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Abstract

Non-Gaussian time series variables are prevalent in the economic and �nance

spheres, with state space models often employed to analyze such variables and,

ultimately, to produce forecasts. A review of the relevant literature reveals that

existing methods are characterized by a reliance on (potentially incorrect) para-

metric assumptions and are often computationally expensive. The primary aim

of this thesis is to develop a non-parametric approach to forecasting - within the

state space framework - with computational ease an important focus. With a

view to capturing all relevant information about the likely future values of the

variable of interest, the approach is used to produce non-parametric estimates

of the full forecast distribution over any time horizon.

Simulation experiments are used to document the accuracy of the non-parametric

method relative to both correctly and incorrectly speci�ed parametric alterna-

tives, in a variety of relevant settings. Applying a range of methods for evaluating

and comparing distributional forecasts, the non-parametric method is shown to

perform signi�cantly better, overall, than misspeci�ed parametric alternatives

while remaining competitive with correctly speci�ed parametric estimators.

Focus is then given to the development of a new non-Gaussian state space

xii



Abstract xiii

model for observed realized volatility from which estimates of forecast distribu-

tions of future volatility are produced using the non-parametric method. In an

empirical illustration, the non-parametric method is used to produce sequential

estimates of the out-of-sample one-step-ahead forecast distribution of realized

volatility on the S&P500 index during the recent �nancial crisis. A resampling

technique for measuring sampling variation in an estimated forecast distribution

is also demonstrated.

The proposed �ltering algorithm is further extended to cater, in particular,

for multi-step-ahead forecasting and multivariate systems. A simulation-based

version of the algorithm is also illustrated, with the algorithm in this form seen to

be a computationally e¢ cient alternative to existing particle �ltering algorithms.



Chapter 1

Introduction

1.1 Background

Non-Gaussian time series variables are prevalent in the economic and �nance

spheres, where deviations from the symmetric bell-shaped Gaussian distribution

may arise for a variety of reasons, for example due to the positivity of the vari-

able, to its inherent integer or binary nature, or to the prevalence of values that

are far from, or unevenly distributed around, the mean. Against this backdrop,

the challenge is to produce forecasts that are coherent - i.e. consistent with any

restrictions on the values assumed by the variable - and that also encompass all

important distributional information. Point forecasts, based on measures of cen-

tral tendency, are common. However, they may not be coherent - evidenced, for

example, by a real-valued conditional mean forecast of an integer-valued vari-

able. Moreover, such measures convey none of the distributional information

that is increasingly important for decision making (e.g. risk management), most

notably as concerns the probability of occurrence of extreme outcomes. In con-

trast, an estimate of the full probability distribution, de�ned explicitly over all

1
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possible future values of the random variable is, by its very construction, coher-

ent, as well as re�ecting all of the important distributional features (including

tail features) of the variable in question.

Such issues have informed recent work in which distributional forecasts have

been produced for speci�c non-Gaussian data types (e.g. Freeland and McCabe,

2004a,b; McCabe and Martin, 2005; Jung and Tremayne, 2006; Bu and Mc-

Cabe, 2008; Bu, Hadri and McCabe, 2008; Czado, Gneiting and Held, 2009;

McCabe, Martin and Harris, 2011, for counts; Bauwens, Giot, Grammig and

Veredas, 2004, for trade durations; Hong, Li and Zhou, 2004, for interest rates;

Amisano and Giacomini, 2007, for in�ation). The need to forecast the proba-

bility of large �nancial losses has also been the primary reason for the recent

focus on distributional forecasting of portfolio returns (Diebold, Gunther and

Tay, 1998; Berkowitz, 2001; Geweke and Amisano, 2010), with this literature, in

turn, closely linked to that in which extreme quantiles (or Values at Risk) are the

focus of the forecasting exercise (Danielsson and de Vries, 2000; Engle and Man-

ganelli, 2004; Giacomini and Komunjer, 2005; de Rossi and Harvey, 2009). The

extraction of risk-neutral distributional forecasts of non-Gaussian asset returns

from derivative prices (Bakshi, Cao and Chen, 1997; Aït-Sahalia and Lo, 1998;

Bates, 2000; Lim, Martin and Martin, 2005) is motivated by similar goals; i.e.

that deviation from Gaussianity requires attention to be given to the prediction

of higher order moments and to future distributional characteristics.1

1Discussion of the merits of probabilisitic forecasting in general is provided by, amongst
others, Dawid (1984), Tay and Wallis (2000), Corradi and Swanson (2006), Gneiting and
Raftery (2007), Gneiting, Balabdaoui and Raftery (2007) and Gneiting (2008).
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The existing literature, in large part, uses parametric models to estimate fore-

cast distributions, with the accuracy of the resultant predictions being dependent

of the validity of the parametric assumptions. In contrast, certain analyses es-

chew strict parametric speci�cations, producing �non-parametric� estimates of

forecast distributions of one kind or another.2 As an early example, Aït-Sahalia

and Lo (1998) propose a non-parametric technique for estimating the state-price

density (SPD) implicit in �nancial option prices. This technique involves using

non-parametric kernel regression methods to estimate an option-pricing formula

which is then used to derive the SPD. When applied to the S&P500 stock index,

the non-parametric method is shown to be superior to a misspeci�ed parametric

approach based on the Black-Scholes pricing model. In a somewhat di¤erent

context, McCabe, Martin and Harris (2011) propose a non-parametric approach

for estimating predictive distributions of count time series modelled by the in-

teger auto-regressive (INAR) class. The approach treats the arrivals, or inno-

vations, process non-parametrically, with a parametric structure maintained for

the dynamic component of the model. In addition to achieving asymptotic non-

parametric e¢ ciency, the non-parametric method is shown to perform better

overall in �nite samples than various misspeci�ed parametric alternatives.

State space models are also used in the development of non-parametric meth-

ods for estimating predictive distributions. For example, Rodriguez and Ruiz

2We follow Li and Racine (2007) in using the term �non-parametric�to refer to statistical
techniques that do not require the speci�cation of a functional form for an object being esti-
mated; a forecast distribution in our case. We return to this matter of terminology at a later
point.
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(2009), building on earlier work of Pascual, Romo and Ruiz (2006), present a

bootstrap-based approach for the estimation of prediction intervals in a linear

state space setting. The bootstrap procedure is used to produce prediction in-

tervals for the observed variable, via the Kalman �lter recursions, but avoids the

assumption of Gaussian measurement errors by using random draws from the

empirical distributions of the measurement error. Although the bootstrap pro-

cedure focuses on the estimation of prediction intervals and not the predictive

distribution of the observed variable per se, kernel smoothing techniques can be

applied to the bootstrap draws of the future value of the observed variable to

construct a non-parametric estimate of its predictive density.

Also within a state space framework, Durham (2007) uses a standard stochas-

tic volatility (SV) model to obtain a semi-parametric estimate of the forecast

distribution of �nancial returns, by using a mixture of normals for the condi-

tional distribution of returns, allied with simulation-based inference. Monteiro

(2010), on the other hand, represents the unknown measurement error density

in a linear state space model as a Gaussian-sum. To avoid a geometric increase

in the computational load imposed by the Gaussian-sum methodology, standard

clustering algorithms are employed at each iteration of the �lter. In addition

to estimating the parameters of the model via maximum likelihood methods,

Monteiro also estimates the unknown measurement error density itself.

In addition to time series work, the literature includes applications of non-

parametric techniques to cross sectional data. Conditional density estimation
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was originally proposed in Rosenblatt (1969), and is especially important in

problems where, for a given value of a vector of explanatory variables, the in-

terest lies in estimating the conditional density of a response variable. Hall,

Racine and Li (2004), for example, propose and apply a cross-validation tech-

nique to estimate the conditional probability density function of female labour

force participation given certain female worker characteristics (e.g. age, edu-

cational attainment, number of children in di¤erent age groups). In another

empirical example, Hansen (2004) applies a two-step conditional density esti-

mator to estimate the conditional density of log-wages given the ages of the

workers.

This brief literature survey provides a context for the focus of this thesis,

as follows. First, in keeping with the large number of important economic and

�nancial time series variables that exhibit non-Gaussianity, our primary interest

is in forecasting non-Gaussian time series data per se. Second, with a view to

capturing all uncertainty about the future realization of a time series variable

- including extreme values - we focus on probabilistic (as opposed to point)

forecasting. Third, in adopting a non-parametric approach, estimated forecast

distributions that are not reliant on the correct speci�cation of the true data

generating process (DGP) are produced. Finally, and in contrast to the problem-

speci�c approaches in the existing literature, we adopt a very general approach,

via the non-linear, non-Gaussian state space framework that is applicable to

many empirical settings.
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1.2 Overview of the Thesis

The outline of the thesis is as follows. Chapter 2 begins with the introduction

of a general state space model for a multivariate time series variable. The recur-

sive �ltering and prediction steps, used to produce the one-step-ahead predictive

distributions for the observed variable, are outlined. The speci�c �lters detailed

are the Kalman �lter, the extended Kalman �lter, the unscented Kalman �lter,

the grid-based non-Gaussian �lter of Kitagawa (1987), the Gaussian-sum �lter

and various particle �lters. For �xed parameters of the model, the �ltering al-

gorithms can be used, at least in principle, to numerically evaluate the joint

density associated with the observed data, marginal of the latent state variable.

Treating this joint density as a function of the parameters, the resulting likeli-

hood function is numerically maximized to produce maximum likelihood (ML)

estimates of the unknown parameters in the model. The estimate of the one-

step-ahead predictive distribution is subsequently produced by conditioning on

the ML parameter estimates.

Chapter 3 contributes to the probabilistic forecasting literature by proposing

a �ltering algorithm - within the general non-linear, non-Gaussian state space

framework - that provides an approximation to the true (but unavailable) �lter-

ing and predictive distributions. As will be shown, the proposed �lter is a recur-

sive algorithm, with the Dirac delta function used to recast all relevant �ltered

and predictive densities into integrals that are undertaken with respect to the

invariant distribution of the measurement error. When the measurement error
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distribution is unknown, the method may be viewed as a non-parametric �ltering

algorithm, with ordinates of the unknown error density, at �xed grid locations,

estimated within an ML procedure. The recursive �ltering and prediction den-

sities are then both used to de�ne the likelihood function, and, ultimately, the

out-of-sample predictive distribution for the non-Gaussian variable. Through

this approach, the non-parametric �lter produces distributional forecasts that

are not reliant on the complete speci�cation of the true DGP.

In order to assess the accuracy of the non-parametric forecasting method

against other possible approaches, Chapter 4 presents the available tools used

to compare and evaluate alternative forecast distributions produced from com-

peting methods. Extensive simulation experiments are then conducted to pro-

duce non-parametric and parametric estimates of the forecast distributions in

the context of the linear model and the non-linear stochastic conditional dura-

tion (SCD) model, with three di¤erent distributional assumptions for the true

measurement error in each case. Parametric estimates of the forecast distribu-

tions are produced through the use of Kalman �lter-based approaches, and are

compared with the non-parametric estimates arising from the newly proposed

method. The results show that the non-parametric estimator performs signi�-

cantly better, overall, than do the (misspeci�ed) parametric alternatives, while

remaining competitive with a correctly speci�ed parametric method.

Chapter 5 contributes to the �nancial volatility forecasting literature by

proposing a realized volatility state space model, and by using the non-parametric
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methodology to estimate the full forecast distribution of realized volatility. A

simulation exercise is undertaken to assess the forecasting performance of the

non-parametric method, against the parametric alternatives, in this context. The

non-parametric estimation method is then applied to the problem of estimating

the forecast distribution of realized volatility for the S&P500 market index dur-

ing the recent �nancial turmoil, with results showing that the non-parametric

predictive distribution is able to capture important distributional information

about the future value of the realized volatility of the index. A resampling

method is also used to cater for estimation uncertainty in the production of the

probabilistic forecasts of volatility.

Chapter 6 considers various extensions of the algorithm proposed in Chapter

3. In the �rst instance, the production of the multi-step-ahead forecast distribu-

tion is detailed. Second, two key assumptions that underpin the non-parametric

�lter in Chapter 3 are relaxed. Third, the non-parametric �lter is illustrated

in the multivariate setting. Lastly, despite the primary focus of the thesis be-

ing on a non-parametric setting in which the measurement error distribution

is unknown, the �ltering algorithm proposed in Chapter 3 is discussed here in

the context of models in which the measurement error distribution is speci�ed

parametrically, and is able to be simulated from. This modi�cation results in a

simulation-based non-linear �lter, in which all relevant integrals are evaluated

by Monte Carlo simulation. This �lter, in using simulation from the invariant

measurement distribution, is shown to provide a simple and computationally
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e¢ cient alternative to conventional particle �ltering methods.

In the concluding chapter, the main contributions of the thesis are reiterated,

namely the successful development and evaluation of a new method for producing

non-parametric forecast distributions in non-linear, non-Gaussian state space

models, and the application of the method to a new model developed for an

empirically relevant problem. The novelty of the new �ltering methodology and

its computational simplicity are highlighted and its potential applicability to a

wide range of settings summarized.



Chapter 2

State Space Models

2.1 Introduction

State space models provide a uni�ed and �exible parametric framework for mod-

elling and describing a wide range of time series data arising in a variety of

disciplines. The paper by Kalman (1960) sparked the early development of the

state space methodology in the �eld of engineering. Kalman illustrated that a

broad class of problems could be expressed by a linear, Gaussian model, with

the Markovian nature of the model allowing for the calculations needed for prac-

tical application of the model, to be set up in a simple recursive form convenient

for computing. Further development of these ideas occurred subsequently in the

engineering �eld, with contributions to the state space methodology from sta-

tisticians and econometricians occurring relatively infrequently until the early

1980�s.

In more recent years, however, state space methods have been more widely

adopted in the �elds of statistics and econometrics, and are now routinely used

in time series analysis and in other areas where longitudinal data play a role

10
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(e.g. Ansley and Kohn, 1985; Harvey and Durbin, 1986; Kitagawa 1987, 1989

and 1994; Carter and Kohn, 1994; Frühwirth-Schnatter, 1994 and 2004; De Jong

and Shephard, 1995; Harvey and Chung, 2000; Durbin and Koopman, 2000 and

2001). They have been widely used in empirical �nance, with leading examples

being variants of the stochastic volatility model (see for example, Harvey, Ruiz

and Shephard, 1994; Jacquier, Polson and Rossi, 1994; Shephard and Pitt, 1997;

Anderson, 2001; Chernov, Gallant, Ghysels and Tauchen, 2003; Eraker, Johannes

and Polson, 2003; Eraker, 2004; Broadie, Chernov and Johannes, 2007) and the

stochastic conditional duration model (Bauwens and Veredas, 2004; Strickland,

Forbes and Martin, 2006).

The increasingly widespread use of the state space approach can be attributed

to the following four key characteristics. First, the state space approach lends

itself to a structural analysis of the problem, whereby di¤erent components that

make up the time series (e.g. trend, seasonal and cyclical) are modelled sep-

arately within the model (e.g. Durbin and Harvey, 1985; Harvey and Durbin,

1986). This is in contrast with the traditional approach of Box and Jenkins

(1970), in which the model adopted depends solely on a reduced form, rather

than on the structure of the system that is thought to have generated the data.

Second, state space models are �exible, allowing for changes in the structure of

the system over time. On the other hand, the autoregressive integrated moving

average (ARIMA) models favoured by Box-Jenkins models are invariant through

time, since these models require time series data to be stationary, or to be made
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stationary through either transformation or di¤erencing of the data. Third, the

state space framework is very general. For example, many commonly used sta-

tistical models, including ARIMA and multiple linear regression models, have

a state space representation. Further, multivariate observed and explanatory

variables can also be handled by simple extensions of univariate state space the-

ory. Most importantly, appropriate speci�cation of the measurement and/state

equations can be used to cater for any data type, whether continuous or discrete,

and whether de�ned on a restricted or an unrestricted support.

Key to the use of state state models, for the purposes of both inference and

forecasting, is the need to manage the presence of the unobservable random states

via �ltering techniques. In the remainder of this chapter, the main concepts of

the �ltering literature are reviewed, with particular emphasis given to out-of-

sample prediction and to �exibility in the speci�cation of the measurement error

distribution. Section 2.2 presents a general parametric state space model, with

the associated inferential objects brie�y discussed in Section 2.3. Section 2.4

presents the general �ltering steps leading to the one-step-ahead predictive dis-

tributions that are needed for specifying the likelihood function, followed by the

speci�c �lters used, in various settings, to produce these predictive distributions.

In an attempt to provide a coverage of the most commonly used �lters in the

relevant literature, we outline the following: the Kalman �lter (Kalman, 1960,

Kalman and Bucy, 1961), the extended Kalman �lter (Anderson and Moore,

1979), the unscented Kalman �lter (Julier, Uhlmann and Durrant-Whyte, 1995,
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1996), the grid-based non-Gaussian �lter (Kitagawa, 1987), the Gaussian-sum

�lter (Sorenson and Alspach, 1971; Monteiro, 2010) and representative particle

�lters. Section 2.5 discusses how the unknown static parameters in the state

space model may be estimated using ML estimation, resulting in an estimate of

the out-of-sample one-step-ahead predictive distribution. Section 2.6 concludes

by discussing the limitations of the parametric forecasting approach, thereby

motivating the proposed non-parametric approach in Chapter 3.

2.2 The General Parametric State Space Model

The general parametric state space model relates to a time series of (possibly

vector valued) observations fyt ; t = 1; 2; :::; Tg, with each observation yt being

a noisy measurement of an underlying (also possibly vector valued) unobserved

state variable, xt. This relationship is expressed through the measurement prob-

ability density function (pdf),

p (ytjxt; �) ; (2.1)

for t = 1; 2; :::T , where yt is a (p� 1) vector of observations, xt is an (m� 1)

vector of unobserved components and � denotes a (q � 1) vector of unknown

parameters. The evolution of the (m� 1) state variable, xt+1, from the previous

value xt, is described by the state transition pdf,

p (xt+1jxt; �) ; (2.2)

for t = 1; 2; :::; T , with an initial state pdf,

p (x1j�) ; (2.3)
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also speci�ed. It is noted that here the exposition focuses on both yt and xt as

continuous random variables, with all distributions expressed using density func-

tions as a consequence; however the framework is general and can be adapted,

for example, to cater for the case where yt and/or xt is discrete.

The expressions in (2.1) and (2.2) are often de�ned via regression relation-

ships, with the model formally expressed by the following measurement and state

relationships:

Measurement equation : yt = ht (xt; �t) (2.4)

State equation : xt+1 = kt (xt; vt) ; (2.5)

for t = 1; 2; :::; T . The measurement equation (2.4) expresses yt as a function of

the state variable and the measurement error �t, while the state equation (2.5)

expresses xt+1 as a function of its lagged value, xt, and the state error vt. Either

or both of these functions may be dependent on (one or more element of) the

vector of parameters �, through the dependence on � of the densities in (2.1) to

(2.3). Each �t is assumed to be an i:i:d: random variable, that is, any dynamic

behaviour in yt is captured completely by ht (�; �) and kt (�; �). As is also common,

we assume that �t is independent of xt, in which case the pdf for �t is simply

p (�tjxt) = p (�t), for all t = 1; 2; :::; T .

2.3 Inference in State Space Models

Four types of inference may be conducted in the context of state space models:

state �ltering, state smoothing, out-of-sample forecasting (of both the observed
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and the latent), and estimation of the vector of unknown parameters, �, with this

section providing a brief overview of each. To aid the discussion, the notation

y1:t = fy1; y2; :::; ytg ;

for t = 1; 2; :::; T is used to denote the subset of observations beginning with y1,

up to and including the tth observation, yt.

2.3.1 State Filtering

With reference to the general state space model in (2.3) to (2.5), �ltering refers

to the determination of the distribution of the state vector, xt, given y1:t (i.e.

given the observed data up to and including period t), as represented by

p (xtjy1:t; �) ; (2.6)

for each t = 1; 2; :::; T . The objective of �ltering is to update knowledge of the

system each time a new value of yt is observed. Therefore, �ltering is a recursive

procedure that is applied for each t, revising the �ltered density, p (xtjy1:t; �),

using the new observation yt+1, to produce the updated density, p (xt+1jy1:t+1; �).

Closed form expressions for (2.6) are available in only very few cases, with the

methods detailed in Section 2.4 approximating these quantities in di¤erent ways.

A �ltering process, in revising each state density, produces (an approximation

to) the one-step-ahead predictive densities, p (yt+1jy1:t; �) for t = 1; 2; :::T , as a

by-product. Further details of the general �ltering (and up-dating) process, plus

an outline of speci�c �ltering algorithms will be given in Section 2.4.
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2.3.2 State Smoothing

Smoothing refers to the determination of the distribution of the state vector, xt,

conditional upon all available observations, y1:T , resulting in

p (xtjy1:T ; �) ; (2.7)

for each t = 1; 2; :::; T . The di¤erence between �ltered distributions and smoothed

distributions is that the smoothed distribution for xt depends upon the entire

set of observations, y1:T , and not only on the portion of observations available at

time t, y1:t. Of course, for the special case of t = T , the �ltered distribution is the

same as the smoothed distribution. A smoothing procedure will typically take

place after a �ltering procedure has been completed, beginning at time T � 1

and working backwards for t = T � 2; :::; 2; 1 to update the �ltered distributions

to achieve conditioning on all of the observations.

2.3.3 Forecasting

Distributional forecasting of the measurement variable yt refers to the determi-

nation of the distribution of a future observation, yT+s, given all the observations,

y1:T , represented as

p (yT+sjy1:T ; �) =

Z
p (yT+s; xT+sjy1:T ; �) dxT+s

=

Z
p (yT+sjxT+s; �) p (xT+sjy1:T ; �) dxT+s; (2.8)
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where

p (xT+sjy1:T ; �) =

Z
p (xT+sjxT+s�1; �) p (xT+s�1jy1:T ; �) dxT+s�1

=

Z
:::

Z
p (xT+sjxT+s�1; �) p (xT+s�1jxT+s�2; �) :::

p (xT+1jxT ; �) p (xT jy1:T ; �) dxTdxT+1:::dxT+s�1; (2.9)

and the term s > 0 is referred to as the forecast horizon. The density in (2.9)

provides a distributional forecast of the latent variable xt at future period t =

T +s, a relevant output when the latent variable is of interest in its own right, in

addition to being a necessary input into the forecast distribution of the observed

in (2.8). Closed form expressions for (2.8) and (2.9) are typically unavailable,

with the �ltering (and up-dating) methods detailed in Section 2.4 in the main

producing di¤erent approximations to these quantities only. When s = 1, (2.8)

and (2.9) correspond to out-of-sample one-step-ahead predictive distributions.

Primary focus is given to one-step-ahead prediction throughout this thesis, but

with extension to the multi-step-ahead case outlined in Chapter 6.

2.3.4 Estimation

In the three previous sections, the vector of parameters, �, is implictly assumed

to be known. However, in the vast majority of applications, � is unknown and

has to be estimated. An ML approach to the estimation of � is adopted in

this thesis. Under this approach, the one-step-ahead prediction distributions,

p (yt+1jy1:t; �) for t = 1; 2; :::; T � 1, produced (or approximated) as a by-product

of the �ltering process, are used to construct the likelihood function, via the
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prediction error decomposition, as

L (�) / p (y1j�)
T�1Y
t=1

p (yt+1jy1:t; �) : (2.10)

The ML estimate of �, b�, is obtained by maximizing (2.10) with respect to �,
typically via numerical optimization of the logarithm of L (�). Bayesian methods

are also commonly used in the state space framework, but will not be considered

here.1

It is now evident that the ability to produce distributional forecasts, and to

estimate the vector of parameters � if unknown, lies in the ability to perform

the �ltering process that results in the one-step-ahead predictive distributions,

p (yt+1jy1:t; �). The next section will present the general steps required of a �l-

tering procedure and the details of some speci�c �lters that produce either exact

(if available) or approximate representations of p (yt+1jy1:t; �), and ultimately

p (yT+1jy1:T ; �). As state smoothing is not required for forecasting and (ML)

estimation purposes, the issue of smoothing will not be pursued further in the

thesis. From this point on the explicit dependence of all distributions on � is

also suppressed in the exposition.

2.4 Filtering Methods in State Space Models

There are essentially three steps taken at each time t to produce the �ltered

distribution p (xtjy1:t), with a by-product of the process being the production of

the one-step-ahead predictive distribution, p (yt+1jy1:t). Before these steps can
1A recent survey of Bayesian methods in state space models is provided in Giordani, Pitt

and Kohn (2011).



2. State Space Models 19

be undertaken, the �rst �ltered distribution, p (x1jy1:1), must be obtained. This

is done by initializing the �lter with the assumed parametric distribution p (x1),

updated having observed y1 via Bayes theorem as

p (x1jy1:1) =
p (y1jx1) p (x1)

p (y1)

where

p (y1) =

Z
p (y1jx1) p (x1) dx1:

Then, for each t = 1; 2; :::; T �1, we undertake the following three �ltering steps:

1. Produce the state predictive distribution as the integral of p (xt+1; xtjy1:t)

with respect to xt, with the joint density obtained from the product of the

transition density and the �ltered density. That is,

p (xt+1jy1:t) =

Z
p (xt+1; xtjy1:t) dxt

=

Z
p (xt+1jxt) p (xtjy1:t) dxt: (2.11)

2. Given p (xt+1jy1:t), and using knowledge of the measurement density in

(2.1), produce the one-step-ahead predictive distribution for the measure-

ment as

p (yt+1jy1:t) =

Z
p (yt+1; xt+1jy1:t) dxt+1

=

Z
p (yt+1jxt+1) p (xt+1jy1:t) dxt+1: (2.12)

3. Produce the up-dated �ltered state density, given the observation yt+1, by

applying Bayes theorem,

p (xt+1jy1:t+1) =
p (yt+1jxt+1) p (xt+1jy1:t)

p (yt+1jy1:t)
: (2.13)
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At period T , the out-of-sample one-step-ahead forecast distribution is pro-

duced by using Steps 1 and 2 above, without the revision Step 3.

This �ltering process is often di¢ cult to perform as it requires recursive

integration. Apart from certain special cases, of which the linear, Gaussian

case is the canonical example, the recursive integrals required to implement the

�ltering and up-dating process cannot be solved analytically, and some form of

approximation is required as a consequence.

2.4.1 Kalman Filter

If the functions ht (�; �) and kt (�; �) in model (2.4) and (2.5), are linear, with both

error terms additive and Gaussian, the state space model may be represented as

yt = ct +Htxt + �t (2.14)

xt+1 = dt +Ktxt + vt (2.15)

�
�t
vt

�
s N

��
0

0

�
;

�
Rt 0
0 Qt

��
; (2.16)

for t = 1; 2; :::; T . As noted earlier, yt is a (p� 1) vector of observations and xt

is an (m� 1) vector of unobserved components. The random components in the

measurement and state equations, f�tg from (2.14) and fvtg from (2.15), respec-

tively, represent mutually independent, zero-mean Gaussian random variables

having variance-covariance matrices Rt and Qt, respectively. For the present

purpose, the system matrices Ht and Kt are assumed known, with Ht a (p�m)

matrix and Kt an (m�m) matrix. We also assume that the dimension of the
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state variable xt is the same as that of the state error term vt, with modi�cation

of the �lter available if dim(vt) < dim(xt); see for example Durbin and Koopman

(2001). The intercepts ct in (2.14) and dt in (2.15) are (p� 1) and (m� 1) vec-

tors of known constants, respectively. In this speci�c case, � could be comprised

of q elements contained within ct, dt, Ht, Kt, Rt; Qt; a1j0 and V1j0. The initial

state vector, x1 has a marginal distribution given by

x1 s N
�
a1j0; V1j0

�
; (2.17)

where a1j0 and V1j0 are also assumed known.

When the state space model is linear and Gaussian, as is the model in (2.14)-

(2.17), all �ltered and predictive distributions for the state are Gaussian, as are

the predictive distributions for the observed, p (yt+1jyt), for t = 1; 2; :::; T . Hence,

only the �rst two moments of these distributions need to be calculated for each

entire distribution to be determined. The Kalman �lter provides the required

recursions for the calculation of these moments. Denoting the �rst two moments

respectively for each of (2.11) and (2.13) by

E (xt+1jy1:t) = at+1jt

V ar (xt+1jy1:t) = Vt+1jt;

and

E (xt+1jy1:t+1) = at+1jt+1

V ar (xt+1jy1:t+1) = Vt+1jt+1;
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the Kalman �lter equations corresponding to the state space model presented in

(2.14)-(2.17) are

at+1jt = dt +Ktatjt (2.18a)

Vt+1jt = KtVtjtK
0
t +Qt (2.18b)

at+1jt+1 = at+1jt +Mt+1"t+1 (2.18c)

Vt+1jt+1 = (I �Mt+1Ht+1)Vt+1jt; (2.18d)

where

Mt+1 = Vt+1jtH
0
t+1F

�1
t+1 (2.18e)

Ft+1 = Ht+1Vt+1jtH
0
t+1 +Rt+1 (2.18f)

"t+1 = yt+1 � ct+1 �Ht+1at+1jt; (2.18g)

for t = 1; 2; :::; T: Therefore, the �ltered distribution for the state xt+1 is a

Gaussian density with its mean and covariance respectively given by at+1jt+1

in (2.18c) and Vt+1jt+1 in (2.18d), while the predictive state distribution is also

a Gaussian density with its mean and covariance respectively given by at+1jt

in (2.18a) and Vt+1jt in (2.18b). Resulting from the �lter, each one-step-ahead

predictive distribution corresponding to the measurement at time t + 1 is also

Gaussian, with mean and covariance respectively given by

E (yt+1jy1:t) = �t+1 = ct+1 +Ht+1at+1jt (2.19)

V ar (yt+1jy1:t) = Ft+1; (2.20)

for each t = 1; 2; :::; T , with Ft+1 as given in (2.18f). Since "t+1 = yt+1 � �t+1,
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the corresponding predictive density is given by

p (yt+1jy1:t) = (2�)�
p
2 jFt+1j�

1
2 exp

�
�1
2

�
"0t+1F

�1
t+1"t+1

��
: (2.21)

Note that the Kalman �lter is initiated with a1j1 and V1j1 computed using

(2.18c)-(2.18g).

2.4.2 Extended Kalman Filter

Even if the error sequences f�tg and fvtg are Gaussian, if the functions ht (�; �)

and kt (�; �) in (2.4) and (2.5) are non-linear, exact solutions for the state predic-

tive density in (2.11), the state �ltered density in (2.13), and the one-step-ahead

predictive density in (2.12), are not available in general. A simple approach

to producing the densities in (2.11)-(2.13) is to approximate the model by lin-

earizing the non-linear model about various points and then to perform �ltering.

The extended Kalman �lter is based on this approach, whereby the non-linear

state space model is linearized at each point t around the most relevant state

estimate, taken to be the mean of either the previously �ltered state density or

the predictive state density, depending on the particular �ltering step being un-

dertaken at that point. Once a linearized model is obtained, and the assumption

of Gaussian errors for both the measurement and state equations invoked, all

�ltered and predicted state distributions, along with the one-step-ahead predic-

tive distributions, are produced using the appropriately modi�ed version of the

Kalman �lter recursions. As a consequence, the extended Kalman �lter provides

approximate solutions for all �ltered and predictive distributions associated with
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the model.

Following Anderson and Moore (1979) we demonstrate the extended Kalman

�lter in the context of the following representation of the state space model

yt = ht (xt) + �t (2.22)

xt+1 = k1t (xt) + k2t (xt) vt; (2.23)

for t = 1; 2; :::; T . The functions ht (xt) ; k1t (xt) and k2t (xt) are potentially

non-linear functions of the state variable xt, with ht (xt) and k1t (xt) assumed

di¤erentiable. The errors �t and vt are each assumed to be a zero mean, Gaussian

random variable with a variance-covariance matrix represented by Rt and Qt,

respectively2, with a joint distribution as per (2.16). As in the linear, Gaussian

state space model, the initial state, x1, is assumed to have a Gaussian distribution

described by (2.17).

Referring to the state equation in (2.23), the non-linear functions k1t (xt)

and k2t (xt), if su¢ ciently smooth, can be linearized by taking a Taylor series

expansion for each function, about the (approximated) conditional mean of the

�ltered state density. In the spirit of the notation used in the Kalman �lter,

denote this approximated conditional mean by batjt. The functions k1t (xt) and
k2t (xt) are each expanded about batjt, because having observed y1:t, batjt is, in
some sense, the best available predictor of xt. Taking a �rst-order expansion of

2Often in this setting, Qt � 1, as the scaling of vt can be incorporated into the function
k2t (xt).
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k1t (xt) and a zero-order expansion of k2t (xt) yields

k1t (xt) � k1t
�batjt�+K1t

�
xt � batjt� (2.24)

k2t (xt) � k2t
�batjt� = K2t; (2.25)

where

K1t =
@k1t (x)

@x

����
x=batjt : (2.26)

Following the same reasoning, the non-linear function ht (xt) in (2.22) is

linearized by taking a �rst-order Taylor series expansion about the (approximate)

conditional mean of the state predictive density, batjt�1, with the latter providing
the most recent estimate of xt used in determining the one-step-ahead prediction

density p (ytjy1:t�1) at time t� 1, in the �ltering process. We then have

ht (xt) � ht
�batjt�1�+	t �xt � batjt�1� ; (2.27)

where

	t =
@ht (x)

@x

����
x=batjt�1 : (2.28)

Therefore, conditioning on the values of batjt�1 and batjt, the non-linear model
in (2.22) and (2.23) is approximated by the linear, Gaussian state space model,

yt =
�
ht
�batjt�1��	tbatjt�1�+	txt + �t (2.29)

xt+1 =
�
k1t
�batjt��K1tbatjt�+K1txt +K2tvt; (2.30)

and the Kalman �lter recursions are then applied to the approximating model

so de�ned. The so-called �extended�Kalman �lter equations for the non-linear
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model in (2.22) and (2.23) are then given by

bat+1jt = k1t
�batjt� (2.31a)

Vt+1jt = K1tVtjtK
0
1t +K2tQtK

0
2t (2.31b)

bat+1jt+1 = bat+1jt +Mt+1"t+1 (2.31c)

Vt+1jt+1 = (I �Mt+1	t+1)Vt+1jt; (2.31d)

where

Mt+1 = Vt+1jt	
0
t+1F

�1
t+1 (2.31e)

Ft+1 = 	t+1Vt+1jt	
0
t+1 +Rt+1 (2.31f)

"t+1 = yt+1 � ht+1
�bat+1jt� ; (2.31g)

for t = 1; 2; :::; T . As is the case for the Kalman �lter, the extended Kalman

�lter is initialized using (2.31c)-(2.31g) with t = 0.

The one-step-ahead predictive distribution for the measurement at each point

t is also approximated as a Gaussian density as

p (yt+1jy1:t) � (2�)�
p
2 jFt+1j�

1
2 exp

�
�1
2

�
"0t+1F

�1
t+1"t+1

��
; (2.32)

and, at time T , the out-of-sample one-step-ahead prediction distribution approx-

imated as

p (yT+1jy1:T ) � (2�)�
p
2 jFT+1j�

1
2 exp

�
�1
2

�
yT+1 � �T+1

�0
F�1T+1

�
yT+1 � �T+1

��
;

(2.33)
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where

E (yT+1jy1:T ) = �T+1 = hT+1
�baT+1jT � (2.34)

V ar (yT+1jy1:T ) = Ft+1; (2.35)

with Ft+1 as given in (2.31f).

2.4.3 Unscented Kalman Filter

The extended Kalman �lter, presented in Section 2.4.2, maintains the elegant

and computationally e¢ cient recursive updating form of the Kalman �lter for

producing predictive distributions in a non-linear state space model. However,

the extended Kalman �lter works on the assumption that a non-linear function

of a random variable can be well approximated by a linear function of a Gaussian

random variable, with the linear function obtained via a �rst-order Taylor series

expansion of the original function around a single point while neglecting higher

order terms. This assumption is dubious, especially for highly non-linear sys-

tems. The unscented Kalman �lter (Julier et al., 1995, 1996; Julier and Uhlmann,

1997) was proposed as an alternative to the extended Kalman �lter that provides

superior performance at a reduced level of computational complexity, with the

added advantage of not requiring the computation of Jacobian matrices.

The unscented Kalman �lter is based on the theory of unscented transfor-

mations, which is a method for calculating the moments of a random variable

that has undergone a non-linear transformation. It involves selecting a set of

points on the support of the random variable, called sigma points, according to
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a predetermined and deterministic criterion. These sigma points yield, in turn, a

�cloud�of transformed points through the non-linear function. One of the useful

properties of the unscented transformation is that the mean of the transformed

variable is calculated to a higher order of accuracy than is typically the case

for the extended Kalman �lter, while the variance-covariance of the transformed

variable is calculated to the same order of accuracy as with the extended Kalman

�lter.

In the demonstration of the unscented �lter we revert to the general rep-

resentation for the (potentially) multi-dimensional yt and xt, as given by (2.4)

and (2.5), but with simple additive forms of the error terms, �t and vt, invoked.

Hence, the model is represented as

yt = ht (xt) + �t (2.36)

xt+1 = kt (xt) + vt (2.37)

�
�t
vt

�
s N

��
0

0

�
;

�
Rt 0
0 Qt

��
; (2.38)

for t = 1; 2; :::; T , where the functions ht (�) and kt (�) in (2.36) and (2.37) are non-

linear in the state. The error terms �t and vt, are assumed to be Gaussian with

a variance-covariance matrix represented by Rt and Qt respectively, and with

p (x1) given by (2.17). The unscented Kalman �lter, like the extended Kalman

�lter, approximates all of the �ltered and predictive state distributions, along

with the one-step-ahead predictive distributions, with Gaussian distributions.

The unscented �lter then provides the required recursions for the calculation of
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the �rst two moments of these distributions, via the following steps.

1. Denote the (previously approximated) �rst two moments of p (xtjy1:t) by

atjt and Vtjt. Approximate the �rst two moments of the state predictive

distribution p (xt+1jy1:t) as follows:

(a) Form an m � (2m+ 1) matrix �t with columns containing the m-

dimensional sigma vectors, �i;t, for i = 0; 1; :::; 2m, de�ned according

to

�0;t = atjt (2.39a)

�i;t = atjt +
�q

(m+ #)Vtjt

�
i
; i = 1; 2; :::;m

(2.39b)

�i;t = atjt �
�q

(m+ #)Vtjt

�
i
; i = m+ 1; :::; 2m

(2.39c)

where

# = '2 (m+ �)�m:

In the vector state case, i.e. with dim(xt) = m > 1, the expressionp
(m+ #)Vtjt denotes the square root of the scaled covariance matrix

(m+ #)Vtjt such that
�p
(m+ #)Vtjt

�0 �p
(m+ #)Vtjt

�
= (m+ #)Vtjt;

with
�p
(m+ #)Vtjt

�
i
denoting the ith column of

p
(m+ #)Vtjt. The

constants # and ' are both scaling parameters determining the spread

of the sigma points around atjt; with ' typically set to a small positive
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value. The constant � is an additional scaling parameter which is usu-

ally set to 0 or (3�m). A useful heuristic is to select m + # = 3; so

that if the transformed distribution were (scalar) Gaussian then the

transformed sigma-points would achieve a weighted fourth moment

equal to 3. (See Julier and Uhlmann, 2004, for details). Although

the method may be applied to non-additive state and measurement

equations, in that case the state variable would need to be augmented

with the individual noise terms from each of the measurement equa-

tions and state, �t and vt, respectively, resulting in an increase in the

number of sigma points required. For the case presented here, i.e.

when the error terms are additive, the dimension of each sigma point

is equal to m, the dimension of the state variable xt, and the required

number of sigma points used is lower than in the more general case

(Wan and van der Merwe, 2001). If the state variable is a scalar

and the error terms are additive, then m = 1 and only three sigma

points are required within each transformation. (Note, however, that

two separate transformations are required for each time t, given the

presence of the two non-linear functions ht (�) and kt (�).)

(b) Propagate the sigma matrix in (2.39) through the non-linear state

equation, by transforming each column vector according to kt (�) in

(2.37), i.e.

��i;t+1jt = kt
�
�i;t
�
; (2.40)
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and obtaining the matrix of transformed sigma vectors

��t+1jt =
�
��0;t+1jt; �

�
1;t+1jt; :::; �

�
2m;t+1jt

�
:

The state predictive mean and covariance associated with p (xt+1jy1:t),

are then calculated using weighted functions of the transformed sigma

vectors in (2.40), respectively, given by

at+1jt =

2mX
i=0

W
(a)
i ��i;t+1jt (2.41)

Vt+1jt =
2mX
i=0

W
(V )
i

�
��i;t+1jt � at+1jt

� �
��i;t+1jt � at+1jt

�0
+Qt:

(2.42)

The weights, W (a)
i andW (V )

i , for i = 0; 1; 2; :::2m, associated with the

conditional mean at+1jt and variance Vt+1jt approximations respec-

tively, are determined by

W
(a)
0 =

#

m+ #

W
(V )
0 =

#

m+ #
+
�
1� '2 �$

�
W

(a)
i = W

(V )
i =

1

2 (m+ #)
for i = 1; 2; :::; 2m:

(2.43)

Here the weight sets
n
W

(a)
i ; i = 0; 1; :::; 2m

o
and

n
W

(V )
i ; i = 0; 1; :::; 2m

o
must each sum to one. Note that when the scaling parameter # = 0;

the weight associated with �0;t will be zero. In addition, although

the individual weights may in general be non-negative, justi�cation is
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also available for choosing the scaling parameters to ensure positive

weights. The constant $ may be used to incorporate prior knowledge

of the previously �ltered distribution for p (xtjy1:t) ; or the function

kt (�) in (2.37), and is set to 2 when the previously �ltered distrib-

ution is assumed to be Gaussian and when no further information

about kt (�) is used (Julier and Uhlmann, 2004).

(c) The state predictive distribution p (xt+1jy1:t) is then approximated by

a Gaussian density, with its mean and covariance matrix given by

(2.41) and (2.42), respectively.

2. The �rst two moments of p (yt+1jy1:t) are obtained through the following

steps:

(a) Determine a new m � (2m+ 1) matrix e�t+1 of m-dimensional sigma
vectors, e�i;t+1, according to

e�0;t+1 = at+1jt (2.44a)

e�i;t+1 = at+1jt +

 r�
m+ e#�Vt+1jt

!
i

; i = 1; 2; :::;m

(2.44b)

e�i;t+1 = at+1jt �
 r�

m+ e#�Vt+1jt
!
i

; i = m+ 1; :::; 2m

(2.44c)

where (analogously)

e# = e'2 (m+ e�)�m:
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Again here if dim(xt) = m > 1, the expression
�r�

m+ e#�Vt+1jt�
is the square root matrix of

�
m+ e#�Vt+1jt; and �r�m+ e#�Vt+1jt�

i

denotes the ith column of

r�
m+ e#�Vt+1jt.

(b) Propagate the sigma matrix in (2.44) through the non-linear measure-

ment equation in (2.36), by transforming each column vector as

eyi;t+1 = ht+1
�e�i;t+1� (2.45)

and obtaining the corresponding matrix of transformed sigma vectors,

eyt+1 = (ey0;t+1; ey1;t+1; :::; ey2m;t+1) : (2.46)

The approximate mean and covariance matrix, respectively, associ-

ated with the predictive distribution of p (yt+1jy1:t), are then calcu-

lated as the weighted average of the transformed sigma vectors,

�t+1 =
2mX
i=0

W
(�)
i eyi;t+1 (2.47)

Ft+1 =

2mX
i=0

W
(F )
i

�eyi;t+1 � �t+1
� �eyi;t+1 � �t+1

�0
+Rt+1:

(2.48)

The weights, W (�)
i and W (F )

i , for i = 0; 2; :::2m, associated with the

conditional mean E [yt+1jy1:t] and variance V ar (yt+1jy1:t), are deter-
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mined by

W
(�)
0 =

e#
m+ e#

W
(F )
0 =

e#
m+ e# + �1� e'2 � e$�

W
(�)
i = W

(F )
i =

1

2
�
m+ e#� for i = 1; 2; :::; 2m:

(2.49)

Here again each of the weight sets
n
W

(�)
i ; i = 1; 2; :::; 2m

o
andn

W
(F )
i ; i = 1; 2; :::; 2m

o
must sum to one. Note that if the parameters

satisfy e# = #, e' = ' and e$ = $, thenW (�)
i = W

(a)
i andW (F )

i = W
(V )
i

for all i = 0; 1; ::; 2m: This is the case generally found in the literature

(see, for example, Julier and Uhlmann, 2004, and Wan and van der

Merwe, 2001); hence this restriction is imposed here.

(c) The predictive distribution p (yt+1jy1:t) associated with the next ob-

servation is then approximated by a Gaussian density, with its mean

and covariance matrix given by (2.47) and (2.48), respectively, with

W
(�)
i = W

(a)
i and W (F )

i = W
(V )
i for all i = 0; 1; ::; 2m:

3. Finally, with the observation of yt+1 revealed, the mean and covariance of

the updated �ltered distribution, p (xt+1jy1:t+1), are respectively given by

at+1jt+1 = at+1jt +Mt+1

�
yt+1 � �t+1

�
(2.50)

Vt+1jt+1 = Vt+1jt �Mt+1Ft+1M
0
t+1; (2.51)
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where

Mt+1 = V xy
t+1F

�1
t+1;

with Ft+1 as given in (2.48) and with V
xy
t+1 denoting the cross-covariance

matrix and de�ned as

V xy
t+1 =

2mX
i=0

W
(V )
i

�
��i;t+1jt � at+1jt

� �eyi;t+1 � �t+1
�0
:

The state �ltered distribution, p (xt+1jy1:t+1), is then approximated by a

Gaussian density, with its mean at+1jt+1 and covariance matrix Vt+1jt+1

given by (2.50) and (2.51), respectively.

Finally, the out-of-sample one-step-ahead distribution is approximated by a

Gaussian distribution, with its mean and variance-covariance given respectively

by �T+1 and FT+1 from Step 2 above. Note that the unscented Kalman �lter

is initiated with a1j1 and V1j1 computed using (2.50) and (2.51), with x1 s

N
�
a1j0; V1j0

�
assumed known.

2.4.4 Grid-based Non-Gaussian Filter

The extended Kalman �lter and the unscented Kalman �lter both approximate

the conditional densities in the recursive �ltering and predictive algorithms as

Gaussian densities, and therefore potentially miss out on other features of these

distributions, such as skewness and leptokurtosis for example. In contrast, Kita-

gawa (1987) outlines a fully parametric grid-based non-Gaussian �lter that real-

izes the recursive formulae for the predictive and �ltered densities in (2.11) and

(2.13), with a particular form of approximation. Speci�cally, the method is based
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on continuous piecewise linear approximations to the relevant integrands, with

trapezoidal integration then used to produce the �ltered and predictive state

distributions. This grid-based �lter involves having a set of grid points over the

non-constant supports of the �ltered and predictive distributions of the state

variable. In this subsection, the generic form of the grid-based non-Gaussian

�lter is presented in the context of the context of scalar variables yt and xt:

Consider a state space model governed by the measurement density p (ytjxt)

and the transition density p (xt+1jxt), where both xt and yt are scalar variables for

each t = 1; 2; :::; T . The grid-based non-Gaussian �lter is given by the following

steps.

1. The state predictive distribution given by (2.11) is de�ned as an integral

with respect to xt. To evaluate the integral numerically, a �nite set of grid

points fxit; i = 1; 2; :::;Mg is de�ned across the support of the distribution

of xt. The integral of the probability distribution over the (possibly in�-

nite) support of the distribution of xt, is then approximated as the sum

of integrals over the M segments of the support de�ned by the choice of

grid-points, yielding

p (xt+1jy1:t) =

Z 1

�1
p (xt+1jxt) p (xtjy1:t) dxt

�
PM

i=1

Z xit

xi�1t

p (xt+1jxt) p (xtjy1:t) dxt: (2.52)

Each of the integrals in (2.52) is then evaluated via the trapezoidal rule,

consistent with the integrand in each segment being approximated by a
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linear function. The resulting state predictive density p (xt+1jy1:t) is then

given by

p (xt+1jy1:t) �
PM

i=1

�
p
�
xt+1jxi�1t

�
p
�
xi�1t jy1:t

�
+ p

�
xt+1jxit

�
p
�
xitjy1:t

�	 �
xit � xi�1t

�
=2: (2.53)

It is noted that the set of grid points, fxit; i = 1; 2; :::;Mg, across the

support of the distribution of xt, has a t subscript to denote that the

grid points must be modi�ed to ensure e¢ cient implementation of the

numerical approximation. However, due to the computational problem

associated with determining a set of grid-points for each distinct t, often the

simpler, though less e¢ cient, approach of using a large single set of common

grid points for all t can be adopted, ensuring a very wide support for the

(unknown) marginal distribution of xt: The ine¢ ciency of the algorithm

is derived from the fact that many terms in (2.53) will have a negligible

contribution to the numerical evaluation of the integral. (See Kitagawa,

1987).

2. Having produced p (xt+1jy1:t), the one-step-ahead predictive distribution

p (yt+1jy1:t) is then approximated as the sum of integrals over the M seg-

ments of the support of the distribution of xt+1, de�ned by the choice of

grid-points, yielding

p (yt+1jy1:t) =

Z 1

�1
p (yt+1jxt+1) p (xt+1jy1:t) dxt+1

�
PM

i=1

Z xit+1

xi�1t+1

p (yt+1jxt+1) p (xt+1jy1:t) dxt+1; (2.54)
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where
�
xit+1; i = 1; 2; :::;M

	
are the grid points on the support. Using the

trapezoidal rule again to evaluate each of the integrals in (2.54), the inte-

grand within each integral is approximated by a linear function, resulting

in

p (yt+1jy1:t) �
PM

i=1

�
p
�
yt+1jxi�1t+1

�
p
�
xi�1t+1jy1:t

�
+

p
�
yt+1jxit+1

�
p
�
xit+1jy1:t

�	 �
xit+1 � xi�1t+1

�
=2: (2.55)

The same issue as �agged above regarding the determination of the time-t

dependent support applies here.

3. The �ltered distribution of the state variable is up-dated upon the obser-

vation of yt+1 as

p (xt+1jy1:t+1) =
p (yt+1jxt+1) p (xt+1jy1:t)

p (yt+1jy1:t)
;

where p (yt+1jxt+1) is given by the model, p (xt+1jy1:t) is the function de�ned

in (2.53), and p (yt+1jy1:t) is given by the sum in (2.55).

The out-of-sample one-step-ahead predictive distribution is subsequently ap-

proximated as

p (yT+1jy1:T ) �
PM

i=1

�
p
�
yT+1jxi�1T+1

�
p
�
xi�1T+1jy1:T

�
+

p
�
yT+1jxiT+1

�
p
�
xiT+1jy1:T

�	 �
xiT+1 � xi�1T+1

�
=2; (2.56)

with
�
xiT+1; i = 1; 2; :::;M

	
being the set of grid points on the support of the

distribution of xT+1.
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2.4.5 Gaussian-sum Filter

The grid-based non-Gaussian �lter in Section 2.4.4 is demonstrated for a univari-

ate state space model. If the model were to have a multivariate state variable, the

grid-based non-Gaussian �lter would require the numerical evaluation of multi-

ple integrals for the production of all relevant densities. The application of this

�lter is thus impractical in the case of a very high dimensional state, a problem

that is exacerbated by the need to choose a number of grid points M that is

su¢ ciently large to cover the time-varying supports of all xt:

One potential solution to this computational burden, as suggested by Kita-

gawa (1989, 1994), is to use a Gaussian-sum �lter (Sorenson and Alspach, 1971;

Alspach and Sorenson, 1972; Anderson and Moore, 1979). The Gaussian-sum

approach approximates each of the densities in the �ltering process with a �nite

mixture of Gaussian densities, with such a mixture called a Gaussian sum. In

this approach, any non-Gaussian measurement density p (ytjxt) in (2.1) or state

transition density p (xt+1jxt) in (2.2) is approximated by an appropriately cho-

sen Gaussian sum whose components all have means that are linear in the state

variable, xt, as well as variances that are constant. Owing to the linearity and

Gaussianity of each component within these approximations, each of the �ltered

and predictive state densities is shown to result in a further Gaussian sum, with

components whose means and variances are easily computed via repeated ap-

plication of the Kalman �lter. Although feasible for small sample sizes, as the

number of terms in the Gaussian-sum representing each �ltered state density
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grows exponentially with t, pruning algorithms are required for larger samples

in order to keep the number of terms in the successive Gaussian sums manage-

able.

Monteiro (2010) has recently suggested that the Gaussian-sum �lter can also

be used as a �exible modelling approach, enabling a relaxation of the required dis-

tributional assumption for the measurement error in a linear state space model.

The Gaussian-sum �lter is illustrated with this particular context in mind.

Consider a univariate version of the linear state space model in (2.14) and

(2.15), reproduced here for convenience,

yt = ct +Htxt + �t (2.57)

xt+1 = dt +Ktxt + vt (2.58)

vt s N (0; Qt) (2.59)

for t = 1; 2; :::; T . In this model, both yt and xt are scalar variables for each

t = 1; 2; :::; T , so that the expressions ct, dt,Ht,Kt andQt are now all scalars also.

A parametric distribution is not speci�ed for the measurement error �t. Rather,

Monteiro (2010) assumes that the measurement error density is a Gaussian sum

given by the particular form

p (�t) =
1

(T + 1)

TP
t=0

�
�
�t;b�t; b2� ; (2.60)

where the notation � (x;�; �2) represents the Gaussian probability density for the

variable x associated with mean � and variance �2: As can be seen from (2.60),
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the density of the measurement error term in (2.57) is an equally weighted aver-

age of T +1 separate Gaussian kernels, one for each time point being centred on

an estimate of the corresponding true (unobserved) error �t, b�t. The constant
scale parameter b > 0 associated with the Gaussian kernel is the so-called band-

width of the kernel, and is treated as an unknown parameter to be estimated.

The additional constraint b�0 = �Pb�t is imposed to ensure identi�ability of the
model. Following from (2.57) and (2.60), the measurement density for yt given

xt is also a Gaussian sum, with

p (ytjxt) =
1

(T + 1)

TP
t=0

�
�
yt; ct +Htxt + b�t; b2� : (2.61)

In the spirit of Sorenson and Alspach (1971), Monteiro (2010) shows that at

any time step t, the structure of the �ltered state density may be written as

p (xtjy1:t) =
LtP
l=0

&
(l)
t �
�
xt; a

(l)
tjt ; V

(l)
tjt

�
; (2.62)

where Lt = (T + 1)t � 1, and where each of the Lt + 1 Gaussian components

in p (xtjy1:t) is associated with a mean a(l)tjt and a variance V
(l)
tjt , each computed

using the Kalman �lter equations in (2.18) adapted for the univariate setting.

Starting with the previously �ltered state density in (2.62), one iteration of the

Gaussian-sum �lter is given by the following three steps:

1. Using the state �ltered density in (2.62), the state predictive distribution
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is

p (xt+1jy1:t) =

Z
p (xt+1jxt) p (xtjy1:t) dxt

=

Z
� (xt+1; dt +Ktxt; Qt)

LtP
l=0

&
(l)
t �
�
xt; a

(l)
tjt ; V

(l)
tjt

�
dxt

=
LtP
l=0

&
(l)
t

Z
� (xt+1; dt +Ktxt; Qt)�

�
xt; a

(l)
tjt ; V

(l)
tjt

�
dxt

=
LtP
l=0

&
(l)
t �
�
xt+1; a

(l)
t+1jt; V

(l)
t+1jt

�
; (2.63)

with the mean a
(l)
t+1jt and variance V

(l)
t+1jt of the l

th Gaussian component

computed using (2.18a) and (2.18b) respectively, and given by

a
(l)
t+1jt = dt +Kta

(l)
tjt

V
(l)
t+1jt = K2

t V
(l)
tjt +Qt:

2. To produce the one-step-ahead predictive density p (yt+1jy1:t), an expres-

sion for p (yt+1jxt+1) is required. Although the speci�c form is given in

(2.61), to ensure clarity and completeness in the presentation, the condi-

tional density for the measurement yt+1 given the state xt+1 is denoted

using the general form

p (yt+1jxt+1) =
JP
j=0

�j�
�
yt+1; c

j
t+1 +Hj

t+1xt+1; R
j
t+1

�
; (2.64)

so that the Gaussian-sum is indexed with j = 0; 1; :::; J , with the jth

Gaussian component having a mean linear in the relevant state variable

xt+1 and variance R
j
t+1 free from xt+1. In the setting of Monteiro (2010)

given in (2.57)-(2.59) and (2.61), then J = T; �j =
1

(T+1)
; cjt+1 =

�
ct+1 + b�j� ;
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Hj
t+1 = Ht+1 and R

j
t+1 = b2 for each t = 1; 2; :::; T � 1. Given the de-

sired general representation of the one-step-ahead predictive distribution

in (2.12), and referring to the mean and variance respectively of the one-

step-ahead predictive density for the next observation given in equations

(2.19) and (2.20), the one-step-ahead predictive density for yt+1 becomes

p (yt+1jy1:t) =

Z
p (yt+1jxt+1) p (xt+1jy1:t) dxt+1

=

Z (
JP
j=0

�j�
�
yt+1; c

j
t+1 +Hj

t+1xt+1; R
j
t+1

�
LtP
l=0

&
(l)
t �
�
xt+1; a

(l)
t+1jt; V

(l)
t+1jt

��
dxt+1

=
LtP
l=0

JP
j=0

&
(l)
t �j�

�
yt+1;�

(l;j)
t+1 ; F

(l;j)
t+1

�
; (2.65)

with

�
(l;j)
t+1 = cjt+1 +Hj

t+1a
(l)
t+1jt

F
(l;j)
t+1 = H2

t+1V
(l)
t+1jt +Rjt+1

for j = 0; 1; :::; J and l = 0; 1; :::; Lt.

3. Normalizing the product of (2.63) and (2.64), the updated �ltered density

is

p (xt+1jy1:t+1) /
(

JP
j=0

�j�
�
yt+1; c

j
t+1 +Hj

t+1xt+1; R
j
t+1

�
LtP
l=0

&
(l)
t �
�
xt+1; a

(l)
t+1jt; V

(l)
t+1jt

��
=

LtP
l=0

JP
j=0

&
(l;j)
t+1�

�
xt+1; a

(l;j)
t+1jt+1; V

(l;j)
t+1jt+1

�
: (2.66)
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with

a
(l;j)
t+1jt+1 = a

(l)
t+1jt +M

(l;j)
t+1 "

(l;j)
t+1

V
(l;j)
t+1jt+1 =

�
1�M

(l;j)
t+1 Ht+1

�
V
(l)
t+1jt;

and where

M
(l;j)
t+1 = V

(l)
t+1jtH

j
t+1

�
F
(l;j)
t+1

��1
F
(l;j)
t+1 =

�
Hj
t+1

�2
V
(l)
t+1jt +Rjt+1

"
(l;j)
t+1 = yt+1 � cjt+1 �Hj

t+1a
(l)
t+1jt

and

&
(l;j)
t+1 =

&
(l)
t �j�

�
yt+1;�

(l;j)
t+1jt; F

(l;j)
t+1

�
LP
l=0

JP
j=0

&
(l)
t �j�

�
yt+1;�

(l;j)
t+1jt; F

(l;l)
t+1

� ;
for j = 0; 1; :::; J and l = 0; 1; :::; Lt. That is, given that the one-step-ahead

state prediction density given by (2.63) is a mixture of Gaussian densities,

and that the measurement error density in (2.64) is also a mixture of

Gaussian densities, then the updated state �ltered density is the mixture

of (Lt+1 + 1) = (Lt + 1) (J + 1) Gaussian densities given in (2.66), with

weights determined by &(l;j)t+1 and, the (l; j)
th component mean a(l;j)t+1jt+1 and

variance V (l)
t+1jt+1 obtained from the appropriate Kalman �lter equations.

Hence, replacing the double index (l; j) in (2.66) with a suitable single

index, the revised �ltered density can be written in the required form,

p (xt+1jy1:t+1) =
Lt+1P
l=0

&
(l)
t+1�

�
xt+1; a

(l)
t+1jt+1; V

(l)
t+1jt+1

�
:
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A couple of comments are in order. First, note that the Gaussian-sum �lter

is initialized by

p (x1) = �
�
x1; a1j0; V1j0

�
; (2.67)

with a1j0 and V1j0 assumed known.3 Therefore, comparing with (2.62) it can

be seen that (L0 + 1) = 1. In updating the �ltered distribution from (2.62)

to (2.66), the number of Gaussian mixtures has increased from (Lt + 1) to

(Lt+1 + 1) = (Lt + 1) (J + 1), and since J = T in the Monteiro (2010) setting,

the increase is from (T + 1)t to (T + 1)t+1. Hence, it can now be seen that the

number of mixture components in the �ltered distributions indeed increases geo-

metrically in T . To reduce the computational burden, Monteiro suggests using

standard clustering algorithms to combine Gaussian components with similar

mean and variance values, thereby keeping the Gaussian-sum structure but with

the number of terms in the �ltered state density at each iteration constrained

to be small - of the order Lt =
p
T + 1 for all t = 1; 2; :::T . Although this

approach reduces the number of elements in each Gaussian sum, it does not

remove the need for signi�cant computational resources for the procedure to be

implemented, particularly for large values of T , as a large clustering algorithm

must be implemented at each iteration, and the geometric dependence on T still

obtains.

Second, as the Gaussian-sum �lter algorithm presented here requires esti-

3In fact, Monteiro applies a di¤use initial distribution on x1, in the spirit of Ansley and
Kohn (1985).
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mates, b�j, of the unobserved measurement error, �j, for each4 j = 1; 2; :::; T ,

Monteiro suggests obtaining these from a Kalman smoothing procedure, such as

that given by Kitagawa (1994). However, as these smoothed fb�tg are obtained
conditional on the ML estimate (say) of any unknown parameter vector and con-

versely, calculation of the likelihood function requires the fb�tg, Monteiro iterates
the two procedures and thereby runs the Gaussian-sum �lter many times until

apparent convergence is achieved. It is the estimation of the bandwidth parame-

ter b, in conjunction with the estimated measurement errors, b�t, that provides
the non-parametric description to the measurement error, via the Gaussian sum

in (2.60). However, the iteration required to produce these estimates, coupled

with the fact that each iteration of the Gaussian-sum �lter requires a clustering

algorithm to manage the exponential growth in the number of mixture elements,

means that the overall method is very computationally demanding, particularly

for large sample sizes.

2.4.6 Particle Filters

The particle �lter has become a very popular class of numerical method for con-

ducting inference in non-linear, non-Gaussian state space models. Reviews of

the topic include Doucet, de Freitas and Gordon (2001) and Cappe, Godsill and

Moulines (2007). Particle �lters are a form of simulation �lter that approximate

the conditional distributions, p (xtjy1:t) and p (xt+1jy1:t), with empirical distrib-

utions arising from a set of draws (or �particles�) obtained via recursive Monte

4Recall that the constraint b�0 = �Pb�t is imposed.
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Carlo methods.

In this subsection, three alternative particle �lters are reviewed. The �rst

is the simplest version of the particle �lter, referred to as the bootstrap �lter,

independently proposed by Gordon, Salmond and Smith (1993) and Kitagawa

(1996). The bootstrap �lter provides a straightforward introduction to more

elaborate particle �ltering methods. The second �lter reviewed is the generic

auxiliary particle �lter, designed to reduce the degeneracy problem that the

bootstrap �lter may encounter. We then review a third method, referred to as

the fully adapted auxiliary particle �lter.

Bootstrap Filter

Given a set of random draws, or �particles�, fxit; i = 1; 2; :::; Pg from p (xtjy1:t),

the bootstrap �lter is an algorithm that propagates and updates these draws,

to obtain a set of particles
�
xit+1; i = 1; 2; :::; P

	
from p (xt+1jy1:t+1). The latter

distribution is then approximated by the empirical distribution of a �nite sample

of particles, with the accuracy of the approximation increasing as the number of

particles increases, due to the strong law of large numbers.

To initialize the bootstrap �lter, an intial set of particles, fexi1; i = 1; 2; :::; Pg,
is drawn independently from p (x1). Then, having observed y1, the particles are

resampled with replacement according to the probability mass function (pmf),

wi1 =
p(y1jexi1)PP
j=1 p(y1jexj1) , for i = 1; 2; :::; P , thereby producing a set of particles,

fxi1; i = 1; 2; :::; Pg, from p (x1jy1) : The bootstrap �lter algorithm is then given

by the following steps for each t = 1; 2:::; T :
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1. Draw exit+1 for i = 1; 2; :::; P from p (xt+1jxit). These particles exit+1 for
i = 1; 2; :::; P represent a sample from the state prediction distribution,

p (xt+1jy1:t).

2. Approximate the one-step-ahead predictive density, p (yt+1jy1:t), by the

average of the conditional distributions for the measurement, as

p (yt+1jy1:t) =

Z
p (yt+1jxt+1) p (xt+1jy1:t) dxt+1

� 1

P

PX
i=1

p
�
yt+1j~xit+1

�
; (2.68)

where
�
~xit+1; i = 1; 2; :::; P

	
represent the draws of the predictive state

from p (xt+1jy1:t) in Step 1.

3. Given the measurement yt+1; construct a resampling pmf by assigning to

each exit+1 a normalized weight
wit+1 =

p
�
yt+1jexit+1�PP

j=1 p
�
yt+1jexjt+1� ; (2.69)

for i = 1; 2; :::; P . Resample xit+1 from the discrete distribution having pmf

given by (2.69) for each i = 1; 2; :::; P . This completes the updating step,

as the particles
�
xit+1; i = 1; 2; :::; P

	
are used to approximate the density,

p (xt+1jy1:t+1).

As can be seen, the only requirements for the bootstrap �lter are that p (x1)

and p (xt+1jxt) are available for sampling, and that the conditional density p (ytjxt)

can be evaluated. However, one of the problems with the bootstrap �lter is that

the predictive states are drawn from p (xt+1jxit) without accounting for the next
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time period�s observation, yt+1. This can lead to degeneracy, because many of the

resulting weights for the predicted particles exit+1 in (2.69) become very small, so
that many of the potential particles are assigned negligible (or no) weight. This

problem is particularly prevalent if yt+1 is an outlier, or if the �ltered density is

di¤use relative to the likelihood component. For example, if yt+1 is exceptionally

large, and given that the bootstrap �lter simulates exit+1 without accounting for
yt+1, there are potentially many draws of exit+1 that are not in the high probabil-
ity region associated with p (yt+1jxt+1). The weights in (2.69) are thus unevenly

distributed due to the large variation in
�
p
�
yt+1jexit+1� ; i = 1; 2; :::; P	. Pitt and

Shephard (1999) address this problem by introducing the auxiliary particle �lter.

On a related note, despite the fact that the resampling weights in (2.69)

imply a �ltered state density given by

PX
i=1

wit+1�
�
xt+1 � xit+1

�
;

where � (:) denotes the Dirac delta mass at point xit+1, the actual form of the

�ltered density that feeds into the subsequent iteration of the �lter is

PX
i=1

Pi
P
�
�
xt+1 � xit+1

�
;

where Pi denotes the number of replicated values of xit+1 arising from the P

resampled particles, so that
PP

i=1 Pi = P .5 When wit+1 > 0 is relatively small,

it is nevertheless likely that the realized Pi will actually be zero. Hence, an

5The Dirac delta function �
�
xt+1 � xit+1

�
can be thought of as a very tall and thin spike with

unit area located at the point xit+1, corresponding to a degenerate distribution at xt+1 = x
i
t+1.

The formal properties of the Dirac delta function are introduced later in Chapter 3.
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added source of degeneracy is due to this type of Monte Carlo error. That is,

even if a particular weight wit+1 is non-zero, there is a positive probability that

the particle will not be propagated through to any of the future time periods,

because if Pi = 0, then subsequent particle draws for xs, s > t + 1 will not

include any having been conditioned upon xt+1 = xit+1. This particular aspect is

present in all of the particle �lters considered in this thesis, apart from the new

particle �lter described in Section 6.6 of Chapter 6.

Auxiliary Particle Filter

The auxiliary particle �lter (APF), introduced by Pitt and Shephard (1999), is

a variant of the bootstrap �lter. The APF ensures that the predicted parti-

cles, through the use of an auxiliary variable denoted by the index k, are more

likely to match up with the observed data yt+1, with more even weights for

the predicted particles, exit+1, produced as a consequence. The APF operates
by obtaining a sample of draws from the joint distribution p (xt+1; kjy1:t+1) and

then omitting the index k in the pair (xt+1; k) to produce a sample of particles�
xit+1; i = 1; 2; :::; P

	
from the marginalized �ltered density p (xt+1jy1:t+1). Cru-

cially, the APF relies on the use of an importance density, q (xt+1; kjy1:t+1), to

draw the sample
�
xit+1; k

i
�
for i = 1; 2; :::; P .

In the generic APF setting (see Pitt and Shephard, 1999, or Arulampalam,

Maskell, Gordon and Clapp, 2002), the importance density is de�ned to satisfy

q (xt+1; kjy1:t+1) _ p
�
yt+1j�kt+1

�
p
�
xt+1jxkt

�
; (2.70)

where �kt+1 is some likely value associated with the density p
�
xt+1jxkt

�
, and xkt is
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the kth particle from the set of particles fxit; i = 1; 2; :::; Pg that approximates

the previous �ltered distribution, p (xtjy1:t). The term �kt+1 could be, for example,

the conditional mean E
�
xt+1jxkt

�
, or a sampled value from p

�
xt+1jxkt

�
.

The importance density in (2.70) is, in turn, decomposed into the product

of a marginal and a conditional density, corresponding to the decomposition in

(2.70),

q (xt+1; kjy1:t+1) = q (kjy1:t+1) q (xt+1jk; y1:t+1) ; (2.71)

with

q (kjy1:t+1) _ p
�
yt+1j�kt+1

�
(2.72)

and

q (xt+1jk; y1:t+1) = p
�
xt+1jxkt

�
: (2.73)

Therefore, a single pair of (xt+1; k), denoted as
�
xit+1; k

i
�
, can be sampled from

the importance density in (2.71) in two preliminary steps:

1. With reference to (2.72), simulate the index ki with probablity �k _

p
�
yt+1j�kt+1

�
, for each k = 1; 2; :::; P , with �k referred to as the �rst-stage

weights.

2. Then, with reference to (2.73), draw xit+1 from the transition density

p
�
xt+1jxk

i

t

�
. Unlike the bootstrap �lter, where predictive states are drawn

without accounting for yt+1, the construction of the �rst-stage weights are

informed by yt+1, thereby allowing particles that give rise to high likeli-

hoods, p (yt+1jxt+1), to be produced in this step.
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The above two steps are repeated P times to generate
�
xit+1; k

i, i = 1; 2; :::; P
	
,

after which a re-weighting step is performed by assigning a second-stage weight,

wit+1, to the sample pair
�
xit+1; k

i
	
, with

wit+1 _
p
�
yt+1jxit+1

�
p
�
yt+1j�kit+1

� : (2.74)

The second-stage weights are likely to be less variable than those in (2.69), reduc-

ing the degeneracy problem associated with the bootstrap �lter, since the initial

particles are generated in Step 2 above using information from the data value

yt+1 implied through the index in Step 1. A sample of xt+1 from p (xt+1jy1:t+1)

can then be produced from the discrete distribution de�ned by the weights in

(2.74).

In summary, after initializing fxi1; i = 1; 2; :::; Pg as independent draws from

p (x1) ; the generic APF algorithm is given by the following steps for each t =

1; 2; :::; T :

1. Obtain a sample of draws,
�exit+1; i = 1; 2; :::; P	, that represent a sample

from the state prediction distribution, p (xt+1jy1:t), via the following steps:

(a) Calculate �it+1 for i = 1; 2; :::; P , where �
i
t+1 is a likely value of xt+1

from p (xt+1jxit) :

(b) With reference to (2.72), construct a pmf for the auxiliary variable,

ki, by assigning the �rst-stage weights,

�it+1 =
p
�
yt+1j�it+1

�PP
j=1 p

�
yt+1j�jt+1

� ; (2.75)

for i = 1; 2; :::; P:
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(c) Sample the ki from the discrete distribution, with pmf in (2.75), for

i = 1; 2; :::; P:

(d) Sample exit+1 from the importance density q (xt+1jki; y1:t+1) = p
�
xt+1jxk

i

t

�
,

for i = 1; 2; :::; P . These particles then represent a sample from

p (xt+1jy1:t).

2. Then approximate the one-step-ahead predictive density, p (yt+1jy1:t), by

the average of the conditional distributions for the measurement, as

p (yt+1jy1:t) =

Z
p (yt+1jxt+1) p (xt+1jy1:t) dxt+1

� 1

P

PX
i=1

p
�
yt+1j~xit+1

�
; (2.76)

where
�
~xit+1; i = 1; 2; :::; P

	
represent the draws of the predictive state

from p (xt+1jy1:t) in Step 1.

3. Construct a resampling pmf by assigning to each exit+1, for i = 1; 2; :::; P , a
second-stage normalized weight

wit+1 =
ewit+1PM
j=1 ewjt+1 ; (2.77)

where ewit+1 = p(yt+1j~xit+1)
p(yt+1j�kit+1)

, for i = 1; 2; :::; P . Resample xit+1 from the dis-

crete distribution having pmf given by (2.77) for i = 1; 2; :::; P . This

completes the updating step, as the particles
�
xit+1; i = 1; 2; :::; P

	
ap-

proximate the density, p (xt+1jy1:t+1).
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Fully Adapted Auxiliary Particle Filter

The generic APF above can usually reduce the variability of the second-stage

weights in (2.77) relative to the resampling weights associated with the bootstrap

�lter; see Arulampalam et al. (2002). However, further improvement can be

made over the generic scheme by tailoring the approach to the structure of the

model under consideration. This approach is referred to as the fully adapted

APF. The subsequent modi�cations to the APF involve changing Step 1(d) and

the calculation of ewit+1 in Step 3 in the algorithm above to:

� Sample exit+1 from the importance density q �xt+1jxkit ; yt+1; �kit+1�, where the
form of the density q (xt+1j�) is dependent on the speci�c structure of the

model considered.

� Calculate ewit+1 for i = 1; 2; :::; P , using
ewit+1 = p

�
yt+1j~xit+1

�
q
�
yt+1jxit+1; �k

i

t+1

� ;
where the form of q (yt+1j�) is dependent on the speci�c structure of the

model considered.

Pitt and Shephard (1999) demonstrate how to implement this adaptation of

the APF procedure in the case where the conditional measurement distribution

p (ytjxt) is log-concave and the state equation is linear and Gaussian. The density

q
�
yt+1jxt+1; �t+1

�
can be obtained by taking a �rst-order Taylor series expansion
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of ln p (ytjxt) around �t+1, giving the approximation

ln q
�
yt+1jxt+1; �t+1

�
� ln p

�
yt+1j�t+1

�
+
�
xt+1 � �t+1

�
�
@ ln p

�
yt+1j�t+1

�
@�t+1

:

(2.78)

Given the assumed linear, Gaussian form of p (xt+1jxt), the normal candidate

prediction density,

q
�
xt+1jxt; yt+1; �t+1

�
_ q

�
yt+1jxt+1; �t+1

�
� p (xt+1jxt) ; (2.79)

is readily obtained via the product of the two normal kernels associated with

q
�
yt+1jxt+1; �t+1

�
and p (xt+1jxt). Pitt and Shephard apply the adapted method

to various models, including a stochastic volatility model and a model in which

p (ytjxt) is a discrete mixture of normals.

2.5 Maximum Likelihood Estimation of � and
p (yT+1jy1:T )

The various �ltering algorithms presented in Section 2.4, used to produce the

one-step-ahead predictive distribution p (yt+1jy1:t) and, ultimately, the out-of-

sample one-step-ahead predictive distribution, p (yT+1jy1:T ), are conditioned on

a vector of parameters �, that is assumed to be known. This section relaxes this

assumption and assumes that � is unknown, and has to be estimated using the

sample observations, y1:T .

As mentioned in Section 2.3.4, � can be estimated via an ML approach by

maximizing the logarithm of the likelihood function in (2.10) with respect to

�, to obtain the ML estimate, b�. The (log) likelihood function only requires
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the availability of the marginal distribution p (y1), and the one-step-ahead pre-

dictive distributions, p (yt+1jy1:t) for t = 1; 2; :::T � 1, with the representations

of these distributions having already been produced by the various �lters pre-

sented in Section 2.4. However, as already highlighted, apart from the linear and

Gaussian model, where p (yt+1jy1:t) has an exact analytical solution produced by

the Kalman �lter, the other �lters applied to non-linear, non-Gaussian models

produce approximations to p (yt+1jy1:t) only.6 Hence, in the linear, Gaussian case,

the likelihood function produced via the Kalman �lter is exact, whilst in general

non-linear, non-Gaussian models the other �lters outlined above can be used to

produce an approximation to the likelihood function only.

The (exact) log-likelihood function for the linear, Gaussian model in (2.14)-

(2.17) is given by

lnL (�jy) = �Tp
2
ln (2�)� 1

2

T�1X
t=0

ln jFt+1j �
1

2

T�1X
t=0

"0t+1F
�1
t+1"t+1;

where

"t+1 = yt+1 � �t+1;

and �t+1 and Ft+1 are the means and variance-covariance of the predictive dis-

tribution, given by (2.19) and (2.20) respectively. If certain regularity conditions

are satis�ed, then the ML estimate, b�, based on a sample size T , is consistent
and asymptotically normal. This result is discussed by Hamilton (1994) and in

his discussion Hamilton gives a number of references to theoretical work on the

6Note that an exception to this statement applies if the state is discrete on a �nite support.
In this case all relevant integrals are de�ned exactly as �nite sums. See Arulampalam et al.
(2002) for an illustration.
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subject. If the true distributions for the errors are non-Gaussian (i.e. model is

misspeci�ed), the estimation method is referred to as quasi-ML estimation.

The log-likelihood functions approximated by the extended Kalman �lter for

the non-linear model in (2.22) and (2.23), and by the unscented Kalman �lter

for the non-linear model in (2.36)-(2.38) have the same representation, given by

lnL (�jy) � �Tp
2
ln (2�)� 1

2

T�1X
t=1

ln jFt+1j �
1

2

T�1X
t=1

"0t+1F
�1
t+1"t+1;

where

"t+1 = yt+1 � �
t+1
:

However, here the mean and variance-covariance of the predictive distribution

for the observation at time t, �t+1 and Ft+1, are given by (2.34) and (2.35)

respectively in the case of the extended Kalman �lter, and by (2.47) and (2.48)

respectively for the unscented Kalman �lter case. Once again, this log-likelihood

function has been speci�ed under the assumption of Gaussianity for the error

terms in the state space model as in (2.16) and with the initial state distribution

given by (2.17). If the true distributions for the errors are non-Gaussian, an

additional element of approximation error is involved in the speci�cation of the

likelihood function, i.e. over and above the error involved in the approximation

of the relevant �rst and second moments.

The log-likelihood functions approximated by the grid-based non-Gaussian

�lter, Gaussian-sum �lter and particle �lters, are given by

lnL (�jy) �
PT�1

t=0 ln p (yt+1jy1:t) ;
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with p (yt+1jy1:t) de�ned in (2.55) for the grid-based non-Gaussian �lter, (2.65)

for the Gaussian-sum �lter, (2.68) for the bootstrap �lter and (2.76) for the

auxiliary particle �lter. In particular, see Pitt (2002) for discussion on the use of

particle �lters to estimate a likelihood function, and the associated properties of

the estimator.

Finally, upon estimation of b�, the ML estimate of the out-of-sample one-step-
ahead predictive distribution is produced by conditioning the one-step-ahead

forecast distribution at time T , on the estimated parameter vector b�,
bp (yT+1jy1:T ) = p

�
yT+1jy1:T ;b�� : (2.80)

2.6 Limitations of the Parametric Forecasting
Approach

In this chapter some of the existing �lters that can be used to produce approxi-

mations of predictive distributions in state space models have been presented. In

this section, we conclude with a discussion of the limitations of these approaches,

with a brief overview given of how the non-parametric �lter, to be proposed in

Chapter 3, will overcome some of these limitations.

The �rst limitation is that most of the �lters presented in Section 2.4 require

parametric assumptions for the model. The Kalman �lter requires the model

to be linear in structure, with Gaussian error terms, in order to yield analytical

solutions for the predictive distributions. The extended Kalman �lter, whilst

addressing the issue of non-linearity in the model, still assumes Gaussianity for
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the error terms. The grid-based non-Gaussian �lter, in turn, allows for non-

Gaussian errors in the state space model, but still requires the distributional

assumptions for the measurement and state errors to be speci�ed. The particle

�lters also require parametric speci�cations for both the measurement and state

error terms. If these parametric speci�cations are incorrect, the out-of-sample

predictive distributions produced by the parametric �lters will also be incorrect.

We note also that with regard to the Kalman �lter in particular, the linear,

Gaussian assumption implies Gaussianity for the marginal distribution of the

data, which is not an accurate representation of the non-Gaussian empirical

data that is the focus of this thesis.

The second limitation is that some of these �lters are computationally bur-

densome. For example, the Gaussian-sum �lter su¤ers from a curse of dimension-

ality due to the geometric increase in the number of Kalman �lter components

with each time step in the �lter, making the evaluation of the likelihood dif-

�cult. Moreover, even when the number of Gaussian-sum terms is moderated,

the computational demands are still large due to the need to establish a suit-

able clustering of representative Gaussian-sum terms. The particle �lters, being

simulation-based methods, are also computationally expensive.

In contrast, the non-parametric �lter proposed in Chapter 3 is shown to

overcome these two limitations. The non-parametric �lter can be applied to non-

linear, non-Gaussian models, with the measurement error treated non-parametrically,

enabling a non-parametric estimate of the forecast distribution to be produced.
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For reasonably low dimensions of the measurement and state variables, the non-

parametric �lter is also shown to have a relatively low computational burden,

compared with both the Gaussian-sum and particle �lters.

In addition to overcoming the above two broad limitations, the non-parametric

�lter proposed in Chapter 3 also avoids some of the limitations speci�c to the

various �lters. First, the grid-based non-Gaussian �lter in Section 2.4.4 requires

integration over the supports of the �ltered and predictive distributions of xt,

which are dependent on the observed data up to time t and thus vary with t: In

contrast, the non-parametric �lter is also grid-based, but with integration occur-

ing only over the invariant support of the measurement error density. Second,

like the Gaussian-sum �lter in Section 2.4.5, the non-parametric �lter proposed

in Chapter 3 does not assume a parametric speci�cation for the measurement

error. However, unlike the Gaussian-sum �lter, the non-parametric �lter does

not su¤er from the curse of dimensionality, having a computational burden that

is linear, rather than exponential in T . Third, although initially conceived for

the non-parametric case, it will become apparent that the proposed approach

results in a general �ltering algorithm useful for the parametric case also, as

the properties of the Dirac delta function enable a switch of integrals so that

numerical integration can occur with respect to the invariant distribution of the

measurement error. A simulation-based approach that exploits these general

features is explored in Chapter 6, with the resulting Monte Carlo �lter seen to

avoid the degeneracy problems inherent to existing particle �lter methods.



Chapter 3

Non-Parametric Estimation of
Forecast Distributions in
Non-linear, Non-Gaussian State
Space Models

3.1 Introduction

In the spirit of the evolving literature referenced in Chapter 1, in which dis-

tributional forecasts are produced for speci�c non-Gaussian data types, a new

method for estimating the full forecast distribution of non-Gaussian time se-

ries variables is developed in this chapter. In contrast to much of the work

cited in the �rst chapter, in which strict parametric models are used, a �exible

non-parametric approach is to be adopted here, with a view to producing distri-

butional forecasts that are not reliant on the complete speci�cation of the true

DGP. The method is developed within the general framework of non-linear, non-

Gaussian state space models outlined in Chapter 2, but with the distribution for

the observed non-Gaussian variable, conditional on the latent state(s), estimated

non-parametrically. The estimated forecast distribution, de�ned by the relevant

61
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function of the non-parametric estimate of the conditional distribution, thereby

serves as a �exible representation of the likely future values of the non-Gaussian

variable, given its current and past values, and conditional on the (parametric)

dynamic structure imposed by the state space form.1

The recursive �ltering and prediction distributions used both to de�ne the

likelihood function and, ultimately, the predictive distribution for the non-Gaussian

variable (and for the state also, when of inherent interest), are represented via

the numerical solutions of integrals de�ned over the support of the independent

and identically distributed (i:i:d:) measurement error - with this support read-

ily approximated in empirical settings. Any standard deterministic integration

technique (e.g. rectangular integration, trapezoidal rule, Simpson�s rule) can be

used to estimate the relevant integrals. The ordinates of the (unknown) mea-

surement density are estimated as unknown parameters using a penalized ML

method, with this aspect drawing on the recent work of Berg, Geweke and Rietz

(2010) on discrete penalized likelihood (see also Scott, Tapia and Thompson,

1980; Engle and Gonzalez-Rivera, 1991). The relative computational simplicity

of the proposed method - for reasonably low dimensions of the measurement

and state variables - is in marked contrast with the high computational burden

of Monteiro�s (2010) Gaussian-sum �lter reviewed in Section 2.4.5 - an alterna-

1The estimated forecast distribution produced by the non-parametric �lter is referred to as
a non-parametric estimate throughout this and the following chapters, because our proposed
algorithm does not require the speci�cation of a functional form for the forecast distribution.
However, given that we do use a parametric structure for the state equation, plus invoke
some parametric structure in the measurement equation, the term �semi-parametric� could
conceivably be suitable also.
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tive method for allowing for �exibility in the speci�cation of the measurement

error. The modest computational burden of the proposed method also stands

in contrast with the simulation-based estimation methods needed to implement

�exible mixture modelling in the non-Gaussian state space realm (e.g. Durham,

2007; Caron, Davy, Doucet and Du�os, 2008; Jensen and Maheu, 2010; Yau,

Papaspiliopoulos, Roberts and Holmes, 2011).

An outline of the rest of the chapter is as follows. Section 3.2 gives an out-

line of the basic approach, with its computational simplicity being highlighted.

Section 3.3 describes the proposed recursive algorithm, with the Dirac delta func-

tion (�-function) used to recast all �ltering and predictive densities into integrals

de�ned over the constant support of the measurement error. Section 3.4 con-

structs the penalized log-likelihood function which is maximized to produce ML

estimates of the unknown parameters in the model. An estimate of the forecast

distribution is then produced using the estimated parameters. Section 3.5 dis-

cusses a modi�cation of the algorithm whereby the measurement error density

at each grid point is represented as a mixture of normal distributions. Section

3.6 concludes.

3.2 An Outline of the Basic Approach

The non-parametric estimate of a forecast distribution is developed within the

context of a general non-linear, non-Gaussian state space model for a scalar

random variable yt: Consider a univariate version of the general state space
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model in (2.4) and (2.5), governed by a measurement equation for the scalar yt

and a transition equation for a scalar state variable xt, given as

yt = ht (xt; �t) (3.1)

xt+1 = kt (xt; vt) ; (3.2)

respectively, for t = 1; 2; :::; T; where each �t is assumed to be an i:i:d: random

variable. The functions given by ht (�; �) are assumed to be di¤erentiable with

respect to each argument. Further, it is assumed that, for given values yt and

�t, the function

Gt (xt) = yt � ht (xt; �t) (3.3)

is assumed to have a unique root at xt = x�t (yt; �t), as well as having a non-

zero derivative at that root. As in the initial outline of the general model in

Chapter 2, the focus will be on the case where yt is continuous, with all dis-

tributions expressed using density functions as a consequence. However, with

simple modi�cations the proposed methodology applies equally to the case of

discrete measurements and/or states. Extension to the multivariate setting is

also possible, as will be illustrated in Chapter 6, although the grid-based method

emphasized here is clearly most suitable for reasonably low-dimensional prob-

lems. It is also assumed that x�t (yt; �t) is analytically available, in addition to

being unique, with adaptation of the method obviously required when neither of

these conditions are met. These adaptations will also be explored in Chapter 6.

As is common, �t is assumed to be independent of xt, in which case the pdf
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for �t is simply

p (�tjxt) = p (�t) ; for all t = 1; 2; :::; T:

Time-series independence for �t is also assumed; that is, any dynamic behaviour

in yt is captured completely by ht (�; �) and kt (�; �) : However, rather than as-

sume a potentially incorrect parametric speci�cation for p (�t) ; its distributional

form is allowed to be unknown. An initial (parametric) distribution p (x1) is

speci�ed for the scalar state, with the transition densities resulting from (3.2)

denoted by p (xt+1jxt), t = 1; 2; 3; :::; T: In the examples considered in the thesis

(and as would be standard in many empirical problems), ht (�; �) and kt (�; �) are

assumed to be known functions for all t; with kt such that the transition densi-

ties p (xt+1jxt) are available. To avoid unnecessary notation, the t subscript on

the functions h and k is suppressed from this point, as generalization to time

dependent functions is straightforward.

Given the model de�ned by (3.1) and (3.2), the one-step-ahead forecast dis-

tribution for yT+1, conditional on the observed data, y1:T = (y1; y2; :::; yT )
0 is

p (yT+1jy1:T ) =
Z
p (yT+1jxT+1) p (xT+1jy1:T ) dxT+1; (3.4)

where the explicit dependence of p (yT+1jy1:T ) on any unknown �xed parameters

that characterize h (�; �), p (x1), or any of the transition densities fp (xt+1jxt) ;

t = 2; 3; :::; Tg, has been suppressed. The primary aim of the approach is to

incorporate, within an overarching ML inferential approach, non-parametric es-

timation of the conditional measurement distribution, p (yT+1jxT+1), which via

(3.4), will yield a non-parametric estimate of the one-step-ahead forecast den-
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sity, p (yT+1jy1:T ). In cases where the state variable is also of inherent interest,

a non-parametric estimate of the corresponding forecast density for the state,

p (xT+1jy1:T ) ; may be obtained. As outlined below, the non-parametric method

is implemented by representing the unknown density, p (yT+1jxT+1), by its ordi-

nates de�ned, in turn, for N grid points on the support of �T+1: The nature of

these grid-points is determined by the integration method used to estimate the

integrals that de�ne the relevant �ltering/prediction algorithm. This approach

introduces an additional N unknown parameters to be estimated (via ML) along

with any other unknown parameters that characterize the model. Estimation is

subject to the usual restrictions associated with probability distributions and

to any restrictions to be imposed on the distribution as a consequence of the

role played by xT+1. A penalty function is used to impose smoothness on the

estimated density of yT+1 given xT+1.

As discussed in Section 2.3.4, the likelihood function for the vector of un-

known static parameters �, augmented in the current context by the unknown

ordinates of p (yT+1jxT+1), requires the availability of the one-step-ahead predic-

tion distributions,

p (yt+1jy1:t) ; t = 1; 2; :::T � 1 (3.5)

and the marginal distribution

p (y1) ; (3.6)

where both (3.5) and (3.6) are (suppressed) functions of �: In the following

section, a computationally e¢ cient �ltering algorithm for computing (3.5) and
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(3.6), needed for the speci�cation of the likelihood function in (2.10), is out-

lined. The unknown parameters are estimated by maximizing the (penalized)

likelihood function subject to the smoothness and coherence constraints noted

above. Conditional on these estimates, the predictive density in (3.4) is esti-

mated, with sampling error able to be quanti�ed in empirical settings using

resampling methods, as illustrated in Section 5.4.3.

Crucially, the computational burden associated with evaluation of the likeli-

hood function is shown to be a linear function (only) of the sample size, T . This

is in contrast with the computational burden associated with a kernel density

representation of p (�t), such as the one used in the Gaussian-sum �lter, which

was shown to be geometric in T in Section 2.4.5. The computational simplicity

of our method derives from the fact that given observed data for period t, the

representation of the invariant measurement error density on a common grid

implies a variable grid of values for the corresponding state variable, xt. Hence,

the computational requirements of evaluating the likelihood using our �lter are

equivalent to those that either assume or impose discretization on the state (see,

for example, Arulampalam et al., 2002; Clements, Hurn and White, 2006).

3.3 A Grid-based Filter

The �ltering algorithm proposed here provides an approximation to the true

�ltering distributions that are in general not available in closed form, even when

the measurement error distribution, p (�), is known. This approach exploits
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the functional relationship between the observation yt and the i:i:d: variable �t,

for given xt, in (3.1). Utilizing this relationship, the �ltering expressions are

manipulated using properties of the �-function, in such a way that all requisite

integrals are undertaken with respect to the invariant distribution of �. When

this measurement error distribution is unknown, the method may be viewed as a

non-parametric �ltering algorithm, with ordinates of the unknown error density

p (�), at �xed grid locations, estimated within an ML procedure.

3.3.1 Preliminaries

The �-function2 may be represented as

� (z� � z) =

�
1 if z� = z
0 if z� 6= z

where
R1
�1 � (z

� � z) dz = 1 and

Z 1

�1
f(z)� (z� � z) dz = f(z�), (3.7)

for any continuous, real-valued function f (�). Note z� is the root of the argument

of the �-function. Further, denoting by � (G (z)) the �-function composed with

a di¤erentiable function G (z) having a unique zero at z�, a transformation of

variables yields

Z 1

�1
f(z)� (G (z)) dz =

Z 1

�1
f(z)

����@G (z)@z

�����1 � (z � z�) dz; (3.8)

2Strictly speaking, � (x) is a generalized function, and is properly de�ned as a measure
rather than as a function. However, the commonly used heuristic de�nition is taken advantage
of here as it is more convenient for the �ltering manipulations that are to follow in the next
section. See, for example, Hassani (2009).
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resulting, via (3.7), inZ 1

�1
f(z)� (G (z)) dz = f(z�)

����@G (z)@z

�����1
z=z�

, (3.9)

where
���@G(z)@z

���
z=z�

denotes the modulus of the derivative of G (z), evaluated at

z = z�. The transformation in (3.8) makes it explicit that the root of the

argument of the �-function is z = z�, and as a consequence of this result, the

�-function satis�es the following relation

� (G (z)) =

����@G (z)@z

�����1 � (z � z�) (3.10)

when considering the composite function � (G (z)) explicitly in terms of z. In

what follows, G (xt) = yt � h (xt; �t) and, hence,����@G (xt)@xt

���� = ���� @h@xt
���� :

Further discussion of using these and other properties of the �-function may be

found in Au and Tam (1999) and Khuri (2004).

In the context of a state space model, the �-function is used to express the

transformation in (3.1) from the i:i:d: measurement error �t to the observed data

yt, given xt; so that

p (ytjxt) =
Z 1

�1
p (�) � (yt � h(xt; �)) d�; (3.11)

where � is a variable of integration that traverses the support of p(�): This

result, along with the transformation of variables relation in (3.10), enables all

integrals required to produce the likelihood function in (2.10) to be expressed in

terms of the measurement error variable, �.
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3.3.2 The Initial Filtered Distribution: p (x1jy1)

Using the representation of the measurement density as an integral involving the

�-function in (3.11), it follows that the �ltered density of the state variable at

time t = 1 may be expressed as

p (x1jy1) =
p (x1) p (y1jx1)

p(y1)

=
p (x1)

R1
�1 p (�) � (y1 � h(x1; �)) d�R1

�1 p (x1)
hR1
�1 p (�) � (y1 � h(x1; �)) d�

i
dx1

:

The expression of the resulting �ltered density is then simpli�ed in two ways.

First, the numerator is written in terms of the state variable using (3.10). Second,

the order of integration is reversed with (3.8) and (3.9) used in the denominator

to obtain

p (x1jy1) =
p (x1)

R1
�1 p (�)

��� @h@x1 ����1 � (x1 � x�1(y1; �)) d�R1
�1 p (x

�
1(y1; �)) p (�)

��� @h@x1 ����1x1=x�1(y1;�) d�
; (3.12)

where x�1(y1; �) is the (assumed unique) solution to y1 � h(x1; �) = 0 for any

value � in the support of p (�) :

Next, to numerically evaluate the �ltered distribution in (3.12) via rectan-

gular integration, an evenly spaced grid
�
�1; �2; :::; �N

	
is de�ned, with interval

length m, resulting in the approximation for p (x1jy1) given by

p (x1jy1) �
p (x1)

PN
j=1mp (�j)

��� @h@x1 ����1 � �x1 � x�j1
�

PN
i=1mp (x�i1 ) p (�

i)
��� @h@x1 ����1x1=x�i1

;

where p (�j) is de�ned as the unknown density ordinate associated with the grid-

point indexed by j.3 Note that conveniently using the numerical integration
3In contrast to the grid-based non-Gaussian �lter of Kitagawa (1987), discussed in Section
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approach over the same grid
�
�1; �2; :::; �N

	
in the numerator as well as in the

denominator serves to produce an implied state, x�j1 = x�1(y1; �
j); associated

with each �j, such that the �rst �ltered distribution has representation (up to

numerical approximation error) as a discrete distribution, with density

p (x1jy1) =
NX
j=1

W j
1 �
�
x1 � x�j1

�
, (3.13)

and where

W j
1 =

p (�j)
��� @h@x1 ����1x1=x�j1 p �x�j1 �PN

i=1 p (�
i)
��� @h@x1 ����1x1=x�i1 p (x�i1 )

; (3.14)

for j = 1; 2; :::; N .4 Implicit in this approximation to the �rst �ltered state

density is the �rst likelihood contribution,

p (y1) = m
NX
i=1

p
�
�i
� ���� @h@x1

�����1
x1=x�i1

p
�
x�i1
�
; (3.15)

2.4.4, in whichM is used to denote the number of grid points, the notation N is used to denote
the number of grid points in the proposed grid-based �lter underlying the non-parametric
method. The reason for this change in notation is to highlight the conceptual di¤erence
between Kitagawa�s �lter, where M is chosen with reference to the distribution of the state
variable (x), and the new �ltering method introduced in the thesis, in which N is chosen with
reference to the time-invariant distribution of the measurement error (�). The distinction is
important, as N is �xed for all t, whilst an e¢ cient implementation of Kitagawa�s method
would require di¤erent values of M for every t.

4Note that densities employing the Dirac delta notation should be interpreted carefully. In
(3.13), x1 given y1 has a discrete distribution with probability mass equal to W

j
1 at x1 = x

�j
1 .

It is referred to as a density because

cZ
�1

p (x1jy1) dx1 =

cZ
�1

NX
j=1

W j
1 �
�
x1 � x�j1

�
dx1

=
NX
j=1

W j
1

cZ
�1

�
�
x1 � x�j1

�
dx1

=

N�(c)X
j=1

W j
1

where N� (c) denotes the number of x�j1 that are less than or equal to c.
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obtained from approximating the denominator in (3.12).

Having obtained the representation in (3.13) for time t = 1, we show that

for any time t = 2; 3; :::T , an appropriate discrete distribution can be found to

approximate the �ltered distribution

p (xtjy1:t) =
NX
j=1

W j
t �
�
xt � x�jt

�
, (3.16)

where the recursively determined weights satisfy

NX
j=1

W j
t = 1;

and each state grid location

x�jt = x�t (yt; �
j) (3.17)

is determined by the unique zero of yt � h(xt; �
j); for j = 1; 2; :::N .

3.3.3 The Predictive Distribution for the State: p (xt+1jy1:t)

Assuming (3.16) holds in period t, it follows that the one-step-ahead state pre-

diction density is a mixture of transition densities, since

p (xt+1jy1:t) =

Z
p (xt+1jxt) p (xtjy1:t) dxt

=

Z
p (xt+1jxt)

NX
j=1

W j
t �
�
xt � x�jt

�
dxt

=

NX
j=1

Z
W j
t p (xt+1jxt) �

�
xt � x�jt

�
dxt

=

NX
j=1

W j
t p
�
xt+1jx�jt

�
; (3.18)
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for t = 1; 2; :::; T . The notation p
�
xt+1jx�jt

�
denotes the transition density of

p (xt+1jxt), viewed as a function of xt+1 and given the �xed value of xt = x�jt : As

it is assumed that the transition densities p (xt+1jxt) are available, no additional

approximation is needed in moving from p (xtjy1:t) to p (xt+1jy1:t). Note that the

W j
t values, for j = 1; 2; :::; N , are available from the previous iteration of the

�lter.

3.3.4 The One-step-ahead Predictive Distribution for the
Observed: p (yt+1jy1:t)

Having obtained a representation for the �ltered density for the future state

variable, xt+1, the corresponding predictive density for the next observation is

given by

p (yt+1jy1:t) =
Z 1

�1
p (yt+1jxt+1) p (xt+1jy1:t) dxt+1:

Utilizing (3.11) for p (yt+1jxt+1) ; the one-step-ahead prediction density has rep-

resentation

p (yt+1jy1:t) =
Z 1

�1

Z 1

�1
p (�) � (yt+1 � h(xt+1; �)) d� p (xt+1jy1:t) dxt+1;

which, after integration with respect to xt+1, (and using (3.9) once again), yields

p (yt+1jy1:t) =
Z 1

�1
p (�)

���� @h

@xt+1

�����1
xt+1=x�t+1(yt+1;�)

p(x�t+1(yt+1; �)jy1:t)d�: (3.19)

Invoking again the pre-speci�ed grid of values for �, we have (up to numerical

approximation error),

p (yt+1jy1:t) = m
NX
i=1

p
�
�i
� ���� @h

@xt+1

�����1
xt+1=x�t+1(yt+1;�

i)

p
�
x�t+1(yt+1; �

i)jy1:t
�
: (3.20)
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Noting that p
�
x�t+1(yt+1; �

i)jy1:t
�
in (3.20) denotes the one-step-ahead predic-

tive density from (3.18) evaluated at xt+1 = x�t+1(yt+1; �
i), it can be seen that

p (yt+1jy1:t) is computed as an N2 mixture of (speci�ed) transition density func-

tions as a consequence.

3.3.5 The Updated Filtered Distribution: p (xt+1jy1:t+1)

Finally, the predictive distribution for the state at time t + 1 is updated given

the realization yt+1 as

p (xt+1jy1:t+1) =
p (yt+1jxt+1) p (xt+1jy1:t)

p (yt+1jy1:t)

�
m
PN

j=1 p (�
j)
��� @h
@xt+1

����1 � �xt+1 � x�jt+1
�
p (xt+1jy1:t)

m
PN

i=1 p (�
i)
��� @h
@xt+1

����1
xt+1=x�it+1

p
�
x�it+1jy1:t

� ;

for t = 1; 2; :::; T � 1; and where x�jt+1 = x�t+1(yt+1; �
j) is determined by the jth

grid point �j and the observed yt+1. Hence, the updated �ltered distribution has

representation (up to numerical approximation error) as a discrete distribution

as in (3.16), with density

p (xt+1jy1:t+1) =
NX
j=1

W j
t+1�

�
xt+1 � x�jt+1

�
,

where, for j = 1; 2; :::; N;

W j
t+1 =

p (�j)
��� @h
@xt+1

����1
xt+1=x

�j
t+1

p
�
x�jt+1jy1:t

�
PN

i=1 p (�
i)
��� @h
@xt+1

����1
xt+1=x�it+1

p
�
x�it+1jy1:t

�
denotes the probability associated with location x�jt+1 given by the unique zero

of yt+1 � h(xt+1; �
j); for j = 1; 2; :::N .
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3.3.6 Summary of the Algorithm for General t

While the derivation details the motivation behind the general �lter, the ac-

tual algorithm is easily implemented using the following summary. Denote by

x�jt = x�t (yt; �
j) the unique zero of yt � h (xt; �

j), for each j = 1; 2; :::; N and

all t = 1; 2; :::; T . Initialize the �lter at period 1 with (3.13) and (3.14). For

t = 1; 2; :::; T � 1

p(xt+1jy1:t) =
NX
j=1

W j
t p
�
xt+1jx�jt

�
; (3.21)

p (yt+1jy1:t) =
NX
i=1

M i
t+1 (yt+1) p(x

�
t+1(yt+1; �

i)jy1:t); (3.22)

p (xt+1jy1:t+1) =
NX
j=1

W j
t+1�

�
xt+1 � x�jt+1

�
: (3.23)

with

M i
t+1 (yt+1) = mp

�
�i
� ���� @h

@xt+1

�����1
xt+1=x�t+1(yt+1;�

i)

(3.24)

and

W j
t+1 =

M j
t+1 (yt+1) p

�
x�jt+1jy1:t

�PN
i=1M

i
t+1 (yt+1) p

�
x�it+1jy1:t

� : (3.25)

The computational burden involved in the evaluation of the tth component of

the likelihood function (p (yt+1jy1:t)) is of order N2 for all t, implying an overall

computational burden that is linear in T . Note that, although the approxima-

tion renders the state �ltered distribution discrete, the state prediction density

is continuous, as is the prediction density for the observed variable. Conditional

on known values for p (�j) (and all other parameters), for large enough N the

�ltering algorithm is exact, in the sense of recovering the true �ltered and pre-
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dictive distributions for the state, plus the true predictive distribution for the

observed, at each time point.

This approach has three key bene�ts. First, establishing a grid of �j values

for the region of integration to a reasonable level of coverage need only be done

once for the i:i:d: random variable � (and not for each t). This is in contrast, for

example, with the approach of Kitagawa (1987) for the case of a fully parametric

non-Gaussian non-linear state space model discussed in Section 2.4.4, in which

numerical integration is performed over the non-constant e¤ective supports of

the �ltered and predictive distributions of xt, which are, in turn, determined by

the observed data up to time point t: Second, and the case of interest here, when

the measurement error density, p (�), is unknown, the mass associated with at

each of the grid points resulting from the rectangular integration procedure,

gj = p
�
�j
�
m; (3.26)

for j = 1; 2; :::; N , may be estimated within an ML procedure. Since m is

known, an estimate of p (�) is obtained over the regular grid. Extensions of

the algorithm incorporating alternative numerical integration methods, such as

Simpson�s rule, are straightforward but avoided here to keep the complexity to

a minimum. Finally, note that while the state transition equation is often stated

in the form xt+1 = kt (xt; vt) as in (3.2), with p (vt) independent of xt, all that

is required for the method is that the transition probability density functions

p (xt+1jxt) are available for each t.
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3.4 Penalized Log-likelihood Speci�cation

The product of the elements p (yt+1jy1:t) in (3.22), for t = 1; 2; :::; T � 1, along

with the marginal distribution p (y1) in (3.15), de�nes the likelihood function in

(2.10). Motivated by the prior belief that the true unknown distribution of �

is a smooth function that declines in the tails, the logarithm of this likelihood

function is penalized accordingly. Speci�cally, the log-likelihood is augmented

with two components that (with reference to (3.26)) respectively: (i) impose

smoothness on gj as a function of j; and (ii) penalize large values of j�0g��jj,

where g and � are the (N � 1) vectors containing the elements gj and �j. (See

Berg et al., 2010). The penalized log-likelihood function then becomes

lnL (�) = ln p (y1) +
T�1X
t=1

ln p (yt+1jy1:t)� !
1

2
g0H

�
N; �2

�
g� (1� !)k (c)0 g;

(3.27)

where

H
�
N; �2

�
= N3��2�0A�+N�1 [ee0 + ��0] (3.28)

and k (c) is an (N � 1) vector with jth element given by

kj (c) = � exp
�
c
���j � �0g��� :

The matrix A in (3.28) is an (N � 2) � (N � 2) tridiagonal matrix with ajj =

1=3 (for j = 1; :::; N � 2) and aj;j+1 = aj+1;j = 1=6 (for j = 1; :::; N � 3); �

is an (N � 2) � N matrix with three nonzero elements �jj = 1; �j;j+1 = �2;

�j;j+2 = 1 in each row j; e is an (N � 1) vector of ones; and N is the number

of grid points. The �rst penalty component in (3.27) controls the smoothness
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of the estimated density function de�ned by the gj, with smaller values of �2

corresponding to smoother densities. The second penalty term in (3.27) penalizes

values of gj associated with grid-points that are relatively far from the mean,

with the value of c determining the size of the penalty. The constant ! 2 (0; 1)

weights the two types of penalty. The penalized log-likelihood function is then

maximized, subject to
PN

i=1 g
j = 1; gj � 0; j = 1; 2; :::; N; to produce ML

estimates of the augmented �: An estimate of the forecast distribution in (3.4)

is subsequently produced using these estimated parameters.

3.5 A Mixture-based Alternative

The non-parametric �lter developed in Section 3.3 de�nes the measurement error

density as unknown density ordinates associated with speci�ed grid points �j;

where j = 1; 2; :::N (see Equation (3.26)). The non-parametric �lter could,

in principle, be replaced by a �lter in which the measurement error density is

represented as a Gaussian sum

p (�) =

KX
k=1

gk�
�
�; �k; b2

�
; (3.29)

where
�
�k; k = 1; 2; :::; K

	
are the locations at which the normal mixtures are

centred. The bandwidth parameter b > 0 is the standard deviation of each

mixture density, assumed here to be constant across all the mixture densities and

gk is the unknown weight attached to the kth mixture which would be estimated

via ML, subject to
KX
k=1

gk = 1:
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Note that K could be small so that relatively few unknown mixture weights

require estimation.

The derivation of the mixture-based algorithm is analogous to that of the

original non-parametric �lter given in Section 3.3, with the recursions in (3.21)-

(3.23) remaining appropriate in this case but with the weights in (3.25) requiring

modi�cation to re�ect the Gaussian sum speci�cation of p (�) in (3.29). Integra-

tion over the measurement error density is again undertaken numerically over

the grid points f�j; j = 1; 2; :::; Ng ; selected to cover the support of �. Using the

alternative representation for p (�) in (3.29) in the �ltering algorithm detailed in

Section 3.3, it can be shown that for t = 1; 2; :::; T � 1; the expressions in (3.21),

(3.22) and (3.23) still obtain, but with the values of M i
t+1(yt+1) now being given

by

M i
t+1(yt+1) = m

KX
k=1

gk�
�
�i; �k; b2

� ���� @h

@xt+1

�����1
xt+1=x�t+1(yt+1;�

i)

,

replacing those in (3.24) and feeding into the weights given in (3.25). The

mixture-based non-parametric �lter is initialized with (3.13), with the form of

W j
1 now given by

W j
1 =

PK
k=1 g

k�
�
�j; �k; b2

� ��� @h@x1 ����1x1=x�j1 p �x�j1 �PN
i=1

PK
k=1 g

k� (�i; �k; b2)
��� @h@x1 ����1x1=x�i1 p (x�i1 )

;

for j = 1; 2; :::; N . In this case the corresponding �rst likelihood contribution is

given by

p (y1) = m
NX
i=1

KX
k=1

gk�
�
�i; �k; b2

� ���� @h@x1
�����1
x1=x�i1

p
�
x�i1
�
:

The expression for p (�) in (3.29) has a seemingly similar representation to
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that used byMonteiro (2010) in the Gaussian-sum �lter discussed in Section 2.4.5

(see equation (2.60)). Indeed, the common features shared by the two representa-

tions are the use of the Gaussian distribution for the kernel/mixture and the use

of the bandwidth as the standard deviation of each kernel/mixture component.

There are, however, important di¤erences between the two. First, the means of

the Gaussian components of p (�) in (2.60) are given by (ultimately, estimates

of) the unobserved measurement disturbances �t, while the Gaussian mixtures

in (3.29) have means given by the set of local points,
�
�k; k = 1; 2; :::; K

	
, that

are spread across the invariant support of �. Second, each Gaussian component

of the kernel density estimator in (2.60) has the same weight, while the weights

attached to each Gaussian density in (3.29) are not constant and are able to

be estimated freely using the data. Crucially, as described in Section 2.4.5 the

Gaussian-sum �lter involves a geometric increase in the number of components as

the �lter propagates through time, whilst the mixture-based approach suggested

here maintains a �xed set of components over the full sample period. Hence,

expressing the density of � as a mixture of normals in (3.29) still produces closed

form representations for the relevant densities, whilst avoiding the curse of di-

mensionality that a icts the Gaussian-sum �lter. Nevertheless, insertion of this

density for � into the �ltering recursions (rather than the discrete non-parametric

representation) would lead to an increase in the computational burden associ-

ated with evaluating the likelihood function from order TN2 to order TN2K

(in the scalar case). This increase in computational requirement, along with the
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distinct decrease in the �exibility with which the unknown p (�) is represented,

has led us not to pursue this modi�cation further. However, it is worth noting

that this less �exible representation of p (�) may produce some computational

gains, relative to the full non-parametric represention, in the high-dimensional

case, given that the number of weights to be estimated, K, is independent of the

dimension of �. Further exploration of this issue is left for future work.

3.6 Summary

In this chapter a new method is developed for estimating the full forecast distrib-

ution of non-Gaussian time series variables in the context of a general non-linear,

non-Gaussian state space model. A non-parametric �lter is derived that exploits

the functional relationship between the observed variable and the state and mea-

surment error variables, expressed using Dirac�s �-function. This representation,

along with a simple rectangular integration rule de�ned over the �xed support

of the measurement error, allows the density of the measurement error to be es-

timated at N grid points using a penalized likelihood procedure. The approach

enables predictive distributions to be produced with computational ease in any

model in which the relationship between the measure and state is well under-

stood, but the precise distributional form of the measurment error is unknown.

The method is developed in the context of a model for a scalar measurement and

state, as is suitable for many empirical problems, with extensions to multivariate

problems to be demonstrated in Chapter 6. The method can also be modi�ed
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when some of the assumptions invoked here are relaxed, with these modi�cations

examined in Chapter 6.



Chapter 4

Forecast Distributions:
Comparison and Evaluation

4.1 Introduction

Reviews of the forecast evaluation literature, such as Diebold and Lopez (1996),

reveal that most attention had, in the past, been paid to evaluating point fore-

casts, with very little attention given to the evaluation of density forecasts. How-

ever, in more recent years, with the increased focus on the production and use

of density forecasts, there has been a corresponding development of methods

for assessing their accuracy, with key contributions here being Diebold et al.

(1998); Corradi and Swanson (2006); Gneiting and Raftery (2007); Gneiting et

al. (2007); and Geweke and Amisano (2010). In the context of this thesis, the aim

is to use the available tools to ascertain whether the non-parametric approach

developed in Chapter 3 produces distributional forecasts that are more accurate

than those produced by (potentially misspeci�ed) parametric alternatives.

Following Geweke and Amisano (2010), a distinction is drawn between the

comparison and evaluation of probabilistic forecasts. Comparing forecasts in-

83
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volves measuring relative performance; that is, determining which approach is

favoured over the other. Scoring rules are used in this thesis to compare the

non-parametric and parametric estimates of the predictive distributions of the

observed variables. The evaluation of forecasts, on the other hand, involves as-

sessing the performance of a forecasting approach against an absolute standard.

For example, the probability integral transform (PIT) method (which is adopted

here) benchmarks the sequence of cumulative predictive distributions, produced

from a single method and evaluated at ex-post values, against the distribution

of independent and identically distributed uniform random variables that would

result if the data were generated (in truth) by the assumed model.

The outline of this chapter is as follows: Section 4.2 details the scoring rules

used in the comparison of competing forecast distributions. Section 4.3 presents

the PIT method, along with the PIT-based tests used to evaluate the predictive

distributions. Empirical coverage rates, used to supplement the PIT-based tests,

are also described. Section 4.4 details the various DGPs used in simulation ex-

periments in which the accuracy of the non-parametric and parametric estimates

of the forecast distributions is assessed, with the simulation results presented in

Section 4.4.2. Section 4.5 concludes.

4.2 Forecast Comparison

Scoring rules assess the quality of probabilistic forecasts through the assignment

of numerical scores. These scores serve as summary measures of predictive per-
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formance and enable competing forecasting methods (non-parametric and para-

metric in our case) to be ranked. Proper scoring rules also encourage the assessor

to make careful assessments and to be honest. (See Selten, 1998; Garthwaite,

Kadane and O�Hagan, 2005; Gneiting and Raftery, 2007; Gneiting et al., 2007;

Boero, Smith and Wallis, 2011, for relevant expositions). Without loss of gener-

ality, the setting where scores re�ect a reward for good forecasting performance

is considered. Let s
�
P; yoT+1

�
be the score that is assigned when the forecaster

produces the predictive distribution P and the ex-post value, yoT+1, is observed.

A scoring rule is proper if, for any observation yoT+1 drawn at random from G,

the expected value of s
�
P; yoT+1

�
is maximized when P = G, and strictly proper

if this maximum is unique.1 Therefore, if a forecaster�s personal belief tallies

with the truth (G), there is an incentive for the forecaster to provide an honest

assessment in reporting this belief, instead of other beliefs, in order to maximize

the score.

Four proper scoring rules are adopted: logarithmic score (LS), quadratic

score (QS), spherical score (SPHS) and the ranked probability score (RPS),

given respectively by

1We note from Gneiting (2011) that scoring functions are generally taken to be negatively
oriented, with a smaller score indicating a better forecast. However, in this thesis, the scoring
functions are taken to be positively oriented, with a larger score therefore indicating a better
forecast.
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LS = ln p
�
yoT+1jy1:T

�
(4.1)

QS = 2p
�
yoT+1jy1:T

�
�
Z 1

�1
[p (yT+1jy1:T )]2 dyT+1 (4.2)

SPHS = p
�
yoT+1jy1:T

�
=

�Z 1

�1
[p (yT+1jy1:T )]2 dyT+1

�1=2
(4.3)

RPS = �
Z 1

�1

�
P (yT+1jy1:T )� I

�
yoT+1 � yT+1

��2
dyT+1; (4.4)

where, in our context, the competing density forecasts, denoted generically by

p (yT+1jy1:T ), are produced by applying the non-parametric and (various) para-

metric methods to the state space models considered later in Section 4.4.1. As

the scoring rule in (4.4) uses the forecast cumulative distribution functions rather

than density forecasts, the former are analogously denoted by P (yT+1jy1:T ). The

symbol I(�) in (4.4) denotes the indicator function that takes a value of one if

yoT+1 � yT+1 and zero otherwise. The integrals with respect to the continuous

random variable yT+1 in (4.2) to (4.4) are evaluated numerically.

The LS in (4.1) is a simple �local� scoring rule, returning a high value if

yoT+1 is in the high density region of p (yT+1jy1:T ), and a low value otherwise. In

contrast, the other three rules depend not only on the ordinate of the predictive

density at the realized value of yT+1, but also on the shape of the entire predic-

tive density. The QS in (4.2), for instance, is comprised of two components: a
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reward for a �well-calibrated�prediction (2p
�
yoT+1jy1:T

�
) and an implicit penalty

(�
R1
�1 [p (yT+1jy1:T )]

2 dyT+1) for misplaced �sharpness�, or certainty, in the pre-

diction. That is, for any given value for p
�
yoT+1jy1:T

�
, the QS score is reduced

according to the degree of concentration of p (yT+1jy1:T ) (measured by the mag-

nitude of
R1
�1 [p (yT+1jy1:T )]

2 dyT+1). If p (yT+1jy1:T ) is very concentrated around

yoT+1 (or �sharp�in its prediction of the true value) then the sharpness may pro-

duce a penalty, but only in association with a reward for correct calibration (i.e.

2p
�
yoT+1jy1:T

�
is also large). However, if p (yT+1jy1:T ) is very concentrated else-

where in the support of yT+1 (i.e. not at yoT+1), the sharpness will produce a

true penalty, because 2p
�
yoT+1jy1:T

�
will be low; the �moral�here being that cer-

tainty is rewarded by the QS score only in conjunction with accuracy. The same

principle applies in the calculation of the SPHS in (4.3), with the denominator

serving as the penalty term in this case. Neither the QS nor the SPHS are,

however, sensitive to the distance between the region of high predictive mass and

yoT+1. The RPS in (4.4), on the other hand, is sensitive to distance, rewarding

the assignment of high predictive mass near to the realized value of yT+1.

In the spirit of Diebold and Mariano (1995), amongst others, we assess the

signi�cance of the di¤erence between the average scores of the competing es-

timated predictive distributions by appealing to a central limit theorem. For

each scoring rule, M independent replications of a time series, fy1; y2; :::; yTgi

for i = 1; 2; :::;M , were simulated, with the parametric and non-parametric

estimates of the one-step-ahead forecast distribution produced for each. The
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scores for the two competing predictive distributions evaluated at the relevant

�observed�
�
yoT+1

�i
, were calculated, for each i = 1; 2; :::;M . Denote SD as the

average di¤erence between the scores of the two competing predictive distrib-

utions, associated with the set of M (independently) replicated one-step-ahead

forecasts. Under the null hypothesis of no di¤erence in the mean scores, the

standardized test statistic,

z =
SDb�SD=pM ; (4.5)

has a limiting N(0; 1) distribution, where b�SD=pM is the estimated standard

deviation of SD.

4.3 Forecast Evaluation

4.3.1 Probability Integral Transform

According to Diebold et al. (1998), regardless of the loss function, the cor-

rect predictive distribution (G from above) is superior to all alternatives. This

suggests that any density forecast, p (yT+1jy1:T ), should simply be evaluated by

testing whether or not p (yT+1jy1:T ) = g (yT+1jy1:T ) ; where g (�) is the true pre-

dictive density associated with G. Speci�cally, under the null hypothesis that

the predictive distribution corresponds to the true DGP, the PIT, de�ned as the

cumulative predictive distribution evaluated at yoT+1;

uT+1 =

Z yoT+1

�1
p (yT+1jy1:T ) dyT+1, (4.6)

is uniform (0; 1) (Rosenblatt, 1952). Hence, the evaluation of p (�) is performed by

assessing whether or not the probability integral transform over M replications,
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�
uiT+1; i = 1; 2; :::;M

	
is U (0; 1). Under H0 : uT+1 � i:i:d: U (0; 1), the joint

distribution of the relative frequencies (or height of the histogram) of the uiT+1

is multinomial, with

p (mj) =

�
M
mj

�
pmj (1� p)M�mj ;

where mj is the number of observations in the jth histogram bin and p = 1
bin
;

with bin = 20 being the number of histogram bins. The Pearson goodness of �t

statistic, used to assess whether the empirical distribution of the uiT+1 conforms

with this theoretical distribution, is then computed as

�2 =
binP
j=1

(mj �Mp)2

Mp
:

Under H0 : uT+1 � i:i:d:U (0; 1) ; the Pearson�s test statistic has an asymptotic

�2 distribution with bin� 1 degrees of freedom.

As the Pearson test requires large sample sizes to be reliable (Berkowitz,

2001), we supplement this test with one based on a quantile transformation of

uT+1,

!T+1 = �
�1 (uT+1) ; (4.7)

where ��1 (�) denotes the inverse of the standard normal distribution function.

A likelihood ratio (LR) test of H0 : !T+1 � i:i:d:N (0; 1), against the alternative

that the
�
!iT+1; for i = 1; 2; :::;Mg have an autoregressive structure of order

one, with Gaussian errors, is conducted.2 To supplement the LR results, the
2The AR(1) alternative is a particular form of dependence, chosen here due to its simplicity.

(See, for example, Berkowitz, 2001). This particular form of the LR test is a special case of an
extended forecast evaluation method developed by De Raaig and Raunig (2005) who discuss
the use of the LR test to determine the presence of higher order dependence in the transformed
PIT values.
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Jarque-Bera normality test is applied. Both tests have �2 null distributions,

with 3 and 2 degrees of freedom respectively.

Finally, histogram plots of the uT+1 values can also be used to visually iden-

tify systematic errors in the estimated forecast distributions. For example, a

humped-shaped histogram of uiT+1 indicates that the estimated predictive distri-

butions tend to underestimate the true probability of occurance in the middle of

the support of yT+1, and consequently tend to overestimate the true probability

of occurence in one or both tails. Conversely, frequent underestimation of the

probability of (both) extreme values of yT+1 results in a U-shaped histogram.

Another possible example is a humped shape in the middle with peaks at both

ends of the histogram. This pattern suggests that the true forecast densities tend

to be more leptokurtic than the estimated forecast densities. By considering the

apparent departures of the histogram of the uiT+1 values from a uniform distri-

bution in this way, the performance of the estimates of time varying forecast

distributions may be evaluated. See Diebold et al. (1998) and Carney and Cun-

ningham (2006) for further examples. This visual inspection of PIT plots is used

in the empirical illustration in Chapter 5.

4.3.2 Empirical Coverage Rates

The PIT-based tests are supplemented here by empirical coverage rates that

give a sense of how accurately an estimated predictive distribution has captured

the spread of the true predictive distribution. The empirical coverage rate is

calculated as the proportion of instances (over M replications) in which the
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realized value falls within the 95% highest predictive density (HPD) interval.

The proportion of samples with realizations that fall in each of the lower and

upper 5% predictive tails is also calculated. If the predictive density has a tail

coverage rate that is higher (lower) than the nominal rate, it means that extreme

values are being under (over) predicted.

4.4 Simulation Experiments

4.4.1 Alternative State Space Models

The non-parametric �lter is applied to a range of state space models to produce

the non-parametric ML estimates of forecast distributions, p (yT+1jy1:T ), in a

simulation setting. The �rst model considered (and outlined in Section 4.4.1) is a

state space model in which both the measurement and state equations are linear,

with both Gaussian and non-Gaussian measurement errors entertained for the

true DGP. Non-linearity is then introduced into the measurement equation (in

Section 4.4.1), and strictly positive (non-Gaussian) measurement errors assumed.

This form of model has been used to characterize (amongst other things) the

dynamic behaviour in �nancial trade durations and is known, in that context,

as the stochastic conditional duration model; see Bauwens and Veredas (2004)

and Strickland et al. (2006). In Chapter 5, in the context of an empirical

investigation of S&P500 volatility, we introduce a third model, containing non-

linearity in both the measurement and state equations and both Gaussian and

non-Gaussian measurement errors invoked. As the motivation for this model
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derives from the empirical problem in question, we defer discussion of this third

model - including the simulation results pertaining to it - until Section 5.3.1 of

Chapter 5.

Linear Model

The linear model is the mainstay of the state space literature; hence, it is neces-

sary to ascertain the performance of the non-parametric method in this relatively

simple setting, prior to investigating its performance in more complex non-linear

models. The comparator is the estimated forecast distribution produced via the

application of the Kalman �lter to a model in which the measurement error is

assumed to be Gaussian. Clearly, when the Gaussian distributional assumption

does not tally with the true DGP, the Kalman �lter will not produce the correct

forecast distribution. Our interest is in determining the extent to which the

non-parametric method produces more accurate (distributional) forecasts than

the misspeci�ed Kalman �lter-based approach.

The proposed linear state space model has the form,

yt = xt + �t (4.8)

xt+1 = �+ �xt + �vvt; (4.9)

where � = 0:1; � = 0:8, �v = 1:2 and vt s N (0; 1). The non-parametric �lter is

initialized with p(x1) as the density associated with a N (�; � 2) random variable,

with � = �
1�� and �

2 = �2v
1��2 : The non-parametric �lter is then implemented
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using the algorithm outlined in Section 3.3, with

x�jt = yt � �j;���� @h@xt
�����1
xt=x

�j
t

= 1;

and

p
�
xt+1jx�jt

�
=
�
2��2v

�� 1
2 exp

8<:�12
 
xt+1 �

�
�+ �x�jt

�
�v

!29=; ;

for t = 1; 2; :::; T . We entertain three di¤erent distributions for �t, including

the Gaussian, Student-t and skewed Student-t (see Fernandez and Steel, 1998).

The measurement error is standardized to have a mean of zero and variance

equal to one (�t s i:i:d (0; 1)) and the degrees of freedom parameter is set to

3, implying very fat-tailed non-Gaussian distributions. The skewness parameter

is also set to 3 (a value of 1 corresponding to symmetry), implying a heavy

right tail associated with the skewed Student-t distribution. For the purpose of

integration, the grid supports were set �4 to 4 in the Gaussian case, �6 to 6 in

the (symmetric) Student-t case and �4 to 8 in the skewed Student-t case.

Non-linear Model: Stochastic Conditional Duration

The SCD speci�cation models a sequence of trade durations and is based on the

assumption that the dynamics in the durations are generated by a stochastic

latent variable. Bauwens and Veredas (2004), for example, interpret the latent

variable as one that captures the random �ow of information into the market

that is not directly observed. Denoting by xt the duration between the trade at
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time t and the immediately preceding trade, an SCD model for yt is speci�ed as

yt = ext"t (4.10)

xt+1 = �+ �xt + �vvt; (4.11)

where "t is assumed to be an i:i:d: random variable de�ned on a positive support,

with mean (and variance) equal to one. It is also assumed that � = 0:1; � = 0:9,

�v = 0:3 and vt � i:i:d: N(0; 1); with "t and vt independent for all t: Observed

durations will typically exhibit a diurnal regularity that would be removed prior

to implementation of the SCD model. Note also that for the purpose of retaining

consistent notation throughout the thesis, a t subscript is used on the duration

variable in the SCD model to denote sequential observations over time. These

sequential durations are, of course, associated with irregularly spaced trades.

Taking logarithms of (4.10), the measurement equation is transformed as

ln (yt) = xt + b+ ���t; (4.12)

where "t = exp (b+ ���t), �t s i:i:d: (0; 1), b = E (ln "t) and �2� = V ar(ln "t):

Three di¤erent distributions for "t are adopted: exponential, Weibull and gamma.

The second column in Table 4.1 documents the form of the density for each of

the three DGPs (exponential, Weibull and gamma, identi�ed in the �rst column)

that are adopted for "t in (4.10), while the third column in Table 4.1 documents

the corresponding density for �t in (4.12). The fourth and �fth columns in Table

4.1 provide (respectively) the associated values for b and �2� for each of the three

distributional assumptions adopted for "t; see Johnson, Kotz and Balakrishnan
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(1994).

The non-parametric �lter is initialized with p (x1) as the density associated

with a N (�; � 2) variable, with again � = �
1�� and �

2 = �2v
1��2 : A range of �7 to 3

for �t is used in implementing the non-parametric approach, due to the negative

skewness that results from the logarithmic transformation of "t. The �lter is

then implemented using the algorithm in Section 3.3, with

x�jt = x�jt (yt; �
j)

= ln (yt)� b� ���
j,���� @h@xt

�����1
xt=x

�j
t

= 1

and

pt
�
xt+1jx�jt

�
=
�
2��2v

�� 1
2 exp

8<:�12
 
xt+1 �

�
�+ �x�jt

�
�v

!29=; :

Table 4.1:
Density functions corresponding to speci�cations for "t in (4.10) and �t in (4.12). Nota-
tion used is as follows: b = E (ln "t) and �2� = V ar(ln "t); with �t = (ln "t � b) =�� s
i:i:d: (0; 1) : In the table, f (�t) = b+���t,  (�) is the digamma function and  

0 (�)
is the trigamma function.

p ("t) p (�t) b �2�

Exponential exp (�"t) exp (� exp (f (�t) ) �0:5772 �2

6

� exp (f (�t) )��

Weibull  ("t)
�1 exp [� ("t)]  exp (� exp (f (�t) ) �0:5772


�2

62

� exp (f (�t) )��

Gamma "��1t exp(�"t)
�(�)

��
�(�)

exp (� exp (f (�t) )  (�)  0 (�)

� exp (�f (�t) )
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The parametric comparator treats �t as if it were i:i:d: N (0; 1) and uses

the Kalman �lter to produce the forecast density for the logarithmic duration.

Given that this distributional assumption for �t is incorrect, the approach based

on the Kalman �lter does not produce the correct forecast distribution, and the

forecast accuracy of this (misspeci�ed) approach in comparison with that of the

non-parametric method is documented.

4.4.2 Simulation Results3

All DGPs in the two broad models being investigated (as detailed in Section

(4.4.1)) are simulated over M = 1000 replications, with T = 1000. The parame-

ter values (other than the density ordinates de�ning the measurement error in

the non-parametric case) are �xed in the simulation exercise, taking on values

recorded in Section 4.4.1. Table 4.2 records the values of �; c and ! in (3.27)

used to ensure smoothness of the estimate of the measurement error distribu-

tion. Values of the smoothing parameters were determined by a trial and error

process. Other parameters values have been chosen with reference to typical em-

pirical data relevant to the model at hand, with parameter values chosen for the

SCD model being reasonably representative of the empirical estimates reported

by Bauwens and Verdas (2004) and Strickland et al. (2006).

Prior to selecting particular values for N for use in the simulations, some

experimentation with di¤erent numbers of grid-points was conducted, with a

view to gauging the robustness of the predictive results to this choice parame-

3All numerical results in this and the following empirical section have been produced using
the GAUSS programming language.
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ter. Speci�cally, a single one-step-ahead predictive distribution was produced,

based on data simulated from the two models, and under the three di¤erent

measurement distributions for each model. Panel A of Figure 4.1 shows the

plots of the non-parametric estimates of p (yT+1jy1:T ) for the linear model, with

Gaussian, Student-t and skewed Student-t distributional assumptions respec-

tively, and with N varying from 11 to 51. Panel B shows the corresponding

estimates of p (ln yT+1j ln y1:T ) for the SCD model, with exponential, Weibull

and gamma measurement errors, and with N varying from 21 to 61. It can be

seen that estimates of the predictive distributions obtained using di¤erent val-

ues of N are almost indistinguishable from one another, leading us to choose the

smallest values of N in the two ranges considered, namely N = 11 for the linear

model and N = 21 for the SCD model, with all grid points evenly spaced.4

4It should be noted here that the support of �t is wider in the case of the SCD model, than
for the linear model, due to the skewness of p (�t) that results from the log-transformation of
the exponential, Weibull and gamma probability distributions considered for "t in equation
(4.10). Consequently, more grid points were found to be needed to capture the areas of non-
negligible probability over this wider support.
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Figure 4.1: Estimated one-step-ahead predictive distribution of the linear and
SCD models for varying number of grid points, N . Panel A shows (from top
to bottom), p (yT+1jy1:T ), for the Gaussian, Student-t and skewed Student-t
DGPs, with N ranging from 11 to 51. Panel B shows (from top to bottom),
p (ln yT+1j ln y1:T ), for the exponential, Weibull and gamma DGPs, with N rang-
ing from 21 to 61:
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Table 4.2:
Constants, �; c and !, used in the penalized likelihood function in (3.27), in the
simulation experiments for the linear and SCD models, as detailed in Section (4.4.1).

�t � c !

N(0; 1) 0.5 0.5 0.2
Linear Model Student t(0; 1; � = 3) 4.0 0.5 0.2

Skewed Student t(0; 1; � = 3;  = 3) 6.0 0.05 0.2

Exponential (1; 1) 1.0 1.0 0.4
SCD Model Weibull ( = 1:15; 1) 1.0 1.0 0.4

Gamma (� = 1:23; 1) 1.0 1.0 0.4

Tables 4.3, 4.4 and 4.5 record respectively all score, evaluation and coverage

results. Results for the linear model, (4.8) and (4.9), and the SCD model, (4.12)

and (4.11), are recorded in Panel A and B respectively of each table. With

reference to Panel A in Table 4.3, the scores of the non-parametric estimate of

p (yT+1jy1:T ), under the Gaussian DGP, are seen to be lower overall than those

of the parametric forecast, across all four measures. This is no surprise, given

that the Kalman �lter produces the correct forecast distribution in the linear,

Gaussian case. However, the di¤erences between the scores are insigni�cant at

the 5% level, indicating that the non-parametric method does very well at recov-

ering the true forecast distribution, despite not exploiting the distributional form

of the measurment error. In the Student-t case - in which the Gaussian assump-

tion underlying the Kalman �lter-based distribution is incorrect - the scores of

the non-parametric estimate of p (yT+1jy1:T ) are higher overall than for the para-
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metric forecast, across all four measures. Once again, however, the di¤erences

are insigni�cant at the 5% level, except for the logarithmic score, according

to which the non-parametric estimate signi�cantly outperforms the misspeci�ed

parametric alternative. Under the skewed Student-t DGP, the non-parametric

estimates signi�cantly out-perform the misspeci�ed parametric estimates, for all

four scoring measures.

Panel A of Table 4.4 records (for the linear model) the test statistics associ-

ated with the three PIT tests described in Section 4.3, namely, the Pearson test

for the uniformity of
�
uiT+1; i = 1; 2; :::;M

	
in (4.6), the LR test of the normality

(and independence) of
�
!iT+1; i = 1; 2; :::;M

	
in (4.7) and the Jarque-Bera test

for the normality of
�
!iT+1; i = 1; 2; :::;M

	
. For the (conditionally) Gaussian

DGP, all test statistics - for both the non-parametric and parametric estimates

- do not reject the null at the 5% level, indicating that both approaches produce

accurate predictive distributions for this DGP. In contrast, in the Student-t and

skewed Student-t cases, at least one of the LR and Jarque-Bera tests leads to

rejection of the parametric estimates, indicating that the predictive distributions

produced by the misspeci�ed parametric approach under these two DGPs are

inaccurate. The LR test of the non-parametric estimate of p (yT+1jy1:T ) in the

skewed Student-t case leads to marginal rejection (at the 5% level), but the other

two tests of the non-parametric estimate fail to reject the null hypothesis.

With reference to Panel A of Table 4.5, the lower and upper 5% coverage rates

for both forecasting approaches, and under all three DGPs, are seen to be close
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to the nominal levels, indicating that both approaches are able to capture the

tails of the true predictive distribution well enough, in the linear case, even under

(parametric) misspeci�cation. However, under misspeci�cation, the parametric

estimate has signi�cant (although not �substantial�) undercoverage of the 95%

interval.
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Table 4.3:
Forecast comparison. Average scores for the parametric (Kalman �lter based)
and non-parametric estimates of p (yT+1jy1:T ) for the linear model (Panel A) and
p (ln yT+1j ln y1:T ) for the SCD model (Panel B), for the respective DGPs, with z
values (see (4.5)) for the di¤erence in scores across the competing forecasts reported.
In the table, �� represents statistical signi�cance at the 5% level for a one-sided test.

PANEL A: Estimated p (yT+1jy1:T ) for the linear model (Section 4.4.1)
Logarithmic Score Quadratic Score

�t: N St SkSt N St SkSt

Kalman �lter -1.9487 -1.9872 -2.0464 0.1665 0.1684 0.1615
Non-parametric -1.9512 -1.9695 -2.001 0.1662 0.1693 0.1652
z-statistic -1.2825 2.5027�� 3.8688�� -0.7064 0.8918 2.4836��

Spherical Score Continuous Ranked Probability Score
�t: N St SkSt N St SkSt

Kalman �lter 0.4081 0.4104 0.4019 -0.9576 -0.9774 -1.0269
Non-parametric 0.4078 0.4113 0.4065 -0.9584 -0.9728 -1.0032
z-statistic -0.5760 0.7909 2.6586�� -0.5254 1.1732 3.4734��

PANEL B: Estimated p (ln yT+1j ln y1:T ) for the SCD model (Section 4.4.1)
Logarithmic Score Quadratic Score

�t: Exp Wb Gamma Exp Wb Gamma

Kalman �lter -1.7414 -1.6280 -1.6463 0.2086 0.2398 0.2303
Non-parametric -1.7114 -1.5958 -1.6115 0.2135 0.2470 0.2353
z-statistic 3.2606�� 3.1794�� 3.6051�� 2.1441�� 2.9672�� 2.2638��

Spherical Score Continuous Ranked Probability Score
�t: Exp Wb Gamma Exp Wb Gamma

Kalman �lter 0.4567 0.4898 0.4799 -0.7729 -0.6829 -0.7004
Non-parametric 0.4621 0.4970 0.4851 -0.7643 -0.6712 -0.6914
z-statistic 2.2215�� 2.9651�� 2.3718�� 2.5278�� 2.9249�� 3.3838��
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Table 4.4:
Forecast Evaluation. Pearson, LR and Jarque-Bera �2 test statistics, for the
parametric and non-parametric estimates of p (yT+1jy1:T ) for the linear model (Panel
A) and p (ln yT+1j ln y1:T ) for the SCD model (Panel B), for the respective DGPs. In
the table, �� represents statistical signi�cance at the 5% level. The critical values for
the three tests are respectively 30.14, 7.82 and 5.99.

Pearson LR Jarque-Bera

PANEL A: Estimated p (yT+1jy1:T ) for the Linear model (Section 4.4.1)
NP KF NP KF NP KF

�t s N(0; 1) 13.12 11.88 1.646 0.081 0.826 0.0921
�t s St(0; 1; � = 3) 13.44 11.56 3.228 3.648 3.251 37.619��

�t s SkSt(0; 1; � = 3;  = 3) 12.48 21.40 9.053�� 15.571�� 1.6968 75.781��

PANEL B: Estimated p (ln yT+1j ln y1:T ) for the SCD model (Section 4.4.1)
NP KF NP KF NP KF

�ts exp (1; 1) 20.68 44.68�� 1.188 0.581 3.077 64.983��

�ts Wb ( = 1:15; 1) 9.96 48.64�� 1.879 0.635 4.409 129.785��

�ts Gamma (� = 1:23; 1) 10.16 31.60�� 3.933 2.554 1.131 77.524��

Considering now the score results for the SCD model, recorded in Panel B of

Table 4.3, all four scores for the non-parametric estimate of p (ln yT+1j ln y1:T ) are

seen to be signi�cantly higher than the corresponding scores for the parametric

estimate, for all three DGPs. With reference to Panel B of Table 4.4, across all

DGPs the non-parametric estimates of p (ln yT+1j ln y1:T ) are assessed as being

correct, as none of the null hypotheses for the three tests is rejected at the 5%

level. The (misspeci�ed) parametric estimate, on the other hand, is associated

with rejection for all but one of the tests of �t. Whilst none of the 5% (lower tail)

and 95% coverage rates recorded in Panel B of Table 4.5 (for either forecasting
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approach) is signi�cantly di¤erent from the nominal level, the 5% (lower tail)

coverage rates for the non-parametric estimate are closer to the nominal level

than those of the parametric alternative, for all three DGPs. In addition, the

5% upper tail of the non-parametric forecast distribution has coverage that is

not signi�cantly di¤erent from the nominal level, whereas the estimate from the

Kalman �lter-based approach signi�cantly underestimates the nominal level.

Table 4.5:
Forecast Evaluation. Coverage rates (5% and 95%) for the parametric (Kalman
�lter based) and non-parametric estimates of p (yT+1jy1:T ) for the linear model (Panel
A) and p (ln yT+1j ln y1:T ) for the SCD model (Panel B), for the respective DGPs. In
the table, �� represents signi�cant di¤erence from the nominal coverage, at the 5%
signi�cance level.

5% lower tail 5% upper tail 95% HPD

PANEL A: Estimated p (yT+1jy1:T ) for the linear model (Section 4.4.1)
�t: N St SkSt N St SkSt N St SkSt

Kalman �lter 4.8 4.5 5.5 5.0 5.3 6.4 94.9 93.3�� 92.4��

Non-parametric 4.4 4.6 6.1 4.5 5.9 5.8 95.2 94.1 93.5

PANEL B: Estimated p (ln yT+1j ln y1:T ) for the SCD model (Section 4.4.1)
�t: Exp Wb Gamma Exp Wb Gamma Exp Wb Gamma

Kalman �lter 6.0 5.8 6.5 2.7�� 2.8�� 3.3�� 94.9 94.9 95.4
Non-parametric 5.2 4.7 5.1 6.0 6.3 5.9 94.2 94.3 94.7

4.5 Conclusions

This chapter has addressed the issue of comparing and evaluating competing

probabilistic forecasts. A clear distinction between the comparison and evalua-
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tion has been made, with four proper scoring rules presented and used to compare

the probablistic forecasts produced by both the non-parametric method and var-

ious parametric alternatives. Evaluation of all probabilistic forecasts has been

performed using PIT-based tests, supplemented with empirical coverage rates.

Simulated data is used in the assessment, with the parametric compara-

tors all using a Kalman-�lter based approach. Three distributions for the true

measurement error are entertained for each of the linear and (non-linear) SCD

models, with the parameter values chosen (for the SCD model in particular)

with reference to typical empirical data. The simulation results show that the

non-parametric method performs signi�cantly better, overall, than (misspeci�ed)

parametric alternatives and is competitive with correctly speci�ed parametric es-

timates.



Chapter 5

Non-Parametric Estimation of
Forecast Distributions of
Realized Volatility

5.1 Introduction

Financial market volatility is central to the theory and practice of asset and

derivative pricing, asset allocation and risk management. For example, modern

option pricing theory, beginning with Black and Scholes (1973), assigns volatility

as an input into the determination of option prices. Volatility is also used in the

calculation of Value-at-Risk (VaR), which is commonly used by �nancial risk

managers to report the riskiness of an asset portfolio. Obtaining accurate fore-

casts of future volatility are critical for these, and other, �nancial applications,

a task rendered challenging by the fact that volatility is a latent quantity and,

hence, not directly observed.

The importance of volatility forecasts in practice has led to an enormous aca-

demic literature on the modelling and forecasting of returns volatility. A vast ma-

jority of the earlier studies relied on the autoregressive conditional heteroskedas-

106
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tic (ARCH) framework pioneered by Engle (1982), in which latent volatility is

modelled as a time-varying function of lagged observed returns. The generalized

ARCH (GARCH) model was subsequently introduced by Bollerslev (1986). Re-

views of these two models can be found in Bollerslev, Chou and Kroner (1992),

Bollerslev, Engle and Nelson (1994), Andersen and Bollerslev (1998a), Diebold

(2004) and Bauwens, Laurent and Rombouts (2006), amongst others. Bollerslev

(2010) also provides an extensive glossary of the plethora of models based on the

ARCH and GARCH framework that have been developed over the years.

The ARCH and GARCH models are conditionally deterministic models; that

is the volatility of returns, conditional on past information, is a non-stochastic

function of observed past returns. Alternatively, volatility may be modelled as

an intrinsically stochastic process, with models of this kind known as stochas-

tic volatility models (Taylor, 1986, 1994; Ghysels, Harvey and Renault, 1996;

Shephard, 1996). Whilst the additional �exibility associated with the stochastic

speci�cation of volatility may yield bene�ts from a modelling point of view, the

introduction of an additional source of randomness creates obvious challenges for

inference. A large literature, primarily simulation-based, has thus developed in

which the latent volatility process is accommodated; see Broto and Ruiz (2004)

and Shephard (2005) for recent reviews.

ARCH, GARCH and stochastic volatility models are parametric represen-

tations of latent volatility, with their usefulness depending upon the validity

of the speci�c distributional assumptions invoked. In contrast, Andersen and
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Bollerslev (1998b) �rst examined the use of high frequency data for providing

model-free, non-parametric measures of the true unobserved volatility, referred to

as realized volatility. This approach involves estimating volatility by the sum of

squared intra-day high frequency returns, and is formally discussed by Andersen,

Bollerslev, Diebold and Ebens (2001a), Andersen, Bollerslev, Diebold and Labys

(2001b) and Barndor¤-Nielsen and Shephard (2002a,b). Several other studies

highlighting the advantage of using high-frequency data to measure volatility in-

clude Zhou (1996), Meddahi (2002) and Andersen, Bollerslev, Diebold and Labys

(2003). Some surveys of this literature can be also found in Barndor¤-Nielsen,

Nicolato and Shephard (2002) and Andersen, Bollerslev and Diebold (2010).

The rationale behind the approach is that as the number of intraday returns

used in the calculation of realized volatility approaches in�nity, realized volatility

converges to the true latent volatility factor. Hence, ex-post volatility becomes

observable and can thus be modelled directly, rather than being treated as a

latent variable. The non-parametric measure calculated for day t (say) may

be used as a direct proxy for volatility on day t (or the subsequent day, t +

1). However, increasingly, researchers have attempted to capture the stylized

dynamic behaviour evident in the realized measures by �tting an observation-

driven time series model of some sort to the observed measure and subsequently

using the �tted model for forecasting. (See Andersen, Bollerslev and Diebold,

2007; Aït-Sahalia and Mancini, 2008; Martin, Reidy and Wright, 2009; Martens,

van Dijk and de Pooter, 2009; and Liu and Maheu, 2009, for recent examples).
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The importance of jump variation as a component of the observed measure has

also been given increased attention of late, as the signi�cance of large discrete

jumps in asset prices has become more evident; e.g. Andersen et al. (2007);

Bollerslev, Kretschmer, Pigorsch and Tauchen (2009); and Tauchen and Zhou

(2011).

High frequency data are, however, often contaminated by microstructure ef-

fects, such as discrete clustering and bid-ask spreads, for example (Bai, Russell

and Tiao, 2001; Andreou and Ghysels, 2002). One solution to this problem has

been to sample over an intermediate frequency, with sampling frequencies rang-

ing from 5 minute intervals (e.g. Andersen et al., 2001a; Barndo¤-Nielsen and

Shephard, 2002a) to as long as 30 minutes (e.g. Andersen et al., 2003) being

common. Another solution has been to modify the raw measure itself, via one of

a variety of methods, all of which attempt to retrieve consistency of the measure

in the presence of microstructure noise. See Journal of Econometrics, 2011, Vol-

ume 160(1): Special Issue on Realized Volatility, for several recent contributions

to this literature.

In practice of course, despite the asymptotic underpinnings of the realized

volatility measures, the observed measures capture the theoretical variance quan-

tity with error. Hence, the measures have also been exploited as observable

quantities in a state space model, with �ltering techniques employed to extract

estimates of the latent variance; see Barndor¤-Nielsen and Shephard (2002);

Creal (2008); Jacquier and Miller (2010); and Maneesoonthorn, Martin, Forbes
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and Grose (2011) for illustrations. We pursue this approach in this chapter,

with the key aspects of our approach summarized as follows. We specify a non-

linear state space model, referred to as the realized volatility (RV) model, via

which we produce the one-step-ahead forecast distribution of realized volatility

using the non-parametric �lter developed in Section 3.3. The model makes use

of a (discretized) version of a continuous time di¤usion for the latent variance

process, for which realized volatility is a noisy measure. Jumps in price (and/or

volatility) are not measured explicitly, and the adjustment for microstructure

noise is informal. Hence, the error term in the measurement equation will ab-

sorb these unmodelled e¤ects, in addition to the e¤ect of using a �nite number

(only) of high-frequency observations to construct the realize volatility measure.

The non-parametric method will, in principle, capture the distributional features

that arise from all of these factors.

Finally, we note that the focus on probabilistic forecasting of volatility per

se is in marked contrast to the focus of related work whereby point forecasts of

volatility are the key output. See Blair, Poon and Taylor (2001); Martens and

Zein (2004); Pong, Shackleton, Taylor and Xu (2004); Koopman, Jungbacker and

Hol (2005); Martin et al. (2009); and Busch, Christensen and Nielsen (2011) for

examples.

The structure of this chapter is as follows. Section 5.2 begins with the model

assumed to underlie spot price data for a given �nancial asset. Then the model

used to estimate the one-step-ahead forecast distribution for RV, the observable
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measure of latent volatility for the given �nancial asset, is established. The

non-parametric method is applied to the RV model to produce the one-step-

ahead forecast distribution in a simulation experiment in Section 5.3, with the

extended Kalman �lter presented in Section 2.4.2 used as the comparator. Using

the comparison and evaluation tools outlined in Chapter 4, the relative forecast

accuracy of these two approaches is examined using simulated data, with the

results documented in Section 5.3.1. The results of an empirical illustration of

realized volatility for the S&P500 index from January 1998 to August 2008 are

reported in Section 5.4, with a subsampling method used to measure the impact

of sampling variation on the estimated forecast distribution.

5.2 Realized Volatility Model

We wish to specify a state space model for realized volatility, which will relate the

observed measure to a dynamic model for the latent volatility process associated

with a �nancial asset return. The following bivariate jump di¤usion process is

assumed for the price of a �nancial asset, Pt, and its stochastic variance, Vt,

dPt
Pt

= �pdt+
p
VtdB

p
t + dJt (5.1)

dVt = �[�� Vt]dt+ �v
p
VtdB

v
t ; (5.2)

where dJt = ZtdNt; Zt � N(�z; �
2
z), and P (dNt = 1) = �Jdt and P (dNt = 0) =

(1� �J) dt: Under this speci�cation, random jumps are allowed to occur in the

asset price, at rate �J , and with a magnitude determined by a normal distrib-

ution. The pair of Brownian increments (dBp
t ; dB

v
t ) are potentially correlated,
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having a contemporaneous correlation coe¢ cient �. However, dBi
t and dJt are

assumed to be independent, for each of i = fp; vg : This model is referenced in

the literature as the stochastic volatility with jumps (SVJ) model (Eraker et al.,

2003; Broadie et al., 2007).

Given the assumed variance process in (5.2), quadratic variation over the

horizon t� 1 to t (assumed to be a day) is de�ned as

QV t�1;t =
Z t

t�1
Vsds+

NtP
t�1<s�t

Z2s :

That is, QVt�1;t is equal to the sum of the integrated variance of the continuous

sample path component of Pt,

Vt�1;t =
Z t

t�1
Vsds; (5.3)

and the sum of the Nt � Nt�1 squared jumps that occur on day t: Using the

notation pti to denote the i
th logarithmic price observed during day t, and rti =

pti � pti�1 as the i
th transaction return, it follows (see Barndor¤-Nielsen and

Shephard, 2002a; and Andersen et al., 2003) that

RVt =

BX
ti2[t�1;t]

r2ti
p! QV t�1;t; (5.4)

where RVt is referred as realized variance (or, in a slight abuse of terminology,

realized volatility) and B is equal to the number of intraday returns on day t.

The result in (5.4) is based on the implicit assumption that microstructure noise

e¤ects are absent.

The measurement equation is de�ned as

lnRVt = lnVt + uRVt ; (5.5)



5. Non-Parametric Estimation of Forecast Distributions of Realized
Volatility 113

where the latent volatility evolves according to (5.2) and uRVt = lnRVt � lnVt

is the logarithmic realized volatility error. The measurement equation has been

de�ned in logarithmic form (for both RVt and Vt) in order to (approximately)

remove the dependence of the deviation of RVt from Vt on the level of Vt: (See,

for example, Barndor¤-Nielsen and Shephard, 2002a). Based on the assumed

DGP in (5.1) and (5.2), uRVt in (5.5) will capture the e¤ect of ignoring the price

jump variation contained in lnRVt; the error associated with using the point

in time variance, Vt, as an estimate of the integrated variance in (5.3); and the

error associated with the use of a �nite value of B: If no adjustment is made to

the realized variance measure to cater for the presence of microstructure noise,

the error term will also capture this omitted e¤ect. The non-parametric method

will, in principle, capture the distributional features of uRVt that arise from all

of these factors.

An Euler approximation of (5.2) is used to de�ne the state equation,

Vt+1 = ��+ (1� �)Vt + �v
p
Vtvt; (5.6)

where Vt = the point-in-time volatility on day t and vt � i:i:d:N(0; 1). The

parameter � is an annualized quantity, matching the annualized magnitude of

the point in time volatility, Vt: The parameter � is treated as a daily quantity,

measuring the rate of mean reversion in the annualized Vt per day.
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5.3 Simulation Experiment

Prior to applying the realized volatility model to empirical data, a simulation

exercise such as that documented in Chapter 4, is undertaken here to assess

the predictive performance of the non-parametric method, with the extended

Kalman �lter used as the comparator. Using the generic notation in Chapter 3,

the model is thus

yt = lnxt + ���t (5.7)

xt+1 = �+ �xt + �v
p
xtvt (5.8)

where yt = lnRVt and xt = Vt. Values of �� = 0:12; � = 0:005; � = 0:92

and �v = 0:04 were chosen with reference to typical empirical results relevant to

the RV model, including those based on the S&P500 data analyzed in Section

5.4. The state error, vt, is assumed to follow a truncated normal distribution to

ensure that volatility is non-negative (i.e. xt > 0) in the implementation of the

algorithm. The truncation value associated with xt+1 is dependent on the value

of the previous state, as re�ected in the inequality,

vt >
(��� �xt)

�v
p
xt

:

The non-parametric �lter is initialized with p(x1) as the density associated

with a normal variate, N (�; � 2), truncated with x1 > 0, and with � = �
1�� and

� 2 = ��2v: The �lter is then implemented using the algorithm in Section 3.3,
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with

x�jt = exp
�
yt � ���

j
�

���� @h@xt
�����1
xt=x

�j
t

= x�jt ;

and

p
�
xt+1jx�jt

�
=

�
2��2vx

�j
t (yt; �

j)
�� 1

2

1� �
�
����x�jt
�v
p
x�jt

� exp

8<:�12
0@xt+1 � ��+ �x�jt

�
�v

q
x�jt

1A29=; :

As in the linear model, three di¤erent distributions for �t are entertained, in-

cluding normal, Student-t and skewed Student-t. The measurement error is stan-

dardized to have a mean of zero and variance equal to one (i.e. �t s i:i:d (0; 1)),

and with the same values assigned to the degrees of freedom and skewness pa-

rameters as detailed in Section 4.4.1, and the same supports adopted for the

purpose of integration.

The extended Kalman �lter presented in Section (2.4.2), with the assumption

of additive Gaussian measurement errors, is adopted as the basis for an alterna-

tive approach to estimating the forecast distribution. Referring to the RV model

in (5.7) and (5.8), and comparing these expressions with the non-linear state

space model in (2.22) and (2.23), the non-linear functions ht (xt) ; k1t (xt) and

k2t (xt) in (2.22) and (2.23), for the RV model, are given by

ht (xt) = lnxt (5.9a)

k1t (xt) = ��+ (1� �)xt (5.9b)

k2t (xt) =
p
xt: (5.9c)
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Referring to the Taylor series expansions about the �ltered mean batjt, and pre-
dicted conditional mean batjt�1, in (2.24)-(2.27), we have, for the RV model,

K1t = 1� � (5.10a)

	t =
1batjt�1 (5.10b)

K2t =
qbatjt: (5.10c)

Substituting (5.9) and (5.10) into the general linearized model of (2.29) and

(2.30) produces a linear, Gaussian model approximation of the RV model as

yt =
�
lnbatjt�1 � 1�+ xtbatjt�1 + ���t

xt+1 = ��+ (1� �)xt + �v

qbatjt�t;
with �t and �t both assumed to be normally distributed.

Referring to (2.34) and (2.35), the out-of-sample one-step-ahead predictive

distribution p (yT+1jy1:T ) ; is approximated as a normal distribution with its re-

spective mean and variance given as

E (yT+1jy1:T ) = h
�baT+1jT �

= lnbaT+1jT

V ar (yT+1jy1:T ) = 	2T+1VT+1jT + �2�

=
VT+1jTba2T+1jT + �2�:
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5.3.1 Simulation Results

The simulation experiment undertaken here is similar to that performed in Chap-

ter 4, with the RV model being simulated over M = 1000 replications, with

T = 1000. N = 11 grid points were used in the support of the measurement

error density, with the grid points evenly spaced. As with the simulation exercise

in Chapter 4, the parameter values for the model in (5.7) and (5.8) (other than

the density ordinates de�ning the measurement error in the non-parametric case)

are �xed in the simulation exercise and take on values recorded in Section 5.3.

Table 5.1 also records the distributional parameter values (if applicable) for the

measurement error in each DGP, and the values of �, c and ! in (3.27) used to

ensure smoothness of the estimate of the measurement error distribution.

Table 5.1:
Constants, �; c and !, used in the penalized likelihood function in (3.27), in the
simulation experiment for the RV model, as detailed in Section (5.3).

�t � c !

N(0; 1) 1.0 0.5 0.2
RV model Student t(0; 1; � = 3) 8.0 0.05 0.4

Skewed Student t(0; 1; � = 3;  = 3) 4.0 0.5 0.2

Tables 5.2 to 5.4 record respectively the score, evaluation and coverage re-

sults for the RV model. The scores reported in Table 5.2 for the non-parametric

estimate of p (yT+1jy1:T ) in the RV model are higher than those of the parametric

estimate, under all DGPs. Despite the positive values of the relevant test statis-
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tics, in the Gaussian case three of the non-parametric scores are insigni�cantly

higher than those of the corresponding parametric alternatives, indicating that

the extended Kalman �lter approach works reasonably well under the (correct)

assumption of conditional Gaussianity for the measurement distribution. Our

statistically signi�cant result for the logarithmic score for the Gaussian case,

however, may be due to model misspeci�cation for the extended Kalman �lter,

resulting from the fact that the true state transition density in this case is a trun-

cated Gaussian density. Of course, this model misspeci�cation becomes more

pronounced under the (truncated) Student-t DGP, where the non-parametric

estimate is signi�cantly more accurate than the (misspeci�ed) parametric esti-

mate, according to three of the four scores, as well as in all four cases under the

(truncated) skewed Student-t DGP.

The results in Table 5.3 show that, as is the case for the SCD model, there

is an overall tendency for the non-parametric approach to yield more accurate

forecasts in the RV model, according to the tests of �t. Speci�cally, the null

hypothesis is rejected at the 5% level in the non-parametric case in only one

case out of nine (and marginally at that), whilst �ve rejections (out of nine

cases) occur for the extended Kalman �lter-based alternative. With reference

to Table 5.4, both forecast approaches have similar (and reasonable) coverage

rates, apart from a signi�cant underestimation of the nominal coverage in the

upper tail on the part of the misspeci�ed parametric approach, under both the

symmetric and (positively) skewed Student-t DGPs.
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Table 5.2:
Forecast comparison. Average scores for the parametric (Kalman �lter based) and
non-parametric estimates of p (yT+1jy1:T ) for the respective DGPs, with z values (see
(4.5)) for the di¤erence in scores across the competing forecasts reported. In the table,
�� represents statistical signi�cance at the 5% level for a one-sided test.

Estimated p (yT+1jy1:T ) for the RV Model (Section 5.3)
Logarithmic Score Quadratic Score

�t: N St SkSt N St SkSt

Kalman �lter 0.01035 0.1282 0.08348 1.2160 1.3567 1.3394
Non-parametric 0.02564 0.1422 0.1026 1.2232 1.3783 1.3729
z-statistic 2.2647�� 2.4188�� 2.5861�� 1.3683 2.0192�� 2.7316��

Spherical Score Continuous Ranked Probability Score
�t: N St SkSt N St SkSt

Kalman �lter 1.1013 1.1629 1.1558 -0.13462 -0.1204 -0.1243
Non-parametric 1.1047 1.1712 1.1691 -0.13447 -0.1196 -0.1232
z-statistic 1.4966 1.9258�� 2.7818�� 0.4573 1.4604 1.7499��

Table 5.3:
Forecast Evaluation. Pearson, LR and Jarque-Bera �2 test statistics, for the non-
parametric (NP) and parametric (KF) estimates of p (yT+1jy1:T ) for the respective
DGPs. In the table, �� represents statistical signi�cance at the 5% level. The critical
values for the three tests are respectively 30.14, 7.82 and 5.99.

Pearson LR Jarque-Bera
NP KF NP KF NP KF

�t s N(0; 1) 21.28 37.32�� 8.347�� 13.284�� 1.043 36.499��

�t s St(0; 1; � = 3) 24.72 30.04 3.019 5.398 0.983 10.752��

�t s SkSt(0; 1; � = 3;  = 3) 16.40 24.96 3.321 2.847 3.385 39.216��
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Table 5.4:
Forecast Evaluation. Coverage rates (5% and 95%) for the parametric (Kalman
�lter based) and non-parametric estimates of p (yT+1jy1:T ) for the respective DGPs.
In the table, �� represents signi�cant di¤erence from the nominal coverage, at the 5%
signi�cance level.

5% lower tail 5% upper tail 95% HPD
�t: N St SkSt N St SkSt N St Skst

Kalman �lter 6.1 5.6 6.0 5.2 3.0�� 3.3�� 93.4 95.6 94.4
Non-parametric 5.3 4.7 5.8 5.5 4.3 4.0 93.8 95.7 95.0

As with the linear and SCD models, a sensitivity analysis is also performed

to examine the e¤ect of the number of grid points, N , on the estimate of the

one-step-ahead predictive distribution, p (yT+1jy1:T ), in the RVmodel. Figure 5.1

plots the estimates of p (yT+1jy1:T ) for the RV model with Gaussian, Student-t

and skewed Student-t error distributions, and with N varying from 11 to 51. It

can be seen that estimates of the predictive distributions obtained from di¤erent

values of N are very similar with one another. Hence, the results are considered

to be robust to the number of grid points. As the number of grid points chosen

corresponds to the number of unknown probabilities to be estimated, the com-

putational requirements of the simulation experiment led to the use of a value

of N at the lower end of the range considered.
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Figure 5.1: Estimated one-step-ahead predictive distribution of the RV model
for varying number of grid points, N . The �gure shows (from top to bottom),
p (yT+1jy1:T ), for the Gaussian, Student-t and skewed Student-t DGPs, with N
ranging from 11 to 51.
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5.4 Empirical Illustration: Realized Volatility
of the S&P500 Index

5.4.1 Preliminary Analysis

In order to illustrate the non-parametric method, non-parametric estimates of

the one-step-ahead prediction distributions for realized volatility of the S&P500

market index are produced and evaluated, based on the model described in (5.7)

and (5.8). The sample period extends from 2 January 1998 to 29 August 2008,

providing a total of 2645 daily observations. All index data has been supplied

by the Securities Industries Research Centre of Asia Paci�c (SIRCA) on behalf

of Reuters, with the raw index data having been cleaned using the methods of

Brownlees and Gallo (2006).1

The time series of the data is plotted in Panel A of Figure 5.2. As is clear

from that �gure, there are several distinct periods in which volatility is seen to

be signi�cantly higher than during the remaining sample period. The �rst of

these periods corresponds to the Asian currency crisis in 1998, when a �nancial

crisis gripped much of Asia and raised fears of a worldwide economic slowdown.

Realized volatility also reached high levels at the end of year 2000, following

the burst of the �Dot-com�bubble, and in year 2001 after the September 11th

terrorist attacks in the United States. Year 2002 produced record values of re-

1The candidate would like to acknowledge the assistance of Chris Tse in producing the
empirical realized variance series. The realized variation measure is based on �xed �ve minute
sampling, with a �nearest price�method used to construct arti�cial returns �ve minutes apart.
Subsampling (or averaging) over the day is also used, in order to mitigate some of the e¤ects
of microstructure noise. See Martin et al. (2009) for details of such computations.
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Figure 5.2: Time series of realized volatility and histogram of logarithmic realized
volatility of S&P500 market index from 2 January 1998 to 29 August 2008.
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alized volatility caused by a sharp drop in stock prices, generally viewed as a

market correction to over-in�ated prices following a decade-long �bull�market.

Also factoring in the speed of the fall in prices at this time were a series of large

corporate collapses (e.g. Enron and WorldCom), prompting many corporations

to revise earnings statements, and causing a general loss of investor con�dence.

The �nal period of high volatility in our sample corresponds to the year 2008,

associated with the �global �nancial crisis�, triggered by the sub-prime mortgage

defaults in the United States. During all of these periods, the peaks reached

by the realized volatility values were between ten and twenty times larger than

the average level over the full sample period. In contrast, there was a relatively

long period of time, from 2003 to mid-2007, during which volatility was rela-

tively stable and low. Panel B of Figure 5.2 plots the histogram of logarithmic

realized volatility, with the distinct skewness to the right re�ecting the occur-

rence of the very extreme values of realized volatility itself. A Jarque-Bera test

applied to this logarithmic realized volatility series rejects the null hypothesis of

Gaussianity at any conventional level of signi�cance. These empirical character-

istics are consistent with the existence of a jump di¤usion model for the stock

prices index, with realized volatility re�ecting both di¤usive and jump variation

as a consequence. In using the non-parametric approach to estimate the forecast

distribution for logarithmic realized volatility, the aim is to capture the impact

of jump variation in a computationally simple way, rather than modelling price

jumps explicitly.
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5.4.2 Empirical Results

The S&P500 daily realized volatility data is divided into two subsamples. A

portion of the sample (2 January 1998 to 30 January 2007), containing 2245

observations, is reserved for estimation of the model parameters in (5.7) and

(5.8), including the unknown ordinates of p (�) : The sample used for forecast

assessment comprises the remaining 400 realized volatility values, covering the

period from 31 January 2007 to 29 August 2008, and is represented by the shaded

area in Panel A of Figure 5.2. This second sample corresponds to the early period

of the �nancial crisis, during which defaults on sub-prime mortgages began to

impact on the viability of �nancial institutions and the availability of credit. The

out-of-sample density forecasts are based on (parameter) estimates updated as

the estimation window expands, incorporating each new daily observation within

the second sample period. N = 21 grid points, equally spaced over the interval

from -10 to 10, are used to represent the support of the measurement error

density, p (�), for all 400 forecast distributions. Values of the penalty parameters

used in (3.27) are � = 4; c = 0:5 and ! = 0:3.2

For each of the 400 estimated forecast distributions, simulated draws of

lnRVT+1 (in terms of which the measurement equation is speci�ed) are exponen-

tiated to produce future values of RVT+1; with these values then used to produce

a sequence of 95% prediction intervals for the evaluation period in Figure 5.3.

2Robustness of the empirical results to di¤erent sets of penalty values (1 � � � 4; 0:01 �
c � 0:5; 0:3 � ! � 0:8 ) for a �xed N was investigated. Di¤erences in the estimated forecast
distributions were negligible.
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The solid line represents the observed RVt at each point t in the evaluation

period, while the dotted lines represent the 2.5% and 97.5% predictive bounds.

The empirical coverage for the evaluation period is 94.0%, insigni�cantly di¤erent

from the nominal level of 95% and providing, thereby, extremely strong support

for the overall accuracy of the non-parametric approach. Support is also provided

via the Pearson test for uniformity of the probability integral transform series,

uT+1 in (4.6). However, both the LR test of the normality (and independence)

of
�
!iT+1; i = 1; 2; :::;M

	
in (4.7) and the Jarque-Bera test for the normality of�

!iT+1; i = 1; 2; :::;M
	
in (4.7) lead to rejection, indicating that some aspect of

the forecast distribution is not being adequately captured. Observation of the

shape of the histogram of uT+1 in Figure 5.4 shows a relatively smooth and uni-

form shape, as is consistent with the support of the Pearson test, but that a

few very extreme realizations are unable to be captured by the right tail of the

estimated forecast density.
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Figure 5.3: 95% one-step-ahead prediction intervals and the observed realized
volatility, over the 400 day evaluation period (31 January 2007 to 29 August
2008).
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Figure 5.4: Histogram of the probability integral transform series, u, for the
realized volatility model. The horizontal lines superimposed on the histogram
are approximate 95% con�dence intervals for the individual bin heights under
the null that u is i:i:d: U (0; 1) :
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5.4.3 Measuring Sampling Error

Finally, in the context of producing estimates of forecast distribution that are

conditional on estimates of the �xed parameters, it is of interest to consider the

issue of sampling error and the appropriate measurement thereof. In the spirit

of McCabe et al. (2011), the subsampling approach of Politis, Romano and Wolf

(1999) is used to quantify sampling variation in a single estimated one-step-ahead

forecast distribution, for 17th March 2008, a day with quite high volatility dur-

ing the out-of-sample period. The technique mimics the conventional prediction

interval for a scalar point forecast, but ensures, at the same time, that the inte-

gration to unity property of the forecast distribution still holds.3 The steps of

the procedure are as follows:

1. Obtain T�b+1 subsamples Y1 = (y1; : : : ; yb) ; Y2 = (y2; :::; yb+1); :::; YT�b+1 =

(yT�b+1; :::; yT ) from the set of empirical data, y1:T = (y1; y2; :::; yT )
0 :

2. Use the proposed non-parametric ML method to produce an estimate of

�, �̂b;t, computed from Yt, for t = 1; 2; :::; T � b+ 1:

3. Use �̂b;t and the observed values, y1:T , to compute the one-step-ahead fore-

cast distribution p
�
yT+1jy1:T ; �̂b;t

�
:

3As mentioned earlier in Chapter 1, Rodriguez and Ruiz (2009) present a bootstrap-based
approach to estimating prediction intervals in a linear state space setting. Their method uses
the Kalman �lter recursions, but eschews the assumption of Gaussian innovations by using
random draws from the empirical distributions of the innovations. It also factors sampling
variation into the prediction intervals, but in a di¤erent way from that proposed by McCabe
et al. (2011) and followed in this chapter. See also Pascual et al. (2001, 2006). Jung and
Tremayne (2006) use a block bootstrapping technique to cater for parameter uncertainty in
the estimation of forecast distributions for discrete count data, in an INAR setting.
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4. Calculate (over an arbitrarily �ne grid of values for yT+1) the metric db;t =

p
T
p�yT+1jy1:T ; �̂b;t�� p

�
yT+1jy1:T ; �̂

�
1
, where p

�
yT+1jy1:T ; �̂

�
is the

estimated forecast distribution based on the empirical data and �̂ is the

empirical estimate of �:

5. Find the 95th percentile of fdb;1; : : : ; db;T�b+1g, d0:95b ; and the corresponding

distribution p0:95 (yT+1jy1:T ; �) : Then, relative to the replicated distribu-

tions and in terms of the jj:jj1 distance from p
�
yT+1jy1:T ; �̂

�
, the chances

of seeing a distribution as or more �extreme�than p0:95 (yT+1jy1:T ; �) is 5%.

The data-dependent method used to choose the size of the sub-samples, b

(see Politis et al., 1999, Chapter 9) is as follows:

a. For each b 2 fbsmall; : : : ; bbigg carry out Steps 1 to 5 above to compute

d0:95b .4

b. For each b compute V Ib as the standard deviation of the 2k + 1 adjacent

values
�
d0:95b�k; : : : ; d

0:95
b+k

	
(for k = 2).

c. Choose b̂ to minimise V Ib.5

Figure 5.5 shows the 10th, 50th and 95th percentile sub-sampled forecast

distributions, along with the empirical forecast distribution, for the 17th March

4In the spirit of McCabe et al. (2011), we chose values for bsmall and bbig that encompassed
a value equivalent to half of the sample size being considered. For the smaller sample, with
505 observations, bsmall and bbig were chosen to be 220 and 275 respectively, while bsmall and
bbig were chosen to be 900 and 1600 respectively for the larger sample with 2528 observations.

5d0:95b has been chosen as the percentile on which selection of b is based, as the interest
primarily rests in ascertaining the changes in the forecast distributions that may occur at the
extreme end of the scale (of the metric d).
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2008. Panel A shows the relevant results based on a sample size of 505 observa-

tions (approximately two trading years) with b̂ = 255. Panel B shows the results

based on 2528 observations, with b̂ = 1300. As is clear, for the smaller sample

size, there is a large amount of uncertainty in the predictive estimate, with that

uncertainty serving to shift probability mass across the support of the predic-

tive distribution. For example, the predictive distribution at the 50th percentile

assigns a larger probability to extreme values of volatility, than does the actual

empirical estimate. On the other hand, the predictive distribution at the 95th

percentile assigns large probabilities to very low values of volatility. In other

words, for the smaller sample size sampling variability has a substantial impact,

serving to alter the qualitative nature of conclusions drawn about future volatil-

ity. For the larger sample size, the subsampled-based sampling distribution of

the (estimated) forecast distribution becomes much more concentrated around

the empirical estimate, with the full suite of distributions leading to qualitatively

similar conclusions regarding volatility on the given day.
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Figure 5.5: Plot of the 10th, 50th and 95th percentile bootstrap forecast dis-
tributions against the empirical forecast distribution for 17 March 2008. Panel
A shows the one-step-ahead forecast distributions estimated from the preced-
ing 505 observations. Panel B shows the one-step-ahead forecast distributions
estimated from the preceding 2528 observations.
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5.5 Conclusions

This chapter contributes to the current literature on realized volatility forecasting

by developing a state space model to which the non-parametric �lter is applied

to obtain distributional forecasts. The non-parametric approach aims to capture

the distributional properties of the measurement error which, in turn, contains

the e¤ects of all factors not explictly modelled. In principle, all unmodeled e¤ects

will be thereby re�ected in the estimated forecast distributions.

The forecasting accuracy of the non-parametric approach and the extended

Kalman �lter-based parametric approach is assessed using simulated data. Three

di¤erent DGPs are entertained for the simulation exercise. For all three cases, the

non-parametric estimates of the forecast distribution are shown to be accurate,

exhibiting the non-parametric �lter�s ability to perform well in this particular

setting. The non-parametric estimate of the forecast distribution is also robust

to the number of grid points on the measurement error density. When applied

to the S&P 500 data, the proposed non-parametric methodology is shown to

produce forecast distributions with excellent overall accuracy, only failing to

fully capture the most extreme values of realized volatility that occured on a few

occasions. A resampling method is used to highlight the e¤ect that sampling

variation can have on predictive conclusions, in small samples in particular.



Chapter 6

Extensions

6.1 Introduction

The non-parametric �lter developed in Chapter 3 is a grid-based approach that

yields a non-parametric estimate of the one-step-ahead forecast density, p (yT+1jy1:T ).

The algorithm utilizes the properties of the �-function to e¤ectively switch the

integration problem from xt to �t, where the latter has, by assumption, a support

that is constant over t: The algorithm as outlined in Chapter 3 depends on the

assumption that the function Gt (xt) = yt � ht (xt; �t) in (3.3) has a unique root

at xt = x�t (yt; �t), and that this root is analytically available. The application of

the algorithm has also been con�ned to univariate state space models thus far.

This chapter will expand the non-parametric methodology in four ways.

First, with the emphasis having been on producing the out-of-sample one-step-

ahead forecast distribution, Section 6.2 shows how the �lter can be used to obtain

a multi-step-ahead distribution. Second, the dual assumptions of the existence

of a unique root, and the unique root being analytically available, will be exam-

ined. Speci�cally, Section 6.3 derives the grid-based �lter in the case of multiple

133
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solutions to Gt (xt), while Section 6.4 discusses the issue of non-analytic roots.

Third, with the non-parametric �lter having been applied only to univariate

state space models in prior chapters, the extension of the �lter to a multivariate

setting is demonstrated in Section 6.5. Finally, Section 6.6 explores the case

where the grid-based �ltering method is replaced by a Monte Carlo simulation-

based method when the measurement error has a parametric speci�cation that

can be simulated from.

6.2 Multi-step-Ahead Forecast Distributions

In this section we demonstrate how the out-of-sample multi-step-ahead predic-

tive distribution for the model in (3.1) and (3.2) can be computed using the

non-parametric �lter. The summary of the non-parametric �lter for general t

produced under the assumptions detailed in Chapter 3 is reproduced here for

convenience:

p(xt+1jy1:t) =

NX
j=1

W j
t p
�
xt+1jx�jt

�
p (yt+1jy1:t) =

NX
i=1

M i
t+1 (yt+1) p(x

�
t+1(yt+1; �

i)jy1:t)

p (xt+1jy1:t+1) =

NX
j=1

W j
t+1�

�
xt+1 � x�jt+1

�
;

with

M i
t+1 (yt+1) = mp

�
�i
� ���� @h

@xt+1

�����1
xt+1=x�t+1(yt+1;�

i)

and
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W j
t+1 =

M j
t+1 (yt+1) p

�
x�jt+1jy1:t

�PN
i=1M

i
t+1 (yt+1) p

�
x�it+1jy1:t

� :
For multi-step-ahead forecast horizons, the prediction distribution for the

observation in period T + s, with s > 1, is

p (yT+sjy1:T ) =

Z
p (yT+s; xT+sjy1:T ) dxT+s

=

Z
p (yT+sjxT+s) p (xT+sjy1:T ) dxT+s;

where the state distribution at a future period T + s, is obtained by repeated

application of the transition recursion

p (xT+sjy1:T ) =
Z
p (xT+sjxT+s�1) p (xT+s�1jy1:T ) dxT+s�1:

Given that

p(xT+1jy1:T ) =
NX
j=1

W j
Tp
�
xT+1jx�jT

�
;

and with

W j
T+1 =

M j
T+1 (yT+1) p

�
x�jT+1jy1:T

�PN
i=1M

i
T+1 (yT+1) p

�
x�iT+1jy1:T

� ;
then, for example

p (xT+2jy1:T ) =
NX
j=1

W j
T

Z
p (xT+2jxT+1) p

�
xT+1jx�jT

�
dxT+1;

p (xT+3jy1:T ) =

NX
j=1

W j
T

Z
p (xT+3jxT+2)

Z
p (xT+2jxT+1) p

�
xT+1jx�jT

�
dxT+1dxT+2;

and so on. Once the state forecast distribution for period T+s has been obtained,
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the corresponding prediction distribution for the observation in period T + s is

p (yT+sjy1:T ) =

Z
p (yT+sjxT+s) p (xT+sjy1:T ) dxT+s

=

Z Z
p (�) � (yT+s � h(xT+s; �)) d� p (xT+sjy1:T ) dxT+s:

(6.1)

If an analytical expression for p (xT+sjy1:T ) is available, (6.1) can �rst be inte-

grated with respect to xT+s, yielding

p (yT+sjy1:T ) =
Z 1

�1
p (�)

���� @h

@xT+s

�����1
xT+s=x

�
T+s(yT+s;�)

p
�
x�T+s (yT+s; �) jy1:T

�
d�:

Subsequently, with numerical integration over the grid points
�
�1; �2; :::; �N

	
, we

obtain

p (yT+sjy1:T ) � m
NX
i=1

p
�
�i
� ���� @h

@xT+s

�����1
xT+s=x

�
T+s(yT+s;�

i)

p
�
x�T+s

�
yT+s; �

i
�
jy1:T

�
:

If, however, an analytical expression for p (xT+sjy1:T ) is not available, a simula-

tion based method for obtaining p (yT+sjy1:T ) may be used. This can be imple-

mented by drawing R replicates of xT+s, obtained �rst by sampling xT from the

�nal �ltered distribution p (xT jy1:T ), which assigns positive probabilities only to

the values x�jT = x�T (yT ; �
j) for j = 1; 2; :::; N; and then via s sequential draws

from the transition distribution given in (3.2). Each of the resulting R draws

of xT+s, denoted by x
(r)
T+s, could then be used to simulate an �observed�value

yT+s = y
(r)
T+s using (3.1) to produce

y
(r)
T+s = h

�
x
(r)
T+s; �

(r)
T+s

�
;



6. Extensions 137

with �(r)T+s drawn from the pmf implied by the non-parametric estimate of p (�).

The s-step-ahead forecast density, p (yT+sjy1:T ), may then be obtained by apply-

ing a kernel density estimator to y(r)T+s, for r = 1; 2; :::; R.
1

6.3 The Case of Multiple Roots of Gt (xt)

In the development of the algorithm in Chapter 3, we invoke the assumption

that for given values yt and �t, the function

G (xt) = yt � h (xt; �t) (6.2)

has a unique root at xt = x�t (yt; �t), as well as having a non-zero derivative at

that root. We now relax the unique root assumption and show how the non-

parametric �lter can be adapted to the case when (6.2) has multiple roots at

xt = x�it (yt; �t), for i = 1; 2; :::; K.

6.3.1 Preliminaries

The �-function satis�es the following relation,

Z 1

�1
f(z)� (z� � z) dz =

KX
i=1

f(z�i), (6.3)

for any continuous, real-valued function f (:). Note z�i for i = 1; 2; :::; K are

the roots of the argument of the �-function, with the case of K > 1 now being

explicitly allowed for. Further, denoting by � (G (z)) the composite function in

1One would expect the multi-step-ahead forecast distribution, being conditional only on
current information up to time T , to become wider as s increases due to increased uncertainty
of the forecasts. Therefore, a larger value of R may potentially be needed for a higher value
of s, in order for a wider spread of possible values of yT+s to be covered.
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which G (z) is a di¤erentiable function with multiple roots at z�i; i = 1; 2; :::; K,

a transformation of variable yields

Z 1

�1
f(z)� (G (z)) dz =

Z 1

�1
f(z)

����@G (z)@z

�����1 � (z � z�) dz; (6.4)

resulting, via (6.3), in

Z 1

�1
f(z)� (G (z)) dz =

KX
i=1

f(z�i)

����@G (z)@z

�����1
z=z�i

; (6.5)

where
���@G(z)@z

����1
z=z�i

denotes the modulus of the derivative of G (z) evaluated at

z = z�i, for i = 1; 2; :::; K.

The Dirac delta function also satis�es the following relation,

� (G (z)) =
KX
i=1

����@G (z)@z

�����1
z=z�i

�
�
z � z�i

�
, (6.6)

when considering the composite function � (G (z)) explicitly in terms of z. In

what follows, G (xt) = yt � h (xt; �t) and, hence,����@G (xt)@xt

���� = ���� @h@xt
���� ;

and accordingly

� (yt � h (xt; �t)) =
KX
i=1

���� @h@xt
�����1
xt=x�it (yt;�t)

�
�
xt � x�it (yt; �t)

�
.

6.3.2 The Initial Filtered Distribution: p (x1jy1)

Using the �-function representation of the measurement density in (3.11), it

follows that the �ltered density of the state variable at time t = 1 may be
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expressed as

p (x1jy1) =
p (x1) p (y1jx1)

p(y1)

=
p (x1)

R1
�1 p (�) � (y1 � h(x1; �)) d�R1

�1 p (x1)
hR1
�1 p (�) � (y1 � h(x1; �)) d�

i
dx1

:

The expression for p (x1jy1) is then simpli�ed by �rst re-writing � (y1 � h(x1; �))

using (6.6). Then, the order of integration is reversed and (6.4) and (6.5) used

in the denominator to obtain

p (x1jy1) =
p (x1)

R1
�1 p (�)

PK
i=1

��� @h@x1 ����1x1=x�i1 (y1;�) � (x1 � x�i1 (y1; �)) d�R1
�1 p (�)

PK
i=1 p (x

�i
1 (y1; �))

��� @h@x1 ����1x1=x�i1 (y1;�) d�
; (6.7)

where x�i1 (y1; �) for i = 1; 2; :::; K are the solutions to y1 � h(x1; �) = 0 for any

value � in the support of p (�) :

Next, to numerically evaluate the �ltered distribution in (6.7) via rectangular

integration, an evenly spaced grid
�
�1; �2; :::; �N

	
is de�ned, with interval length

m, resulting in the approximation for p (x1jy1) given by

p (x1jy1) �
p (x1)

PN
j=1

PK
i=1mp (�j)

��� @h@x1 ����1x1=x�i1 (y1;�j) � (x1 � x�i1 (y1; �
j))PN

j=1

PK
i=1mp (x�i1 (y1; �

j)) p (�j)
��� @h@x1 ����1x1=x�i1 (y1;�j)

;

where p (�j) is de�ned as the unknown density ordinate associated with the

grid-point indexed by j. Note that conveniently using the numerical integration

approach in the numerator as well as in the denominator serves to produce

multiple implied states, x�ij1 = x�i1 (y1; �
j), associated with each �j, such that

the �rst �ltered distribution has representation (up to numerical approximation
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error) as a discrete distribution, with density

p (x1jy1) =
NX
j=1

KX
i=1

W ij
1 �
�
x1 � x�ij1

�
, (6.8)

and where

W ij
1 =

p (�j)
��� @h@x1 ����1x1=x�i1 (y1;�j) p (x�i1 (y1; �j))PN

j=1

PK
i=1 p (�

j)
��� @h@x1 ����1x1=x�i1 (y1;�j) p (x�i1 (y1; �j))

; (6.9)

for i = 1; 2; :::; K and j = 1; 2; :::; N . Implicit in this approximation to the �rst

�ltered state density is the �rst likelihood contribution,

p (y1) = m
NX
j=1

KX
i=1

p
�
�j
� ���� @h@x1

�����1
x1=x�i1 (y1;�

j)

p
�
x�i1
�
y1; �

j
��
; (6.10)

obtained from approximating the denominator in (6.7).

Having obtained the representation in (6.8) for time t = 1, it will be shown

that for any time t = 2; 3; :::T , an appropriate discrete distribution can be found

to approximate the �ltered distribution

p (xtjy1:t) =
NX
j=1

KX
i=1

W ij
t �
�
xt � x�ijt

�
, (6.11)

where the iteratively determined weights satisfy

NX
j=1

KX
i=1

W ij
t = 1,

and each state grid location

x�ijt = x�it
�
yt; �

j
�

is determined by the ith solution of yt � ht (xt; �
j), for i = 1; 2; :::; K and j =

1; 2; :::; N .
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6.3.3 The Predictive Distribution for the State: p (xt+1jy1:t)

Assuming (6.11) holds in period t, it follows that the one-step-ahead state pre-

diction density is a mixture of transition densities, since

p (xt+1jy1:t) =

Z
p (xt+1jxt) p (xtjy1:t) dxt

=

Z
p (xt+1jxt)

NX
j=1

KX
i=1

W ij
t �
�
xt � x�ijt

�
dxt

=

NX
j=1

KX
i=1

W ij
t

Z
p (xt+1jxt) �

�
xt � x�ijt

�
dxt

=
NX
j=1

KX
i=1

W ij
t p

�
xt+1jx�ijt

�
; (6.12)

for t = 1; 2; :::; T . The notation p
�
xt+1jx�ijt

�
denotes the transition density of

p (xt+1jxt), viewed as a function of xt+1 and given the �xed value of xt = x�ijt : As

it is assumed that the transition densities p (xt+1jxt) are available, no additional

approximation is needed in moving from p (xtjy1:t) to p (xt+1jy1:t).

6.3.4 The One-step-ahead Predictive Distribution for the
Observed: p (yt+1jy1:t)

Having obtained a representation for the �ltered density for the future state

variable, xt+1, the corresponding predictive density for the next observation is

given by

p (yt+1jy1:t) =
Z 1

�1
p (yt+1jxt+1) p (xt+1jy1:t) dxt+1:

Utilizing (3.11) for p (yt+1jxt+1), the one-step-ahead prediction density has rep-

resentation

p (yt+1jy1:t) =
Z 1

�1

Z 1

�1
p (�) � (yt+1 � h(xt+1; �)) d� p (xt+1jy1:t) dxt+1;
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which, after integration with respect to xt+1 (and using (6.5) once again), yields

p (yt+1jy1:t) =
Z 1

�1
p (�)

KX
i=1

���� @h

@xt+1

�����1
xt+1=x�it+1(yt+1;�)

p(x�it+1(yt+1; �)jy1:t)d�:

Invoking again the pre-speci�ed grid of values for �, the one-step-ahead predic-

tion density (up to numerical approximation error) is,

p (yt+1jy1:t) = m
NX
j=1

KX
i=1

p
�
�j
� ���� @h

@xt+1

�����1
xt+1=x�it+1(yt+1;�

j)

p
�
x�it+1(yt+1; �

j)jy1:t
�
:

(6.13)

Given that p
�
x�it+1(yt+1; �

j)jy1:t
�
in (6.13) denotes the one-step-ahead predic-

tion density from (6.12) evaluated at xt+1 = x�it+1 (yt+1; �
j), it can be seen that

p (yt+1jy1:t) is computed as an (N2 �K2)mixture of (speci�ed) transition density

functions as a consequence.

6.3.5 The Updated Filtered Distribution: p (xt+1jy1:t+1)

Finally, the predictive distribution for the state at time t + 1 is updated given

the realization yt+1 as

p (xt+1jy1:t+1) =
p (yt+1jxt+1) p (xt+1jy1:t)

p (yt+1jy1:t)

�
m
PN

j=1

PK
i=1 p (�

j)
��� @h
@xt+1

����1
xt+1=x�it+1(yt+1;�

j)
�
�
xt+1 � x�ijt+1

�
p (xt+1jy1:t)

m
PN

j=1

PK
i=1 p (�

j)
��� @h
@xt+1

����1
xt+1=x�it+1(yt+1;�

j)
p
�
x�it+1(yt+1; �

j)jy1:t
� ;

for t = 1; 2; :::; T � 1; and where x�ijt+1 = x�it+1(yt+1; �
j) is determined by the ith

solution at the jth grid point �j and the observed yt+1. Hence, the updated

�ltered distribution has representation (up to numerical approximation error) as
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a discrete distribution as in (6.11), with density

p (xt+1jy1:t+1) =
NX
j=1

KX
i=1

W ij
t+1�

�
xt+1 � x�ijt+1

�
,

where, for i = 1; 2; :::; K and j = 1; 2; :::; N;

W ij
t+1 =

p (�j)
��� @h
@xt+1

����1
xt+1=x

�ij
t+1

p
�
x�ijt+1jy1:t

�
PN

j=1

PK
i=1 p (�

j)
��� @h
@xt+1

����1
xt+1=x

�ij
t+1

p
�
x�ijt+1jy1:t

�
denotes the probability associated with location x�ijt+1:

6.3.6 Summary of the Algorithm for General t

The actual algorithm is easily implemented using the following summary. Denote

by x�ijt = x�it (yt; �
j) the K zeroes of yt � h (xt; �

j), for i = 1; 2; ::; K; for each

j = 1; 2; :::; N and all t = 1; 2; :::; T . Initialize the �lter at period 1 with (6.8)

and (6.9). For t = 1; 2; :::; T � 1

p(xt+1jy1:t) =
NX
j=1

KX
i=1

W ij
t p

�
xt+1jx�ijt

�
;

p (yt+1jy1:t) =

NX
j=1

KX
i=1

M ij
t+1 (yt+1) p(x

�i
t+1(yt+1; �

j)jy1:t);

p (xt+1jy1:t+1) =

NX
j=1

KX
i=1

W ij
t+1�

�
xt+1 � x�ijt+1

�
;

with

M ij
t+1 (yt+1) = mp

�
�j
� ���� @h

@xt+1

�����1
xt+1=x�it+1(yt+1;�

j)

and

W ij
t+1 =

M i j
t+1 (yt+1) p

�
x�ijt+1jy1:t

�PN
j=1

PK
i=1M

i
t+1 (yt+1) p

�
x�ijt+1jy1:t

� :
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The computational burden involved in the evaluation of the tth component of

the likelihood function (p (yt+1jy1:t)) is (N2 �K2) for all t, implying an over-

all computational burden that is linear in T . Nevertheless, this computational

burden is heavier than the original case where the function G (xt) has a unique

root. As with the unique root case, the state prediction density and the predic-

tion density for the observed variable are continuous, despite the approximation

rendering the state �ltered distribution discrete. Conditional on known values

of p (�j) (and all other parameters), for large enough N the �ltering algorithm is

exact, being able to produce the true �ltered and predictive distributions for the

state, and the true predictive distribution for the observed, at each time point.

6.4 The Case of Non-analytic Roots of Gt (xt)

The linear, SCD and RVmodels examined in this thesis all have unique solutions,

x�t (yt; �), that are analytically available. However, for some models an analytical

solution for x�t (yt; �) may not be available. For example, consider the stochastic

volatility model used in Stroud, Muller and Polson (2003). The equity price, Pt,

is assumed to follow a geometric Brownian motion with volatility, Vt, modelled

as a continuous time mean-reverting process,

d lnPt = (�� Vt=2) dt+
p
VtdB

p
t ; (6.14)

d lnVt = � (�� lnVt) dt+ �vdB
v
t ; (6.15)

where Bp
t and dB

v
t are independent Brownian motions. The parameter � governs

the speed of mean reversion, � is the long-run mean of log-volatility and �v is
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the volatility of volatility. Using an Euler discretization of (6.14) and (6.15) over

the interval of time �t = 1, and de�ning yt = ln
�
Pt+1
Pt

�
and xt = lnVt, the state

space model becomes

yt =

�
�� 1

2
exp (xt)

�
+ exp

�xt
2

�
�t (6.16)

xt+1 = xt + � (�� xt) + �vvt; (6.17)

where �t and vt are both i:i:d:N(0; 1). The measurement equation in (6.16) has

a non-linear conditional mean, with the conditional variance of the additive

error term being a non-linear function of xt. A non-parametric treatment of the

measurement error distribution for �t via the method outlined in Chapter 3 is

thus not immediately feasible in this case, due to the lack of an analytic solution

of yt �
�
�� 1

2
exp (xt)

�
� exp

�
xt
2

�
�t for xt as a function of yt and �t.

In contrast, consider the discrete time stochastic volatility model in Harvey et

al. (1994); see also Shephard and Pitt (1997) and Durbin and Koopman (2001).

Denoting yt once again as the logarithmic return and xt as the logarithm of the

variance of the return, where it is assumed that

yt = exp
�xt
2

�
�t (6.18)

xt+1 = �+ �xt + vt; (6.19)

with �t s i:i:d: (0; 1) and vt s i:i:d: (0; �2v). Solving the measurement equation

in (6.18) for xt returns the unique solution x�t (yt; �) as

x�t = 2 ln

�
yt
�t

�
:
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However, the constraint yt
�t
> 0 has to be imposed in order for x�t to be de�ned.

To overcome this, the measurement equation in (6.18) can be rewritten as

jytj = exp
�xt
2

�
j�tj ;

allowing only the absolute values of yt and �t be used in the model. This rewriting

of the model does not result in the loss of any information because, referring to

(6.18), the sign of the observation yt only reveals the sign of �t, and contains

no information about the latent state variable, xt. Based on this representation

of the measurement equation, the unique solution is given as x�t = 2 ln
���� yt�t ����,

which by its contruction, will always be de�ned for �t > 0.

In summary, the non-parametric �lter is not directly applicable in models

where an analytical solution for the state variable is unavailable. However, in

certain cases, a re-parameterization of the model that admits a solution may

be feasible, thereby extending the realm of models to which the �lter can be

applied.2

6.5 Multivariate State Space Models

The focus of the thesis up to this point has been on the non-parametric estimation

of the forecast distribution of the scalar random variable yt. However, the non-

parametric approach can be extended to multivariate settings of the following

form: (i) the dimension of the observed variable is larger than the dimension

2Of course numerical techniques could always, in principle, be used to solve yt�h(xt; �t) = 0
for xt; with this numerical solution producing an additional level of computational burden to
the �lter. We do not explore this possibility here.
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of the state variable; (ii) the dimension of the state variable is larger than the

dimension of the observed variable; (iii) the dimensions of the state and observed

variables are the same. We illustrate here the non-parametric methodology for

the simplest case only, namely case (iii), where the state space model is a square

system. For illustration purposes, we consider the bivariate system governed by

the measurement equation for each yt = (y1;t; y2;t)
0 ;

yt = h (xt; �t)

=

�
h1
�
x1;t; x2;t; �1;t

�
h2
�
x1;t; x2;t; �2;t

� �

where �t =
�
�1;t; �2;t

�0
is now a (2� 1) vector for each t = 1; 2; :::; T , the transi-

tion probabilities for the state vector xt+1 = (x1;t+1; x2;t+1)
0 are given by

p (xt+1jxt) = p (x1;t+1; x2;t+1jx1;t; x2;t) ;

again for t = 1; 2; :::; T , and the initial state distribution is

p (x1) = p (x1;1; x2;1) :

As with the univariate case, the following assumptions are invoked for the

multivariate setting:

1. �t is assumed to be i:i:d:; with each having density given by p (�t) =

p
�
�1;t; �2;t

�
.

2. The functions given by h (xt; �t) are assumed to be di¤erentiable with re-

spect to each argument.
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3. For given values of yt and �t, the function G (xt) = yt�h (xt; �t) is assumed

to have a unique root at xt = x�t (yt; �t) which is analytically available, as

well as having a non-zero derivative at that root.

Extending the �-function representation of the distribution in (3.11) to mul-

tivariate systems, the measurement distribution is written as

p (ytjxt) =
Z 1

�1
p (�) � (yt � h(xt; �)) d�; (6.20)

where � is a variable of integration that traverses the support of p (�). Note

that the form of the measurement density in (6.20) appears identical to the

univariate case given in (3.11). However in this case, �; xt and yt are now all

(2� 1) variables, and the integral is over the two dimensional domain of �. Note

that, as in the univariate case presented in Chapter 3, in the discussion that

follows, the subscript indicating the time period t is not explicitly stated, so

that, for example, (�1; �2)
0 indicates the two-dimensional random variable, �.

Further, the Dirac �-function in (6.20) provides the same requisite properties as

the univariate case, so that essentially the same steps may be used to derive the

multivariate �lter. For further information on the multivariate Dirac �-function,

see Khuri (2004).
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6.5.1 The Initial Filtered Distribution: p (x1jy1)

Referring to the expression in (3.12) for the univariate state space model, the

�rst �ltered density for the bivariate state space model is expressed similarly as

p (x1jy1) =
p (x1)

R1
�1 p (�)

��� @h@x1 ����1 � (x1 � x�1(y1; �)) d�R1
�1 p (x

�
1(y1; �)) p (�)

��� @h@x1 ����1x1=x�1(y1;�) d�
; (6.21)

where x�1(y1; �) is the (assumed unique) solution to y1 � h(x1; �) = 0 for any

value � in the support of p (�) :

Next, to numerically evaluate the �ltered distribution in (6.21) via rectan-

gular integration, evenly spaced grids
�
�11; �

2
1; :::; �

N1
1

	
and

�
�12; �

2
2; :::; �

N2
2

	
for

the joint measurement error density are de�ned, with interval lengths m1 and

m2, given by m1 = �j1 � �j�11 ; for j = 2; 3; :::; N1; and m2 = �k2 � �k�12 , for

k = 2; 3; :::; N2. The resulting approximation for p (x1jy1) is then given by

p (x1jy1) �
p (x1)

PN1
j=1

PN2
k=1m1m2 p

�
�j1; �

k
2

� ��� @h@x1 ����1 � �x1 � x�jk1

�
PN1

j=1

PN2
k=1m1m2p

�
�j1; �

k
2

�
p
�
x�jk1

� ��� @h@x1 ����1x1=x�1(y1;�j1;�k2)
; (6.22)

with ���� @h@x1
�����1 =

����� @h1
@x1;1

@h1
@x2;1

@h2
@x1;1

@h2
@x2;1

�����
�1

; (6.23)

where p
�
�j1; �

k
2

�
is de�ned as the unknown density ordinate associated with

the joint measurement error density at the bivariate grid-point indexed by j

and k. The expression xi;1 in (6.23) represents the ith component of the x1

variable, for i = 1; 2. Note that using the numerical integration approach in

the numerator as well as in the denominator serves to produce an implied state,

x�jk1 = x�1
�
y1; �

j
1; �

k
2

�
, associated with the bivariate grid-point

�
�j1; �

k
2

�0
; so that
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the �rst �ltered distribution has representation (up to numerical approximation

error) as a discrete distribution, with density

p (x1jy1) =
N1X
j=1

N2X
k=1

W jk
1 �
�
x1 � x�jk1

�
; (6.24)

and where

W jk
1 =

p
�
�j1; �

k
2

�
p
�
x�jk1

� ��� @h@x1 ����1x1=x�jk1PN1
j=1

PN2
k=1 p

�
�j1; �

k
2

�
p
�
x�jk1

� ��� @h@x1 ����1x1=x�jk1

; (6.25)

for j = 1; 2; :::; N1 and k = 1; 2; :::; N2. Implicit in this approximation to the �rst

�ltered state density is the �rst likelihood contribution,

p (y1) = m1m2

N1X
j=1

N2X
k=1

p
�
�j1; �

k
2

�
p
�
x�jk1

� ���� @h@x1
�����1
x1=x

�jk
1

; (6.26)

obtained from approximating the denominator in (6.21).

Having obtained the representation in (6.24) for time t = 1, it will be shown

that for any time t = 2; 3; :::T , an appropriate discrete distribution can be found

to approximate the �ltered distribution as

p (xtjyt) =
N1X
j=1

N2X
k=1

W jk
t �
�
xt � x�jkt

�
, (6.27)

where the iteratively determined weights satisfy

N1X
j=1

N2X
k=1

W jk
t = 1;

and each implied state

x�jkt = x�t
�
yt; �

j
1; �

k
2

�
; (6.28)

arising from state grid location
�
�j1; �

k
2

�
and observation yt, is determined by the

unique zero of yt � h(xt; �).
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6.5.2 The Predictive Distribution for the State: p (xt+1jy1:t)

Assuming (6.27) holds in period t, it follows that the one-step-ahead state pre-

diction density is a mixture of transition densities, since

p (xt+1jy1:t) =

Z
p (xt+1jxt) p (xtjy1:t) dxt

=

Z
p (xt+1jxt)

N1X
j=1

N2X
k=1

W jk
t �
�
xt � x�jkt

�
dxt

=

N1X
j=1

N2X
k=1

W jk
t

Z
p (xt+1jxt) �

�
xt � x�jkt

�
dxt

=

N1X
j=1

N2X
k=1

W jk
t p
�
xt+1jx�jkt

�
; (6.29)

for t = 1; 2; :::; T . Note that the W jk
t values, for j = 1; 2; :::; N1 and k =

1; 2; :::; N2, are available from the previous iteration of the �lter.

6.5.3 The One-step-ahead Predictive Distribution for the
Observed: p (yt+1jy1:t)

Referring to the expression in (3.19) for the univariate state space model, the one-

step-ahead predictive distribution for the bivariate state space model is expressed

similarly, using vector notation, as

p (yt+1jy1:t) =
Z 1

�1
p (�)

���� @h

@xt+1

�����1
xt+1=x�t+1(yt+1;�)

p(x�t+1 (yt+1; �))jy1:t)d�:

Invoking again the pre-speci�ed bivariate grid of values for (�1; �2)
0, the one-

step-ahead prediction density (up to numerical approximation error) is,

p (yt+1jy1:t) = m1m2

N1X
j=1

N2X
k=1

p
�
�j1; �

k
2

� ���� @h

@xt+1

�����1
xt+1=x�t+1(yt+1;�

j
1;�

k
2)
p(x�t+1

�
yt+1; �

j
1; �

k
2

�
)jy1:t):

(6.30)



6. Extensions 152

Given that p(x�t+1
�
yt+1; �

j
1; �

k
2

�
)jy1:t) in (6.30) denotes the one-step-ahead pre-

dictive density from (6.29) evaluated at xt+1 = x�t+1
�
yt+1; �

j
1; �

k
2

�
, it can be seen

that p (yt+1jy1:t) is computed as an (N1 �N2)
2 mixture of (speci�ed) transition

density functions as a consequence.

6.5.4 The Updated Filtered Distribution: p (xt+1jy1:t+1)

Finally, the predictive distribution for the state at time t + 1 is updated given

the realization yt+1 as

p (xt+1jy1:t+1) =
p (yt+1jxt+1) p (xt+1jy1:t)

p (yt+1jy1:t)

�
m1m2

PN1
j=1

PN2
k=1 p

�
�j1; �

k
2

� ��� @h
@xt+1

����1 � �xt+1 � x�jkt+1

�
p (xt+1jy1:t)

m1m2

PN1
j=1

PN2
k=1 p

�
�j1; �

k
2

� ��� @h
@xt+1

����1
xt+1=x

�jk
t+1

p(x�jkt+1jy1:t)
;

for t = 1; 2; :::; T � 1; and where x�jkt+1 = x�t+1
�
yt+1; �

j
1; �

k
2

�
is determined by the

(j; k)th grid point
�
�j; �k

�0
and the observed yt+1. Hence, the updated �ltered dis-

tribution has representation (up to numerical approximation error) as a discrete

distribution as in (3.16), with density

p (xt+1jy1:t+1) =
N1X
j=1

N2X
k=1

W jk
t+1�

�
xt+1 � x�jkt+1

�
,

where, for j = 1; 2; :::; N1 and k = 1; 2; :::; N2,

W jk
t+1 =

p
�
�j1; �

k
2

�
p
�
x�jkt+1jy1:t

� ��� @h
@xt+1

����1
xt+1=x

�jk
t+1PN1

j=1

PN2
k=1 p

�
�j1; �

k
2

�
p
�
x�jkt+1jy1:t

� ��� @h
@xt+1

����1
xt+1=x

�jk
t+1

denotes the probability associated with location x�jkt+1 given by the unique zero

of yt+1 � h(xt+1; �
j; �k); for j = 1; 2; :::N1 and k = 1; 2; :::; N2.
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6.5.5 Summary of the Algorithm for General t

The actual algorithm is implemented using the following summary. Denote by

x�jkt = x�t
�
yt; �

j
1; �

k
2

�
the unique zero of yt � h(xt; �), for each j = 1; 2; :::; N1,

k = 1; 2; :::; N2 and all t = 1; 2; :::; T . Initialize the �lter at period 1 with (6.24)

and (6.25). For t = 1; 2; :::; T � 1

p(xt+1jy1:t) =

N1X
j=1

N2X
k=1

W jk
t p
�
xt+1jx�jkt

�
;

p (yt+1jy1:t) =

N1X
j=1

N2X
k=1

M jk
t+1 (yt+1) p(x

�jk
t+1jy1:t);

p (xt+1jy1:t+1) =

N1X
j=1

N2X
k=1

W jk
t+1�

�
xt+1 � x�jkt+1

�
;

with

M jk
t+1 (yt+1) = m1m2 p

�
�j1; �

k
2

� ���� @h

@xt+1

�����1
xt+1=x�t+1(yt+1;�

j
1;�

k
2)

and

W jk
t+1 =

M jk
t+1 (yt+1) p

�
x�jkt+1jy1:t

�
PN1

j=1

PN2
k=1M

jk
t+1 (yt+1) p

�
x�jkt+1jy1:t

� :
The computational burden involved in the evaluation of the tth component of the

likelihood function (p (yt+1jy1:t)) is of order (N1 �N2)
2 for all t, an increase from

the order of N2 in the univariate state space model. That is, despite remaining

linear in T the computational burden of the algorithm is exponential in the

dimension of yt (and xt), highlighting the fact that the grid-based algorithm is

most suitable for reasonably low-dimensional problems. For high-dimensional

systems, evaluation of the relevant integrals via simulation techniques would

be required. We outline a contribution towards that solution in the following
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section, but in a context in which a parametric model for the measurement error,

�t is speci�ed. That is, we shift focus, for the sake of this �nal illustration, from

the non-parametric aspect of the �lter and explore the other main characteristic

of the proposed algorithm - namely its dependence only on integration with

respect to the invariant �.

6.6 Probabilistic Filtering using Monte Carlo
Methods

6.6.1 Introduction

Chapter 3 introduced the grid-based �lter (in the scalar case), whereby all the

requisite integrals are evaluated with respect to the invariant distribution of �,

and approximated via rectangular integration. If p (�) is unknown, the resulting

non-parametric �lter allows for the measurement error density to be estimated

via (penalized) maximum likelihood. On the other hand, if p (�) were speci�ed

parametrically, and for given values of all unknown parameters, then in the

limit, as the number of grid points on the support of the invariant distribution

of � is increased, the grid-based �lter produces the exact �ltering and predictive

distributions.

This section explores an alternative to the the grid-based method in which all

relevant integrals are evaluated by Monte Carlo simulation, based on draws from

the invariant distribution of �. This requires p (�) to be speci�ed parametrically

and to be amenable to simulation. The idea is to replace the evenly-spaced grid

on the support of � by a set of simulated draws �1; �2; :::; �N s p (�) wherever
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integration is required to produce the �ltering and predictive distributions. We

show that the resulting Monte Carlo �lter avoids the degeneracy problems that

are a feature of existing particle �ltering algorithms and, hence, could be a

powerful tool in high-dimensional state space models.

6.6.2 Derivation of the Monte Carlo Filter

In illustrating the probabilistic �ltering algorithm, the same system in (3.1) and

(3.2) is considered, along with the same assumptions regarding the function

G (xt) = yt�h (xt; �t), namely that it is di¤erentiable, has a unique root at xt =

x�t (yt; �), and has a non-zero derivative at that root. It is further assumed that

p (�) is speci�ed up to a small number of �xed parameters, and that draws of

� can be obtained by simulation. Of course, despite the demonstration of the

method in the scalar case, as highlighted above the primary motivation for the

method occurs in the high-dimensional case, where the grid-based �lter would

be computationally infeasible.3

The Initial Filtered Distribution: p (x1jy1)

From (3.12), the �-function representation of the initial �ltered distribution ex-

pression is

p (x1jy1) =
p (x1)

R1
�1 p (�)

��� @h@x1 ����1 � (x1 � x�1(y1; �)) d�R1
�1 p (x

�
1(y1; �)) p (�)

��� @h@x1 ����1x1=x�1(y1;�) d�
; (6.31)

3Further to this point, simulation experiments have shown that in the one-dimensional
case that has been the primary focus of this thesis, the simulation-based method produces an
almost 10-fold increase in computational time relative to the grid-based algorithm, with no
commensurate gain in accuracy.
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where x�1 (y1; �) is the assumed unique solution to y1�h (x1; �1) = 0 for any value

of � in the support of p (�). To evaluate the �ltered distribution in (6.31) via

Monte Carlo integration, a set of i:i:d: base particles
�
�1; �2; :::; �N

	
is simulated

from p (�), resulting in the approximation for p (x1jy1) given by

p (x1jy1) �
p (x1)N

�1PN
j=1

��� @h@x1 ����1 � �x1 � x�j1
�

N�1PN
i=1 p (x

�i
1 )
��� @h@x1 ����1x1=x�i1

:

The expression x�j1 = x�1 (y1; �
j) is the implied state associated with the observed

y1 and each �j, such that the �rst �ltered distribution has representation (up to

Monte Carlo approximation error) as a discrete distribution, with density

p (x1jy1) =
NX
j=1

Bj
1�
�
x1 � x�j1

�
, (6.32)

and where

Bj
1 =

��� @h@x1 ����1x1=x�j1 p �x�j1 �PN
i=1

��� @h@x1 ����1x1=x�i1 p (x�i1 )
; (6.33)

for j = 1; 2; :::; N . Whilst the form of the �lter in (6.32) looks similar to that of

(3.13) in the grid-based �lter, the locations x�j1 in (6.32) are random due to being

derived from the random set of particles f�j; j = 1; 2; :::; Ng. Therefore, the

functional value ofBj
1 is not the same as that of W

j
1 in (3.14) under the grid-based

�lter, due to the absence of the p (�j) element. Implicit in this approximation

to the �rst �ltered state density is the �rst likelihood contribution,

p (y1) = N�1
NX
i=1

���� @h@x1
�����1
x1=x�i1

p
�
x�i1
�
; (6.34)

obtained from approximating the denominator in (6.31).
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Having obtained the representation in (6.32) for time t = 1, it will be shown

that for any time t = 2; 3; :::; T , an appropriate discrete distribution can be found

to approximate the �ltered distribution,

p (xtjy1:t) =
NX
j=1

Bj
t �
�
xt � x�jt

�
; (6.35)

where the iteratively determined weights satisfy
PN

j=1B
j
t = 1; and each state

grid location

x�jt = x�t (yt; �
j)

is determined by the unique zero of yt � h(xt; �
j); for j = 1; 2; :::; N .

The Predictive Distribution for the State: p (xt+1jy1:t)

Assuming (6.35) holds in period t, it follows that the one-step-ahead state pre-

diction density is a mixture of transition densities, since

p (xt+1jy1:t) =

Z
p (xt+1jxt) p (xtjy1:t) dxt

=

Z
p (xt+1jxt)

NX
j=1

Bj
t �
�
xt � x�jt

�
dxt

=
NX
j=1

Bj
t

Z
p (xt+1jxt) �

�
xt � x�jt

�
dxt

=
NX
j=1

Bj
t p
�
xt+1jx�jt

�
; (6.36)

for t = 1; 2; :::; T . The notation p
�
xt+1jx�jt

�
denotes the transition density of

p (xt+1jxt), viewed as a function of xt+1 and given the �xed value of xt = x�jt : As

it is assumed that the transition densities p (xt+1jxt) are available, no additional

approximation is needed in moving from p (xtjy1:t) to p (xt+1jy1:t).
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The One-step-ahead Predictive Distribution for the Observed: p (yt+1jy1:t)

The one-step-ahead predictive distribution with its integral with respect to � is

derived in (3.20) and represented as

p (yt+1jy1:t) =
Z 1

�1
p (�)

���� @h

@xt+1

�����1
xt+1=x�t+1(yt+1;�)

p(x�t+1(yt+1; �)jy1:t)d�:

By invoking again the Monte Carlo sample of � values, the one-step-ahead pre-

diction density (up to numerical approximation error) becomes,

p (yt+1jy1:t) = N�1
NX
i=1

���� @h

@xt+1

�����1
xt+1=x�t+1(yt+1;�

i)

p
�
x�t+1(yt+1; �

i)jy1:t
�
: (6.37)

Noting that p
�
x�t+1(yt+1; �

i)jy1:t
�
in (6.37) denotes the one-step-ahead predic-

tive density from (6.36) evaluated at xt+1 = x�t+1(yt+1; �
i), it can be seen that

p (yt+1jy1:t) is computed as an N2 mixture of (speci�ed) transition density func-

tions as a consequence.

The Updated Filtered Distribution: p (xt+1jy1:t+1)

Finally, the predictive distribution for the state at time t + 1 is updated given

the realization yt+1 as

p (xt+1jy1:t+1) =
p (yt+1jxt+1) p (xt+1jy1:t)

p (yt+1jy1:t)

�

PN
j=1

��� @h
@xt+1

����1 � �xt+1 � x�jt+1
�
p (xt+1jy1:t)PN

i=1

��� @h
@xt+1

����1
xt+1=x�it+1

p
�
x�it+1jy1:t

� ;

for t = 1; 2; :::; T � 1; and where x�jt+1 = x�t+1(yt+1; �
j) is determined by the simu-

lated value �j and the observed yt+1. Hence, the updated �ltered distribution has
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representation (up to numerical approximation error) as a discrete distribution

as in (6.35), with density

p (xt+1jy1:t+1) =
NX
j=1

Bj
t+1�

�
xt+1 � x�jt+1

�
,

where, for j = 1; 2; :::; N;

Bj
t+1 =

��� @h
@xt+1

����1
xt+1=x

�j
t+1

p
�
x�jt+1jy1:t

�
PN

i=1

��� @h
@xt+1

����1
xt+1=x�it+1

p
�
x�it+1jy1:t

�
denotes the probability associated with location x�jt+1 given by the unique zero

of yt+1 � h(xt+1; �
j); for j = 1; 2; :::; N .

Summary of the Algorithm for General t

The actual algorithm is easily implemented using the following summary. Denote

by x�jt = x�t (yt; �
j) the unique zero of yt � h (xt; �

j), for each j = 1; 2; :::; N and

all t = 1; 2; :::; T . Initialize the �lter at period 1 with (6.32) and (6.33), and with

�1; �2; : : : ; �N
iid� p (�), with N su¢ ciently large. For t = 1; 2; :::; T � 1;

p(xt+1jy1:t) =

NX
j=1

Bj
t p
�
xt+1jx�jt

�
;

p (yt+1jy1:t) = N�1
NX
i=1

���� @h

@xt+1

�����1
xt+1=x�t+1(yt+1;�

i)

p
�
x�t+1(yt+1; �

i)jy1:t
�
;

p (xt+1jy1:t+1) =

NX
j=1

Bj
t+1�

�
xt+1 � x�jt+1

�
;

with

Bj
t+1 =

��� @h
@xt+1

����1
xt+1=x

�j
t+1

p
�
x�jt+1jy1:t

�
PN

i=1

��� @h
@xt+1

����1
xt+1=x�it+1

p
�
x�it+1jy1:t

� :



6. Extensions 160

A few points regarding the above algorithm are as follows. First, it is noted

that the time subscript t has been again omitted from � as the distribution is

assumed to be constant for all t. Further, although it is possible to use di¤erent

simulated draws of �j values, for j = 1; 2; :::; N , for each recursive iteration of

the �lter, it is also suitable to re-use the same set of simulated draws each time

an integral is required to be evaluated. Additionally, the computational burden

involved in the evaluation of the tth component of the likelihood function is of

order N2 for all t, implying an overall computational burden that is linear in T .

Second, like the particle �ltering methods outlined in Chapter 2, conditional

on a parametric speci�cation of p (�) (and all other parameters), for large enough

N , the Monte Carlo �ltering algorithm is exact, in the sense of recovering the

true �ltered and predictive distributions for the state, plus the true predictive

distribution for the observed, at each time point. However, in contrast to existing

particle �lters, which propagate draws of xt+1 values from the previous time

period and subsequently resample those draws, the Monte Carlo �lter initially

derives the particles via simulated draws from the invariant distribution of the

measurement error, with the resultant state particles produced as the appropriate

zeros of the measurement equation. These particles are subsequently reweighted

so that the distribution of the weighted particles de�nes an estimate of the desired

�ltered distribution. Crucially, owing to the fact that the implied particles at

any given time period t + 1, x�it+1, i = 1; 2; :::; N , are generated via the root

x�t+1(yt+1; �
i) of the measurement equation yt+1 = h

�
xt+1; �t+1

�
, and hence are



6. Extensions 161

not propagated from the previous time period, the �lter does not su¤er from

particle degeneracy. Further, at the subsequent reweighting stage, even if a

particle, x�jt , from the previous period carries negligible weight, i.e. Bj
t > 0but

small, as no resampling is required such particles will impact upon the �ltered

density, p(xt+1jy1:t+1) via the predictive state density, p(xt+1jy1:t). Hence, not

only is direct degeneracy from non-propagated particles avoided, but the added

Monte Carlo error produced via the resampling weights that occurs in existing

particle �lters is not a feature of the new approach.

Finally, it is noted that the multivariate Monte Carlo �lter could be imple-

mented in higher dimensions, particularly in the square case discussed in Section

6.5. In addition, the Monte Carlo approach could be used in conjunction with

alternative and �exible representations of p (�), such as the mixture represen-

tation in (2.60), in order to produce new non-parametric (or semi-parametric)

�lters, which may provide a useful way to construct non-parametric �lters in the

multivariate setting.

6.7 Summary

In this chapter we have expanded the proposed non-parametric methodology in a

number of di¤erent ways. First, its use in producing an estimate of a multi-step-

ahead forecast distribution is demonstrated. Next, the issues related to the re-

laxation of two of the crucial assumptions that underlie the non-parametric �lter

in Chapter 3 are studied. In particular, the non-parametric approach is adapted
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to state space models in which the function G (xt) has multiple roots. Whilst the

approach cannot be readily applied to models in which the roots of G (xt) are not

analytically available, we give an example of the type of re-parameterization of a

model that can be used in this case. Third, the non-parametric �lter is shown to

be applicable in a multivariate state space setting, with a square bivariate state

space model used as an illustration. Given the usual curse of dimensionality that

a¤ects a grid-based method, the non-parametric �lter is clearly well-suited for

low-dimensional problems only. Finally, we demonstrate how the grid-based �lter

can be replaced by a Monte Carlo �lter when the measurement error density is

parametrically speci�ed, potentially using a �exible parametric structure, with

this alternative approach being particularly bene�cial in the high-dimensional

case. Most notably, this simulation-based �lter is shown to avoid the degeneracy

problems that adversely a¤ect existing particle �lters.



Chapter 7

Conclusions

The focus of this thesis is four-fold. First, the primary interest is in forecast-

ing non-Gaussian time series data, with this interest motivated by the large

number of important economic and �nancial time series variables that exhibit

non-Gaussianity. Second, consistent with general developments in the recent

forecasting literature, in which distributional (as opposed to point) forecasts are

increasingly viewed as the principle object of interest, probabilistic forecasting

is a focus. As such, the forecasting approach automatically adheres to the no-

tion of coherence, as well as enabling uncertainty about the future value of the

variable in question to be fully quanti�ed. Third, estimated forecast distribu-

tions are produced without reliance upon the correct speci�cation of all aspects

of the true DGP. Finally, a very general approach is adopted, by producing a

forecast methodology for the non-linear, non-Gaussian state space framework, a

framework that has broad empirical applicability.

Following the introductory chapter where the main aims and motivations

are exposited, Chapter 2 presents a general parametric state space model and

163
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brie�y discusses the associated inferential objects. To perform inference and

forecasting in state space models, the presence of the latent random states has

to be managed via �ltering techniques. Hence, the general �ltering and up-

dating steps needed to specify the one-step-ahead predictive distributions of

which the likelihood function is comprised, are presented. The speci�c �lters

outlined are the Kalman �lter, extended Kalman �lter, unscented Kalman �lter,

grid-based non-Gaussian �lter, Gaussian-sum �lter, and representative particle

�lters. Apart from the Kalman �lter, each of these methods attempt to deal, in

one way or another, with the non-linear or non-Gaussian aspect of the general

model that prohibits an exact �ltering solution. When the static parameters

in the model are unknown, they may be estimated using ML estimation, made

possible via the various approximations from the �ltering algorithms. As a result,

an estimate of the out-of-sample one-step-ahead predictive distribution may be

obtained.

Having highlighted some of the limitations of the parametric forecasting

methods, in Chapter 3 a new non-parametric method is developed. A non-

parametric �lter that exploits the known functional relationship between the

observed variable and the state and measurement error variables, but avoids a

parametric speci�cation for the distribution of the measurement error, is de-

rived. The �ltering computations are manipulated using properties of the Dirac

�-function in such a way that all requisite integrals are undertaken with respect

to the invariant distribution of the measurement error. Rectangular integration
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is then used to numerically evaluate the relevant integrals, over a �xed grid of

points.

This approach has two key advantages over the existing �lters presented in

Chapter 2. First, the relative computational simplicity of the proposed method

- for reasonably low-dimensional systems - is in marked contrast with the high

computational burden of the Gaussian-sum �lter and the particle �lters discussed

in Chapter 2. Second, when the measurement error density is unknown, the

ordinates of the density can be readily estimated using a penalized ML procedure.

This is in contrast with the �lters discussed in Chapter 2, many of which require

parametric assumptions for the model, assumptions that may potentially be

incorrect.

To assess the predictive accuracy of the non-parametric approach relative to

parametric alternatives, Chapter 4 presents the tools used to compare and eval-

uate the forecast distributions produced by these competing approaches. The

chapter distinguishes between the comparison and evaluation of probabilistic

forecasts, detailing the various tools used for each category. Simulation exer-

cises are then undertaken for the linear and (non-linear) SCD models, with the

parametric competitors all based on the Kalman (or extended) �lter. In the

linear model, three di¤erent distributions for the true measurment error are con-

sidered: Gaussian, Student-t and skewed Student-t. The results show that the

non-parametric �lter is competitive with the correctly speci�ed parametric esti-

mates in the Gaussian case, and is signi�cantly better in the skewed Student-t
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case. In the non-linear SCD model, three di¤erent distributions for the true

measurement error are also considered, with the non-parametric method per-

forming signi�cantly better than the (misspeci�ed) parametric approach in all

cases. Over and above the production of results pertaining to the forecast distri-

butions in question, a contribution of Chapter 4 is the summary of the relevant

forecast evaluation literature and the methods used to assess competing distrib-

utional forecasts.

Chapter 5 applies the non-parametric methodology to the RV model, with

a view to producing distributional forecasts for realized volatility. A simulation

exercise similar to those in Chapter 4 is undertaken, with Gaussian, Student-t

and skewed Student-t measurement errors considered for the true DGPs. Sim-

ulation results are consistent with the �ndings documented in Chapter 4, with

the results favoring the non-parametric approach overall. When applied to the

S&P500 market index data for January 1998 to August 2008, the empirical re-

sults also provide strong support for the overall accuracy of the non-parametric

approach. The chapter details a subsampling approach for quantifying the sam-

pling variation in an estimated one-step-ahead forecast distribution. Results

show that substantial sampling variability can arise in the case of forecasts pro-

duced using a small sample, leading to qualitatively di¤erent conclusions about

future volatility. On the other hand, for sample sizes that are typical of �nancial

applications, sampling variability is seen to be much less of a concern.

The key contribution of Chapter 5 to the current literature on realized volatil-
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ity forecasting is the production of non-parametric distributional forecasts of re-

alized volatility, in a state space setting. This is in direct contrast to the bulk

of the existing literature, which focuses on point forecasts, constructed in turn

from parametric observation-driven models for the observed quantity. The non-

parametric approach aims to capture the distributional properties of the mea-

surement error which, in turn, contains the e¤ects of all factors that in�uence

realized volatility but are not explicitly modelled. In principle, all unmodelled

e¤ects will be re�ected in the estimated forecast distributions.

Lastly, Chapter 6 expands the proposed non-parametric methodology in four

ways. First, extension of the methodology to the estimation of multi-step-ahead

forecast distributions for the observation is demonstrated. Second, issues re-

lated to the relaxation of two assumptions underlying the non-parametric �lter

are explored. Third, the non-parametric methodology is shown to be applicable

to a multivariate state space setting, with a square bivariate state space model

used as an illustration. Finally, it is demonstrated how the grid-based �lter can

be replaced by a Monte Carlo �lter when the measurement error distribution is

parametrically speci�ed, with this alternative approach being particularly use-

ful in high-dimensional state space systems. These extensions of the proposed

�ltering algorithm serve to demonstrate further the versatility of the approach

and its applicability to a wide range of empirically relevant problems.
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