Lérons—France Auc

Abstract

Understanding of mantle and lithosphere dynamics, distinct or
coupled, attracts certain modes of scientific discovery. It is not only
engineering - as the constitutive laws for minerals under these
conditions are difficult to measure in the laboratory. It is not only
geology - as the precise characterisation of the Earth is impossible
without interpretations on sensor observations. Further it is
intrinsically multi-scale, where chemical and physical effects at the
centimetre scale effect structures as broad as plates and mantle flow.
The mode of “modelling” dominates our discovery process. Do we
understand how this mode will continue in the changing technological
landscape?

Over the period of two decades ago to one decade ago, increased
accessibility to personal computing led to a golden age of Earth
dynamics discovery. Fundamental processes were contributed by
many, all relying on computation of numerical systems of scale or
complexity that required a computer. Invariably we must thank the
innovation of Moore’s Law - over 50years of sustained 50%-
compounded yearly growth in computing capability - for enabling
such computing at this time.

Increasingly a sole phd student could no longer write their own code
in isolation and from scratch. Despite the readily available computing
power, the total model required had become sufficiently complex that
collaboration about codes became necessary. About a decade ago,
the very first versions of software Underworld was released. And
along with other codes, a second golden age was born, where many
discoveries about 3-dimensional effects together with processes
across scales have arisen. Hence innovations of Underworld were
enabled by software for complexity - allowing more expertise and
more libraries to readily contribute. Underworld in particular focused
on distributed parallel computing, increasingly complex numerical
methods, and increasingly complicated physics. It is by no means
perfect, but has pioneered avenues of methods and discoveries.

Today, Moore’s Law is ailing, and the only man-made innovation that
is remotely close to it is the Internet of Things. Sensor capabilities are
an honourable second (approximately 25%-compounded yearly
growth over the last couple of decades). Together with increasing
storage technologies, they are fuelling the data-deluge, and in-turn,
data-driven scientific discovery (clearly being enjoyed by the
geophysical disciplines). They are also fuelling organisational and
asset (code in our case) permeability. We are no longer needing just
massive amounts of computing for the complex numerical system,
but an eco system of computing that enables rapid experimentation
and high throughput on data. In short, increasingly innovation at large
will drive towards codes and environments that assimilate with data,
and codes and environments that have accessible insides (rather
than those that are one monolithic box or function).

Here we unveil Underworld2, a cloud ready, python-based code for
mantle and lithosphere dynamics discovery, spanning tutorials, data
assimilation and in-line analysis. We hope that nothing is lost from
Underworld1 but that Underworld, and its subparts, are accessible to
the researcher with data.

Modelling and big data

In the past, developing "f" was our only focus...

y=1
"big"

But now, developing "f' and how it is assimilated are both a focus ...

};o =Yr = j;(x)

"big" llbig"

Underworld?2

Underword2 is based on Underword(1), and hence inherit the
capabilities of 3D parallel geodynamics problems.

However, it introduces a python interface that replaces the XML-
based model configuration and parameter input system.

glucifer is now not only - render inline with compute and render via
viewer, it now has a HTMLS5 version, meaning it is available on the
web.

Using docker and ipython/jupyter-notebooks, Underworld2 is now
available on the cloud, with documented problem tutorials. (see http:/
orcus.erc.monash.edu.au:8000)

I
| (Q search "B 9 3IaS | =

Hosted by 2\ jan

Modelling in tomorrrow's technological landscape - Unveiling Underworld2

Quenette S. (1), Moresi L. (2), Mansour J. (1), Revote J. (1)

In [1]:

In [2]:

In [3]:

In [4]:

In [5]:

In [6]:

Out([6]:

In [7]:

In [8]:

Out([8]:

In [9]:

out[9]:

In [10]:

In [11]:

In [12]:

Rayleigh Taylor Instability Benchmark

This notebook implements the isoviscous thermochemical convection benchmark from van Keken
et al (1997).

V:(Vé) — Vp = (RarT + RarD) z
Vev=0

The thermal and compositional evolution is controlled by advection and (thermal) diffusion

E:VzT
Dt

DI’
Dr =0

Thermal and compositional Rayleigh numbers are defined by

3 3
_ gpalATh . Rap = glAprh
K1y KN,

R(IT

van Keken, P. E., S. D. King, H. Schmeling, U. R. Christensen, D. Neumeister, and M. P. Doin (1997),
A comparison of methods for the modeling of thermochemical convection, J. Geophys. Res.,
102(B10), 22477, doi:10.1029/97JB01353.

import underworld as uw

import math

from underworld import function as fn
import glucifer.pylab as plt

dim = 2

create mesh objects
elementMesh = uw.mesh.FeMesh Cartesian(elementType=("linear","constant"),
elementRes=(64,64),
minCoord=(0.,0.),
maxCoord=(0.9142,1.))
linearMesh = elementMesh
constantMesh = elementMesh.subMesh

create fevariables
velocityField uw.fevariable.FeVariable(feMesh=linearMesh, nodeDofCount
pressureField uw.fevariable.FeVariable(feMesh=constantMesh, nodeDofCount

Initialise data.. Note that we are also setting boundary conditions here
velocityField.data[:] = [0.,0.]
pressureField.data[:] = 0.

Get list of special sets.
These are sets of vertices on the mesh. In this case we want to set them
linearMesh.specialSets.keys()

['MaxI_VertexSet',
'MinI_VertexSet',
'Allwalls’,
'MinJ_VertexSet',
'MaxJ_VertexSet',
'Empty’]

Get the actual sets

HJJJJJJH
5 i
bl Ir
I Ir
HJJJJJJH

oW W R R R W

Note that H=1I & J

Note that we use operator overloading to combine sets
IWalls = linearMesh.specialSets["MinI VertexSet"] + linearMesh.specialSets|
linearMesh.specialSets["MinJ VertexSet"] + linearMesh.specialSets|

=
»
[
(=
w
I

You can view the contents of the sets directly
Iwalls

FeMesh_IndexSet([0, 64, 65, 129, 130, 194, 195, 259, 260, 3
24, 325,

Jwalls

FeMesh_IndexSet([0, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10,

Now setup the dirichlet boundary condition

Note that through this object, we are flagging to the system

that these nodes are to be considered as boundary conditions.

Also note that we provide a tuple of sets.. One for the Vx, one for Vy.
Allwalls = IWalls + JWalls

freeslipBC = uw.conditions.DirichletCondition(variable=velocityField,
nodeIndexSets=(AllwWalls,JWall

We create swarms of particles which can advect, and which may determine
gSwarm = uw.swarm.Swarm(feMesh=elementMesh)

Now we add a data variable which will store an index to determine materi:
materialVariable = gSwarm.add_variable(dataType="char", count=1)

Layouts are used to populate the swarm across the whole domain

Create the layout object

layout = uw.swarm.layouts.GlobalSpaceFillerLayout(swarm=gSwarm, particlesk
Now use it to populate.

gSwarm.populate_using layout(layout=layout)

Lets initialise the 'materialVariable' data to represent two different ms
materialHeavyIndex = 0
materialLightIndex = 1

Now let's initialize the materialVariable with the required perturbation
import math

wavelength = 1.8284
amplitude = 0.02
offset = 0.2

k = 2.*math.pi / wavelength
coordinate = fn.input()
materialVariable.data[:] = fn.branching.conditional(
[(offset + amplitude*fn.math.cos(k*coordinate[0]) > coordinate[l] ,
(True ,

In [13]:

out[13]:

In [14]:

In [15]:

In [16]:

In [17]:

In [18]:

out[18]:

(1) Monash eResearch Centre, Monash University, Australia
(2) School of Earth Sciences, University of Melbourne, Australia

visualise

figl = plt.Figure()

figl.Points(swarm=gSwarm, colourVariable=materialVariable, pointSize=5.0)
figl.show()

— |

0 1
We create some functions here.

The Map function allows as to create 'per material' type behaviour.

It requires a 'keyFunc', which is first evaluate to determine the key
into the map, and then once the key is determine, we retrieve the value (

it maps to, and evaluate that.

oW W R W

Here we set a viscosity value of 'l.' for both materials
viscosityMapFn = fn.branching.map(keyFunc = materialVariable,

mappingDict = { materiallLightIndex:1., materialEea
Here we set a density of '0.' for the lightMaterial, and 'l.' for the hes
densityFn = fn.branching.map(keyFunc = materialVariable,

mappingDict = { materiallLightIndex:0., materialEea
Define our gravity using a python tuple (this will be automatically conve
gravity = (0.0, -1.0)
now create a buoyancy force vector.. the gravity tuple is converted to a
here via operator overloading
buoyancyFn = gravity*densityFn

Setup a stokes system
For PIC style integration, we include a swarm for the a PIC integration s
For gauss integration, simple do not include the swarm. Nearest neighbour
stokesPIC = uw.systems.Stokes(velocityField=velocityField,
pressureField=pressureField,
swarm=gSwarm,
conditions=[freeslipBC,],
viscosityFn=viscosityMapFn,
bodyForceFn=buoyancyFn)

Create advector objects to advect the swarms. We specify second order int
advector = uw.systems.SwarmAdvector(swarm=gSwarm, velocityField=velocityFi
Also create some integral objects which are used to calculate statistics.
v2sum_integral = uw.utils.Integral(feMesh=linearMesh, fn=fn.math.dot(velc
volume_ integral uw.utils.Integral(feMesh=linearMesh, fn=1.)

Stepping. Initialise time and timestep.
time = 0.
step = 0
Perform 3 steps
while step<3:
Get solution for initial configuration
stokesPIC.solve()
Retrieve the maximum possible timestep for the advection system.
dt = advector.get max dt()
Advect using this timestep size
advector.integrate(dt)
Calculate the RMS velocity
v2sum = v2sum_integral.integrate()
volume = volume_integral.integrate()
vrms = math.sqrt(v2sum[0]/volume[0])
print 'step =',step, 'time =', time, 'vrms =
Increment
time += dt
step += 1

, vrms

0.0 vrms = 0.00018493383262
17.0335742504 vrms = 0.00021780294623
31.4523449745 vrms = 0.000254973326893

step = 0 time =
step 1 time
step = 2 time

figl plt.Figure()

figl.Points(swarm=gSwarm, colourVariable=materialVariable, pointSize=5.0)
figl.VectorArrows(velocityField, elementMesh, lengthScale=100, arrowHeadSi
figl.show()

.I

In [1]:

In [2]:

In [3]:

Out[3]:

In [4]:

In [5]:

In [6]:

out[6]:

In [7]:

In [8]:

In [9]:

Out[9]:

In [10]:

In [11]:

Hotplate (steady state thermal)

This notebook implements the heat flow egautions over (a) a homogenous hot plate, (b) over
materials of non-constant properties, and (c) over many materials.

Problem (a) implements

where

import underworld as uw
import glucifer.pylab as plt
import underworld.function as fn

mesh = uw.mesh.FeMesh_Cartesian('linear', (32,32), (-1.,-1.), (1.,1.))
temperatureField = uw.fevariable.FeVariable(mesh,1)

mesh.specialSets.keys()

['"MaxI_VertexSet',
'MinI_VertexSet',
'Allwalls’,
'MinJ_VertexSet',
'MaxJ_VertexSet',
'Empty "]

declare which nodes are to be considered as boundary nodes

topNodes = mesh.specialSets["MaxJ VertexSet"]

bottomNodes = mesh.specialSets["MinJ VertexSet"]

conditions = uw.conditions.DirichletCondition(temperatureField, topNodes +

init tempfield to zero everywhere
temperatureField.data[:] = 0.

setup required values on boundary nodes
temperatureField.data[topNodes.data] = 0.
temperatureField.data[bottomNodes.data] =

|
et
.

lets take a look

fig = plt.Figure()

fig.Surface(temperatureField,mesh, colours=['white',6 'red'])
fig.show()

|
1
0

setup system
steadyStateThermal = uw.systems.Thermal(temperatureField,l.,conditions=[con

solve!
steadyStateThermal.solve()

now lets look
fig = plt.Figure()
fig.Surface(temperatureField,mesh, colours=['white', 'red'])

fig.show()
B
1

wonderous! now lets change the conductivity function to a function of he
coord = fn.input()
steadyStateThermal.conductivityFn = fn.math.exp(10.*coord[1])

|
.
0

steadyStateThermal.solve()

fig = plt.Figure()

fig.Surface(temperatureField,mesh, colours=['white',6 'red'])
fig.show()

Oout[11]:

In [12]:

In [13]:

In [14]:

In [15]:

out[15]:

In [16]:

In [17]:

Oout[1l7]:

— ——
B

D wp—

ok, lets introduce a swarm to set some materials
swarm = uw.swarm.Swarm(mesh)

lets create a variable which will track the material index
index = swarm.add_variable(‘'char',1)

add particles

layout = uw.swarm.layouts.GlobalSpaceFillerLayout(swarm,20)
swarm.populate_using_layout(layout)

create some misc shapes
index.data[:] = fn.branching.conditional([
(coord[0]*coord[0] + coord[l]*coord[l] < 0.5
((fn.math.abs(coord[0]) < 0.5) & (fn.math.abs(coord[1])< 0.75)
(True
]).evaluate(swarm)

fig = plt.Figure()
fig.Points(swarm,index,pointSize=4.0)
fig.show()

now lets map them to conductivities

materialFunction = fn.branching.map(keyFunc=index, mappingDict={0:100., 1:.

steadyStateThermal.conductivityFn = materialFunction
steadyStateThermal.solve()

fig = plt.Figure()

fig.Surface(temperatureField,mesh, colours=['white', 'red'])
fig.show()

&

