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Remotely sensed data are a key input to GIS-based spatial decision support systems for land cover and
land use application areas. One of the major sources of error in the input of processed remotely sensed
data to GIS is in the process of classification. Particularly important is the degradation of the data from
the interval to nominal level of measurement. This is less significant in cultural landscapes where bound-
aries predominate, but it becomes an important source of error in natural, and disturbed natural, environ-
ments where gradients exist. Use of the Gi

* local statistic as an alternative approach to processing remotely
sensed data proved very successful, replicating the level of discrimination achieved by conventional clas-
sification and field labelling in a much shorter time, whilst avoiding the errors associated with conversion
of the data from the interval to nominal level of measurement.

INTRODUCTION
Spatial decision making based on a combination of image-based and vector data is an important
activity in many application domains. A strong theme of research within this has been to improve
the quality of attribute information available from remotely sensed image data by combining the
remotely sensed image data with ‘ancillary’ environmental and terrain data. Because of the data
distribution information required for the diverse data sets, which is not always available, and
the set-up time involved, parametric classifiers have become less favoured than the non-parametric
alternatives in this sort of synthesis (Benediktsson et al, 1990).

Numerous studies of classification using decision trees, neural networks of various kinds,
genetic algorithms and even cellular automata have been published to examine these alternatives
(Lees, 1996a). In some disturbed natural environments the errors in prediction remain stubbornly
high. Examination and tracking of the errors in prediction in these studies made it clear that the
process of classification itself was the major source of error (Lees, 1996b). Classification achieves
two things. Firstly, it simplifies image data into a form suitable for incorporation into entity-
based cartography products but, in the process, degrades the data from the interval to the nom-
inal level of measurement. In disturbed natural and natural environments there are both gradients
and boundaries. Classification can represent the real boundaries faithfully but, because of the
transformation of data values from the interval to the nominal level of measurement, inserts
categorical boundaries where a gradient is present.

Gradients and boundaries are features in geographic space, and, with only few exceptions,
most classification procedures are non-spatial analyses of spatial data. The spatial content of the
image data usually remains un-investigated which tends to make it very difficult to replicate the
boundary and gradient patterns present in the real world. This is unfortunate as image data,
mostly digital remotely sensed data in this context, is a rich source of relatively high quality
spatial information and only yields moderate to low quality attribute information. Very few
studies have examined the explicitly spatial analysis of this sort of spatial data. Strategies such
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as spatial signal detection, local spatial autocorrelation and local regression are able to extract
high quality spatial information from image data that can significantly enhance its use in spatial
decision making.

PREVIOUS WORK
Spatial signal detection enables ‘ancillary’ vector data to be used to remove known spatial patterns
from image data prior to classification (Lees and Hafner, 2000). In the Liverpool Plains study a
conventional classification of remotely sensed data of a region of intensive agriculture subject to
minor salinisation gave a confusing result. In order to isolate that part of the signal which gave
information about the spatial patterning and degree of salinisation, the other, known, patterns
needed to be removed. To do this, a vector layer depicting the field pattern was created from the
image data. Field polygons were then allocated the major class in each polygon, with the assump-
tion that this was what the farmers intended. Because of the multiple crops being grown in this
highly productive area, reflectance values across field boundaries were standardised to one crop
type. As this was not a linear relationship, but rather a very fuzzy one, a neural network was
used to optimise this. Once the cultural pattern of agriculture was removed the image could
easily be interpreted as showing the distribution and intensity of low-level salinisation effects on
the standardised crop. Like the other classification techniques, this was aimed at producing better
attribute information. The explicit use of the spatial information contained in the image to facil-
itate the analysis of the image was very effective.

Using a similar technique, Burnett and Blaschke (2003) suggest that there is a scale hierarchy
in landscapes which allows multi-scale segmentation, but considerable field examination of sites
over which we have carried out experiments show that not all are that nicely organised. Our
main test area is around Kioloa, on the N.S.W. South Coast, Australia (figure 1). Part of the
problem is that the Kioloa region is a disturbed natural, rather than cultural, landscape and
cannot be decomposed into objects or patches without creating boundaries where gradients exist.
The problem is similar to that addressed by Pearson (2002) in northern Australia.

In environments where cultural patterning is less strong, or even non-existent, the patterning
caused by changes in variables such as soil type, geology, topography, and soil wetness can be
dealt with by image segmentation using multi-source data (Benediktsson et al, 1990; Lees and
Ritman, 1991). Although in those papers this language is not used, effectively the procedure is
similar to that used by Lees and Hafner (2000) in the Liverpool Plains. The difference between
them is that the latter creates an intermediate vector layer, to deal with patches and fields as en-
tities, and the former works directly at pixel level. A very similar procedure could be used to
standardise the effects of variables such as soil type, geology, topography, and soil wetness
leaving an image showing the distribution of, say, disturbance. Conversely, as Lees and Ritman
(1991) intended when they added remotely sensed data to the analysis of environmental variables
carried out by Moore et al. (1991), the analysis could use the remotely sensed data to provide
disturbance information. It would be easy to see this approach as essentially non-spatial, but
both the topographic derivatives and hydrological derivatives are the results of spatial modelling.
Similarly, at broader scales, and for larger areas, climate variables used in similar analyses are
derived by spatial modelling. The spatial information inherent in the data is being used implicitly.
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Figure 1 The location of the study area.

Local spatial statistics, on the other hand, are explicitly spatial and produce spatial information
from the image data of a sort we have not yet become very used to in this application area. Zones
of similarity and dissimilarity, patches and gradients are identified. In conjunction with the sorts
of analysis we are used to, these additional sources of information greatly strengthen our ability
to make better decisions.

There have been two strands of research in remote sensing which are relevant. In the first,
much of the interest has been in the response of materials to incident radiation of various types.
In the second, a much more macroscopic approach has been taken. In the forests that we have
been dealing with it became very apparent, very early on, that the reflectance alone of the leaves
of Eucalyptus sp., was a very poor way to discriminate between them (Lees and Ritman, 1991).
However the second approach, outlined by Jupp and Walker (Jupp et al., 1986; Walker et al.,
1986) showed that a great deal of structural information could be derived from the mixture of
light and shade within a pixel.

This latter approach informed later work on the spatial context and scale relationships in
raster data for thematic mapping (Fitzgerald and Lees, 1995). In an attempt to improve the
classification of the forests around Kioloa we used a neural network to incorporate spatial context.
The results showed that the incorporation of spatial context does indeed improve classification
accuracy. However, the scale of the spatial context must be matched to the theme, or vegetation
community. Particular levels of spatial context optimised different types of land cover. For the
sea, the level of classification accuracy obtained with no spatial context (1x1 30m pixel) was as
high as the accuracy obtained with spatial contexts up to a hundred metres radius (7x7 30m
pixels). For the grasslands, classification accuracy was maximum with a spatial context of 3x3
30m pixels. The closed forests were classified best with a spatial context of 5x5 30m pixels, and
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the more open forests with spatial context radius of 9x9 30m pixels. For the whole area, the best
results were obtained with a spatial context radius of 3x3 30m pixels.

These results make absolute sense when one considers the crown-to-crown spacing between
trees, and other vegetation, in each of these communities. It is important to bear in mind that,
although the forest cover is discussed as though it formed discrete types, this forest is a continuum
of change in structure, and in species. As a result, although the classification accuracy was in-
creased significantly, the use of a classification procedure still degraded the data from the interval
to the nominal level of measurement and meant that the errors induced by this process still per-
sisted.

EXPLORATORY SPATIAL DATA ANALYSIS
The results obtained by Fitzgerald and Lees (1995) were interesting, but our conclusion was that
the time involved in setting up a spatially-aware neural network was probably not cost-effective.
However, the development of local, rather than global, statistical techniques for detecting vari-
ations in spatial autocorrelation offer a new way to achieve the same objective with much less
effort.

Exploratory spatial data analysis (ESDA), of which spatial autocorrelation measures are an
important subset, examine an observed distribution in space and attempt to make inferences
about the process that generated it. The main objective is to highlight patterns in the data that
are considered by the investigator to be significant.

A major impetus in the development and application of ESDA in the last few decades is linked
to advances in computer processing power, the availability of large well structured spatial data
sets, and increased dissatisfaction with the simple spatial manipulations of geographic data. In
particular, a significant increase in spatial theory (Unwin, 1996) and the recasting of spatial
statistical tools from global to local operation (Rogerson and Fotheringham, 1994; Fotheringham
and Charlton, 1994; Bailey, 1994; Zhang and Griffith, 2000) has driven this.

The truth of Tobler’s first law of geography (1970) which states that “everything is related
to everything else, but near things are more related than distant things”, can be estimated using
spatial autocorrelation. Spatial autocorrelation is concerned with a comparison of similarity
among the attributes and similarity in location of spatial objects or features. A positive spatial
autocorrelation occurs when similar attribute values are adjacent, while negative spatial autocor-
relation occurs when neighbouring values are more dissimilar than those that are further apart.
Zero spatial autocorrelation occurs when attributes are spatially independent (Goodchild, 1986).

Remote sensing systems structure the landscape into a regular grid of pixels, independent of
the land cover characteristics. There is thus often a high degree of spatial autocorrelation between
pixels. While this may be seen as a source of error when using statistical methods that assume
independence, it is a fundamental image characteristic that can be exploited. Wulder and Boots
(1998) provide a useful summary of studies that use various aspects of image spatial autocorrel-
ation to advantage.

LOCAL MEASURES OF SPATIAL AUTOCORRELATION
Traditionally, spatial dependency has been explored using global measures such as joint-counts,
Moran’s I, and Geary’s C (Hubert et al., 1981). Such techniques assume that the relationships
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being estimated are stationary over space and that a single parameter measure is implicitly taken
to depict the nature of such relationships for all points within the area of study (Fotheringham
and Brunsdon, 1999). Techniques which generate only a sole average measure of spatial depend-
ency tend to conceal, or suppress, any significant local variation of spatial nonstationarity in the
nature and extent of spatial autocorrelation within a data set. Such a global estimate will be quite
uninformative and may be very misleading. It is a little surprising, given their lack of utility, that
they generated any interest other than the purely academic. The assumption of spatial homogeneity
over large areas of the Earth’s surface is extremely unrealistic. More subtly, the assumption of
spatial homogeneity over large areas, at a constant scale, is also unrealistic. The results obtained
by Fitzgerald and Lees (1995) demonstrate that, in practise, spatial autocorrelation is scale
sensitive.

In response to this problem, scientists employing quantitative spatial data analysis have become
increasingly involved in the development of local statistical techniques that focus primarily on
highlighting and understanding differences across space, rather than similarities, as is the case
with global measures (Fotheringham, 1997). More specifically, emphasis is on the dissection of
global statistics into local constituents, concentration on local exceptions instead of global regu-
larities and production of local mappable statistics, rather than ‘whole-map’ values.

Local indicators of spatial association (LISA) have been developed to overcome the above
limitations (Anselin, 1995) and have the potential to reveal discreet spatial regimes that might
be missed using existing global techniques. These measures focus on local variations within pat-
terns of spatial dependence and evaluate the nature and extent of concentration in the values of
the variable x in a local region, within an area of interest. LISA are defined as any statistic where
each observation gives an indication of the extent of significant spatial clustering of similar values
around and observation, and where the sum of all observations must be proportional to a global
indicator of spatial association. This allows the global coefficient of spatial autocorrelation to
be deconstructed, making it possible to identify the individual locations contributing to the
global autocorrelation.

Moran’s (Ii) and Geary’s (ci) coefficients are two LISA developed by Anselin (1995) and are
versions of the established global univariate statistical techniques (Moran I and Geary C). Details
of the statistical theory and formulate used to derive these are given in Anselin (1995), Sokal et
al., (1998a, 1998b) and Tiefelsdorf and Boots (1997). Both compare values of a central location,
minus the data set mean with neighbourhood locations, minus the data set mean. In this, they
resemble the texture variable sometimes calculated in remote sensing analysis. Moran’s (Ii)
measures joined covariation of neighbouring localities. A positive spatial autocorrelation is where
these deviate strongly from the mean and have the same sign (+ve or – ve). A negative spatial
autocorrelation is where the value of the central location deviates widely from the mean and has
a sign opposite to its neighbours. Geary’s (ci) measures squared differences between the values
of neighbouring points and the central location. High values indicate a negative spatial autocor-
relation. When values between the central location and its neighbours are all close to the mean,
the data exhibits positive spatial autocorrelation. This would correspond to a weak, or a zero
level, spatial autocorrelation using Moran’s (Ii) and indicates that these two statistics provide
separate information about spatial structure. The Moran’s (Ii) has been successfully used by
Anselin (1995) to analyse the spatial distribution of conflict in Africa, while Sokal et al., (1998a)
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used it to identify variations in the spatial distribution and population structure of cactophilic
fruit flies in eastern Australia.

GETIS-ORD STATISTIC
Getis and Ord (1992) and Ord and Getis (1995) have formulated two local statistical measures,
Gi and Gi

* , that evaluate the degree of spatial clustering in high (hot spot) and low (cold spot)
values of the study variable, x, about a central location or cell, i. These are locations where the
value clusters are consistently greater than, or less than, the mean.

In Gi the value of x at i is excluded from the local sum. In Gi
* it is included and is considered

to be more appropriate for this problem since it allows a window of user-defined dimensions to
be employed in the statistical calculation. Calculation of the Gi by excluding the central cell of
Gi

* results in an analysis that is analogous to the neighbourhood component of Morans I (Laffan,
2002). There has been little to no guidance on which of these statistics to use in any given situation
but, as we wish to examine the effect of different window sizes on spatial autocorrelation, the
Gi

* statistic looks to be the most useful. The Getis-Ord statistics are not strictly local measures
of spatial autocorrelation, but more specifically of spatial association. Sokal et al., (1998b) argue
that, as neither satisfy the second requirement of Anselin’s (1995) definition of LISA, where the
sum of all observations must be proportional to a global indicator of spatial association, these
are not properly LISA. Nevertheless, the Getis-Ord statistics have some attractive features, which
are discussed below.

The implementation of Gi
* is as a z-score, calculated as the difference between the sum of

the local sample and the weighted global mean, divided by the weighted global standard deviation.
Gi

* is positive when a cluster is greater than the mean and negative when a cluster is less than
the mean. More extreme values denote greater clustering of similar values and values of zero are
not clustered (Laffan, 2002). It expresses the sum of the weighted variate values within a specified
distance of a particular observation I , as the proportion of the sum of the variate values for the
entire study area (Wulder and Boots, 1998). This can be compared with the statistic’s expected
value under a hypothesis of no local spatial autocorrelation to indicate if the degree of clustering
of x values in the vicinity of i is greater than or less than chance would dictate (Getis, 1994).

In formal terms, the Getis-Ord statistic Gi
* (d) for some distance d is defined as:

Where: { wij(d) } is the spatial weights matrix consisting of symmetric binary weights with
1s assigned to allocations within distance d of observation i, including i itself (i.e. wii = 1), and
0 otherwise. In a remote sensing context, a window can be defined around an observation i by
specifying an appropriate value of d.

Steps to derive a standard version of Gi
* have been provided by Ord and Getis (1995). Wulder

and Boots (1998) summarise these in the context of application to remotely sensed imagery as
follows:

Calculating the mean (x’) and variance (s2) of x for the entire image:
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The expected value of Gi
* is:

With a variance of:

This results in the following z-score standardised form:

In terms of remotely sensed imagery, Gi
* values measure the extent to which a pixel is sur-

rounded by a cluster of high or low reflectance values. Large positive Gi
* values denote a cluster

of bright pixels, whilst large negative Gi
* values denote a cluster of darker pixels. This additional

information makes the Gi
* useful when dealing with remotely sensed data as it combines both

the spatial association information with some spectral information. This makes its information
content greater than the texture variable which is only an index of local variance.

Where local statistical measures have been used in environmental studies, most have used
the Moran or Geary versions (e.g. Pearson, 2002). Relatively few have used the Getis-Ord
method. Wulder and Boots (1998) summarise the use of the Getis-Ord method with remotely
sensed data. More recently, Holden et al., (2000) used this method to evaluate coral ecosystem
health by identifying spatial autocorrelation patterns in multi-temporal SPOT images. They
postulated that zones of spatial homogeneity characterised dead algae-dominated reef, while
more heterogeneous areas were more likely to reflect healthy conditions. Derksen et al., (1998)
used spatial dependence information, generated using the Getis-Ord method, to link patterns of
prairie snow cover and atmospheric circulation phenomena.

STUDY AREA
A 250 km square area around Kioloa, on the New South Wales south coast (figure 1), was used
to compare the results obtained using the Getis-Ord method with other techniques. The forests
around Kioloa present a difficult classification problem. The terrain runs northwest-southeast,
the worst possible alignment for illumination using satellite remote sensing. The forests have
been burnt in patches, logged in patches, and are extremely diverse.

The complex interrelationships between geology, soils, landforms, local climatic factors and
flora recorded in the area are reflected in the highly variable nature and distribution of vegetation
types (Lees and Ritman, 1991). A range of regional ecosystems are represented including rainforest,
both open and closed wet and dry sclerophyll forest, woodlands, heath, swamp and wetland
communities and as well as cleared grasslands. Unlike cultural landscapes where disturbance is
usually contained within cultural boundaries, here disturbance crosses boundaries in haphazard
way and the successive patterns of recovery from disturbance are often themselves disturbed.
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This makes approaches like those described by Lees and Hafner (2000), where cultural patterns
were removed to facilitate analysis of regional soil geochemistry, difficult to implement success-
fully.

This study evaluates one particular type of ESDA tool, the Getis-Ord statistic. The focus of
the task is the mapping of the forested terrains around Kioloa, where a great deal of previous
work of this type has been done. A number of previous studies in this area have tested decision
trees, spatially and temporally-aware neural networks, Dempster Shafer, and hybrid systems in
the integration of remotely sensed and environmental data sets. The aim of all of these studies
was to determine the most efficient and effective way of producing land cover data as input to
spatial decision support systems.

METHODOLOGY
The sole data set used in this study was a Landsat TM image. No ancillary data was used. In
order to provide a comparison, an unsupervised classification using bands 2,4, and 7 was gener-
ated. The 56 spectral classes produced in this way were linked into 11 land cover types on the
basis of field checking (figure 2). This was a very conventional procedure and, with the field
work, took about two and half days.

Figure 2 Classified image using Landsat TM bands 2, 4, and 7. The classifier was ER-Mappers ISOCLASS algorithm and 56
original classes were linked into 8 cover classes following field checking. The data is categorical and the within forest
boundaries are mostly artefacts of the classification process.

For the Getis-Ord analysis, TM band 5 data was selected because of its high-level of vegetation
discrimination. The Getis-Ord computation was carried out using the G.* function in ARC INFO.
The remote sensing data was not resampled to either a finer or coarser resolution. The raw 30m
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pixel size was left unchanged. The analysis was run with a number of spatial radii and the results
compared to the final land cover mapping produced by conventional classification of remotely
sensed data, and the results of previous exercises using spatially-aware neural networks.

RESULTS
Changing the spatial scale of the analysis had an important impact on the results. Like Pearson’s
(2002) findings where, although the most effective cell size was small (0.2m), the most effective
radius was a relatively large 30m, it was found that a similar radius (30m) bore the closest rela-
tionship to the observed vegetation patterns. A Gi

* with a 30m radius (approximating the 3x3
Fitzgerald and Lees (1995) window) gave the best results in terms of level of detail and corres-
pondence with the preferred level of discrimination. A subset of this is shown in figure 3. The
effect of applying different Gi

* cell radii values to image data is summarised in figure 4. It can
be seen that significant smoothing of the data and merging of clusters occurs with increasing cell
radius and indicates that the smallest radius produces the best results in terms of spatial detail.

Figure 3 Gi
* output using a radius of 45m on Landsat TM band 5 data. The data is interval and the apparent boundaries within

the forest are the result of density slicing for display purposes only. The overall appearance is similar to that of figure 2, but
the utility of the data for input to GIS is very much greater. Where boundaries do exist, such as along the coast, these have
been represented as such by the analysis.
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Figure 4 The smoothing effect of increasing the window size is readily apparent in these images.
Figure 4a; Gi

* output using a radius of 45m on Landsat TM band 5 data
Figure 4b; Gi

* output using a radius of 75m on Landsat TM band 5 data
Figure 4c; Gi

* output using a radius of 110m on Landsat TM band 5 data
Figure 4d; Gi

* output using a radius of 130m on Landsat TM band 5 data

A comparison between the Gi
* output (figure 3) and the thematic map produced by classific-

ation and field labelling (figure 2) indicates that the local statistical method effectively highlights
areas of higher reflectance values corresponding to cleared land, buildings, areas of heath-related
native grassland and beach sand deposits. More interestingly, relatively high spatial autocorrelation
within these areas points to a considerable degree of spatial heterogeneity, which is clearly not
represented in the vegetation classification or in the image band data. The analysis has picked
up differences in quality of the grassland which clearly exist, but which are suppressed in the
transition from spectral classes to land cover types. Within the forest, the levels of heterogeneity
identified by Fitzgerald and Lees (1995) have been discriminated very effectively. The very dis-
turbed areas of forest show essentially no spatial autocorrelation. The more open forests show
a small amount of spatial autocorrelation and the closed forests show a fairly high degree of
spatial autocorrelation. Similarly, the better quality grasslands show a high degree of spatial
autocorrelation, as does the beach.

DISCUSSION AND CONCLUSION
Given that management maps of land cover are more closely related to structural communities,
rather than species, this simple analysis has proven to be very powerful. The examination of the
results suggests that it can be used “as is”, although it could also be used as an ancillary data
source in a more elaborate secondary analysis. In this context, it is important to recognise that
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the output data is interval and the import of such a data set into a subsequent analysis avoids
the errors resulting from the degradation of the data from the interval to the nominal level of
measurement.

This simple local spatial statistic has achieved comparable results to some of the more complex
classifications of remotely sensed data we have attempted in the past. Importantly, the result
takes the form of field, rather than entity, data. Where real boundaries exist, they have been
captured but where gradients exist, they have been retained. Although the best results were ob-
tained with a radius of only 30 m, this technique has discriminated some forest types which the
spatially-aware neural network and analysis suggested needed 120 m radius. Whilst it is clear
that the analysis has not produced information unobtainable through other means, the information
on the local spatial characteristics of the forest were obtained rapidly and at low-cost. The best
comparison is with the results following combined unsupervised classification and field checking.
The field checking, which links spectral classes into land cover types, effectively produces a map
of structural communities. This takes several days of work. Running Gi

* over a single band takes
minutes to achieve an almost comparable result.

One problem of this approach is that we do not yet understand how to field-check this sort
of analysis. The comparison with other forms of analysis is informative in a qualitative sense,
but a method for quantitative assessment still escapes us. This is an area for further research. It
is clear that the local spatial statistic has not discriminated the rainforest class from other closed
forest types. The rainforest is composed of distinctly different species to the other closed forests
in this region and one of the constant problems thrown up here has been to discriminate these
one from another. To date, the most effective strategies have been the integration of remotely
sensed and environmental data in decision tree and neural network classifiers (Lees and Ritman,
1991; Fitzgerald and Lees, 1992). Neither data type on its own has allowed a useful level of
discrimination, no matter which modelling techniques have been used. Environmental data on
its own overpredicts the distribution of rainforest in these highly disturbed environments. Remotely
sensed data, on the other hand, cannot discriminate it effectively because of the high spectral
variance of the rainforest canopy, confusion with water, and confusion with shadow.

As in the Liverpool Plains study, spatial analysis of remotely sensed data has generated useful
information, very simply. The Getis-Ord statistic, with its added information about brightness
values, has shown itself to be particularly useful in dealing with remotely sensed data. The output
is readily interpretable and easily incorporated into more complex analysis as a useful spatial
variable. Importantly, it has not been necessary to invoke a very complex, multi-scale segmenta-
tion/object relationship modelling methodology of the sort described by Burnett and Blaschke
(2003) to analyse the complexity of this landscape at a useful level. The final advantage has been
the avoidance of errors associated with the transfer from the interval to nominal level of meas-
urement.
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