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the line of best fit to the data using ordinary least squares regression. Solid lines indicate 

that the trend is significant at the 5% level using a Mann-Kendall test. 

 

Fig. 3.4: (a) Bars represent the percentage of synoptic patterns occurring during “severe 

storms” at Cape Otway overlaid with the relative frequency of each node within the SOM 

and (b) represents the ratio of when synoptic patterns are driving severe storms at Cape 

Otway to the relative frequency of that pattern within the SOM. The x-axis represents the 

SOM nodes from Fig. 3.2.  

 

Fig. 3.5: Boxplot of annual daily rainfall intensity from rain days (≥ 1mm) during each 

SOM node for stations from the high-quality dataset (Haylock and Nicholls 2000) closest 

to (a) Sydney, (b) Melbourne, (c) Adelaide and (d) Perth using all daily data from 1910 to 

2005. Dotted lines indicate the end of each SOM row. 

 

Fig. D.1: Six cloud top pressure - optical thickness frequency histograms (cloud regimes) 

that best describe the 3-hourly variations of cloud properties across extratropical Australia 

for (a) morning and (b) afternoon. The types of clouds represented by the histogram from 

top left to bottom right are Cirrus (Ci), Cirrostratus (Cs), Deep convection (Dc), 

Altocumulus (Ac), Altostratus(As), Nimbostratus (Ns), Cumulus (Cu), Stratocumulus (Sc) 

and Stratus (St). Throughout the text regimes are referred to as numbers one to six from 

top left histogram to bottom right histogram. 

 

Fig. D.2: Timeseries of frequency of the morning cloud regimes over extratropical 

Australia. Linear regression lines are shown along with the decadal trends. Solid lines 

indicate that trends are significant at the 5% level. Trends and significance calculated as in 

Chapter 3. 

 

Fig. D.3: Contour plots of the percentage of time during which each cloud regime from 

Fig. D.1a occurs during the synoptic patterns (“nodes”) defined in Fig. 3.2. 
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Fig. D.4: Rainfall intensity (mm/day) associated with dynamical cloud regimes from Fig. 

D.1a for (a) Sydney, (b) Melbourne, (c) Adelaide and (d) Perth. 

 

Fig. D.5: Correlations of detrended timeseries averaged across Australia of (a) annual 

maximum daily maximum temperature, (b) Daily rainfall intensity, (c) annual maximum 5-

day rainfall and (d) Southern Ocean cyclone density with detrended timeseries of annual 

sea surface temperatures from HadISST (Rayner et al. 2003). Black lines enclose regions 

where correlations are significant at 5% level. 

 

Fig. D.6: As Fig D.5 but for warm nights across Australia for the period 1957-2006. 

 

Fig. 4.1: Seasonal SSTA patterns (‘nodes’) from HadISST1.1 derived using Self-

Organising Maps (SOM). Each node is shown alongside the probability distribution 

function of the associated NINO4 index value for the seasons where this node occurs. The 

number of times, n, that each node appears within the SOM between 1950 and 2006 when 

the NINO4 index is also available is shown above each map. 

 

Fig. 4.2: Timeseries of seasonal SSTA from HadISST1 as categorized by the 8 SOM nodes 

defined in Fig. 4.1. Each symbol represents a different season. Lines are shaded blue where 

at least 3 consecutive seasons most closely resembled node 1 (strong La Niña) and orange 

where they most closely resembled node 8 (strong El Niño). 

 

Fig. 4.3: Anomalies are shown for cool nights (TN10p), warm nights (TN90p) and 

maximum 1-day precipitation totals (RX1day) during each SOM node. Units for 

temperature indices are percentage deviations from expected value i.e. 10% and 

precipitation extremes are shown as the normalized deviations (by removing the mean and 

dividing by the standard deviation) from average. Colours are shown such that green/blues 

(yellow/red) reflect a cooler/wetter (warmer/drier) climate. 

 

Fig. 4.4: As Fig. 4.3 but for cool days (TX10p), warm days (TX90p) and maximum 

consecutive 5-day precipitation totals (RX5day). 
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Fig. 4.5: Differences in the value of each index from this study (except RX1day) between 

SOM node 1 and node 8 (left hand side) and node 3 and node 6 (right hand side). Colour 

bars are presented such that green/blue (yellow/red) indicate that the node named first in 

the title is cooler/wetter (warmer/drier) than the node named second. Crosses indicate 

gridboxes where the difference between the nodes shown is significant at the 5% level 

using a Kolmogorov-Smirnoff (K-S) test. 

 

Fig. 4.6: Seasonal SSTA patterns (‘nodes’) derived using SOMs from (LHS) observed 

SST-forced CAM3 runs and (RHS) observed SST-forced CAM3 run including “climate of 

the 20th century” atmospheric forcing.  

 

Fig. 4.7: The difference (°C) between the response of TXx to strong La Niña (node 1) 

minus strong El Niño (node 8) for (a) observations, (b) SST-forced CAM3 run and (c) 

SST-forced CAM3 run including “climate of the 20th century” atmospheric forcing. 

Greens/blues (yellows/reds) indicate that the response is cooler (warmer) during La Niña. 

Crosses indicate where the response is statistically significantly different (at the 5% level 

using a K-S test). 

 

Fig. 4.8: Differences in precipitable water measurements during strong La Niña events 

(node 1) and strong El Niño events (node 8) for (a) the SST-forced CAM3 run including 

“climate of the 20th century” atmospheric forcing and (b) observations from the ISCCP 

dataset (described in Section D). 

 

Fig. E.1: Changes in mean temperature (left column) and precipitation (right column) for 

observations (a, b), 20thC simulations (c, d) and 21stC SRES A1B simulations (e, f). 

Twentieth Century changes are represented as trends from 1957-1999, while future 

changes are differences of 2080-2099 minus 1980-1999. Stippling in e) and f) indicates 

regions where the multimodel mean change divided by the intermodel standard deviation 

of the change is greater than one, a measure of the consistency of the multimodel response. 

The same nine models for which extremes indices were analysed are used to form the 

multimodel means here. Figure produced by Julie Arblaster and presented in Alexander 

and Arblaster (2008). 
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Fig. 5.1: Observed (black line) and modelled (coloured lines) timeseries of areally 

averaged extremes indices (Frich et al. 2002) from 1957 - 1999 using grid boxes in 

Australia with observed data. 

 

Fig. 5.2: Observed and modelled decadal trends calculated between 1957 and 1999 for 

extreme temperature indices (Table 5.1) for Australia. Model data are masked with 

gridboxes which have observed data. Stippling indicates trend significance at the 5% level. 

Units as Table 5.1 (per decade). 

 

Fig. 5.3: As Fig. 5.2 but for extreme precipitation indices (Table 5.1). 

 

Fig. 5.4: PDFs of plausible areally averaged OLS trends (1957 to 1999) over Australia 

using each of the nine climate models in the CMIP3 archive. PDFs are calculated using the 

‘temporal similarity’ bootstrapping technique described in the text. Where there are 

multiple ensemble members, PDFs are centred on the ensemble mean trend. The dashed 

lines represent where the observed trends lie over the same period. Units on x-axes as 

Table 5.1 (per decade). 

 

Fig. 5.5: PDFs of the spatial trend correlations (calculated over 1957 – 1999) between 

observations and 22 runs from the nine CMIP3 models available for this study over 

Australia. PDFs are calculated using the ‘spatial similarity’ bootstrapping technique 

described in the text. PDFs are not shown for CNRM-CM3 frost days and heat wave 

duration due to the masking applied to this model at source which reduces the number of 

gridboxes available for the spatial correlation calculation. 

 

Fig. 5.6: PDFs of annual OLS trends (1957 to 1999) in warm nights for (a) PCM and (b) 

CCSM3 and very heavy precipitation contribution for (c) PCM and (d) CCSM3 over 

Australia for natural only (dotted), anthropogenic only (dashed) and all forcings (dotted 

dashed). PDFs are centred on the ensemble mean trend.  The solid lines represent where 

the observed trends lie over the same period. PDFs are calculated using the ‘temporal 

similarity’ bootstrapping technique described in the text and trends are calculated as Fig. 

5.4. 
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xi 

Fig. 5.7: The relationship between two different definitions of the heat wave duration, 

warm nights and consecutive dry days indices (Table 5.1) across Australia. Each triangle 

represents the annual trend calculated between 1957 and 1996 for each index at Australian 

stations. The red line represents the line of best fit using total least squares regression, s is 

the slope of the line and r is the spatial correlation between all points.
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A. Thesis Summary 
 

Changes in the frequency and/or severity of extreme climate events have the potential to 

have profound societal and ecological impacts and observations suggest that in some parts 

of the world such changes are already occurring. The primary objective of this thesis was 

to identify and analyse the mechanisms which are driving changes in climate extremes in 

Australia in order to be better prepared for possible future changes. Multiple research tools, 

methods and data were employed including station observations, reanalyses data, satellite 

data and model output to address fundamental questions about how climate extremes have 

changed in Australia over the observational period, whether interactions between and 

changes in large-scale mechanisms are driving observed trends, and if changes are related 

to anthropogenic factors. 

 

Major results were: 

 

1. Across Australia, trends in extremes of both temperature and precipitation were 

very highly correlated with mean trends indicating an over-arching mechanism 

driving both. Analysis of the rate of change of extremes and means across Australia 

as a whole showed most stations have greater absolute trends in extremes than 

means. There was also some evidence that the trends of the most extreme events of 

both temperature and precipitation are changing more rapidly in relation to 

corresponding mean trends than are the trends for more moderate extreme events. 

The relationships between means and extremes of precipitation on an annual basis 

in Australia were consistent with all other global regions studied. 

 

2. There have been significant reductions in the frequency of rain bearing synoptic 

systems affecting southern Australia over the past century, associated with 

significant decreases in the frequency of severe storms in south-east Australia. 

 
3. Changes in climate extremes are affected to a large extent by variations in global 

sea surface temperatures. This is particularly true of maximum temperature 

extremes over Australia which showed significantly different responses to opposite 

phases of the El Niño-Southern Oscillation i.e. strong La Niña events compared to 
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strong El Niño events. A global climate model forced with observed SSTs was 

unable to reproduce these observed responses. 

 

4. Multiple simulations from nine global coupled climate models showed that when 

averaged across Australia the magnitude of trends and interannual variability of 

temperature extremes were well simulated by most models particularly for the 

warm nights index. The majority of models also reproduced the correct sign of 

trend for precipitation extremes although there was much more variation between 

the individual model runs. However, very few model runs showed significant skill 

at reproducing the observed spatial pattern of trends in temperature and 

precipitation extremes, although a pattern correlation measure showed that spatial 

noise could not be ruled out as dominating these patterns. 

 

5. Trends in warm nights in Australia were consistent with an anthropogenic response 

but inconsistent with natural-only forcings. This indicates that there is a discernable 

human signature on the observed warming of minimum temperature extremes 

across Australia. 
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1. Introduction and aims of this PhD 
 

The vulnerability of communities to climate variability and change is likely to depend 

more on changes in the intensity and frequency of extreme weather and climate events than 

on changes in the mean climate (Lynch and Brunner 2007). It is expected that the extremes 

of climate variables will change at a faster rate than the mean climate (IPCC 2001, Katz 

1999, Fig 1.1). In some regions, extremes have already shown amplified responses to 

changes in means (Folland et al. 2001). Significant changes in temperature and 

precipitation extremes have been noted almost everywhere on the globe; annual 

occurrences of warm nights have significantly increased, occurrences of cold nights have 

significantly decreased and precipitation intensity has increased in the past half century 

(Alexander et al. 2006). Global estimates of the potential destructiveness of hurricanes and 

the numbers and proportion of tropical cyclones reaching categories 4 and 5 appear to have 

increased since the 1970s (Webster et al. 2005; Emanuel 2005), in addition to increased 

trends in sea surface temperatures and other variables that may influence tropical storm 

development (Hoyos et al. 2006). However, in spite of this the number of tropical cyclones 

in the Australian region appears to have decreased (Nicholls et al. 2009). Although there 

have been significant advances in extremes research over the past 15 years (Nicholls and 

Alexander 2007), gaps still remain especially in relation to the detection and attribution of 

changes in extremes. If we understand what processes drive changes in extremes this 

would provide an invaluable aid to scientists and policymakers to help improve 

forecasting, mitigation and/or adaptation strategies.  

  

Therefore, the primary objective of this PhD thesis is to:    

                                                                                                                                                                 

identify and analyse key mechanisms driving observed changes in climate extremes in 

Australia 

 

Mechanisms are likely to include coupled ocean-atmosphere processes such as the El 

Niño-Southern Oscillation (ENSO), large scale circulation changes, sea surface 

temperatures (SSTs), cloud type and/or amount and land cover change. Complex 

interactions and changes in these processes may be related to natural climate variability or 

enhanced anthropogenic factors or both. One of the main obstacles to a study of climate 
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extremes is lack of access to the required observational data. Datasets of daily temperature 

and precipitation already exist for Australia (Trewin 2001; Haylock and Nicholls 2000) and 

observational data have recently become available which would allow the study of large 

scale pressure changes over Australia back to the end of the 19th century. In addition, 

satellite datasets are available which can be used to detect changes over Australia in cloud 

regimes (Rossow and Schiffer 1991). Reanalysis data which have already been used to look 

at southern hemisphere cyclone formation (Trenberth 1991; Simmonds and Keay 2000) can 

provide information on the large scale processes and synoptic patterns driving Australian 

climate extremes through clustering techniques such as Self-Organising Maps (SOMs: 

Cassano et al. 2006; Lynch et al. 2006). This study makes use of all of these datasets to 

investigate the mechanisms which drive long term changes in climate extremes with the 

aim of determining whether changes in large scale circulation patterns are implicated as a 

driver of extreme events. Links between changes in these patterns and anthropogenic 

influences will be investigated using state of the art climate models. Therefore, to provide a 

research framework for this objective, the following three primary questions will be 

addressed: 

 

1. How have climate extremes of temperature, precipitation and storminess 

changed in Australia during the observational record? Chapter 2 and Chapter 3  

2. Are interactions between and changes in large-scale mechanisms driving 

observed trends in climate extremes? Chapter 3 and Chapter 4 

3. Can state of the art climate models adequately represent observed changes in 

climate extremes? Chapter 4 and Chapter 5 

 

To attain these objectives we have built on and updated current research of trends in 

Australian extremes. A breadth of research documenting Australian temperature and 

precipitation extremes already exists (e.g. Hennessy et al. 1999; Plummer et al. 1999; 

Collins et al. 2000; Haylock and Nicholls 2000; Manton et al. 2001; Griffiths et al. 2005; 

Gallant et al. 2007; Chambers and Griffiths 2008) but the mechanisms which are driving 

these changes are less well understood. Furthermore, most studies have focussed on the 

analysis of extremes variables (most typically temperature and precipitation) separately. 

Regional studies across Australia and the Asia-Pacific area have shown significant 

increases in occurrences of hot days, warm nights and heat-waves and decreases in 
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occurrences of cool days and cold nights (e.g. Collins et al. 2000; Manton et al. 2001; 

Tryhorn and Risbey 2006) over the past few decades. Fig. 1.2 shows how the probability 

distribution function (PDF) for winter temperatures in Melbourne has shifted in recent 

decades; the increase in mean minimum temperature of less than 1°C has been 

accompanied by a reduction of more than 50% in the numbers of very cold nights 

(Nicholls and Alexander 2007). While changes in precipitation extremes in Australia are 

more regionally dependent (e.g. Hennessy et al. 1999; Haylock and Nicholls 2000), we 

will show that there is some evidence that the trends of the most extreme events of both 

temperature and precipitation are changing more rapidly in relation to corresponding mean 

trends than are the trends for more moderate extreme events (Chapter 2). Over the past 

century there has been a significant decrease in the frequency and intensity of extreme 

precipitation events in southwest Western Australia and a significant increase in the 

proportion of total rainfall from extreme events in eastern Australia (Haylock and Nicholls 

2000).  

 

 

 

 

 

 

 

Fig. 1.1: Schematic showing the effect on temperatures when the mean increases (left panel) and 

when both the mean and variance increase (right panel) for a normal distribution of temperature. 

Source IPCC (2001).  

 

Drying over Western Australia is perhaps the most extensively researched of these 

extremes. It has been attributed to various causes including land use change (Pitman et al. 

2004; Timbal and Arblaster 2006), changes in sea surface temperatures (Ummenhofer et 

al. 2008) and decreases of Antarctic sea ice (IOCI 2005). However, the most recent 

evidence from the Indian Ocean Climate Initiative (IOCI) suggests it is a shift in large 

scale circulation patterns which has moved the preferred location of winter storm tracks 

and caused the rainfall deficit (Hope et al. 2006; Frederiksen and Frederiksen 2007). 

While there is an understanding of the effect that the modulation of large scale circulation 

e.g. the Southern Hemisphere Annular Mode (SAM) has on changes of the mean climate 
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(Thompson and Solomon 2002), the links between this and the effects on extreme events 

are still not fully understood. 

 

 
Fig. 1.2: Illustration of the changing probability distribution function (PDF) of Melbourne winter 

(JJA) minimum temperatures between 1957-1980 (dashed line) and 1981-2005 (solid line). 

 

1.1 Significance/Innovation 
 

Anthropogenic climate change is likely to shift extremes towards conditions that will stress 

vulnerable systems such as Australia’s unique flora, fauna and ecosystems (Fitzharris et 

al. 2007; Hughes et al. 2003; Chambers et al. 2006). Extreme precipitation changes have 

the potential to prolong droughts and increase floods, hence affecting water supply quality 

and quantity. Extremes such as storms and flooding can have large impacts, not only 

through their immediate affects such as loss of life and property but also through residual 

effects such as insurance premium increases, increased health risk and loss of adaptive 

capacity (Lynch and Brunner 2007; Nicholls and Alexander 2007). 

 

There is growing evidence that only the inclusion of anthropogenic as well as natural 

climate change can account for the global changes in extremes that have already been 

observed (e.g. Kiktev et al. 2003; Christidis et al. 2005) and under future enhanced 

greenhouse gas forcing the frequency of these extreme events is likely to increase (e.g. 

Hegerl et al. 2004; Tebaldi et al. 2006). However, there is also evidence that some 
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observed regional responses can be accounted for by natural climate variability (Cai et al. 

2005; Scaife et al. 2008). The study of trends in climate extremes requires long running 

timeseries that are free from artificial influences or 'inhomogeneities' while the study of the 

atmospheric processes that drive these trends require high spatial and temporal resolution 

data that are unlikely to be free from such inconsistencies. This study aims not to treat 

these separate sources as mutually exclusive but rather to utilize all available data sources 

to provide a whole and unique picture of changes in extremes across Australia and their 

driving mechanisms. 

 

The unique aspects of the work compared with previous analyses are:- 

 

a) it will draw on previously unanalysed data which have only recently become available 

i.e. sub-daily station pressure and cloud regime data over Australia; 

 

b) a multi-method approach will be adopted that will synthesize station observations, 

satellite data, reanalysis data and model simulations to significantly improve our 

understanding of the evolution of large scale synoptic patterns over Australia in order to 

determine how changes can impact extremes of temperature, precipitation and 'storminess' 

(that is, wind and storm tracks). 

 

The use of multiple data sources over a variety of timescales will provide a uniquely 

comprehensive insight into the large scale mechanisms driving changes in extremes over 

Australia. 

 

1.2 Approach/Methodology 
 

1.2.1 Research tools and datasets 

 

In this section, we note selected examples to highlight the range of datasets that were at our 

disposal and to illustrate the availability of long (in some cases over a century) records of 

multi-parameter “extremes”.  
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1.2.1.1 In-situ observations 

 

High quality daily temperature (Trewin 2001) and precipitation (Haylock and Nicholls 

2000) data from the Bureau of Meteorology (BoM) observing stations were available in 

near-real time (i.e. almost up to the current date) and were analysed for changes in and 

interactions between trends in mean and extreme events, placing these results in a global 

context. These data also contributed to the creation of a gridded dataset of temperature and 

precipitation indices (Alexander et al. 2006) which was used for comparison with global 

climate model output. Recently digitised sub-daily pressure data since the end of the 19th 

century from approximately 50 observing stations in Australia were also obtained from 

BoM. These data were quality controlled and interpolated to create the first long-term 

Australia-wide daily mean sea level pressure dataset. From this, synoptic regimes were 

identified for Australia and trends in these patterns over the last century were analysed in 

addition to trends in 'storminess' at individual stations for about 150 years in some cases. A 

global sea surface temperature dataset, HadISST1 (Rayner et al. 2003), constructed from 

in-situ ship, fixed and drifting buoy measurements, was used to analyse the influence of 

large scale modes of SST variability on observed temperature and precipitation extremes 

across Australia and the globe. 

 

1.2.1.2 Reanalyses datasets 

 

Reanalysis data such as NCEP/NCAR (Kalnay et al. 1996) and ERA-40 (Uppala et al. 

2005) have generally been used to identify synoptic patterns in climate research (e.g. 

Lynch et al. 2006; Cassano et al. 2006). They are useful because of their complete global 

coverage since the 1950s and high temporal resolution (6 hours) and have been used 

successfully to document Southern Hemisphere cyclone formation (Trenberth 1991; 

Simmonds and Keay 2000). Although they suffer from heterogeneities particularly before 

1960 and around the late 1970s (Kistler et al. 2001) when used in conjunction with the 

other sources of data they have provided a useful benchmark for comparison. Several 

clustering techniques are available such as Self-Organising Maps (e.g. Lynch et al. 2006), 

simulated annealing clustering (e.g. Philipp et al. 2006) or K-Means clustering (Anderberg 

1973) to enable identification of synoptic regimes and investigate links with changes in 

extreme events identified from both the reanalyses and in-situ datasets.  
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1.2.1.3 Satellite data 

 

For the first time, “dynamical” cloud regimes have been identified for Australia using 

International Satellite Cloud Climatology Project (ISCCP; Rossow and Schiffer 1991) data, 

available at 250km resolution, 3–hourly timescale from July 1983 to December 2004 

(Jakob and Tseliodis 2003; Rossow et al. 2005). In addition to being able to create cloud 

climatologies for Australia and to analyse changes in cloud type and amount using ISCCP 

data, these regimes were compared to various extremes of temperature and precipitation to 

identify patterns driving the observed change. 

 

 1.2.1.4 Model simulations 

 

To diagnose the mechanisms driving changes in Australian climate extremes requires the 

use of climate models. In addition models can be used to determine the anthropogenic 

component of observed changes in other climate extremes using optimal 

detection/fingerprinting techniques (e.g. Allen and Tett 1999; Tett et al. 1999) or objective 

bootstrapping methods (e.g. Kiktev et al. 2003) using natural-only, anthropogenic or all 

forcings experimental design.  

 

A set of experiments from the CCSM3 climate model (Collins et al. 2006b) forced with 

observed sea surface temperatures (SSTs) and different atmospheric forcings were used to 

investigate the effect of large scale phenomenon such as El Niño-Southern Oscillation 

(ENSO) on trends and variability of climate extremes. The output from these experiments 

was compared to the observed response of temperature extremes to varying SSTs. The 

resolution of the version of CCSM3 that was used was 128 by 64 horizontal grid cells 

(approximately 2.8 degree resolution) with 26 levels in the vertical.  

 

In addition, 22 runs from nine state of the art climate models were available from the 

World Climate Research Programme’s (WCRP) Coupled Model Intercomparison Project 

phase 3 (CMIP3) at the Program for Climate Model Diagnosis and Intercomparison 

(PCMDI) in California. Ten extremes indices, calculated from daily data and based on the 

definitions of Frich et al. (2002), were available with 5 temperature-based indices (e.g. 

heat wave duration, occurrence of frosts) and 5 precipitation-based indices (e.g. heavy 

precipitation events, consecutive dry days).   
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Christidis et al. (2005) is, thus far, the only formal detection and attribution study globally 

that has convincingly associated a trend in temperature extremes with a human influence. 

While some regional studies in Australia have convincingly argued that anthropogenic 

forcings play a role in the drying of south-west Western Australia (e.g. Timbal and 

Arblaster 2006) most studies relate to mean rather than extreme change. For this reason, 

the output from a series of climate model experiments was analysed to test the hypothesis 

that changes in climate extremes in Australia are human-induced. 

 

1.2.2 Research Tasks 

 

The primary objective “Identify and analyse key mechanisms which are driving observed 

changes in climate extremes in Australia” was addressed by using the datasets and research 

tools described above and by addressing three primary questions as follows:- 

 

 How have climate extremes of temperature, precipitation and storminess changed 

in Australia during the observational record? Chapter 2 and Chapter 3 

 

Data need to undergo rigorous quality control before being used in any extremes analysis 

since values are likely to show up as extreme when incorrectly recorded. In addition 

inhomogeneities (that is artificial changes which cannot be explained by changes in 

climate) need to be accounted for or removed prior to any analysis. For various climate 

variables we did this as follows:- 

 

a. Temperature and precipitation 

 

Daily temperature and precipitation station data across Australia have already had 

extensive quality control applied (Trewin 2001; Haylock and Nicholls 2000) although there 

may still be issues regarding incorrectly recorded accumulations for precipitation (Viney 

and Bates 2004). Some recent work has already attempted to address these issues (Gallant 

et al. 2007). 

 

Recent intensive collaboration by the World Meteorological Organisation (WMO), Expert 

Team on Climate Change Detection and Indices (ETCCDI) has facilitated the 

identification and calculation of a suite of 27 climate extremes indices for most regions of 
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the world (Alexander et al. 2006). As part of this thesis, these indices were updated and 

analysed for Australia between 1957-2005 for temperature and 1910-2005 for precipitation 

to assess how the extremes of these variables relate to trends in the mean. This allowed us 

to answer questions about how the distributions of temperature and rainfall are changing 

across Australia. In addition, recent work performed on a global scale using these climate 

indices (Alexander et al. 2006) allowed the results to be put into a global context to 

determine whether changes seen in Australia were remarkable compared to other regions 

of the world.  

 

b. Mean sea level pressure 

 

The mean sea-level pressure (MSLP) dataset was developed as a new dataset, and provides 

a unique look at long-term changes in synoptic patterns and extreme storm events over 

Australia (since the early 20th century). However, the station dataset required a high degree 

of “hands-on” quality control before it could be used. Although the earliest observations 

dated back to 1859, it was not until 1907 that a reasonable number of stations had enough 

data to analyse. These data were raw and in most cases had been keyed directly from 

original manuscripts without quality control. Gravity and index corrections were not 

performed on the raw data and, depending on barometer type, could be quite large (up to 

several hPa). In addition, an extensive search of original manuscripts at the BoM archive 

and the National Archives of Australia was required to account for changes in the type and 

location of the barometer at individual sites in conjunction with sophisticated statistical 

techniques to identify artificial climate shifts. Other studies in the Northern Hemisphere, 

particularly the European Union project, EMULATE, which was set up to categorise 

synoptic variability over Europe since about 1850, have had experience in addressing these 

sorts of problems (Ansell et al. 2006). We drew on the quality control techniques employed 

by EMULATE and other studies (e.g. Alexandersson et al. 2000; Bärring and von Storch 

2004; Alexander et al. 2005; Zou et al. 2006) from which it was then possible to classify 

storm events from daily pressure tendencies (i.e. the difference in hPa between subsequent 

pressure readings) at individual stations. Pressure tendencies have been shown to be a good 

proxy for wind speed (WASA Group 1998) and are more reliable as they are less affected 

by inhomogeneities from changing instrumentation. Probability distribution functions were 

defined for the quality controlled pressure tendencies at each station from which a 

threshold was identified above which events were classified as “extreme”. These 
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thresholds could then be employed as a quality control measure for the data. Timeseries of 

extreme storm events were then analysed using the most up to date statistical techniques to 

determine if there has been any change in the frequency or intensity of events. 

 

 Are interactions between and changes in large-scale mechanisms driving observed 

trends in climate extremes? Chapter 3 and Chapter 4 

 

We investigated large scale mechanisms over Australia and their interactions by using the 

pressure dataset described above in addition to reanalyses data to identify synoptic patterns 

using existing techniques (e.g. Lynch et al. 2006; Cassano et al. 2006) and by identifying 

cloud regimes (clusters) from ISCCP data (Jakob and Tseliodis 2003; Rossow et al. 2005). 

This enabled us to determine if particular cloud clusters were systematically linked to 

particular synoptic types and if this was the case whether the occurrences of extremes also 

map to certain circulation types and in turn an associated cloud cluster. In addition, 

because of the strong influence of ENSO on the climate of Australia, global patterns of 

SST variability were identified using the same clustering algorithm used to classify 

synoptic pressure patterns, to analyse the effect that these large scale modes have on 

temperature and precipitation extremes across the country.  Finally, the anthropogenic 

component of changes in these extremes was assessed using multiple runs from two global 

climate models with different forcings. 

 

To classify synoptic MSLP and SST patterns, a technique called Self-Organising Maps 

(SOM) was used. The SOM algorithm (Kohonen 2001) applies an unsupervised learning 

process to map input data onto the elements of a regular one- or two-dimensional array and 

hence provides an efficient means of interpreting and visualizing large data sets. The way 

the SOM algorithm was used here most directly compares to cluster analysis except that 

the SOM approach is characterized by a tendency to categorize data by preserving its 

probability density (Cassano et al. 2006). Using the ERA-40 reanalysis product, daily 

averaged fields of mean sea level pressure (MSLP) for the time period 1958-2001 were 

retrieved. Daily averaged fields from the newly created observed MSLP dataset were also 

calculated for the period 1907-2006. From these, synoptic patterns were derived by 

applying the SOM algorithm and using all days through the year. The observed SOM was 

mapped to the ERA-40 SOM in order to create spatially and temporally complete MSLP 

synoptic patterns over Australia for the past century. Frequency distributions and trends 
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were then calculated for all the synoptic types and these were linked to changes in extreme 

events. For the SST data, the SOM algorithm was used in a similar way only this time 

using the 1° latitude x 1° longitude HadISST dataset. Eight patterns of seasonal SST 

anomalies were identified which showed that phases of ENSO modulated the majority of 

global SST variability. The influence of these patterns of variability on global temperature 

and precipitation extremes was analysed. 

  

For the cloud regimes, for each 280km grid square within a region defined around 

Australia, cloud top pressure, optical thickness (τ) and cloud amount were extracted from 

the ISCCP data for every 3-hourly period since 1983. To allow for the different dynamical 

regimes that exist between tropical and extratropical Australia, the country was split into 

two regions with clusters defined for each one although most of our focus was on the 

extratropical region. Since optical thickness can only be calculated with the visible 

channel, two daytime periods were investigated (morning to early afternoon and mid 

afternoon to early evening) to allow for the differences in convective situations that occur 

during the day. A K-Means clustering algorithm (Anderberg 1973) was implemented to 

search for possible patterns or “clusters” to identify the cloud regimes within the region. 

Once the cloud regimes were identified it was possible to make direct links between trends 

in these and the various synoptic types defined from the pressure and reanalyses datasets 

and how these were associated with changes in the range of climate extremes described in 

the previous section. This allowed us to tell if there were certain regimes which were 

driving most of the changes in extreme events. 

 

On a global scale, previous work has been moderately successful at detecting a discernible 

anthropogenic influence on temperature and precipitation extremes (Kiktev et al. 2003; 

Kiktev et al. 2007). However recent studies on regional scales show that trends in climate 

extremes for individual seasons and regions are often dominated by natural variability (e.g. 

Scaife et al. 2008) so the same treatment cannot be applied to seasonal and regional 

changes as has been applied in the past to global (i.e. radiative) changes. Although there is 

good evidence globally (e.g. Kiktev et al. 2003; Christidis et al. 2005) that changes in 

temperature extremes can only be explained by both natural and anthropogenic forcings, to 

our knowledge a formal detection study of changes in extremes over Australia had yet to 

be performed. Two of the models from the CMIP3 archive had data available for analysis 

with natural-only and anthropogenic-only as well as all-forcings runs. The output from 

11  



Chapter 1                                                                                                              Introduction 

these climate models was analysed using an objective pattern similarity technique (using 

bootstrapping) that allowed for the objective comparison of observed and temporal trend 

patterns for various extremes using natural-only, anthropogenic-only and all forcings runs. 

This technique has been used successfully in previous global extremes studies (Kiktev et al. 

2003; Kiktev et al. 2007).  

 

 Can state of the art climate models adequately represent observed changes in 

climate extremes? Chapter 4 and Chapter 5 

 

In addition to using the CMIP3 archive to analyse the anthropogenic influence on changes 

in extremes across Australia, this resource was also used to assess the general performance 

of state of the art climate models in simulating observed changes in extremes over 

Australia. Multiple simulations from nine global climate models were assessed for their 

ability to reproduce observed trends in temperature and precipitation extremes over 

Australia. Observed trends over the 1957 to 1999 period were compared with individual 

and multi-modelled trends calculated over the same period. These data were used to 

determine whether individually or collectively global climate models were able to 

reproduce both the magnitude and spatial pattern of trends over Australia. Due to the noise 

superimposed on long-term trends, estimates obtained from analysis of timeseries include a 

stochastic component. The associated uncertainty in the modelled trend estimates was 

assessed using a bootstrap procedure with multiple evaluations of “perturbed” trends for 

the model timeseries. The resulting multiple fields of bootstrapped trend patterns were 

randomly sampled to estimate Probability Density Functions (PDFs) of similarity between 

the actual and reproduced trends. From the pattern similarity PDFs for each climate 

extreme considered, we tested the null hypothesis that the model patterns had no positive 

skill in reproducing observed trends. The null hypothesis was rejected at the 5% level if a 

zero measure of similarity fell within the lower 5%-tail of the PDF. If more than 5% of the 

PDF was to the right of zero, then the ensemble mean showed positive skill at simulating 

the observed trend patterns at the 5% level.  

 

The SOM algorithm was also employed to classify SST variability from two experiments 

of the CCSM3 model and to compare the resulting patterns with those patterns obtained 

from observations. The observed and modelled responses of extreme maximum 

temperatures over Australia to strong El Niño and La Niña events were compared. 
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1.3 National Benefit 
 

Given the uniqueness of some of the datasets being created and used and the multi-method 

approach, the results of this research have allowed for a much improved understanding of 

the mechanisms which have lead to changes in climate extremes in Australia. In addition 

we have been able to answer objectively whether changes in extremes in Australia are 

human-induced to some extent. This is fundamental if governments and policymakers are 

to receive appropriate advice on the impacts and vulnerability of certain communities and 

regions to extreme climate change.  

 

1.4 Structure of this thesis 
 

Each chapter of this thesis aims to address the three primary questions posed to meet the 

primary objective as follows. An introductory section (labelled “A”, “B” etc.) precedes 

each of main chapters (labelled “1”, “2” etc.). The aim of the introductory sections is to act 

as a bridge between each of the main chapters and to give more informal background 

information to the specific scientific questions which are dealt with in the main chapters to 

answer the primary objective. 



Section B                                                                                     Droughts and flooding rains 

B. A land of droughts and flooding rains 
 

Australia, described in Dorothea Mackellar’s 1904 poem “My Country” as a land of 

“drought and flooding rains”, may be better placed than most, given its variable climate, to 

adapt to changes in climate extremes. In the last 10 years, southeastern Australia has 

experienced a prolonged period of drought, most of the rainfall decline occurring in 

autumn (Murphy and Timbal 2008). While this dry spell is of a similar severity to one that 

occurred at the beginning of the 20th century, the recent dry has been exacerbated by much 

warmer temperatures in the present day compared to a century ago. In tandem with periods 

of drought, there have also been significant flooding incidences and in the eastern part of 

the country the multi-decadal variability of these events is modulated both by the El Niño-

Southern Oscillation (ENSO) and the inter-decadal Pacific Oscillation (IPO) index (Kiem 

et al. 2003). This dual modulation of ENSO processes appears to have the effect of 

reducing and elevating flood risk on multi-decadal timescales. However, even though some 

systems may have evolved to be resilient to this variability, climate change might shift 

extremes towards conditions that will stress vulnerable systems such as Australia’s unique 

ecosystems (Pittock et al. 2001; Hughes et al. 2003; Fitzharris et al. 2007). There is 

growing evidence that only the inclusion of anthropogenic as well as natural climate 

change can account for the global changes in extremes that have been observed in recent 

decades (e.g. Kiktev et al. 2003; Christidis et al. 2005) and under enhanced greenhouse gas 

forcing the frequency of some of these extreme events is likely to change (e.g. Hegerl et al. 

2004; Tebaldi et al. 2006). Folland et al. (2001) concluded that in some regions both 

temperature and precipitation extremes have already shown amplified responses to changes 

in means. 

 

The impacts of most extremes are typically felt at a local or regional scale so regional 

studies of climate extremes are of the highest priority for most countries for assessing 

potential climate impacts. However, given that climate change signals in climate extremes 

are difficult to detect at a regional scale, to understand fully how the climate varies and the 

extent to which humans have influenced the climate system requires a global approach. 

This in turn requires a consistent approach for analysis. The Intergovernmental Panel on 

Climate Change (IPCC) Second Assessment Report (SAR) in 1995 concluded that 

although there was no evidence globally that extreme weather events or climate variability 
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had increased, data and analyses were “poor and not comprehensive” although changes in 

extreme weather events were observed in some regions where sufficient data were 

available (Nicholls et al. 1996a). One reason for such ambiguity was that while there were 

studies of regional changes in climate extremes, the lack of consistency in the definition of 

extremes between analyses meant that it was impossible to provide a comprehensive global 

picture. These ambiguities in the SAR conclusions led to a number of workshops and 

globally co-ordinated efforts which have made significant progress in our analysis of 

extremes (Nicholls and Alexander 2007). Groups such as the World Meteorological 

Organisation (WMO) CCl/CLIVAR/JCOMM Expert Team on Climate Change Detection 

and Indices (ETCCDI)1, the European Climate Assessment (ECA) and the Asia-Pacific 

Network (APN), in addition to their primary aim of filling in data gaps, have aimed to 

provide a framework for defining and analysing observed climate extremes so that the 

results from different countries can be combined seamlessly. It was early realised that 

countries were more likely to exchange information on seasonal and/or annual climate 

indices e.g. heatwave duration, heavy precipitation events than they were to release raw 

daily or sub-daily meteorological observations. In addition, temperature and precipitation 

were the most widely available long-term climate variables so most global studies have 

focused on analysis of these data. The first study to attempt a global analysis of 

temperature and precipitation extremes under the auspices of the ETCCDI was that of 

Frich et al. (2002) who showed that there had been significant changes in extreme climate 

indices, such as reductions in frost days and increases in warm nights and heavy rainfall 

events over the last 50 years. This approach has also been pivotal in “data mining” in 

regions where previously little or no data had been readily available, developing ongoing 

capacity in these data sparse regions and enhancing international collaboration (Peterson 

and Manton 2008). Modelling groups have also now taken a similar approach through the 

Joint Scientific Committee (JSC)/CLIVAR Working Group on Coupled Models so that 

observations and model output can be compared consistently. Tebaldi et al. (2006) was the 

first study to use the multi-model approach to assess potential future changes in climate 

extremes showing that the 21st century would bring global changes in temperature 

extremes consistent with a warming climate. While that study also showed that global 

changes in precipitation extremes were consistent with a wetter world with greater 

precipitation intensity, the consensus and significance amongst the models was weaker 

                                                 
1 Previously known as the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI), see 
http://www.clivar.org/organization/etccdi/etccdi.php for details. 

http://www.clivar.org/organization/etccdi/etccdi.php
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when regional patterns were considered. This indicates the importance of combining global 

results with more regionally relevant studies to assess the impacts of these changes. These 

and other multi-national efforts such as Alexander et al. (2006) meant that by the time of 

the IPCC’s Third Assessment Report (TAR) and Fourth Assessment Report (AR4) in 2001 

and 2007 respectively, much stronger conclusions could be drawn about how extremes had 

changed and how they might change in the future. This was largely due to increased data 

coverage and the availability of longer timeseries which enabled better detection of 

changes by enhancing the signal to noise ratio. In addition, because of the availability of 

global datasets, studies such as that of Christidis et al. (2005) were for the first time able to 

detect a discernible human influence on recent trends in global temperature extremes. By 

AR4, it was “likely” that there would be increases in droughts, intense tropical cyclones 

and extreme high sea level, “very likely” that warm spells and heavy precipitation events 

would increase and “virtually certain” that there would be more warm nights and fewer 

cold nights at the end of the 21st century compared to the end of the 20th century (IPCC 

2007).  

 

In light of this, the next chapter of this thesis employs the ethos of the ETCCDI and other 

international groups by analysing a standard set of temperature and precipitation extremes 

derived from daily data for Australia and presenting the results in a global context. 



Chapter 2                                                                  Australia’s climate means and extremes 

2. Trends in Australia’s climate means and extremes: a global context 

 
Summary 

 

Using a standard set of annual and seasonal climate extremes indices derived from daily 

temperature and precipitation data, relationships between mean and extreme trends across 

Australia and the globe were analysed. Extremes indices were calculated using station data 

from Australian high quality daily temperature and precipitation datasets and pre-existing 

high quality datasets of climate extremes for the globe. Spatial correlations were calculated 

between the trends in means and extremes both annually and seasonally for maximum and 

minimum temperature and precipitation across Australia and annually for precipitation 

across the rest of the globe. In Australia, trends in extremes of both temperature and 

precipitation were very highly correlated with mean trends. Annually, the spatial 

correlation between trends in extremes and trends in the mean was stronger for maximum 

temperature than for minimum temperature. However, this situation was reversed in 

winter, when minimum temperatures showed the stronger correlations. Analysis of the rate 

of change of extremes and means across Australia as a whole showed most stations have 

greater absolute trends in extremes than means. There was also some evidence that the 

trends of the most extreme events of both temperature and precipitation are changing more 

rapidly in relation to corresponding mean trends than are the trends for more moderate 

extreme events. The annual relationships between means and extremes of precipitation in 

Australia were consistent with all other global regions studied. 
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2.1 Introduction 
 

Trends in Australian temperature and precipitation extremes have been examined 

extensively e.g. Hennessy et al. (1999); Plummer et al. (1999); Collins et al. (2000); 

Haylock and Nicholls (2000); Manton et al. (2001); Griffiths et al. (2005) and Gallant et 

al. (2007). These studies reported widespread increases in warm temperature extremes and 

decreases in cold temperature extremes while trends in rainfall extremes show more 

regionally dependent variations. The relationships between means and extremes of 

temperature have been examined across Australia by Trewin (2001) and Griffiths et al. 

(2005). Griffiths et al. (2005) found changes in mean temperatures between 1961 and 2003 

to be a good indicator for changes in a range of temperature extremes. That analysis 

extended across southeast Asia, Australia and the south Pacific, but the spatial distribution 

across Australia was relatively sparse. Trewin (2001) used a larger selection of stations and 

found that the lower (cold) tails of both the minimum and maximum temperature 

distributions were warming faster than the upper (warm) tails.  

 

Most studies, however, have focussed on the analysis of temperature and precipitation 

extremes separately. Assessing trends in precipitation and temperature concurrently allows 

statements to be made about the drivers of some of these trends, given the high correlation 

between the two across much of Australia. For most of Australia the correlation between 

mean temperature and precipitation is negative and statistically significant (Power et al. 

1998). This correlation is strongly dictated by maximum daily temperatures. Correlations 

between rainfall and minimum temperature vary regionally – in many places there is no 

statistically significant correlation; in the southern half of the continent statistically 

significant correlations are positive, while in the north they are negative. However, partial 

correlations between precipitation and minimum temperature, after the relationship 

between minimum and maximum temperature has been removed, reveal statistically 

significant positive correlations across most of Australia south of about 20°S. Correlations 

between the Australia-wide average annual precipitation and temperature are consistent 

with the wide-spread spatial responses described above (Nicholls et al. 1997; Power et al. 

1998). 
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The breadth of Australian observational studies was made possible by the availability of 

high quality daily datasets that have undergone extensive checks for temporal 

inconsistencies. This study aims to use these datasets in order to assess simple measures of 

the relationship between means and extremes of temperature and precipitation at all the 

stations across Australia. Variations in this signature on the regional and seasonal scale 

will be assessed. Extremes were selected from the standardised set used in Alexander et al. 

(2006) to allow a comparison of the annual relationship between means and extremes 

across Australia with the rest of the globe.  

 

First the data and methods used are described, followed by a discussion of the results and 

conclusions. 

 

2.2 Data and Methods 
 

While inland Australia has a relatively sparse geographical coverage of climate recording 

stations, for the data that are available there has been a long history of assessing data 

quality and subsequent homogenisation to minimise the effect of changes in exposure or 

observing practices (Lavery et al. 1992; Torok and Nicholls 1996; Trewin 2001; Della-

Marta et al. 2004). Two sources of readily available Australian data were used in this 

study. These are the Bureau of Meteorology’s National Climate Centre (NCC) interpolated 

grids of monthly temperature and precipitation and a subset of station data used in the 

calculation of these grids which also contain information on daily timescales. For global 

analysis, precipitation stations used by Alexander et al. (2006) which have sufficient non-

missing data were used. 

 

2.2.1 Gridded fields 

 

The 0.25x0.25 degree gridded fields of monthly maximum and minimum temperature and 

precipitation were obtained from the NCC. The gridded data are based on station data, 

interpolated using a two-dimensional Barnes analysis. For precipitation we used a gridded 

dataset based on the homogeneous rainfall series described in Lavery et al. (1997), while 

Jones (1998) provides details about the temperature grids. The gridded data were used to 

create maps to describe the coarse spatial variability in the seasonal trends to allow an easy 
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visual comparison with trends in the extreme indices at station locations. The daily datasets 

are now available at http://www.bom.gov.au/climate/change/datasets/datasets.shtml 

while analyses based on the homogenous monthly datasets are available at 

http://www.bom.gov.au/climate/change.  

 

2.2.2 Station data 

 

For Australian station records, temperature data have been adjusted for inhomogeneities at 

the daily timescale from 1957 onwards by taking account of the magnitude of 

discontinuities for different parts of the frequency distribution for each variable/station 

combination (Trewin 2001). Stations used in this study were updated from the high-quality 

list used by Trewin (2001) although 3 stations have been removed from the analysis – 

Nhill, Sale and Wilcannia – since these stations are known to have inhomogeneities at or 

around 1996 after which no homogeneity adjustments have been applied. Prior to 1957, the 

amount of digitized daily temperature data is limited, and most of the digital data that do 

exist have only become available recently. For stations which do have pre-1957 data, flat 

monthly homogeneity adjustments have been made prior to 1957 due to a lack of digitized 

daily comparison data, thereby increasing the potential for undetected inhomogeneities to 

exist in the extremes. Australian precipitation data came from a high quality precipitation 

dataset (Haylock and Nicholls 2000). Subsequent studies have shown that multi-day 

rainfall in some instances has been incorrectly recorded as daily values, particularly just 

after the weekend (Viney and Bates 2004). However, analysis of the extremes in rainfall 

for a subset of stations has not shown any significant trend differences between rainfall 

gathered during the whole week and rainfall gathered between Tuesday and Friday 

(personal communication Dörte Jakob). Therefore no stations were rejected from the 

analysis for this reason. For global stations, the high-quality indices dataset that was 

developed on behalf of the WMO CCl/CLIVAR Expert Team on Climate Change 

Detection and Indices (ETCCDI) was used. The dataset includes 27 indices derived from 

daily data for 2223 temperature and 5948 precipitation observing stations across the globe. 

Details of the indices can be found at http://cccma.seos.uvic.ca/ETCCDI/. 
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2.2.3 Extreme indices calculation 

 

Extremes indices for Australia have already been calculated from these daily station data 

for the global study of Alexander et al. (2006) but have been updated here using all 

available data up to 2005. Indices were calculated using standard software which was 

produced on behalf of the ETCCDI by the Climate Research Branch of the Meteorological 

Service of Canada. Two versions of the software are available, FclimDex written in Fortran 

and RclimDex written in the statistical software package R, although both provide identical 

results. The use of a standardised methodology to calculate climate indices allows the 

results to be compared directly with other regional analyses (e.g. Aguilar et al. 2005; 

Zhang et al. 2005; Vincent et al. 2005; Haylock et al. 2006; Klein Tank et al. 2006; New et 

al. 2006) which in turn can be fitted seamlessly into a global analysis. Although the indices 

for Australia have already been used in the global study of Alexander et al. (2006), because 

of the uneven distribution of global stations, the results in that study were gridded onto a 

3.5 degrees longitude ×  2.75 degrees latitude grid. This makes it difficult to pinpoint small 

regional shifts, such as in the southwest corner of Australia, where there are strong 

gradients in mean rainfall. For this reason we revisit and update the analysis of Australian 

climate indices to 2005 at individual stations. Table 2.1 lists the indices that have been 

used in this study. It should be noted that some of the indices recommended by ETCCDI 

are not relevant for the Australian climate (see Collins et al. 2000). Thus we do not analyse 

growing season length and annual occurrences of days where maximum temperature is less 

than 0°C. In addition a precipitation index measuring the number of days greater than a 

user-defined amount of rainfall was not considered since the indices R10mm (days above 

10 mm) and R20mm (days above 20 mm) were deemed sufficient for this study. For 

temperature, all indices except occurrence of frost (FD), cold and warm spell duration 

(CSDI and WSDI), tropical nights (TR) and summer days (SU) can be calculated 

seasonally as well as annually. For precipitation, only the maximum 1-day and 5-day 

precipitation totals indices (RX1day and RX5day) were calculated on a monthly basis. 

 

The indices have been chosen to measure the extreme ends (and in some cases the mean or 

total e.g. PRCPTOT) of the temperature and precipitation distribution but are not so 

extreme that they are unreliable due to the data quality or the length of record. 
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2.2.4 Missing data  

 

Missing station data were accounted for using the ETCCDI recommended standard criteria 

(see Appendix C of the RclimDex user manual on the ETCCDI website at 

http://cccma.seos.uvic.ca/ETCCDMI/RClimDex/RClimDexUserManual.doc). Briefly, 

monthly indices were calculated if no more than 3 days were missing in a month and 

annual values were calculated if no more than 15 days were missing in a year. However an 

annual value was also not calculated if any month’s data were missing. For percentile 

threshold indices e.g. TX10p, TN90p and duration indices e.g. CSDI and WSDI (see Table 

2.1) additional criteria were applied as described in the RclimDex manual. 

 

2.3 Trend and correlation calculation 
 

As stated in the introduction, there are statistically significant correlations between mean 

temperature and precipitation across much of Australia. Therefore, before analysing the 

relationships between means and extremes of the individual variables, correlations (using a 

simple Pearson product-moment correlation unless otherwise stated) were calculated for 

area averaged values over Australia between annual, summer (DJF) and winter (JJA) mean 

maximum and mean minimum temperatures and mean rainfall for 1957-2005 using the 

high quality gridded datasets outlined above. 

 

Also using the gridded monthly interpolated fields and monthly station data described 

above, we calculated linear trends for annual (Jan-Dec), and seasonal (Dec-Feb, Mar-May, 

Jun-Aug and Sep-Nov) mean maximum and mean minimum temperature and precipitation. 

Because of the rainfall variability across Australia, to make the trends consistent across the 

country, percentage trends were additionally calculated i.e. the values in a timeseries were 

divided by the mean over the period of record prior to the trend calculation at each grid 

point or station in order to represent the trends as a percentage of average. For temperature, 

to cover the period of homogenous record, the period 1957-2005 (49 years) was analysed 

and for precipitation because of its much longer record, two periods were chosen: 1910-

2005 (96 years) and 1951-2005 (55 years). For station data, for the analysis of trends, at 

least 80% of non-missing data had to be available for all time periods studied. Seasonal 

data had to have at least two of the three months present otherwise the value for that year 
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was regarded as missing. While this is probably more appropriate for temperature data, the 

two-month threshold was also used for precipitation data to provide sufficient temporal and 

spatial coverage for analysis.  

 

To determine how well the trends in extremes were correlated with trends in means across 

Australia we calculate linear trends in mean precipitation and mean maximum and 

minimum temperature and in the extremes indices (Table 2.1) over the period of interest 

for all the stations in our study. Linear trends were calculated using a modified version of 

the non-parametric Kendall tau test (Wang and Swail 2001) since prior assumptions do not 

have to be made about the distribution of the indices timeseries. In addition the method is 

robust to the effect of outliers in the series. The linear trends in means were calculated as 

the annual or seasonal trends in either precipitation or mean maximum or minimum 

temperature. To represent a measure of the spatial correlation between trends in means and 

extremes rather than a temporal correlation at each station, mean trends were correlated 

with the linear trends for each extreme index across all stations. 

 

Although these correlations provide information about the relationship between two 

variables (i.e. the mean and the extreme index) they do not indicate the magnitude or rate 

of change of one variable in relation to the other. In the case of the absolute-threshold 

temperature indices i.e. TXx, TNn, TXn and TNx (see Table 2.1), it makes sense to 

compare trends in the mean directly with trends in the maximum or minimum values since 

both are measured in the same units (i.e. °C/year). In all other cases trends are presented 

here as a percentage trend of the average (described above). The indices trends were then 

plotted against the mean trends to not only show how the trends in the means and extremes 

vary at each station point but also how they vary across the country as a whole. Each 

scatter plot (Figs. 2.5-2.8) is fitted with a line of best fit using total least squares regression 

(Golub and van Loan 1996). Total least squares is recommended when there are likely to 

be “errors” in both the horizontal and vertical direction since it minimizes the distance 

from each point perpendicular to the fitted line rather than just in the y-direction as would 

be the case with ordinary least squares regression. From the slope of the best fit line we can 

determine if trends in extremes across Australia as a whole are the same as trends in the 

mean e.g. if the slope of the line was equal to -1.0 or 1.0, where comparable units are being 

used, then the absolute trends in extremes would be of the same magnitude as trends in 

means. 
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Table 2.1: The extreme temperature and precipitation indices used in this study as recommended 

by the ETCCDI. The full list of all recommended indices and precise definitions is given at 

http://cccma.seos.uvic.ca/ETCCDI/list_27_indices.html. For spell duration indicators (marked with 

a *), a spell can continue into the next year and is counted against the year in which the spell ends. 

Precipitation indices for Australia were calculated using stations from Haylock and Nicholls (2000) 

and temperature indices were calculated using stations from Trewin (2001). 

 

ID Indicator name Indicator definitions UNITS 

TXx Max Tmax Monthly maximum value of daily max temperature ºC 
TNx Max Tmin Monthly maximum value of daily min temperature ºC 
TXn Min Tmax Monthly minimum value of daily max temperature ºC 
TNn Min Tmin Monthly minimum value of daily min temperature ºC 

TN10p Cool nights Percentage of time when daily min temperature < 
10th percentile % 

TX10p Cool days Percentage of time when daily max temperature < 
10th percentile % 

TN90p Warm nights Percentage of time when daily min temperature > 
90th percentile % 

TX90p Warm days Percentage of time when daily max temperature > 
90th percentile % 

DTR Diurnal temperature 
range 

Monthly mean difference between daily max and 
min temperature ºC 

FD0 Frost days Annual count when daily minimum temperature < 
0°C days 

SU25 Summer days Annual count when daily max temperature > 25°C days 
TR20 Tropical nights Annual count when daily min temperature > 20°C days 

WSDI* Warm spell duration 
indicator 

Annual count when at least 6 consecutive days of 
max temperature > 90th percentile days 

CSDI* Cold spell duration 
indicator 

Annual count when at least 6 consecutive days of 
min temperature < 10th percentile days 

RX1day Max 1-day precipitation 
amount Monthly maximum 1-day precipitation mm 

RX5day Max 5-day precipitation 
amount Monthly maximum consecutive 5-day precipitation mm 

SDII Simple daily intensity 
index 

The ratio of annual total precipitation to the 
number of wet days (> 1 mm) mm/day 

R10 Number of heavy 
precipitation days Annual count when precipitation > 10 mm days 

R20 Number of very heavy 
precipitation days Annual count when precipitation > 20 mm days 

CDD* Consecutive dry days Maximum number of consecutive days when 
precipitation < 1 mm days 

CWD* Consecutive wet days Maximum number of consecutive days when 
precipitation ≥ 1 mm days 

R95p Very wet days Annual total precipitation from days > 95th 
percentile mm 

R99p Extremely wet days Annual total precipitation from days > 99th 
percentile mm 

PRCPTOT Annual total wet-day 
precipitation Annual total precipitation from days ≥ 1 mm mm 

 

 

http://cccma.seos.uvic.ca/ETCCDI/list_27_indices.html
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For a global perspective on the Australian results similar measures were calculated for 

comparison. Although we do not have access to the mean maximum and minimum 

temperatures for the global stations with extreme indices, the PRCPTOT precipitation 

indicator does give a measure of total mean precipitation at each station with which to 

compare the other indices. Because PRCPTOT is an annual indicator, only annual changes 

were considered for each index. The period 1951-2003 was used for comparison since this 

is when most global stations have sufficient data. Only stations which had at least 40 years 

of precipitation data during this period were used. Again, linear trends were calculated as a 

percentage of the average for each precipitation index in Table 2.1. The percentage trends 

for the precipitation indices were then plotted against the percentage trends in PRCPTOT 

to determine the relationship between the means and extremes of rainfall. In addition to a 

global analysis, 5 non-overlapping latitude bands were chosen to compare with Australian 

results. 

 

2.4 The relationship between means and extremes of temperature and 

precipitation in Australia 
 

There are strong relationships between temperature and rainfall in Australia which we need 

to bear in mind when looking at trends in the means and extremes of both. There was a 

strong negative correlation between spatially averaged Australia-wide rainfall and 

maximum temperature in all seasons (summer and winter are shown in Table 2.2). A 

statistically significant correlation between rainfall and minimum temperature was only 

evident in winter, when there was a strong positive relationship. These results hold true 

even if the linear trends were removed prior to the correlation calculation although the 

significant correlations were slightly stronger using the detrended data.  

 

To gain an appreciation for the spatial variability of climate trends across Australia, maps 

of the trends in the gridded mean fields were plotted and overlaid with a triangle at each 

station location to represent the magnitude and statistical significance of the trend for each 

extremes index (Figs. 2.1 – 2.4). Only statistically significant trends in mean temperature 

or precipitation are shown in colour. 
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Table 2.2: LHS: Correlations (using a Kendall tau test) between mean rainfall, averaged over 

Australia, and mean maximum and minimum temperatures for 1957-2005. RHS as LHS only for 

detrended values. Correlations significant at the 5% level are marked in bold. Values courtesy P. 

Hope, Bureau of Meteorology 

 

 With trend Detrended 

 DJF JJA Ann DJF  JJA Ann 

Tmax -0.63 -0.48 -0.59 -0.67 -0.52 -0.72 

Tmin 0.14 0.66 0.07 0.08 0.67 0.03 

 

 

2.4.1 Maps – temperature 

 

Annually averaged mean maximum and minimum temperatures are increasing across most 

of Australia with an associated statistically significant decrease in the annual occurrence of 

cold nights (Fig. 2.1a) and cold days (Fig. 2.1b). All the other temperature indices show 

similar spatially coherent trends commensurate with warming: reductions in frost days and 

cold spells and an associated significant increase in all the other temperature indices, 

particularly the annual occurrence of warm nights (Fig. 2.1c) and warm days (Fig. 2.1d). 

These results agree well with Collins et al. (2000) who studied changes in annual extreme 

temperature trends up to 1996 and other studies such as Tryhorn and Risbey (2006) who 

found a general increase in heatwaves across Australia in recent decades. At a particular 

location, the trend in the mean minimum temperature and cool nights (Fig. 2.1a) is 

generally slightly larger than the trend in mean maximum temperature and cool days (Fig. 

2.1b). Spatially, the trends in mean maximum and minimum temperatures are mostly 

statistically significant in the east of the continent and are up to 0.4°C/decade, an increase 

of 1.96°C since 1957. In the southeast, the trend in cool nights is stronger than the 

underlying warming of mean minimum temperature. Within the southeast region there are 

small areas where the mean minimum temperature has been decreasing, particularly in east 

Gippsland and the Australian Alps and a small part of northwest New South Wales. Mean 

maximum temperature has significantly decreased along part of the southern coastline of 

Western Australia. There are also non-significant decreases in temperature in the northwest 

of the continent (not shown) along with small increases in the number of cool days and 

nights. The majority of stations, however, exhibit statistically significant increases in the 
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annual occurrence of warm nights even in some places where mean minimum temperature 

has been decreasing (Fig. 2.1c). Extreme maximum temperature trends (Fig. 2.1d) are 

bigger than extreme minimum temperature trends along the east coast although in other 

regions the converse is true. 

 

(a)

−6 to −5 −5 to −4 −4 to −3 −3 to −2 −2 to −1 −1 to 0 0 to 1 1 to 2 2 to 3 3 to

(b)

−6 to −5 −5 to −4 −4 to −3 −3 to −2 −2 to −1 −1 to 0 0 to 1 1 to 2 2 to 3 3 to

(c)

−6 to −5 −5 to −4 −4 to −3 −3 to −2 −2 to −1 −1 to 0 0 to 1 1 to 2 2 to 3 3 to

(d)

−6 to −5 −5 to −4 −4 to −3 −3 to −2 −2 to −1 −1 to 0 0 to 1 1 to 2 2 to 3 3 to

0.40.30.20.1 non sig 0.10.20.30.4 oC/decade

 
Fig. 2.1: Annual trends (°C/decade) in mean minimum temperature and mean maximum 

temperature for 1957-2005. Only statistically significant trends are shown in colour. Maps are 

overlaid with annual trends (%/decade) at each station location with sufficient high quality data 

represented by upward (downward) triangles for increasing (decreasing) trends for (a) cold nights 

(TN10p), (b) cold days (TX10p), (c) warm nights (TN90p) and (d) warm days (TX90p) (Table 

2.1). The size of the triangle reflects the magnitude of the trend. Bold indicates statistically 

significant change. 

 

Annual results can mask significant seasonal changes so mean minimum (Fig. 2.2a, 2.2c, 

2.2e and 2.2g) and mean maximum (Fig. 2.2b, 2.2d, 2.2f and 2.2h) temperatures were 

analysed for summer (Dec-Feb), autumn (Mar-May), winter (Jun-Aug) and spring (Sep-

27  



Chapter 2                                                                  Australia’s climate means and extremes 

Nov) respectively. Corresponding seasonal results are also shown in Fig. 2.3 with trends in 

warm nights and warm days. Fig. 2.2 shows that decreases in annual mean maximum 

temperature in northwest Australia and the southern coast of south west Australia are 

mostly a result of a significant decrease in daytime temperature in summer. Cold days are 

increasing in this region (Fig. 2.2b) and warm days are decreasing (Fig. 2.3b). Mean 

minimum temperatures are also decreasing although not statistically significantly in parts 

of the northwest in all seasons except spring, generally with an associated decrease in 

warm nights (Fig. 2.3a, 2.3c, 2.3e and 2.3g).  

 

2.4.2 Maps – precipitation 

 

Fig. 2.4 shows seasonal trends in mean precipitation for two periods, 1910-2005 and 1951-

2005, overlaid with seasonal trends in maximum 1-day precipitation. The trends vary 

throughout the seasons, highlighting the importance of examining each season rather than 

just the annual average. The spatial variability in precipitation is much greater than for 

temperature and it is clear that there is much less statistical significance in the precipitation 

trends. Where long term trends in mean precipitation are significant, they tend to be 

positive outside southwest Western Australia for the September to March period (Figs. 

2.4g, 2.4a, 2.4c) and mixed for winter (Fig. 2.4e). However, in recent decades, a pattern of 

statistically significant decreases in both the means and extremes has emerged in the 

eastern half of the country for the December to August period (Figs. 2.4b, 2.4d and 2.4f). 

In the west the most striking feature of recent trends in mean precipitation is the 

statistically significant moistening in the northwest in summer (Fig. 2.4b). There are no 

high-quality daily stations in this region to indicate how the extremes are behaving. As 

suggested in Nicholls et al. (1997) and Power et al. (1998), this increase is associated with 

a decrease in maximum temperature (Fig. 2.2b). The driver behind this feature is not clear, 

and is the topic of on-going studies which will be discussed in more detail in Section D. 

One suggestion is that the continental warming further south is driving an enhancement of 

the Australian monsoon (Wardle and Smith 2004). 
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(a) DJF (b) DJF

(c) MAM (d) MAM

(e) JJA (f) JJA

(g) SON (h) SON

 
 

Fig. 2.2: Seasonal trends (°C/decade) in mean minimum temperature (LHS) and mean maximum 

temperature (RHS) for 1957-2005. Only statistically significant trends are shown in colour. Maps 

are overlaid with annual trends (%/decade) at each station location with sufficient high quality data 

represented by upward (downward) triangles for increasing (decreasing) trends for (a), (c), (e) and 

(f) cold nights (TN10p) and (b), (d), (f) and (h) cold days (TX10p). The size of the triangle reflects 

the magnitude of the trend. Bold indicates statistically significant change.  
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For trends in precipitation extremes there is a mixed pattern throughout the seasons but 

more recent decades generally show larger absolute trends. In general, the directions of the 

trends in the extremes follow the mean trends but there are a few occasions when a 

significant decrease in the mean is associated with a significant increase in the extremes or 

vice versa e.g. southwestern Western Australia in spring (Fig. 2.4g). One day maximal 

precipitation trends in summer are increasing at most sampled locations over the period 

1910-2005 (Fig. 2.4a). The more recent trend (Fig. 2.4b) shows a very mixed signal but 

with larger increases in the southwest and general decreases along the east coast compared 

to the longer term period. While the long term trend in autumn shows small and mostly 

non-significant trends in extreme precipitation (Fig. 2.4c), probably the most striking 

feature in recent decades is the decrease in both the means and extremes across Tasmania 

and the southern coastline of South Australia and Victoria (Fig 2.4d). This feature can also 

be seen in maximum five-day precipitation totals (not shown). In winter the decline in 

mean rainfall in the southwest is evident, and the most extreme daily totals are also 

declining over the last 100 years (Fig. 2.4e); however there is a mixed response more 

recently (Fig. 2.4f). In the last 50 years mean rainfall decreases are evident along the east 

coast, and the extremes show some associated significant declines (Fig. 2.4f). In spring 

there is generally little change in the mean across Australia from 1910-2005, except for 

some small areas of increase and decreases in the southwest (Fig. 2.4g). The trends in 

maximal one-day precipitation are positive at most sampled locations, even in the 

southwest, indicating that the intensity of the rainfall is increasing. This signature appears 

to be present in the most recent 50 years (Fig. 2.4h) but in general the trends are larger. 

 

2.4.3 Spatial correlations 

 

To determine how well the trends in extremes were correlated with trends in the mean 

across Australia we calculated linear trends for all the stations in our study. These trends 

were then correlated (with the individual stations as cases) to represent the spatial rather 

than temporal relationship between the mean and extremes. The correlations are listed in 

Tables 2.3 and 2.4. 
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(a) DJF (b) DJF

(c) MAM (d) MAM

(e) JJA (f) JJA

(g) SON (h) SON

 
 

Fig. 2.3: Seasonal trends (°C/decade) in mean minimum temperature (LHS) and mean maximum 

temperature (RHS) for 1957-2005. Only statistically significant trends are shown in colour. Maps 

are overlaid with annual trends (%/decade) at each station location with sufficient high quality data 

represented by upward (downward) triangles for increasing (decreasing) trends for (a), (c), (e) and 

(f) warm nights (TN90p) and (b), (d), (f) and (h) warm days (TX90p). The size of the triangle 

reflects the magnitude of the trend. Bold indicates statistically significant change. 
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(a) DJF

−20 to −15 −15 to −10 −10 to −5 −5 to 0 0 to 5 5 to 10 10 to 15 15 to 20

(b) DJF

−20 to −15 −15 to −10 −10 to −5 −5 to 0 0 to 5 5 to 10 10 to 15 15 to 20

(c) MAM

−20 to −15 −15 to −10 −10 to −5 −5 to 0 0 to 5 5 to 10 10 to 15 15 to 20

(d) MAM

−20 to −15 −15 to −10 −10 to −5 −5 to 0 0 to 5 5 to 10 10 to 15 15 to 20

(e) JJA

−20 to −15 −15 to −10 −10 to −5 −5 to 0 0 to 5 5 to 10 10 to 15 15 to 20

(f) JJA

−20 to −15 −15 to −10 −10 to −5 −5 to 0 0 to 5 5 to 10 10 to 15 15 to 20

(g) SON

−20 to −15 −15 to −10 −10 to −5 −5 to 0 0 to 5 5 to 10 10 to 15 15 to 20

(h) SON

−20 to −15 −15 to −10 −10 to −5 −5 to 0 0 to 5 5 to 10 10 to 15 15 to 20

−15 −10 −5 0 non sig 0 5 10 15 %/decade

1910−2005 1951−2005

 
 

Fig. 2.4: Seasonal trends (%/decade) in mean rainfall for 1910-2005 (LHS) and 1951-2005 (RHS). 

Only statistically significant trends are shown in colour. Maps are overlaid with annual trends 

(%/decade) at each station location with sufficient high quality data represented by upward 

(downward) triangles for increasing (decreasing) trends for (a)-(h) seasonal maximum 1-day 

precipitation totals (RX1day). The size of the triangle reflects the magnitude of the trend. Bold 

indicates statistically significant change. 
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Table 2.3: Spatial correlations, using high quality temperature data at stations across Australia 

(Trewin 2001), between annual and seasonal trends in temperature indices (Table 2.1) and trends in 

either mean minimum or mean maximum temperature, 1957-2005 (1957/58-2004/05 for DJF). 

Correlations significant at the 5% level are marked in bold. 

 

Minimum temperature 

Index Annual DJF MAM JJA SON 

TNx 0.49 0.53 0.41 0.53 0.42 

TNn 0.64 0.33 0.65 0.83 0.48 

TN10p -0.82 -0.61 -0.72 -0.83 -0.69 

TN90p 0.79 0.74 0.67 0.70 0.60 

DTR -0.65 -0.34 -0.73 -0.85 -0.75 

FD0 -0.25 
TR20 0.52 
CSDI -0.52 

 

Maximum temperature 

Index Annual DJF MAM JJA SON 

TXx 0.66 0.72 0.53 0.48 0.33 

TXn 0.40 0.46 0.35 0.42 0.16 

TX10p -0.80 -0.84 -0.71 -0.67 -0.57 

TX90p 0.77 0.76 0.71 0.78 0.61 

DTR 0.61 0.79 0.55 0.47 0.60 

 

 

2.4.4 Temperature 

 

Table 2.3 indicates that there is a high correlation between most temperature extremes 

indices and trends in mean minimum or maximum temperature in all seasons (i.e. a station 

with a strong trend in the mean will generally exhibit a strong trend of the same sign in the 

extremes). Trends in maximum temperature means and extremes are generally more highly 

correlated than for the means and extremes of minimum temperatures particularly in 

summer (DJF). Minimum temperature extremes, however, are much more highly 

correlated with mean minimum temperatures in winter (JJA). Seasonally the smallest 

correlations occur in spring (SON) which is also when there is the weakest correlation 

between the means and extremes of precipitation (see Table 2.4). This is in agreement with 
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the finding of Alexander et al. (2006) who showed that global trends in temperature 

extremes were generally smallest in September-November irrespective of which 

hemisphere was analysed. 

 

Table 2.4: Spatial correlations, using high quality precipitation data at stations across Australia 

(Haylock and Nicholls 2000), between annual and seasonal trends in precipitation indices (Table 

2.1) and trends in mean precipitation, 1910-2005 (1910/11-2004/05 for DJF). Correlations 

significant at the 5% level are marked in bold. 

 

Index  Annual DJF MAM JJA SON 

RX1day 0.56 0.81 0.81 0.83 0.65 

RX5day 0.60 0.88 0.87 0.85 0.79 

SDII 0.35  

R10mm 0.75  

R20mm 0.63  

CDD -0.36  

CWD 0.12  

R95p 0.55  

R99p 0.44  

PRCPTOT 0.92  

 

In summer, the majority of stations (71%) have trends greater in magnitude in the warmest 

daily maximum temperature than mean maximum temperature (Fig. 2.5a) and over half 

(55%) of stations have greater absolute trends in the coldest daily minimum temperature 

than mean minimum temperature (Fig. 2.5b). In winter, 46% of stations have greater 

absolute trends in extreme high maximum temperature than mean maximum temperature 

(Fig. 2.5c) and 74% of stations (the largest proportion in any season) have greater absolute 

trends in extreme low minimum temperature than mean minimum temperature (Fig. 2.5d). 

For the remaining absolute-threshold temperature indices i.e. TXn and TNx (see Table 

2.1), well over half of stations show increased trends (whether positive or negative) 

compared to the mean trend in all seasons and annually. While stations are not equally 

spaced, they are well distributed across the country although since there is a greater density 

of stations in the east and south than the north and west, the analysis may be weighted 

more towards these well sampled areas. Generally the mean and extremes are of the same 

sign but there are instances where there are increasing means and decreasing extremes and 
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vice versa. In a few cases the extremes are increasing (decreasing) faster than the mean is 

decreasing (increasing). In these cases the shape of the temperature distribution could be 

changing although the high signal-to-noise ratio of these types of extremes makes it 

difficult to draw definitive conclusions.  

 

Fig. 2.6, like Figs. 2.2 and 2.3, shows that both the extremes and mean of maximum and 

minimum temperature are increasing across much of Australia in all seasons. The cold tails 

of minimum temperature (Fig. 2.6a, 2.6e, 2.6i and 2.6m) are warming faster than the warm 

tails of minimum temperature (Fig. 2.6c, 2.6g, 2.6k and 2.6o) in every season. These 

results are consistent with the results of Trewin (2001). For maximum temperature, this 

differential warming of the cold (Fig. 2.6b, 2.6f, 2.6j and 2.6n) and warm (Fig. 2.6d, 2.6h, 

2.6l and 2.6p) tails is less evident. However, there appears to be enhanced warming in the 

warmest maximum temperatures in summer (Fig. 2.6b and 2.6d) with some enhanced 

warming in the cold tails in winter (Fig. 2.6j and 2.6l). In all cases the proportional 

warming in the extremes is greater than the proportional warming in the median. This does 

not necessarily indicate a change in the shape of the frequency distribution: for example, in 

a normal distribution, an increase in the location parameter with no change in the scale 

parameter will lead to a greater proportional change in the extreme indices than in the 

mean index (Katz and Brown 1992). Although it is not possible to make a direct 

comparison because of the different units used, it does appear that in some cases the most 

extreme events (Fig. 2.5) are changing more rapidly than the distribution tails (Fig. 2.6). 

However, this can only be inferred from the results presented here and would require a full 

analysis of the distribution of daily temperature to answer definitively. 

 

 2.4.5 Precipitation 

 

Table 2.4 shows that trends in precipitation extremes are highly correlated with total 

precipitation trends. This is particularly true of maximum 1-day (RX1day) and 5-day 

precipitation (RX5day), number of days above 10 mm (R10mm) and 20 mm (R20mm) and 

very wet days (R95p) and extremely wet days (R99p). Consecutive dry days (CDD), 

consecutive wet days (CWD) and daily intensity (SDII) show weaker correlations. The 

correlations are also strong in every season for the two indices that can be defined 

seasonally although the correlations are slightly smaller in spring when the relationship 

between the means and extremes of maximum and minimum temperature is also weakest. 
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The seasonal correlations are stronger than the annual correlations because as the sample 

size reduces (e.g. from annual to seasonal), the influence of these extremes on the total 

precipitation is much greater.  
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Fig. 2.5: Triangles represent annual trends (°C/year) in mean maximum (minimum) temperature at 

high-quality Australian station locations (Trewin 2001) plotted against trends in the hottest 

(coldest) maximum (minimum) daily temperature (°C/year) at those stations for (a) and (b) summer 

and (c) and (d) winter between 1957 and 2005. Red triangles indicate where the absolute seasonal 

trend in the warmest ((a) and (c)) or coldest ((b) and (d)) day at a station is greater than the absolute 

seasonal trend in mean maximum ((a) and (c)) or minimum temperature ((b) and (d)) at that station 

i.e. where the magnitude of the trend in the extremes is greater than the magnitude of the mean 

trend. The line of best fit calculated using total least squares regression is shown in red, s is the 

slope of the line and r is the spatial correlation. 
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(a) DJF r=−0.48, s=−4.21
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(b) DJF r=−0.79, s=−2.23
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(c) DJF r=0.65, s=3.51
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(d) DJF r=0.81, s=2.59
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(e) MAM r=−0.77, s=−3.12
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(f) MAM r=−0.67, s=−2.62
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(g) MAM r=0.67, s=2.53
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(h) MAM r=0.87, s=2.18
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(i) JJA r=−0.74, s=−3.09
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(j) JJA r=−0.68, s=−3.13
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(k) JJA r=0.75, s=2.25
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(l) JJA r=0.75, s=2.53
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Fig. 2.6: Seasonal trends (%/decade) in 10th and 90th percentile indices (Table 2.1) with respect to 

seasonal trends (%/decade) in the median (denoted on the x-axes by TN50p for minimum 

temperature and TX50p for maximum temperature) for (a)-(d) Dec-Feb, (e)-(h) Mar-May, (i)-(l) 

Jun-Aug and (m)-(p) Sep-Nov. Each symbol represents a station. The line of best fit calculated 

using total least squares regression is shown in red, s is the slope of the line and r is the spatial 

correlation. 

 

Percentage trends in each precipitation index between 1910 and 2005 were plotted and 

compared. Except for daily intensity (SDII), the slope of the line of best fit is greater than 

1.0, indicating enhanced variability in the trends of precipitation extremes compared to the 

mean trends. Fig. 2.7 shows the results for very wet and extremely wet days. Although the 

correlations between the mean and R99p are smaller than R95p (Table 2.4), the steeper 

slope of the line of best fit in Fig. 2.7b compared to Fig. 2.7a indicates that the most 

extreme events may be changing at a faster absolute rate in relation to the mean than more 

moderate events. This result is expected under climate change simulations with enhanced 

greenhouse gas forcing (IPCC 2001) and also agrees with statistical theory that 
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precipitation extremes are more sensitive to changes in the scale parameter of the 

precipitation distribution (e.g. Katz 1999). 
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Fig. 2.7: Annual trends (%/year) at Australian stations for (a) R95p and (b) R99p plotted against 

annual trends (%/year) in mean precipitation between 1910 and 2005. The line of best fit calculated 

using total least squares regression is shown in red, s is the slope of the line and r is the spatial 

correlation. 

 

2.5 Comparison between Australia and other parts of the world 
 

Table 2.5 shows the correlations between 1951 and 2003 for PRCPTOT and the 

precipitation indices from Table 2.1 for the globe and five regions defined by non-

overlapping latitude bands. The correlations between the means and extremes of rainfall in 

Australia are similar to the correlations for the globe and all of the regions studied.  

 

Plotting the percentage trends shows just how similar the relationships between the means 

and extremes of precipitation are for Australia and the globe (Fig. 2.8). For the majority of 

indices the correlation between the means and extremes of rainfall is above 0.5 except for 

CDD (r=-0.36) and CWD (r=0.48). Table 2.5 and Fig. 2.8a show that the annual number 

of days above 10 mm (R10mm) is the most strongly correlated extreme index globally. 

Also shown are the relationships between percentage trends in PRCPTOT and percentage 

trends in R95p (Fig. 2.8b), R99p (Fig. 2.8c) and RX5day (Fig. 2.8d). Unlike R10mm, 

these indices were all originally measured in the same units (mm) so it is easier to 

undertake a like-by-like comparison. The relationship between the trends in means and 

extremes is remarkably coherent across the globe for all indices studied. Although the 
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correlations are statistically significant (Table 2.5) in all cases, it is clear from Fig. 2.8 that 

the slope of the line of best fit is significantly above 1.0 i.e. extreme precipitation events 

are changing at a disproportional rate to mean changes when averaged across the globe. In 

addition, as with the results for Australia, the most extreme precipitation events (Fig. 2.8c) 

are more extended in scale than more moderate events (Fig. 2.8b) indicating enhanced 

trends in the more extreme tails of the precipitation distribution. This is the first time using 

high quality, long-term datasets, that global changes in extremes have been compared 

directly with changes in average precipitation.  

 

While in this study we have been unable to do the same comparison between global mean 

temperature and temperature extremes, other studies (e.g. Caesar et al. 2006) have 

analysed trends in various percentiles for maximum and minimum temperatures for 

Australia and other parts of the globe. Caesar et al. (2006) analysed nine percentiles (i.e. 

10th, 20th,…, 90th) for maximum and minimum temperature over a large scale from a 

newly created daily temperature dataset. They showed that Australia had a much more 

uniform significant warming across the whole percentile range unlike other regions studied 

e.g. USA, Europe, China and Russia. This would seem to confirm that it is the whole 

temperature distribution which is shifting towards increases in temperature in Australia. 

However that study excluded the analysis of the most extreme events compared with mean 

trends. Therefore, it is impossible to say whether the most extreme events are behaving 

differently from more moderate extreme events which would seem to be the suggestion 

given the results from the Australian temperature stations studied here.  

 

Table 2.5: Spatial correlations, using high quality precipitation data (Alexander et al. 2006), 

between trends in PRCPTOT (which is being used as a proxy for annual precipitation) and trends in 

precipitation indices (Table 2.1) between 1951 and 2003 for the globe and 5 non-overlapping 

latitude bands. Correlations significant at the 5% level are marked in bold. 

 
 R10mm R20mm R95p R99p SDII RX1d RX5d CDD CWD 

Global 0.86 0.76 0.76 0.52 0.58 0.50 0.61 -0.36 0.48 

90°S-30°S 0.94 0.89 0.86 0.67 0.64 0.69 0.78 -0.36 0.57 

30°S-0°S 0.88 0.90 0.88 0.66 0.47 0.76 0.78 -0.43 0.55 

0°N-30°N 0.86 0.88 0.77 0.54 0.60 0.53 0.63 -0.29 0.42 

30°N-60°N 0.86 0.75 0.74 0.51 0.56 0.48 0.58 -0.36 0.46 

60°N-90°N 0.80 0.57 0.76 0.51 0.71 0.45 0.63 -0.51 0.61 

39  



Chapter 2                                                                  Australia’s climate means and extremes 

2.6 Discussion  
 

 This chapter has determined relationships between means and extremes in Australia using 

a set of standard climate extremes indices which in turn have been compared with global 

results. It has been shown that the relationships between the trends in means and extremes 

are consistent throughout Australia and the globe. Globally, the enhanced warming of 

minimum temperatures compared to maximum temperature extremes is the expected 

response (e.g. Hegerl et al. 2004) to increasing levels of atmospheric greenhouse gases 

(IPCC 2001). However recent studies show that the regional responses of observed trends 

in means and extremes of temperature and precipitation can also largely be driven by large 

scale ‘natural’ climate variability (Scaife et al. 2008) although this variability may not be 

completely unaffected by anthropogenic forcings.  

 

Southwest Western Australia is a region of Australia where a number of studies have 

attempted to attribute the observed climate changes. The region has seen a significant 

decrease in rainfall over recent decades associated with a decrease in troughs and increase 

in high pressure systems (Hope et al. 2006). Although the rainfall decrease can be captured 

by long climate simulations (Cai et al. 2005), the timing of the response appears to be 

anthropogenic in origin (Timbal et al. 2006). As trends in other regions become 

increasingly large (e.g. recent trends in northwest and southeast Australia), studies to 

separate the natural climate responses from anthropogenic influences will become 

increasingly important. These will require careful consideration and the appropriate 

experimental set up, but might be able to begin to answer the question of whether current 

trends will persist into the future. One indicator that there is an anthropogenic influence on 

the trends observed in Australia is the fact that there is a strong link between the Australian 

and global pattern for changes in means versus extremes, which suggests an over-arching 

influence on the whole globe.  

 

Irrespective of the cause, given the enhanced variability of trends in extremes compared to 

mean trends it is likely that these extreme changes will have severe impacts on vulnerable 

regions (e.g. Green et al. 2009). Factors such as changes in land use, water storage/usage 

practices or population density will change how certain regions are able to adapt to the 

extreme changes in climate which have been highlighted by this and many other studies. In 
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some regions, increases in rainfall would come as welcome relief, in others unseasonable 

rainfall will potentially bring with it certain weed species which can kill crops and cattle 

(Ian Foster personal communication). Changing temperatures may have beneficial affects 

for some animal or plant species while pushing other ecosystems towards extinction. For 

this reason changes in extremes need to be assessed not as a threat in isolation from other 

forms of social and environmental change but within a framework analysing the 

cumulative and interacting threats and vulnerabilities of these changes. However, the 

relationships between means and extremes described here cannot be a substitute for a full 

analysis of changes in the distribution of daily temperature and precipitation which should 

be the basis of any further study. 
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Fig. 2.8: Trends (%/year) in (a) R10mm, (b) R95p, (c) R99p and (d) RX5day on the y-axis plotted 

against trends (%/year) in annual total precipitation > 1mm for global stations from Alexander et al. 

(2006) with at least 40 years of non-missing data. Each symbol represents a station. The line of best 

fit calculated using total least squares regression is shown in red, s is the slope of the line and r is 

the spatial correlation using the percentage trends. Australian stations are represented by blue 

asterisks. 
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2.7 Conclusions 
 

In this chapter we have updated previous analyses of long-term observed trends in 

temperature and precipitation extremes for Australia, analysed how these relate to trends in 

means and, for the first time, have compared these relationships with those for other parts 

of the world.  

 

Trends in extremes are highly correlated with trends in means for both temperature and 

precipitation in Australia, suggesting that the mechanisms driving mean change are also 

driving changes in extremes. However the results also suggest that absolute trends in 

extremes across the country as a whole are larger relative to trends in means.  

 

In Australia, the most extreme minimum and maximum daily temperature trends are 

greater than corresponding trends in the mean. Cold minimum temperature extremes are 

warming faster than warm minimum temperature extremes in every season. The warm and 

cold tails of the maximum temperature distribution appear to be warming at approximately 

the same rate except in summer, when warm maximum temperatures appear to be 

increasing faster than cold maximum temperatures. Whilst the warm and cool tails are 

showing greater proportional changes than the mean, it has not been determined whether 

these changes are significantly different to those which could be explained by a simple 

increase in the mean of the frequency distribution without any other changes (e.g. variance 

and skewness) in the distribution. 

 

For precipitation, if the mean is increasing then the extremes tend to increase at a faster 

rate and vice versa for decreasing mean precipitation. The results also tentatively suggest 

that the most extreme events also appear to be changing at a faster rate than more moderate 

extreme events.  

 

Trends in annual mean precipitation were available for the globe permitting an analysis of 

the relationships between these trends and those in precipitation extremes. The 

relationships for Australia were found to be consistent with those for the globe. 
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The results are consistent with climate model simulations of the 20th Century that 

incorporate anthropogenic forcings (e.g. Folland et al. 2001) and suggest that extremes of 

temperature and precipitation are changing at a faster rate than are the means.  

 

However, temperature and precipitation extremes are not the only types of extremes that 

can have significant impacts for Australia. The next chapter investigates how ‘storminess’ 

has changed in Australia over century and longer timescales. 



Section C                                                                                                         Stormy Weather 

C. Stormy weather? 
 

On 3rd June 2007, after a two year search, the Southern Ocean Exploration Team 

discovered the wreck of the cargo ship SS Alert in Bass Strait off the coast of Cape 

Schanck, Victoria. The ship was wrecked in severe weather on 28th December 1893. 

According to the National Shipwrecks Database of Australia (NSD; 

http://www.environment.gov.au/cgi-bin/heritage/nsd/nsd_list.pl), over 700 ships have been 

wrecked along the Victorian coastline over the past 200 years. The NSD states that “the 

weather off the coast of Victoria at the time of the (SS Alert) sinking was the worst for 

many months” although the subsequent investigation of the wreck suggests that the 

Scottish-built ship was never designed for Southern Ocean sailing (The Age, June 13th 

2007).  

 

Despite the risks, Bass Strait was a major shipping route of significant economic 

importance during the 19th and early 20th centuries. Ship after ship carried supplies, 

convicts and immigrants past Victoria’s coastline on the way to Melbourne, Sydney and 

other large and growing settlements. Many lives were lost, often after being ship-wrecked 

by fierce storms rolling in from the Southern Ocean. The sailor and explorer Matthew 

Flinders had “seldom seen a more fearful section of coastline” so it is little wonder that the 

Victorian coast is sometimes called the “Shipwreck Coast”. 

 

Fortunately, weather-related shipwrecks have declined over the past century. While this is 

undoubtedly due to improvements in ship building techniques, technology and forecasting, 

was it also stormier along the Victorian coastline during the late 19th century than it is 

today? Given that the climate is changing due of global warming, has this produced a trend 

in the frequency or intensity of storms over the past 150 years?  

 

A new data set from the Bureau of Meteorology (BoM) is helping us address such 

questions. The data set consists of in-situ sub-daily air pressure data for about 50 

observation stations around Australia. Rapid changes in pressure enable us to pin-point 

when storms and gales occurred, how often they occurred, and can even shed light on how 

intense the storms might have been.  
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Most studies using sub-daily to daily in-situ data have been limited to the Northern 

Hemisphere and particularly Northern Europe where century and longer timescale 

observations are available (WASA Group 1998; Alexandersson et al. 2000; Barring and 

von Storch 2004). Alexander et al. (2005) and Allan et al. (2008) used an absolute change 

of 10 hPa over a 3-hour period as a measure of severe storm events over the British Isles 

and Iceland while other studies have focussed on analysis of storminess using wind gust 

characteristics (e.g. Smits et al. 2005), daily pressure tendencies (e.g. Alexandersson et al. 

2000) and geostrophic winds deduced from station triangles of pressure observations (e.g. 

Schmidt and von Storch 1993; Matulla et al. 2008). Studies have shown that measures of 

storminess calculated from pressure observations generally provide a much more 

homogeneous record for analysis than wind speeds for example, which are very sensitive 

to site moves and changing instrumentation (WASA Group 1998). In the Southern 

Hemisphere, while the structure, location, density and number of storms and extra-tropical 

cyclones have been studied (e.g. Simmonds and Keay 2000; Lynch et al. 2006; Frederiksen 

and Frederiksen 2007; Lim and Simmonds 2007; Pezza et al. 2007), attention has been 

largely limited to the period covered by reanalysis data i.e. the last 50 years. So while the 

study of in-situ pressure observations limits the space scale of the analysis of storms, it 

does allow us - for the first time - to study the variations in storms over a much longer 

period of approximately 150 years.  

 

One of the stations included in the new data set is Cape Otway, situated near the eastern 

end of the “Shipwreck Coast”. There has been a lighthouse at Cape Otway since 1849 and 

meteorological observations have been taken since 1861, making it one of the longest-

running continuous observational records in Australia. While there are other stations in the 

BoM data set on the coast of Tasmania and South Australia, the data are incomplete and do 

not provide the length of record that can be obtained from the Cape Otway site. The Cape 

Otway record therefore provides a unique and complete insight into climate variability and 

changes across the region since the 1860s. We will use data from this station to illustrate 

how severe storms can be diagnosed and the quality control procedures needed to ensure 

that the data are interpreted correctly.  
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C.1 Severe Storm Index 
 
Cape Otway has an almost complete record of 09:00 and 15:00 (local time) pressure 

observations since 1865 (held at the National Archives of Australia). However, when the 

observations were digitized they were generally not quality controlled or homogenised to 

remove inconsistencies that may be introduced through changes in instrumentation, for 

example. By considering pressure tendencies (i.e. the difference in pressure between two 

observing times) as a proxy for “storminess” rather than actual pressure values, we can 

eliminate some of the bias that may have been introduced over time as instrumentation and 

observing practice changed (Alexander et al. 2005). For this reason, pressure tendencies 

between 09:00 to 15:00 (6-hour tendency) and 15:00 to 09:00 (18-hour tendency) have 

been calculated for each day between 1865 and 2006. Sub-daily tendencies should detect 

more of the faster moving, intense storms that would be missed if only one daily tendency 

were considered (Alexander et al. 2005). To identify the most severe storms, the 1st and 

99th percentiles of all 6-hour and 18-hour pressure tendencies for each month were 

calculated using a simple rank percentile method. Station level rather than mean sea level 

pressure measurements were used so that possible changes in the method in which 

corrections were made to convert to mean sea level did not adversely influence the result. 

Every occasion where a pressure tendency was below (above) the 1st (99th) percentile was 

classified as a “severe storm”. The percentile threshold values for each month are shown in 

Table C.1 and suggest that while the thresholds are generally larger in winter, the severe 

storm thresholds at Cape Otway vary little throughout the year. This indicates that storms 

can be as fierce in summer as in winter. One example of such an event in summer occurred 

on 3rd February 2005 (identified by the severe storm index since there was an 18-hour 

tendency decrease of 12 hPa). Fig. C.1 shows the striking satellite image of the event. In 

total, 951 severe storm events were identified between 1865 and 2006.  

 

Unfortunately additional problems can arise whereby not all very large tendencies 

correspond to a severe weather event. For example, if a pressure observation was recorded 

or digitised incorrectly, e.g. by incorrectly transposing digits, this will very likely produce 

and error in our severe storms index. To counter this, each of the 951 possible events 

identified in the raw index was hand-checked against the original weather logs for Cape 

Otway to determine whether a storm had actually occurred. Being historical documents, 

the weather logs are both valuable and fragile and need to be handled carefully making the 
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process of hand checking very time consuming. However, they do provide much more 

information than can be obtained from the pressure tendencies alone. Barometer readings 

were generally available for many more time periods during the day than had been 

digitised and temperature, rainfall, wind speed and direction and other meteorological 

variables were also available. The observer notes (where available) also proved to be a 

valuable and interesting source of additional information about each event (see Fig. C.2). 

Of the 951 events that we identified using the method described here, 115 (12 %) were 

identified as erroneous. This was mostly due to digits being transposed when keyed 

electronically or in some cases when observers have incorrectly recorded the observation 

in the original handwritten archive (see Fig. C.3 for an example).  

 

Table C.1: Thresholds (in hPa) for the 1st and 99th percentile of 6-hour and 18-hour pressure 

tendencies at Cape Otway, 1865-2006. 

6-hour tendency (hPa) 18-hour tendency (hPa) 

 1%ile 99%ile 1%ile 99%ile 

Jan -7.1 6.7 -13.2 14.4 

Feb -6.9 6.7 -11.3 14.0 

Mar -6.7 6.7 -10.5 13.9 

Apr -6.9 7.1 -12.6 14.4 

May -7.2 7.1 -12.5 13.7 

Jun -7.4 6.9 -14.0 15.9 

Jul -7.9 6.8 -13.5 16.6 

Aug -8.0 8.3 -14.5 15.5 

Sep -8.6 7.7 -14.8 16.9 

Oct -8.4 8.7 -14.3 15.7 

Nov -7.8 6.8 -14.6 14.5 

Dec -7.0 7.0 -13.7 13.7 
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Fig. C.1: Satellite image over Victoria at 0225 UTC (1325 EDST) on 3rd February 2005 

corresponding to the severe storm index at Cape Otway. Satellite image originally processed by the 

Bureau of Meteorology from the geostationary satellite GOES-9 operated by the National 

Oceanographic and Atmospheric Administration for the Japan Meteorological Agency. Image 

obtained from http://www.bom.gov.au/announcements/sevwx/vic/2005feb/index.shtml. 

 

The method described here does not necessarily pick up all the severe storms that occurred 

along the “Shipwreck Coast”, particularly some of the events that occur between 15:00 and 

09:00, since the 18-hour tendency can miss some of the fast moving events which develop 

over shorter timescales e.g. a gale on 25th April 1880 with maximum wind speed of 78 

mph (126 km/h) does not show up in the severe storm index. However, the method used 

provides a consistent and objective technique for identifying severe storm events over a 

period of about 150 years. 

 

C.2 Shipwrecks 
 

The dates when the storms mentioned above were identified were also compared with data 

from the National Shipwrecks Database (NSD). Table C.2 lists occasions where the severe 

storms index coincides with shipwrecks along the Victorian coastline between 1865 and 

1900. The NSD does not always contain full details about the shipwrecks e.g. the reason 
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for the wreck might be registered as “unknown” or the exact date of the wreck is not 

known. Not all shipwrecks in the database were weather related and a lot of ships were 

deliberately “scuttled” or sank through human error such as in the case of one paddle 

steamer which burnt and sank while at anchor when “crew away fishing” or in another case 

simply “ran ashore due to careless navigation”. Conversely, some of the shipwrecks noted 

in the NSD as weather-related do not show up in the severe storms index. This is the case 

with perhaps one of the most famous shipwrecks, The Loch Ard, which was wrecked on 1st 

June 1878 with only 2 survivors out of the 54 people on board. Between 15:00 on 31st May 

and 09:00 on 1st June 1878 there was a large increase in pressure of 9.3 hPa in the 18-hour 

tendency at Cape Otway. However this is several hPa less than the 99th percentile threshold 

value of 13.7 hPa for this time of year (Table C.1) so the event is not classified as a severe 

storm by our definition. 

 

 
 

Fig. C.2: Weather log from 7th March 1866 which reads “Midnight barometer 29.002. N.W.6. 

Minimum 30°. Dense mist and rain. Fine dull cloudy. Severe gale in the night from N.W.”. The 

ships Bitter Beer (schooner) and Pomona (ketch) were likely wrecked when caught in this gale, 

described in the NSD as “one of the fiercest gales ever experienced on the Victorian Coast”. 
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Fig. C.3: An example of an incorrectly recorded value in the original handwritten archive (and 

hence wrongly digitised). The 3pm mean sea level pressure reading of 1024.5 hPa (white circle) 

has been incorrectly recorded in the observation column (green circle) rather than the station level 

pressure reading of 1014.5 hPa (red circle). This produced an 11 hPa increase in the storm index in 

a 6 hour period rather than the correct 1 hPa increase. 

 

Some of the shipwrecks from Table C.2 are noted in the NSD as “disappeared without a 

trace”. This is the case with the Dunkeld which is noted as “last seen near Wilsons 

Promontory, and became one of the many vessels that disappeared without trace along the 

Victorian coast”. Our analysis sheds light on this long-standing mystery. The Dunkeld was 

last seen 40 nautical miles east of Wilsons Promontory on its voyage south from Newcastle 

on the 27th June 1870 (http://oceans1.customer.netspace.net.au/vic-wrecks.html). On that 

very same day, there was a sharp pressure drop at Cape Otway of 10.2 hPa over a 6 hour 

period. Fig. C.4 shows the pressure tendencies just before and after the event. A drop like 

this is consistent with severe weather. The mysterious disappearance of the Dunkeld, it 

seems, is a little less mysterious now. This connection was probably realised at the time, 

but it does not seem to have been recorded in existing historical documents. Thus the Cape 

Otway pressure records have enabled us to make an interesting “re-discovery”. 
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Table C.2: Dates between 1865 and 1900 identified as “severe storms” when ships were also 

wrecked along the Victorian Coastline according to the NSD. Where “unkn” appears in the last 

column, the number of fatalities is unknown. *According to NSD these wrecks were not weather-

related. 

Date of severe storm Name of ship wrecked 
(from NSD) Wreck found Number of 

fatalities 
8/2/1866 Pryde N 0 

Bitter Beer N unkn 
7/3/1866-8/3/1866 

Pomona N unkn 

11/8/1866 Nith N unkn 

15/4/1867 Black Watch N 0 

Admiral N 0 
18/4/1867-19/4/1867 

Emily N 0 

11/10/1868 Lucy Lee N 1 

25/11/1869 Marie Gabrielle N unkn 

1/3/1870 Eliza N unkn 

27/6/1870 Dunkeld N unkn 

29/3/1876 Eva N unkn 

31/8/1876 Cygnet N unkn 

9/5/1881 Caroline N unkn 

10/7/1887 Dart N 0 

19/7/1887 Magnolia N 4 

15/1/1888 Edinburgh Castle* Y 0 

11/12/1892 Kermandie N 3 

1/10/1897 Omega Y 0 

2/3/1898 SS Perserverence* N 0 

30/7/1898 Emily N 2 

13/7/1899 Excelsiour N unkn 

25/3/1900 SS Glenelg N 31 

Magnat Y 1 
9/5/1900 

Sierra Nevada Y 23 
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6−hour pressure tendencies (09:00 to 15:00), June 1870
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Fig. C.4: Pressure tendencies (09:00 to 15:00) for Cape Otway for each day in June 1870. The 

dotted lines represent the 1st and 99th percentiles of the 6-hour pressure tendencies (Table C.1) 

described in the text. A severe storm event is defined on 27th June. 

 

C.3 Variations in severe storms at Cape Otway 

 
Following quality control, 836 severe storms were identified at Cape Otway between 1865 

and 2006 i.e. approximately 6 severe storms/year. The trend in the annual number of 

severe storms was calculated using ordinary least squares regression and trend significance 

was calculated at the 5% level using a non-parametric Mann-Kendall test (Mann 1945; 

Kendall 1975). Since 1865 there has been a significant decline of 0.22 days/decade in the 

number of severe storm events at Cape Otway (Fig. C.5). This means that in recent times 

there have been about 3 fewer severe storms per year than at the end of the 19th century i.e. 

this equates to about 40% fewer storms – a sizeable drop. Fig. C.5 also shows marked 

decadal variability with peaks in storminess approximately every 25 years. However the 

past 50 years or so have not seen such strong multi-decadal peaks, perhaps indicating a 

change in the large scale circulation and/or mechanisms driving these events. The results 

are certainly consistent with studies over more recent periods, which indicate that there has 

been a southward shift in storm tracks in the Southern Hemisphere (e.g. Hope et al. 2006; 
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IOCI 2005; Frederiksen and Frederiksen 2007; CSIRO-Bureau of Meteorology 2007). 

This southward shift has impacted the weather systems affecting south-west Western 

Australia and this has contributed to the large drying evident there (IOCI 2005; Power et 

al. 2005; Bates et al. 2008). 

 
Annual number of severe storms at Cape Otway, trend=−0.22 days/decade
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Fig C.5: Bars represent the number of severe storms per year at Cape Otway, 1865-2006, the blue 

line is a 21-term binomial filter representing decadal fluctuations in the data and the red line is the 

linear fit to the data. The trend is significant at the 5% level. 

 

The conclusions drawn here are limited since only one station has been analysed but the 

newly digitized BoM data now grants us the opportunity to study some of the mechanisms 

that may be driving this reduction in storminess at Cape Otway. This is the first time that 

extreme storm events in southern Australia have been able to be analysed on the timescales 

of Northern European studies and thus highlighting the importance of maintaining long-

running, continuous meteorological stations for studies of long-term climate variability.  
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In the next chapter all of the stations in the BoM dataset are used to create daily synoptic 

patterns for Australia for the past century. These are then used to investigate whether the 

changing frequency of large scale pressure patterns over Australia has been a factor in 

driving the observed changes in some of the extremes that we have identified in previous 

chapters. 
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3. Diagnosing the synoptic influences driving changes in climate extremes 

over southern Australia during the last century 

 
Summary 

 

A high quality daily dataset of in-situ mean sea level pressure was collated for Australia 

for the period 1907 to 2006. Using the method of Self-Organizing Maps (SOMs), daily 

synoptic pressure patterns were produced for Australia. Twenty patterns derived from the 

in-situ pressure observations were mapped to patterns derived from ERA-40 reanalysis 

data to create daily synoptic pressure fields for the past century. Changes in the frequencies 

of these patterns were analysed and showed that there has been a significant reduction in 

the rain bearing systems affecting southern Australia since the beginning of the 20th 

century. Extreme climate indicators derived from daily precipitation and pressure were 

analysed to investigate some of the changes in the driving mechanisms of extreme events 

over southern Australia. Results showed a significant decrease in severe storms in south-

east Australia linked to the decrease in the frequency of the main synoptic patterns driving 

these events over the past century. Daily rainfall amounts and intensity were analyzed at 

four major cities across southern Australia and showed more complex changes related to 

location.  
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3.1 Introduction 
 

Climate modelling studies suggest that under anthropogenic climate change storm tracks 

will shift polewards in the future (e.g. Bengtsson et al. 2006; Lynch et al. 2006), at least 

partly associated with shifts in the zonal sea surface temperature gradient. Studies using re-

analyses data in the southern Hemisphere suggest that this might already be occurring 

(Hope et al. 2006; Pezza et al. 2007). A likely impact of this for Australia would be a 

reduction in rain-bearing systems in southern regions and there is already evidence that this 

is contributing to the large scale drying in south-west Western Australia (Hope et al. 2006; 

IOCI 2005; Power et al. 2005; Frederiksen and Frederiksen 2007; Bates et al. 2008).  

  

The location of storm tracks and the structure, density and number of extra-tropical 

cyclones in the Southern Hemisphere has been well researched in recent years over the 

period when re-analysis data have been available i.e. approximately the last 50 years (e.g. 

Simmonds and Keay 2000; Lynch et al. 2006; Lim and Simmonds 2007; Pezza et al. 2007). 

As stated in the last section most of the work on centennial and longer timescales has been 

confined to the Northern Hemisphere and mostly covers the North Atlantic and Northern 

Europe where there are very long records of in-situ pressure observations (WASA Group 

1998; Alexandersson et al. 2000; Bärring and von Storch 2004; Ansell et al. 2006; Matulla 

et al. 2008). Studies show that while the period covered by reanalysis has shown marked 

variation in storm activity, it has not been exceptional when taken in the context of a 

longer-term climate perspective (Allan et al. 2008; Bärring and Fortuniak 2008). An 

interesting question would be whether it would be possible to draw similar conclusions for 

the Southern Hemisphere i.e. would the recent southward shifts detected in the synoptic 

patterns defined from re-analyses data show up as unusual from a century-long perspective 

for example? Recently, the Australian Bureau of Meteorology (BoM) digitized historical 

sub-daily station and mean sea level pressure data for approximately 50 stations across 

Australia dating back as far as 1859. This long record now provides the opportunity to 

study synoptic patterns and trends in storminess in Australia for the first time on the 

timescales of the Northern European studies.  

 

Synoptic patterns are identified as the most typical large-scale systems that affect the 

weather and climate of a region. There are various well tested “clustering” techniques 
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which have been used to classify synoptic patterns. Philipp et al. (2006) used simulated 

annealing clustering to identify synoptic patterns over Europe since 1850 while Rossow et 

al. (2005) used K-Means clustering to identify typical tropical cloud regimes from satellite 

data. Here a technique called Self-Organizing Maps (SOMs) is employed which was first 

applied to climate by studies such as Cavazos (2000), Malmgren and Winter (2000) and 

Hewitson and Crane (2002). Subsequently this method has been widely used in Southern 

Hemisphere studies to look at large scale drivers of climate change e.g. Lynch et al. (2006), 

Hope et al. (2006), Vernon-Kidd and Kiem (2008). 

  

The aim of this study is for the first time to classify synoptic patterns over Australia using 

quality-controlled daily in-situ pressure observations combined with re-analysis data to 

determine if, or how, these patterns have changed over the past century. The first section of 

the paper is concerned with the data quality control and homogeneity which then leads into 

a description of how the synoptic patterns are created. Finally, long term trends in each of 

the synoptic patterns are identified and are linked to changes in extreme events over 

southern Australia. 

 

3.2 Data quality control 
 

Sub-daily pressure data (up to eight observations a day) were digitized for 49 stations 

across Australia for the period prior to 1950. After 1950, pressure observations were 

obtained from the Bureau of Meteorology electronic database for these stations for all 

available observation times. Since some stations had stopped reporting in more recent 

decades, observations from neighboring stations were also obtained. In total 80 stations 

were used in the analysis up to 2006. Fig. 3.1 shows the locations of these stations. The 

earliest observations date back to 1859 but it is not until 1907 that most of the “four 

corners” of Australia have data so this is the start year used for this analysis. Not all data 

have complete records and in addition, in most cases, these data have been keyed ‘as read’ 

i.e. directly transcribed from original manuscripts without quality control. Gravity and 

index corrections were not performed and, depending on barometer type, these could be 

quite large (up to several hPa – B. Trewin, personal communication). For this reason, it 

was necessary to quality control and homogenize the data. The following sections describe 
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the techniques used to ensure that as high quality and consistent data as possible are used 

in our analysis.  
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Fig. 3.1: Location of stations (◊) used in this study. Some metropolitan centres (x) are also marked 

for reference. Macquarie Island (54.5S, 158.94E) and Heard Island (53.02S, 73.39E) were also 

digitized but are not marked on the map. 

 

 3.2.1 Removing erroneous values 

 

Errors in the pressure data described here can be introduced by mistakes made when 

digitizing values from the original hand written records or indeed when observers 

incorrectly recorded values in the original field books. In general, the majority of errors 

occur because digits have been transposed (Alexander et al. 2005). It is not always possible 

to identify this type of error by looking at the actual pressure values because an incorrectly 

recorded observation could still be a valid observation if it was within the limits of the 

probability distribution of pressure values. More likely these errors will be highlighted by 

analysing pressure tendencies i.e. the difference between two subsequent pressure 

readings. Given that all the stations record at local time and have differing numbers of 

observations during the day, data at each station were averaged to make daily mean sea 

level pressure (MSLP) observations relative to UTC (accounting for the introduction of 

daylight saving in some states in the 1970s). This meant that a comparable calculation of 
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day-to-day pressure tendencies could be produced at all stations. MSLP tendencies were 

therefore calculated for each station as the difference between subsequent daily 

observations, and a probability distribution function (PDF) was created using all of these 

values. From these PDFs, the 1st and 99th percentiles were calculated and used to identify 

“extreme” events i.e. days with values of the tendency below the 1st percentile or above the 

99th percentile. These events, while including MSLP tendencies that could correspond to 

actual severe storm events, should also identify the majority of digitization errors that have 

been produced through digit transposition. These “extreme” events were examined for each 

station. In the majority of cases, they highlighted individual observations where digits had 

been transposed or in several cases where MSLP had been keyed as station level pressure 

(SLP) or vice versa for individual or sequences of observations. If it was not clear that 

there was a keying error, data from neighboring stations were checked to help judge 

whether to amend or remove the observation. One station, Cape Otway, which had almost 

complete twice-daily observations since 1865, had even further quality-control applied 

through direct inspection of the original meteorological log books (see Section C). 

However, this type of data quality checking cannot usually identify sudden non-climatic 

jumps that may be introduced in the data timeseries through, for example, changes in 

observing practice or instrumentation. Such problems can be identified by either a 

thorough investigation of station metadata or by using sophisticated statistical techniques 

that can identify potential inconsistencies in the data. The former method is extremely 

time-consuming and the type of data required are rarely available (or in a convenient 

format). However, statistical techniques are available which can be used with or without 

access to original station metadata, and these techniques are described in the following 

section. 

 

 3.2.2 Homogeneity testing 

  

There are many statistical techniques available to assess the consistency of climate data 

(e.g. Wijngaard et al. 2003; Wang 2008; Menne and Williams 2005). Here RHTestV2 

(Wang 2008) is used because the software is well tested and freely available from 

http://cccma.seos.uvic.ca/ETCCDI/software.shtml. The method is based on the penalized 

maximal t and F test and can identify, and adjust for, multiple change points in a time 

series (see Wang (2008) and website for more details). To test for potential 

inhomogeneities in the data, daily quality controlled MSLP data for each station between 
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1907 and 2006 were fed into RHTestV2. If, for example, there is a non-climatic jump in 

the data because the barometer is replaced or has changed height, then an inhomogeneity 

will likely exist in the data as a step change. If no dates are identified as having potential 

step jumps then the station is determined to be homogeneous. This is also the case for 

stations with less than 20 years of data in total as the test is less reliable for smaller 

amounts of data. Table 3.1 indicates the months and years (if any) where RHTestV2 has 

identified inconsistencies in the data for each of the 80 stations. In total, 21 of these 

stations were identified as having one or more step changes throughout the base timeseries. 

For these stations, the next step of the RHTestV2 software was run to produce an adjusted 

daily homogeneous series. 

  

In some cases the step changes could indicate real climatic events. One example is the El 

Niño-Southern Oscillation (ENSO), which has a major influence on the climate of 

Australia (McBride and Nicholls 1983). There is evidence that some of the step changes in 

Table 3.1 are in fact related to major El Niño events rather than artificial jumps in the 

timeseries. For instance, it is possible that the 1941/42 El Niño produced step changes at 

four of the stations. An inspection of the metadata for these stations did not suggest that 

there were any reasons (e.g. change in instrumentation) to indicate that these changes were 

anything other than real. For this reason, this time period was not corrected for biases. 

  

The quality-controlled, homogenized daily pressures produce what we believe to be the 

only century-long high quality timeseries of daily in-situ MSLP for Australia.  

 

3.3 Self-Organizing Maps (SOMs) 
  

The daily MSLP dataset described above enables us to investigate if, and how, large-scale 

pressure (synoptic) patterns have changed over Australia during the past century and 

whether any such changes are linked to changes in observed climatic events. The first step 

is to categorize what are the most usual large-scale pressure patterns dominating the 

Australian climate. This can be done using a ‘cluster’ analysis. While there are many 

clustering techniques that could be used to categorize synoptic patterns from large datasets, 

here the technique of Self-Organizing Maps (SOMs) was employed. This is now a well 
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tested method in climate science and has been shown to perform well when compared to 

other clustering algorithms (e.g. Hewitson and Crane 2002; Cassano et al. 2006). 

 

Table 3.1: Homogeneity information on the stations used in this study. Only stations where break 

points have been identified and the timeseries adjusted are included. 
 

Station name Station no. Lat Lon Break points (year/month) 

Halls Creek Arpt 002012 -18.23 127.66 1967/12 1998/05 

Port Hedland 004032 -20.37 118.63 1970/09 1973/04 1976/03 1998/04 2001/03 

Meekatharra 007046 -26.59 118.49 1944/05 

Geraldton Arpt 008051 -28.80 114.70 1955/02 

Albany 009500 -35.03 117.88 1955/07 

Cape Leeuwin 009518 -34.37 115.14 1936/06 1979/05 

Tennant Creek 015087 -19.65 124.19 1935/05 1939/08 1942/03 1943/06 1943/10 

1955/02 1957/03 1962/03 1965/08 

Robe 026026 -37.16 139.76 1944/11 

Palmerville 028004 -16.00 144.08 1966/12 

Burketown 029004 -17.74 139.55 1954/03 

Georgetown 030018 -18.29 143.55 1918/03 1948/05 1948/10 1948/11 1949/02 

1957/02 

Richmond 030045 -20.73 143.14 1915/06 

Charters Towers 034002 -20.08 146.26 1977/05 

Boulia 038003  -22.91 139.90 1956/12 1982/04 

Gayndah 039039 -25.63 151.61 1942/01 

Dalby 041023 -27.18 151.26 1910/08 1910/11 

Bourke 048013 -30.09 145.94 1941/09 

Cobar 048030 -31.50 145.80 1921/11 1922/03 1929/04 

Walgett 052026 -30.02 148.12 1915/06 

Mildura 076077 -34.23 142.08 1939/01 1942/04 

Willis Island 200283 -16.29 149.97 1991/03 

 

The SOM algorithm (Kohonen 2001) applies an unsupervised learning process to map 

input data onto the elements of a regular one- or two-dimensional array thus providing an 

efficient means of interpreting and visualizing large data sets. The technique is 

characterized by a tendency to categorize data by preserving its probability density to 

produce sets of approximately equi-probable patterns or ‘nodes’ for each SOM. The 

preservation of probability density is an important component of the technique since other 

traditional cluster analyses such as K-Means can tend to group less frequent data points in 
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larger classes that are not necessarily representative (Michaelides et al. 2001), therefore 

making it difficult to pinpoint the driving mechanisms of extreme events for example. 

Another advantage of SOMs is that the input data need not be spatially or temporally 

complete; such incompleteness is usually the case when dealing with observational 

datasets (Samad and Harp 1992). A detailed description of the SOM technique as applied 

in this study is given in Cassano et al. (2006). 

  

Although the SOM technique provides an objective method for grouping large datasets, the 

choice of the number of nodes to have within the SOM is somewhat subjective. Obviously, 

the more nodes that are defined, the smaller the aggregated Euclidean distance error from 

the target dataset but this can come at the cost of having too many nodes to give a useful 

climate signal. Too few nodes can mean that quite different synoptic patterns may be 

grouped together. To optimize the SOM algorithm, SOMs using different numbers of 

nodes (i.e. 6, 12, 20, 30 and 42 nodes) were calculated and assessed to find the smallest 

error whilst still maintaining meaningful synoptic climatologies. In addition, the SOM was 

trained by varying two parameters: a user-defined radius, r, dependant on the number of 

nodes within the SOM and a learning rate parameter, α, which was varied with each value 

of r (in this study α=0.001, 0.002, …, 0.01, 0.02, …, 0.1, 0.15, 0.2, …1 was tested). Each 

parameter decreases linearly to one (r) or zero (α) during the training of the SOM. In 

addition to the observed daily MSLP dataset, daily averaged fields of ERA-40 reanalysis 

data (Uppala et al. 2005) were also calculated between 1958 and 2001 to investigate 

spatially complete synoptic patterns and to compare with the in-situ observations. 

  

Table 3.2 shows the errors produced by varying the number of nodes within the SOM 

algorithm for both the observed daily MSLP dataset and the ERA-40 reanalysis. The errors 

in the observed dataset are slightly larger and this is most likely due to the greater 

variability of the point estimates. In each case the optimum search radius was 2 (except for 

the ERA-40 6x7 SOM where r=5). From a visual inspection of the resulting patterns, it was 

determined that SOMs with less than 20 nodes did not fully represent all the synoptic 

situations that occurred over Australia. SOMs with more than 20 nodes, while having 

smaller errors, resulted in patterns that occurred infrequently thus making further statistical 

analysis of the results less robust. The 20-node (4x5) SOM therefore gave the best 

compromise between minimizing errors and giving enough meaningful classifications of 

synoptic patterns over Australia to be useful for a climate change study. This is in 
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agreement with the Hope et al. (2006) and Vernon-Kidd and Kiem (2008) studies on the 

synoptic influences on south-west Western Australia and Victoria respectively who also 

found that a 20-node SOM was most useful for categorizing the synoptic patterns 

influencing those parts of the country. 

 

Table 3.2: Information on the minimum errors produced (with associated value of the alpha 

parameter) in the SOM analysis using both the observed daily MSLP dataset created in this study 

and daily averaged MSLP ERA-40 reanalysis data. Errors are calculated as the sum of all the root 

mean squared Euclidean distances between the SOM and the target dataset. 

 

Number of 

SOM nodes 

Error (obs) 

10th hPa 

α (obs) Error (ERA-40) 

10th hPa 

α (ERA-40) 

6 (2x3) 267.25 0.001 246.58 0.002 

12 (3x4) 233.08 0.002 222.85 0.35 

20 (4x5) 215.91 0.006 203.60 0.55 

30 (5x6) 203.70 0.003 193.72 0.90 

42 (6x7) 194.98 0.008 185.76 0.45 

  

Subsequently a single set of twenty synoptic patterns or nodes was derived by applying the 

SOM algorithm and using all days of daily averaged fields of MSLP between 1907 and 

2006. Similarly, a 20-node SOM was produced from the ERA-40 reanalysis using data 

from 1958 to 2001 (see Fig. 3.2).  

 

For convenience, the SOMs will be referred to as  for those patterns derived from 

the in-situ observations and  for those patterns derived from the ERA-40 

reanalysis. Assuming that synoptic patterns have not changed over the last 100 years 

(without making any assumptions about whether they have changed in frequency) 

the  patterns can be used to map to the  patterns to produce a spatially 

complete picture of the changes in synoptic patterns over the last century. This was done as 

follows. 

OBSSOM

OBSSOM

ERASOM

ERASOM

  

Each station point in is assumed to represent the MSLP value for the nearest 1 

degree gridbox on the same grid as the ERA-40 analysis. Where there was more than one 

OBSSOM
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station in a gridbox, the value was calculated as the average of two or more stations. Given 

the unsupervised nature of the SOM algorithm, equivalent patterns will not necessarily 

appear in the same order in  as they do in  e.g. in Fig. 3.2 node 1 in 

 might be most closely related (in terms of giving the smallest root mean squared 

error (RMSE)) to node 4 in , node 2 in  to node 16 in  etc. But if 

the same synoptic patterns have been driving Australian climate over time it would not be 

unreasonable to assume that each node in  appears only once in . 

However, finding the permutation of the 4x5  that best maps to  to 

produce the smallest total RMSE would require 20! (i.e. 2.4x1018) calculations. Therefore 

another method of approximating the smallest total RMSE needs to be implemented which 

does not involve performing an impossibly large number of computations.  

OBSSOM

ERASOM

OBSSOM

baE ,

ERASOM

OBS

OBS

OBS

OBSSOM

SOM

SOM

SOM

ERASOM

ERASOM

ERASOM

 

Suppose that a represents the  node that best maps to  node b to give the 

smallest error, then the RMSE,  between the two nodes, a and b, is given as: 

ERASOM

 

( ) n,...ba,  ∀
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     (Eqn. 3.1) 

 

where n represents the number of nodes in the SOM and G is the total number of gridboxes 

with corresponding data between  and SOM . This is performed as an iterative 

process such that the values of a1 and b1 in the first iteration are defined as: 

OBS

 

                 ,(),( 11 a,bbaba ==                                 (Eqn. 3.2)     

 

In the next iteration, Eqn. 3.1 is substituted with nodes c and d, where c ≠ a and d ≠ b such 

that Eqn. 3.2 becomes )min( ,dcEE   where,( 1c ),() dc dc,1d == . This process is repeated n 

times (i.e. for e ≠ a, c and f ≠ b, d etc.) until all the nodes of  are mapped to only 

one of the nodes of . This process gives an RMSE of 50.19 hPa. To test how good 

this estimate is, the RMSE was calculated for 10.0x104 random permutations of 

and SOM . Errors ranged from 64.48 to 144.02 hPa. The global minimum error 

OBSSOM

ERASOM

OBSSOM ERA
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(that is the error that would be produced if a one to one mapping of  to  

was not assumed) is 35.1 hPa, strongly suggesting that our estimate is close to the actual 

minimum RMSE.  
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Fig. 3.2: Synoptic patterns for Australia derived using SOMs. 
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So while the  nodes calculated from 1907 to 2006 daily station MSLP are used in 

the analysis in the next sections, it is now possible to relate these visually to the spatially 

complete synoptic patterns from  (Fig. 3.2). In each case the  results are 

presented in the order that they appear in  making the results from Fig. 3.3 

onwards more easily comparable with the large-scale patterns in Fig. 3.2. 

OBSSOM

ERASOM OBSSOM

ERASOM

 

The result is a spatially and temporally complete representation of daily synoptic patterns 

over Australia over the last century. For convenience, these permuted patterns of 

will be referred to in the following sections as SOM. OBSSOM

 

3.4 Trends in the frequency of synoptic patterns over Australia and links to 

changes in observed climate 

 
Each node of the SOM can be related to the synoptic pattern on an individual day making it 

possible to calculate the frequency of each large-scale pattern for all years from 1907 to 

2006. It would be expected that in general the patterns on the right hand side (particularly 

the bottom right hand corner) of Fig. 3.2 would reflect the weather systems bringing rain to 

southern Australia while the high pressure patterns on the left hand side (particularly the 

top left hand corner) of the figure would be more likely to be associated with clear sky 

conditions over much of southern Australia. Fig. 3.3 shows the timeseries of frequencies of 

each SOM node from Fig. 3.2 over the last century. In general, patterns with a marked 

trough to the south of Australia show a decline in frequency over the last 100 years. 

Indeed, nodes 4, 12, 16 and 20 all indicate a statistically significant decline. In total, eight 

nodes show a decline in frequency while 12 nodes show an increase, only one of which is 

significant (node 15). While node 15 also has a trough to the south of the country it is 

shifted further southwards of the patterns that show a significant decrease in frequency. 

This may be indicative of a poleward shift of the Southern Hemisphere storm tracks. If this 

was the case one might expect to see decreases in rainfall across most of southern 

Australia. Hope et al. (2006) showed that this was the case for south-west Western 

Australia over the last 50 years although other studies using station data have shown mixed 

patterns of daily rainfall decline depending on region and season (e.g. Hennessy et al. 

1999; Haylock and Nicholls 2000; Alexander et al. 2007; Gallant et al. 2007). High quality 
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rainfall measurements are available for station locations across Australia since 1910 

(Haylock and Nicholls 2000) along with other proxy variables such as a 150-year severe 

storm record at Cape Otway (see Section C) so this theory could be tested.  
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Fig. 3.3: Frequency of each synoptic pattern from Fig. 3.2 from 1907 to 2006. Decadal trends 

are shown in the top left hand corner of each graph. Solid and dashed lines represent the line of 

best fit to the data using ordinary least squares regression. Solid lines indicate that the trend is 

significant at the 5% level using a Mann-Kendall test. 

67  



Chapter 3                                                                                                   Synoptic Influences               

In the next sections the effect that the changing frequency of synoptic patterns (Fig. 3.3) 

has had on these precipitation and storminess records is assessed. Significance levels are 

tested at the 5% level throughout. 

 

 3.4.1 Severe storm index 

  

In the last chapter the calculation of a severe storm index for Cape Otway on the southern 

Coast of the state of Victoria was described (see Fig. 3.1 for the location). That analysis 

showed that between 1865 and 2006, there has been a significant decline in the number of 

severe storms at this location. This could suggest that there has been a shift in the storm 

tracks related to a reduction of the essential rain-bearing weather systems reaching 

southern Australia. To investigate this, the large-scale pressure patterns on each date 

between 1907 and 2006 when a severe storm occurred at Cape Otway (a total of 543 

events) were analysed to determine if any particular node or nodes were responsible for 

driving these events. Fig. 3.4a shows the percentage of severe storm events that are driven 

by each SOM node along with the node’s relative frequency within the SOM.  

 

The frequency of the SOM nodes is relatively evenly distributed around 5% (with 95% 

confidence that the random process is in the range [4.78, 5.22%]), the most frequent 

pattern (node 1) occurring 8.7% of the time and the least frequent pattern (node 9) 

occurring 3.25% of the time. Fig. 3.4a indicates that the nodes which occur during severe 

storms at Cape Otway are dominated by the nodes that are decreasing in frequency (see 

Fig. 3.3). This is even more apparent in Fig. 3.4b which shows the ratio of the percentage 

of each pattern relative to the frequency of that pattern within the SOM. Here, nodes 4, 16 

and 20 stand out clearly as dominating the Cape Otway severe storm index and Fig. 3.3 

shows that all these patterns have seen a significant decline in frequency over the past 

century. These three patterns, combined, occur less than 14% of the time but account for 

over 40% of the large-scale synoptic situations occurring during severe storm events at 

Cape Otway. If all eight nodes from Fig. 3.3 that are decreasing in frequency are 

combined, then it was found that over 66% of severe storm events were driven by these 

patterns. The reduction in the frequency of these nodes is certainly a reasonable 

explanation as to why severe storm events have significantly decreased at Cape Otway 

over this period.  
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 3.4.2 Daily rainfall intensity 

  

To investigate how changes in the frequency of synoptic patterns may influence the 

amount and intensity of rainfall, daily rainfall observations from four stations located close 

to large urban centers in southern Australia (Sydney, Melbourne, Adelaide and Perth1) 

were obtained from the high quality, post-1910 rainfall dataset described in Haylock and 

Nicholls (2000). Each of these cities has over one million inhabitants (over 10 million in 

total) making up over half of Australia’s population therefore making it extremely 

important to understand if changes in large scale processes are affecting the amount of 

rainfall reaching these areas. Two measures are examined to document how daily rainfall 

events may be changing: 1) a measure of the intensity of daily rainfall and 2) the maximum 

1-day rainfall amount associated with each SOM node. These indices are generally referred 

to as SDII and RX1day respectively (Alexander et al. 2007).  

 

All days with rain (i.e. ≥ 1mm) at each of the four locations were assigned a synoptic type 

as denoted by the SOM. Average daily rainfall intensities were calculated as the total 

rainfall each year divided by the number of rain days for each SOM node at each location. 

Fig. 3.5 shows a boxplot of the daily average rainfall intensity associated with each 

synoptic type in Fig. 3.2. The boxes represent the inter-quartile range, the line through the 

boxes represents the median value, and the lower and upper “whiskers” represent the 5th 

and 95th percentiles respectively of the daily rainfall intensity distribution for each SOM 

node. In addition, timeseries from 1910 to 2005 of the average daily intensities and 

maximum daily rainfall amounts were analyzed for each location. Table 3.3 shows the 

trends and significance calculated for these variables.  

 

Fig. 3.5a shows that the patterns on the right hand side of the SOM in Fig. 3.2 are 

associated with the least amount of daily rainfall intensity in Sydney both in terms of the 

average and wet extremes. This may be expected since the areas of high pressure become 

more centered over Sydney as one moves from the left to the right of the SOM. Therefore 

the decreases seen in these SOM nodes in Fig. 3.3 are likely to have little impact on the 

overall daily rainfall intensity for this city. Indeed, Table 3.3 indicates both non-significant 

increases and declines for both daily intensity and maximum 1-day rainfall totals in these 

                                                 
1 Stations used were Cataract Dam (Sydney), Yan Yean (Melbourne), Happy Valley Reservoir (Adelaide) and Manjimup 
(Perth) with co-ordinates, 150.81E, 34.27S; 145.11E, 37.57S; 138.56E, 35.06S; 116.14E, 34.24S respectively.   
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SOM nodes. Interestingly SOM node 15, which is associated with the largest daily rainfall 

intensities in Sydney, has significantly increased in the last century although with some 

evidence of a decline since the mid 1970s (Fig. 3.3). Table 3.3 indicates that this has been 

associated with increases in both maximum daily rainfall and rainfall intensity but neither 

increase is significant. In fact, there are no significant increases or decreases in either SDII 

or RX1day associated with any SOM node for Sydney.  

 

Table 3.3: Decadal trends in (a) RX1day i.e. maximum daily rainfall values (mm/decade) and (b) 

SDII i.e. daily rainfall intensity (mm/day/decade) during each SOM node for four locations across 

southern Australia. Bold signifies that trends are significant at 5% level (using a non-parametric 

test proposed by Zhang et al. (2000)). Where no value is recorded there were insufficient data 

points to calculate a trend. 

 

Node Sydney Melbourne Adelaide Perth 
 RX1day SDII RX1day SDII RX1day SDII RX1day SDII 
1 0.34 0.00 0.16 0.00 0.32 0.11 -0.42 0.05
2 0.32 0.06 -0.14 -0.11 - 0.13 -0.68 -0.23
3 -0.46 -0.14 -0.14 -0.03 -0.17 -0.01 -0.64 -0.25
4 0.00 - 0.49 0.21 0.63 0.30 -0.93 -0.24
5 0.00 0.05 0.17 0.05 0.22 0.14 0.09 0.09
6 -1.27 -0.26 0.42 0.17 0.31 0.15 -1.08 -0.46
7 0.72 0.23 0.49 0.18 0.19 - -1.31 -0.52
8 -0.24 0.06 -0.32 -0.11 0.29 0.08 -0.80 -0.09
9 -0.12 -0.07 0.40 0.07 0.00 -0.12 0.20 0.07
10 0.64 -0.04 0.27 0.08 - - 0.00 -0.09
11 -0.61 -0.09 0.50 0.20 0.00 -0.08 0.05 0.09
12 -0.09 0.02 -0.47 -0.07 0.00 0.03 -0.11 0.03
13 -0.03 -0.12 -0.44 -0.16 0.00 -0.03 - -0.24
14 -0.59 -0.27 -0.41 -0.09 - - -0.01 -0.04
15 0.87 0.17 0.49 0.20 -0.19 -0.26 - -
16 0.30 0.15 -0.56 -0.16 -0.04 0.16 -0.72 -0.15
17 -0.22 -0.12 0.10 -0.01 0.00 -0.04 0.18 0.17
18 -0.26 -0.08 -0.24 -0.12 0.01 -0.06 -0.23 -0.10
19 -0.23 -0.15 - - - - 0.00 -0.03
20 0.00 0.01 0.09 0.00 0.03 -0.01 -0.62 -0.10
 

Melbourne, however, shows an increase in daily rainfall intensity of 0.21 mm/day/decade 

associated with SOM node 4 which is interesting because this is one of the nodes that has 

significantly decreased in frequency (Fig. 3.3). The intensity of daily rainfall associated 

with node 8 shows a significant decline of 0.11 mm/day/decade associated with a non-

significant decline in the frequency of this node (Fig. 3.3). Neither of these nodes however 
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produces the largest daily rainfall events for Melbourne (Fig. 3.5b) so these significant 

changes may have limited impact. The results indicate that there may be more complex 

regional processes (e.g. convection, orography) driving intense rainfall in Melbourne than 

can be explained simply by changes in synoptic systems alone.  

  

Adelaide generally indicates increasing trends in SDII and RX1day (Table 3.3). SOM node 

1 produces significant increases in both (0.11 mm/day/decade and 0.32 mm/decade 

respectively) while nodes 2 and 4 have also seen significant increasing trends in daily 

rainfall intensity (0.13 mm/day/decade and 0.30 mm/day/decade respectively). Contrary to 

the situation in Sydney, rainfall intensities in Adelaide are greatest during synoptic patterns 

which are found on the right hand side of the SOM (Fig. 3.5c) so the reductions in the 

frequencies of these patterns (Fig. 3.3) do not seem to have affected the rainfall extremes 

in Adelaide (which have generally increased during these SOM nodes). Again this suggests 

more complex processes than can be explained solely by large scale driving system 

changes. 
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Fig. 3.4: (a) Bars represent the percentage of synoptic patterns occurring during “severe storms” at 

Cape Otway overlaid with the relative frequency of each node within the SOM and (b) represents 

the ratio of when synoptic patterns are driving severe storms at Cape Otway to the relative 

frequency of that pattern within the SOM. The x-axis represents the SOM nodes from Fig. 3.2.  
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Perth shows the most significant changes in rainfall extremes, in the majority of cases 

exhibiting a decline in both maximum daily amount and intensity (Table 3.3). South-west 

Western Australia has perhaps seen the most sustained decline in average rainfall of any 

Australian region in the last few decades and Hope et al. (2006) suggest that this is related 

to a decrease in troughs affecting the region, and an increase in high pressure systems. Li et 

al. (2005) who looked at changes in extreme rainfall events in south-west Western 

Australia suggested that there was evidence for a drying of winter daily rainfall extremes 

after 1965 related to changes in the Antarctic Oscillation (AAO). The results here show 

that five of the nodes (4, 6, 7, 8 and 16) are associated with significant decreases in the 

amount of 1-day maximum rainfall (Table 3.3), the largest significant decreases of -1.08 

and -1.31 mm/decade from nodes 6 and 7 respectively are from two of the nodes which 

bring the most intense rainfall to the region (Fig. 3.5d). Four nodes (3, 4, 6 and 7) are also 

associated with significant declines in daily rainfall intensity (Table 3.3) in this region. 

 

3.5 Conclusions 
  

In this study, quality-controlled and homogenized daily station MSLP data were used in 

conjunction with re-analyses data to produce daily synoptic patterns for Australia for the 

past 100 years using Self-Organizing Maps (SOMs). Twenty patterns or ‘nodes’ were 

identified to be the major large-scale systems affecting the climate of Australia. The 

frequencies of each of the synoptic patterns were analyzed over the past century and 

indicated that there has been a significant decline in those patterns which have a marked 

trough to the south of the country. The results here mostly confirm the conclusions from 

previous studies using a similar technique over shorter timescales, namely Hope et al. 

(2006) over south-west Australia and Vernon-Kidd and Kiem (2008) over south-east 

Australia who showed there had been significant changes to the synoptic systems driving 

rainfall in those regions. In this paper, however, we have extended these studies to analyze 

patterns for the whole of southern Australia for a longer time period and have shown that 

decreases in the frequency of these large scale synoptic systems are likely to be part of a 

longer-term decline.  
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Fig. 3.5: Boxplot of annual daily rainfall intensity from rain days (≥ 1mm) during each SOM node 

for stations from the high-quality dataset (Haylock and Nicholls 2000) closest to (a) Sydney, (b) 

Melbourne, (c) Adelaide and (d) Perth using all daily data from 1910 to 2005. Dotted lines indicate 

the end of each SOM row. 
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Using a Cape Otway storm index it was shown that observed decreases in severe storm 

events in south-east Australia over the past century have been associated with decreases in 

the frequency of the synoptic patterns driving these events. Daily rainfall amount and 

intensity indicators for Sydney, Melbourne, Adelaide and Perth were also analyzed. The 

results for the rainfall indices were not as conclusive as those for the storminess indicator. 

Sydney showed no significant changes in either daily maximum rainfall or average daily 

intensity for any of the driving SOM nodes while Melbourne and Adelaide showed 

significant increases in daily rainfall intensity associated with a SOM node that has actually 

decreased significantly in frequency over the past century. Perth showed the most 

consistent and significant changes in daily maximum rainfall amount (daily intensity) with 

significant declines in five (four) of the 20 SOM nodes.  

 

The results from this study provide further independent evidence that the expected 

southward shift in storm tracks due to anthropogenic climate change is actually taking 

place. The effect that this has had on severe storm events in southern Australia seems clear 

i.e. a contribution to the significant decline in storminess. However, there is no consistent 

pattern on the effects of shifting synoptic patterns on rainfall intensity changes across 

Australia’s major urban centers, with only Perth indicating a sustained decline in extreme 

rainfall. This would indicate that more work is required to understand the complexities of 

daily rainfall distribution changes across different regions of Australia if we are to 

adequately understand how this might impact the already strained water resources of the 

densely populated regions of southern Australia in the future.  
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D. Driving Forces 
 

The last few chapters have shown that climate extremes have significantly changed in 

Australia over the observational record. For changes in severe storms it was shown that 

this is most likely to have been related to a southward shift of storm tracks in the Southern 

Hemisphere over the past century. But what might be some of the other large-scale drivers 

of changes in climate extremes? It was suggested in Chapter 2 that because there were 

such strong correlations between the trends in mean and extreme temperature and 

precipitation, that the mechanisms driving the means were likely to be the same as those 

driving the extremes. Some of the driving mechanisms of regional observed trends in 

Australia are still under debate. While a number of studies have attributed portions of the 

drying in the southwest to anthropogenic forcing (Hope 2006; Timbal et al. 2006; Cai and 

Cowan 2006), the impact of natural variability (Cai et al. 2005; Ummenhofer et al. 2008) 

and land cover change (Pitman and Narisma 2005; Timbal and Arblaster 2006) appear to 

be reasonably large also. The increase in precipitation and associated cooling in northwest 

Australia is well known to researchers (e.g. Nicholls et al. 1997; Power et al. 1998). 

Rotstayn et al. (2007) suggests that it may be the poor simulation of aerosols in global 

climate models (GCM) which is failing to capture these trends although Shi et al. (2008) 

suggest this may be a model artefact. Wardle and Smith (2004) suggest that the continental 

warming further south is driving an enhancement of the Australian monsoon, leading to 

increased precipitation in the north-west. As well as mechanisms, there are known biases 

in the ability of climate models to simulate tropical mean climate and variability including 

the response of certain cloud feedbacks to CO2 that might be causing the sea surface 

temperatures (SSTs) to warm unevenly (Meehl et al. 2000; Barsugli et al. 2005). Recent 

research at the Bureau of Meteorology finds Australian precipitation trends to be consistent 

with the decadal variability in tropical Pacific SSTs (personal communication Harry 

Hendon). Thus if GCMs could capture the zonal gradient of the SST changes, with a 

minimum in warming in the central Pacific, they would likely capture the increase in 

northwest Australian mean precipitation and by extension extremes. Although Santer et al. 

(2006) attribute changes in tropical Atlantic and Pacific SSTs to anthropogenic forcing, the 

extent to which the pattern of observed trends in tropical SSTs is anthropogenic is 

unknown. Further study would be required to untangle the contributions of unforced and 

forced variability to recent changes in Australian climate. 
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Irrespective of the interacting and driving mechanisms, the evidence is clear that the mean 

climate of Australia is affected by both natural and anthropogenic influences. Changes in 

synoptic patterns and their effect on decreases in storms in southern Australia were 

discussed in the last chapter so the next two chapters will focus on answering questions 

about the influences and interactions of (a) cloud regimes; (b) SST variability and (c) 

anthropogenic forcing on Australian climate extremes.  

 

The answer to (c) is discussed in detail in Chapter 5 and also in Alexander and Arblaster 

2008. Globally there is certainly evidence that anthropogenic forcing of the climate system 

through increased greenhouse gas emissions, in addition to natural variations in climate 

can account for the changes that have been observed in (minimum) temperature extremes 

since the 1950s (Trenberth et al. 2007). A regional anthropogenic signal, however, is much 

harder to detect and particularly over a country like Australia where the climate is strongly 

modulated by ENSO variability which GCMs have been shown to be unable to adequately 

simulate (Leloup et al. 2007b). Until the study of Alexander and Arblaster 2008 there had 

been no attempt to do this for Australian temperature and precipitation extremes. 

 

In the next sections changes in cloud regimes along with their interaction with large scale 

pressure patterns and links to changes in precipitation extremes across southern Australia 

are discussed. This is followed by a discussion of the effect of sea surface temperatures on 

both global and Australian climate extremes. 

 

D.1 Regime change 
 

Results from Chapter 2 indicated that in the northwest of Australia there has been a 

statistically significant moistening in the northwest in summer (Fig. 2.4b). Nicholls et al. 

(1997) and Power et al. (1998), suggest that this increase is associated with a decrease in 

maximum temperature and Fig. 2.2b indicates that this is also the case for maximum 

temperature extremes in summer. This is consistent with the hypothesis that an increase in 

cloud cover may be enhancing wetting and cooling in the region. In other parts of 

Australia, however, there have been significant decreases in precipitation (e.g. Fig. 2.4) 

and significant increases in both maximum and minimum temperatures (e.g. Fig. 2.2 and 

Fig. 2.3). This may indicate either a decrease in cloud cover and/or changes in cloud types 
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or that there are other driving forces in these regions affecting extremes. Chapter 3 

showed that there have been significant shifts in synoptic systems over Australia in the past 

century. Although there might not be a direct relationship between pressure and cloud type 

it is unlikely that the changes observed in large scale pressure systems would be entirely 

independent of changes in cloudiness given the interacting dynamics of the atmosphere. 

 

Changes in cloud cover and type can now be identified using International Satellite Cloud 

Climatology Project (ISCCP; Rossow and Schiffer 1991) data, available at 250km 

resolution, 3–hourly timescale from July 1983 to December 2004 (Jakob and Tseliodis 

2003; Rossow et al. 2005). These data contain optical thickness (τ) and cloud top pressure 

measurements at various levels in the atmosphere so it was possible to classify different 

types of cloud regimes e.g. “most convectively active” to “least convectively active”. 

Tropical cloud regimes or “weather states” using ISCCP data have already been identified 

by Rossow et al. (2005) for a region covering 15°S to 15°N. However this region excludes 

most of Australia. Therefore cloud regimes were reclassified for the continent. Different 

dynamical regimes exist between tropical and extratropical regions so two regions were 

chosen: 110E to 160E, 0S to 25S and 110E to 160E, 25S to 50S, although most of the 

focus on this section will be on the extratropical region where the majority of the 

population live. The same technique used by Rossow et al. (2005) was implemented to 

identify different cloud regimes i.e. a K-Means clustering algorithm (Anderberg 1973). 

This technique iteratively searches for a predefined number (k) of clusters by a) assigning 

one member clusters to each of the k elements of the dataset of size N, b) assigning each of 

the remaining N-k elements to the cluster with the nearest (Euclidian distance) centroid 

whereby after each assignment the centroid of the gaining cluster is recalculated and c) 

after all elements have been assigned the centroids found in step b) they are used as new 

seed points and the algorithm is iterated. Rossow et al. (2005) showed that for tropical 

cloud regimes, when k < 6 (i.e. the number of clusters was less than six), the results were 

unstable and that for k > 6 there were members that were too highly correlated with each 

other. For this reason, six clusters were chosen for this study to represent tropical and 

extratropical cloud patterns over Australia although it is possible that this number may not 

be sufficient for the southern region. In addition, since optical thickness can only be 

calculated with the visible channel, two daytime periods were investigated (morning to 

early afternoon and mid afternoon to early evening) to allow for the differences in 

convective situations that occur during the day. 
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Fig. D.1 shows the frequency distribution of cloud top pressure versus optical thickness (τ) 

for extratropical Australia for morning and afternoon. The figure reflects the typical 

amount and type of cloud in each 250km gridbox within the ISCCP dataset in southern 

Australia as calculated by the K-Means algorithm for six regimes. Each regime is defined 

over seven atmospheric levels and six optical thickness ranges (defined within the ISCCP 

dataset) ranging from “optically-thin” cumulus at the bottom left of the histogram to the 

“optically-thick” deep convection at the top right of the histogram. Data for the 20-year 

period 1985 to 2004 were used in the calculation since this period contains continuous 

data. To our knowledge, this is the first time that cloud regimes have been defined for 

extratropical Australia. It is clear that there are strong similarities between the morning 

(Fig. D1a) and afternoon (Fig. D1b) situations. The same technique was used to identify 

cloud regimes for tropical Australia which agree well with the tropical weather states 

defined by Rossow et al. 2005 (not shown). Although 20 years may not be long enough to 

perform robust trend analysis of the frequency of each regime, there are indications that 

over the past two decades there have been increases in some of the cloud regimes and 

decreases in others. Fig. D.2 shows timeseries of the extratropical cloud regimes from Fig. 

D1a. Two of the regimes indicate significant trends at the 5 % level over the 20 year period 

of study. Fig. D.2 shows that there has been a significant increase of 22 days/decade in 

cloud regime four from Fig. D1a. This regime is marked by low clouds most of which are 

in the low to medium optical thickness range and therefore would not usually be associated 

with rain. Regime six on the other hand shows a significant decrease in frequency of 23 

days/decade. This regime is more convectively active than regime four, marked by higher 

clouds and clouds of greater optical thickness. So based on the last 20 years of data, results 

indicate that there has been a significant decrease in one of the cloud regimes that brings 

rainfall to southern Australia. However these broad trends may not reflect the frequency of 

cloud regimes in different regions of Australia. To account for this, the frequency of each 

cloud regime was analysed for the four Australian cities from Chapter 3 (Sydney, 

Melbourne, Adelaide and Perth). This was done by analysing the regimes within the 

closest 250km grid box to each city. Trends in the cloud patterns at each city are given in 

Table D.1. From this, it is clear that trends in each cloud regime are indeed dependant on 

location. Sydney and Melbourne show significant increases of 10.44 and 12.92 

days/decade respectively in cloud regime three (which is one of the less convectively 

active regimes) while Adelaide shows a significant decline in this regime of 10.21 

days/decade. 
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Fig. D.1: Six cloud top pressure - optical thickness frequency histograms (cloud regimes) that best 

describe the 3-hourly variations of cloud properties across extratropical Australia for (a) morning 

and (b) afternoon. The types of clouds represented by the histogram from top left to bottom right 

are Cirrus (Ci), Cirrostratus (Cs), Deep convection (Dc), Altocumulus (Ac), Altostratus(As), 

Nimbostratus (Ns), Cumulus (Cu), Stratocumulus (Sc) and Stratus (St). Throughout the text 

regimes are referred to as numbers one to six from top left histogram to bottom right histogram. 
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Adelaide is interesting because it shows both significant increases and decreases in two of 

the cloud regimes that are most likely associated with rainfall (an increase in regime one of 

5.21 days/decade and a decrease in regime six of 3.04 days/decade). Indeed Adelaide is the 

only city analysed that shows a statistically significant decrease in regime six agreeing 

with the sign and significance of the trend in this regime over southern Australia as a 

whole (Fig. D.2) although with a trend of much smaller magnitude. Perth is different again 

with a significant increase in regime two, a regime characterised predominantly by 

cumulus and stratocumulus and few high clouds. 

 

Table D.1: Trends (days/decade) in the frequency of cloud regimes from Fig. D1a at four 

Australian cities. Bold signifies that trends are significant at the 5% level. 

 

Cloud regime Sydney Melbourne Adelaide Perth 

1 4.53 2.49 5.21 0.12 

2 -0.95 4.72 8.20 10.08 

3 10.44 12.92 -10.21 -2.35 

4 1.74 -0.71 5.08 1.70 

5 -3.32 -14.68 3.54 4.11 

6 -2.66 4.41 -3.04 1.57 

 

 

So it appears that the significant trends in cloud regimes four and six over southern 

Australia as a whole (Fig. D.2), are not reflected at individual sites across the region which 

generally indicate significant trends in other cloud regimes (Table D.1). However it should 

be noted that the results from the trend analysis presented here should be treated with 

caution because of the short period of study and because of potential inhomogeneities 

which may exist within the ISCCP dataset (Kato et al. 2006). However since this is the 

first time that these dynamical cloud regimes have been characterised for extratropical 

Australia it was possible to make direct links between these regimes and synoptic pressure 

patterns. In addition it was also possible to determine how these were associated with 

changes in some of the climate extremes described in the previous sections. 
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Fig. D.2: Timeseries of frequency of the morning cloud regimes over extratropical Australia. 

Linear regression lines are shown along with the decadal trends. Solid lines indicate that trends are 

significant at the 5% level. Trends and significance calculated as in Chapter 3. 

 

D.1.1 Interactions with synoptic pressure systems  

 

Using the synoptic systems defined by the SOM algorithm in Chapter 3, it was possible to 

determine the links that exist between large-scale weather systems and the corresponding 

cloud regimes for the four cities described in the last section.  Since the types of regimes 
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that exist across southern Australia are similar between the morning (Fig. D.1a) and 

afternoon (Fig. D.1b), the morning cloud regimes were chosen and compared with the 

daily synoptic pattern that occurred on that day. This was possible to do for days between 

1st January 1985 and 31st December 2004 when full years of ISCCP data were available. 

Fig. D.3 shows contour plots of the frequency of each cloud regime from Fig. D.1a for 

Sydney, Melbourne, Adelaide and Perth during the associated large scale pressure patterns 

from Fig. 3.2. The total from left to right for each synoptic pattern equals 100 %. For each 

city, cloud regime five is the most dominant pattern irrespective of the driving synoptic 

pattern. In particular this is true for Sydney and Melbourne where cloud regime five occurs 

between 40 % and 52 % of the time during any given synoptic pattern. This regime is one 

of the least convectively active, indicating the dominance of clear skies over much of 

Australia. Over Perth this regime occurs between 24 % and 48 % of the time. Interestingly, 

regime five peaks in Perth during SOM nodes 4, 8, 12 and 16 (Fig. 3.2) i.e. the patterns in 

the right hand column of the SOM all of which have declined in frequency over the last 

century (Fig. 3.3). However the frequency of this regime has increased in Perth between 

1985 and 2004 (Table D.1) although not significantly. In Adelaide cloud regime five 

occurs between 24 % and 36% of the time, only slightly more frequently than cloud regime 

three. Table D.1 shows that cloud regime three has significantly declined in frequency 

over the past two decades in Adelaide.  

 

The results indicate that there appear to be links between cloud regimes and the over-

arching synoptic patterns over Australia. In Chapter 3 the links between synoptic patterns 

over Australia and rainfall intensity at Sydney, Melbourne, Adelaide and Perth were 

investigated. In the next section we will perform a similar analysis only this assessing the 

effect of cloud regimes on daily rainfall intensity at the four cities. 

 

 D.1.2 Link between cloud regimes and precipitation extremes 

 

Daily rainfall measurements were extracted for stations from the Bureau of Meteorology’s 

high quality dataset (Haylock and Nicholls 2000) which were closest to Sydney, 

Melbourne, Adelaide and Perth (see Chapter 3). The period 1985 to 2005 was chosen as 

this is the same 20-year time period that is spanned by the ISCCP data used in this study. 

The cloud regimes from Fig. D.1a from the closest 250km gridbox to each city were 

compared with the daily rainfall at each site. The average daily rainfall intensity associated 
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with each cloud regime was calculated and is shown in Fig. D.4 along with the relative 

frequency of the cloud regimes at each city.  

 

 

 
Fig. D.3: Contour plots of the percentage of time during which each cloud regime from Fig. D.1a 

occurs during the synoptic patterns (“nodes”) defined in Fig. 3.2. 

 

Like Fig. D.3, this figure shows that cloud regime five occurs most frequently at each site. 

However, now it is clear that this regime is associated with the smallest rainfall intensity at 

each city. In Sydney (which is the wettest of the four cities), the heaviest daily rainfall 

intensity of about 11 mm/day is brought by cloud regime one. This is perhaps not 

surprising as this is the most convectively active regime from Fig. D.1a. This regime only 

occurs 9.1 % of the time at Sydney and indeed is one of the least frequent regimes at the 

other three cities. However, in Melbourne and Adelaide it is cloud regimes four and three 

respectively which deliver the most intense rainfall. These are curious results as these 

regimes are not very convectively active so should not be associated with large amounts of 

rainfall. This perhaps indicates that the number of regimes chosen is inadequate to account 

for the number of weather types that occur in extratropical Australia. Table D.1 shows that 

cloud regime four has significantly declined by 10.21 days/decade in Adelaide. This could 

83  



Section D                                                                                                         Driving Forces 

indicate a move towards other regimes such as cloud regime one, for example, which has 

significantly increased in frequency over Adelaide by 5.21 days/decade over the past 20 

years. Although there has not been a statistically significant increase in daily rainfall 

intensity in Adelaide when averaged over the year (not shown), Table 3.3 indicates that 

there have been significant increases in daily rainfall intensity during certain synoptic 

patterns at this South Australian city.  

 

 
Fig. D.4: Rainfall intensity (mm/day) associated with dynamical cloud regimes from Fig. D.1a for 

(a) Sydney, (b) Melbourne, (c) Adelaide and (d) Perth. 
 

Like Sydney, cloud regime one brings the most intense daily rainfall to Perth although this 

regime only occurs 3.8% of the time. In Perth, regimes two and three also bring rainfall of 

similar intensity but combined they occur 44 % of the time and are therefore much more 

important to the local rainfall regime. Cloud regime two has also significantly increased in 

frequency in the last two decades (Table D.1) so this may indicate that while there has 

been a significant decline in average rainfall in the region (Hope et al. 2006) there is a 

possibility that extreme rainfall events have increased. However, Table 3.3 indicates if 

trends over the last century are considered, it is more likely that extreme rainfall events 
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have decreased in Perth. Also, as suggested in Chapter 3, other studies (e.g. Li et al. 2005) 

have shown evidence for a drying of winter daily rainfall extremes after 1965 related to 

changes in the Antarctic Oscillation (AAO).  So in conclusion, this suggests that depending 

on the timescale, season and index under consideration, there are many interacting 

mechanisms which produce a very complex relationship between synoptic patterns, cloud 

regimes and extreme rainfall across southern Australia.  

 

D.2 El Niño-Southern Oscillation (ENSO) 
 
Another potential driver of Australian climate extremes is changes in sea surface 

temperatures. It is clear that SSTs have an effect on changes in mean climate across 

Australia and a large portion of this variability is due to changes in the El Niño-Southern 

Oscillation (ENSO) (McBride and Nicholls 1983; Nicholls et al. 1996b). Across south-

west Western Australian, Ummenhofer et al. (2008) showed that the observed rainfall 

decline is being forced by differences in sea surface temperatures between the west and 

east of the Indian Ocean although there is some debate as to whether this is merely a 

reflection of warming oceans to the north of Australia (personal communication Neville 

Nicholls). Kenyon and Hegerl (2008) found that major modes of climate variability have 

had a significant influence on changes in climate extremes globally and that minimum 

temperature extremes are affected differently than maximum temperature extremes. Fig. 

D.5 shows the correlations between SSTs and timeseries of various observed climate 

extreme indices averaged across Australia. Long-term linear trends present in the SSTs and 

the climate indices were removed before the correlations were calculated. Hence the 

correlations reflect the response of Australian extremes to short-term variability in SSTs. 

Significant correlations are seen in many parts of the tropical oceans. These include the 

tropical Pacific, suggesting that ENSO variability does in fact significantly affect the 

variability of changes in rainfall, extratropical cyclones and maximum temperature 

extremes across Australia. However, Fig. D.6 shows that ENSO variability does not have a 

significant influence on minimum temperature extreme variability in Australia which is 

much more highly correlated with local SSTs and Indian and Atlantic Ocean tropical SSTs. 

In the next section we will look at some of these driving forces and discuss their influence 

on some of the extremes that have been discussed in previous chapters. 
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Fig. D.5: Correlations of detrended timeseries averaged across Australia of (a) annual maximum 

daily maximum temperature, (b) Daily rainfall intensity, (c) annual maximum 5-day rainfall and (d) 

Southern Ocean cyclone density with detrended timeseries of annual sea surface temperatures from 

HadISST (Rayner et al. 2003). Black lines enclose regions where correlations are significant at 5% 

level. 

 

Correlation btw detrended SSTs and Australian Warm Nights
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Fig. D.6: As Fig D.5 but for warm nights across Australia for the period 1957-2006. 
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4. The influence of sea surface temperature variability on global 

temperature and precipitation extremes 
 

Summary 

 

The HadISST1 dataset was used to categorise patterns of observed global sea surface 

temperature (SST) variability using the method of Self Organising Maps (SOM). SST 

anomalies were calculated seasonally between 1870 and 2006 and were categorized into 

eight patterns using a SOM algorithm to represent the majority of global SST variability 

modulated by the El Niño-Southern Oscillation (ENSO). Time series were analysed and 

showed that there have been periods of “preferred” SST states since the late 19th century. 

In the latter half of the 20th century the preferred states have moved from La Niña like 

patterns to more neutral global SST conditions, while weak El Niño patterns have moved 

preferentially to stronger El Niño states. The eight patterns were used to investigate the 

global response of extreme temperature and precipitation indices from the HadEX dataset 

to different nodes of SST variability. Results showed very strong statistically significant 

opposite responses from the first pattern (strong La Niña) to the last pattern (strong El 

Niño). Extreme maximum temperatures were significantly cooler during strong La Niña 

events than strong El Niño events over Australia, southern Africa, India and Canada while 

the converse was true for USA and north-eastern Siberia. Even interim patterns 

representing a move from weak El Niño to a weak La Niña phase also produce statistically 

significant increases in warm nights and warm days particularly across Scandinavia and 

north-west Russia. While the response of precipitation extremes to global SST patterns was 

less spatially coherent there were large areas across North America and central Europe 

which showed statistically significant differences in the response to opposite phases of 

ENSO. The results indicate that the variability of global SST anomalies is important for the 

modulation of extreme temperature and precipitation globally. Even weak phases of ENSO 

can have significant impacts on extreme events across large regions and this is particularly 

evident in high latitudes. An atmosphere-only global climate model (CAM3) forced with 

observed SSTs was used to investigate whether state of the art models could reproduce 

some of the significant responses that have been observed over Australia. Results showed 

that the model obtained the opposite response to that which was observed. This may 

indicate that some important atmospheric processes are not well captured by the model. 

87  



Chapter 4                                                                                                          SST influences 

4.1 Introduction 
 

Sea surface temperature (SST) variability has a significant influence on the global mean 

climate (Ropelewski and Halpert 1987; Halpert and Ropelewski 1992). For instance, the 

El-Niño Southern Oscillation (ENSO) brings drier/warmer conditions to much of 

Australia, south-east Asia, India, north-west USA and Canada during positive phases (El 

Niño) and wetter/cooler conditions in most of these regions during its negative phase (La 

Niña) e.g. McBride and Nicholls 1983; Power et al. 1998; Kiladis and Diaz 1987; 

Rasmusson and Carpenter 1982; Deser and Wallace 1987; Deser and Wallace 1990; 

Ropelewski and Halpert 1986. While it is important to understand how large scale 

variability affects mean climate, much more understanding is required on how this 

variability influences climate extremes since these have a much more significant impact on 

communities and ecosystems (Easterling et al. 2000; Nicholls and Alexander 2007). For 

instance, the unprecedented mortality of the 2003 European heatwave (Foullet et al. 2007) 

has been a catalyst for more urgent understanding of the driving mechanisms of these types 

of events.  

 

Previous studies have shown that natural modes of climate variability have a significant 

influence on the regional response of climate extremes on multi-decadal timescales e.g. 

Scaife et al. 2008; Cai et al. 2005. Kenyon and Hegerl (2008) was perhaps the first study 

which looked at the affect of a number of large scale climate variability measures on global 

temperature extremes. Using indices of large scale climate variation, they showed that 

different phases of ENSO could be seen to influence temperature extremes globally often 

affecting cold and warm extremes differently although with areas of much stronger 

response around the Pacific Rim and throughout all of North America. They conclude that 

modes of variability need to be taken in to account if we are to provide for reliable 

attribution of changes in extremes as well as prediction of future changes. Kenyon and 

Hegerl (2008) investigated the influence of large scale climate “indices”, such as the 

ENSO Cold Tongue Index (CTI) and the North Pacific Index (NPI), on global temperature 

extremes. However the aim here is to look at the influence of global “patterns” of SST 

variability on temperature extremes and for the first time to look at the global response of 

these patterns on precipitation extremes. This could determine whether patterns other than 

those defined by positive or negative phases of indices such as NINO3.4, NINO4 etc. had 
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any impact on global extremes. The method of Self-Organising Maps (SOM) described in 

Section 3 was used to categorize observed SST anomalies between 1870 and 2006 from 

the HadISST1 dataset into common patterns using a similar technique to Leloup et al. 

(2007a). The results were used to show how modes of SST variability influence global 

temperature and precipitation extremes. Experiments from the CAM3 atmosphere-only 

global climate model (Collins et al. 2006a) were also analysed to test the simulated 

response of temperature extremes over Australia to SST variability and to compare with 

the observed response. 

 

4.2 Data and methods (observations) 
 

Two observational datasets were used in this analysis: HadISST1 (Rayner et al. 2003) and 

HadEX (Alexander et al. 2006). HadISST1 is a one-degree latitude by one-degree 

longitude grid of globally complete monthly SST and sea ice concentration measurements 

from 1870 onwards. For this study HadISST1 data were obtained from 1870 to 2006. 

Because our interest is in sea surface temperature patterns, areas of 100% sea ice cover 

were considered to be land. HadEX is a 2.5-degree latitude by 3.75-degree longitude 

gridded dataset containing indices derived from daily in-situ temperature and precipitation 

observations over much of the global land area from 1951 to 2003. To investigate how 

temperature and precipitation extremes are affected by SST variability, we focus on six of 

these indices (four temperature and two precipitation) that were introduced in Chapter 2 

(see Table 2.1). These indices are: 

 

1. Percent of days below the 10th percentile (of the 1961-1990 climatological 

reference period) of seasonal minimum temperature (TN10p);  

2. Percent of days above the 90th percentile of seasonal minimum temperature 

(TN90p);  

3. Percent of days below the 10th percentile of seasonal maximum temperature 

(TX10p);  

4. Percent of days above the 90th percentile of seasonal maximum temperature 

(TX90p);  

5. Maximum 1-day seasonal rainfall event (RX1day);  

6. Maximum consecutive 5-day seasonal rainfall event (RX5day).  
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These indices were chosen because they were available seasonally and in addition the 

temperature indices represent the warm and cold extremes of both maximum and minimum 

temperature. In addition, the monthly NINO4 index was also obtained from NOAA's 

National Weather Service Climate Prediction Center. This index is calculated from SST 

anomalies in the tropical Pacific averaged in the box 6N-6S, 160E-150W and was available 

from 1950 to provide an independent measure for comparison with the results presented 

here. 

 

Firstly, seasonal SST anomalies (SSTA) were created from HadISST1 for December to 

February (DJF), March to May (MAM), June to August (JJA) and September to November 

(SON) between 1870 and 2006 using 1961-1990 as the climatological reference period. 

Next, these seasonal SSTA were detrended by fitting an ordinary least squares regression 

to each grid box with data and calculating the residuals. The reason for removing trends 

from the data is so that changes observed from one state to another reflect the actual 

variability of the SSTA patterns rather than changes towards warming oceans. The 

detrended SSTA were then categorised into most common patterns of variability using a 

clustering technique called Self-Organising Maps (SOM; Kohonen 2001). The SOM 

technique has been found to be useful in reducing the dimensions of large datasets to 

enable the visualisation and interpretation of the data characteristics. Details of the 

approach which is closely followed here are given in Cassano et al. 2006 and Chapter 3. 

The SOM approach produces a two-dimensional set of patterns or “nodes” of global SSTA. 

In this case it was found that eight nodes provided enough patterns to cover most aspects of 

global seasonal SST variability while ensuring that each node is frequent enough to 

provide robust statistics for the comparison with the global climate extremes. The SOM 

algorithm determines which node of the SOM best matches the observed SSTA for that 

season (that is the SOM node that gives the smallest Eucleidian distance error when 

compared to the seasonal SSTA pattern). Seasonal values were also calculated for global 

temperature and precipitation extremes between 1951 and 2003 when data are available 

from the HadEX dataset. Alexander et al. 2006 showed that there has been a significant 

warming of both maximum and minimum temperature extremes globally during the second 

half of the 20th century. In order that the results here are not simply a reflection of this 

warming climate, each of the extremes indices was detrended in a similar way to the 

SSTA. In addition, because of the varying distribution globally of the rainfall indices, 

RX1day and RX5day were normalised (i.e. each value of the detrended index was 
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calculated by subtracting the mean and dividing by the standard deviation) so that changes 

can be compared consistently between different regions. Thus for each season between 

1951 and 2003 it was possible to relate the temperature and precipitation extremes to a 

node of the SOM. 

 

4.3 Observational results 
 

The SSTA patterns produced by the SOM algorithm are shown in Fig. 4.1. Clearly the 

SOM is able to distinguish the modulating influence of ENSO moving from a strong La 

Niña phase through to a strong El Niño phase with weaker or neutral phases in between. 

The first node (strong La Niña) appears most frequently within the SOM although all 

nodes are approximately equally distributed. As we move through the nodes of the SOM, 

the phases of ENSO weaken with the middle nodes (4 and 5) indicating more neutral 

global SST conditions. The nodes were compared to the NINO4 index during the time 

period when this index is available (Fig. 4.1). For each occurrence of a node, the average 

seasonal value of the NINO4 index was obtained. It is clear from Fig. 4.1 that the 

probability distribution functions (PDFs) of these values that the strong La Niña pattern 

(node 1) has almost always a negative NINO4 index and conversely the strong El Niño 

pattern (node 8) has almost always positive NINO4 index values. For the nodes in 

between, the PDFs move from negative to positive values and interestingly nodes 3 and 4 

have a distinctive bi-modal distribution. Each seasonal SSTA pattern was compared 

visually with the node assigned to it by the SOM algorithm. In all cases, it was found that 

the key features of the SSTA pattern, for example the presence or absence of an ENSO 

signal, were adequately reflected by the assigned SOM node. 

 

Fig. 4.2 shows how the occurrence of each SOM node has changed through time. Each 

SSTA pattern has occurred throughout most of the 137 year period analysed although some 

patterns are much more “bunched” than others. In the latter part of the 19th century the 

“preferred” SST state reflected weak La Niña conditions but with also quite a few episodes 

of strong El Niño events. Interestingly there is at least a 35-year period in the early 1900s 

when nodes 3 and 4 did not occur at all in HadISST1 but these have been the predominant 

SSTA variability modes in the last decade or so. The first half of the 20th century was 
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classified by weaker El Niño regimes which switched to a predominance of either neutral 

SSTA or strong La Niña regimes between about 1950 and 1975. 

 

 
Fig. 4.1: Seasonal SSTA patterns (‘nodes’) from HadISST1.1 derived using Self-Organising Maps 

(SOM). Each node is shown alongside the probability distribution function of the associated 

NINO4 index value for the seasons where this node occurs. The number of times, n, that each node 

appears within the SOM between 1950 and 2006 when the NINO4 index is also available is shown 

above each map. 
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Now that the dominant patterns of global SSTA variability have been classified this 

information can be used to determine how each of these various nodes influences global 

patterns of extreme temperature and precipitation. 

 

 
Fig. 4.2: Timeseries of seasonal SSTA from HadISST1 as categorized by the 8 SOM nodes defined 

in Fig. 4.1. Each symbol represents a different season. Lines are shaded blue where at least 3 

consecutive seasons most closely resembled node 1 (strong La Niña) and orange where they most 

closely resembled node 8 (strong El Niño). 

  

Table 4.1 shows globally averaged deviations from the expected values of the various 

indices used in this study during each of the SOM nodes. Because the expected value of 

the globally averaged temperature indices is 10 % (approximately 9 days per season), a 

value of 1 in the table represents an increase of approximately 1 day per season. From 

Table 4.1 we can see that there is an increase (decrease) of warm nights (TN90p) during 

strong El Niño (La Niña) events represented by node 8 (node 1) of around 1 day per 

season. A similar increase in this index is also seen in node 4, a node that also produces a 1 

day per season increase in warm days (TX90p) and a decrease in cool nights (TN10p). 

These three nodes, associated with the largest deviations in the minimum temperature 

indices (TN10p and TN90p), are associated with smaller deviations in the maximum 

temperature indices (TX10p and TX90p). The warm nights index (TN90p) is more 

sensitive to differences between nodes than cool nights (TN10p), as evidenced by the 

relative magnitudes of the deviations for the two indices. Similarly, in nearly all cases 

warm days (TX90p) are more sensitive than cool days (TX10p). No nodes produce large 

global deviations in the precipitation indices (RX1day and RX5day) although results show 

more wet extremes during La Niña (node 1) and more dry extremes during El Niño (node 

8), which is similar to the effect of ENSO on average rainfall.  
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Table 4.1: Globally averaged deviations from expected value of each extreme index for each SSTA 

SOM node from Fig. 4.1. Values for temperature indices (TN10p, TN90p, TX10p and TX90p) are 

deviations from expected value (i.e. 10 %). Values for precipitation extremes are numbers of 

standard deviations from expected value (i.e. average value of index from 1951 to 2003). 

Node TN10p TN90p TX10p TX90p Rx1day Rx5day 

1 0.78 -0.89 0.46 -0.66 -0.03 -0.01 

2 0.05 -0.28 0.03 -0.14 -0.003 0.01 

3 -0.13 0.38 -0.31 0.54 -0.003 0.02 

4 -1.01 1.10 -0.77 0.90 0.03 0.02 

5 -0.36 0.46 -0.57 0.54 -0.03 -0.03 

6 0.37 -0.83 0.39 -0.59 -0.01 -0.01 

7 0.17 -0.45 0.46 -0.60 0.02 -0.01 

8 -0.42 1.23 -0.07 0.59 0.04 0.02 

 

However, global averages mask some of the strong differing regional influences of each of 

the nodes. Fig. 4.3 presents maps of how the regional response of TN10p (cool nights), 

TN90p (warm nights) and RX1day (maximum 1-day rainfall) varies during each of the 

eight SOM nodes. The response of cool nights and warm nights are similar in most regions 

(note that the colour bar has been reversed between the two indices so that yellow/red 

indicates warming and green/blue indicates cooling). For both TN10p and TN90p, which 

represent cool and warm nighttime temperatures respectively, there are clear regional 

effects of SSTA variability. Much of the globe shows a cooling of temperature extremes 

during strong La Niña phases (node 1) except for the eastern United States and north east 

Russia predominantly. Interestingly, south-eastern Australia also shows a slight warming 

during this phase. Australian temperature and rainfall are significantly correlated with 

ENSO and each other but there are complex interactions and regional differences (e.g. 

Jones and Trewin 2000; Nicholls 2003; Nicholls et al. 1996b; Power et al. 1998) which 

indicate a non-linear relationship. Similarly the strong El Niño phase (node 8) indicates 

warmer than usual extreme minimum temperatures and almost the opposite pattern of 

warming and cooling to node 1. The remaining patterns also have large coherent regions of 

warming and cooling although generally not as large as the most extreme ENSO phases. 
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However perhaps what is most striking is that neutral or weak ENSO phases have about as 

strong an influence on global climate extremes as very strong positive or negative phases 

of ENSO. For instance, a very weak El Niño-like pattern (node 4) produces warming in 

most of the global land areas and globally averaged produces about the same global 

extreme minimum temperature warming as the strong El Niño node (Table 4.1). The 

regional variations between node 4 and node 8 are quite different however; the above 

average extreme warming across much of Russia in node 4 is countered by quite strong 

below average extreme cooling across the same region in node 8. In general node 4 does 

not produce as strong a warming or cooling as node 8 but parts of south-east Asia, India, 

north-west Australia and southern Africa represent the equivalent of over 3 days increase 

in the number of warm nights in these regions during this neutral/weak La Niña pattern. 

Similarly nodes 1 and 6 represent a general global cooling of warm night time 

temperatures. Particularly, node 6 which relates to a weak El Niño pattern produces 

substantial nighttime cooling across Europe and north-west Russia. While the patterns of 

warming and cooling are similar between cool nights and warm nights, in general the 

upper end of the minimum temperature distribution (TN90p) appears to have a slightly 

stronger response to SST variability than the lower end of the minimum temperature 

(TN10p) distribution.  

 

For the precipitation index, RX1day, the patterns are not as coherent as the temperature 

indices during each of the SSTA phases but there are still some large regions where the 

SSTA pattern has a clear affect. Increases in RX1day, which represents the wettest day in a 

season, are likely to indicate increased chances of flooding. The strongest increases are 

mostly seen during nodes 6 to 8 (representing weak to strong El Niño events), particularly 

over Europe during nodes 6 and 7, countries adjacent to the Caspian sea during nodes 7 

and 8 and western USA, southern Brazil and south-east China during node 8 (strong El 

Niño). The response of RX1day is generally opposite in these regions during La Niña-like 

patterns. 

 

The results for the other precipitation index, RX5day, which represents the five wettest 

consecutive days in a season (see Fig. 4.4) are very similar to RX1day indicating the 

strong relationship between these two indices. It is also clear from Fig. 4.4 that maximum 

temperature extremes show similar patterns of regional response as minimum temperature 

extremes (Fig. 4.3) for each of the SOM nodes. However, in the Southern Hemisphere for 
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instance maximum temperature extremes seem to be more sensitive to SST variability than 

minimum temperature extremes. 

 
Fig. 4.3: Anomalies are shown for cool nights (TN10p), warm nights (TN90p) and maximum 1-day 

precipitation totals (RX1day) during each SOM node. Units for temperature indices are percentage 

deviations from expected value i.e. 10% and precipitation extremes are shown as the normalized 

deviations (by removing the mean and dividing by the standard deviation) from average. Colours 

are shown such that green/blues (yellow/red) reflect a cooler/wetter (warmer/drier) climate. 
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Fig. 4.4: As Fig. 4.3 but for cool days (TX10p), warm days (TX90p) and maximum consecutive 5-

day precipitation totals (RX5day). 
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A question would be whether any of these differences seen between the nodes are 

statistically significant. To answer this, the data from every node were compared with the 

data from every other node. Because each node occurs somewhere between 24 and 40 

times (see Fig. 4.1) this gives reasonable sample sizes for comparison. Values at each grid 

box of a given node were compared with the values of the same gridbox from every other 

node using a Kolmogorov-Smirnoff (K-S) test. This can determine whether two samples 

are likely to come from the same overall distribution. The null hypothesis that the two 

samples come from the same distribution was tested at the 5% level. The results indicate 

that there are large areas where different nodes give statistically significantly different 

results. Fig. 4.5 shows the results when comparing node 1 with node 8 and node 3 with 

node 6. Statistically significant differences are apparent in how maximum and minimum 

temperature and precipitation extremes respond to node 1 (strong La Niña) compared to 

node 8 (strong El Niño). For minimum temperature extremes the most significant 

differences are seen in North America, northern Russia, India, southern South America, 

southern Africa and Australia (for warm nighttime temperatures). These regions also show 

a similar response for maximum temperature extremes apart from South America where 

the differences between node 1 and node 8 are not significant. Most of the USA and 

Mexico and parts of Russia have significantly warmer maximum temperature extremes 

during strong La Niña events than strong El Niño events but the opposite is true for most 

of Canada, Australia, south-east Asia, India and southern Africa. In addition, the warmest 

minimum and maximum temperatures in Siberia and Australia appear to have a stronger 

response to varying SSTs than the coldest minimum and maximum temperatures. These 

results agree well with the results of Kenyon and Hegerl (2008). For precipitation, results 

show significantly wetter 5-day precipitation events during strong El Niño events 

compared to strong La Niña events in southern Brazil, south-western United States, central 

Asia and eastern China with an opposite signature in southern Canada and north-eastern 

Russia (Fig. 4.5). Maximum 1-day rainfall (RX1day) shows almost exactly the same 

response (not shown). 

 

Fig. 4.5 also shows that it is not just the opposite phases of ENSO that produce 

significantly different results. The most marked results indicate that both the warm and 

cold tails of maximum and minimum temperature are significantly warmer during node 3 

than node 6 in Scandinavia and north-western Russia. For the warmest maximum 

temperatures this signature is also seen in southern USA and Central America. South-
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eastern Australia shows the opposite signature i.e. warm maximum temperature extremes 

are significantly cooler during node 3 than node 6. Fig. 4.2 indicates that node 3 has been 

much more prevalent in the last few decades than node 6 and given that much of the 

differing response between these nodes has been seen in high-latitude regions this could 

indicate that other external influences in addition to SST variability are dominating in these 

regions. There are few regions where precipitation extremes indicate significant opposite 

responses between these two nodes. 

 

It is clear from the results so far that maximum and minimum temperature and 

precipitation extremes can have significant opposite responses in certain regions to the 

modulation of global SSTs. A test of global climate models would be whether they could 

adequately simulate the significantly different responses of climate extremes to SST 

variability. Because Australia is the main region of interest for this thesis and because 

maximum temperature extremes particularly in this region are sensitive to differing SST 

SOM nodes (Fig. 4.5), the next section details several experiments using the CAM3 global 

climate model (Collins et al. 2006a) aimed at determining how well climate model 

simulations can reproduce this observed temperature extreme response. 

 

4.4 Data and methods (model) 
 

To test whether a state of the art climate model can adequately reproduce the maximum 

temperature extreme response across Australia to varying SSTA, output from the CAM3 

model (Collins et al. 2006a) was analysed. CAM3 is the atmosphere-only version of the 

NCAR Community Climate System Model version 3 (CCSM3; Collins et al. 2006b). The 

resolution of the version of CAM3 used was 128 by 64 horizontal grids cells 

(approximately 2.8 degree resolution) and 26 levels in the vertical. The land surface (e.g. 

vegetation, lakes, glaciers etc.) is represented by the NCAR Community Land Model 

(Bonan et al. 2002; Oleson et al. 2004) and a thermodynamic sea ice model is also 

incorporated. Convection is parameterized following Zhang and McFarlane (1995) (for 

deep convection) and Hack (1994) (for shallow convection). The data sets used for 

specifying monthly SST and sea-ice concentration are described in Hurrell et al. (2008). 

Several studies have already assessed the model’s performance and suitability for 
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applications in climate research relevant to this study and these are discussed in more 

detail in Section 4.6. 

 
 

Fig. 4.5: Differences in the value of each index from this study (except RX1day) between SOM 

node 1 and node 8 (left hand side) and node 3 and node 6 (right hand side). Colour bars are 

presented such that green/blue (yellow/red) indicate that the node named first in the title is 

cooler/wetter (warmer/drier) than the node named second. Crosses indicate gridboxes where the 

difference between the nodes shown is significant at the 5% level using a Kolmogorov-Smirnoff 

(K-S) test. 
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Two experiments were analysed which used the CCSM3 model in atmosphere-only mode 

forced with observed SSTs. Each experiment differed only in initial conditions. The first 

experiment was a five member ensemble forced by global observed time-varying SSTs 

from 1950 to 2000. The second experiment used had the same model set-up except it also 

included volcanic, greenhouse gas, aerosol and solar forcings. Using model runs forced 

with observed SSTs acts as a test of the model’s atmospheric processes. A direct 

comparison can also be made between the model and observations as the model should be 

able to reproduce observed SST nodes (Fig. 4.1) quite well. However, the model is forced 

with a different observed dataset (Hurrell et al. 2008) so there were some slight differences 

in the resulting SSTA patterns which were again categorized using SOMs for each model 

run. Anomalies were calculated with respect to the model climatology from each run.  

 

4.5 Model results 
 

Fig. 4.6 shows the SOM nodes produced from one run of each of the two experiments 

between 1951 and 1999. The SST data used to force the model are of a lower resolution 

than the HadISST1 observations but even so they represent the main modulation of ENSO 

that is seen in Fig. 4.1. However there are some unusual features particularly in the 

southern oceans indicating strong gradients of above average warming or cooling 

depending on the node (Fig. 4.6) and interestingly these features are not exactly the same 

between the model runs even though the same input SST data were used. The resulting 

SOM patterns using identical input data should not necessarily be expected to be identical 

as the SOM algorithm initially makes a first-guess map using the user-defined number of 

nodes before the SOM is “trained” by the input data. Thus there are likely to be some small 

random differences between patterns even when the same input data are used. 

 

Because of the significantly different response of maximum temperature extremes in 

Australia to opposite phases of ENSO (Fig. 4.5), the two different model experiments 

described above were tested for their response to these different phases to determine 

whether (a) the model could adequately simulate the observed response and (b) whether 

the response was different/improved with the inclusion of the climate of the 20th century 

forcing. To do this, observations of maximum seasonal daily maximum temperature (TXx 

from Chapter 2) across Australia were compared with the output from both model 
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experiments. Fig 4.7a shows that the hottest day in a season across Australia is about 1°C 

warmer during a strong El Niño event than during a strong La Niña event and this 

difference is statistically significant at the 5% level across most regions of the country. 

However, neither of the model experiments (see Fig. 4.7b and Fig. 4.7c) is able to capture 

this response even when the “climate of the 20th century” atmospheric forcing is included 

(Fig. 4.7c). In fact, in central Australia (and in northern Australia for the all-forcings run) 

the model gets a significantly different response to the opposite phases of ENSO which is 

completely the opposite of the observed response i.e. there is a significant warming of TXx 

of about 0.3°C to 0.6°C during strong La Niña events compared to strong El Niño events. 

So it appears that neither experiment is able to adequately capture this observed response 

over Australia. This would imply that one or more atmospheric processes and/or 

interactions within the model are not properly simulated. Indeed, Collins et al. (2006a) 

suggest that there are several systematic biases which may reduce the fidelity of the 

simulations including underestimation of tropical variability, errors in tropical oceanic 

surface fluxes and underestimation of implied ocean heat transport in the Southern 

Hemisphere. Obviously some of these biases only relate to the fully coupled version of the 

model. However, this may have serious implications for the use of climate models for 

impacts assessments and is discussed in more detail in the next section. 

 

4.6 Discussion and conclusions 

 
It is important to note that the results shown here have been calculated on detrended 

datasets. This is important as the results only reflect the response of temperature and 

precipitation extremes to natural SST variability. The response is generally larger in the 

temperature extremes when the observed warming globally is retained (not shown). This is 

particularly true of minimum temperature extremes and particularly true for the response 

between the interim nodes. This would imply that minimum temperature extremes are 

driven more by external forces (e.g. greenhouse gas forcing) than natural climate 

variability. Several studies have already shown that minimum temperatures respond more 

to anthropogenic forcing than maximum temperatures e.g. Kiktev et al. (2007), Hegerl et 

al. (2004). 
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Fig. 4.6: Seasonal SSTA patterns (‘nodes’) derived using SOMs from (LHS) observed SST-forced 

CAM3 runs and (RHS) observed SST-forced CAM3 run including “climate of the 20th century” 

atmospheric forcing.  
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Fig. 4.7: The difference (°C) between the response of TXx to strong La Niña (node 1) minus strong 

El Niño (node 8) for (a) observations, (b) SST-forced CAM3 run and (c) SST-forced CAM3 run 

including “climate of the 20th century” atmospheric forcing. Greens/blues (yellows/reds) indicate 

that the response is cooler (warmer) during La Niña. Crosses indicate where the response is 

statistically significantly different (at the 5% level using a K-S test). 

 

However, precipitation extremes in this study show a stronger response when observed 

trends are removed. Results show very significantly wetter 1 and 5-day precipitation events 

during strong El Niño events compared to strong La Niña events in southern Brazil, south-

western United States and to the east of the Caspian Sea. Leloup et al. (2007b) recently 

showed that none of the global climate models in the IPCC-AR4/CMIP3 database were 

sufficiently good at capturing all aspects of the extent, location and timing of ENSO 

events. This would be a concern for our confidence in the future projections of global 

temperature and precipitation extremes given their dependence on the modulation of SSTA 

(Fig. 4.3 and Fig. 4.4). Perhaps then, one might assume that an improved response could 

be gained by using global climate model simulations driven by observed sea surface 

temperatures. However, in this study, two experiments from a global climate model, 

CAM3, forced with observed SSTs showed that the model was unable to reproduce the 

significantly different response of maximum temperature extremes in Australia to different 

phases of global SST variability and indeed showed almost completely the opposite 

response to that which has been observed. This would certainly imply a problem with the 

atmospheric processes in the model and many previous studies have outlined potential 

problems and biases in CAM3 (e.g. Collins et al. 2006a; Zhang 2004; Boville et al. 2006; 

Hurrell et al. 2006; Hack et al. 2006; Zhang and Wang 2006) in relation to the simulation 

of the hydrological cycle, clouds and dynamics. Over Australia, Marshall et al. (2009) 

summarised some of these biases in regard to the Australian summer monsoon showing 
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that CAM3 had a much too early onset date to the monsoon season and so had excessive 

precipitation to that which has been observed between September and December. Indeed, 

we compared total column integrated precipitable water measurements over Australia 

using the experiments described here with a comparable measure from the ISCCP dataset 

described in Section D. Using the period, 1985 to 1999 (when both the model output and 

observations were available), it was found that the model was much too “wet” over most of 

the country (not shown). In addition, while the response in the model to strong El Niño 

versus strong La Niña events appeared to have the right sign i.e. it was wetter during La 

Niña than El Niño, the magnitude of the differences were much larger in the model 

compared to the observations and there was a very different spatial pattern between the two 

(see Fig. 4.8). Fig. 4.8a shows the difference in the precipitation response over Australia 

between node 1 (strong La Niña) and node 8 (strong El Niño) from Fig. 4.6 using the SST-

forced climate of the 20th century experiment from CAM3. Fig. 4.8b shows the equivalent 

response between these two nodes in the observations using the patterns from Fig. 4.1 and 

corresponding observations from the ISCCP dataset. The differences are likely to reflect 

the poor simulation of convective processes and clouds in the atmospheric physics of the 

model and this might have serious implications for the conclusions reached by more recent 

studies of the Australian climate using CAM3 which showed that significant changes in 

rainfall over the south-west of the country were forced by changes in sea surface 

temperatures (Ummenhofer et al. 2008). Studies have shown that CAM3 severely 

underestimates the response of shortwave cloud radiative forcing to El Niño (e.g. Li and 

Zhang 2008). Zhang and Bretherton (2008) show that the physical mechanism of low 

cloud feedback in CAM3 is through the interaction of a suite of parameterized processes 

rather than from any single process caused by the larger amount of in-cloud liquid water in 

stratus clouds from convective sources, and longer lifetimes of these clouds in a warmer 

climate through their interaction with boundary layer turbulence. Cloud–climate feedback 

plays a significant role in determining the sensitivity of global climate models (e.g. Zhang 

2004). The Fourth Assessment Report of the Intergovernmental Panel on Climate Change 

(IPCC 2007) concluded that cloud feedbacks remain the largest source of uncertainty in 

determining the sensitivity of current climate models. Even when a cloud resolving model 

is embedded within CAM3 (Marchand et al. 2009), a number of shortfalls in the model are 

revealed including excessive cloud coverage at all altitudes over many convectively active 

regions and a lack of low-level cloud over all subtropical oceanic basins. Since maximum 

temperatures are highly correlated with rainfall over Australia (Nicholls et al. 1997; Power 
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et al. 1998; Chapter 2), it is likely that this poor simulation of convection will be reflected 

in the poor simulation of maximum temperature responses to large scale climate variability 

as shown in Fig. 4.7.  

 
Fig. 4.8: Differences in precipitable water measurements during strong La Niña events (node 1) 

and strong El Niño events (node 8) for (a) the SST-forced CAM3 run including “climate of the 

20th century” atmospheric forcing and (b) observations from the ISCCP dataset (described in 

Section D). 
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The inability of the model to reproduce this observed response may have serious 

implications for the use of global climate models for impacts assessments. However in this 

case only the output from one climate model was used. Other studies indicate that 

analysing multiple climate model simulations may improve the representativeness of 

modelled extremes as it could reduce systematic biases that may be present in any one 

model (e.g. Kiktev et al. 2007). For this reason, in the next section we determine whether 

the use of multiple runs from multiple climate models can improve the simulation of 

observed trends in temperature and precipitation extremes over Australia. 



Section E                                                                                                               Top models 

E. Top models 
 

The previous chapters have dealt with how climate extremes have changed in Australia 

over the observational period and discussed some of the processes which are driving these 

changes. While it is necessary to understand how the climate has changed in the past to 

have confidence in what may happen in the future, projections of future climate change 

generally require access to the output of state of the art regional and/or global climate 

models.  

 

Climate models have been shown to adequately reproduce changes in mean climate over 

Australia (e.g. Alexander and Arblaster 2008; see Fig. E.1) but little work has been done 

on assessing how well climate models are able to reproduce observed changes in climate 

extremes. Globally, it has been shown that state of the art global models can reproduce the 

trends in temperature extremes with some skill but the models are less skillful at 

representing trends in precipitation extremes (e.g. Kiktev et al. 2003; Kiktev et al. 2007; 

Kharin et al. 2007). In addition, recently there has been debate about how best to compare 

model output (which represents an area mean) with observations of extremes (which are 

point estimates) (e.g. Chen and Knutson 2008). Over Australia, Perkins et al. (2007) 

ranked multiple global models by their ability to reproduce the probability distribution 

functions of observed daily temperature. In doing so, they were able to assign weights 

associated with the skill of each climate model in reproducing observed temperature. Other 

work at CSIRO, is also attempting to weight models according to their ability to reproduce 

past climate. The idea is that we should have more confidence in models that are able to 

reproduce current climate and therefore should apply more weight to the output of those 

models in the future.  

 

However, in the last chapter it was shown that at least one GCM was unable to reproduce 

some important responses of observed extreme temperatures over Australia to varying 

SSTs. But could the representation of climate extremes be improved if multiple 

simulations from multiple climate models were used? This might remove some biases that 

are present in individual models or model runs. In the next chapter we test whether this is 

the case in addition to determining whether there is an anthropogenic component to 

observed trends in extremes over Australia.   
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Fig. E.1: Changes in mean temperature (left column) and precipitation (right column) for 

observations (a, b), 20thC simulations (c, d) and 21stC SRES A1B simulations (e, f). Twentieth 

Century changes are represented as trends from 1957-1999, while future changes are differences of 

2080-2099 minus 1980-1999. Stippling in e) and f) indicates regions where the multimodel mean 

change divided by the intermodel standard deviation of the change is greater than one, a measure of 

the consistency of the multimodel response. The same nine models for which extremes indices 

were analysed are used to form the multimodel means here. Figure produced by Julie Arblaster and 

presented in Alexander and Arblaster (2008). 
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5. Validating state of the art climate models with observations of climate 

extremes over Australia 
 

Summary 

 

Multiple simulations from nine global coupled climate models were assessed for their 

ability to reproduce observed trends in a set of indices representing temperature and 

precipitation extremes over Australia. Observed trends over the 1957 to 1999 period were 

compared with individual and multi-modelled trends calculated over the same period. 

When averaged across Australia the magnitude of trends and interannual variability of 

temperature extremes were well simulated by most models particularly for the warm nights 

index. The majority of models also reproduced the correct sign of trend for precipitation 

extremes although there was much more variation between the individual model runs. A 

bootstrapping technique was used to calculate uncertainty estimates and also to verify that 

most model runs produce plausible trends when averaged over Australia. Although very 

few showed significant skill at reproducing the observed spatial pattern of trends, a pattern 

correlation measure showed that spatial noise could not be ruled out as dominating these 

patterns. Two of the models with output from different forcings showed that the observed 

trends over Australia for one of the temperature indices was consistent with an 

anthropogenic response but was inconsistent with natural-only forcings. 
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 5.1 Introduction 
 

Extremes research is particularly important for Australia given the vulnerability of its 

unique flora, fauna and ecosystems to even slight variations in climate (Fitzharris et al. 

2007). A previous body of work concluded that significant changes in temperature and 

precipitation extremes have already occurred across the country during the 20th century 

(e.g. Hennessy et al. 1999; Plummer et al. 1999; Collins et al. 2000; Haylock and Nicholls 

2000; Trewin 2001; Alexander et al. 2007; Gallant et al. 2007). Regional studies across the 

Asia-Pacific area (e.g. Manton et al. 2001; Griffiths et al. 2005; Salinger and Griffiths 

2001) have shown statistically significant increases in occurrences of warm nights and/or 

hot days and decreases in occurrences of cool days and cold nights over the past few 

decades. Over the past century there has been a significant decrease in the frequency and 

intensity of extreme precipitation events in southwest Western Australia and a significant 

increase in the proportion of total precipitation from extreme events in eastern Australia 

(Haylock and Nicholls 2000; Li et al. 2005). While these studies have been thorough, they 

have focused on the analysis of extremes at station locations. This makes it difficult to 

compare observations objectively with simulations from climate models that output data on 

spatial grids. Some work has suggested increases in hot days and hot spells and decreases 

in cold days and cold spells in the future (CSIRO 2001) and an increase in extreme 

precipitation (Groisman et al. 2005) but relatively little has been published about how 

extremes might change in the future over Australia or indeed if climate models are able to 

adequately reproduce the observed trends in extremes (thus increasing our confidence in 

future projections). 

  

Global studies comparing observed and modelled trends in climate extremes have shown 

reasonably good agreement with temperature trends but poor agreement (or multi-model 

disagreement) with observed precipitation patterns or trends (e.g. Kiktev et al. 2007; 

Kharin et al. 2007). Kiktev et al. (2007) also comment that a ‘super ensemble’ from 

multiple climate models appears to perform better than any individual ensemble member or 

model particularly when there is some skill in the contributing ensemble members. Kiktev 

et al. (2003) found that only the inclusion of human-induced forcings in a climate model 

could account for observed changes in global temperature extremes. Robust anthropogenic 

changes have been detected globally in indices of extremely warm nights, although with 
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some indications that the model overestimates the observed warming (Christidis et al. 

2005). However other recent studies show that the regional responses of observed trends in 

temperature and precipitation extremes can also largely be driven by large scale processes 

which might not be adequately simulated in global climate models (Scaife et al. 2008; 

Meehl et al. 2004; Meehl et al. 2005). On regional scales (e.g. Sillmann and Roekner 2008 

for Europe; Meehl and Tebaldi 2004 and Meehl et al. 2007b for U.S.A.) while the 

modelled trends have been shown to capture observed trends reasonably accurately, the 

results are somewhat dependent on the extreme under consideration. To date no such 

analysis has been carried out for Australia.  

 

Recent initiatives by the World Climate Research Programme (WCRP) in preparation for 

the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) 

in 2007 have now made it possible to compare multiple model simulations with high 

quality observations of extremes. At the request of the Joint Scientific Committee 

(JSC)/CLIVAR Working Group on Coupled Models, coupled modelling groups worldwide 

submitted a standard set of ‘extremes indices’ to the WCRP's Coupled Model 

Intercomparison Project phase 3 (CMIP3) multi-model dataset at the Program for Climate 

Model Diagnosis and Intercomparison (PCMDI) in California (hereafter named the CMIP3 

archive). Ten extremes indices, calculated from daily data and based on the definitions of 

Frich et al. (2002), were submitted with 5 temperature-based indices (e.g. heat wave 

duration, occurrence of frosts) and 5 precipitation-based indices (e.g. heavy precipitation 

events, consecutive dry days). Tebaldi et al. (2006) was the first study to analyse these 

indices for both the historical and future simulations on global and hemispheric scales. 

Global averages of the temperature-based indices were found to be dominated by trends in 

the Northern Hemisphere, with Southern Hemisphere trends much weaker. This is 

intuitively explained by the presence of a relatively stable ocean in close proximity to all 

Southern Hemisphere landmasses, sheltering them from extreme cold and warm air 

masses. However in that study observational datasets with which to compare the multi-

model output were not yet adequate or available so an assessment of the models ability to 

reproduce observed trends in extremes was not possible. The Commission for Climatology 

(CCl)/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices 

(ETCCDI),initiated a project aimed at addressing gaps in observed data availability and 

analysis in previous global studies (e.g. Frich et al. 2002). Following on from this, 

Alexander et al. (2006) updated and extended the analysis of Frich et al. (2002) using the 
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best global observations available, gridding a total of 27 indices onto a regular latitude-

longitude grid from 1951 to 2003.  

 

The CMIP3 multimodel dataset and recently available high quality gridded datasets 

provide us with an unprecedented opportunity to directly compare observed trends in 

extremes over Australia with multiple model simulated trends and to compare projections 

in these extremes, both across models and across scenarios. In this study we first briefly 

discuss how the extremes indices are calculated from the observed and modelled datasets 

followed by a comparison of the models with observations and the future projections for 

the selected temperature and precipitation extremes across Australia. 

 

5.2 Extremes indices data 
 

The indices used in this study, based on the definitions of Frich et al. (2002), are given in 

Table 5.1. Nine annual indices are analysed (four derived from daily maximum and/or 

minimum temperature and five from daily precipitation) providing one value per gridbox 

per year per index. The indices chosen contain more robust statistical properties than could 

be expected from the analysis of more infrequent events and allow global climate models 

the possibility to adequately simulate these events. Therefore some of the indices may be 

viewed as not particularly ‘extreme’ but given their statistical properties and their 

availability in the CMIP3 archive we chose to use these definitions as the basis for our 

analysis. Note that the Frich et al. (2002) indices also contained a definition for growing 

season length which is not analysed here since it has little meaning in the Australian 

climate (Collins et al. 2000). Frost days are included in the analysis but note that this index 

is only meaningful for parts of southern Australia. There are some differences between the 

observed and model definitions for three of the indices (see Table 5.1) and the potential 

effects these could have on the results are discussed in Section 3.3. Model indices for 

which climatologies were required were calculated relative to each model’s own 

climatology thus partially removing inherent model bias. 
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Table 5.1: Extremes indices used in this study. 

 

Index definitions 
Index name 

Model (Frich et al. 2002) Obs (Alexander et al. 2006) 
units  

Warm nights (TN90) 
Percent of time Tmin > 1961-
1990 90th percentile of daily 
minimum temperature 

Percentile calculation differs from 
model definition in that the 
bootstrapping technique of Zhang 
et al. (2005) is used  

% 

Frost days (FD) 
Total number of days with 
absolute minimum temperature 
< 0°C 

As model days 

Extreme temperature 
range (ETR) 

Difference between the highest 
and lowest temperature 
observation in a calendar year 

As model °C 

Heat wave duration 
(HWDI) 

Maximum period > 5 
consecutive days with Tmax > 
5°C above the 1961-1990 daily 
Tmax normal 

Known as warm spell duration 
index (WSDI) – maximum period 
> 5 consecutive days with Tmax > 
1961-1990 90th percentile of daily 
maximum temperature. 
Percentiles are calculated using 
the bootstrapping technique of 
Zhang et al. (2005) and spells can 
continue across calendar years 

days 

Heavy precipitation 
days (R10) 

Number of days with 
precipitation ≥ 10mm  As model days 

Maximum 5-day 
precipitation (R5D) 

Maximum precipitation total 
over a 5-day period As model mm 

Simple daily intensity 
(SDII) 

Ratio of annual total 
precipitation to number of days 
≥ 1mm 

As model mmd-1 

Consecutive dry days 
(CDD) 

Maximum number of 
consecutive days < 1mm 

Basic definition is the same as 
model except a spell can continue 
across calendar years 

days 

Very heavy 
precipitation 
contribution (R95T) 

Fraction of annual total 
precipitation due to events 
exceeding the 1961-1990 95th 
percentile 

As model % 

 

 5.2.1 Observations 

 

High quality daily maximum and minimum temperature (Trewin 2001) and daily 

precipitation (Haylock and Nicholls 2000) data composed the Australian contribution to 

the Alexander et al. (2006) study which created 2.5 degrees of latitude by 3.75 degrees of 

longitude gridded datasets (HadEX) of observed extremes indices for the globe (data 

available from www.hadobs.org). Extremes indices were first calculated for each station 
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and then were transformed to the grid. For this study we extract from this dataset those grid 

boxes which cover the Australian continent for each extremes index from Table 5.1. 

Alexander et al. (2006) used a distance weighting method which required that at least 3 

stations be within a pre-defined search radius from the centre of a gridbox in order for an 

extreme to be calculated for that gridbox. Because Australia is large but sparsely 

populated, high quality observations tend to be lacking in more remote areas. This means 

that for some of the indices (especially the precipitation indices which have small 

decorrelation length scales) there is little or no coverage in inland or northern areas. Other 

indices such as warm nights however, provide almost complete observational coverage 

over the country.  

 

 5.2.2 Model data  

 

Extremes indices from nine models were available for inclusion in the IPCC 4th 

Assessment Report (AR4), as analysed by Tebaldi et al. (2006) and presented in the AR4 

by Meehl et al. (2007a). As noted above, each modelling group calculated the indices 

based on the definitions of Frich et al. (2002) and submitted them to the CMIP3 archive at 

PCMDI (http://www-pcmdi.llnl.gov). There were four models from the U.S.A. (CCSM3, 

PCM, GFDL-CM2.0, GFDL-CM2.1), three from Japan (MIROC3.2 (medres), MIROC3.2 

(hires), MRI-CGCM2.3.2), one from France (CNRM-CM3) and one from Russia (INM-

CM3.0). Simulations of the climate of the twentieth century (20C3M) and three Special 

Report on Emissions Scenarios (SRES) experiments, B1 (low-range emissions), A1B (mid-

range) and A2 (high-range) were available for most models. Each model varies in 

resolution but the indices from each of the nine models were interpolated here onto the 

observational grid i.e. 2.5 degrees of latitude by 3.75 degrees of longitude so that a direct 

comparison between the observations and the model simulations could be made. Multiple 

ensemble members were submitted for five out of the nine models (PCM, GFDL-CM2.0, 

GFDL-CM2.1, MIROC3.2 (medres) and MRI-CGCM2.3.2) with single runs available for 

the remaining four. In total there were 22 20C3M simulations from the nine models. The 

multi-model mean values shown here are the average across all ensemble members and 

then across all models.  
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5.3 Comparison between observed and modelled extremes over Australia  
 

 5.3.1 Spatial and temporal comparison 

 

To compare the modelled and observed indices, trends were calculated between 1957 and 

1999 for each grid box with available data. The start date was chosen as the date from 

when high quality temperature station data are available for Australia (Trewin 2001) and 

the end date chosen was based on when some of the model groups end their climate of the 

20th Century simulations. Trends in precipitation indices were also calculated over this 

period for consistency even though high quality station data exist prior to this (Haylock 

and Nicholls 2000). In all cases, for computational efficiency, trends are calculated using 

ordinary least squares (OLS) regression and trend significance is calculated at the 5% level 

using a non-parametric Mann-Kendall test (Mann 1945; Kendall 1975). However because 

OLS is sensitive to outliers in the series which may be present in the extremes indices 

analysed here, an additional non-parametric iterative technique to estimate trends and 

significance (Wang and Swail 2001) was used in some cases to test the robustness of OLS 

results. This method makes no assumptions about the distribution of the timeseries 

residuals and is robust to the effect of outliers in the series. Our general conclusions 

however remain unchanged irrespective of the trend calculation method used. Trends were 

only calculated in gridboxes if at least 40 out of the 43 years of observed indices data were 

available. In order that comparable analyses could be performed, the model output was 

masked by the regions where observed trend data exist. In addition to trend calculation, 

timeseries were produced for each of the nine indices using areally averaged data from the 

masked gridboxes in order to compare the magnitude and interannual variability of 

observed and simulated extremes and these are plotted in Fig. 5.1. Average trends for 

Australia and associated significance for the observations and multi-model ensemble are 

given in Table 5.2 while ensemble mean trends for each individual model are given in 

Table 5.3. To assess the uncertainty in the multi-modelled trends we provide confidence 

intervals using a bootstrapping technique described in section 3.2 with all 22 model runs. 

The associated uncertainties in the trend calculation method for the observations are given 

as two standard errors using Restricted Maximum Likelihood (Trenberth et al. 2007). 

Spatial trend patterns of the observations and multi-model simulations for each of the nine 

extremes indices were compared for temperature (Fig. 5.2) and precipitation (Fig. 5.3).  
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Fig. 5.1: Observed (black line) and modelled (coloured lines) timeseries of areally averaged 

extremes indices (Frich et al. 2002) from 1957 - 1999 using grid boxes in Australia with observed 

data. 

 

  5.3.1.1 Temperature extremes 

  

Trends for the observed and multi-model simulation are given in Table 5.2 while the mean 

trends associated with each of the nine models used in this study are given in Table 5.3. 

Table 5.2 shows that all of the observed trends for the four temperature indices are 

statistically significant and commensurate with warming. The majority of models (Table 

5.3) and individual model runs (not shown) obtain the correct sign of trend for each 

temperature index when averaged across Australia. In fact 21 of the 22 model runs exhibit 

a statistically significant increasing trend in warm nights; the multi-model trend of 1.15 

%/decade is comparable to the observed trend of 1.11 %/decade. Eight of the nine models 

and the multi-model ensemble produce trends in frost days of the same sign as the 

observed trends. Five of the nine models agree with the observations that extreme 
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temperature range is decreasing on average and seven of the nine models show increases 

in heat wave duration in agreement with observed trends. However the confidence 

intervals for these two indices compared to warm nights and frost days shows that there is 

much greater uncertainty both within and between models as to the sign of the trend over 

the latter part of the 20th century. Moreover, while the sign of the temperature trends was 

correct, the magnitude was generally very different from the observed values. Warm nights 

is the only index where the confidence intervals in all models and multi-model ensemble 

do not overlap with zero indicating that there is very good consensus between the models 

that the recent trend in warm nights over Australia is positive. The lowest resolution 

model, INM-CM3.0, is the only model which shows an increase in frost days while the 

highest resolution model, MIROC3 (hires), is the only model which shows a significant 

increase in extreme temperature range contrary to the observed trends. Fig. 5.1 shows that 

the models also do reasonably well at simulating the amount and variability of the 

temperature extremes. This is particularly true of warm nights. However, no one model is 

consistently “best” across all indices. Fig. 5.1a and Table 5.3 show that all models are 

particularly good at simulating the amount, interannual variability and trend of this index. 

It is obvious however that some models are overestimating the actual value of some of the 

temperature extremes indices. In addition to showing increased trends in frost days, INM-

CM3.0 (Table 5.3) also vastly overestimates the amount of frosts that actually occur in 

Australia (Fig. 5.1b) and this is likely to contribute to its overestimate of extreme 

temperature range (Fig. 5.1c). Similarly the CNRM-CM3 model also overestimates the 

amount of frost days and extreme temperature range although it gets the right sign of trend 

for both indices. It is likely that the vastly different amounts of and magnitude of trends in 

heat wave duration (Fig. 5.1d; Table 5.2 & 5.3) are related to the different definitions of 

this index between the model and observations (see Table 5.1) and this is discussed in 

Section 3.3. In addition, this index definition is statistically ‘volatile’ (e.g. it contains a lot 

of zeros and no values between one and five) and is particularly sensitive to missing data. 

Given that we allow a maximum of three years of missing data before a trend can be 

calculated and most of the missing data occurs early on in the record, this creates an 

apparent inhomogeneity in the observations near the beginning of the timeseries (Fig. 

5.1d). It is likely therefore that the observed trend in heat wave duration is smaller than 

indicated in Table 5.2. However, we chose not to remove this index from the study since 

the models may be doing a reasonable job using this definition and future changes in this 

index may have pronounced societal impacts. 
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Fig. 5.2: Observed and modelled decadal trends calculated between 1957 and 1999 for extreme 

temperature indices (Table 5.1) for Australia. Model data are masked with gridboxes which have 

observed data. Stippling indicates trend significance at the 5% level. Units as Table 5.1 (per 

decade). 
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The spatial trend patterns of temperature extremes across Australia for the observations 

and multi-model are shown in Fig. 5.2. As noted the majority of models are able to 

simulate the observed sign of change in the temperature indices when averaged across 

Australia however it is clear from Fig. 5.2 that the regional trend pattern is less well 

captured by the models. While there is an observed increase in warm nights across 

northwest Australia over the period studied, it is small and mostly non-significant (Fig. 

5.2a). Indeed if the analysis is extended beyond 1999 we see a non-significant decrease in 

warm nights over the northwest region (Alexander et al. 2006) and this is consistent with a 

cooling in mean minimum temperatures annually but particularly associated with a 

decrease in minimum temperatures between December and August (Alexander et al. 2007). 

Fig. 5.2a and Fig. 5.2b show the multi-model ensemble is overestimating the observed 

trends in warm nights in the northwest and underestimating the observed trends in this 

index in southern and eastern Australia. In fact there is very good consensus between the 

individual models (not shown) that the number of warm nights has increased significantly 

in the northwest region. However while there is some discrepancy in the magnitude and 

significance between the observed and multi-modelled trends, it is noteworthy that the sign 

of the simulated trend in warm nights is consistent with the sign of the observed trend in 

every grid box across Australia. While there are few regions of Australia where frost days 

can be measured (Fig. 5.2c) almost all grid boxes show a consistent and mostly significant 

decline. Fig. 5.2d indicates that the multi-model gets the opposite sign of trend to the 

observations in southwest Western Australia and southwestern Victoria and there can be 

large differences between the observed and modelled response. Overall the multi-model 

ensemble underestimates the observed trend in frost days but the ensemble average from 

several individual models such as PCM and MRI-CGCM2.3.2 get very good 

approximations to the observed trend (-0.92 and -0.91 days/decade respectively). The 

observed pattern of trends for extreme temperature range (Fig. 5.2e) is generally not well 

simulated (Fig. 5.2f). The trend pattern for heat wave duration is well simulated by the 

multi-model although trend magnitudes are underestimated in each grid box (Fig. 5.2g - 

Fig. 5.2h), which as noted previously is likely to be related to definitional differences 

between the observations and models.  
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Table 5.2: Observed and simulated decadal OLS trends calculated over the 1957 to 1999 period for 

each index (Table 5.1) averaged across Australia using grid boxes containing observations from 

Fig. 5.2 and Fig. 5.3. Bold signifies trends are significant at 5% level. Observations are shown with 

2 standard errors in the trend calculation estimated using Restricted Maximum Likelihood 

(Trenberth et al. 2007) while 10 to 90% confidence intervals are shown in brackets for the model 

data by randomly resampling the bootstrapped trends (see text) across all model runs to give an 

estimate of the uncertainty from using multiple model simulations. Units as Table 5.1 (per decade).  

 

Index Obs Multi-model 

Warm nights  1.11 ±0.06 1.15 (0.48/1.87) 

Frost days -0.89 ±0.07 -0.19 (-1.46/0.22) 

Extreme temperature range -0.19 ±0.02 0.04 (-0.29/0.31) 

Heat wave duration 7.05 ±0.33 0.26 (-0.31/0.91) 

Heavy precipitation days 0.28 ±0.06 -0.06 (-0.79/0.89) 

Maximum 5-day precipitation 0.42 ±0.33 0.32 (-1.37/2.32) 

Simple daily intensity  0.04 ±0.02 0.02 (-0.06/0.13) 

Consecutive dry days -0.14 ±0.15 1.04 (-1.68/3.36) 

Very heavy precipitation contribution 0.60 ±0.12 0.26 (-0.58/1.23) 

 

  5.3.1.2 Precipitation extremes 

 

There are no significant observed trends in the precipitation indices (Table 5.2) which is 

perhaps not surprising given that precipitation extremes are less well spatially correlated 

and have larger interannual variability over Australia than temperature extremes 

(Alexander et al. 2007). Also it is clear from Table 5.2 and 5.3 that there are generally 

wider confidence intervals on the simulated trends of precipitation extremes than 

temperature extremes. Precipitation is also not expected to respond as consistently or 

strongly to greenhouse gas forcing as temperature (e.g. Lambert et al. 2005). Given this we 

might expect that it would be more difficult for climate models to capture observed trends 

in precipitation extremes. So it is encouraging to find that the majority of models match the 

sign of the observed trend for four out of the five precipitation extremes. The exception is 

consecutive dry days where six out of the nine models and the multi-model average have 

trends of opposite sign to the observations. Fig. 5.1 shows that the models also do 

reasonably well at simulating the amount and variability of the precipitation extremes (Fig. 
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5.1e - Fig. 5.1i). In addition all models underestimate the actual amount of observed simple 

daily intensity (Fig. 5.1g) while most models also underestimate maximum 5-day 

precipitation amount (Fig. 5.1f) although the trend averaged over Australia from the 

multiple model simulations is close to the observed trend (Table 5.2). The observations of 

heavy precipitation days (Fig. 5.1e), consecutive dry days (Fig. 5.1h) and very heavy 

precipitation contribution (Fig. 5.1i) sit within the range of values for those indices 

simulated by the full suite of models. However, the model ranges are very large. 

 

The spatial trend maps for the precipitation indices (Fig. 5.3) show that it is mostly 

southern Australia that is covered by observational data. Even so, this corresponds to the 

region with the highest population density so it provides useful information for future 

studies which relate climate extremes to impacts. Unfortunately no observed high quality 

precipitation extremes data exist for the northwest region although current work at the 

Bureau of Meteorology is aimed at addressing this (personal communication Dörte Jakob). 

This is unfortunate since there is a well established increase in mean precipitation in this 

region since the 1950s, the reason for which is still being debated in current literature (e.g. 

Rotstayn et al. 2007; Shi et al. 2008; Wardle and Smith 2004). However most models (not 

shown) simulate a decrease in heavy precipitation days over the northwest region but a 

mixed response regarding the trends in simple daily intensity.  

 

As noted the multi-modelled trend for maximum 5-day precipitation is close to the 

observed trend but Fig. 5.3c – Fig. 5.3d show there are some differences in regional 

response. The multi-modelled trend in simple daily intensity also fails to capture some of 

the strong spatial gradients shown in the observations e.g. Victoria in south-east Australia 

exhibits increasing trends in the western part of the state and decreasing trends in the east 

(Fig. 5.3e) whereas the multi-model shows uniform increases in precipitation intensity 

across the region (Fig. 5.3f). Observed trends in consecutive dry days (Fig. 5.3g) have not 

been as uniformly increasing as simulated trends might suggest (Fig. 5.3h), the overall 

trend across those parts of Australia with observed data shows that the simulated multi-

model trend is significantly increasing (1.04%/decade) contrasting with the observed 

decreasing trend of -0.14%/decade (Table 5.2). Also, as with heavy precipitation days, it is 

the models INM-CM3.0, MIROC3.2 (hires) and GFDL-CM2.1 with statistically significant 

increases in consecutive dry days which are largely influencing this temporal trend (Table 

5.3). Southwestern Western Australia has seen a significant and well documented decline 
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in precipitation since the mid-1970’s (IOCI 2002) and this agrees with an increase in 

consecutive dry days in the region (Fig. 5.3g). However the observed increase is not as 

large or statistically significant as the models suggest (Fig. 5.3h). In general, the simulated 

and observed spatial distributions of trends of very heavy precipitation contribution (Fig. 

5.3i and Fig. 5.3j) are not in good agreement. However given that precipitation is a much 

less spatially coherent variable than temperature and that precipitation extremes could 

depend on specific convection or storm events, models would be expected to have a more 

difficult time simulating patterns of precipitation extremes than temperature extremes. 

Given this fact it is quite impressive that the models capture some of the observed trends 

and trend patterns. 

 

In the next section measures of trend uncertainty are estimated for observed and modelled 

temperature and precipitation extremes to provide objective comparison of the temporal 

and spatial similarity between observed and modelled trends. 

 

 5.3.2 Measuring trend uncertainty 

 

For each index objective measures were calculated to assess the models’ ability to 

reproduce 1) observed area averaged trends (temporal similarity) and 2) spatial patterns of 

observed trends (spatial similarity) over Australia. In each case a bootstrapping technique 

was employed to assess the uncertainty associated with the modelled trend estimates over 

Australia during the latter part of the 20th century. To assess the uncertainty associated 

with temporal similarity, the modelled timeseries from Fig. 5.1 are used to calculate the 

lines of best fit and associated residuals for each index. Next, a moving block bootstrap 

resampling (following the method of Wilks 1997) was used to randomly resample the 

residuals in blocks of two years to maintain some of the temporal correlation in the 

timeseries. This procedure is performed 1000 times, adding the line of best fit back each 

time to the resampled residuals and recalculating the trend. Essentially this produces a 

distribution of probable or ‘plausible’ climate trends for Australia. The same bootstrapping 

method is followed independently for each of the model simulation index timeseries from 

Fig. 5.1. Probability distribution functions (PDFs) are then created using the 1000 

bootstrapped trends for each index so that the observations and models can be compared. 

PDFs are centred on the original model trend and models with multiple simulations are 
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combined into one PDF and centred on the ensemble mean trend. Fig. 5.4 shows the 

temporal similarity PDFs for each index.  

 

Table 5.3: As Table 5.2 but showing OLS trends and 10% and 90% confidence intervals for each 

model used in this study. For models where the ensemble mean is calculated from multiple 

simulations, the confidence intervals are calculated using all ensemble members. 

 

Temperature extremes 

 Warm nights 
 

Frost days Extreme 
temperature 
range 

Heat wave 
duration 

 

CCSM3 1.41 (1.11/1.71) -0.47 (-0.73/-0.18) -0.02 (-0.16/0.12) 0.02 (-0.24/0.30)  
PCM 1.22 (0.60/1.91) -0.92 (-1.58/-0.01) -0.19 (-0.40/0.03) -0.09 (-0.50/0.30)  
INM-CM3.0 0.81 (0.34/1.24) 2.44 (0.46/4.44) 0.31 (0.06/0.54) 0.10 (-0.09/0.27)  
MRI-
CGCM2.3.2 1.71 (1.13/2.60) -0.91 (-1.33/-0.45) 0.02 (-0.18/0.23) 0.30 (-0.17/0.77)  
MIROC3.2(med) 0.78 (0.30/1.26) -0.19 (-0.38/-0.04) -0.22 (-0.55/0.08) -0.18 (-0.52/0.17)  
MIROC3.2 (hi) 1.37 (0.96/1.78) -0.04 (-0.12/0.03) 0.48 (0.30/0.67) 0.62 (0.41/0.81)  
GFDL-CM2.1 0.85 (0.33/1.31) -0.07 (-0.52/0.42) 0.14 (-0.06/0.35) 0.75 (0.11/1.51)  
GFDL-CM2.0 0.78 (0.50/1.08) -0.78 (-1.48/-0.10) -0.02 (-0.17/0.13) 0.39 (-0.06/0.83)  
CNRM-CM3 1.59 (1.16/2.01) -2.91 (-4.27/-1.62) -0.17 (-0.32/-0.01) 0.37 (-0.07/0.83)  
 

Precipitation extremes 

 Heavy 
precipitation days 

Maximum 5-day 
precipitation 

Simple daily 
intensity 

Consecutive dry 
days 

Very heavy 
precipitation 
contribution 

CCSM3 0.01 (0.33/0.36) 0.25 (-0.89/1.23) 0.06 (0.02/0.09) 1.20 (0.05/2.18) 0.15 (-0.41/0.63) 

PCM 0.51 (-0.03/1.43) 1.31 (0.19/2.41) 0.05 (-0.01/0.12) -0.27 (-1.82/1.59) 0.83 (0.30/1.45) 

INM-CM3.0 -0.41 (-0.78/-0.03) -1.54 (-2.48/-0.63) -0.04 (-0.11/0.02) 1.65 (0.67/2.63) -0.25 (-0.92/0.39) 

MRI-
CGCM2.3.2 0.08 (-0.32/0.48) 0.58 (-0.79/2.00) 0.05 (-0.07/0.17) 0.64 (-2.79/5.02) 0.26 (-0.56/1.13) 

MIROC3.2(med) 0.33 (-0.36/0.97) 0.31 (-1.41/2.70) 0.03 (-0.04/0.09) -0.07 (-0.79/0.62) 0.15 (-0.53/0.86) 

MIROC3.2 (hi) -1.07 (-1.52/-0.64) -0.04 (-1.25/1.19) -0.03 (-0.09/0.04) 1.95 (1.12/2.80) 0.08 (-0.47/0.60) 

GFDL-CM2.1 -0.70 (-1.64/0.14) -0.42 (-3.11/2.0) -0.02 (-0.13/0.09) 2.58 (-0.15/5.16) 0.04 (-0.98/1.07) 

GFDL-CM2.0 0.25 (-0.16/0.68) 1.01 (-0.29/2.42) 0.05 (-0.03/0.13) 0.80 (-1.09/2.76) 0.51 (-0.25/1.34) 

CNRM-CM3 0.89 (0.21/1.56) 2.95 (0.99/5.03) 0.07 (-0.01/0.16) -1.18 (-3.53/1.11) 0.15 (-0.10/0.38) 
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Fig. 5.3: As Fig. 5.2 but for extreme precipitation indices (Table 5.1). 
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In most cases the spread of plausible model trends overlaps with the observations. Heat 

wave duration (Fig. 5.4d) is the only index where none of the PDFs of modelled trends 

overlap with the observed trends and this is probably associated with the different 

definitions used (see Section 3.3). For warm nights all models support a warming trend and 

indeed there is very little overlap of any of the model PDFs with zero (Fig. 5.4a). This is 

also supported by the positive confidence intervals on the multi-model trend estimates in 

Table 5.2. Trends in the other temperature indices, frost days (Fig. 5.4b) and extreme 

temperature range (Fig. 5.4c) are generally less well simulated than warm nights although 

for instance the median value of the PCM model PDF for both frost days and extreme 

temperature range is centred around the observed trend. Some other models do a relatively 

poor job of simulating these indices. For instance the highest resolution model, MIROC3.2 

(hires), and the lowest resolution model, INM-CM3.0, exhibit little or no overlap with the 

observations for both frost days and extreme temperature range. Note also that two of the 

models, CNRM-CM3 and INM-CM3.0, have a much larger spread than the rest of the 

models for trends in frost days (Fig. 5.4b). Both these models have only one ensemble 

member, but the greater variance of the PDFs is most likely due to the larger interannual 

variability of simulated frost days by these models as shown in Fig. 5.1b.  

 

To assess the uncertainty associated with spatial trend patterns i.e. in order to determine the 

spatial similarity of trends between the observations and models, the bootstrapping 

technique is again employed but this time timeseries are randomly resampled at each grid 

point to calculate trends. The bootstrapping is done synchronously at all locations to 

maintain the spatial coherence of the trends. This produces 1000 gridded fields of plausible 

spatial trend patterns for the observations and models to reflect the uncertainty associated 

with natural climate variability. From these 1000 fields a spatial correlation statistic is 

calculated as follows. We randomly select an observed trend pattern and independently a 

model trend pattern. The area-weighted uncentred spatial correlation between these two 

patterns is calculated (this measure is similar to the congruence statistic described by 

Kiktev et al. 2007). The procedure is repeated 2500 times and the resulting distribution of 

spatial correlation values is used to create PDFs for each model run and index. To ensure 

that the bootstrapped PDFs are measuring the uncertainty around the models’ ”best 

estimate”, the medians were centred on the original values of pattern similarity between the 

observed and modelled trend fields. The resulting PDFs are shown in Fig. 5.5. In general 

the higher the median value of the PDF, the better a model is at simulating the observed 
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pattern of trends for that index. The null hypothesis that the models have no significant 

skill at reproducing observed spatial trend patterns is tested and rejected if a zero 

correlation falls within the lower 5% tail of the PDF. Very few of the individual model 

runs (Fig. 5.5) and none of the ensemble means (not shown) from the nine models showed 

significant skill at reproducing the observed pattern of trends over Australia for any of the 

indices. Indeed only the pattern of maximum 5-day precipitation (Fig. 5.5f) is significantly 

well simulated by one run from each of the PCM and MRI-CGCM2 models. However, 

interestingly the multi-model ensemble did show significant skill at simulating the trend 

pattern for heavy precipitation days even though there was no significant skill in any of the 

contributing models (not shown).  
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(c) Extreme temperature range
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(d) Heat wave duration
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(f) Maximum 5−day precipitation
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(h) Consecutive dry days
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(i) Very heavy precipitation contribution
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Fig. 5.4: PDFs of plausible areally averaged OLS trends (1957 to 1999) over Australia using each 

of the nine climate models in the CMIP3 archive. PDFs are calculated using the ‘temporal 

similarity’ bootstrapping technique described in the text. Where there are multiple ensemble 

members, PDFs are centred on the ensemble mean trend. The dashed lines represent where the 

observed trends lie over the same period. Units on x-axes as Table 5.1 (per decade). 
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  5.3.2.1 Natural versus anthropogenic forcings 

 

Two out of the nine models (CCSM3 and PCM) are also available for analysis using 

natural-only and anthropogenic-only as well as all-forcings runs. The natural-only runs 

include only forcing from volcanic aerosols and solar variability while anthropogenic-only 

runs include only forcing from greenhouse gases, sulphate aerosols, black carbon aerosols 

(CCSM3 only) and stratospheric ozone depletion. The natural and anthropogenic forcings 

for PCM and CCSM3 are described in more detail in Meehl et al. (2004) and Meehl et al. 

(2006), respectively. Again the variability in the trends for each of the model runs is 

calculated using the bootstrapping procedure described above to measure both the temporal 

and spatial similarity between observed and modelled trends. The resulting PDFs of 

temporal similarity are again analysed to assess how well the different forcings runs 

simulate the observed trends during the latter part of the 20th century for each index. In 

most cases the PDFs for the different forcings runs overlapped with the observed trend 

indicating that in these cases at least there was no discernible difference in the models 

performance between the natural and all-forcings runs.  

 

Fig. 5.6 shows the PDFs using the different forcings from both the PCM and CCSM3 

models for warm nights and very heavy precipitation contribution. For warm nights, the 

PDFs for the natural-only forcings do not overlap (or overlap less than 5% in the case of 

the PCM model) with the observed trends. Fig. 5.6a and Fig. 5.6b show that it is only 

when anthropogenic forcings are included that the models are able to adequately simulate 

the observed trend in warm nights. The precipitation extremes do not show any significant 

differences between the natural, anthropogenic and all-forcings runs although Fig. 5.6c and 

Fig. 5.6d shows that there does appear to be some separation between the natural-only and 

all-forcings runs for very heavy precipitation contribution. However, when the PDFs of 

spatial similarity are compared with the observations there is no significant skill in either 

the PCM or CCSM3 model in reproducing the spatial trend pattern of any index 

irrespective of which forcings are used (not shown). Fig. 5.6 however does highlight that 

the observed trends in at least one of the temperature extremes during the latter half of the 

20th century when averaged over Australia is unlikely to have been produced from natural 

forcings alone. 
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Fig. 5.5: PDFs of the spatial trend correlations (calculated over 1957 – 1999) between observations 

and 22 runs from the nine CMIP3 models available for this study over Australia. PDFs are 

calculated using the ‘spatial similarity’ bootstrapping technique described in the text. PDFs are not 

shown for CNRM-CM3 frost days and heat wave duration due to the masking applied to this model 

at source which reduces the number of gridboxes available for the spatial correlation calculation. 

 

 5.3.3 Differences in index definitions 

 

Potential errors or differences amongst the model results could be due to potentially 

different computational techniques used by each group. Another complication in 

comparing the modelled and observed indices is that when the Frich et al. (2002) analysis 

was updated by Alexander et al. (2006) some of the definitions using the observed data had 

to be redefined since statistical inconsistencies were discovered when the original 

definition was used. Three of the indices in this study have been affected by this update 

(Table 5.1). In particular it was shown that the original simple threshold calculation for the 

90th percentile of minimum temperatures (warm nights) contained an inhomogeneity at the 

start and end of the 1961-1990 base period (Zhang et al. 2005). Unfortunately these 

inconsistencies were discovered after the extremes indices had been submitted to the 
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CMIP3 archive so they could not be re-calculated without access to the original daily 

model data. To try and assess how these definitional differences would affect our 

comparison, we plotted trends in the original station data for Australia that were used in 

Frich et al. (2002) with trends in the same stations using the Alexander et al. (2006) 

definitions. Fig. 5.7 shows the comparisons for heat wave duration, warm nights and 

consecutive dry days which are the indices where differences in definition occur. Heat 

wave duration has the lowest correlation between the two methods (0.17) and the biggest 

difference in the trends (the slope of 0.28 of the line of best fit using total least squares 

regression indicates that in general the trends in heat wave duration from Frich et al. 

(2002) are much larger than the warm spell duration defined by Alexander et al. (2006)). 

Warm nights are reasonably well spatially correlated between the two methods (0.45) but 

the slope of the line of best fit (0.5) indicates that using the Frich et al. (2002) definition 

produces trends about twice as large as those using the Alexander et al. (2006) definition 

when averaged across Australia. Consecutive dry days are highly spatially correlated 

between the two methods (0.77) and the slope of the line of best fit is close to 1.0 

indicating that the trends are reasonably comparable between the Frich et al. (2002) and 

Alexander et al. (2006) definitions.  

 

We judge that to adjust for these changes would not be feasible particularly since bias 

corrections would probably have to be calculated regionally and our station sample size is 

simply not large enough to do this rigorously. The best option would obviously be to 

recalculate these indices using the daily output from the nine climate models. However at 

present the model data are not available for us to do this so the differences discussed above 

should be considered when assessing the projected future changes in extremes presented in 

the next section. 

 

5.4 Discussion 
 

It is encouraging to note that the majority of global climate models (GCM) analysed in this 

study were able to generally simulate the sign of the observed trend and to some extent the 

associated variability of temperature and precipitation extremes when averaged over 

Australia. This gives us some confidence in the projected changes presented in Alexander 

and Arblaster 2008 which indicate substantial increases in warm nights and heat wave 
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duration and decrease in frost days by the end of this century. However the results also 

showed that GCMs may not be adequately simulating the spatial trend patterns of extremes 

across the continent during the late 20th century.  
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Fig. 5.6: PDFs of annual OLS trends (1957 to 1999) in warm nights for (a) PCM and (b) CCSM3 

and very heavy precipitation contribution for (c) PCM and (d) CCSM3 over Australia for natural 

only (dotted), anthropogenic only (dashed) and all forcings (dotted dashed). PDFs are centred on 

the ensemble mean trend. The solid lines represent where the observed trends lie over the same 

period. PDFs are calculated using the ‘temporal similarity’ bootstrapping technique described in 

the text and trends are calculated as Fig. 5.4. 

 

Previous studies (e.g. Kiktev et al. 2003; Christidis et al. 2005; Kharin et al. 2007) show 

that climate models are generally skilful at reproducing global trend patterns of 

temperature extremes but have little skill in reproducing trend patterns of precipitation 

extremes. Hegerl et al. (2004) also find that patterns of change in precipitation extremes 

are more heavily influenced by internal variability of the climate system when compared to 

temperature extremes. The detection of trends in climate variables is a signal to noise 

problem, and the noise associated with temperatures at regional scales is greater than at 
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larger continental or global scales (Karoly and Wu 2005). So perhaps we cannot expect 

regional trend patterns to be well simulated particularly if variations in extremes in 

Australia are driven primarily by local influences. Furthermore, the strong influence of 

ENSO on the Australian climate (as discussed in Section D and Chapter 4), which 

improves predictability on seasonal timescales, also enhances the variability, making 

attribution on climate scales more difficult. 
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Fig. 5.7: The relationship between two different definitions of the heat wave duration, warm nights 

and consecutive dry days indices (Table 5.1) across Australia. Each triangle represents the annual 

trend calculated between 1957 and 1996 for each index at Australian stations. The red line 

represents the line of best fit using total least squares regression, s is the slope of the line and r is 

the spatial correlation between all points.  

 

In this study, model resolution appears not to be critical. While the lowest resolution 

model, INM-CM3.0, gets the wrong sign of trend of all the precipitation indices and two 

temperature indices, the highest resolution model, MIROC3 (hires), also does not fare well 

for four of the five precipitation indices and one of the temperature indices. Perkins et al. 

(2007) find that it is possible to discriminate between models in their ability to simulate 

daily temperature and precipitation distributions over Australia, but the findings here 
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suggest that no one model is particularly good or bad at reproducing the observed trends or 

spatial patterns in the extremes of the two variables. In addition Chen and Knutson (2008) 

suggest that the way in which the observed precipitation indices are gridded prohibits a fair 

comparison between models and observations. 

  

Given that changes in climate extremes will have much larger societal and ecological 

impacts than mean change (Easterling et al. 2000) we need to be confident in our ability to 

simulate future changes in extremes if we are to adequately assess their impacts. This study 

shows that while we can have some confidence in a general sense when assessing 

simulated extremes from coupled climate models over Australia, uncertainties in the 

patterns of future projections need to be considered when assessing changes on regional 

scales. 

 

5.5 Conclusions 
 

In this study objective measures have been used to analyse the ability of an ensemble of 

multiple global climate models to simulate observed trends in climate extremes over 

Australia and to assess projected changes in these extremes at the end of the 21st Century. 

In general the models capture the sign of observed trends in both temperature and 

precipitation extremes but no one model is consistently good at reproducing all indices. In 

spite of some differences in definition, the amount, interannual variability and trend of the 

warm nights index is particularly well represented by all models analysed. A pattern 

correlation technique however has shown that none of the models are skilful at simulating 

important trend patterns on regional scales, only the multi-model ensemble showing any 

significant skill at modelling trend patterns of heavy precipitation days. This may imply 

that some regional and/or large-scale process or processes over Australia are not well 

modelled or resolved, or that unforced variability is contributing largely to these changes. 

 

More work would be required to determine to what degree recent changes in climate 

extremes over Australia are due to human causes, and more international cooperation is 

essential to ensure that the modelling and observational groups derive consistent extremes 

indices. However, it has been important to document the models’ ability to reproduce 20th 

century changes. As the driest inhabited continent with marginal agricultural climate and 
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unique and vulnerable societies and ecosystems, stakeholders and policymakers in 

Australia urgently need information regarding climate extremes. We highlight here both 

the agreement and uncertainty around model simulations. 
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6. Concluding remarks 
 
 

The main aim of this thesis was to identify and analyse key mechanisms driving observed 

changes in climate extremes in Australia. This was done by answering three primary 

questions: 

 

1. How have climate extremes of temperature, precipitation and storminess changes 

in Australia during the observational record? 

 

Using high quality daily temperature and precipitation data for Australia, it was shown that 

trends in extremes of both temperature and precipitation were very highly correlated with 

mean trends. Annually, the spatial correlation between trends in extremes and trends in the 

mean was stronger for maximum temperature than for minimum temperature. However, 

this relationship was reversed in winter, when minimum temperatures showed the stronger 

correlations. Analysis of the rate of change of extremes and means across Australia as a 

whole showed most stations have greater absolute trends in extremes than means. There 

was also some evidence that the trends of the most extreme events of both temperature and 

precipitation are changing more rapidly in relation to corresponding mean trends than are 

the trends for more moderate extreme events. The annual relationships between means and 

extremes of precipitation in Australia were consistent with all other global regions studied. 

It was also shown that severe storms at Cape Otway in south-eastern Australia have 

significantly declined in frequency over the past 150 years. 

 

2. Are interactions between and changes in large-scale mechanisms driving observed 

trends in climate extremes? 

 

Using the method of Self-Organizing Maps (SOMs), daily synoptic pressure patterns were 

produced for Australia from a combination of a high quality daily dataset of in-situ mean 

sea level pressure and ERA-40 reanalysis data for the period 1907 to 2006. Changes in the 

frequencies of these patterns revealed that there has been a significant reduction in the rain 

bearing systems affecting southern Australia since the beginning of the 20th century. This 

reduction has significantly impacted the frequency of severe storms in south-east Australia 

but there were more complex changes related to rainfall extremes at four major Australian 
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cities. There are also links between large scale pressure patterns and cloud regimes but 

again the impact of changes in cloud regimes across southern Australia appears to be 

different depending on the region. 

 

SOMs were also used to categorise sea surface temperature (SST) patterns of variability 

for both observations and two experiments from a state of the art global climate model. 

The patterns were used to investigate the global response of extreme temperature and 

precipitation indices from the HadEX dataset to different nodes of SST variability. Results 

showed very strong statistically significant opposite responses from strong La Niña 

patterns when compared to strong El Niño patterns. Extreme maximum temperatures were 

significantly cooler during strong La Niña events than strong El Niño events over 

Australia, southern Africa, India and Canada while the converse was true for USA and 

north-eastern Siberia. Even intermediate patterns representing a move from weak El Niño 

to a weak La Niña phase also produced statistically significant increases in warm nights 

and warm days particularly across Scandinavia and north-west Russia. While the response 

of precipitation extremes to global SST patterns was less spatially coherent there were 

large areas across North America and central Europe which showed statistically significant 

differences in the response to opposite phases of ENSO. The results indicate that the 

variability of global SST anomalies is important for the modulation of extreme temperature 

and precipitation globally. Even weak phases of ENSO can have significant impacts on 

extreme events across large regions and this is particularly evident in high latitudes. An 

atmosphere-only global climate model (CAM3) forced with observed SSTs was used to 

investigate whether state of the art models could reproduce some of the significant 

responses that have been observed over Australia. Results showed that the model obtained 

the opposite response to that which was observed. This may indicate that some important 

atmospheric processes are not well captured by the model. 

 

A further two global climate models (CCSM3 and PCM1) with output from different 

forcings showed however that the observed trends in warm nights over Australia was 

consistent with an anthropogenic response but was inconsistent with natural-only forcings. 
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3. Can state of the art climate models adequately represent observed changes in 

climate extremes? 

 

Multiple simulations from nine global coupled climate models were assessed for their 

ability to reproduce observed trends in a set of indices representing temperature and 

precipitation extremes over Australia. Observed trends over the 1957 to 1999 period were 

compared with individual and multi-modelled trends calculated over the same period. 

When averaged across Australia the magnitude of trends and interannual variability of 

temperature extremes were well simulated by most models particularly for the warm nights 

index. The majority of models also reproduced the correct sign of trend for precipitation 

extremes although there was much more variation between the individual model runs. A 

bootstrapping technique was used to calculate uncertainty estimates and also to verify that 

most model runs produce plausible trends when averaged over Australia. Although very 

few showed significant skill at reproducing the observed spatial pattern of trends, a pattern 

correlation measure showed that spatial noise could not be ruled out as dominating these 

patterns.  

 

There are still many unanswered questions and avenues for further research. Climate 

model projections are becoming increasingly important for the study of the impact that 

changes in climate extremes might have on e.g. health, biodiversity, infrastructure etc. The 

results presented here suggest that while climate models can reproduce variability and 

trends in climate extremes in a general sense, the response in Australia to important 

mechanisms such as the atmospheric response to global SST variability appear not to be 

well represented in state of the art climate models. If we could have confidence in these 

models they would show that future projections of the indices presented in Chapter 5 

indicate substantial increases in warm nights and heat wave duration and decreases in frost 

days by the end of this century under the best emissions scenario estimates produced by the 

IPCC (Alexander and Arblaster 2008). The precipitation indices simple daily intensity, 

consecutive dry days and very heavy precipitation contribution are also set to more than 

double within the next 100 years although the uncertainty estimates across multiple climate 

simulations are large. Alexander and Arblaster (2008) also note that the magnitude of 

changes in both temperature and precipitation indices were found to scale with the strength 

of emissions. This could mean that the future anthropogenic climate change signal may 

eventually swamp some of the natural variations that have been important to the 
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modulation of Australian climate extremes in the past. Alternatively it may indicate that 

global climate models under-represent important aspects of natural climate variability. For 

this reason, the validation of climate models should remain a top priority for further 

research into climate extremes if we are to give useful advice to policymakers about their 

potential future changes and impacts. 
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