from each cluster and carries out further analysis only

using these representative members. Figure 7 (e-II) provides an example related to this

issue. This dataset is a bimodal dataset with an anomalous point located between the two

typical classes. The entire dataset contains 2,001 data points. The data points gathered at

the leftmost upper corner represent one typical class with 1,000 data points. The second

typical class of data points is gathered at the rightmost bottom corner with another 1,000

data points. Since this second class of data points is closely compacted in substance, the

1,000 data points are now wrapped by a single ball when forming clusters using the Leader

algorithm. In the HDoutliers algorithm, the next step is to select one member from each of

these clusters. Once it selects a representative member from this ball that contains 1,000

data points, it ignores the remaining 999 data points in detecting anomalies. This step

misleads the algorithm, and the remaining steps of the algorithm view this representative

member as an isolated data point, although it is surrounded by 999 neighbouring data

points in the original dataset. Therefore, all data points in this entire class are declared

as anomalies by the algorithm, although it contains half of the dataset. Unwin (2019)

suggests jittering not as a perfect solution, but as an alternative to mitigate this problem.

Unwin (2019) also argues that the problem tends not to occur in high-dimensional data

spaces where this kind of granularity is less likely. However, then it gives rise to the

problem of neighbouring anomalous clusters ( as illustrated in Figure 7 (c-II, d-II) ), which

individually appear to be typical, or of limited suspicion (due to the presence of other

neighbouring anomalous clusters), yet, their co-occurrence is highly anomalous.

Figure 7 (f-II) provides another situation in which false negatives increase because of

the clustering step. This bivariate dataset contains 1,001 data points. The data points

gathered at the leftmost upper corner represent a typical class covering 1,000 data points,

and the isolated data point at the rightmost bottom corner represents an anomaly. Since

this typical class of 1,000 data points is closely compacted, it gives rise to only 14 clusters

through the Leader algorithm. Altogether, the dataset forms 15 clusters with the one

created by the isolated point located at the rightmost bottom corner. Even though the

original dataset contains 1,001 data points, the algorithm considers only 15 data points (a

representative member from each cluster) for calculating the anomalous threshold. Now,
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this number is not large enough to yield a stable estimate for the anomalous threshold. Due

to this ignorance of the density of the original dataset, it now fails to detect the obvious

anomalous point at the leftmost bottom corner.

3.3 Problem with Threshold Calculation

A companion R package (Fraley 2018) is available for the algorithm proposed by Wilkinson

(2017). According to the R package implementation, the current version of the HDoutliers

algorithm uses the next potential candidate for anomalies in calculating the anomalous

threshold, in each iteration of the bottom-up searching algorithm. This approach causes

an increase in the false detection rate under certain circumstances. We avoid this limitation

in our proposed algorithm.

4 Proposed Improved Algorithm: stray Algorithm

In this section, we propose an improved algorithm for anomaly detection in high dimensional

data. Our proposed algorithm is intended to overcome the limitations of the HDoutliers

algorithm and thereby enhance its capabilities.

4.1 Input to the stray Algorithm

An input to the stray algorithm is a collection of data instances where each data instance

can be a realisation of only one attribute or a set of attributes (also referred to using

terms such as features, measurements and dimensions). In this study, we limit our dis-

cussion to quantitative data; therefore, an input can be a vector, matrix or data frame of

d(≥ 1) numerical variables, where each column corresponds to an attribute and each row

corresponds to an observation of these attributes. The focus is then to detect anomalous

instances (rows) in the dataset.

4.2 Normalise the Columns

Since the stray algorithm is based on the distance definition of an anomaly, nearest neigh-

bour distances between data instances in the high-dimensional data space are the key

12



information for the algorithm to detect anomalies. However, variables with large variance

can exert disproportional influence on Euclidean distance calculations (Wilkinson 2017).

To make the variables of equivalent weight, the columns of the data are first normalised

such that the data are bounded by the unit hypercube. This normalisation is commonly

referred as min-max normalisation, which involves a linear transformation of the original

data, with the result data ranging from 0 to 1 (Figures 4 (b,e). In addition to min-max

normalisation, a robust normalisation method ((x−median(x)/IQR(x))) is also available

through the stray package implementation. However, there is no one-fit-for-all normalisa-

tion strategy for anomaly detection problems even though min-max normalisation is shown

to be preferred to median-IQR with most of the datasets and anomaly detection methods

considered in Kandanaarachchi et al. (2018).
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Figure 3: Effect of normalisation on nearest neighbour distance calculation. Left column:

Original data set. Middle column: Min-max normalisation. Right column: Median-IQR

standardization. Nearest neighbour distances are marked for the points with the highest

nearest neighbour distances. Top panel: Data set with an obvious global anomaly (point

A). Bottom panel: Data set without point A.

The relevance and importance of an anomalous point is determined subjectively by

humans by the presence and positioning of other anomalous points. For instance, point
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A in Figure 3 (a) is an obvious global anomaly and with respect to point A, point B is a

trivial anomaly. In contrast, the similar point B in Figure 3 (d) appears to be nontrivial

with respect to the remaining typical points. Since median-IQR standardization is robust to

anomalies the nearest neighbour distances of the remaining points are not heavily influenced

by the presence of obvious global anomalies (such as point A) (Figures 3 (c,f)). In contrast

min-max normalisation mimics the human observational pattern by changing the nearest

neighbour distances according to the presences of other nontrivial anomalies (Figures 3 (b,

e)). This prevents the trivial points (such as point B in Figures 3 (b)) to emerge as local

anomalies and generating false positives. However, when datasets are free from anomalies,

min-max normalisation tends to increase the rate of false positives by assigning relatively

high nearest neighbour distances to the boundary points even though they are a part of

the typical behaviour.

4.3 Nearest Neighbour Searching

In the stray algorithm, after the columns of the dataset are normalised, it calculates the

k-nearest neighbour distance with the maximum gap for each and every instance. By using

this measure, we were able to address the aforementioned limitations of the HDoutliers

algorithm.

For each individual observation, the algorithm first calculates the k-nearest neighbour

distances, di,KNN , where i = 1, 2, ..., k . Then, it calculates the successive differences

between distances, ∆i,KNN . Next, it selects the k-nearest neighbour distance with the

maximum gap, ∆i,max. Figure 4 illustrates how these steps help our improved algorithm

to detect anomalous points or anomalous clusters of points.

In Figure 4 (a), the dataset contains only one anomaly at (15, 16.5). For this dataset, the

nearest neighbour distance can differentiate the anomalous point from the remaining typical

points because the nearest neighbour distance for the anomalous point is significantly larger

(14.8) than that for the remaining typical points. Figure 4 (b) shows the change in the

k-nearest neighbour distances of the anomaly at (15, 16.5). For this dataset, the k-nearest

neighbour distance with the maximum gap occurs when k = 1. The second dataset,

in Figure 4 b), has three anomalies around (15, 16.5). If we calculate only the nearest
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Figure 4: Difference between the nearest neighbour distance and the k-nearest neighbour

distance with the maximum gap. (a) Dataset contains only one anomaly at (15, 16.5).

Nearest neighbour distances are marked. (b) Change in the k-nearest neighbour distances

of the anomaly. (c) Dataset contains micro cluster around (15, 16.5). Nearest neighbour

distances are marked. (d) Dataset contains micro cluster around (15, 16.5). For the three

anomalies, the third nearest neighbour distance has the maximum gap. (e) Change in the k-

nearest neighbour distances of an anomaly from micro cluster around (15, 16.5). Anomalies

are represented by red triangles and black dots correspond to the typical behaviour.

neighbour distances for each observation, then the three anomalies are not distinguishable

from the typical points since their values are very small (0.7) compared with that of most

typical points with nearest neighbour distances at around (0.0015 to 2.5). However, the

three anomalies are distinguishable from their typical points with respect to the k-nearest

neighbour distances with the maximum gap (Figure 4 (d)). For the three anomalies in

Figure 4 (d), the third nearest neighbour distance has the maximum gap (Figure 4 e))

and the three points are now easily distinguished as anomalies, with respect to k-nearest

neighbour distances with the maximum gap. Therefore, by using k-nearest neighbour

distances with the maximum gap, the stray algorithm gains the ability to detect both

anomalous singletons and micro clusters. Through this approach, we are able to reduce
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the false detection rate and thereby address the limitations of the HDoutliers algorithm,

while gaining the ability to detect micro clusters. This is also a very simple, but clever,

investment as compared with the time taken by the leader algorithm to form small clusters

to detect micro clusters (especially for datasets with large dimensions), in the HDoutliers

algorithm. Further, for each point, the corresponding k-nearest neighbour distances with

the maximum gap act as an anomalous score to indicate the degree of being an anomaly.

In the current study, we consider both exact and approximate k-nearest neighbour

searching techniques. Brute force search involves going through every possible paring of

points to detect k-nearest neighbours for each data instance, and therefore, exact k-nearest

neighbours are explored. Conversely, k-dimensional trees (k-d trees) employ spatial data

structures that partition space to allow efficient access to a specified query point (Elseberg

et al. 2012a). Therefore, it involves searching approximate k-nearest neighbours around a

specified query point.

In the current algorithm, parameter k, which determines the size of the neighbourhood,

is introduced as a user-defined parameter that can be selected according to the application.

One way to interpret the role of k in the stray algorithm is to view it as the minimum

possible size for a typical cluster in a given dataset. If the size of an anomalous cluster is

less than k, it will be detected as a micro cluster by the stray algorithm. The choice of

k has different effects across different dimensions and sizes of data (Campos et al. 2016).

We can set k to 1 if no micro clusters are present in the dataset and thereby focus on

local and global anomalous points. High k values are recommended for datasets with high

dimensions because of the curse of dimensionality.

4.4 Threshold Calculation

Anomalous scores assign each point a degree of being an anomaly. However, for certain ap-

plications it is also important to categorise typical and anomalous points for the subsequent

root-cause analysis. Ideally, we prefer a universal threshold to unambiguously distinguish

anomalous points from typical points. Following Schwarz (2008), the HDoutliers algorithm

(Wilkinson 2017) defines an anomalous threshold based on extreme value theory, a branch

of probability theory that relates to the behaviour of extreme order statistics in a given
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sample (Galambos et al. 2013).

The anomalous threshold calculation in Schwarz (2008); Burridge & Taylor (2006) and

Wilkinson (2017) is an application of Weissman’s spacing theorem (Weissman 1978) (The-

orem 1) that is applicable to the distribution of data covered by the maximum domain of

attraction of a Gumbel distribution. This requirement is satisfied by a wide range of distri-

butions, ranging from those with light tails to moderately heavy tails that decrease to zero

faster than any power function (Embrechts et al. 2013). Examples include the exponential,

gamma, normal and log-normal distributions with exponentially decaying tails.

Let X1, X2, . . . , Xn be a sample from a distribution function F and let X1:n > X2:n >
· · · > Xn:n be the order statistics. The available data are X1:n, . . . , Xk:n for some fixed k.

Theorem 1 (Spacing Theorem) . (Proposition 1 in Burridge & Taylor (2006), p.6 and

Theorem 3 in Weissman (1978), p.813; the notations have been changed for consistency in

this paper)

Let Di,n = Xi:n − Xi+1:n, (i = 1, . . . , k) be the spacing between successive order statistics.

If F is in the maximum domain of attraction of the Gumbel distribution, the spacings Di,n

are asymptotically independent and exponentially distributed with mean proportional to i−1.

We illustrate this theorem using Figure 5, which shows the distribution of the descending

order statistics (Xi:n) and the standardised spacings, (iDi,n), for i ∈ {1, . . . , 10} for 1, 000

samples each containing 20, 000 random numbers from the standard normal distribution.

Figure 5 (a) shows the distribution of Xi:n with means of Xi:n depicted as black crosses.

The gaps between consecutive black crosses give the spacings between higher-order statistics

(Di,n). We note that the normal distribution is in the maximum domain of attraction of

the Gumbel distribution and that this example contains no outliers. A consequence of

Theorem 1 is that the standardised spacings (iDi,n) for (i = 1, . . . , K), are approximately

iid (Burridge & Taylor 2006). Figure 5 (b) shows the distribution of the standardised

spacings (iDi,n) for (i = 1, 2, ..., 10) for 1, 000 samples of size 20, 000. Each letter-value box

plot (Hofmann et al. 2017) exhibits approximately the shape of an exponential distribution.

Following Schwarz (2008), Burridge & Taylor (2006) and Wilkinson (2017), we start our

anomalous threshold calculation from a subset of the points covering 50 per cent of them

with the smallest anomalous scores under the assumption that this subset contains the
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Figure 5: (a) Distribution of the descending order statistics Xi:n and (b) distribution of the

standardised spacings iDi,n for i ∈ {1, . . . , 10} for 1, 000 samples each containing 20, 000

random numbers from the standard normal distribution.

anomalous scores corresponding to typical data points and the remaining subset contains

the scores corresponding to the possible candidates for anomalies. Following the Weissman

spacing theorem, it then fits an exponential distribution to the upper tail of the outlier

scores of the first subset, and then computes the upper 1−α points of the fitted cumulative

distribution function, thereby defining an anomalous threshold for the next anomalous

score. Then, from the remaining subset it selects the point with the smallest anomalous

score. If this anomalous score exceeds the cut-off point, it flags all the points in the

remaining subset as anomalies and stops searching for anomalies. Otherwise, it declares

the point as a typical point and adds it to the subset of the typical points. It then updates

the cut-off point, including the latest addition. This searching algorithm continues until it

finds an anomalous score that exceeds the latest cut-off point. This algorithm is known as a

‘bottom-up searching’ algorithm in Schwarz (2008). This threshold calculation is performed

under the assumption that the distribution of k-nearest neighbours with the maximum gap

is in the maximum domain of attraction of the Gumbel distribution, which covers a wide

range of distributions.
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4.5 Output

In stray, anomalies are measured in two scales: (1) binary classification and (2) outlier

score. Under binary classification, data instances are classified either as typical or anoma-

lous using the data-driven anomalous threshold based on the extreme value theory. This

type of classification is important if the subsequent steps of the data analysis process are

automated. The stray algorithm also assigns an anomalous score to each data instance

to indicate the degree of outlierness of each measurement. These anomalous scores allow

the user to rank and select the most serious or relevant anomalous points for root-cause

analysis and taking immediate precautions. The HDoutliers algorithm (Wilkinson 2017),

which provides only a binary classification, does not directly allow the user to make such a

choice to direct their attention to more significant anomalous instances. Conversely, various

methods proposed in the literature provide anomalous scores, but the anomalous threshold

is user defined and application specific (Madsen 2018). The output produced by stray is an

all-in-one solution encapsulating necessary measurements of anomalies for further actions.

5 Experiments

The HDoutliers algorithm is a powerful algorithm in the current state-of-the-art methods

for detecting anomalies in high-dimensional data. The focus of the stray algorithm is to

address some of the limitations of the HDoutliers algorithm that hinder its performance

under certain circumstances. Here, we perform an experimental evaluation on the accuracy

and computational efficiency of our stray algorithm relative to the HDoutliers algorithm.

While these examples are fairly limited in number and are mostly limited to bivariate

datasets, they should be viewed only as simple illustrations of the key features of the stray

algorithm that outperforms the HDoutliers algorithm.

The first experiment (Figure 6) was designed to test the effect of the dimension, size of

the data and the k-nearest neighbour searching method on running times of the different

versions of the two algorithms: stray and HDoutliers.

The HDoutliers algorithm has two versions. The first version calculates nearest neigh-

bour distance for each data instance and does not involve any clustering step prior to the
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Figure 6: Scalability Performance. (a) HDoutliers algorithm without clustering step, (b-I)

HDoutliers algorithm with clustering step, (c) stray algorithm with brute force nearest

neighbour search using FNN R package implementation, (d) stray algorithm with kd-trees

nearest neighbour search using ‘FNN’ R package implementation, (e) stray algorithm with

brute force nearest neighbour search using ‘nabor’ R package implementation, (f) stray

algorithm with kd-trees nearest neighbour search using ‘nabor’ R package implementation.

For clear comparison, only a part of the measurements of the full experiment is displayed

in (b-I). (b-II) presents the full version of (b-I). Black frame in (b-II) covers the plotting

region of (b-I).

nearest neighbour distance calculation. This version of the algorithm (version 1 of the HD-

outliers, hereafter) is recommended for small samples (n<10,000). The second version uses

the Leader algorithm to form several clusters of points and then selects a representative

member from each cluster. The nearest neighbour distances are then calculated only for

the selected representative members. Compared with version 1 of the HDoutliers algorithm

(Figure 6 (a)), version 2 with the clustering step is extremely slow for higher dimensions

(>10), and the running time increases more rapidly with increasing sample size. For clear

comparison between the different versions of the two algorithms (stray and HDoutliers),

only a part of the measurements of the full experiment of the second version of the HD-
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outliers algorithm is displayed in Figure 6 (b-I)). Figure 6 (b-II) presents the full version

of Figure 6 (b-I). The additional clustering step in the second version of the HDoutliers

algorithm, which is essential for detecting micro clusters, is extremely time-consuming, par-

ticularly with large samples with higher dimensions. Figure 6 (c)–(f) corresponds to the

stray algorithm. In this experiment, to ascertain the influence from the k-nearest neigh-

bour searching methods, we considered both exact (brute force) and approximate (kd-trees)

nearest neighbour searching algorithms.

Many implementations of k-nearest neighbour searching algorithms are available for

the R software environment. We considered the FNN (Beygelzimer et al. (2019), Figure

6 (c) & (d)) and nabor (Elseberg et al. (2012b); Figure 6 (e) & (f)) R packages for our

comparative analysis. R package nabor, wraps a fast k-nearest neighbour library written

in templated C++. We noticed that searching k− (> 1) nearest neighbours (Figure 6 (a),

in this example k is set to 10) instead of only one (k = 1) nearest neighbour (Figure 6 (d))

increases the running time only slightly as the number of instances is increased. The results

in both Figure 6 (a) and Figure 6 (d) are based on approximate nearest neighbour distances

using the kd-trees nearest neighbour searching algorithm. We observed that the kd-trees

implementation in the nabor package (Figure 6 (f)) is much faster than the FFN package

implementation (Figure 6 (d)). Surprisingly, as the dimension increases, the running time

of the stray algorithm with kd-trees (Figure 6 (d), (f)) increases much more quickly than

that of the brute force algorithm, which involves searching every possible pairing of points

to detect k-nearest neighbours for each data instance (Figure 6 (c), (e)). Other studies

(Kanungo et al. 2002) have also reported a similar result for algorithms based on kd-trees

and its variants. This could be due to the parallelisability and memory access patterns of

the two searching mechanisms. The brute force algorithm is easily parallelisable because it

involves independent searching of all possible candidates for each data instance. In contrast,

the kd-tree searching algorithm is naturally serial and therefore difficult to implement on

parallel systems with appreciable speedup (Zhang 2017).

Following Wilkinson (2017), we evaluated the false positive rate (typical points incor-

rectly identified as anomalies) of the stray algorithm by running it many times on random

data. The values presented in Table 1 are based on 1000 iterations and the mean values
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are reported. Different versions of the two algorithms (stray and Hdoutliers) were ap-

plied on datasets where each column is randomly generated from the standardised normal

distribution. In each test, the critical value, α, was set to 0.05. Compared with the HD-

outliers algorithm, low false positive rates were achieved for the stray algorithm across all

dimensions and sample sizes. Unlike in the HDoutliers algorithm (Unwin 2019), in stray

a much smaller false detection rate was observed even for the small datasets with smaller

dimensions. No difference was observed across different versions of the stray algorithm with

different nearest neighbour searching mechanisms and their different implementations.
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Figure 7: Algorithm performance. (a) The top panel shows the results of the HDoutliers

algorithm without a clustering step. (b) The middle panel shows the results of the HD-

outliers algorithm with a clustering step. The representative member selected from each

cluster formed by the Leader algorithm are marked in blue colour. (c) The bottom panel

shows the results of the improved algorithm with brute force k-nearest neighbour searching.

The detected anomalies are marked as red triangles.

Figure 7 demonstrates how the stray algorithm outperforms the two versions of the

HDoutliers algorithm under different circumstances. These limited set of examples were

selected with the aim of highlighting some of the key feature of the stray algorithm:

(1) All three algorithms were able to correctly capture the anomalous point at the right-
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Table 1: Performance metrics – False positive rates. The values given are based on 100

iterations and the mean values are reported. Different versions of the two algorithms (stray

and Hdoutliers) are applied on datasets where each column is randomly generated from

the standardised normal distribution. All the datasets are free from anomalies HDoutliers

WoC: HDoutliers algorithm without clustering step; HDoutliers WC: HDoutliers algorithm

with clustering step.

Method dim 100 500 1000 2500 5000 7500 10000

HDoutliers WoC 1 0.017 0.011 0.008 0.007 0.005 0.005 0.004

HDoutliers WoC 10 0.002 0.002 0.002 0.002 0.002 0.002 0.002

HDoutliers WoC 100 0.001 0.001 0.001 0.001 0.001 0.001 0.001

HDoutliers WC 1 0.036 0.024 0.024 0.019 0.017 0.014 0.013

HDoutliers WC 10 0.006 0.006 0.006 0.005 0.005 0.005 0.005

HDoutliers WC 100 0.003 0.003 0.003 0.003 0.003 0.003 0.003

stray - brute force 1 0.006 0.003 0.002 0.002 0.002 0.001 0.001

stray - brute force 10 0.001 0.001 0.001 0.001 0.001 0.001 0.000

stray - brute force 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000

stray - FNN kd-tree 1 0.006 0.003 0.002 0.002 0.002 0.001 0.001

stray - FNN kd-tree 10 0.001 0.001 0.001 0.001 0.001 0.001 0.000

stray - FNN kd-tree 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000

stray - nabor brute 1 0.006 0.003 0.002 0.002 0.002 0.001 0.001

stray - nabor brute 10 0.001 0.001 0.001 0.001 0.001 0.001 0.000

stray - nabor brute 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000

stray - nabor kd-tree 1 0.006 0.003 0.002 0.002 0.002 0.001 0.001

stray - nabor kd-tree 10 0.001 0.001 0.001 0.001 0.001 0.001 0.000

stray - nabor kd-tree 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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most upper corner of Figure 7 (a)- I). However, the two versions of the HDoutliers

algorithm tend to generate some false positives, particularly with the small dimen-

sions.

(2) Figure 7 (b)- III) shows its ability to deal with multimodal typical classes. The two

clusters at the bottom of the graph represent two typical classes. Only the second

version of the HDoutliers algorithm (Figure 7 (b)- II) that utilises the clustering step

was able to detect the top-centred micro cluster that contains three anomalous data

instances. However, forming small clusters prior to the distance calculation is not

always helpful in detecting micro clusters.

(3) Figure 7 (c)- II) shows a situation where even the second version of the HDoutliers

algorithm fails in detecting micro clusters. The Leader algorithm in the HDoutliers

algorithm uses a very small ball of a fixed radius to form clusters, and therefore, it

now fails to capture the five points into a single cluster and instead generates three

small clusters that are very close to one another. Both versions of the HDoutliers

algorithm now fail to detect the micro cluster at the rightmost upper corner, because

the dataset violates one of the major requirements of isolation of anomalous points

or anomalous clusters. In stray, the value of k was set to 10. One can interpret the

value of k as the maximum permissible size for a micro cluster. That is, for a small

cluster to be a micro cluster, the number of data points in that cluster should be less

than k. Otherwise, the cluster is considered a typical cluster.

(4) Figure 7 (d)- III) demonstrates the ability of detecting inliers. The HDoutliers algo-

rithm also has this ability of detecting inliers only when there are isolated inliers that

are free from anomalous neighbours. Both versions of the HDoutliers algorithm fail

to detect the two inliers since they are very close to one another and thereby jointly

protect them as being anomalous.

(5) As explained in Section 3.2, Figure 7 (e)- II) shows how the clustering step of the

second version of the HDoutliers algorithm can misguide the detection process and

thereby increase the rate of false positives. The dense areas of the dataset are marked

with density curves. Two typical clusters are visible, one at the leftmost upper corner
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and the other at the rightmost bottom corner. An inlier is also present in between

the two typical classes. After forming cluster through the Leader algorithm, only one

representative member is selected from each cluster for the nearest neighbour distance

calculation. The selected member is now isolated and earns a very high anomalous

score, leading the entire typical cluster at the rightmost bottom corner with 1,000

points to be identified as anomalous. In contrast, the stray algorithm is free from

these problems because it does not involve any clustering step prior to the nearest

neighbour distance calculation.

(6) As explained in Section 3.2, Figure 7 (f)- II) shows how the clustering step can

increase the rate of false negatives. This dataset contains one typical class that is

closely compacted in substance (the leftmost upper corner) and an obvious anomaly

at the rightmost bottom corner. Since the typical class is a dense cluster, only a few

data points are selected from the typical class for the nearest neighbour calculation.

In this example, the clustering step substantially down-samples the original dataset,

leading to a huge information loss in the representation of the original dataset. The

blue dots in Figure 7 (f)- II) represent the selected members from each cluster for

nearest neighbour calculations. Now, the reduced sample size is not enough for a

proper calculation of the anomalous threshold based on extreme value theory.

6 Usage

We applied our stray algorithm to a dataset obtained from an automated pedestrian count-

ing system with 43 sensors in the city of Melbourne, Australia (City of Melbourne 2019,

Wang 2018), to identify unusual pedestrian activities within the municipality. Identifica-

tion of such unusual, critical behaviours of pedestrians at different city locations at different

times of the day is important because it is a direct indication of a city’s economic condi-

tions, the related activities and the safety and convenience of the pedestrian experience

(City of Melbourne 2019). It also guides and informs decision-making and planning. This

case study also illustrates how the stray algorithm can be used to deal with other data

structures, such as temporal data and streaming data using feature engineering.
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6.1 Handling Temporal Data

For this study, we consider the hourly pedestrian counts from January 2, 2019, to August

18, 2019. For clear visual illustration, Figure 8 shows only a limited part of the study period

with the pedestrian counts at 43 locations in the city of Melbourne at different times of

the day. The distribution of pedestrian counts follows a negatively skewed distribution. In

general, pedestrian counts on weekdays display a bimodal distribution, while pedestrian

counts on weekends follow a unimodal distribution. Now, the aim is to detect days with

unusual behaviours. Since this involves a large collection of multivariate time series plots,

each representing a day of the study period, manual monitoring is time-consuming and

unusual behaviours are difficult to locate by visual inspection.

Detecting anomalous plots from a large collection of plots requires some pre-processing.

In particular, to apply the stray algorithm, we need to convert this original dataset, with a

large collection of multivariate time series plots, into a high dimensional dataset. A simple

approach is to use features that describe the different shapes and patterns of the multivari-

ate time series plots. Computing features that describe meaningful shapes and patterns

in a given multivariate time series plot is straightforward with scagnostics (scatterplot di-

agnostics) developed by Wilkinson et al. (2005). For the current study, we select nine

features: outlying, skewed, clumpy, sparse, striated, convex, skinny, stringy and monotonic

(Dang & Wilkinson 2014, Wilkinson et al. 2005). Once we extract these nine features from

each plot, we convert our original collection of multivariate time series plots into a dataset

with nine dimensions and 228 data instances covering the study period from January 2,

2019, to August 18, 2019. Figure 9 provides feature-based representation of the original

collection of multivariate time series plots. Each point in this high-dimensional data space

corresponds to a single multivariate time series plot (or a day) in the original collection

of multivariate time series plots. Figure 10 shows the O3 plot (Overview of Outliers plot)

(Unwin 2019) summarizing feature combinations on which those days are anomalies and

on what groups of features have these days been identified as anomalies. There is a row for

each feature combination for which anomalies are found. Two white columns separate the

feature combinations and the anomalies detected. Each row of the block on the left shows

which feature combination defines the row. There are 9 columns, one for each feature and

26



2019−02−02

Sat

2019−02−03

Sun

2019−02−04

Mon

2019−02−05

Tue

2019−02−06

Wed

2019−02−07

Thu

2019−02−08

Fri

2019−01−26

Sat

2019−01−27

Sun

2019−01−28

Mon

2019−01−29

Tue

2019−01−30

Wed

2019−01−31

Thu

2019−02−01

Fri

2019−01−19

Sat

2019−01−20

Sun

2019−01−21

Mon

2019−01−22

Tue

2019−01−23

Wed

2019−01−24

Thu

2019−01−25

Fri

2019−01−12

Sat

2019−01−13

Sun

2019−01−14

Mon

2019−01−15

Tue

2019−01−16

Wed

2019−01−17

Thu

2019−01−18

Fri

2019−01−05

Sat

2019−01−06

Sun

2019−01−07

Mon

2019−01−08

Tue

2019−01−09

Wed

2019−01−10

Thu

2019−01−11

Fri

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0
2000
4000
6000

0
2000
4000
6000

0
2000
4000
6000

0
2000
4000
6000

0
2000
4000
6000

Time

H
ou

rly
 p

ed
es

tr
ia

n 
co

un
ts

Figure 8: Collection of multivariate time series plots of hourly pedestrian counts at 43

locations in the city Melbourne, Australia, from 2 January to 8 February 2019. Anomalous

days detected by the stray algorithm using scagnostics are marked in red. This covers only

a small part of the study period considered (from January 2, 2019, to August 18, 2019).

a cell is gray if the feature is a part of the combination. From this analysis, 13 days were

found to be anomalies in at least one of the sub feature spaces defined by different feature

combinations. These anomalies are marked by red cells on the right block in Figure 10.

The corresponding multivariate time series plots (or days) are marked in red in Figure 8.

Visual inspection also confirms the anomalous behaviour of these individual multivariate

time series plots. Most of these anomalous days display an unusual rise later in the day.

Most of the anomalies in January (14, 15, 19 and 20 January 2019) cover the 2019 Aus-

tralian Open, a Grand Slam tennis tournament that took place at Melbourne Park from 14

to 27 January 2019. This annual tennis tournament attracts many thousands of tennis fans

from all around the worlds. Further investigations regarding 13 January 2019, reveal that

there was a musical concert in Melbourne city and the unusual rise later in the day could

be due to the concert participants. Similar patterns were observed with the remaining

anomalies detected.

After detecting the days with anomalous pedestrian behaviours, further investigation
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Figure 9: Feature-based representation of the collection of multivariate time series plots

using scagnostics. In each plot anomalies determined by the stray algorithm in at least one

of the sub feature spaces defined by different feature combinations are represented in red.

is carried out for each day to detect the locations with anomalous behaviours within the

selected day. Once we focus on one day, we obtain a collection of 43 time series with hourly

pedestrian counts generated from the 43 sensors located at different geographic locations

in the city (Figure 11). For this analysis, we extract 11 time series features (similar to

Talagala, Hyndman, Smith-Miles, Kandanaarachchi & Muñoz 2019, Hyndman et al. 2015)

and convert the original collection of time series into a data space with 11 dimensions and

43 data instances (Figure 12). Now, each point in this high-dimensional space correspond

to a single time series (or sensor) in Figure 11. The stray algorithm declares three points

as anomalous points in this high dimensional data space. These points correspond to the

sensors at Southbank, the Art centre and St Kilda Rd-Alexandra Gardens in Melbourne.

These types of findings play a critical role in making decisions about urban planning and

management; to identify opportunities to improve city walkability and transport measures;

to understand the impact of major events and other extreme conditions on pedestrian ac-

tivity, and thereby assist in making decisions regarding security and resource requirements;

and to plan and respond to emergency situations, etc.
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Figure 10: O3 plot of data relating to hourly pedestrian counts at 43 locations in the city

Melbourne, Australia, from January 2, 2019, to August 18, 2019. Thirteen days were found

to be anomalies on some combination of features. Anomalous days detected by the stray

algorithm are marked in red. Two days were anomalies on several combinations, 13-01-2019

and 20-01-2019.
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Figure 11: Multivariate time series plot of hourly counts of pedestrians measured at 43

different sensors in the city of Melbourne, on 20 Jansuary 2019. The anomalous time series

detected by the stray algorithm using time series features are marked in red.
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Figure 12: Feature-based representation of the collection of time series on 20 January 2019.

In each plot, anomalies determined by the stray algorithm are represented in red.

6.2 Handling Streaming Data

Owing to the unsupervised nature of the stray algorithm, it can easily be extended for

streaming data. A sliding window of fixed length can be used to deal with streaming data.

Then, datasets in each window can be treated as a batch dataset (Talagala, Hyndman,

Leigh, Mengersen & Smith-Miles 2019) and the stray algorithm can be applied to each

window to detect anomalies in the datasets defined by the corresponding window.

It also can be used to identify anomalous time series within a large collection of stream-

ing temporal data. Let W [t, t + w] represent a sliding window containing n number of

individual time series of length w. First, we extract m features (similar to Hyndman et al.

(2015) and Talagala, Hyndman, Leigh, Mengersen & Smith-Miles (2019)) from each and

every time series in this window. This step gives rise to an n×m feature matrix where each

row now corresponds to a time series in the original collection of time series. Once we con-

vert our original collection of time series into a high-dimensional dataset, we can apply the

stray algorithm to identify anomalous points within this m-dimensional data space. The

corresponding time series are then declared as anomalous series within the large collection

of time series in the corresponding sliding window.
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7 Conclusions and Further Research

The HDoutliers algorithm by Wilkinson (2017) is a powerful algorithm for detecting anoma-

lies in high-dimensional data. However, it suffers from a few limitations that significantly

hinder its ability to detect anomalies under certain situations. In this study, we pro-

pose an improved algorithm, the stray algorithm, that addresses these limitations. We

define an anomaly here as an observation that deviates markedly from the majority with

a large distance gap. The stray algorithm has many special features: (1) It can deal

with both one dimensional and high dimensional data as it is based on distance measures.

By extracting k nearest neighbour distances for each data instance, it converts any high

dimensional anomaly detection problem into a one dimensional problem. (2) Since the

anomalous threshold calculation is a data driven approach, the algorithm is unsupervised

in nature and therefore does not require labeled training datasets. (3) Most of the existing

algorithms involve a manual anomalous threshold for binary classification as anomalies or

typical points. Since the stray algorithm uses an anomalous threshold based on extreme

value theory, it has a valid probabilistic interpretation. (4) It deals with masking problems

and detects micro clusters as it does not limit its threshold calculation only to the nearest

neighbour distances and instead uses k nearest neighbour distances. (5) Since it uses fast

nearest neighbour searching mechanisms it can be easily extended to streaming data using

sliding windows. (6) Owing to the use of k nearest neighbour distances it can deal with

multimodal distributions. (7) In addition to a label, the stray algorithm also assigns an

anomalous score to each data instance to indicate the degree of outlierness of each measure-

ment. (8) Owing to the use of k nearest neighbour distances it also detect inliers, which is

overlooked in most past research. We also demonstrate how the stray algorithm can assist

in detecting anomalies present in other data structures using feature engineering.

While the HDoutliers algorithm is powerful, we have provided several classes of coun-

terexamples in this paper where the structural properties of the data did not enable HD-

outliers to detect certain types of outliers. We demonstrated on these counterexamples that

the stray algorithm outperforms HDoutliers, in terms of both accuracy and computational

time. It is certainly common practice to evaluate the strength of an algorithm using collec-

tions of test problems with various challenging properties. However, we acknowledge that
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these counterexamples are not diverse and challenging enough to enable us to comment

about the unique strengths and weaknesses of these two algorithms, nor to generalise our

findings to conclude that stray is always the superior algorithm. This study should be

viewed as an attempt to simulate further investigation on the HDoutliers algorithm and

its successors, with the ultimate goal to achieve further improvements across the entire

problem space defined by various high-dimensional datasets. An important open research

problem is therefore to assess the effectiveness of these algorithms across the the broadest

possible problem space defined by different datasets with diverse properties (Kang et al.

2017). It is an interesting question to explore the impact of other classes of problems with

various structural properties affect the performance of the stray algorithm and where its

weaknesses might lie. This kind of instance space analysis (Smith-Miles et al. 2014) will

enable further insights into improved algorithm design.

Anomaly detection problems commonly appear in many applications in different ap-

plication domains. Therefore, it is hoped that different people with different knowledge

levels will use the stray algorithm for many different purposes. Therefore, we expect future

studies to develop interactive data visualisation tools that can enable exploring anomalies

using a combination of graphical and numerical methods.

Supplementary Materials

Data and scripts: Datasets and R code to reproduce all figures in this article (main.R

and R package stray (Talagala, Hyndman & Smith-Miles 2019) ).

R package stray: The stray package consists of the implementation of the stray algo-

rithm as described in this article. Version 0.1.0 of the package was used for the

results presented in the article and is available from Github https://github.com/

pridiltal/stray.

R-packages: Each of the R packages used in this article (ggplot2 (Wickham 2016), dplyr

(Wickham et al. 2019), tidyr (Wickham & Henry 2019), HDoutliers (Fraley 2018),

lvplot(Wickham & Hofmann 2016) are available online (URLs are provided in the

bibliography).
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ABSTRACT
This article proposes a framework that provides early detection of anomalous series within a large collection
of nonstationary streaming time-series data. We define an anomaly as an observation, that is, very unlikely
given the recent distribution of a given system. The proposed framework first calculates a boundary for the
system’s typical behavior using extreme value theory. Then a sliding window is used to test for anomalous
series within a newly arrived collection of series. The model uses time series features as inputs, and a
density-based comparison to detect any significant changes in the distribution of the features. Using various
synthetic and real world datasets, we demonstrate the wide applicability and usefulness of our proposed
framework. We show that the proposed algorithm can work well in the presence of noisy nonstationarity
data within multiple classes of time series. This framework is implemented in the open source R package
oddstream. R code and data are available in the online supplementary materials.
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1. Introduction

Anomaly detection in streaming temporal data has become
an important research topic due to its wide range of possible
applications, such as the detection of extreme weather con-
ditions, intruders on secured premises, gas and oil leakages,
illegal pipeline tapping, power cable faults, and water contam-
ination. The rapid detection of these critical events is vital to
protect valuable lives and/or assets. Furthermore, since these
applications spend the majority of their operational life in a
“typical” state, and the associated data is obtained with the help
of millions of sensors, manual monitoring is ineffective and time
consuming, as well as highly unlikely to be able to capture all
violations (Lavin and Ahmad 2015). Thus, the development of
powerful new automated methods for the early detection of
anomalies in streaming signals is very timely, with far-reaching
benefits.

This article makes three fundamental contributions to
anomaly detection in streaming nonstationary environments.
First, we propose a framework that provides early detection
of anomalies within a large collection of streaming time-series
data. We show that the proposed algorithm works well even
in the presence of noisy signals and multimodal distributions.
Second, we propose an approach for dealing with nonstationary
environments (also known as “concept drift” in the machine
learning literature). We reduce the collection of time series to
a two-dimensional feature space, and then apply a bivariate
two-sample nonparametric test to detect any significant change
in the feature distribution. The asymptotic normality of the
test allows us to bypass computationally intensive resampling
methods when computing critical values. Third, we use various
datasets to demonstrate the wide applicability and usefulness of
our proposed framework to several application domains.

CONTACT Priyanga Talagala dilini.talagala@monash.edu Department of Econometrics and Business Statistics, Monash University, Clayton, VIC 3800, Australia.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/r/JCGS.

Supplementary materials for this article are available online. Please go to www.tanfonline.com/r/JCGS.

Fiber optic sensing technology can be used to detect unusual,
critical events such as power cable faults (Jiang and Sui 2009),
electrical short circuits (Krohn, MacDougall, and Mendez
2000), gas or oil pipeline leakages (Yoon et al. 2011; Nikles
2009), intruders to secured premises (Nikles 2009), etc. For
example, a sensor cable may be attached to a fence or buried
along a facility’s perimeter in soil or concrete, and can detect
intrusion attacks such as climbing or cutting a fence, or walking,
running or crawling along a facility’s perimeter (Catalano
et al. 2014). A light signal pulsated through the cable is easily
disturbed by changes in the physical environment, such as
the temperature, strain, or pressure. Thus, changes in the
intensity, phase, wavelength or transit time of light in the fiber
may indicate intrusions. Similarly, sensor cables can monitor
temperature profiles along gas and oil pipelines, allowing the
detection of leakages (Krohn, MacDougall, and Mendez 2000).
Each point of the cable acts as a sensor and generates a time
series. Figure 1 shows the multivariate time series obtained
using a fiber optic cable. (As the dataset contains commercially
sensitive information, the actual application is not given here).

Our aim in this work is to identify the locations of unusual
critical events as soon as possible. We propose an algorithm
which has the ability to (a) deal with streaming data; (b) assist
in the early detection of anomalies; (c) deal with large amounts
of data efficiently; (d) deal with nonstationary data distributions;
and (e) deal with data which may have multimodal distributions.

Section 2 presents the background work on anomaly detec-
tion for temporal data, and the use of EVT in anomaly detection.
Section 3 describes the new framework for the detection of
anomalies in streaming data. It also proposes a way of handling
nonstationary environments. Some simulations illustrating the

© 2019 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
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Figure 1. Multivariate time series plot of a dataset obtained using a fiber optic cable. Axis “Cable”represents individual points of the sensor cable. There are 640 time series
each with 1459 time points. Yellow corresponds to low values and black to high values. The black region near the upper endpoint of the cable (around 350–500) indicates
the presence of an anomalous event (e.g., intrusion attack, gas pipeline leak, etc.) that has taken place during the 500–1300 time period.

method are presented in Section 4. An application of the pro-
posed framework is given in Section 5. Section 6 concludes the
article.

2. Background

2.1. Types of Anomalies in Temporal Data

The problems of anomaly detection for temporal data are 3-
fold: (a) the detection of contextual anomalies within a given
series; (b) the detection of anomalous subsequences within a
given series; and (c) the detection of anomalous series within
a collection of series (Gupta et al. 2014).

Contextual anomalies within a given time series are single
observations that are surprisingly large or small, independent of
the neighboring observations. Figure 2(a) provides an example.
This is a well-known problem and has been addressed by many
researchers in data science (Hayes and Capretz 2015). Burridge
and Taylor (2006) called these “additive outliers” and proposed
an algorithm for their detection using EVT.

In contrast, when considering the detection of anomalous
subsequences within a given time series, the primary focus is
not on individual observations, but on subsequences that are
significantly different from the rest of the sequence. An exam-
ple is given in Figure 2(b). Both these problems of detecting
anomalous subsequences or additive outliers can be addressed
either as univariate (Bilen and Huzurbazar 2002) or multivariate
problems (Riani, Atkinson, and Cerioli 2009; Galeano, Peña,
and Tsay 2006; Peña and Prieto 2001). The algorithm proposed
by Schwarz (2008) using EVT is also capable of detecting both
types of outliers, and is derived from the work of Burridge and
Taylor (2006).

The final setting, the detection of anomalous series within
a collection of series, is the primary focus of this article. Fig-
ure 2(c) provides an example of this scenario. Very little atten-
tion has been paid to this problem relative to the other two
problem settings. An exception is Hyndman, Wang, and Laptev

(2015) who proposed a method using principal component
analysis applied to time series features, together with highest
density regions and α-hulls, to identify unusual time series in
a large collection of time series. The recent work of Wilkinson
(2018) also has the capability to address problems of this nature.

2.2. Streaming Data Challenges

Approaches to the problem of anomaly detection for temporal
data can be divided into two main scenarios: (1) batch process-
ing and (2) data streams (Faria et al. 2016; Luts, Broderick, and
Wand 2014). With batch processing, as in Hyndman, Wang, and
Laptev (2015) and Wilkinson (2018), it is assumed that the entire
dataset is available prior to the analysis, and the aim is to detect
all of the anomalies present.

The streaming data scenario poses many additional chal-
lenges, due to its complex nature and the way that the data
evolve over time. Challenges include the large volume and high
velocity of streaming data, the presence of very noisy signals,
and nonstationary data distributions (or “concept drift”). The
latter makes it difficult to distinguish between new “typical”
behaviors and anomalous events. Addressing this issue requires
the detecting algorithm to be able to learn from and adapt to the
changing conditions. These challenges have made it difficult for
the existing batch scenario approaches to provide early detection
of anomalies in the streaming data context (Faria et al. 2016).

2.3. Extreme Value Theory for Anomaly Detection

Our proposed framework is based on extreme value theory
(EVT), a branch of probability theory that relates to the statisti-
cal behavior of extreme order statistics (Galambos, Lechner, and
Simiu 2013).

Let X = {x1, x2, . . . , xm} be a sequence of independent
and identically distributed random variables with cumulative
distribution function (CDF) F and density function f = F′. Let
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Figure 2. Different types of anomalies in temporal data. In each plot anomalies are represented by red color and black color is corresponding to the typical behavior.

Xmax = max(X) and xi ∈ �. The distribution of Xmax can be
investigated by taking several random samples of size m from a
given distribution, recording the maximum of each sample, and
constructing a density plot of the maxima. A similar approach
can be used for the distribution of the minimum. Figure 3
(reproduced from Hugueny 2013, p. 87) shows the empirical
distributions of minima and maxima for the standard Gaussian
distribution (left), and of maxima for the standard exponential
distribution (right) for series of sizes m. Each density plot is
based on 106 data points. Consider the case of m = 1, where
we observe only one data point from f in each trial. The corre-
sponding density plot approximates the generative distribution
f , as the maximum of a singleton set {x} is simply x. However,
the density plots for maxima move to the right as m increases,
implying that the expected location of the sample maximum
on the x-axis increases as more data are observed from f . Let
H+ denote the distribution function of Xmax. This is termed the
extreme value distribution (EVD), as it describes the expected
location of the maximum of a sample of size m generated from
f (Clifton, Hugueny, and Tarassenko 2011). The Fisher–Tippett
theorem (Fisher and Tippett 1928), which is the basis of classical
EVT, explains the possibilities for this H+.

The following expression of the theorem has been adapted
from Theorem 3.2.3 of Embrechts, Klüppelberg, and Mikosch
(2013, p. 121); the notation has been changed for consistency.

Theorem 1 (Fisher–Tippett theorem, limit laws for maxima).
If there exists a centering constant dm(∈ �) and a normalizing
constant cm(> 0), and some nondegenerate distribution func-
tion H+ (“+” refers to the distribution of maxima) such that
c−1

m (Xmax − dm)
d−→ H+, then H+ belongs to one of the three

distribution function types: Fréchet Φ+
α (x), Weibull Ψ +

α (x), or
Gumbel Λ+(x).

Embrechts, Klüppelberg, and Mikosch (2013) discussed
some properties that assist in deciding the maximum domain

of attraction (MDA) of X. If f has a truncated tail, such as
the uniform or beta distribution, then it is in the MDA of the
Weibull distribution. If f has an infinite tail that obeys the power
law, then it is in the MDA of the Fréchet distribution. Examples
include Pareto, F, Cauchy and log-gamma distributions. On
the other hand, if f has an exponentially decaying tail, such as
the exponential, gamma, normal, or log-Normal distributions,
then it is in the MDA of the Gumbel distribution. Interested
readers are referred to the work of Embrechts, Klüppelberg, and
Mikosch (2013) for a detailed discussion of the characterization
of the three classes: Fréchet, Weibull, and Gumbel.

2.3.1. Existing Work for Anomaly Detection Based on EVT
The literature to date has mostly defined anomalies in terms
of either distance or density. When anomalies are defined in
terms of distance, one would expect to see relatively large sep-
arations between typical data and the anomalies. Burridge and
Taylor (2006), Schwarz (2008), and Wilkinson (2018) provided
a few examples of this approach where observations with large
nearest neighbor distances are defined as anomalies. Within this
framework, the “spacing theorem” (Schwarz 2008) in EVT has
been used in the model building process. In contrast, defining
an anomaly in terms of the density of the observations means
that an anomaly is an observation that has a very low chance
of occurrence. The work of Perron and Rodríguez (2003), on
which the method of Burridge and Taylor (2006) was based,
mentioned the possibility of using EVT and nonparametric esti-
mates of tail behavior, but did not provide any detailed discus-
sion. Sundaram et al. (2009), Clifton, Hugueny, and Tarassenko
(2011), and Hugueny (2013) provided a few examples where
EVT has been used to find observations that have extreme
densities. The main focus of these methods was on defining a
threshold for the density of the data points such that it distin-
guishes between anomalies and typical observations.
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Figure 3. Empirical distributions of 106 minima and maxima for the standard Gaussian distribution (left), and of maxima for the standard exponential distribution (right).
(Reproduced from Hugueny 2013, p. 87.)

It can be seen from Theorem 1 that the EVD is parameterized
implicitly by m, the size of the sample from which the extrema
is taken. Thus, different values of m can yield different EVDs
(Figure 3). Clifton, Hugueny, and Tarassenko (2011) proposed
a numerical method for selecting a threshold for identifying
anomalous points when m ≥ 1. In their “� transform method,”
Clifton, Hugueny, and Tarassenko (2011) defined the “most
extreme” of a set of m samples X = {x1, x2, . . . , xm}, distributed
according to pdf f (x), as the most improbable with respect to
the distribution; that is, arg minx∈X[f (x)].

3. Methodology

This section proposes a new framework for anomaly detec-
tion in multivariate streaming time series based on the �-
transformation method proposed by Clifton, Hugueny, and
Tarassenko (2011). The proposed framework involves: (1)
building a model of the typical behavior of a given system;
and (2) testing newly arrived data against the model of typical
behavior. These two phases represent the off-line (Algorithm 1)
and online (Algorithm 2) phases (Faria et al. 2016) of the
framework, respectively. Our proposed method is intended to
overcome two limitations of the proposals of Hyndman, Wang,
and Laptev (2015) and Wilkinson (2018).

First, the method proposed by Hyndman, Wang, and Laptev
(2015) identifies the most unusual time series within a large
collection of time series, whether or not any of them are truly
anomalous. However, in our applications, an alarm should be
triggered only in the presence of an anomalous event. Defining
a boundary of typical behavior and monitoring new data points
that land outside that boundary allows us to overcome this
limitation as it now triggers an alarm only in the presence of
an observation that lands outside the anomalous boundary.

Second, the “HDoutliers” method proposed by Wilkinson
(2018) relies on the assumption that the nearest-neighbor dis-
tances of anomalous points will be significantly higher than
those between typical data points. However, some applications
do not exhibit large gaps between typical observations and
anomalies. Instead, the anomalies deviate from the majority,

or the region of typical data, gradually, without introducing
a large distance between typical and anomalous observations.
This is the case, for example, where the time series are highly
dependent.

Consider a temperature-sensing fiber optic cable attached to
a gas pipeline for the detection of gas leakages. The escape of
pressurized gas changes the temperature not only at the point of
the leak, but also at neighboring points, with a gradually decay-
ing magnitude. Consequently, the observed time series will be
highly dependent, with multiple anomalous points that deviate
gradually from the typical behavior, without introducing a large
distance between the anomalies and the typical observations.

Figure 4 illustrates this point, with panel (c) showing a large
collection of time series obtained via independent sensors. For
each series, we compute a vector of features which are then
reduced to two principal components, plotted in panel (a) (The
process of generating a feature space from a collection of time
series is discussed in Algorithm 1). The two isolated points
shown in black correspond to two anomalous series, and have
relatively large nearest-neighbor distances compared to the typ-
ical observations shown in yellow. These large nearest-neighbor
gaps allow the HDoutliers method to identify the two points as
anomalies. In contrast, panel (b) represents a feature space that
corresponds to a collection of time series obtained via sensors
that are dependent. The corresponding multiple parallel time
series plot is given in panel (d). In the example on the right,
Figure 4(b), the anomalous points are not widely separated
from the typical points in the feature space. As the HDoutliers
algorithm identifies anomalies only using the nearest neighbor
distances, and there is no substantial difference between the
anomalous points and the typical points, it would fail to detect
these anomalous points. However, with respect to density we
can see a clear separation between the anomalous points (cor-
responding to the low density region) and the typical points
(which correspond to higher density regions) (Figure 4(b)).
Therefore, density based approaches are more appropriate for us
to choose a suitable anomalous threshold on the feature space.

Thus, we assume that anomalies have very low density values
compared to those of typical points. To determine the appropri-
ate anomalous density threshold, we use EVT taking account
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of the number of observations in order to properly control the
probability of false positives (Clifton, Hugueny, and Tarassenko
2011).

Our proposed method requires a representative dataset of
the system’s typical behavior. Since, by definition, anomalies are
rare in comparison to a system’s typical behavior, the majority
of the available data must represent the given system’s typical
behavior. It is not necessary to have representative samples of all
possible types of typical behaviors of a given system in order for
the proposed algorithm to perform well. The principal idea is to
have a warm-up dataset from which to obtain starting values of
the parameters of the decision model.

3.1. Algorithm of the Proposed Framework for Streaming
Data

Algorithm 1 (Off-line phase: Building a model of the typical
behavior).

Input: Dnorm, a collection of m time series (which can be of
either equal or different lengths) that are generated under the
typical system behavior.

Output: t∗, anomalous threshold.

1. Extract k features (similar to Fulcher 2012 and Hyndman,
Wang, and Laptev 2015) from each time series in Dnorm.
This produces an m × k feature matrix, M. Each row of
M corresponds to a time series and each column of M cor-
responds to a feature type. This feature-based representa-
tion of time series has many advantages. In this work our
features have ergodic properties and are intended to mea-
sure attributes associated with nonstationarity of the time
series (Kang, Hyndman, and Li 2018). Therefore, our pro-
posed framework is well-suited for a large diverse set of
time series. Further, a feature based representation of time
series allows us to compare time series of different lengths
and/or starting points, as we transform time series of any
length or starting point into a vector of features of fixed
size. It also reduces the dimension of the original multi-
variate time series problem via features that encapsulate the
dynamic properties of the individual time series. Of the 14
features (k = 14) used in this work, eight (mean, variance,
changing variance in the remainder (lumpiness), level shift
using a rolling window (lshift), variance change (vchange),
strength of linearity (linearity), strength of curvature (cur-
vature), and strength of spikiness (spikiness) were selected
from Hyndman, Wang, and Laptev (2015). Following Fulcher
(2012), the remaining five features were defined as follows:
the burstiness of the time series (Fano factor; BurstinessFF),
minimum, maximum, the ratio of the interquartile mean to
the arithmetic mean (rmeaniqmean), the moment, and the
ratio of the means of the data that are below and above the
global mean (highlowmu). Figure 5 provides a feature-based
representation of the time series of Figure 1.

2. Since different operations produce features over different
ranges, normalize the columns of the resulting m × k feature
matrix, M. Let M∗ represent the resulting m × k feature
matrix.

3. Apply principal component analysis to the feature matrix M∗.

4. Define a two-dimensional space using the first two prin-
cipal components (PC) from step 3 (similar to Hyndman,
Wang, and Laptev 2015 and Kang, Hyndman, and Smith-
Miles 2017). Hereafter, the resulting two-dimensional PC
space is referred to as the 2D PC space. This 2D PC space
now contains m instances. Each instance on this 2D PC space
corresponds to a time series in Dnorm. We selected only the
first two PCs to maximize our chances of obtaining insights
via visualization (Kang, Hyndman, and Smith-Miles 2017).

5. Estimate the probability density of this 2D PC space using
kernel density estimation with a bivariate Gaussian kernel
(similar to Luca et al. 2014 and Cuppens et al. 2014). Let f̂2
denote the estimated probability density function.

6. Draw a large number N of extremes (as defined in Clifton,
Hugueny, and Tarassenko 2011) from f̂2, and form an empir-
ical distribution of their densities in the �-transform space,
where the �-transform of the extrema x is defined as

�[f2(x)]=
{

(−2ln(f2(x)) − 2ln(2π))1/2, f2(x) < (2π)−1

0, f2(x) ≥ (2π)−1.

The number of instances of which we consider the extremes is
m, that is, the number of time series in the original collection
Dnorm.

7. Fit a Gumbel distribution to the resulting �[f2(x)] values
(Clifton, Hugueny, and Tarassenko 2011; Hugueny 2013).
The Gumbel parameter values are obtained via maximum
likelihood estimation.

8. Determine the anomalous threshold using the corresponding
univariate CDF, Fe

2 in the transformed �-space and thereby
define a contour t∗ in the 2D PC space that describes where
the most extreme of the m typical samples generated from f2
will lie, to some level of probability (e.g., 0.999) (Farrar and
Worden 2012).

As recommended by Jin and Agrawal (2007), a sliding win-
dow model is used to handle the streaming data context. Given
w and t, which represent the length of the sliding window and
the current time point, respectively, our aim is now to identify
time series that are anomalous relative to the system’s typical
behavior. The sliding window keeps moving forward with the
current time point, maintaining its fixed window length w. As a
result, the model ignores all data that were received before time
t − w. Furthermore, each data element expires after exactly w
time steps.

Algorithm 2 (Online phase: Testing newly arrived data).
Input: W[t − w, t], the current sliding window with m time

series. t∗, anomalous threshold from Algorithm 1.
Output: A vector of indices of the anomalous series within

the time window W[t − w, t]
1. Extract k features (the features defined in step 1 of Algo-

rithm 1) from each of the m time series in W[t − w, t]. This
produces an m × k feature matrix Mtest.

2. Project this new feature matrix, Mtest, on to the same the 2D
PC space of the typical data that was built using the time series
in Dnorm. Let Y = y1, y2, . . . , ym represent data points that
are obtained by projecting Mtest on this 2D PC space.

3. Calculate the probability density values of Y with respect to
f̂2 in step 5 of Algorithm 1.
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Figure 4. Left panel corresponding to a collection of time series obtained via independent sensors. Right panel corresponding to a collection of time series obtained via
sensors that are not independent to one another. Black: high values; yellow: low values. Black dots/lines/shapes are corresponding to anomalous event.

Figure 5. Feature based representation of the time series in Figure 1. There are 640 time series (m = 640). Each plot is corresponding to a feature type extracted from the
640 time series (k = 14). Almost all the features have captured the unusual event near the right endpoint of the cable (around 350–550).

4. Find any yj that satisfies f̂2(yj) < t∗, where j = 1, 2, . . . , m,
and mark the corresponding time series (if any) as anomalous
within the time window W[t − w, t].

5. Repeat Steps 1–4 of the online phase for every new time
window that is generated by the current time point, t.

3.2. Handling Nonstationary Environments

The distribution of the typical behavior of a given system can
change over time due to many reasons such as sensor drift, cyclic
variations, seasonal changes, lack of maintenance as sensors are

deployed in harsh, unattended environments, etc. (Moshtaghi
et al. 2014; O’Reilly et al. 2014). In such situations, current
behavior might not be sufficiently representative of future
behavior (Chandola, Banerjee, and Kumar 2009). Therefore,
it is important that our algorithm is adaptive and robust against
these changes of the typical behavior over time. Cuppens et al.
(2014) highlight the importance of this and mention it as a
possible extension of their proposed algorithm.

In the statistics literature, this is known as nonstationar-
ity, and it can occur in many different forms. According to
O’Reilly et al. (2014), if a system has a stationary data dis-
tribution, the model from which to identify anomalies only
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needs to be constructed once. However, in an environment with
a nonstationary data distribution, it is necessary to regularly
update the model to account for changes in the data distribu-
tion. In the econometrics literature, these nonstationary envi-
ronments are sometimes classified as either “structural breaks”
or “time-varying” evolutionary change (Rapach and Strauss
2008). In the machine learning literature, this phenomenon is
known as “concept drift,” and Gama et al. (2014) and Faria et al.
(2016) describe four classes: sudden, incremental, gradual, and
reoccurring.

According to Gama, Sebastião, and Rodrigues (2013), there
are two approaches that can be used to adapt models to deal with
nonstationary data distributions: blind and informed. Under
the blind approach, the decision model is updated at regular
time intervals without considering whether a change has really
occurred or not, as in Zhang et al. (2010). This is done under the
assumption that the data distribution is nonstationary (O’Reilly
et al. 2014). In contrast, the informed approach updates the
decision model only if a change in the data distribution is
detected (Faria et al. 2016). Under this approach the goal is to
identify a time at which the data distribution changes enough to
justify a model update and thereby reduce the computational
complexity of the algorithm. In O’Reilly et al. (2014) these
two approaches are termed “constant update” and “detect and
retrain,” respectively. According to Rodríguez and Kuncheva
(2008), the former strategy is useful with gradual changes while
the latter is useful with abrupt changes. The informed approach
proposed by Zhang et al. (2010), updates the model of the typical
behavior only when an outlier or boundary point is detected,
under the assumption that they can make a significant impact on
the previous model of typical behavior. However, an outlier or
boundary point may not always cause a significant change in the
data distribution. Moshtaghi et al. (2014) declared a change in
the typical behavior when the number of consecutive anomalies
detected by the algorithm exceeds a predefined threshold. Since
this involves a user defined threshold, it is highly subjective and
does not involve a valid probabilistic interpretation.

Following the definition of Dries and Rückert (2009), we
propose an informed approach for early detection of non-
stationarity that uses statistical distance measures to measure
the distance between the distribution of the 2D PC space
generated from the collection of typical time series in which the
latest model is defined and that generated from the typical series
in the current test window. This allows us to detect whether
there is any significant difference between the latest typical
behavior and the new typical behavior. In an occurrence of a
significant change in the data distribution, an update to the
model is done using the more recent data under the assumption
that data are temporally correlated, with correlation increasing
as temporal distance decreases (O’Reilly et al. 2014).

Algorithm 3 (Detection of non-stationarity).

Input: w, length of the moving window. Dt0 , collection of m
time series of length w that are generated under the latest typical
behavior of a given system in which the current decision model
is defined. W, test stream.

Output: A vector of indices of the anomalous series in each
window.

1. Estimate ft0 , the probability density of the 2D PC space
defined by Dt0 , using kernel density estimation with a
bivariate Gaussian kernel.

2. Let W[t −w, t] be the current test window with m time series
of length w. Extract k features (the same features as were
defined in step 1 of Algorithm 1) from each of these m time
series in W[t − w, t]. This produces an m × k feature matrix,
Mtest.

3. Project Mtest, onto the 2D PC space of Dt0 . Let Y t represent
the newly projected data points on the 2D PC space that
correspond to W[t − w, t].

4. Identify the data points on the 2D PC space that correspond
to the typical series in W[t − w, t], using the anomalous
threshold (output of Algorithm 1) defined using Dt0 . Let
Y tnorm(⊆ Y t)} represent the set of data points in 2D PC
space that correspond to the typical series of W[t − w, t], and
W[t − w, t]norm(⊆ W[t − w, t]) be the corresponding set of
typical time series in W[t − w, t].

5. Let p be the proportion of anomalies detected in W[t − w, t].
If p < p∗, where p∗ > 0.5, go to step (a); otherwise, go to step
(b). In the examples given in this manuscript, p∗ is set to 0.5,
assuming the simple “majority rule.” However, the user also
has the option of selecting a cutoff point other than the default
0.5 to maximize the accuracy or incorporate misclassification
costs.

a. Estimate ftt , the probability density function of Y tnorm , using
kernel density estimation with a bivariate Gaussian kernel.
Let f̂tt denote the estimated probability density function.

b. Estimate ftt , the probability density function of Y t , using
kernel density estimation with a bivariate Gaussian kernel.
Let f̂tt denote the estimated probability density function. In
the case of a “sudden” change, all (or most) of the points in
Y t may lie outside the anomalous boundary, defined by Dt0 .
As a result, all (or most) of those points in Y t will be marked
as anomalies, meaning that the majority (> 0.5) is now rep-
resented by the detected anomalies. This could indicate the
start of a new typical behavior. Thus, it is recommended in
this situation that the decision model be updated using all of
the series in the current window (instead of only the typical
series detected, which now represent the minority), thereby
allowing the model to adapt to the changing environment
automatically. This situation is elaborated further using the
synthetic datasets given in Figures 7–9 in Section 4.2.

6. Using a suitable distance measure (e.g., the Kullback–Leibler
distance, the Hellinger distance, the total variation distance,
or the Jensen–Shannon distance), test the null hypothesis
H0 : ft0 = ftt . Since the distributions of these distance
measures are unknown, bootstrap methods can be used to
determine critical points for the test (Anderson, Hall, and
Titterington 1994). However, these computationally intensive
resampling methods may prevent changes in distributions
from being detected quickly, which is a fundamental require-
ment of most of the applications of our streaming data anal-
ysis. Therefore, following Duong, Goud, and Schauer (2012),
we test the null hypothesis H0 : ft0 = ftt here by using
the squared discrepancy measure T = ∫ [ft0(x) − ftt (x)]2dx,
which was proposed by Anderson, Hall, and Titterington
(1994). Since the test statistic based on the integrated squared
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distance between two kernel based density estimates of the
2D PC space is asymptotically normal under the null hypoth-
esis, it allows us to bypass the computationally intensive
calculations that are used by the usual resampling techniques
for computing the critical quantiles of the null distribution.

7. If H0 is rejected and p < p∗, Dt0 is set to W[t − w, t]norm. If
H0 is rejected and p > p∗, Dt0 is set to W[t − w, t].

8. Repeat steps 1–7 for every new time window, that is, gener-
ated by the current time point t.

4. Experiments

The effectiveness of the proposed frameworks for anomaly
detection in the streaming data context is first evaluated
using synthetic data (these datasets are available online in
supplemental materials). When generating these synthetic
datasets, care has been taken to imitate situations such as
applications with multimodal typical classes, different patterns
of non-stationarity, and noisy signals. However, we acknowledge
that the set of examples that we have used for this discussion
is relatively limited, meaning that these examples should be
viewed only as simple illustrations of the proposed algorithms.
We hope that the set of examples will grow over time as the
performances of the proposed algorithms are investigated
further.

We also performed an experimental evaluation of the
accuracy of our proposed framework. All the experiments
(Figures 6–10) were evaluated using common measures for
binary classification such as accuracy, false positive (FP)
rate, and false negative (FN) rate. According to Hossin and
Sulaiman (2015), these measures are not enough to measure the
performance of the binary classification tasks on imbalanced
datasets. Since our example datasets are highly imbalanced
and are negatively dependent (i.e., containing many more
typical points than anomalous points), we also recorded two
additional measures which are recommended for imbalanced
binary classification problems: optimized precision (OP)
which remains relatively stable even in the presence of large
imbalances in the data (Ranawana and Palade 2006), and
positive predictive value (PPV) which measures the probability
of a positively predicted pattern actual being positive (outlier).
Very low PPV values can be observed for certain rolling
windows in Figures 6(d)–10(d), as those windows are free
from true positives (anomalous events) and that lead the
PPV value to become zero for the corresponding moving
windows.

4.1. Detection of Anomalies in the Streaming Data
Scenario

Our leading example shown in Figure 6(a) aims to demonstrate
the application of Algorithms 1 and 2. In this example, it is
assumed that the typical behavior of the given system has a
stationary data distribution and does not change over time. In
other words it is assumed that the training set is drawn from
a stationary data distribution and the testing stream will also
be drawn from the same distribution. Therefore, the dataset is
generated using a Gaussian mixture of two components with

different means but equal variance such that the 2D PC space
generated by the collection of series consists of a bi-modal
typical class throughout the entire period. We make the anomaly
detection process more challenging by generating these time
series with noisy signals. The corresponding side view of the
dataset is given in Figure 6(b), and demonstrates both the nature
of the noisy signals and the progress and structure of the anoma-
lous event in the 400–1000 time period. Due to the assump-
tion of stationarity, the anomalous threshold was set only once
at Fe

2 = 0.999 using W[1, 150]. The anomalies detected in
window W[151, 300] are marked at t = 300 in Figure 6(c),
then the sliding window is moved one step forward to test for
anomalies in W[152, 301]. This process is repeated for every
new time window generated by sliding the window one step
forward. Over time, the grid in Figure 6(c) is filled gradually
from left to right with the output produced by each sliding
window.

Since the anomalous event in this dataset is placed at
t = 400, ideally we would expect Algorithm 1 and 2 to detect it
when the sliding window reaches W[250, 400]. In Figure 6(c),
the anomalies detected are marked in black. As expected,
Algorithms 1 and 2 were able to detect the anomalous event
right from the beginning; that is, as soon as the moving window
reaches W[250, 400]. However, even though the anomalous
event actually ends at t = 1000, as seen in Figure 6(a), the
resulting output in Figure 6(c) shows that it generates an alarm
until t = 1150. This is due to the use of a moving window
of length 150, which means that the sliding window covers at
least part of the anomalous event until it reaches W[1000, 1149].
Thus, the proposed algorithm generates an alarm until it reaches
a window, that is, completely free of the anomalous event; in this
case, it stops generating an alarm once it reaches W[1001, 1151].
This behavior of the proposed algorithm increases the FP rate
immediately after the end of any anomalous event. However,
in applications such as intrusion attacks to secured premises,
gas/oil pipeline leakages, etc., there is no harm in generating an
alarm immediately after an anomalous event ends, as this helps
to capture the attention of the people who are responsible for
taking the necessary action.

A sensor cable attached to a security fence for detecting
intruders is one plausible application that could give rise to this
type of dataset. For example, if one half of the fence is exposed to
sea wind and the other half is protected by trees and buildings,
this will give rise to two typical behaviors for the two halves
of the same cable, as the environmental behavior can have an
impact on the internal structure of the sensor cable. Similar
behavior can be expected from a fiber optic cable laid along
a stream for detecting water contamination. The movement
of the water can have an impact on the internal structure of
the sensor cable, thereby giving rise to a collection of series
with multimodal typical classes at different locations along the
sensor cable. For all the examples discussed under Section 4, the
average accuracy is calculated by taking the ratio of the number
of correctly classified series to the total number of series of each
moving window generated by the current time point. As can be
seen from Figure 6(d), our algorithm shows a 0.992 accuracy
level on average for this dataset (Optimized precision is 0.9904),
while maintaining low FP (0.0076 on average) and FN (0.000 on
average) rates.
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Figure 6. Multimodal typical classes but no nonstationarity. Sliding window length = 150 time points. To initiate the algorithm, W[1, 150] is considered as a representative
sample of the typical behavior. (a) Multivariate time series plot of the collection of time series (m = 300). The upper half of the figure (dark yellow) corresponds to one
typical class, while the lower half of the figure (bright yellow) corresponds to the other typical class. (b) Multivariate time series plot (side view of panel (a)). (c) The output
produced by the sliding window approach. The anomalous threshold was set at Fe

2 = 0.999. (d) Performance of the proposed framework (without any adjustments to
nonstationary environments). Overall optimized precision is 0.9904. Minimum accuracy is 0.956 (at t = 887). Maximum FP rate is 0.044 (at t = 887). Maximum FN rate is
0.014 (at t = 520).

One-class support vector machine (OCSVM) is a commonly
used method in anomaly detection research (Ma and Perkins
2003; Mahadevan and Shah 2009; Rajasegarar et al. 2010).
Raskutti and Kowalczyk (2004) and Zhuang and Dai (2006)
have proposed improved versions of OCSVM for imbalanced
data where the minority class (abnormal class) is specifically
targeted in the classification. However, if minorities are difficult
or expensive to obtained and defined OCSVM for imbalanced
data is not among the best candidates for anomaly detection due
to unavailability of enough instances from the abnormal class
to properly train an OCSVM. Further, Luca, Karsmakers, and
Vanrumste (2014) highlight some limitations with OCSVM
when more than one data point is observed that involves
multiple hypothesis testing. Since our method does not have
a direct competitor, we compared our results with HDoutliers
algorithm. In each test phase HDoutliers algorithm was applied
to the high-dimensional space generated by the 14 features
introduced in step 1 of Algorithm 1. For this dataset in
Figure 6(a) it gives a 0.988 accuracy level on average. The
reported OP of 0.5356 is much lower than that of our method
(Figure 6).

4.2. Anomaly Detection With Nonstationary
Environments

We now investigate the performances of Algorithm 3 together
with Algorithms 1 and 2 using four synthetic datasets. Following
Gama et al. (2014), these synthetic datasets are generated such
that they exhibit the four different types of nonstationarity: sud-
den (a sudden switch from one distribution to another), gradual
(trying to move to the new distribution gradually while going
back and forth between the previous distribution and the new

distribution for some time), reoccurring (a previously seen dis-
tribution reoccurs after some time), and incremental (there are
many, slowly changing intermediate distributions in between
the previous distribution and the new distribution). The corre-
sponding graphical representations of these four cases are given
in Figures 7–10, respectively. In Figure 7(a), the anomalous
event is placed in the 150th to 170th series over the time period
from t = 450 to t = 475. In Figure 8(a), the anomalous event
is placed in the 150th to 170th series over the time period from
t = 850 to t = 875. In the remaining cases (Figures 9 and 10),
the anomalous event is placed in the 150th to 170th series over
the time period from t = 825 to t = 875. In all of these cases,
nonstationary behavior starts to occur from t = 300.

In the first three cases, namely sudden (Figure 7), gradual
(Figure 8), and reoccurring (Figure 9), when the sliding window
reaches the t = 300 time point (i.e., W[201, 300]), the decision
model declares almost all points in that window as anomalies.
As a result, p, the proportion of outliers detected in W[201, 300],
exceeds the user-defined threshold p∗ (set here to 0.5, based on
the simple “majority rule”). Following Step 5(b) of Algorithm 3,
the decision model is now updated using all of the series in that
window, rather than just the detected “typical” series which now
represent the minority. This step allows the decision model to
adjust to the new typical behavior if it continues to exist for
a given period of time. As can be seen in plots (c) and (d) of
Figures 7–9, the decision model initially declares almost all of
the series as anomalies when the non-stationarity starts to occur,
but ceases to claim them as anomalies once the new pattern is
established and continues to exist. After the decision model has
adapted fully to the new distribution, it again starts to produce
results with a high level of accuracy, while maintaining low levels
of FP and FN rates.
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Figure 7. “Sudden”nonstationarity. (a) Multivariate time series plot of the collection of time series (m = 300). “Sudden”nonstationarity starting from t =300. (b) Multivariate
time series plot (side view of panel (a)). (c) The output produced by the sliding window approach. In the test phase the anomalous threshold is updated for nonstationary
behavior according to Algorithm 3. (d) Performance of the proposed framework. Overall optimized precision is 0.9234. Minimum accuracy is 0.0167 (at t = 301). Maximum
FP rate is 0.983 (at t = 301). Maximum FN rate is 0.0033 (at t = 450).

Figure 8. “Gradual” nonstationarity. (a) Multivariate time series plot of the collection of time series (m = 300). “Gradual” nonstationarity starting from t =300. (b)
Multivariate time series plot (side view of panel (a)). (c) The output produced by the sliding window approach. In the test phase the anomalous threshold is updated
for nonstationary behavior according to Algorithm 3. (d) Performance of the proposed framework. Overall optimized precision is 0.9601. Minimum accuracy is 0.0167 (at
t = 301). Maximum FP rate is 0.983 (at t = 301). Maximum FN rate is 0.04 (at t = 850).

In contrast, none of the sliding windows in our analysis of
the dataset given in Figure 10(a) declare more than half of the
series to be outliers. Thus, the model updating process is done
based on step 5(a) of Algorithm 3 using only the typical series
detected for each window. As can be seen in Figure 10(d), our
proposed framework (Algorithms 1–3), shows an average level
of accuracy of 0.969 (overall optimized precision 0.953) for
the entire period, while maintaining low FP (0.031 on average)

and FN (0.000 on average) rates during the time period under
consideration.

Figure 11 illustrates the change in distribution over time via
the p-value of the hypothesis test H0 : ft0 = ftt explained in
Step 6 of Algorithm 3 (top panel) and the anomalous threshold
(bottom panel). In all these cases, Algorithm 3 is able to detect
the occurrence of the non-stationarity right from the beginning
at time point t = 300, while maintaining a very low FP rate
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Figure 9. “Reoccurring” type nonstationarity. (a) Multivariate time series plot of the collection of time series (m = 300). “Reoccurring” type nonstationarity starting from
t = 300. (b) Multivariate time series plot (side view of panel (a)). (c) The output produced by the sliding window approach. In the test phase the anomalous threshold is
updated for nonstationary behavior according to Algorithm 3. (d) Performance of the proposed framework. Overall optimized precision is 0.9426. Minimum accuracy is
0.0067 (at t = 300). Maximum FP rate is 0.993 (at t = 300). Maximum FN rate is 0.0633 (at t = 825).

Figure 10. “Incremental” nonstationarity. (a) Multivariate time series plot of the collection of time series (m = 300). “Incremental” nonstationarity starting from t = 300.
(b) Multivariate time series plot (side view of panel (a)). (c) The output produced by the sliding window approach. In the test phase the anomalous threshold is updated for
nonstationary behavior according to Algorithm 3. (d) Performance of the proposed framework. Overall optimized precision is 0.953. Minimum accuracy is 0.83 (at t = 576).
Maximum FP rate is 0.17 (at t = 576). Maximum FN rate is 0 (at t = 201).

(i.e., claiming the occurrence of nonstationarity when there
is no actual change in the distribution) once the model has
adjusted to the new distribution. As explained in Section 4.2,
the anomalous threshold requires updating only if the null
hypothesis H0 : ft0 = ftt is rejected; that is, if a significant
change in the typical behavior is detected. Thus, our proposed
“informed” approach for the detection of nonstationarity allows
quicker decisions than the “blind” approach, as it removes the
requirement that the decision model be updated at each time
interval.

In all of these examples, the length of the sliding window is
set to 100. In each example, we obtain the initial value for the
anomalous threshold by considering the first window generated
by W[1, 100] as a representative sample of the typical behavior
of the corresponding dataset.

5. Application

We apply our proposed Algorithms 1–3 to datasets obtained
using fiber optic sensor cables attached to a system. (Since the
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Figure 11. Detection of nonstationarity. Top panel: p-value for the hypothesis test H0 : ft0 = ftt . In these examples the significance level is set to 0.1 and is marked by the
horizontal line in each plot. Bottom panel: Anomalous threshold.

data contain commercially sensitive information, this article
does not reveal the actual application). Figure 12(a)–(c) shows
the multiple parallel time series plots of three datasets. Our goal
is to detect these anomalous events (such gas/oil pipeline leak-
ages, intrusion attacks to secured premises, water contaminated
areas, etc.) as soon as they start.

As explained in Section 3, our proposed algorithm requires
a representative sample of the typical behavior of each of these
datasets to obtain a starting value for the anomalous threshold.
However, no representative samples of the corresponding sys-
tems’ typical behaviors are available for these examples. Thus,
we select W[1, 100] for the first two examples (Figure 12(a) and
(b)) and W[1, 50] for the third example (Figure 12(c)) as the
representative sample of the typical behavior to get an initial
value for the anomalous threshold.

Even though no proper representative sample of the typical
behavior was available for any of these cases, our proposed
Algorithm 3 for the detection of nonstationary data distribu-
tions allows the model to adjust to the system’s typical behavior
over time. Figure 13 gives the corresponding p-values for the
hypothesis test H0 : ft0 = ftt explained in Step 6 of Algorithm 3
(top panel) and the anomalous threshold (bottom panel). The
right panel of Figure 12 gives the output from applying Algo-
rithms 1–3. Since there is no “truth” for comparison, graphical
representations are used to evaluate the performances of the
proposed algorithms on these datasets. It can be seen from
Figure 12(d)–(f) that all of the anomalous events have been
captured by the proposed algorithm right from the start. The
resulting outputs also follow the shapes of the actual anomalous
events.

As explained in Section 4.1, here also we observe a hori-
zontal elongation of anomalous events of the resulted outputs
(Figure 12(d)–(f)) as the algorithm produces an alarm until

it reaches a window, that is, completely free of the anomalous
events. Due to this lag effect the anomalous events in the resulted
outputs (Figure 12(d)–(f)) also look wider in comparison to
the corresponding actual anomalous events (Figure 12(a)–(c)).
However, this broadening happens only in the direction of time
and not in the direction of the sensor ID. This lag effect in the
direction of time could be a merit for certain applications such
as detection of intruders into secured premises, as the system
continues to generate an alarm for certain period even after
the actual event that allows to drag the attention of responsible
people for necessary actions.

Although the anomalous events are correctly detected by
our proposed framework, in comparison to Applications 2 and
3 (Figure 12(c) and (d)), Application 1 (Figure 12(a)) shows
some false positives (the isolated extra black stripes). This can
be explained by Theorem 1 and Figure 3. As can be seen in
Figure 12(a), Application 1 contains a small number of time
series (m ≈ 600 time series) in comparison to Applications
2 and 3. According to step 5 of Algorithm 3, in the presence
of non-stationarity, the detected anomalous points are removed
and only the typical points are used to update the anomalous
threshold. If the detected proportion of anomalous series is high
with respect to the total number of series in the collection of
time series, then the new anomalous threshold could be based
on a significantly different EVD (Figure 3) and thereby could
lead to a higher number of false positives. But as m (the number
of series in the collection) increases (as in Applications 2 and
3) the proportion of anomalous series in each window becomes
very small and therefore the change in the EVD is negligible
which reduces the rate of false positives as in Application 2 and
3 (Figure 12(e) and (f)). Therefore, our proposed framework
is particularly well suited for the applications described in Sec-
tion 1, which generate large collections of time series.
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Figure 12. Application (Application 1: m = 640, Application 2: m = 1000, Application 3: m = 2500). Left panel: black: high values; yellow: low values; black shapes are
corresponding to anomalous events. Right panel: black: outliers; gray: typical behavior.

Figure 13. Detection of nonstationarity. Top panel: p-value for the hypothesis test fto = ftt . In these examples the significance level is set to 0.1 and is marked by the
horizontal line in each plot. Bottom panel: Anomalous threshold.

6. Conclusions and Further Work
This article proposes a methodology for the detection of anoma-
lous series within a large collection of streaming time series
using EVT. We define an anomaly here as an observation, that
is, very unlikely given the distribution of the typical behavior
of a given system. We cope with nonstationary data distribu-
tions using sliding window comparisons of feature densities,
thereby allowing the decision model to adjust to the changing
environment automatically as changes are detected. Our pre-
liminary analysis using both synthetic data and data obtained

using fiber optic cables reveals that the proposed framework
(Algorithms 1–3) can work well in the presence of nonstationary
environments and noisy time series from multi-modal typical
classes.

The density estimation in the proposed framework was done
using a bivariate kernel density estimation method. Alternative
methods of density estimation may lead to improved tail estima-
tion, leading to better values for the anomalous threshold. The
test of non-stationarity also depends on the kernel density esti-
mates, and we may not reject stationarity when m is small. Log-
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spline bivariate density estimation (Kooperberg and Stone 1991)
and local likelihood density estimation (Loader 1996) would
be worth considering in attempting to improve tail estimation,
and thereby improve the performance of the algorithm in the
presence of moderate to low values of m. In the current work,
Kolmogorov–Smirnov test for the Gumbel is used to confirm the
goodness of fit (Marshall and Olkin 2007). Alternative methods
as proposed in (Clifton et al. 2014) may guide to better values for
the anomalous threshold in the presence of other sub-classes of
EVT.

The current framework is developed under the assump-
tion that the measurements produced by sensors are one-
dimensional. The rapid advances in hardware technology
has made it possible for many sensors to capture multiple
measurements simultaneously, leading ultimately to a collec-
tion of multidimensional multivariate streaming time-series
data. An important open research problem is to extend our
framework to handle such data. One possibility is to consider
the features extracted from multiple measurements as a point
pattern (Luca, Karsmakers, and Vanrumste 2014; Luca, Clifton,
and Vanrumste 2016; Luca et al. 2018) and then focus on the
problem of identifying the anomalous point patterns generated
by multiple measurements from individual sensors. Another
possibility is to adopt a functional approach where time series of
multiple measurements from individual sensors are represented
by functions and anomalous thresholds are defined over the
function space as in Clifton et al. (2013).

In the current framework, the length of the sliding window
is introduced as a user defined parameter that can be selected
according to the application. Since the proposed framework is
based on the features extracted from individual time series of
a given window, a window size set too small will not be able
to correctly capture the dynamic properties of the time series
and thereby could reduce the performance of the framework. If,
on the other hand, the window is too large, then it will take a
long time to adjust to the new typical behavior in the presence
of non-stationarity. Accordingly, selecting the appropriate input
window size is a trade-off between classification performance
and the time taken to adjust to the new typical behavior. A
possible extension of the proposed framework could involve
ways of optimally selecting the window size to balance this
trade-off.

Supplementary Materials

Data and scripts: Datasets and R code to reproduce all figures in this
article (main.R).

R package oddstream: The oddstream package (Talagala, Hyndman, and
Smith-Miles 2018) consists of the implementation of Algorithms 1–3
as described in this article. Version 0.5.0 of the package was used for
the results presented in the article and is available from Github https://
github.com/pridiltal/oddstream.

R-packages: Each of the R packages used in this article (ggplot2, Wickham
2009; dplyr, Wickham et al. 2017; tibble, Müller and Wickham 2017;
tidyr, Wickham and Henry 2017; reshape, Wickham 2007) are available
online (URLs are provided in the bibliography).
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Abstract Outliers due to technical errors in water-quality data from in situ sensors can reduce data
quality and have a direct impact on inference drawn from subsequent data analysis. However, outlier
detection through manual monitoring is infeasible given the volume and velocity of data the sensors
produce. Here we introduce an automated procedure, named oddwater, that provides early detection of
outliers in water-quality data from in situ sensors caused by technical issues. Our oddwater procedure is
used to first identify the data features that differentiate outlying instances from typical behaviors. Then,
statistical transformations are applied to make the outlying instances stand out in a transformed data
space. Unsupervised outlier scoring techniques are applied to the transformed data space, and an approach
based on extreme value theory is used to calculate a threshold for each potential outlier. Using two data
sets obtained from in situ sensors in rivers flowing into the Great Barrier Reef lagoon, Australia, we show
that oddwater successfully identifies outliers involving abrupt changes in turbidity, conductivity, and river
level, including sudden spikes, sudden isolated drops, and level shifts, while maintaining very low false
detection rates. We have implemented this oddwater procedure in the open source R package oddwater.

1. Introduction
Water-quality monitoring traditionally relies on water samples collected manually. The samples are then
analyzed within laboratories to determine the water-quality variables of interest. This type of rigorous lab-
oratory analysis of field-collected samples is crucial in making natural resources management decisions
that affect human welfare and environmental conditions. However, with the rapid advances in hardware
technology, the use of in situ water-quality sensors positioned at different geographic sites is becoming an
increasingly common practice used to acquire real-time measurements of environmental and water-quality
variables. Though only a subset of the required water-quality variables can be measured by these sensors,
they have several advantages. Their ability to collect large quantities of data and to archive historic records
allows for deeper analysis of water-quality variables to improve understanding about field conditions and
water-quality processes (Glasgow et al., 2004). Near-real-time monitoring also allows operators to identify
and respond to potential issues quickly and thus manage the operations efficiently. Further, the use of in situ
sensors can greatly reduce the labor involved in field sampling and laboratory analysis.

Water-quality sensors are exposed to changing environments and extreme weather conditions and thus are
prone to errors, including failure. Automated detection of outliers in water-quality data from in situ sensors
has therefore captured the attention of many researchers both in the ecology and data science communities
(Archer et al., 2003; Hill et al., 2009; Koch & McKenna, 2010; McKenna et al., 2007; Raciti et al., 2012). This
problem of outlier detection in water-quality data from in situ sensors can be divided into two subtopics
according to their focus: (1) identifying errors in the data due to issues unrelated to water events per se, such
as technical aberrations, that make the data unreliable and untrustworthy and (2) identifying real events
(e.g., rare but sudden spikes in turbidity associated with rare but sudden high-flow events). Both problems
are equally important when making natural resource management decisions that affect human welfare and

RESEARCH ARTICLE
10.1029/2019WR024906

Key Points:
• Feature-based procedure starts by

applying different statistical transfor-
mations to data to highlight outliers
in high-dimensional space

• Density- and distance-based
unsupervised outlier scoring
techniques were applied to detect
outliers due to technical issues with
the sensors

• An approach based on extreme value
theory was then used to calculate
outlier thresholds

Supporting Information:
• Supporting Information S1

Correspondence to:
P. D. Talagala,
dilini.talagala@monash.edu

Citation:
Talagala, P. D., Hyndman, R. J.,
Leigh, C., Mengersen, K., &
Smith-Miles, K. (2019). A
feature-based procedure for detecting
technical outliers in water-quality data
from in situ sensors. Water Resources
Research, 55. https://doi.org/10.1029/
2019WR024906

Received 1 FEB 2019
Accepted 16 SEP 2019
Accepted article online 12 OCT 2019

©2019. American Geophysical Union.
All Rights Reserved.

TALAGALA ET AL. 1



Water Resources Research 10.1029/2019WR024906

environmental conditions. Problem 1 can also be considered as a data preprocessing phase before addressing
Problem 2.

In this work we focus on Problem 1, that is, detecting unusual measurements caused by technical errors
that make data unreliable and untrustworthy and affect performance of any subsequent data analysis under
Problem 2. According to Yu (2012), the degree of confidence in the sensor data is one of the main require-
ments for a properly defined environmental analysis procedure. For instance, researchers and policy makers
are unable to use water-quality data containing technical outliers with confidence for decision making and
reporting purposes because erroneous conclusions regarding the quality of the water being monitored could
ensue, leading, for example, to inappropriate or unnecessary water treatment, land management, or warn-
ing alerts to the public (Kotamäki et al., 2009; Rangeti et al., 2015). Missing values and corrupted data can
also have an adverse impact on water-quality model building and calibration processes (Archer et al., 2003).
Early detection of these technical outliers will limit the use of corrupted data for subsequent analysis. For
instance, it will limit the use of corrupted data in real-time forecasting and online applications such as online
drinking water-quality monitoring and early warning systems (Storey et al., 2011), predicting algal bloom
outbreaks leading to fish kill events and potential human health impacts, forecasting water level and cur-
rents, and so on (Archer et al., 2003; Glasgow et al., 2004; Hill & Minsker, 2006). However, because data
arrive near continuously at high speed in large quantities, manual monitoring is highly unlikely to be able
to capture all the errors. These issues have therefore increased the importance of developing automated
methods for early detection of outliers in water-quality data from in situ sensors (Hill et al., 2009).

Different statistical approaches are available to detect outliers in water-quality data from in situ sensors.
For example, Hill and Minsker (2006) addressed the problem of outlier detection in environmental sensors
using regression-based time series models. In this work they addressed the scenario as a univariate problem.
Their prediction models are based on four data-driven methods: naive, clustering, perceptron, and Artificial
Neural Networks (ANNs). Measurements that fell outside the bounds of an established prediction interval
were declared as outliers. They also considered two strategies: anomaly detection and anomaly detection and
mitigation for the detection process. Anomaly detection and mitigation replaces detected outliers with the
predicted value prior to the next predictions, whereas anomaly detection simply uses the previous measure-
ments without making any alteration to the detected outliers. These types of data-driven methods develop
models using sets of training examples containing a feature set and a target output. Later, Hill et al. (2009)
addressed the problem by developing three automated anomaly detection methods using dynamic Bayesian
networks and showed that dynamic Bayesian network-based detectors, using either robust Kalman filtering
or Rao-Blackwellized particle filtering, outperformed that of Kalman filtering.

Another common approach for detecting outliers in environmental sensor data is based on residuals (the
differences between predicted and actual values). Due to the ability of ANNs to model a wide range of com-
plex nonlinear phenomena, Moatar et al. (1999) used ANN techniques to detect anomalies such as abnormal
values, discontinuities, and drifts in pH readings. After developing the pH model, the Student t test and the
cumulative Page-Hinkley test were applied to detect changes in the mean of the residuals to detect measure-
ment error occurring over short periods of time. The work was later expanded to a multivariate scenario with
some additional water-quality variables including dissolved oxygen, electrical conductivity, pH, and tem-
perature (Moatar et al., 2001). Their proposed algorithm used both deterministic and stochastic approaches
for the model building process. Observed data were then compared with the model forecasts using a set of
classical statistical tests to detect outliers, demonstrating the effectiveness and advantages of the multimodel
approach. Later, Archer et al. (2003) proposed a method to detect failures in the water-quality sensors due to
biofouling based on a sequential likelihood ratio test. Their method also had the ability to provide estimates
of biofouling onset time, which was useful for the subsequent step of outlier correction.

A common feature of all of the above methods is that they are usually employed in a supervised or semisu-
pervised context and thus require training data prelabeled with known outliers or data that are free from the
anomalous features of interest. In many cases, however, not all the possible outliers are known in advance
and can arise spontaneously as new outlying behaviors during the test phase. In such situations, supervised
methods may fail to detect those outliers. Semisupervised methods are also unsuitable for certain applica-
tions due to the unavailability of training data containing only typical instances that are free from outliers
(Goldstein & Uchida, 2016). The data sets that we consider in this paper suffer from both of these limitations
highlighting the need for a more general approach.
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Figure 1. Unsupervised feature-based procedure, named oddwater procedure , for outlier detection in water-quality data from in situ sensors. Squares
represents the main steps involved. Circles correspond to input and output.

This paper develops a method for detecting technical outliers in water-quality data derived from in situ
sensors. Prior work by Leigh et al. (2019) emphasizes the importance of different anomaly types and end
user needs and provides the starting point for constructing a framework for automated anomaly detec-
tion in high-frequency water-quality data from in situ sensors. Their work briefly introduced unsupervised
feature-based methods for detecting technical outliers in such data. The present paper differs substantially
from Leigh et al. (2019) as (1) the unsupervised feature-based procedure we present for detecting technical
outliers in high-frequency water-quality data measured by in situ sensors is its sole focus , (2) the unsu-
pervised feature-based procedure is fully elaborated in both details and depth, and (3) the experimental
results are enhanced through emphasis on the multivariate capabilities of the unsupervised feature-based
procedure. Furthermore, we focus on outliers involving abrupt changes in value, including sudden spikes,
sudden isolated drops, and level shifts (high-priority outliers as described in Leigh et al., 2019) rather than
the broader suite considered by Leigh et al. (2019).

First, we present in detail our unsupervised feature-based procedure that provides early detection of tech-
nical outliers in water-quality data from in situ sensors. Rule-based methods are also incorporated into the
procedure to flag occurrences of impossible, out-of-range, and missing values. Second, we provide a com-
parative analysis of the efficacy and reliability of both density-based and nearest neighbor distance-based
outlier scoring techniques. Third, we introduce an R (R Core Team, 2018) package, oddwater (Talagala
& Hyndman, 2019b), that implements the feature-based procedure and related functions. Further, to facili-
tate reproducibility and reusability of the results presented in this paper, we have made all of the code and
associated data sets available on zenodo (Talagala & Hyndman, 2019a).

Our feature-based procedure has many advantages: (1) It can take the correlation structure of the
water-quality variables into account when detecting outliers; (2) it can be applied to both univariate and
multivariate problems; (3) the outlier scoring techniques that we consider are unsupervised, data-driven
approaches and therefore do not require training data sets for the model building process and can be
extended easily to other time series from other sites; (4) the outlier thresholds have a probabilistic inter-
pretation as they are based on extreme value theory; (5) the approach has the ability to deal with irregular
(unevenly spaced) time series; and (6) it can easily be extended to streaming data. In contrast to a batch
scenario, which assumes that the entire data set is available prior to the analysis with the focus on detect-
ing complete events, the streaming data scenario gives many additional challenges due to high velocity,
unbounded, nonstationary data with incomplete events (Hill et al., 2009; Talagala, Hyndman, Smith-Miles,
Kandanaarachchi, et al., 2019). In this paper, although our oddwater procedure is introduced as a batch
method, it can easily be extended to streaming data such that it can provide near-real-time support using a
sliding window technique.

2. Materials and Methods
Our unsupervised feature-based procedure for detecting outliers in water-quality data from in situ sensors
has six main steps (Figure 1), and the structure of this section is organized accordingly. For easy refer-
ence, we named our unsupervised feature-based procedure as oddwater procedure, which stands for Outlier
Detection in Data from WATER-quality sensors.

2.1. Study Region and Data
To evaluate the effectiveness of our oddwater procedure, we considered a challenging real-world problem
of monitoring water-quality using in situ sensors in a natural river system. This is challenging because

TALAGALA ET AL. 3



Water Resources Research 10.1029/2019WR024906

the system is susceptible to a wide range of environmental, biological, and human impacts that can lead
to variation in water quality and affect the technological performance of the sensors. For comparison, we
evaluated two study sites, Sandy Creek and Pioneer River, both in the Mackay-Whitsunday region of north-
eastern Australia (Mitchell et al., 2005). These two rivers flow into the Great Barrier Reef lagoon and have
catchment areas of 1,466 and 326 km2, respectively. In this region, the wet season typically occurs from
December to April and is dominated by higher rainfall and air temperatures, whereas the dry season typ-
ically occurs from May to November with lower rainfall and air temperatures (McInnes et al., 2015). The
sensors at these two sites are housed within monitoring stations on the river banks. Water is pumped from
the rivers to the stations approximately every 60 or 90 min to take measurements of various water-quality
variables that are logged by the sensors. Here we focused on three water-quality variables: turbidity (NTU),
conductivity (strictly, specific conductance at 25 ◦C; μS/cm), and river level (m).

The water-quality data obtained from in situ sensors located at Sandy Creek were available from 12 March
2017 to 12 March 2018. The data set included 5,402 recorded points. These time series were irregular (i.e., the
frequency of observations was not constant) with a minimum time gap of 10 min and a maximum time gap of
around 4 hr. The data obtained from Pioneer River were available from 12 March 2017 to 12 March 2018 and
included 6,303 recorded points. Many missing values were observed during the initial part of all three series,
that is, turbidity, conductivity, and river level, at Pioneer River. With the help of a group of water-quality
experts who were familiar with the study region and with over 40 years of combined knowledge of river
water quality, observations were labeled as outliers or not, with the aim of evaluating the performance of the
procedure. Our Shiny web application available through the oddwater R package was used during the label-
ing process to pinpoint observations and provide greater visual insight into the data. Using this interactive
visualization tool and expert knowledge, the ground-truth labels were decided by consensus vote.

2.2. Apply Rule-Based Approaches
Following Thottan and Ji (2003), we incorporated simple rules into our oddwater procedure to detect outliers
such as out-of-range values, impossible values (e.g., negative values), and missing values and labeled them
prior to applying the statistical transformations introduced in section 2.4.

If a sensor reading was outside the corresponding sensor detection range, it was marked as an outlier. Neg-
ative readings are also inaccurate and impossible for river turbidity, conductivity, and level. We therefore
imposed a simple constraint on the algorithm to filter these values and mark them as outliers. Missing values
are also frequently encountered in water-quality sensor data (Rangeti et al., 2015). We detected missing val-
ues by calculating the time gaps between readings. If a gap exceeded the maximum allowable time difference
between any two consecutive readings, the corresponding time stamp was then marked as an outlier due to
missingness. Here the maximum allowable time difference was set at 180 min, given that the water-quality
measurements were set to be taken at most every 90 min (measurements were often taken at higher fre-
quencies during high-flow events, e.g., every 10–15 min, and occasionally as one-off measurements at times
of interest to water managers).

2.3. Identify Data Features
After labeling out-of-range, impossible, and missing values as outliers, further investigation was done with
the remaining observations. We initiated this investigation by identifying common characteristics or patterns
of the possible types of outliers in water-quality data that would differentiate them from typical instances or
events. For turbidity, for example, “extreme” deviations upward are more likely than deviations downward
(Panguluri et al., 2009). The opposite is true for conductivity (Tutmez et al., 2006). Further, in a turbidity time
series, a sudden isolated upward shift (spike) is a point outlier (a single observation that is surprisingly large,
independent of the neighboring observations; Goldstein & Uchida, 2016), but if the sudden upward shift is
followed by a gradually decaying tail, then it becomes part of the typical behavior. For river level, rates of rise
are often fast compared with fall rates. In general, isolated data points that are outside the general trend are
outliers. Further, natural water processes under typical conditions generally tend to be comparatively slow;
sudden changes therefore mostly correspond to outlying behaviors. Hereafter, these characteristics will be
referred to as “data features.”

2.4. Apply Statistical Transformations
After identifying the data features, different statistical transformations were applied to the time series to
highlight different types of outliers focusing on sudden isolated spikes, sudden isolated drops, sudden shifts,
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Table 1
Transformation Methods Used to Highlight Different Types of Outliers in Water-Quality Sensor Data

Data feature Requirement Possible transformation Formula
High variability of the data Stabilize the variance across Log transformation log(𝑦t)

time series and make the
patterns more visible (e.g.,
level shifts)

Isolated spikes (in both positive Separate isolated spikes from First difference log(𝑦t∕𝑦t−1)
and negative directions) that the general upward/downward
are outside the general trend trend patterns
are considered as outliers.
Under typical behavior, sudden
upward (downward) shifts
are possible for turbidity
(conductivity), but their
rate of fall (rise) is generally
slower than the rate of rise
(fall).
Missing values in the data. Identify missing values Time gap Δt
The maximum allowable time
difference between
observations is 180 min.
Data are unevenly spaced Handle irregular time series First derivative xt = log(𝑦t∕𝑦t−1)∕Δt
time series. (Data points with

large gaps will get
small value. Large
gaps indicate the
lack of information to
make a claim
regarding the points.)

Extreme upward trend in Separate spikes from typical Turbidity or level min{xt , 0}
turbidity and level under upward trends.
typical behavior.
Extreme downward trend Separate isolated drops from Conductivity max{xt , 0}
in conductivity under typical typical downward trends.
behavior.
High or low variability in the Detect change points in Rate of change (yt − yt−1)∕yt

data. variance.
Natural processes are Detect sudden changes (both Relative difference yt − (1∕2)(yt−1 + yt+1)
comparatively slow. Sudden upward and downward
changes (upward or downward movements)
movements) typically
correspond to outlying instances.

Note. Let Yt represent an original series from one of the three variables: turbidity, conductivity, and level at time t.
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Figure 2. Bivariate relationships between transformed series of turbidity and conductivity measured by in situ sensors at Sandy Creek. In each scatter plot,
outliers determined by water-quality experts are shown in red, while typical points are shown in black. Neighboring points are marked in green. (a) Original
series, (b) log transformation, (c) first difference, (d) first derivative, (e) one-sided derivative, (f) rate of change, (g) relative difference (for original series), and
(h) relative difference (for log-transformed series). In each scatter plot, data are normalized such that they are bounded by the unit hypercube.

and clusters of spikes (Table 1) that deviate from the typical characteristics of each variable (Leigh et al.,
2019).

In this work, we considered the outlier detection problem in a multivariate setting. By applying different
transformations on water-quality variables, we converted our original problem of outlier detection in the
temporal context to a nontemporal context through a high-dimensional data space with three dimensions
defined by the three variables: turbidity, conductivity, and river level. Different transformations were applied
on different axes of the three-dimensional data space resulting in different data patterns. We evaluated the
performance of the transformations (Dang & Wilkinson, 2014) using the maximum separability of the two
classes: outliers and typical points in the three-dimensional data space. To provide a better visual illustration,
in Figure 2, we present only the two-dimensional data space defined by turbidity and conductivity; however,
our actual data space is three dimensional. In this work our focus was to evaluate whether each point in
time is an outlier or not such that an alarm could be triggered in the presence of an outlier. However, it
was not our interest to investigate which variable(s) is (are) responsible for the outlier in time. Therefore, in
Figure 2, a point is marked as an outlier in the two-dimensional space if at least one variable corresponding
to that point was labeled as an outlier by the water-quality experts.

When the transformation involves both the current value, Yt, and the lagged value, Yt−1 (as in the first dif-
ference and first derivative), both the outlier and immediate neighbor are highlighted in the transformed
space. For example, if an outlier occurs at time point t, then the two values derived from the first deriva-
tive transformation ((yt − yt−1) and (yt+1 − yt)) are highlighted as outlying values, because they both involve
yt. Therefore, each outlying instance is now represented by two consecutive values under the first deriva-
tive or first difference transformation. As a result, one outlying instance is now represented by two points
in the transformed data space (Figures 2c and 2d). The goal of the one-sided derivative transformation is
to select only one high value as a representative point for each outlying instance. However, the high values
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obtained could correspond to either the actual outlying time point or the neighboring time point, because
each transformed value is derived from two consecutive observations. For example, in the data obtained from
Sandy Creek, the one-sided derivative transformation (Figure 2e) clearly separates all of the target outlying
instances from the typical points using only one point for each outlying instance, shown as either red trian-
gles (corresponding to outliers) or green squares (corresponding to the immediate neighbors of outliers). The
second representative member of each outlying instance mingles with the typical points, allowing only one
point to standout on behalf of the corresponding outlying instance. If the primary focus of detecting tech-
nical outliers is to alert managers of sensor failures, then it will be inconsequential if the alarm is triggered
either at the actual time point corresponding to the outlier or at the next immediate time point. However, if
the purpose is different, such as producing a trustworthy data set by labeling or correcting detected outliers,
then additional conditions should be imposed to ensure that the time points declared as outliers correspond
to the actual outlying points and not to their immediate neighboring points.

2.5. Calculate Outlier Scores
We considered eight commonly used, unsupervised outlier scoring techniques for high-dimensional
data involving nearest neighbor distances or densities of the observations and applied them to the
three-dimensional data space defined by the three variables: turbidity, conductivity, and river level. Methods
based on k-nearest neighbor distances (where k ∈ Z+) were the NN-HD algorithm (details of this algorithm,
which was inspired by HDoutliers algorithm, Wilkinson, 2018, are provided in supporting information S1),
KNN-AGG and KNN-SUM algorithms (Angiulli & Pizzuti, 2002; Madsen, 2018), and Local Distance-based
Outlier Factor (LDOF) algorithm (Zhang et al., 2009), which calculate the outlier score under the assump-
tion that any outlying point (or outlying clusters of points) in the data space is (are) isolated; therefore,
the outliers are those points having the largest k-nearest neighbor distances. In contrast, the density-based
Local Outlier Factor (LOF; Breunig et al., 2000), Connectivity-based Outlier Factor (COF; Tang et al., 2002),
Influenced Outlierness (INFLO; Jin et al., 2006), and Robust Kernel-based Outlier Factor (Gao et al., 2011)
algorithms calculate an outlier score based on how isolated a point is with respect to its surrounding neigh-
bors, and therefore, the outliers are those points having the lowest densities (see supporting information S1
for detail). Each algorithm assigns outlier scores for all of the data points in the high-dimensional space that
describe the degree of outlierness of the individual data points such that outliers are those points having the
largest scores (Kriegel et al., 2010; Shahid et al., 2015). This step allowed us to set a data-driven threshold
(section 2.6) for the outlier scores to select the most relevant outliers (Chandola et al., 2009).

2.6. Calculate Outlier Threshold
Following Schwarz (2008), Burridge and Taylor (2006), and Wilkinson (2018), we used extreme value theory
to calculate a separate outlier threshold for each set of outlier scores calculated using a given unsupervised
outlier scoring technique (introduced in section 2.5) and assign a bivariate label for each point either as an
outlier or typical point. Thus, eight outlier scoring techniques resulted eight different thresholds for a given
data set. The threshold calculation process started from a subset of data containing 50% of observations
with the smallest outlier scores, under the assumption that this subset contained the outlier scores corre-
sponding to typical data points and the remaining subset contained the scores corresponding to the possible
candidates for outliers. Following Weissman's (1978) spacing theorem, the algorithm then fit an exponen-
tial distribution to the upper tail of the outlier scores of the first subset and computed the upper 1 − 𝛼 (in
this work 𝛼 was set to 0.05) points of the fitted cumulative distribution function, thereby defining an outly-
ing threshold for the next outlier score. From the remaining subset, the algorithm then selected the point
with the smallest outlier score. If this outlier score exceeded the cutoff point, all the points in the remain-
ing subset were flagged as outliers and searching for outliers ceased. Otherwise, the point was declared as
a nonoutlier and was added to the subset of the typical points. The threshold was then updated by includ-
ing the latest addition. The searching algorithm continued until an outlier score was found that exceeded
the latest threshold (Schwarz, 2008). We performed this threshold calculation under the assumption that
the distribution of outlier scores produced by each of the eight unsupervised outlier scoring techniques for
high-dimensional data was in the maximum domain of attraction of the Gumbel distribution, which con-
sists of distribution functions with exponentially decaying tails including the exponential, gamma, normal,
and log-normal (Embrechts et al., 2013).

2.7. Performance Evaluation
In this paper, we focused on high-priority outliers as described in Leigh et al. (2019) in which importance
ranking of different outlier types was done by taking into account the end user goals and the potential impact
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of outliers going undetected. However, it is beyond the scope of this paper to discuss in detail the different
types of outliers and their importance ranking. For more detail, we refer the reader to Leigh et al. (2019).
We performed an experimental evaluation on the accuracy and computational efficiency of our oddwater
procedure with respect to the eight outlier scoring techniques using the different transformations (Table 1)
and different combinations of variables (turbidity, conductivity, and river level). These experimental com-
binations were evaluated with respect to common measures for binary classification based on the values of
the confusion matrix, which summarizes the false positives (FP; i.e., when a typical observation is misclas-
sified as an outlier), false negatives (FN; i.e., when an actual outlier is misclassified as a typical observation),
true positives (TP; i.e., when an actual outlier is correctly classified), and true negatives (TN; i.e., when an
observation is correctly classified as a typical point). In this work, FP and FN are equally undesirable as FP
may demand unnecessary and/or expensive actions for corrections and refinement, and FN greatly reduce
confidence in the data and results derived from them. The measures we considered include accuracy

accurac𝑦 = (TP + TN)∕(TP + FP + FN + TN), (1)

which explains the overall effectiveness of a classifier; and geometric mean

GM =
√

TP ∗ TN, (2)

which explains the relative balance of TP and TN of the classifier (Sokolova & Lapalme, 2009). According
to Hossin and Sulaiman (2015), these measures are not enough to capture the poor performance of the clas-
sifiers in the presence of imbalanced data sets where the size of the typical class (positive class) is much
larger than the outlying class (negative class). The data sets obtained from in situ sensors were highly imbal-
anced and negatively dependent (i.e., containing many more typical observations than outliers). Therefore,
we used three additional measures that are recommended for imbalanced problems with only two classes
(i.e., typical and outlying) by Ranawana and Palade (2006): the negative predictive value

NPV = TN∕(FN + TN), (3)

which measures the probability of a negatively predicted pattern actually being negative; positive predictive
value

PPV = TP∕(TP + FP), (4)

which measures the probability of a positively predicted pattern actually being positive; and optimized pre-
cision, which is a combination of accuracy, sensitivity, and specificity metrics (Ranawana & Palade, 2006).
The optimized precision is calculated as

OP = P − RI, (5)

where
P = SpNn + SnNp, (6)

RI = |Sp − Sn|∕(Sp + Sn), (7)

Sp = TN∕(TN + FP), (8)

Sn = TP∕(TP + FN), (9)

and Np and Nn represent the proportion of positives (outliers) and negatives (typical) within the entire
data set.

To evaluate the performance of our oddwater procedure, we incorporated additional steps after detecting
the outlying time points using the outlying threshold based on extreme value theory. This was done because
the time points declared as outliers by the outlying threshold could correspond to either the actual outlying
points or to their neighbors. Once the time points were declared as outliers, the corresponding points in the
three-dimensional space were further investigated by comparing their positions with respect to the median
of the typical points declared by the oddwater procedure. This step allowed us to find the most influential
variable for each outlying point. For example, in Figure 2e, the isolated point in the first quadrant is an
outlier in the two-dimensional space due to the outlying behavior of the conductivity measurement. This
allowed us because the deviation of this point from the median of the typical points (around (0, 0)) happens

TALAGALA ET AL. 8



Water Resources Research 10.1029/2019WR024906

primarily along the conductivity axis. In contrast, the four isolated points in the third quadrant are outliers
due to the outlying behavior of the turbidity measurement because the deviations of the four points from
the median of the typical points (around (0, 0)) happen primarily along the turbidity axis. After detecting the
most influential variable for each outlying instance in the three-dimensional space, further investigations
were carried out separately for each individual outlying instance with respect to the most influential variable
detected. This allowed us to see whether the outlying instance was due to a sudden spike or a sudden drop
by comparing the direction of the detected points with respect to the mean of its two immediate surrounding
neighbors and itself. These additional steps in the oddwater procedure allowed us to trigger an alarm at the
actual outlying point in time if the neighboring points were declared as outliers instead of the actual outliers.
However, we acknowledge that these additional steps select only the most influential variable, not all of
the influential variables in the presence of more than one influential variable. The additional steps were
incorporated solely to measure the performance of the oddwater procedure. In practice, because the goal is
to trigger an alarm in an occurrence of a technical outlier, it is inconsequential if the alarm is triggered either
at the actual time point or at the immediate neighboring time points corresponding to the actual outlier. As
such, users of the oddwater procedure can ignore these additional steps.

Using the outlier threshold, our oddwater procedure assigns a bivariate label (either as outlier or typical
point) to each observed time point and thereby creates a vector of predicted class labels. That is, if a time point
is declared as an outlier by oddwater procedure, then that could be due to at least one variable in the data
set. We also declared each time point as an outlier or not based on the labels assigned by the water-quality
experts. At a given time point, if at least one variable was labeled as an outlier by the water-quality experts,
then the corresponding time point was marked as an outlier, thereby creating a vector of ground-truth labels.
Then, the performance measures were calculated based on these two vectors of ground-truth labels and
predicted class labels. Thus, this performance evaluation was done with respect to the algorithm's ability to
label a point in time as an outlier or not (i.e., a point in time is an outlier if the observed value for any one
or more of the three variables measured at that point in time are outliers).

2.8. Software Implementation
The oddwater procedure was implemented in the open source R package oddwater (Talagala & Hyndman,
2019b), which provides a growing list of transformation and outlier scoring methods for high-dimensional
data together with visualization and performance evaluation techniques. In addition to the implementa-
tions available through oddwater package, DDoutlier package (Madsen, 2018) was also used for outlier
score calculations. We measured the computation time (mean execution time) using the microbench-
mark package (Mersmann, 2018) for different combinations of algorithms, transformations, and variable
combinations on 28 core Xeon-E5-2680-v4 @ 2.40GHz servers. We also developed an R Shiny web applica-
tion (available via oddwater R package) to provide interactive visual analytic tools to gain greater insight
into the data and perform preliminary investigations of the relationships between water-quality variables at
different sites. To facilitate reproducibility of the results presented herein, we have archived a snapshot of
version 0.7.0 of the R package on zenodo (Talagala & Hyndman, 2019a) along with the code and data sets
used. The latest version and ongoing development of the oddwater R package are available from Github
(https://github.com/pridiltal/oddwater).

3. Results
3.1. Analysis of Water-Quality Data From In Situ Sensors at Sandy Creek
A negative relationship was clearly visible between the water-quality variables turbidity and conductivity
and also between conductivity and river level measured by in situ sensors at Sandy Creek (Figures 3a(i),
3b(i), 3c(i)), 4a, and 4c)). Further, no clear separation was observed between the target outliers and the typi-
cal points in the original data space (Figures 4a–4c). However, a clear separation was apparent between the
two sets of points once the one-sided derivative transformation (an appropriate transformation for unevenly
spaced data) was applied to the original series (Figures 4d–4f, 3a(ii), 3b(ii), and 3c(ii)). KNN-AGG and
KNN-SUM algorithms performed on all three water-quality variables together using the one-sided derivative
transformation gave the highest OP (0.83) and NPV (0.9996) values, which are the most recommended mea-
surements for negatively dependent data where the focus is more on sensitivity (the proportion of positive
patterns being correctly recognized as being positive) than specificity (Ranawana & Palade, 2006).

Based on OP values, the one-sided derivative transformation outperformed the first derivative transfor-
mation (Table 2, Rows 1 and 2 compared to Rows 3 and 4). Further, the distance-based outlier detection
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Figure 3. Time series for (a(i)) turbidity (NTU), (b(i)) conductivity (μS/cm), and (c(i)) river level (m) measured by in situ sensors at Sandy Creek. Transformed
series (one-sided derivatives) of (a(ii)) turbidity (NTU), (b(ii)) conductivity (𝜇S/cm), and (c(ii)) river level (m) measured by in situ sensors at Sandy Creek. In
each plot, outliers determined by water-quality experts are shown in red, while typical points are shown in black. Neighboring points are marked in green.
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Figure 4. (a–c) Bivariate relationships between original water-quality variables (turbidity [NTU], conductivity [μS/cm], and river level [m]) measured by in situ
sensors at Sandy Creek. (d–f) Bivariate relationships between transformed series (one-sided derivative) of turbidity (NTU), conductivity (μS/cm), and river level
(m) measured by in situ sensors at Sandy Creek. In each scatter plot, outliers determined by water-quality experts are shown in red, while typical points are
shown in black. Neighboring points are marked in green.

algorithms NN-HD, KNN-AGG, and KNN-SUM outperformed all others (Table 2, Rows 1–10 compared to
Rows 11–48). Among the three methods, the performance of k-nearest neighbor distance-based algorithms
were only slightly higher (OP = 0.83) than the NN-HD algorithm (OP = 0.80), which is based only on the
nearest neighbor distance. The algorithm combinations with the two highest OP values also had highest
NPV (0.9996) and PPV (approximately 0.83). Furthermore, considering river level for the detection of out-
liers in the water-quality sensors slightly improved the performance (OP = 0.83). Among the analysis with
transformed series, LOF with the first derivative transformation performed the least well (OP = 0.25). For
most of the outlier detection algorithms (KNN-SUM, KNN-AGG, NN-HD, COF, LOF, and INFLO), the poor-
est performances were associated with the untransformed original series, having the lowest OP and NPV
values, highlighting how data transformation can improve the ability of outlier detection algorithms while
maintaining low false detection rates.

The three outlier detection algorithms that demonstrated the highest level of accuracy (NN-HD, KNN-AGG,
and KNN-SUM) also outperformed the others with respect to computational time. NN-HD algorithm
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Table 2
Performance Metrics of Outlier Detection Algorithms Performed on Multivariate Water-Quality Time Series Data (T = Turbidity; C = Conductivity; L = River Level)
From In Situ Sensors at Sandy Creek, Arranged in Descending Order of OP Values

i Variables Transformation Method Accuracy GM OP PPV NPV Time (mean)
1 T-C-L One-sided derivative KNN-AGG 0.9994 164.23 0.83 0.83 0.9996 404.0
2 T-C-L One-sided derivative KNN-SUM 0.9994 164.23 0.83 0.83 0.9996 186.8
3 T-C First derivative NN-HD 0.9991 146.87 0.80 0.57 0.9996 45.0
4 T-C First derivative KNN-AGG 0.9989 146.86 0.80 0.50 0.9996 415.8
5 T-C One-sided derivative NN-HD 0.9996 146.91 0.80 1.00 0.9996 112.9
6 T-C One-sided derivative KNN-AGG 0.9994 146.90 0.80 0.80 0.9996 411.7
7 T-C One-sided derivative KNN-SUM 0.9994 146.90 0.80 0.80 0.9996 190.4
8 T-C-L First derivative KNN-AGG 0.9993 127.22 0.60 1.00 0.9993 404.4
9 T-C-L First derivative KNN-SUM 0.9993 127.22 0.60 1.00 0.9993 188.9
10 T-C First derivative KNN-SUM 0.9993 103.88 0.50 1.00 0.9993 189.5
11 T-C First derivative LDOF 0.9991 103.87 0.50 0.67 0.9993 17,444.7
12 T-C One-sided derivative LDOF 0.9991 103.87 0.50 0.67 0.9993 17,253.8
13 T-C-L First derivative NN-HD 0.9991 103.87 0.44 1.00 0.9991 52.5
14 T-C-L First derivative INFLO 0.9965 103.74 0.44 0.12 0.9991 1,107.9
15 T-C-L First derivative COF 0.9987 103.86 0.44 0.50 0.9991 5,939.8
16 T-C-L First derivative RKOF 0.9963 103.73 0.44 0.12 0.9991 369.7
17 T-C-L One-sided derivative NN-HD 0.9991 103.87 0.44 1.00 0.9991 118.2
18 T-C-L One-sided derivative INFLO 0.9985 103.85 0.44 0.40 0.9991 1,113.6
19 T-C-L One-sided derivative COF 0.9987 103.86 0.44 0.50 0.9991 5,787.4
20 T-C-L One-sided derivative LDOF 0.9985 103.85 0.44 0.40 0.9991 17,261.9
21 T-C-L One-sided derivative LOF 0.9985 103.85 0.44 0.40 0.9991 516.9
22 T-C-L One-sided derivative RKOF 0.9976 103.80 0.44 0.20 0.9991 370.5
23 T-C-L Original series KNN-AGG 0.9989 103.87 0.44 0.67 0.9991 391.6
24 T-C-L Original series INFLO 0.9974 103.79 0.44 0.18 0.9991 1,070.7
25 T-C-L Original series LDOF 0.9987 103.86 0.44 0.50 0.9991 17,156.9
26 T-C-L Original series RKOF 0.9985 103.85 0.44 0.40 0.9991 354.0
27 T-C First derivative INFLO 0.9983 73.43 0.28 0.20 0.9991 1,194.9
28 T-C First derivative COF 0.9991 73.46 0.28 1.00 0.9991 5,991.8
29 T-C First derivative LOF 0.9987 73.44 0.28 0.33 0.9991 512.3
30 T-C First derivative RKOF 0.9983 73.43 0.28 0.20 0.9991 363.2
31 T-C One-sided derivative INFLO 0.9987 73.44 0.28 0.33 0.9991 1,207.0
32 T-C One-sided derivative COF 0.9987 73.44 0.28 0.33 0.9991 5,880.8
33 T-C One-sided derivative LOF 0.9969 73.38 0.28 0.08 0.9991 511.3
34 T-C One-sided derivative RKOF 0.9961 73.35 0.28 0.06 0.9991 368.3
35 T-C Original series KNN-AGG 0.9989 73.45 0.28 0.50 0.9991 405.1
36 T-C Original series INFLO 0.9974 73.40 0.28 0.10 0.9991 1,143.6
37 T-C Original series LDOF 0.9987 73.44 0.28 0.33 0.9991 17,022.9
38 T-C Original series RKOF 0.9985 73.44 0.28 0.25 0.9991 351.8
39 T-C-L First derivative LDOF 0.9989 73.45 0.25 1.00 0.9989 17,323.2
40 T-C-L First derivative LOF 0.9989 73.45 0.25 1.00 0.9989 517.1
41 T-C-L Original series NN-HD 0.9987 73.44 0.25 0.50 0.9989 48.6
42 T-C-L Original series KNN-SUM 0.9989 73.45 0.25 1.00 0.9989 177.3
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Table 2 (continued)

i Variables Transformation Method Accuracy GM OP PPV NPV Time (mean)
43 T-C-L Original series COF 0.9989 73.45 0.25 1.00 0.9989 5,931.7
44 T-C-L Original series LOF 0.9989 73.45 0.25 1.00 0.9989 505.0
45 T-C Original series NN-HD 0.9987 0.00 0.00 0.00 0.9989 41.7
46 T-C Original series KNN-SUM 0.9989 0.00 0.00 NaN 0.9989 184.6
47 T-C Original series COF 0.9989 0.00 0.00 NaN 0.9989 5,896.4
48 T-C Original series LOF 0.9989 0.00 0.00 NaN 0.9989 502.7

Note. See sections 2.7 and 2.8 for performance metric codes and details.

required the least computational time. Among the remaining two, the mean computational time of
KNN-AGG (≈400 ms) was twice that of KNN-SUM's (<200 ms). LOF and its extensions (INFLO, COF, and
LDOF) demonstrated the poorest performance with respect computational time (>500 ms on average).

Only KNN-SUM and KNN-AGG assigned high scores to most of the targeted outliers in turbidity, conductiv-
ity, and level data transformed using the one-sided derivative (Figures 5a and 5b). For each outlying instance,
however, the next immediate neighboring point was assigned the high outlier score instead of the true outly-
ing point. After determining the most influential variable using the additional steps of the algorithm (section
2.7), adjustments were made to correct this to the actual outlier. Because of this correction, the first orange
triangle for the True Positive in Figures 5a–5h, for instance, is always plotted next to the high outlier score
(corresponding to the neighboring point), pointing to the actual outlier instead of the neighboring point.
The outlier scores produced by LOF and COF (Figures 5d and 5e) were unable to capture the outly-
ing behaviors correctly and demonstrated high scattering. In comparison to other outlier scoring algo-
rithms, KNN-SUM algorithm displayed a good compromise between accuracy and computational efficiency
(Table 2).

3.2. Analysis of Water-Quality Data From In Situ Sensors at Pioneer River
Compared to Sandy Creek where the river level is mostly less than 1 m with occasional bursts of atypical
spikes and flow events resulting in levels up to 14.8 m (Figures 3c–3i), Pioneer River is much deeper with
the river level ranging between 13.9 and 16.5 m during the period of study (Figures 6c–6i). Two small dense
clusters of points gathered around zero were observed for all three variables from late March to mid-April in
2017 (Figure 6). These co-occurrences of values around zero are atypical behavior and may have been due to
technical issues with the sensor equipment. These type of anomalies can be easily detected by incorporating
rule-based methods.

Some of the target outliers in the data obtained from the in situ sensors at Pioneer River only deviated
slightly from the general trend (Figures 6a–6i), making outlier detection challenging. A negative relation-
ship was clearly visible between turbidity and conductivity (Figure 7a); however, the relationship between
level and conductivity was complex (Figure 7c). Most of the target outliers were masked by the typical points
in the original space (Figures 7a–7c). Similar to Sandy Creek, data obtained from the sensors at Pioneer
River showed good separation between outliers and typical points under the one-sided derivative transfor-
mation (Figures 7d–7f, 6a(ii), 6b(ii), and 6c(ii)). However, the sudden spikes in turbidity labeled as outliers
by water-quality experts could not be separated from the majority by a large distance and were only visi-
ble as a small group (microcluster; Goldstein & Uchida, 2016) in the boundary defined by the typical points
(Figures 7d and 7e).

From the performance analysis, it was observed that turbidity and conductivity together produced better
results (Table 3, Rows 1–8) than when combined with river level, which tended to reduce the performance
(i.e., generating lower OP and NPV values) while increasing the false negative rate (Table 3, Rows 9–13).
KNN-AGG and KNN-SUM (Table 3, Rows 2 and 3) had the highest accuracy (0.9978), highest geomet-
ric means (492.8012), highest OP (0.88), and highest NPV (0.9984). Despite the challenge given by the
small spikes which could not be clearly separated from the typical points, KNN-AGG, KNN-SUM, and
NN-HD with one-sided derivatives of turbidity and conductivity still detected some of those points as
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Figure 5. Classification of outlier scores produced from different algorithms as true negatives (TN), true positives (TP), false negatives (FN), and false positives
(FP). The top three panels (i–iii) correspond to the original series (turbidity, conductivity, and river level) measured by in situ sensors at Sandy Creek. The target
outliers (detected by water-quality experts) are shown in red, while typical points are shown in black. (a)–(h) give outlier scores produced by different outlier
detection algorithms for high-dimensional data when applied to the transformed series (one-sided derivative) of the three variables: turbidity, conductivity, and
level. Through different outlier scoring algorithms (a–h), we are evaluating whether each point in time is an outlier or not. Therefore, (a)–(h), if the outlier
scoring algorithm is effective, then there should be either TP or TN at each point in time when either a red triangle is plotted in at least one of the three panels
(i–iii) or black dots are plotted in all of the top three panels (i–iii). Because outlier scores are nonnegative and are mostly clustered near zero, with some
occasional high values, a square root transformation was applied to reduce skewness of the data in (a) to (h).
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Figure 6. Time series for (a(i)) turbidity (NTU), (b(i)) conductivity (μS/cm), and (c(i)) river level (m) measured by in situ sensors at Pioneer River. Transformed
series (one-sided derivatives) of (a(ii)) turbidity (NTU), (b(ii)) conductivity (μS/cm), and (c(ii)) river level (m) measured by in situ sensors at Pioneer River. In
each plot, outliers determined by water-quality experts are shown in red, while typical points are shown in black. Neighboring points are marked in green.
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Figure 7. (a–c) Bivariate relationships between original water-quality variables (turbidity [NTU], conductivity [μS/cm], and river level [m]) measured by in situ
sensors at Pioneer River. (d–f) Bivariate relationships between transformed series (one-sided derivative) of turbidity (NTU), conductivity (μS/cm), and river
level (m) measured by in situ sensors at Pioneer River. In each scatter plot, outliers determined by water-quality experts are shown in red, while typical points
are shown in black. Neighboring points are marked in green.

outliers while maintaining low false negative and false positive rates (Figure 8). Similar to Sandy Creek,
NN-HD (<200 ms on average) and KNN-SUM (<230 milliseconds on average) demonstrated the highest
computational efficiency for the data obtained from Pioneer River.

4. Discussion
We introduced a new procedure, named oddwater procedure, for the detection of outliers in water-quality
data from in situ sensors, where outliers were specifically defined as due to technical errors that make the
data unreliable and untrustworthy. We showed that our oddwater procedure, with carefully selected data
transformation methods derived from data features, can greatly assist in increasing the performance of a
range of existing outlier detection algorithms. Our oddwater procedure and analysis using data obtained
from in situ sensors positioned at two study sites, Sandy Creek and Pioneer River, performed well with out-
lier types such as sudden isolated spikes, sudden isolated drops, and level shifts while maintaining low false
detection rates. As an unsupervised procedure, our approach can be easily extended to other water-quality
variables, other sites, and also to other outlier detection tasks in other application domains. The only
requirement is to select suitable transformation methods according to the data features that differentiate the
outlying instances from the typical behaviors of a given system.
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Figure 8. Classification of outlier scores produced from different algorithms as true negatives (TN), true positives (TP), false negatives (FN), and false positives
(FP). The top two panels (i and ii) correspond to the original series (turbidity and conductivity) measured by in situ sensors at Pioneer River. The target outliers
(detected by water-quality experts) are shown in red, while typical points are shown in black. (a)–(h) give outlier scores produced by different outlier detection
algorithms for high-dimensional data when applied to the transformed series (one-sided derivative) of the two variables: turbidity and conductivity. Through
different outlier scoring algorithms (a–h), we are evaluating whether each point in time is an outlier or not. Therefore, from (a)–(h), if the outlier scoring
algorithm is effective, then there should be either TP or TN at each point in time when either a red triangle is plotted in at least one of the two panels (i and ii)
or black dots are plotted in both of the top two panels (i and ii). Because outlier scores are nonnegative and are mostly clustered near zero, with some occasional
high values, a square root transformation was applied to reduce skewness of the data in (a) to (h).
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Table 3
Performance Metrics of Outlier Detection Algorithms Performed on Multivariate Water-Quality Time Series Data (T = Turbidity; C = Conductivity; L = River Level)
From In Situ Sensors at Pioneer River, Arranged in Descending Order of OP Values

i Variables Transformation Method Accuracy GM OP PPV NPV Time (mean)
1 T-C One-sided derivative NN-HD 0.9976 492.76 0.88 0.89 0.9984 136.5
2 T-C One-sided derivative KNN-AGG 0.9978 492.80 0.88 0.91 0.9984 478.8
3 T-C One-sided derivative KNN-SUM 0.9978 492.80 0.88 0.91 0.9984 222.2
4 T-C First derivative NN-HD 0.9978 480.08 0.86 0.95 0.9981 182.0
5 T-C First derivative KNN-AGG 0.9978 480.08 0.86 0.95 0.9981 488.5
6 T-C First derivative KNN-SUM 0.9978 480.08 0.86 0.95 0.9981 225.3
7 T-C First derivative INFLO 0.9971 479.92 0.86 0.86 0.9981 1,525.0
8 T-C First derivative RKOF 0.9970 479.88 0.86 0.84 0.9981 430.4
9 T-C-L One-sided derivative KNN-AGG 0.9975 492.72 0.86 0.91 0.9981 465.2
10 T-C-L One-sided derivative KNN-SUM 0.9975 492.72 0.86 0.91 0.9981 214.5
11 T-C-L First derivative RKOF 0.9951 485.82 0.85 0.68 0.9979 425.9
12 T-C-L First derivative KNN-AGG 0.9975 480.00 0.84 0.95 0.9978 478.0
13 T-C-L First derivative KNN-SUM 0.9975 480.00 0.84 0.95 0.9978 220.0
14 T-C First derivative COF 0.9978 473.58 0.84 0.97 0.9979 7,908.2
15 T-C First derivative LDOF 0.9978 473.58 0.84 0.97 0.9979 23,435.7
16 T-C First derivative LOF 0.9975 473.51 0.84 0.92 0.9979 594.4
17 T-C One-sided derivative INFLO 0.9973 473.47 0.84 0.90 0.9979 1,559.9
18 T-C One-sided derivative COF 0.9976 473.54 0.84 0.95 0.9979 7,505.5
19 T-C One-sided derivative LDOF 0.9975 473.51 0.84 0.92 0.9979 22,986.0
20 T-C One-sided derivative LOF 0.9975 473.51 0.84 0.92 0.9979 596.9
21 T-C One-sided derivative RKOF 0.9960 473.16 0.84 0.75 0.9979 419.7
22 T-C Original series INFLO 0.9973 473.47 0.84 0.90 0.9979 1,498.5
23 T-C-L First derivative COF 0.9975 473.51 0.83 0.97 0.9976 7,910.7
24 T-C-L First derivative LDOF 0.9975 473.51 0.83 0.97 0.9976 23,357.7
25 T-C-L One-sided derivative NN-HD 0.9975 473.51 0.83 0.97 0.9976 131.9
26 T-C Original series NN-HD 0.9976 466.96 0.83 0.97 0.9978 171.0
27 T-C Original series KNN-AGG 0.9970 466.81 0.83 0.88 0.9978 468.7
28 T-C Original series KNN-SUM 0.9970 466.81 0.83 0.88 0.9978 211.6
29 T-C Original series COF 0.9978 467.00 0.83 1.00 0.9978 7,617.6
30 T-C Original series LDOF 0.9978 467.00 0.83 1.00 0.9978 22,910.4
31 T-C Original series LOF 0.9978 467.00 0.83 1.00 0.9978 579.1
32 T-C Original series RKOF 0.9963 466.66 0.83 0.80 0.9978 401.9
33 T-C-L First derivative NN-HD 0.9973 473.47 0.82 0.95 0.9976 167.1
34 T-C-L One-sided derivative INFLO 0.9971 473.43 0.82 0.92 0.9976 1,418.8
35 T-C-L One-sided derivative COF 0.9973 473.47 0.82 0.95 0.9976 7,497.9
36 T-C-L One-sided derivative LDOF 0.9973 473.47 0.82 0.95 0.9976 23,090.7
37 T-C-L One-sided derivative RKOF 0.9952 472.97 0.82 0.71 0.9976 422.1
38 T-C-L First derivative INFLO 0.9975 466.92 0.81 1.00 0.9974 1,398.3
39 T-C-L First derivative LOF 0.9975 466.92 0.81 1.00 0.9974 600.7
40 T-C-L One-sided derivative LOF 0.9965 466.70 0.81 0.85 0.9974 596.1
41 T-C-L Original series NN-HD 0.9973 466.88 0.81 0.97 0.9974 163.0
42 T-C-L Original series KNN-AGG 0.9967 466.73 0.81 0.88 0.9974 456.3
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Table 3 (continued)

i Variables Transformation Method Accuracy GM OP PPV NPV Time (mean)
43 T-C-L Original series KNN-SUM 0.9967 466.73 0.81 0.88 0.9974 201.4
44 T-C-L Original series INFLO 0.9975 466.92 0.81 1.00 0.9974 1,372.8
45 T-C-L Original series COF 0.9975 466.92 0.81 1.00 0.9974 7,707.2
46 T-C-L Original series LDOF 0.9975 466.92 0.81 1.00 0.9974 127,337.1
47 T-C-L Original series LOF 0.9975 466.92 0.81 1.00 0.9974 580.9
48 T-C-L Original series RKOF 0.9955 466.47 0.81 0.74 0.9974 406.8

Note. See sections 2.7 and 2.8 for performance metric codes and details.

Studies have shown that transforming variables affects densities, relative distances, and orientation of points
within the data space and therefore can improve the ability to perceive patterns in the data which are
not clearly visible in the original data space (Dang & Wilkinson, 2014). This was the case in our study
where no clear separation was visible between outliers and typical data points in the original data space,
but a clear separation was obtained between the two sets of points once the one-sided derivative trans-
formation was applied to the original series. Having this type of a separation between outliers and typical
points is important before applying unsupervised outlier detection algorithms for high-dimensional data
because the methods are usually based on the definition of outliers in terms of distance or density (Talagala,
Hyndman, Smith-Miles, Kandanaarachchi, et al., 2019). Most of the outlier detection algorithms
(KNN-SUM, KNN-AGG, NN-HD, COF, LOF, and INFLO) performed least well with the untransformed orig-
inal series, demonstrating how data transformation methods can assist in improving the ability of outlier
detection algorithms while maintaining low false detection rates.

In our modified algorithm, the NN-HD algorithm, we did not incorporate the clustering step of the HDout-
liers algorithm because the data obtained from the two study sites are free from microclusters (Talagala,
Hyndman, Smith-Miles, et al., 2019) and therefore free from the masking problem. Because the data sets
have only local and global outliers, incorporating a clustering step that forms small clusters using a small
ball with a fixed radius (the Leader Algorithm in Wilkinson, 2018) does not significantly change the struc-
ture of the data points in the high-dimensional data space. Furthermore, because NN-HD has the additional
requirement of isolation in addition to clear separation between outlying points and typical points, it per-
formed poorly in comparison to the two KNN distance-based algorithms (KNN-AGG and KNN-SUM) which
are not restricted to the single most nearest neighbor (Talagala, Hyndman, Smith-Miles, et al., 2019). For
the current work, k was set to 10, the maximum default value of k in Madsen (2018), because too large a
value of k could skew the focus toward global outliers (points that deviates significantly from the rest of the
data set) alone (Zhang et al., 2009) and make the algorithms computationally inefficient. On the other hand,
too small a value of k could incorporate an additional assumption of isolation into the algorithm, as in the
NN-HD algorithm where k = 1. Among the analyses using transformed series, LOF with the first derivative
transformation performed the least well, which could also be due to its additional assumption of isolation
(Tang et al., 2002). However, using the same k across all algorithms may bias direct comparison because the
performance of the algorithms can depend on the value of k and algorithms can reach their peak perfor-
mance for different choices of k (Campos et al., 2016). Therefore, performing an optimization to select the
best k is nontrivial, and we leave it for future work.

We took the correlation structure between the variables into account when detecting outliers given some
were apparent only in the high-dimensional space but not when each variable was considered indepen-
dently (Ben-Gal, 2005). A negative relationship was observed between conductivity and turbidity and also
between conductivity and level for the Sandy Creek data. However, for Pioneer River, no clear relationship
was observed between level and the remaining two variables, turbidity, and conductivity. This could be one
reason why the variable combination with river level gave poor results for the Pioneer River data set, while
results for other combinations were similar to those of Sandy Creek. The one-sided derivative transformation
outperformed the derivative transformation. This was expected, because in an occurrence of a sudden spike
or isolated drop, the first derivative assigns high values to two consecutive points, the actual outlying point
and the neighboring point, and therefore increases the false positive rate (because the neighboring points
that are declared to be outliers actually correspond to typical points in the original data space). Therefore, to
detect technical outliers in water-quality data from Sandy Creek and Pioneer River, the one-sided derivative
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transformation is recommended because it outperformed the other transformations during the comparative
analysis. For Sandy Creek, all three water-quality variables together with the one-sided derivative transfor-
mation is recommended. However, for Pioneer River, the use of river level is not advisable due its complex
relationships with the other variables and its temporal variability. For both rivers, the use of KNN-SUM
algorithm is recommended because it provides a good compromise between accuracy and computational
efficiency.

In this study, our goal was to detect suitable transformations, combinations of variables, and the algorithms
for outlier score calculation for the data from two study sites. Results may depend on the characteristics of
the time series (site and time dependent for example), and what is best for one site may not be the best for
another site. Therefore, care should be taken to select transformations most suitable for the problem at hand.
According to Dang and Wilkinson (2014), any transformation used on a data set must be evaluated in terms
of a figure of merit (i.e., a numerical quantity used to characterize the performance of a method, relative to its
alternatives). For our work on detecting outliers, the figure of merit was the maximum separability of the two
classes generated by outliers and typical points. However, we acknowledge that the set of transformations
that we used for this work was relatively limited and influenced by the data obtained from the two study
sites. Therefore, the set of transformations we considered (Table 1) should be viewed only as an illustration
of our oddwater procedure for detecting outliers. We expect that the set of transformations will expand
over time as the oddwater procedure is used for other data from other study sites and for applications to
other fields.

For the current work, we selected transformation methods that could highlight abrupt changes in the
water-quality data. We hope to expand the ability of oddwater procedure so that it can detect other outlier
types not previously targeted but commonly observed in water-quality data (e.g., low/high variability and
drift as per Leigh et al., 2019). One possibility is to consider the residuals at each point, defined as the differ-
ence between the actual values and the fitted values (similar to Schwarz, 2008) or the difference between the
actual values and the predicted values (similar to Hill & Minsker, 2006), as a transformation and apply out-
lier detection algorithms to the high-dimensional space defined by those residuals. Here the challenge will
be to identify the appropriate curve fitting and prediction models to generate the residual series. In this way,
continuous subsequences of high values could correspond to other kinds of technical outliers such as high
variability or drift. However, the range of applications and the space of the transformations are extremely
diverse, which makes it challenging to provide a structured formal vision that covers all of the possible trans-
formations that could be considered. The transformations we present in this paper were mainly chosen as
appropriate to the data collected from Sandy Creek and Pioneer River. We observed that different transfor-
mations can lead to entirely different data structures and that the selection of suitable transformations is
directed by the data features and typical patterns imposed by a given application. Domain specific knowl-
edge plays a vital role when selecting suitable transformations and, as such, defining structured guidelines
for the selection of suitable transformations remains problematic.

Not surprisingly, NN-HD algorithm required the least computational time given the outlying score calcu-
lation only involves searching for the single most nearest neighbors of each test point (Wilkinson, 2018).
The mean computational time of KNN-AGG was twice as high as that of KNN-SUM because the KNN-AGG
algorithm has the additional requirement of calculating weights that assign nearest neighbors higher weight
relative to the neighbors farther apart (Angiulli & Pizzuti, 2002). LOF and its extensions (INFLO, COF, and
LDOF) required the most computational time; all four algorithms involve a two-step searching mechanism
at each test point when calculating the corresponding outlying score. This means that at each test point,
each algorithm searches its k nearest neighbors as well those of the detected nearest neighbors for the outlier
score calculation (Breunig et al., 2000; Jin et al., 2006; Tang et al., 2002; Zhang et al., 2009).

Assessing performance of the detection methods based on the classification criteria, while traditional,
has limitations . During performance evaluation, we observed that some outliers were detected by all the
approaches, some were detected as outliers only by certain methods, and some were identified by no method.
Therefore, incorporating ensemble methods as proposed in Unwin (2019) would assist in selecting the best
performing approaches for a particular outlier type and enable further insight into the results obtained from
the oddwater procedure.

We hope to extend our multivariate outlier detection framework into space and time so that it can deal with
the spatiotemporal correlation structure along branching river networks. Further, in the current paper, we
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have introduced our oddwater procedure as a batch method. However, due to the unsupervised nature of
our oddwater procedure, it can be easily extended to a streaming data scenario with the help of a sliding
window of fixed length. A streaming data scenario always demands a near-real-time support. Therefore,
one significant challenge is to find efficient methods that allow us to update outlier scores taking account of
the newest observations and removing the oldest observations introduced by overlapping sliding windows,
rather than recalculating scores corresponding to observations which are not affected by either new arrivals
or the oldest observations (that are no longer covered by the latest window). Further work will be needed to
investigate the efficient computation of regenerating nearest neighbors in a data streaming context.

Notation
FP False positives (i.e., when a typical observation is misclassified as an outlier)
FN False negatives (i.e., when an actual outlier is misclassified as a typical observation)
TP True positives (i.e., when an actual outlier is correctly classified)
TN True negatives (i.e., when an observation is correctly classified as a typical point)
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1. Text S1

Introduction

We considered the following outlier scoring techniques for the current work pre-
sented in this paper. The oddwater procedure can be easily updated with other unsu-
pervised outlier scoring techniques.

Text S1.

NN-HD algorithm

This algorithm is inspired by the HDoutliers algorithm (Wilkinson, 2018) which
is an unsupervised outlier detection algorithm that searches for outliers in high di-
mensional data assuming there is a large distance between outliers and the typical
data. Nearest neighbor distances between points are used to detect outliers. However,
variables with large variance can bring disproportional influence on Euclidean distance
calculation. Therefore, the columns of the data sets are first normalized such that the
data are bounded by the unit hyper-cube. The nearest neighbor distances are then
calculated for each observation. In contrast to the implementation of HDoutliers algo-
rithm available in the HDoutliers package (Fraley, 2018) our implementation available
through the oddwater package now generates outlier scores instead of labels for each
observation.

KNN-AGG and KNN-SUM algorithms

The NN-HD algorithm uses only nearest neighbor distances to detect outliers
under the assumption that any outlying point present in the data set is isolated. For
example, if there are two outlying points that are close to one another, but are far away
from the rest of the valid data points, then the two outlying points become nearest
neighbors to one another and give a small nearest neighbor distance for each outlying
point. Because the NN-HD algorithm is dependent on the nearest neighbor distances,
and the two outlying points do not show any significant deviation from other typical
points with respect to nearest neighbor distance, the NN-HD algorithm now fails to
detect these points as outliers.

Corresponding author: Priyanga Dilini Talagala, dilini.talagala@monash.edu

–1–



manuscript submitted to Water Resources Research

Following Angiulli and Pizzuti (2002), Madsen (2018) proposed two algorithms:
aggregated k-nearest neighbor distance (KNN-AGG); and sum of distance of k-nearest
neighbors (KNN-SUM) to overcome this limitation by incorporating k nearest neighbor
distances for the outlier score calculation. The algorithms start by calculating the k
nearest neighbor distances for each point. The k-dimensional tree (kd-tree) algorithm
(Bentley, 1975) is used to identify the k nearest neighbors of each point in a fast and
efficient manner. A weight is then calculated using the k nearest neighbor distances
and the observations are ranked such that outliers are those points having the largest
weights. For KNN-SUM, the weight is calculated by taking the summation of the
distances to the k nearest neighbors. For KNN-AGG, the weight is calculated by
taking a weighted sum of distances to k nearest neighbors, assigning nearest neighbors
higher weight relative to the neighbors father apart.

LOF algorithm

The Local Outlier Factor (LOF) algorithm (Breunig et al., 2000) calculates an
outlier score based on how isolated a point is with respect to its surrounding neighbors.
Data points with a lower density than their surrounding points are identified as outliers.
The local reachable density of a point is calculated by taking the inverse of the average
readability distance based on the k (user defined) nearest neighbors. This density is
then compared with the density of the corresponding nearest neighbors by taking the
average of the ratio of the local reachability density of a given point and that of its
nearest neighbors.

COF algorithm

One limitation of LOF is that it assumes that the outlying points are isolated and
therefore fails to detect outlying clusters of points that share few outlying neighbors
if k is not appropriately selected (Tang et al., 2002). This is known as a masking
problem (Hadi, 1992), i.e. LOF assumes both low density and isolation to detect
outliers. However, isolation can imply low density, but the reverse does not always
hold. In general, low density outliers result from deviation from a high density region
and an isolated outlier results from deviation from a connected dense pattern. Tang et
al. (2002) addressed this problem by introducing a Connectivity-based Outlier Factor
(COF) that compares the average chaining distances between points subject to outlier
scoring and the average of that of its neighboring to their own k-distance neighbors.

INFLO algorithm

Detection of outliers is challenging when data sets contain adjacent multiple
clusters with different density distributions (Jin et al., 2006). For example, if a point
from a sparse cluster is close to a dense cluster, this could be misclassified as an outlier
with respect to the local neighborhood as the density of the point could be derived
from the dense cluster instead of the sparse cluster itself. This is another limitation
of LOF (Breunig et al., 2000). The Influenced Outlierness (INFLO) algorithm (Jin et
al., 2006) overcomes this problem by considering both the k nearest neighbors (KNNs)
and reverse nearest neighbors (RNNs), which allows it to obtain a better estimation
of the neighborhood’s density distribution. The RNNs of an object, p for example,
are essentially the objects that have p as one of their k nearest neighbors. Distinguish
typical points from outlying points is helpful because they have no RNNs. To reduce
the expensive cost incurred by searching a large number of KNNs and RNNs, the
kd-tree algorithm was used during the search process.

–2–
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LDOF algorithm

The Local Distance-based Outlier Factor (LDOF) algorithm (Zhang et al., 2009)
also uses the relative location of a point to its nearest neighbors to determine the degree
to which the point deviates from its neighborhood. LDOF computes the distance for
an observation to its k-nearest neighbors and compares the distance with the average
distances of the point’s nearest neighbors. In contrast to LOF (Breunig et al., 2000),
which uses local density, LDOF now uses relative distances to quantify the deviation
of a point from its neighborhood system. One of the main differences between the two
approaches (LDOF and LOF) is that LDOF represents the typical pattern of the data
set by scattered points rather than crowded main clusters as in LOF (Zhang et al.,
2009).

RKOF algorithm with Gaussian kernel

According to Gao, Hu, Zhang, Zhang, and Wu (2011), LOF is not accurate
enough to detect outliers in complex and large data sets. Furthermore, the perfor-
mance of LOF depends on the parameter k that determines the scale of the local
neighborhood. The Robust Kernel-based Outlier Factor (RKOF) algorithm (Gao et
al., 2011) tries to overcome these problems by incorporating variable kernel density
estimates to address the first problem and weighted neighborhood density estimates
to address the second problem. A Gaussian kernel with a bandwidth of k − distance
was used for density estimation. The two parameters: multiplication parameter for
k−distance of neighboring observations and sensivity parameter for k−distance were
set to 1 (default value given in Gao et al. (2011)).
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H I G H L I G H T S

• High frequency water-quality data re-
quires automated anomaly detection
(AD).

• Rule-based methods detected all miss-
ing, out-of-range and impossible values.

• Regression and feature-based methods
detected sudden spikes and level shifts
well.

• High false negative rates were associ-
ated with other types of anomalies, e.g.
drift.

• Our transferable framework selects and
compares AD methods for end-user
needs.

G R A P H I C A L A B S T R A C T

The ten-stepAnomaly Detection (AD) framework for high frequencywater-quality data,which includes rank-
ing the importance of different anomaly types (e.g. sudden spikes A, sudden shifts D, anomalously high vari-
ation type E), based on end-user needs and data characteristics, to inform algorithm choice, implementation
and performance evaluation. Framework numbers indicate the order of steps taken. Arrows indicate direc-
tions of influence between steps.
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whenwe appliedmitigation,which replaces anomalousmeasurementswith forecasts for further forecasting, but
this inflated false positive rates. Feature-basedmethods also performedwell on high priority anomalies andwere
similarly less proficient at detecting lower priority anomalies, resulting in high false negative rates. Unlike
regression-based methods, however, all feature-based methods produced low false positive rates and have the
benefit of not requiring training or optimization. Rule-basedmethods successfully detected a subset of lower pri-
ority anomalies, specifically impossible values and missing observations. We therefore suggest that a combina-
tion of methods will provide optimal performance in terms of correct anomaly detection, whilst minimizing
false detection rates. Furthermore, our framework emphasizes the importance of communication between
end-users and anomaly detection developers for optimal outcomes with respect to both detection performance
and end-user application. To this end, our framework has high transferability to other types of high frequency
time-series data and anomaly detection applications.

© 2019 Elsevier B.V. All rights reserved.

Near-real time
Quality control and assurance
River
Time series

1. Introduction

Clean water is a United Nations Sustainable Development Goal as
well as a major concern in many developed areas. Monitoring the qual-
ity of water in theworld's rivers relies predominantly onmanual collec-
tion of water-quality samples at low frequencies (e.g. monthly). These
discrete samples are analysed in laboratories to provide estimates of
the concentrations of ecologically important constituents such as sedi-
ments and nutrients. This requires considerable time and money, and
the resulting data are typically sparse in space and time. Fortunately,
other properties of water, such as turbidity and conductivity, can be
measured semi-continuously by readily available, low-cost, automated
in situ sensors, and show promise as surrogates of sediment and nutri-
ent concentrations in rivers (Jones et al., 2011; Slaets et al., 2014). Nev-
ertheless, technical issues in sensor monitoring equipment can occur,
for example, when battery power is low or sensors drift over time due
to biofouling of the probes, or due to errors in calibration. These issues
can lead to errors in water-quality measurements, which we define
herein as anomalies. Such anomalies can be important to detect because
they can confound the assessment or identification of true changes in
water quality.

Notwithstanding technical errors, another issue that mitigates the
potential advantages of using in situ sensor data is the production of
high-frequency water-quality data in near-real time (i.e. data stream-
ing). This high velocity, high volume data creates problems for quality
control and assurance, given thatmanual checking, labelling and correc-
tion of each observation is unfeasible (Hill and Minsker, 2010;
Horsburgh et al., 2015). We therefore need to develop robust methods
for automatic anomaly detection (AD) before water-quality data from
in situ sensors can be used with confidence for water-quality visualiza-
tion, analysis and reporting.

Here, our objective was to develop a ten-step AD framework to im-
plement and compare a suite of AD methods for high-frequency
water-quality datameasured by in situ sensors (Fig. 1).Wedemonstrate
this framework using a real-world case study where turbidity, conduc-
tivity and river level data were measured by automated in situ sensors
in rivers flowing into the Great Barrier Reef lagoon of northeast
Australia. Anomalies were defined as any water-quality observations
that were affected by technical errors in the sensor equipment; in
other words, not due to real ecological patterns and processes occurring
within the rivers and watersheds being monitored. We focussed on AD
in turbidity and conductivity data because these properties of river
water are typically more stable through time than other properties
such as dissolved oxygen and temperature, which fluctuate daily as
well as seasonally. Turbidity and conductivity were also the target
water-quality variables for the end-user in our case study, described
in Sections 2.1–2.2. We present this framework below and discuss the
results of AD for high-frequency water-quality data from automated in
situ sensors, with a view to providing insight on broader applications
and future directions.

2. Methods

We describe below the method components of the AD framework
(Steps 1 to 8; Fig. 1) from identifying end-user needs and anomaly
types and priorities through to selecting suitable analytical methods
of AD.

2.1. Identify end-user needs and goals (Step 1)

Identifying the needs and goals of the end-user is a key step in the
AD framework because this helps determine which types of anomalies
will bemost important to detect and thus themost suitable ADmethods
(Fig. 1, Table 1). For this case study, several discussions were held be-
tween the end-user (an environmental agency concerned with water
quality monitoring and management), statisticians and freshwater sci-
entists prior to commencing analysis. The foremost, short-term need
of the environmental agency was to produce ‘smart’ graphical outputs
of the streamingwater-quality data from in situ sensors for visualization

Fig. 1. The ten-step Anomaly Detection (AD) framework for high frequency water-quality
data, which includes defining and ranking the importance of different types of anomalies,
based on end-user needs and data characteristics, to inform algorithm choice,
implementation, performance evaluation and resultant recommendations. Numbers
indicate the order of steps taken. Arrows indicate directions of influence between steps.
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in near-real time (Table 1). Visualization of streaming water-quality
data helps to engender confidence in those data, and thismeans that po-
tentially anomalous water-quality observations need to be identified
and labelled as such, in near-real time. The longer-term goals of the
end-user, beyond the specific scope of this case study, were to provide
complete quality control and assurance of the data; flagging potential
anomalies in near-real time, potentially with automated correction,
and ultimately to use the corrected data to estimate sediment and nutri-
ent concentrations in rivers in near-real time. Resultant data can then be
used for accurate load estimation across multiple temporal scales. For
other end-users, for example, the public, priority goals may include
on-line and real-time warning of water quality breaches associated
with real events (rather than technical anomalies). Such events may
have serious economic and public health consequences in practice, af-
fecting commercial operations (e.g. fisheries and aquaculture) and rec-
reational sites (e.g. Rabinovici et al., 2004).

2.2. Identify data characteristics (Step 2)

Temporal characteristics of the time series data on which AD is per-
formed play a role in determining the types of methodsmost suitable to
use (Fig. 1). Here, we used water-quality data from in situ sensors de-
ployed in rivers of tropical northeast Australia that flow into the Great
Barrier Reef lagoon. The rivers of interest are located in the Mackay
Whitsunday region, east of the Great Dividing Range in Queensland,
Australia. This region is characterized by a highly seasonal climate,
experiencing higher rainfall and air temperatures in the ‘wet’ season
(typically occurring between December and April and associated with
event flows in rivers) and lower rainfall and air temperatures in the
‘dry’ season (associated with low to zero flows in rivers; Brodie,
2004). These characteristics affect the patterns of water quality in
these rivers through time.

We focussed on two rivers in the study region: Pioneer River and
Sandy Creek. The upper reaches of Pioneer River flow predominantly
through National or State Parks, with its middle and lower reaches
flowing through land dominated by sugarcane farming. Sandy Creek is
a low-lying coastal-plain stream, south of the Pioneer River, with a sim-
ilar land-use and land-cover profile to that of the lower Pioneer River.
Two study sites, one on Pioneer River and one on Sandy Creek (PR and
SC, respectively), are in freshwater reaches and their monitored catch-
ment areas are 1466 km2 and 326 km2, respectively.

Automated water-quality sensors (YSI EXO2 Sondes with YSI Smart
Sensors attached) have been installed at each site, housed in flow cells
in water-quality monitoring stations on riverbanks. At each site, a
pumping system is used to transport water regularly from the river up
to theflowcell, approximately every hour or hour and a half, for the sen-
sors to measure and record turbidity (NTU) and electrical conductivity
at 25 °C (conductivity; μS/cm). All equipment undergo regular mainte-
nance and calibration, with sensors calibrated and equipment checked
approximately every 6 weeks following manufacturer guidelines. Sen-
sors are equipped with wipers to minimize biofouling. Pre-wet season
maintenance, e.g. cleaning samplers and drainage lines from the flow
cell, is performed annually.

Turbidity is an optical property of water that reflects its level of clar-
ity, which declines as the concentrations of abiotic and biotic suspended
particles that absorb and scatter light increase. Turbidity thus tends to
increase rapidly during runoff eventswhenwaters contain high concen-
trations of suspendedparticles eroded from the land and upstream river
channels. When waters concentrate during times of low or zero flow,
turbidity may increase gradually through time. Similarly, conductivity,
which reflects the concentration of ions including bioavailable nutrients
such as nitrate and phosphate in thewater, also tends to increase during
periods of low and zero flow, but can decrease rapidly with new inputs
of fresh water. Measurements of turbidity and conductivity may be
taken more frequently during event flows to capture the increased
range of values observed during such times; however, the relationships

among river level, turbidity and conductivity are complex (Fig. S1).
River level (i.e. height in meters from the riverbed to the water surface;
level, m) is recorded by sensors at each site every 10 min; we linearly
interpolated these data to provide time-matched observations of level
for each turbidity and conductivity observation. Although we did not
perform anomaly detection on the river level data, we examined its re-
lationship with the turbidity and conductivity data to provide insight
into the water-quality dynamics occurring at both study sites (Fig. S1).
The time series data from the in situ sensors were available from 12
March 2017 to 12March 2018 at both sites, totalling 6280 and 5402 ob-
servations at PR and SC, respectively (Figs. S2–S3).

2.3. Define anomalies and their types (Step 3)

A clear definition of what constitutes an anomaly, relevant to the
data and end-user requirements, is needed prior to commencing detec-
tion (Fig. 1). Several definitions of anomalies exist, each differing in
specificity. In general, they are considered to (i) differ from the norm
with respect to their features, and (ii) be rare in comparison with the
non-anomalous observations in a dataset (Goldstein and Uchida,
2016). As mentioned, we defined an anomaly here as any water-
quality datum or set of data that was due to a technical error in the in
situ sensor equipment. For example, a real datum might include a
rare, high-magnitude value of turbidity associated with heavy, erosive
local rainfall and an ensuing high-flow event, whereas an anomaly
might be a similarly high datum but one that is beyond the range of de-
tection by the sensor.

Once ‘anomaly’ is defined, the different types of anomalies likely to
be present in the time series data of interest must be defined and iden-
tified. We defined the different types of anomalies likely to occur in the
water-quality data, in consultation with the end-user in this study, as:
sudden spikes (large A, small J), low variability including persistent
values (B), constant offsets (C), sudden shifts (D), high variability (E),
impossible values (F), out-of-sensor-range values (G), drift (H), clusters
of spikes (I), missing values (K) and other, untrustworthy (L; not de-
scribed by types A-K) (Table 1, Fig. 2). Some of these types have been
described elsewhere for high frequency water-quality data, using the
same or different terminology (e.g. Horsburgh et al., 2015), whilst
other types were identified as more relevant to the specific characteris-
tics of the datawewere analysing (e.g. periods of anomalously high var-
iation; Table 1). Other terms, such as local and global anomalies, have
been used to describe anomalies in other contexts. We do not use
these other terms here, chiefly because they do not adequately differen-
tiate between the relevant types of anomalies we defined. For example,
local anomalies, as defined by Goldstein and Uchida (2016), are only
anomalous when compared with their immediate neighbourhood of
data values. These may include large or small sudden spikes, values
that are anomalously different in magnitude to that of data at
neighbouring time steps. Global anomalies, on the other hand, are
anomalously different to the majority of other data points, regardless
of time (Goldstein and Uchida, 2016). Contextual anomalies describe
data that appear anomalous only when context (e.g. season) is taken
into account, otherwise appearing ‘normal’ (Goldstein and Uchida,
2016). For example, a high value of river level may be non-anomalous
in the wet season, but could be anomalous within the context of the
dry season. Contextual anomalies may, for example, include some
anomalies identified here as type L (other, untrustworthy data). Types
B, E, H and I anomaliesmay be referred to elsewhere as collective anom-
alies, i.e. collections of anomalous data points (Chandola et al., 2009).
We additionally labelled the first observation after an extended period
of missing data (i.e. no observations for N180 min) to identify it as an
anomaly type K (see also Section 2.5.1).

We grouped the anomaly types into three general classes (Table 1).
Class 1 included anomalies described by a sudden change in value from
the previous observation (types A, D, I, and J). Class 2 included those
anomaly types that should be detectable by simple, hard-coded
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classification rules, such as measurements outside the detectable range
of the sensor (types F, G and K), whereas Class 3 anomaliesmay require
user intervention post hoc (i.e. after data collection rather than in real
time) to confirm observations as anomalous or otherwise in combina-
tion with automated detection (types B, C, E, H and L). Finally, we
noted the times at which sensor maintenance activities such as probe
swapping for calibration purposes were performed, to flagwhen anom-
alies might be likely to occur and provide causal insight about anomaly
generation (Figs. S2–S3).

We visually examined the water-quality time series data in consul-
tation with the end-user. The potential anomalies in each time series
at each site were identified and labelled along with their types based
on expert knowledge of riverinewater-quality dynamics and the partic-
ular sites and watersheds of interest. The labelled anomalies were used
in steps 8–9 to implement AD and assess its performance.

2.4. Rank anomaly types by importance (Step 4)

The importance ranking for anomaly types is based on the potential
impact each type may have if it were to go undetected, with respect to
end-user needs and goals. This ensures that the end-user can effectively
assess the ability of the AD methods to identify the most important
anomalies. For example, one method may detect the same amount of
anomalies as another; whilst the first method identifies anomalous
high-magnitude values in a turbidity time series, the secondmethod in-
stead identifies minimally negative (impossible) values during periods
of low turbidity only. If the end-user deems the former type of anomaly
as more important to detect, then this would affect the evaluation of
which AD method performs best and is most suitable. The rationale
for the rankingmight be that high-magnitude anomalies falsely indicate
a breach of water-quality guidelines, whereas the change in turbidity
caused by the negative readings may be negligible in the context of
the period in which they occurred.

Here, we liaised with the end-user (in this case, an environmental
agency concerned with water management and monitoring, see
Section 2.1) to rank the importance of the different anomaly types iden-
tified as per Section2.3 (Table 1). Theirfirst prioritywas to identify large
sudden spikes (Type A, Class 1) given that the short-term aim of anom-
aly detection was time series visualization. Sudden shifts (Type D, Class
1), calibration offsets (Type C, Class 3) and changes in variance (Types B

and E, Class 3)were also deemed important, ranking second to fourth in
priority, with types C and D both ranked third in place (Table 1).

2.5. Select suitable methods of anomaly detection (Step 5)

As outlined in Step 2 (Section 2.2), characteristics of the data on
which AD is performed play a role in determining the most suitable
AD methods, taking the end-user needs into account. Time series data
are typically nonstationary, such that statistical parameters of the data
(e.g. the mean and standard deviation) change with time. Furthermore,
the production of high-frequency water-quality data from in situ sen-
sors in near-real time creates ‘big data’, i.e. high-volume, high-velocity
and high-variety information (Gandomi and Haider, 2015). This may
be problematic for certain AD methods such as those developed for or
typically applied to relatively small batches of pre-collected (historical)
data (Liu et al., 2015).

We reviewed and compared the different AD methods used for
water quality and time series data as described in the literature to iden-
tify those that are, or could be made, suitable for analysing near-real
time and nonstationary data streams (Table S1). This included auto-
mated classification rules as well as several regression and feature-
space based methods. Many of these methods are well documented
and freely available software is available to implement them. Thus,
they serve as suitable benchmarks for new anomaly detection methods
that may be developed in the future. We chose to implement a suite of
these methods because different algorithms are likely to detect certain
types of anomalies (e.g. priority anomalies like large sudden spikes;
Table 1) better than others.

Although we also considered physical-process based models for AD
in water-quality time series (e.g. Moatar et al., 2001; Table S1), we did
not explore them further here. Variation in water-quality patterns
through time in rivers, and the multiple interactions within and be-
tween water-quality variables and the broader environment creates
complexities and uncertainties that can make development of such
models challenging and limit their transferability (e.g. Cox, 2003), par-
ticularly in the context of streaming data. Likewise, we did not explore
dynamic Bayesian networks or hidden Markov models (Table S1).
Whilst both methods show potential in the context of streaming time
series data (Hill et al., 2009; Li et al., 2017), their application in this con-
text is relatively newwith limited existing software for implementation
using water-quality data.

Fig. 2. Example of a turbidity (NTU) time series featuring both normal observations (dark grey points) and anomalies (black points; labelled A-L according to Table 1).
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2.5.1. Automated classification rules
Perhaps the simplest way to detect and classify anomalies such as

impossible, out-of-sensor-range and missing values (Class 2: type F, G
and K, respectively) is to develop rules that can be automated and ap-
plied to the streaming data in near-real time in combination with
data-driven approaches such as regression and feature-based AD (see
Sections 2.5.2–2.5.3). For instance, negative values are impossible for
turbidity and a simple rule (e.g. a ‘range test’; Fiebrich et al., 2010)
could therefore be set to classify any negative turbidity observation as
an anomaly. Here, we implemented ‘if-then’ statements to detect and
classify Class 2 anomalies. The first statement classified type K anoma-
lies, using an end-user defined period as the maximum allowable time
between two consecutive observations before the second observation
is classed as a K, indicating that it occurred after a period of missing ob-
servations. Here we defined the maximum allowable threshold as
180 min (3 h); however, this definition will vary according to end-
user needs and the frequency of the in situ sensor data. We next identi-
fied type F anomalies (i.e. impossible values); if a turbidity or conductiv-
ity observation was negative, then it was classed as an anomaly.
Furthermore, if any turbidity or conductivity observation was zero,
then it was likewise classed as an anomaly because completely clear
river water containing zero positive or negative ions is unrealistic. The
if-then statements used to detect type G anomalies were based on
range tests defined by sensor specifications for each water-quality
variable.

2.5.2. Regression-based methods
The regression-based approach to AD in time series has several ad-

vantages, including (for some methods) the ability to deal with
nonstationarity and provide near-real time support (Table S1). Further-
more, information from single or multiple water-quality variables as
well as previous measurements can be taken into account, which
makes these methods useful in the context of AD for streaming water-
quality data. Most regression-based methods used for AD are semi-
supervised (Table S1); the models are trained to learn the ‘normal’
(i.e. non-anomalous, typical) behaviour in a time series and, theoreti-
cally, should then detect any non-normal (i.e. anomalous) behaviour,
regardless of the underlying cause.

To performAD, the regression-basedmethods are used to generate a
prediction, or forecast, with an associated measure of uncertainty at the
next time point. The prediction intervals should ideally account for un-
certainty associated with the model, model parameter values and the
behaviour of future data, although in practice often only the model un-
certainty is taken into account (Hyndman and Athanasopoulos, 2018). If
the one-step-ahead observation does not fall within the prediction in-
terval, it is classified as an anomaly.

The general form for regression-based methods can be written as:

xt ¼ β0Zt þ ηt

ηt ¼ ARIMA p;d; qð Þ

where xt is the observation at time t, β′ is a vector of regression coeffi-
cients, and Zt is a vector of covariates. Thus, the errors from the regres-
sion model may be serially correlated, and we model this correlation
structure using an ARIMA model. ARIMA models are discussed further
below, and in detail in Hyndman and Athanasopoulos (2018), and can
be thought of as a nonlinear regression against past observations. We
assume the ARIMAmodel errors are uncorrelated in time, and normally
distributed with zero mean, and we denote this by εt ∼ N(0,σ).

We let ~xtþ1 denote the one-step forecast of xt+1 made at time t. To
compute these forecasts, we add β′Zt+1 to the forecasts from the
ARIMA model.

After forecasting, observations are classified as anomalies, or not,
based on the specified prediction interval. There is no training in-
volved in this step. Here, we constructed a 100(1-α)% prediction

interval (PI) for the one-step-ahead prediction (the forecast obser-
vation at time t + 1) as:

PItþ1 ¼ ~xtþ1 � tα=2;T−k � s

where T is the size of the training dataset, k is the number of param-
eters in the model, tα/2, T−k is the α/2 quantile of a t-distribution with
T - k degrees of freedom, and s is the square root of the mean of the
squared ARIMA residuals in the training dataset.

The PI defines the range of ‘normal’ (i.e. non-anomalous) one-step-
ahead predictions. The choice of significance level therefore affects the
number of false positives produced. There were relatively few labelled
anomalies in our time series data, especially for certain water-quality
variables and anomaly types (Table 2). We therefore used a 99% predic-
tion interval (α= 0.01) to effectively limit the probability of false pos-
itives to 1%.

We implemented the following set of regression-based models,
based on the general form, to detect anomalies in the turbidity and con-
ductivity time series: (i) naïve prediction, (ii) linear autoregression, (iii)
ARIMA models, and (iv) multivariate linear regression with ARIMA er-
rors (RegARIMA).

Naïve prediction is a regression-basedmethod that uses themost re-
cent observation as the one-step-ahead forecast:

~xtþ1 ¼ xt

In the notation of our general model, β = Zt = 0 and ηt = ARIMA
(0,1,0). The method assumes the one-step-ahead forecast depends
only on the previous observation, therefore the only parameter to esti-
mate is s, the square root of the mean squared residuals, where the re-
siduals in this case are the differences between consecutive
observations. Naïve prediction therefore does not require stationarity
in the mean of the time series (Table S1).

Table 2
Number of anomalous observations identified according to type, class and water-quality
variable at Pioneer River (PR) and Sandy Creek (SC). Number of instances of Class 3 anom-
alies that comprise multiple contiguous observations, and where relevant their
neighbouring anomaly types, in parentheses.

Site Anomaly type
and class

Turbidity Conductivity Level Total

PR A (Class 1) 1 2 0 3
D (Class 1) 3 2 0 5
F (Class 2) 0 34 0 34
H (Class 3) 0 397 (1 instance, before

a D)
0 397

J (Class 1) 5 0 2 7
K (Class 2) 4 4 4 12
L (Class 3) 718 (1 instance,

between two Ds)
80 (2 instances, the first
after a D, the second
between Ks)

0 798

Class 1 9 4 2 15
Class 2 4 38 4 46
Class 3 718 477 0 1195
Total (out of
6280
observations)

731 519 6 1256

SC A (Class 1) 4 1 0 5
D (Class 1) 1 0 0 1
E (Class 3) 914 (2 instances,

the second
before a D)

0 0 914

F (Class 2) 0 0 1 1
K (Class 2) 1 1 1 3
Class 1 5 1 0 6
Class 2 1 1 2 4
Class 3 914 0 0 914
Total (out of 5402
observations)

920 2 2 924
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Linear autoregression (Box and Jenkins, 1970) differs from naïve
prediction because it gives a forecast that is a linear combination of
the p previous observations, rather than just the single previous obser-
vation:

~xtþ1 ¼ cþ∑p
i¼1ϕixt−i

where the constant c and the set {ϕ1,ϕ2, … ,ϕp} are model parameters
estimated from the training data. In the notation of our general model,
c = β, Zt = 1 and ηt = ARIMA(p,0,0). We used the partial autocorrela-
tion function (PACF) to select the optimal value of p for the linear
autoregression models (Tsay, 1989).

The ARIMA(p,d,q) model introduced by Box and Jenkins (1970) is
more generalised than naïve prediction or linear autoregressionmodels
and includes autoregressive (p), differencing (d) and moving average
(q) components (i.e. the succession of averages calculated from succes-
sive segments of the time series). Here, p determines the number of pre-
vious observations (time lags) in the autoregressive model, d
determines the number of differences between observations to use,
and q determines the number of moving average terms (see also
Hyndman and Athanasopoulos, 2018). ARIMA models can handle sta-
tionary as well as nonstationary time series by adding a differencing
component, i.e. using d N 0. To decide on the optimal value of the p, d
and q ARIMA components, we used an automated procedure, based on
the Akaike information criterion (AIC; Akaike, 1974); minimizing the
AIC is asymptotically equivalent to using cross-validation (Hyndman
and Athanasopoulos, 2018).

Finally, RegARIMA models, also known as dynamic regression
models, are a combination of ARIMA time series modelling and multi-
variate regression (Hyndman and Athanasopoulos, 2018), wheremulti-
variate regression uses information from multiple water-quality
variables for forecasting the one-step-ahead prediction:

~xtþ1 ¼ β0 þ∑k
i¼1βizi;tþ1 þ ~ηtþ1

where zi, t+1 represents variable i from the set of variables {1, …,k} at
some time t+1. In thisway, information frommultiple variables are in-
cluded in themodel in addition to information provided by previous ob-
servations. Here we included turbidity and river level, or conductivity
and river level, in the multiple regression component of the ARIMA
model to forecast the one-step-ahead conductivity, or turbidity obser-
vations, respectively, using the AIC to select the best p, d and q parame-
ters as per ARIMA above.

For all of the above methods we investigated assumptions of the
models by conducting Box-Ljung portmanteau tests to assess station-
arity in the mean (Ljung and Box, 1978) and producing diagnostics
plots to visually assess stationarity in variance.

One additional approach to AD within the regression-based suite of
methods, applied to water-quality time series by Hill and Minsker
(2010), uses anomaly mitigation (i.e. correction) during forecasting
and classification. Essentially this anomaly detection and mitigation
(ADAM) approach uses forecasts instead of actual observations, when
detected as anomalous, to forecast the subsequent one-step-ahead ob-
servation. ADAM therefore has the potential to change the regression
forecasting performance. After implementing each of the four
regression-based methods outlined above on the time series data, we
re-implemented them using the ADAM approach.

2.5.3. Feature-based methods
The feature-based approach to anomaly detection can make use of

multiple time series to identify observations that deviate by distance
or density from the majority of data in high dimensional ‘feature
space’ (e.g. Talagala et al., 2018; Wilkinson, 2018). In the initial phase,
transformations (e.g. log or differencing transformations) are applied
to multiple time series to highlight different anomalies, such as sudden
spikes and shifts. Different unsupervised anomaly detection methods

are then applied to the high dimensional data space constructed by
the transformed series to classify the anomalies. Because feature-
based methods take the correlation structure of multiple water-
quality variables into account, the anomaly classifications have a proba-
bilistic interpretation. In other words, the anomalous threshold is not a
user-defined parameter, but is instead determined by the data using
probability theory. This increases the generalisability of such methods
across different applications. Feature-based methods are computation-
ally efficient and as such are suitable for analysing big data in near-
real time. In addition, they are unsupervised, data-driven approaches
and therefore do not require training (Table S1). Here, we implemented
HDoutliers (Wilkinson, 2018), aggregated k-nearest neighbour (kNN-
agg; Angiulli and Pizzuti, 2002; Madsen, 2018) and summed k-nearest
neighbour AD (kNN-sum; Madsen, 2018) on one set of multivariate
data for each site: the turbidity and conductivity time series.

The HDoutliers algorithm proposed by Wilkinson (2018) defines an
anomaly as an observation that deviates markedly from the majority by
a large distance in high-dimensional space. The algorithm starts by nor-
malizing each time series to prevent variables with large variances hav-
ing disproportional influence on Euclidean distances. The method uses
the Leader algorithm (Hartigan, 1975) to identify anomalous clusters
fromwhich a representativemember is selected. Nearest neighbour dis-
tances between the selected members are then calculated and form the
primary source of information for the AD process. An extreme-value
theory approach is used to calculate an anomalous threshold, which
thus has a probabilistic interpretation.

The HDoultiers algorithm considers only the nearest neighbour dis-
tances to identify anomalies. Following Angiulli and Pizzuti (2002),
Madsen (2018) proposed an algorithm using k nearest neighbour dis-
tances. For each observation, the k-nearest-neighbours (kNN) are first
identified using a k-dimensional tree (kd-tree; Bentley, 1975) and an
anomaly score is then calculated based on the distances to those neigh-
bours. Whilst kNN-agg computes an aggregated distance to the kNN
(see below), kNN-sumsimply sums the distances to the kNN. The aggre-
gated distance is calculated by aggregating the results from k-
minimum-nearest neighbours (kminNN) to k-maximum nearest neigh-
bours (kmaxNN), such that if kminNN=1 and kmaxNN=3, the results
from 1NN, 2NN and 3NN are aggregated by taking the weighted sum,
assigning nearest neighbours higher weights relative to the neighbours
farther apart. Here, we used k= 10, the maximum default value of k in
Madsen (2018) because it is a suitable trade-off between too low or
high a value that may influence performance adversely (McCann and
Lowe, 2012).

2.6. Select metrics to evaluate and compare methods (Step 6)

We selected several metrics to evaluate and compare the ability of
the different AD methods outlined in Section 2.5, to detect the anoma-
lies identified and labelled in Step 3 (Section 2.3), at the different sites
for the different water-quality variables, anomaly classes and types
(Table 2; Figs. S2–S3). We included commonly used metrics calculated
easily from the confusion matrix of true and false positives and true
and false negatives (TP, FP, TN, FP, respectively; Table S2). These in-
cluded accuracy and error rate along with two metrics designed to bet-
ter capture the performance of methods when the number of
anomalous versus ‘normal’ observations is unbalanced, specifically the
negative and positive predictive values (NPV and PPV, respectively;
Ranawana and Palade, 2006). Finally, we used the root mean square
error (RMSE) from the regression-based methods as an additional met-
ric of performance for those methods.

Computation time can also provide insight on the comparative per-
formance of methods. Both regression- and feature-basedmethods take
time for classification. However, feature-based methods classify the
complete time series in a single run. By contrast, regression-based
methods require additional time for training for prediction, with the ex-
ception of naïve methods. Regression-based methods (barring naïve
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prediction) also require additional time to perform optimization to esti-
mate the model parameters; whilst this can be relatively fast for linear
models, non-linear optimization is more time consuming. For these rea-
sons, we can state a priori that running the feature-based methods will
require less computational time than the regression-based methods.
Furthermore, HDoutliers requires less computational time than both
kNN methods because the former considers only the single most-
nearest neighbour whereas the latter consider all k nearest neighbours.
However, if the feature-based methods were to be implemented in
near-real time to classify the time series with newlymeasured observa-
tions, this would make them more computationally comparable with
regression-based methods, which are implemented in a loop that fore-
casts and classifies the one-step-ahead observation as anomalous or
otherwise. As such, any difference in classification times between the
approaches will depend on the models fitted and the features
computed.

2.7. Prepare data for anomaly detection (Step 7)

Class 2 anomalies (i.e. impossible values of type F, out-of-sensor-
range of type G and missing data of type K) were detected by the auto-
mated, hard-coded, classification rules in near-real time. For other
anomalies, we implemented regression-based or feature-based
methods. To prepare the ‘clean’ training data for the regression-based
AD, we removed all the labelled anomalies from the time series data
(Classes 1 and 3). Regression-based AD then followed using the natural
log-transformed ‘clean’ time series for training and the natural log-
transformed original times series for testing, for all methods except for
linear autoregression for which we took the differences of the natural
logarithms. These transformations were applied to meet assumptions
of the regression models; forecasting was performed on the trans-
formed scale. Where zero (e.g. type F anomalies in conductivity at PR)
or negative values (e.g. type F anomalies in conductivity at PR and in
level at SC) were present, we replaced each value with the (non-zero,
positive) value of the previous observation to enable forecasting. To cal-
culate the confusion-matrix based performance metrics for the
regression-based methods, we first summed the 100% correctly de-
tected Class 2 anomalies to the true positive (TP) count from the regres-
sion method before calculating the rest of the metrics (Table S2).

For feature-based AD, we applied both the one-sided and the two-
sided derivative transformations to the natural log-transformed turbid-
ity and conductivity time series because exploratory analyses indicated
that these transformations highlighted the priority type A anomalies
(e.g. large sudden spikes, Class 1) well in feature space. For the one-
sided transformation,we took the negative side of the derivative for tur-
bidity, and the positive side for conductivity. Feature-based AD on the
transformed time series then followed. We followed the same process
as for the regression-based methods, regarding the TP count, to calcu-
late the complete set of confusion matrix-based performance metrics.

2.8. Implement anomaly detection methods (Step 8)

We used the forecast package (Hyndman, 2017) to implement the
regression-based AD methods and the DDoutliers package (Madsen,
2018) run within the oddwater package (Talagala and Hyndman,
2018) to implement the feature-based AD methods in R statistical soft-
ware (R Core Team, 2017).We used the same rule-based code to imple-
ment the automated classification rules within the regression- and
feature-based methods. The R code for the automated classification
rules and regression-based methods is provided in the Supplementary
materials, along with files containing the time series data and
anomaly-type coding. Madsen (2018) and Talagala and Hyndman
(2018) describe the R code to implement the feature-based methods
described herein.

3. Results

3.1. Anomalies and their types

Overall, we labelled 1651 turbidity, 521 conductivity and 8 level ob-
servations as anomalous in the time series data (Table 2). The majority
of these anomalies were of type E (comprising periods of anomalous
high variability), H (drift) and L (other).

There was imbalance in the number of non-anomalous (many) to
anomalous (few) data points in the time series we used, as well as dif-
ferent types of anomalies (e.g. many type L vs few type A; Table 2). Fur-
thermore, some anomaly types comprised multiple observations (e.g.
other type L, drift type H) where as others contained only one (e.g. a
type A anomaly). Such imbalances need to be considered in addition
to the anomaly-type priority rankings when comparing and
interpreting the performance of different methods with respect to
their abilities to detect the different anomaly types.

The turbidity time series contained the most anomalies, at both SC
and PR, followed by conductivity at PR. There were no clear examples
of type C (constant offsets), although data labelled as L (other) between
points of sudden shiftmay have been due to calibration errorsmanifest-
ing as offsets. In addition, there were no examples of type G anomalies
(out-of-sensor-range values). However, there were numerous impossi-
ble values (type F), which can be detected by automated classification
rules in the same way as type G anomalies. Clusters of spikes (type
I) and periods of low variability or persistent values (type B) were also
absent. Type K anomalies (missing data) were present in all of the
time series.

3.2. Evaluate and compare anomaly detection methods (Step 9)

We evaluated and compared results of the various AD methods as
part of Step 9 of the AD Framework (Fig. 1), as outlined below.

3.2.1. Automated classification rules
As expected, the automated classification rules detected all of the

Class 2 anomalies (types F, G andK; Table 2) correctly, with no false pos-
itives, in each of the time series.

3.2.2. Regression-based methods
Results of the regression-basedmethods performed on the turbidity

and conductivity time series at both PR and SC indicated that, in general,
all methods had high accuracy (values N0.80) and low error rates
(b0.20), except when ADAMwas used (Table 3). ADAMwas associated
with high rates of false positive detection (i.e. incorrect classification of
normal observations as anomalies), which negatively affected the accu-
racy and error rates (Figs. 3–4 and S4–S9). For example, naïve prediction
with ADAM applied to the turbidity time series at PR classified over
5000 observations as false positives compared to 133 without mitiga-
tion using AD alone (Table 3, Fig. 3). In many cases, large contiguous
numbers of false positives occurred when the observations subsequent
to a classified anomaly did not display ‘normal’ behaviour relative to the
observations classified most recently as non-anomalous. Despite this
drawback, ADAMwas useful for correct classification of Class 3 anoma-
lies where AD alonewas not. For example, 718 out of 718 and 713 out of
915 type E (high variability) anomalies in the turbidity time series at PR
and SC, respectively, were detected by naïve ADAM, and all 397 Type H
(drift) and 80 type L (other) anomalies in the conductivity time series at
PR were detected by ARIMA ADAM (Table 4). ADAMwas also useful for
detection of anomalous observations that proceeded sudden shifts, such
as the L type anomalies in the middle of the turbidity time series
(Figs. S2 and 3–4).

RegARIMA did not outperform ARIMA, despite the additional water-
quality data that were used as covariates. This was especially true for
conductivity at PR, where inclusion of other water-quality variables as
covariates greatly reduced the rate of correct classification (RegARIMA
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PPV of 0.49 vs ARIMA PPV of 0.93; Table 3). This likely reflects the char-
acteristics of the water-quality time series at this site, with conductivity
displaying complex relationshipswith both turbidity and level (Fig. S1).
Thus, including these covariates had a detrimental impact on classifica-
tion performance. In addition, the behaviour of conductivity tended to
bemore stable than turbidity through time, somewhat reflective of ran-
dom walk behaviour, on which naïve prediction (ARIMA(0,1,0)) is
based (Hyndman and Koehler, 2006). This may be why the ARIMA
(3,1,2) model performed similarly well to naïve prediction when

applied to the conductivity time series at PR, given both were using a
difference (d) parameter of 1 (Table 3, Figs. 3–4).

There were only two observations labelled as anomalies in the con-
ductivity time series at SC, and bothwere of Class 1 (one sudden spike A
and one sudden shift D). These two anomalies were classified correctly
by all methods, with zero false negatives (Table 4, Table S4). However,
all of the methods classified many ‘normal’ observations incorrectly as
anomalies (false positives), particularly ADAM (up to 5091 out of
6280 observations; Table S4), as was the case for other time series at

Table 3
Performance metrics for regression-based methods of anomaly detection performed separately on turbidity and conductivity data from in situ sensors at Pioneer River (PR) and Sandy
Creek (SC), incorporating100% detection of Class 2 anomalies by automated classification rules. See Tables S2–S3 formetric formulae anddescriptions and Section 2.5.2 formodel specifics.
AD, anomaly detection; ADAM, anomaly detection and mitigation; AR, autoregression.

Site Time series Model (p,d,q) Method TN FN FP TP Accuracy Error rate NPV PPV RMSE

PR Turbidity Naïve (0,1,0) AD 5416 715 133 16 0.86 0.14 0.88 0.11 0.21
ADAM 347 0 5202 731 0.17 0.83 1.00 0.12 0.21

Linear AR (4,0,0) AD 5398 712 151 19 0.86 0.14 0.88 0.04 0.20
ADAM 4491 25 1058 706 0.83 0.17 0.99 0.40 0.87

ARIMA (3,1,2) AD 5405 711 144 20 0.86 0.14 0.88 0.12 0.20
ADAM 4465 25 1084 706 0.82 0.18 0.99 0.39 0.90

RegARIMA (5,1,5) AD 5344 695 205 36 0.86 0.14 0.88 0.15 0.57
ADAM 171 0 5378 731 0.14 0.86 1.00 0.12 0.39

PR Conductivity Naïve (0,1,0) AD 5759 459 2 60 0.93 0.07 0.93 0.97 0.17
ADAM 4455 399 1306 120 0.73 0.27 0.92 0.08 0.17

Linear AR (2,0,0) AD 5709 453 52 66 0.92 0.08 0.93 0.56 0.17
ADAM 4256 397 1505 122 0.70 0.30 0.91 0.07 0.64

ARIMA(3,1,2) AD 5756 455 5 64 0.93 0.07 0.93 0.93 0.16
ADAM 1873 0 3888 519 0.38 0.62 1.00 0.12 1.37

RegARIMA (1,1,2) AD 5675 437 86 82 0.92 0.08 0.93 0.49 0.26
ADAM 128 0 5633 519 0.10 0.90 1.00 0.08 0.07

SC Turbidity Naïve (0,1,0) AD 4386 859 96 61 0.82 0.18 0.84 0.39 0.24
ADAM 491 134 3991 786 0.24 0.76 0.79 0.16 0.24

Linear AR (5,0,0) AD 4347 830 135 90 0.82 0.18 0.84 0.40 0.22
ADAM 2178 753 2340 167 0.43 0.57 0.74 0.07 1.06

ARIMA (3,1,2) AD 4348 829 134 91 0.82 0.18 0.84 0.40 0.22
ADAM 2187 751 2295 169 0.44 0.56 0.74 0.07 1.06

RegARIMA (5,1,0) AD 4345 820 137 100 0.82 0.18 0.84 0.42 0.23
ADAM 775 81 3707 839 0.30 0.70 0.91 0.18 0.06

Fig. 3. Classification of turbidity (upper row) and conductivity observations (lower row)measured by in situ sensors at Pioneer River (PR) by naïve prediction as true negatives (TN), false
negatives (FN), false positives (FP) or true positives (TP). Plots on the left show results from naïve prediction alone, those on the right show results from naïve prediction with ADAM.
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Fig. 4. Classification of turbidity (upper row) and conductivity observations (lower row)measured by in situ sensors at Pioneer River (PR) by ARIMA as true negatives (TN), false negatives
(FN), false positives (FP) or true positives (TP). Plots on the left show results from ARIMA alone, those on the right show results from ARIMA with ADAM.

Table 4
Number of turbidity (T) and conductivity (C) anomalies of each type and class classified correctly by each regression-basedmethod for Pioneer River (PR) and Sandy Creek (SC). Number of
true anomalies and number of instances where relevant indicated in parentheses. Class 2 anomalies detected by automated classification rules. AR, autoregression,− not applicable.

River (variable) Model Method A
Class 1

D
Class 1

E
Class 3

F
Class 2

J
Class 1

K
Class 2

H
Class 3

L
Class 3

PR (T) (1) (3) (0) (0) (5) (4) (0) (718; 1 instance)
Naïve AD 1 3 – – 5 4 – 3

ADAM 1 3 – – 5 4 – 718
Linear AR AD 1 3 – – 5 4 – 6

ADAM 1 2 – – 5 4 – 694
ARIMA AD 1 3 – – 5 4 – 7

ADAM 1 3 – – 5 4 – 694
RegARIMA AD 1 3 – – 5 4 – 23

ADAM 1 3 – – 5 4 – 718
PR (C) (2) (2) (0) (34) (0) (4) (397; 1 instance) (80; 2 instances)

Naïve AD 2 1 – 34 – 4 0 19
ADAM 1 1 – 34 – 4 0 80

Linear AR AD 2 2 – 34 – 4 0 24
ADAM 2 2 – 34 – 4 0 80

ARIMA AD 2 1 – 34 – 4 0 23
ADAM 2 2 – 34 – 4 397 80

RegARIMA AD 2 2 – 34 – 4 0 40
ADAM 2 2 – 34 – 4 397 80

SC (T) (4) (1) (915; 2 instances) (0) (0) (0) (0) (0)
Naïve AD 4 1 276 – – – – –

ADAM 4 1 780 – – – – –
Linear AR AD 4 0 85 – – – – –

ADAM 4 1 161 – – – – –
ARIMA AD 4 0 85 – – – – –

ADAM 4 1 162 – – – – –
RegARIMA AD 4 1 94 – – – – –

ADAM 4 1 833 – – – – –
SC (C) (1) (1) (0) (0) (0) (0) (0) (0)

Naïve AD 1 1 – – – – – –
ADAM 1 1 – – – – – –

Linear AR AD 1 1 – – – – – –
ADAM 1 1 – – – – – –

ARIMA AD 1 1 – – – – – –
ADAM 1 1 – – – – – –

RegARIMA AD 1 1 – – – – – –
ADAM 1 1 – – – – – –
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both SC and PR (Table 3). Due to the heavy imbalance of normal versus
anomalous observations in the conductivity data at SC, we decided not
to undertake further interpretation of the regression-based perfor-
mance metrics for this time series.

Diagnostics conducted on the residuals of each regression-based
method (Figs. S13–S20) indicated heteroscedasticity was present. In
other words, there was change in variance of the data through time (a
form of nonstationarity), despite the transformations applied to the
time series. Although this will not bias the model forecasts, it may
have reduced the accuracy of theprediction intervals and hence affected
the classification of anomalies. There was also evidence of
nonstationarity in terms of non-constant means in the PR turbidity
and conductivity residuals from the linear autorgression, ARIMA and

RegARIMA and in the SC turbidity residuals from the ARIMA and
RegARIMA models (Box-Ljung tests, p b 0.05).

3.2.3. Feature-based methods
Each feature-basedmethod applied to the turbidity time series at PR

had the same accuracy (0.88), error rate (0.12) and NPV score (0.88;
Table 5; Fig. 5). The kNN-agg method applied to the derivatives of the
time series correctly classified the most anomalies (6) of all feature-
based methods applied to the PR turbidity data, but also resulted in
the most false positives (7) and thus the lowest NPV score (0.46). The
HDoutliers method applied to the derivatives of the time series attained
the highest NPV score of 0.75, thus attaining the highest values of both
NPV and PPV. All methods had high rates of false negative detection

Table 5
Performancemetrics for feature-basedmethods of anomaly detection performed onmultivariatewater-quality time series from in situ sensors at Pioneer River (PR) and Sandy Creek (SC),
incorporating 100% detection of Class 2 anomalies by automated classification rules. See Tables S2–S3 for metric formulae and descriptions. OS, one sided.

Site Time series Method Transformation TN FN FP TP Accuracy Error rate NPV PPV

PR Turbidity HDoutliers Derivative 5548 728 1 3 0.88 0.12 0.75 0.88
Turbidity OS Derivative 5547 727 2 4 0.88 0.12 0.67 0.88
Turbidity kNN-agg Derivative 5542 725 7 6 0.88 0.12 0.46 0.88
Turbidity OS Derivative 5546 728 3 3 0.88 0.12 0.50 0.88
Turbidity kNN-sum Derivative 5547 728 2 3 0.88 0.12 0.60 0.88
Turbidity OS Derivative 5546 728 3 3 0.88 0.12 0.50 0.88
Conductivity HDoutliers Derivative 5758 470 3 49 0.92 0.08 0.94 0.92
Conductivity OS Derivative 5758 479 3 40 0.92 0.08 0.93 0.92
Conductivity kNN-agg Derivative 5759 472 2 47 0.92 0.08 0.96 0.92
Conductivity OS Derivative 5758 479 3 40 0.92 0.08 0.93 0.92
Conductivity kNN-sum Derivative 5760 471 1 48 0.92 0.08 0.98 0.92
Conductivity OS Derivative 5759 479 2 40 0.92 0.08 0.95 0.92

SC Turbidity HDoutliers Derivative 4477 914 5 6 0.83 0.17 0.55 0.83
Turbidity OS Derivative 4481 917 1 3 0.83 0.17 0.75 0.83
Turbidity kNN-agg Derivative 4477 914 5 6 0.83 0.17 0.55 0.83
Turbidity OS Derivative 4471 912 11 8 0.83 0.17 0.42 0.83
Turbidity kNN-sum Derivative 4482 920 0 0 0.83 0.17 n/a 0.83
Turbidity OS Derivative 4480 917 2 3 0.83 0.17 0.60 0.83

Fig. 5. Classification of turbiditymeasured by an in situ sensor at Pioneer River (PR) by HDoutliers (upper row), kNN-agg (middle row) and kNN-sum (lower row) as true negatives (TN),
false negatives (FN), false positives (FP) or true positives (TP). Plots on the left show results ofmethods applied to thederivatives, and those on the right show results ofmethods applied to
the one-sided derivatives of the time series.
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(N720; Table 5),whichwere associated predominantlywith poor detec-
tion of Class 3 anomalies; none of the 718 type L (‘other’) anomalies
were classified as such in the turbidity times series by any feature-
based method (Table 6, Fig. 4). Furthermore, only the methods applied
to the derivatives of the turbidity time series correctly classified the type
A (sudden spike) and one of the type D (sudden shift) anomalies
(Table 6).

For conductivity at PR, accuracy was high (0.92) and error rate was
low (0.08; Table 5; Fig. S10). The PPV values were all identical and
high (0.92), with slightly more variability in the NPV scores, which
were also high (0.93–0.98); the kNN-summethod on the one-sided de-
rivatives attained the highest NPV. However, the feature-based
methods tended to produce high false negative rates for the conductiv-
ity data, as was the case with the turbidity data at PR. Most methods
were able to correctly classify the type A and D anomalies (Table 6).

For turbidity at SC, accuracy (0.83) and error rate (0.17) were the
same for each method, as was the case for turbidity at PR (Table 5;
Fig. S11). NPV scores ranged from 0.42, attained by the kNN-agg
method, to 0.75 attained by HDoutliers, both of which were applied to
the one-sided derivatives of the time series (Table 5). All methods had
high false negative rates (N900; Table 5), but all methods classified
three of the four type A anomalies correctly (Table 6).

For the feature-based methods applied to the conductivity time se-
ries at SC, we followed the same protocol as we did for the regression-
based methods (Table S5, Fig. S12), keeping interpretation to a mini-
mum given there were only two anomalies labelled in these data. All
methods classified one true positive only (Type A) and misclassified
the other anomaly (type D) as normal, but most non-anomalous obser-
vations were classified correctly as true negatives (Tables 6 and S5).

4. Discussion

The tenth and final step of the AD Framework (Fig. 1) involves mak-
ing recommendations based on the results of the different ADmethods
applied. Here, results of the regression-based methods indicated that

the ARIMA method may be useful for AD in streaming water-quality
data because it encompasses both naïve prediction (ARIMA(0,1,0))
and linear autoregressionmodels (ARIMA(p,0,0))within its suite of pos-
sible models. Furthermore, ARIMA may be particularly useful when no
other covariates are available to include in RegARIMAmodels, relation-
ships among potential covariates are complex, such as at PR, or covari-
ates contain missing values. Regarding decisions on whether to
include anomalymitigation aswell as detection, ARIMAwithoutmitiga-
tion (i.e. without ADAM)may bemost usefulwhen the end-user focus is
on detection of Class 1 anomalies (sudden spikes and shifts). Such
anomalies, if not detected and accounted for, are likely to incorrectly in-
flate or deflate summary statistics (e.g. monthly means) used in water
quality assessments and for compliance checking by water manage-
ment agencies.

ARIMAwithmitigation (i.e.with ADAM) could be implemented sub-
sequently or alternatively to ARIMA alone to detect Class 3 anomalies
(e.g. drifts, periods of high variability). Occurrence of such anomalies
can indicate that sensors need re-calibrating, and their detection
would be of particular value in terms of sensor maintenance. ARIMA
models assume that observations are evenly spaced in time, which
may become problematic for the models, specifically for the character-
istics of the training datasets, if in situ water-quality measurements be-
come less frequent and/or irregular in time. This may be especially
problematic in training datasets if natural water-quality events are
missed. However, increasing the frequency of measurements during
high-flow events to capture greater resolution in water-quality dynam-
ics is less problematic. Most importantly, the training dataset should in-
clude the full range of natural water-quality dynamics.

Regression-based methods of AD are semi-supervised, and as a re-
sult are influenced strongly by the training data used to build the
models. In this case study, high rates of false positives were detected
in the water-quality time series when these methods of AD were used
(Table S1). Yet, decisions on how to dissect time series data into training
and test components are not trivial, particularly when there are time-
specific behaviours in the data such as seasonality of events and/or

Table 6
Number of turbidity (T) and conductivity (C) anomalies of each type and class classified correctly by each feature-based method for Pioneer River (PR) and Sandy Creek (SC). Number of
Pioneer River (PR) turbidity anomalies of each type and class classified correctly by each feature-based method. Number of true anomalies and number of instances where relevant indi-
cated in parentheses. Class 2 anomalies detected by automated classification rules. –, not applicable.

River (variable) Method Transformation A
Class 1

D
Class 1

E
Class 3

F
Class 2

J
Class 1

K
Class 2

H
Class 3

L
Class 3

PR (T) (1) (3) (0) (0) (5) (4) (0) (718; 1 instance)
HDoutliers Derivative 1 1 – – 1 4 – 0

OS Derivative 0 0 – – 4 4 – 0
kNN-agg Derivative 1 1 – – 4 4 – 0

OS Derivative 0 0 – – 3 4 – 0
kNN-sum Derivative 1 1 – – 1 4 – 0

OS Derivative 0 0 – – 3 4 – 0
PR (C) (2) (2) (0) (34) (0) (4) (397; 1 instance) (80; 2 instances)

HDoutliers Derivative 1 1 – 34 – 4 0 12
OS Derivative 1 0 – 34 – 4 0 4

kNN-agg Derivative 1 1 – 34 – 4 0 10
OS Derivative 1 1 – 34 – 4 0 4

kNN-sum Derivative 1 1 – 34 – 4 0 11
OS Derivative 0 0 – 34 – 4 0 0

SC (T) (4) (1) (915; 2 instances) (0) (0) (0) (0) (0)
HDoutliers Derivative 3 0 3 – – – – –

OS Derivative 3 0 0 – – – – –
kNN-agg Derivative 3 0 3 – – – – –

OS Derivative 3 0 5 – – – – –
kNN-sum Derivative 0 0 0 – – – – –

OS Derivative 3 0 0 – – – – –
SC (C) (1) (1) (0) (0) (0) (0) (0) (0)

HDoutliers Derivative 1 0 – – – – – –
OS Derivative 1 0 – – – – – –

kNN-agg Derivative 1 0 – – – – – –
OS Derivative 1 0 – – – – – –

kNN-sum Derivative 1 0 – – – – – –
OS Derivative 1 0 – – – – – –
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when the time series are of limited length (e.g. one year, aswas the case
here). Methods such as event-based cross validation (Lessels and
Bishop, 2013) and walk-forward cross-validation (Bergmeir et al.,
2018)may provide potential solutions that could be implemented in fu-
ture research.

In our analysis, the regressionmodels may have been over-fitted be-
cause they were trained on the same data (minus anomalies) used for
testing. Using trainingdata fromanother nearby site on the samewater-
course or from a different time period at the same site could lessen this
issue. However, there were no nearby sites on PR or SC from which
water-quality data from in situ sensors were available. If such data be-
come available in the future, training could be performed on those
data to see if the AD performance changes.

In rivers, water-quality patterns through time often change with the
flow regime (Poff et al., 1997; Nilsson and Renöfält, 2008). This is partic-
ularly apparent in highly seasonal rivers such as those of Australia's
tropical north, where water quality tends to fluctuate more rapidly
and to a greater extent during high-flow events in the wet season
than during the more stable low-flow phase of the dry season (Leigh,
2013; O'Brien et al., 2016). This can manifest as nonstationarity in the
water-quality time series; for example, as changing variance through
time, as was the case here. As such, differentiating between regimes
for training purposes may additionally improve the performance of
regression-based AD methods in water-quality time series from such
rivers. For example, discrete-space hidden Markov models could be
used to classify (i.e. segment) the time series into a subset of water-
quality regimes found in the data. The regression-basedmodels that re-
quire a training dataset (Table S1) could then be applied subsequently
to each of the segmented datasets.

Like the regression-based methods without ADAM, the feature-
based methods we implemented were not proficient at detecting Class
3 anomalies. This is not surprising given the transformations and algo-
rithms used to implement these methods were developed specifically
to prioritize detection of Class 1 anomalies, as per the end-user needs
and goals in our case study. Other transformations of the time series
data may be required to better target Class 3 anomalies using feature-
basedmethods. This should be borne inmindwhen transferring our ap-
proach to other applications and end-user objectives, such as the mon-
itoring and detection of security intrusions (García-Teodoro et al., 2009;
Talagala et al., 2018). Furthermore, whilst HDoutliers is more computa-
tionally efficient than kNNmethods of feature-based AD, kNNmethods
may be preferable when clusters of anomalies are present in the high-
dimensional feature-space produced from the transformed time-series
data. Such clusters could manifest if, for example, there were several
sudden spikes in the time series, each of the same value. Such phenom-
ena may result from recurrent technical issues with the sensor equip-
ment that produce a specific, recurrent anomalous value.

5. Conclusions

Our results highlight that a combination of methods, as recom-
mended in Section 4, is likely to provide optimal performance in
terms of correct classification of anomalies in streaming water-quality
data from in situ sensors, whilst minimizing false detection rates. Fur-
thermore, our framework emphasizes the importance of communica-
tion between end-users and anomaly detection developers for optimal
outcomes with respect to both detection performance and end-user ap-
plication. To this end, our framework has high transferability to other
types of high frequency time-series data and anomaly detection applica-
tions.Within the purview ofwater-qualitymonitoring, for example, our
framework could be applied to other water-quality variables measured
by in situ sensors that are used commonly in ecosystem health assess-
ments, such as dissolved oxygen, water temperature and nitrate
(Leigh et al., 2013; Pellerin et al., 2016). These properties of water are
highly dynamic in space and time (Hunter and Walton, 2008; Boulton
et al., 2014) and so differentiating anomalies from real water-quality

events may be more challenging than it is for properties like turbidity
and conductivity investigated in this study. These latter two properties
hold promise as near-real time surrogates of sediment andnutrient con-
centrations (Jones et al., 2011; Slaets et al., 2014), which would reduce
the amount of laboratory analysis otherwise required for discrete
water samples. Therefore, the extension of automated AD methods, as
developed herein, along with models that predict sediment and nutri-
ent concentrations from these data, into space and time on river net-
works, could revolutionize the way we monitor and manage water
quality, whilst also increasing scientific understanding of the spatio-
temporal dynamics of water-quality in rivers and the potential effects
on downstream waters.
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Chapter 6

Conclusion

This thesis by publication is built around four articles. Although the four articles have their

own focus motivated by a wide range of different analytical challenges from different fields,

none of them is completely an anomaly. The four articles move around a unifying theme

on anomaly detection in streaming time series data, with a different degree of attention to

the common theme.

6.1 Summary of the Results and Contributions

Despite the long history of research on anomaly detection, the problem is still challenging

owing to the evolving nature of the problem setting introduced by different applications and

user requirements. This thesis is an attempt to reduce this gap by introducing three new

algorithms, stray, oddstream and oddwater, for anomaly detection in temporal data with

applications in pedestrian monitoring, security monitoring and sensor quality monitoring,

respectively. The three algorithms stem from the analytical challenges introduced by the

applications with various input data structures, definitions, problem specifications, user

requirements, limitations of the state-of-the-art methods and unavailability of techniques

that accommodate some of the data challenges.
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6.1.1 The stray algorithm

Anomaly detection in high-dimensional data is a challenging yet important task, because

it has applications in many fields. The HDoutliers algorithm by Wilkinson (2018) is a

powerful algorithm for anomaly detection in high-dimensional data with a strong theoretical

foundation. However, it suffers from a few limitations since it limits the anomalous score

calculation only to the nearest neighbour distances and uses the Leader algorithm to

form several clusters of points prior to anomalous score calculation. The effect of these

limitations is a tendency to reduce computational efficiency and increase false detection

rates under certain circumstances. Therefore, the main objective of Chapter 2 was to

propose solutions to the limitation of the HDoutliers algorithm and thereby improve its

capabilities.

The proposed algorithm, stray, addresses the limitations of the HDoutliers algorithm. In

the stray algorithm, an anomaly is defined as an observation that deviates markedly from

the majority with a large distance gap. It calculates an anomalous score for each data

instance using k-nearest neighbour distances with the maximum gap. An approach based

on extreme value theory is then applied to the anomalous scores to calculate a data-driven

anomalous threshold. This improved algorithm can assign both a label and an anomalous

score that explains the level of outlierness of each data instance.

This study offers two fundamental contributions. First, it proposes an improved algorithm

for anomaly detection in high-dimensional data that addresses the limitations of the state-

of-art-method, the HDoutliers algorithm. It outperforms the state-of-the-art method in

both accuracy and computational efficiency. Among many other advantages, the stray

algorithm has the ability to deal with the masking problem, multimodal distributions and

inliers and outliers. The stray algorithm is specially designed for high-dimensional data.

As the second contribution, the study demonstrates how the stray algorithm can assist in

detecting anomalies present in other data structures, such as temporal data and streaming

data, using feature engineering.

Since the stray algorithm is based on the distance definition of an anomaly, the algorithm

expects data instances to have a clear distance separation between the anomalous and
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typical points. Then, only the anomalous points (if any) have significantly large k-nearest

neighbour distances with the maximum gap that discriminate anomalies from typical

points. However, some applications do not exhibit large gaps between typical points and

anomalies. Instead, the anomalies deviate from the majority, or the region of typical data,

gradually, without introducing a large distance between typical and anomalous points. In

the absence of clear distance separation between anomalous points and the typical points,

the stray algorithm fails to detect anomalies since distance measures are the primary source

of information for the algorithm to detect anomalies. This limitation of the stray algorithm

motivates the second algorithm proposed in Chapter 3 of this thesis.

6.1.2 The oddstream algorithm

In addition to the aforementioned limitation of the stray algorithm, the limited research

attempts for detecting anomalous series within a large collection of streaming data motivated

the second algorithm of this thesis, the oddstream algorithm. The primary focus of Chapter

3 was to develop a powerful automated method to detect anomalous series within a large

collection of series in the streaming data context.

In the oddstream algorithm, an anomaly is defined as an observation that is very unlikely,

given the recent distribution of a given system. In this algorithm, a boundary for the

system’s typical behaviour is defined using extreme value theory. Then, a sliding window

is used to test newly arrived data. The model uses time series features as inputs and a

density-based comparison to locate nonstationarity. This algorithm can detect significant

changes in the typical behaviour and automatically update the anomalous threshold on

detecting nonstationarity.

This study offers three fundamental contributions. First, it proposes a new framework that

provides early detection of anomalies within a large collection of streaming time series data.

Second, it proposes a novel approach that adapts to nonstationarity. Third, using various

synthetic and real datasets, it demonstrates the wide applicability and usefulness of the

algorithm. Application of the oddstream algorithm with data obtained using fibre optic

cables for intrusion detection showed that the algorithm has the ability to deal with large

nonstationary streaming data that may have multimodal distributions.
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6.1.3 The oddwater algorithm

Automated in situ sensors have the potential to revolutionise the way we monitor envi-

ronmental conditions. However, the data produced by these sensors are prone to errors

because of many reasons, such as miscalibration, biofouling and battery failures (Horsburgh

et al., 2015). These technical outliers make the data unreliable for scientific analysis.

Therefore, to ensure water-quality sensors yield high-quality data, we need to automate

the real-time detection of technical outliers in such data. However, a customised method

to detect technical outliers in water-quality data from in situ sensors is lacking. No exiting

outlier detection method is able to address this challenge owing to the complex nature of

the definition of a technical outlier in water-quality data from in situ sensors. Therefore,

the main objective of Chapters 4 and 5 was to propose a new framework to detect technical

outliers in high-frequency water-quality data from in situ sensors.

This study proposes an automated framework that provides early detection of technical

outliers, caused by technical issues, in water-quality data from in situ sensors. We

compare two approaches to this problem: (1) using forecasting models (Chapter 5) and

(2) using feature vectors with extreme value theory (Chapter 4). In the forecasting

models, observations are identified as outliers when they fall outside the bounds of an

established prediction interval. Two strategies are considered for this comparison study:

anomaly detection (AD) and anomaly detection and mitigation (ADAM) for the detection

process. With ADAM, the detected outliers are replaced with the forecast prior to the next

prediction, whereas AD simply uses the previous measurements without altering detected

outliers. The feature-based framework first identifies the data features that differentiate

outlying instances from typical behaviours. Then, statistical transformations are applied

to make the outlying instances stand out in transformed data space. Unsupervised outlier

scoring techniques are then applied to the transformed data space. An approach based

on extreme value theory is used to calculate a threshold for each potential outlier. The

proposed frameworks are evaluated using two datasets obtained from in situ sensors in

rivers flowing into the Great Barrier Reef lagoon.
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The feature-based approach (in Chapter 4) successfully identified outliers involving abrupt

changes in turbidity, conductivity and river level, including sudden spikes, sudden isolated

drops and level shifts, while maintaining very low false detection rates. It also has many

special features: (1) It takes the correlation structure between the water-quality variables

into account when detecting technical outliers, given some were apparent only in the

high-dimensional space but not when each variable was considered independently. (2) It

can be applied to both univariate and multivariate problems as the anomalous threshold

is based either on the k nearest neighbour distances or the densities of data points. (3)

Since this is an unsupervised algorithm, it can be easily extended to other water-quality

variables, other sites and also to other outlier detection tasks in other application domains.

The only requirement is to select suitable transformation methods according to the data

features that differentiate the outlying instances from the typical behaviours of a given

system. The transformations used in this study were mainly chosen as appropriate to

the data collected from Sandy Creek and Pioneer River. Domain-specific knowledge

plays a vital role when selecting suitable transformations. (4) Since the outlier threshold

is derived from the spacing theorem from classical extreme value theory it has a valid

probabilistic interpretation. 5) The use of derivative transformations allows it to deal with

irregular(unevenly spaced) time series. (6) It can easily be extended to streaming data by

incorporating a sliding window technique and then treating each window as a batch data

set.

There is an important difference between the methods discussed in Chapter 4 and 5.

Chapter 5 emphasizes the importance of different anomaly types and end-user needs

and provides the starting point for constructing a framework for automated anomaly

detection in high frequency water-quality data from in situ sensors. It emphasizes the use

of forecasting models for detecting technical outliers in water quality data and considers

the outlier detection problem in a univariate setting. It also briefly introduces unsupervised

feature based methods for detecting technical-outliers in univariate data. Chapter 4 differs

substantially from Chapter 5 as (1) the unsupervised feature based procedure for detecting

technical-outliers in high frequency water-quality data measured by in situ sensors is its sole

focus (2) the unsupervised feature based procedure is fully elaborated in both details and
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depth and (3) the experimental results are enhanced through emphasis on the multivariate

capabilities of the unsupervised feature based procedure. Since univariate and multivariate

approaches have different focuses against different challenges direct comparison between

the results of the two chapters were not made.

Furthermore, Chapter 4 focuses only on technical outliers involving abrupt changes in

value, including sudden spikes, sudden isolated drops and level shifts (high priority outliers

as described in Chapter 5) rather than the broader suite considered by Chapter 5. Owing

to this difference between the focuses of the two chapters, different number of observations

are considered as outliers in the two chapters. For example the 49 outliers in Pioneer River

data in Chapter 4 only comprise abrupt changes including 3 large sudden spikes(type A),

5 sudden shifts (type D), 34 impossible values (type F) and 7 small sudden spikes (type

J)). A detailed description for the different types of technical outliers are given in Table 2

in Chapter 5.

6.2 Future Work

Since this is a thesis by publication, each article should be self-contained and therefore has

been published with all the relevant possible further research directions discussed in detail.

To avoid repetition, this section summarises only the key future research priorities, which

are deemed underrepresented in the current literature.

While the HDoutliers algorithm is powerful, several classes of counterexamples were

identified where the structural properties of the data did not enable the HDoutliers algorithm

to detect certain types of outliers. However, I acknowledge that these counterexamples

are not diverse and challenging enough to generalise the findings to conclude that stray is

always the superior algorithm. Therefore, an important open research problem is to assess

the effectiveness of these algorithms across the broadest possible problem space defined by

different datasets with diverse properties (Kang, Hyndman, and Smith-Miles, 2017). It

would also be interesting to explore how other classes of problems with various structural

properties can influence the performance of the stray algorithm and where its weaknesses

might lie. This type of instance space analysis (Smith-Miles et al., 2014) will enable further

insights into improved algorithm design.
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In the oddstream algorithm, the use of the feature-based representation of time series is

recommended, owing to its many advantages over the instance-based representation of

time series. In the present study, only 14 features were used to represent a given time

series. Further exploration of feature extraction and automatic feature selection methods

is required to create a richer feature space that is suitable for many applications in the

streaming data context. The proposed algorithm uses the first two principal components

to obtain a two-dimensional feature space, and then defines an anomalous threshold on

the resulting two-dimensional feature space. It is expected that in further studies, other

dimension reduction techniques will be used, such as multidimensional scaling and random

projection, to investigate the effects of such techniques on the performance of the proposed

framework. Further, the density estimation in the proposed algorithm was performed

using a bivariate kernel density estimation method. Since the density values in the tail

are used to build the model of the typical behaviour, additional experiments need to

be conducted on density estimation methods, to improve the tail estimation. On this

topic, the log-spline bivariate density estimation method and the local likelihood density

estimation method will be considered, with the aim of achieving a better tail estimation, and

thereby improving the performance of the proposed algorithm. In the proposed algorithm,

estimation of extreme value distributions of multivariate, multimodal mixture models

requires sampling of extrema. Alternative methods as proposed in Hugueny, Clifton, and

Tarassenko (2011) and Hugueny (2013) may guide further improvements in computational

efficiency. They provide a light-weight formulation that they claim to be significantly

faster than maximum-likelihood methods, which require large amounts of sampling. These

alternative methods also provide solutions for multimodal multivariate models. Further, the

current algorithm is developed under the assumption that the measurements produced by

sensors are one-dimensional. Rapid advances in hardware technology have made it possible

for many sensors to capture multiple measurements simultaneously, leading ultimately

to a collection of multidimensional multivariate streaming time series data. Therefore,

an important open research problem is to extend the oddstream algorithm to handle

multidimensional, multivariate streaming data. Extending the oddstream algorithm to the

detection of anomalies in this data context may allow us to perform anomaly detection in

an even wider range of application domains.

125



CHAPTER 6. CONCLUSION

Spatiotemporal anomaly detection for water-quality data also lags behind that for other in

situ sensor data types (e.g., air quality or meteorology; Wu, Liu, and Chawla, 2008) because

river data pose new challenges, such as the complex relationships between neighbouring

sensors due to branching networks and flow directionality, tendency for biofouling and

the highly dynamic nature of river water even under typical conditions (Kang et al.,

2009). These challenges make traditional anomaly detection approaches inadequate for

spatiotemporal water-quality data and require new methods. The oddwater algorithm

is expected to expand into space and time so that it can deal with the spatiotemporal

correlation structure along branching river networks. This will in turn provide a fundamental

step-change in scientific understanding of the spatiotemporal dynamics of water quality in

rivers and their networks and the potential downstream effects of pollutant loads.

6.3 Research Reproducibility

Research reproducibility is an important topic in modern science because it provides a

general schema and an infrastructure to regenerate quantitative scientific results using the

original datasets and methods (Stodden, Leisch, and Peng, 2014). Therefore, to facilitate

reproducibility and reuse of the results presented in this thesis, I undertook several actions

under the three key areas: software, data and papers (Stodden, Leisch, and Peng, 2014).

6.3.1 Software

This thesis introduces three R packages for anomaly detection.

The first R package is an accompaniment to the algorithm proposed in Chapter 2 and

includes useful functions for detecting anomalies in high-dimensional data. Version 0.1.0 of

the package was used for the results presented in Chapter 2 and is available from GitHub

at https://github.com/pridiltal/stray.

The second R package, oddstream, is an accompaniment to the algorithm proposed in

Chapter 3 and includes useful functions for detecting anomalous series within a large

collection of streaming time series data. Version 0.5.0 of the package was used for the

126

https://github.com/pridiltal/stray


CHAPTER 6. CONCLUSION

results presented in Chapter 3 and is available from GitHub at https://github.com/

pridiltal/oddstream.

The third package is an accompaniment to the algorithm proposed in Chapters 4 and 5

and includes useful functions for detecting technical anomalies in water-quality data from

in situ sensors. Version 0.6.0 of the package was used for the results presented in Chapters

4 and 5 and is available from GitHub at https://github.com/pridiltal/oddwater.

6.3.2 Data

All the datasets on which the results are computed in each article are available via the

corresponding R package. A Shiny web application available through the oddwater R

package provides greater visual insight into the water-quality data from in situ sensors

and was heavily used during the labelling process to pinpoint observations.

6.3.3 Papers

The three main articles in Chapters 2, 3 and 4 describe the corresponding algorithms in

detail and compare their implementations using various datasets. The source files, including

datasets and R code to reproduce all figures, tables and analysis of each article can be

found in the following public GitHub repositories.

Chapter 2: ‘Anomaly Detection for High Dimensional Data’ at https://github.com/

pridiltal/stray_manuscript.

Chapter 3: ‘Anomaly Detection in Streaming Non-stationary Temporal Data’ at https:

//github.com/pridiltal/oddstream_manuscript.

Chapters 4: ‘A Feature-Based Procedure for Detecting Technical Outliers in Water-Quality

Data from in situ Sensors’ at https://github.com/pridiltal/oddwater_manuscript.

These articles were written entirely using Rmarkdown (Allaire et al., 2019), and compiled into

a thesis using the bookdown R package (Xie, 2019), with the Monash PhD thesis rmarkdown

template available at https://github.com/robjhyndman/MonashThesis. The source files

of this thesis are available at https://github.com/pridiltal/PhD_Thesis_2019.
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