
ADDENDUM 

 

P 11 Section (1.3): Add at the end of point (i): 

“A real time application is the application that requires converging to a decision 

within a predetermined time limits” 

P 14 section (1.4) para 2, first sentence: delete “a novel pattern detection scheme for 

WSNs” and read “a novel pattern detection scheme for WSNs called Cellular Graph 

Neuron (CGN)”  

P 15 line 1: delete “The scheme reduces” and read “The scheme is called Cellular 

weighted Graph Neuron (CwGN) and it reduces”  

P 34 section (2.3.3), 10th line: delete “the states are rectangle or circle” and read “the 

states can be selected as rectangle and circle” 

P 35 para 1, 9th line, delete “i is the class number,” 

P 45 2nd line: delete “The neurons in the comparison layer are fed” and read “Each 

neuron in the comparison layer is fed”  

P 57 para 1, 9th line: delete “increases exponentially” and read “increases in a 

quadratic manner” 

P 61 para 1, 1st line: delete “propos” and read “proposed” 

P 63, 8th line: delete “The memory size of a sensor is intuitively small” and read “The 

available memory in each node is small”  

P 65 para 1, 11th line: delete “ability to address randomness problems” and read 

“ability to deal with problems that involve random occurrence of events and patterns” 

P 66 para 1, 3rd line: delete “S” and read “S” 

P 66 para 1, 7thline: delete “v” and read “v” 

P 66 para 1, 8th line: delete “grows exponentially” and read “grows in a quadratic 

manner”  

P 70 para 1, 6th line: delete “if we are to the problem of interest” and read “if we are to 

solve the problem of interest”  

P 78 section (3.2) para 2, 4th line: delete “attempting to achieve” and read “attempting 

to achieve are”  

P 78 section (3.2) para 2, 4th line: delete “low scheme complexity” and read “low time 

complexity” 

P 80 Equation (3.1): delete “ɛ ϵ V” and read “ɛi ϵ V”  

P 80 Definition (3.2): Add to the end of the definition “In other words, an index i is a 

unique number that describes Pi” 

P 81 Section (3.2.2), 1st line: delete “The CGN network consists of a set of GN 

networks where each GN network reports to another one with reaching the S&I.” and 



  

read “The CGN network is composite of multiple GN networks. Each GN network 

performs a set of computations and report its outcomes to another pre-assigned GN 

network. This operation continues until delivering all computations to the S&I.” 

P 81 Definition (3.2), 3rd line: delete “x” and read “xi”  

P 81 Definition (3.2), 4th line: delete “a, v ϵ V” and read “ai, v ϵ V”  

P 81 Definition (3.2), 6th line: delete “ɛ ϵ V” and read “ɛi ϵ V” 

P 85 para 1, 7thline: delete “i=1” and read “i=1” 

P 86 Definition (3.6), 7th line: delete “j” and read “l”  

P 88 section (3.2.4), 3rd line: delete “patter” and read “pattern” 

P 98 Proposition (3.1): delete “ɛ ϵ V” and read “ɛi ϵ V” 

P 106 para 2, 2nd line: delete “increases exponentially” and read “increases in a 

quadratic manner” 

P 114 Figure (3.15), Y axis: delete “Accurcy” and read “Accuracy” 

P 115 para 1, 6th line: add before “Additionally,”: 

“The analysis of the scheme shows that it is capable of performing recognition tasks 

within a predictable single learning cycle that suits real time applications.” 

P 125 Figure 4.1, legend: delete “CWGN” and read “CwGN” 

P 127 Definition (4.2), 4th line: delete “as follows.” and read “ . If Δ𝜔𝑖𝐶 = |𝜔𝑖 − 𝜔𝐶|, 
and 𝑗 = min⁡{Δ𝜔𝑖𝐶 , 1 ≤ 𝑖 ≤ 𝑛}. Then, Rp=j. This can be also represented using the 

following expression.” 

P130 para 1, 2nd line: delete “odd numbers” and read “odd number” 

P 131 Definition (4.4): Comment: The (→) notation means communicate (or send). 

P 131 Figure 4.3, legend, 2nd line: delete “(L1, L2,…, Lm)” and read “(L1, L2,…, L2m)”  

P 150: delete Equation (4.16) and read  

“𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑠𝑒𝑛𝑠𝑒 + ⁡2. 𝑇𝑠𝑒𝑛𝑑 + 2. 𝑇𝑐𝑜𝑚𝑝𝑎𝑟𝑒 + 𝑇𝑎𝑑𝑑 + 𝑇𝑑𝑒𝑣 + 𝑇𝑠𝑒𝑛𝑑 . (10
log𝑆

2 −

1) + 𝑇𝑎𝑑𝑑 . 10
log𝑆

2 + 𝑇𝑆𝐼” 

P 150: delete Equation (4.17) and read  

“𝑇𝑡𝑜𝑡𝑎𝑙 = (2 +⁡10
log𝑆

2 ) . 𝑇𝑠𝑒𝑛𝑑 + (1 + 𝑇𝑎𝑑𝑑).⁡⁡⁡10
log𝑆

2 + 𝑇𝑠𝑒𝑛𝑠𝑒 + 2. 𝑇𝑐𝑜𝑚𝑝𝑎𝑟𝑒 +

𝑇𝑑𝑒𝑣 + 𝑇𝑆𝐼” 

P 150: delete Equation (4.18) and read “𝑇𝑡𝑜𝑡𝑎𝑙 = 3. 𝑇1 + 5𝑇2 + (𝑇1 + 𝑇2).⁡⁡10
log𝑆

2 ” 

P 150: delete Equation (4.19) and read “𝑇𝑡𝑜𝑡𝑎𝑙 = 3. 𝑇1 + 4𝑇2 + (𝑇1 + 𝑇2).⁡⁡10
log𝑆

2 +
(2. 𝑇2)𝑙𝑜𝑔2(𝑀𝑝)” 

P 154: delete Equation (4.22) and read “𝑁𝑧𝑜𝑛𝑒𝑠 = S. (
𝜏−3.𝑇1−4.𝑇2−(2.𝑇2)𝑙𝑜𝑔2(𝑀𝑝)

𝑇1+𝑇2
)
−2

” 

 



  

P 164 para 2, 2nd line: delete “firstly” and read “first” 

P 202 para 1, 15th line: add before “However,”: 

“The results show the ability of the CwGN scheme of recognizing transformed 

patterns such as translated and dilated hill and valley patterns with higher detection 

accuracy levels compared to iconic methods.” 

P 209, 7th line: add before “This means”: 

“Also, this shows that the scheme is capable of mapping sensory information into 

patterns and use the mapped patterns to solve complex decision making problems such 

as the wall following robot problem.” 

P 212, 7th line: Comment: The threshold 200 was empirically selected based on a 

series of experiments to ensure that high peaks of the contour images are marked in 

the binary patterns.  

P 214 para 2, 8thline: delete “mS” and read “ms” 

P 232 para 2, 8th line: delete “have been chose” and read “have been chosen” 

P 242 Definition (6.1), 2nd line: delete “of the system” and read “of the GA system” 

P 242 Definition (6.1), 5th line: delete “𝑑(𝑀𝑖) = min⁡{(𝑚𝑗, 𝑂𝑃):⁡𝑚𝑗 ∈ 𝑀𝑖}” and read 

“𝑑(𝑀𝑖) = min⁡{𝑑(𝑚𝑗, 𝑂𝑃):⁡𝑚𝑗 ∈ 𝑀𝑖}”
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Abstract 

Smart systems are increasingly in use in daily life applications, replacing old-

fashioned processes and procedures as a result of technological evolution. 

However, these systems can be limited in their resources capacity. Wireless 

Sensor Networks (WSNs) are considered to be one form of such resource-

constrained smart systems. One of the main goals of WSNs is to sense physical 

activities so as to detect events in an area of interest. Adaptive and machine 

learning techniques have been proposed and implemented to work in 

conjunction with WSNs to serve a number of applications, such as physical 

activities detection, network security threats detection, artificial intelligence 

applications and decision making support. Pattern recognition is one of the 

most useful machine learning techniques that can perform event detection for 

WSNs. However, the nature of WSNs poses extreme challenges for the 

implementation of these learning techniques so that they can serve the goals of 

different types of applications. Such networks have limited resources available 

for performing learning operations. Additionally, WSNs are of a dynamic 

nature in terms of network deployment and the appearance of activities in the 

field of interest. Global events can also span very large regions requiring vast 

quantities of data exchange and processing in order to detect such events.  

These challenges become critical when detection time limits are required by 

applications such as mission critical and online applications. 
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The aim of this research project is to propose pattern recognition 

schemes that are capable of addressing the limitations associated with resource-

constrained networks such as WSNs. The research first investigates the 

existing learning techniques for WSNs and their limitations. Then the research 

proposes novel collaborative in-network global pattern recognition based event 

detection schemes that are light-weight, scalable and suit resource-constrained 

networks such as WSNs well. The proposed schemes address the limitations 

and challenges for WSNs to provide reasonable detection capabilities for 

mission critical, online, and decision making applications. The proposed 

schemes adopt the distributed and parallel recognition mechanisms of Graph 

Neuron (GN) in order to minimise recognition computations and 

communications and thus will lead to maintaining low levels of limited 

resources consumption. The distributed network structure of the proposed 

schemes will result in loosely coupled connectivity between a network’s nodes 

and avoid iterative learning. Hence, the proposed schemes will perform 

recognition operations in a single learning cycle of predictable duration, which 

will provide online learning capabilities that can support mission critical 

applications. In addition to minimal resources and time requirements, the 

distributed structure of the schemes will sustain large-scale networks in 

performing pattern recognition operations.  

To deal with a WSN’s dynamic nature and limited prior knowledge of 

events, a pattern transformation invariant scheme is proposed in this research. 

The proposed scheme implements a weighting mechanism that searches the 
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edges and boundaries of patterns and replaces traditional local information 

storing. This mechanism allows the scheme to identify dynamic and continuous 

changes in patterns. Consequently, the scheme will be capable of performing 

recognition operations in dynamic environments and will also provide a high 

level of detection accuracy using a minimal amount of available information 

about patterns. Required protocols for performing scheme operations are also 

presented and discussed. 

Theoretical and experimental analysis and evaluation of the presented 

schemes is conducted in the research. The evaluation includes time complexity, 

recognition accuracy, communicational and computational overhead, energy 

consumption and lifetime analysis. The scheme’s performance is also 

compared with existing recognition schemes. This shows that the scheme is 

capable of minimising computational and communicational overheads in 

resource-constrained networks, enabling those networks to perform efficient 

recognition activities for patterns that involve transformations within a single 

learning cycle while maintaining a high level of scalability and accuracy. The 

results show that the scheme’s time complexity is proportional to the square 

root of the pattern size which allows the network to scale up to adopt large 

patterns. It is shown that a network that implements mica 2 motes and requires 

3.0625 milliseconds to send a single message can perform recognition 

operations within a single learning cycle duration ranging between 126.4 and 

323.1 milliseconds for 10,000- and 40,000-node network settings respectively. 

The results also show that energy requirements can be decreased up to 89.66 
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per cent by using the proposed schemes in comparison to other recognition 

techniques. In terms of efficiency, theoretical and experimental analyses show 

that the proposed schemes are capable of dealing with transformed patterns 

with a high level of accuracy. The analyses show that the scheme is able to 

detect translated patterns, rotated or even flipped patterns with a rotational 

angle of up to 23 degrees, and dilated patterns with a dilation level of up to 26 

per cent. The results show that the proposed schemes have features that will be 

best suited for implementing pattern recognition applications on resource-

constrained networks such as WSNs. 

The research also discusses the use of the proposed pattern-recognition-

based schemes in different machine learning and artificial intelligence (AI) 

applications. This aims to explore new research opportunities that can lead to 

enhancing existing schemes’ performance by involving the proposed schemes 

in different technological disciplines and models. Two disciplines are presented 

as examples in this context: optimisation and classification. In the first 

example, a new model that involves the proposed schemes in the process of 

optimisation techniques, in this case genetic algorithms (GA), is presented. The 

proposed model enhances the performance of traditional GA in terms of speed 

and accuracy. The second example proposes a classification model using the 

pattern-recognition-based proposed schemes. The proposed model shows a 

high level of classification capabilities compared with other well-known 

existing schemes.   
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Chapter 1 

1 Introduction 

The advance of modern technology in recent decades has had a huge 

impact on the way organisations, businesses, and individuals interact with 

various technological environments and the means of using their services. 

Expectations are growing as new technological capabilities are improving. 

Smart systems are more in use in our daily life, replacing old-fashioned 

processes and procedures as a result of technological evolution. Embedded 

systems are one kind of such smart systems that interact with human lives and 

provide a variety of services that can be used in such areas as industrial, 

military, medical, and agricultural applications. Embedded systems are usually 

small components with limited computational resources that are designed to 

perform specific tasks. Such systems exist in numerous applications in our 

daily life and can scale in their complexity from performing a single task in 

electrical appliances to performing complex control systems decisions [1]. As a 

consequence of complexity variations, not every embedded system can be 

classified as a smart one. Krishnamurthy [2] says,  

A smart system exhibits the three important properties: (i) Interactive, 

collective, coordinated and parallel operation (ii) Self-organization 

through emergent properties (iii) Adaptive and Flexible operation.      
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According to the Krishnamurthy [2], this means that a system should be 

capable of interacting with the environment, capable of being dynamic in 

relation to the emergence of new unpredictable properties, and flexible to 

environmental changes by using adaptive learning techniques if it is to be 

considered a smart system. In simpler terms,  Chandrasekaran [3] says, 

 

The public does not expect a smart system to do everything that people 

do. It does expect a smart product to be flexible, adaptive, and robust. 

 

The existence of such systems allows the linking of real world activities 

to computerised capabilities, paving the way for more interactive methods to 

automate processes and make accurate decisions.   

With the advent of ad hoc networks, embedded devices can form a 

wireless network to communicate with each other in order to perform more 

complex tasks [4]. Wireless Sensor Networks (WSNs) are a specific type of 

such networks. A WSN consists of a number of smart sensor nodes that sense 

physical activities such as motion, heat, speed, and many other environmental 

parameters, and provide solutions for multiple applications such as climate 

sensing, factory monitoring, traffic monitoring, and pollution measuring [5].  A 

sensor node is small in size. It generally varies from the size of a grain to the 

size of a coin [6]. A sensor node consists of four main components: a power 

unit, a sensing unit, a communication unit, and a processing unit. Because of 

the limited size of a sensor, the power source that a sensor is usually equipped 
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with is limited and is often achieved by using batteries. This will affect the 

lifetime of the sensor node. To overcome this issue, it is also possible that 

sensor nodes be equipped with alternative power resources, such as tiny solar 

panels, that can help in increasing a node’s life time. Sensing units should be 

capable of doing two tasks: observing the surrounding environment and 

transferring the readings to digital data. For example, they might detect the 

surrounding temperature and convert the reading into a digital form. The 

communication unit of a sensor allows it to communicate with other nodes in 

the network. It is considered to be one of the physical layer elements that sends 

and receives radio-based signals to and from other nodes. It can also be a laser- 

or infrared-based unit. A processing unit is essentially responsible for doing the 

computations needed by the sensor and is usually combined with a memory 

unit. Other components can also be added to a sensor node, based on 

application requirements. Examples of such components may be a GPS unit for 

localisation purposes or a mobiliser for node location change estimation. The 

main components of a WSN sensor are shown in Figure 1.1 [5, 7]. 

A WSN can scale to thousands of densely deployed nodes in a vast area 

in order to perform its tasks [8]. A WSN node is susceptible to failures for 

many reasons, which can lead to communications and information losses 

between peer nodes. One reason for such failures could be the harsh 

environmental conditions in which WSNs are usually deployed, such as those 

of underwater WSNs. Another cause of failure could be dead batteries as 

sensor nodes are limited in their energy resources. An adversary attack could 
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also have harmful effects on a node’s functionality. In fact, environmental 

factors, limited energy resources, adversary attacks, module failures, 

fabrication problems, and being out of communication range are the most 

frequent causes of WSN sensor failure [9]. Common dense WSN network 

deployment is useful in compensating failed nodes to maintain network 

functionality. On the other hand, some applications require topological or 

functional changes of a WSN [10]. Consequently, WSNs are usually designed 

to be robust in order to self-adapt to node failures, topological changes, and 

functional modifications [11]. 

 

 

Figure 1.1: The main components of a WSN sensor [5].  

Adaptive learning techniques have been implemented and proposed in 

conjunction with WSNs to offer solutions for many problems and scenarios. 

Adaptive learning allows WSNs to learn patterns occurring in areas under 

surveillance and recognise these patterns when they occur again. This process 

is known as Pattern Recognition (PR) and is useful for decision making around 

such issues as fire detection, gas leak detection, environmental phenomena 



 

5 

 

 

warnings, and so forth. Considering that sensor nodes are limited in their 

energy, memory and computational resources, traditional applications, 

techniques, and protocols that are in use in networks in general are usually not 

applicable in WSNs. Hence, adaptive learning and PR techniques such as 

Neural Networks (NN), template matching, fuzzy logic, and nearest neighbour 

are usually tailored to WSNs’ limitations. The success of WSNs in adopting 

such techniques puts WSNs among smart systems that sense the environment, 

adapt to changes, and learn from experience in order to provide proper means 

for automated and accurate decision making processes [12].    

1.1 Challenges and services of WSNs 

Wireless sensor networks are described as wireless ad hoc networks as 

they share multiple features and characteristics. However, there are several 

differences between the two platforms, making WSNs a unique type of ad hoc 

network. The differences are carried by the WSNs’ node size, deployment 

environment, and flexibility requirements. These factors make the design and 

implementation of WSNs challenging. They can be described in the following 

way [5, 7, 8, 10, 12, 13]: 

i. Limited energy: A WSN node is small in size, which makes it limited 

in its energy, memory, and computational resources. The lifetime of a 

sensor node is limited and depends on the tasks the sensor is required to 

perform. If a sensor is required to maintain continuous computations or 

communications, its lifetime will be shortened. 
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ii. Limited memory: This directly affects the ability of sensor nodes 

when dealing with computations, queries, and communications, as these 

three tasks require a part of the memory to store the result, keep track of 

communications, and prepare information for query response. 

iii. Limited communication: The communication range of a WSN sensor 

is short. Sensors are usually equipped with small communication 

devices as they are small in size, causing restrictions such as limited 

power of transmission. 

iv. Node failure: Sensor nodes in WSNs are susceptible to failure and 

damage for reasons such as physical environmental effects and limited 

energy. In some applications, sensors are deployed in hostile 

environments exposing them to physical dangers such as fire, animals, 

storms, and floods. If a sensor survives such effects, it will sooner or 

later die due to energy consumption. 

v. Network size: In WSNs, the number of sensors can scale to thousands 

as some applications need to cover a very large area in order to 

efficiently sense the occurring physical features. Additionally, sensors 

are usually densely deployed in WSNs to overcome node failure 

problems. 

vi. Dynamics of the network: WSNs commonly require changes to their 

network size and topology. These changes stem from the need to add 

nodes to the network, nodes failures, and communications failures. In 

addition, the environment a WSN is monitoring is expected to be 
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dynamic, requiring a set of network changes over time. Other 

applications require mobile sensor networks, which are of a dynamic 

nature in themselves. 

vii. Identification issues: In general, sensor nodes in WSNs do not have 

unique identifications (ID) that distinguish one node from another. This 

is due to the large-scale sensor network size and the dense deployment 

of nodes. This means that sensors use broadcast messages to 

communicate with neighbouring nodes rather than using point to point 

communication.   

 

Applications and network management protocols for wireless sensor 

networks require a set of services in order to be functional. These services 

include data aggregation, security, sensor deployment, localisation, coverage, 

optimisation, and routing. These services should take WSNs’ limitations and 

challenges into consideration in order to provide proper quality of service 

(QoS) levels for WSN applications and management protocols [13].  

1.2 Motivation and Objectives 

Wireless sensor networks are used for sensing real environments and 

are useful for countless applications. A sensor node is responsible for detecting 

and sensing events in a limited surrounding area. However, global events can 

span over very large regions, requiring large numbers of sensor readings to be 

detected. WSNs can scale to thousands of communicating embedded sensors 
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deployed over a large geographical area. These sensor readings can be used in 

a collaborative manner to detect global events. Considering WSNs’ limitations, 

designing and implementing collaborative global event detection applications 

and schemes is challenging.  

Sensory data from thousands of sensors are expected to be processed 

and analysed in order to detect global events. Processing such information can 

be achieved by using one of two common processing paradigms: centralised 

processing or in-network processing. In centralised processing, data will be 

forwarded to one (or a set) network entity for processing. Many issues are 

related to using this paradigm in global event detection using WSNs. Due to 

limited WSN node capabilities, processing data in one entity will exhaust its 

computational and communication resources. Data collection and aggregation 

towards selected nodes for processing in a WSN creates communication 

bottlenecks and can result in a single point of failure problem, threatening the 

availability of a service or application [14]. Hence, distributing processing 

information among nodes to create an in-network processing paradigm is 

favourable as data aggregation and processing tasks are distributed over the 

entire network, avoiding the creation of communicational and processing 

bottlenecks [15].     

Global events occurring in large regions can arise randomly and in 

various forms according to environmental factors or the use of mobile entities 

[10]. Such random phenomena can result in there being a limited number of 

event patterns available to be used in global event detection in the area under 
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surveillance.  This randomness of event occurrence can be tackled by using 

adaptive learning techniques that are capable of searching for similarities 

between a stored event and a currently encountered one. These techniques store 

event patterns, allowing WSNs to learn from experience and develop 

information about patterns. The changing feature of events could come in 

different forms, such as an event pattern dilation, rotation, translation, or as a 

combination of these variances. Consequently, efficient detection mechanisms 

that are capable of discovering events even if they occur in different forms are 

required for global event detection. However, these techniques should address 

WSNs’ limitations and challenges in order to provide acceptable levels of QoS 

for beneficial applications. 

WSNs support a variety of mission critical and decision-making 

applications such as battlefield monitoring, robot guidance, and structural 

health monitoring. Such applications have unique requirements if they are to be 

beneficial. These requirements are driven by the fact that critical applications 

should result in decision making at a certain point in time. In general, a WSN 

node communicates directly or indirectly with one or more nodes in the 

network, called base station and sink nodes, or to an external monitoring server 

to deliver sensed and processed information. Fast reporting and delivering of 

information to base station nodes, sink nodes, and monitoring servers is one of 

the key requirements in mission critical applications. This would include 

efficient communication methodology and a global decision-making 

mechanism. Reliable and accurate detection is another requirement for accurate 
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decision-making applications in order to avoid wrong actions or delayed 

responses. In addition, these applications require the network to be fault 

tolerant. This means that a WSN should be capable of dealing with noisy 

patterns and faulty nodes [16]. 

Detection accuracy versus managing energy resources is the main 

challenge for providing proper event and pattern detection capabilities for 

WSN applications [17]. Existing event detection and pattern recognition 

schemes for WSNs use neural networks, support vector machines (SVM), 

fuzzy inference systems (FIS), and other detection techniques. These 

techniques are generally tailored to provide detection capabilities for specific 

applications or problem scenarios. However, these techniques may fulfil some 

of the event detection and decision-making application requirements (i.e. 

detection accuracy) while failing in respect of other requirements (i.e. light-

weight detection) by adding high communicational or computational overhead 

to a WSN. Hence, pattern recognition schemes which lead to event detection in 

WSNs that fulfil global event detection for decision-making applications 

requirements by balancing detection accuracy and WSN resource-constrained 

are required. 

The aim of this thesis is to develop and implement collaborative in-

network global event detection schemes that are light-weight, scalable, and 

best suit resource-constrained networks such as WSNs. The proposed schemes 

address the limitations and challenges for WSNs to provide reasonable QoS for 

applications. Additionally, these schemes address the randomness of event 
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occurrences by using adaptive learning techniques and the occurrence changes 

related to event patterns such as rotation, translation, and dilation. The schemes 

simplify computations for energy conservation and speed up recognition by 

leveraging the parallel distributed processing capabilities of WSNs.  

Another aim of the thesis is to design decision-making support models 

using the proposed event detection techniques. The proposed schemes will be 

used in conjunction with decision-making approaches such as Genetic 

Algorithms (GA) to speed up the process of optimisation and obtain more 

accurate and automated decisions by learning from experience. The detection 

and decision-making techniques proposed in this thesis can be applied to 

different WSN platforms and any other resource-constrained network 

environments for numerous applications and scenarios. 

1.3 Contributions 

The main contributions of the thesis are: 

i. Developing new global pattern recognition based event detection 

schemes for resource-constrained networks such as WSNs: The 

developed schemes address the limited resources of WSNs by 

performing communicational and computational tasks in a distributed 

manner. The distributed techniques will be more suited for real time 

and real life WSN applications, especially those that require event 

detection over a large area in terms of communications and 

computations complexity.  
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ii. Developing a pattern transformation invariant scheme for WSNs: 

In large regions that are under surveillance, events arise randomly and 

changeably. An event could occur in a certain part of the region with a 

set of characteristics and it take a long time for a similar event to occur 

in a different part of the region with variations to the previous 

characteristics.  Thus, the proposed detection scheme will address 

randomness and changing phenomena by adopting techniques that 

make it possible to store events and recognise transformation in 

patterns such as translation, dilation, rotation, or a combination of these 

factors.   

iii. Developing communication protocols for pattern recognition in 

resource-constrained networks: Communication protocols are needed 

for WSNs to be functional in terms of detection techniques.  Such 

protocols will be presented in this thesis. They will describe the tasks 

and communications required by network nodes to learn and recognise 

patterns, from sensing the data to concluding the result.  

iv. Integrating recognition schemes with decision-making methods to 

enhance decision-making process performance: There are several 

types of applications that use WSNs for decision-making purposes, 

such as real time applications. In this thesis a pattern recognition based 

decision-making model is proposed. The aim of the model is to speed 

up the decision-making process by detecting events and suggest 

suitable and reliable solutions. By developing such a model, it is 
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possible to automate the entire decision-making process for large 

monitored regions, starting with sensing and ending with taking an 

action.   

v. Designing pattern recognition based classification model for WSNs: 

Complex classification problems are common challenging tasks for 

resource-constrained networks such as WSNs. In this thesis a pattern 

recognition based classification model is proposed. Such a model 

demonstrates the ability of the proposed schemes to perform 

classification tasks with minimal resource requirements using pattern 

recognition capabilities while maintaining high accuracy compared to 

other classification schemes. This model shows the advantage of using 

pattern recognition capabilities in solving complex classification 

problems. 

vi. Analysing and evaluating proposed schemes: Analysis and 

simulations for the proposed pattern recognition and decision-making 

schemes will be conducted in this thesis. This will include time 

complexity analysis, analysis of pattern translations effects and storing 

patterns, determining accuracy levels of patterns detection, and 

decision-making process performance analysis. Additionally, this thesis 

will provide a comparison between proposed schemes and other 

existing pattern recognition schemes in term of accuracy, 

communication overhead, computational overhead, and storage 

requirements. The proposed integrated decision-making model will also 
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be compared with other models to evaluate the speed enhancement 

gained by applying the proposed model. 

1.4 Thesis outline 

There are seven chapters in this thesis. In chapter two, a background on 

pattern recognition and event detection in wireless sensor networks will be 

presented. There will be a detailed analysis of existing pattern recognition 

schemes for WSNs, including threshold-based, template matching, nearest 

neighbour, statistical, syntactical, fuzzy logic, and neural networks techniques. 

Additionally, issues related to implementing such schemes for global event 

detection will be discussed. Finally, a set of metrics to evaluate the suitability 

of existing schemes for detecting changing events using WSNs will be 

presented and a comparison between these schemes provided.    

In Chapter three, a novel pattern detection scheme for WSNs will be 

presented. The scheme will provide template matching and noisy pattern 

recognition capabilities in a light-weight and distributed manner that suits 

WSNs. This scheme is fault-tolerant and speeds up recognition by leveraging 

the parallel distributed processing capabilities of WSNs. Extended analysis of 

the presented scheme will be provided, including time complexity and 

simulation tests. Finally, the proposed scheme will be tested and compared 

with existing schemes in terms of accuracy and time requirements. 

In Chapter four, a novel efficient event detection and pattern 

recognition scheme that addresses the problem of changing events such as 
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rotation, dilation, and translation will be presented. The scheme reduces the 

number of nodes, required computations, memory resources, and number of 

communications needed for performing event detection in WSNs. This is 

achieved by adopting distributed and parallel design, along with efficient 

activation processes. The network models and protocols of the scheme will be 

presented in this chapter. Additionally, this chapter will present a parallel 

model that allows the scheme to function under online operations’ constraints. 

Extended theoretical analysis of the presented scheme will be provided, 

covering time complexity and predictions of pattern transformation recognition 

accuracy.  

In Chapter five, tests and results that evaluate the presented scheme’s 

performance levels will be provided. The chapter starts by evaluating 

recognition accuracy levels that can be obtained by the proposed scheme using 

different types of transformed datasets. Then, the scheme’s network 

performance will be evaluated in terms of time and energy. Finally, the scheme 

will be compared with other existing recognition techniques in terms of 

recognition accuracy, using different types of standard datasets.  

In Chapter six, the capabilities of the proposed schemes will be 

demonstrated using two models serving two different application domains. The 

first model will demonstrate the ability of the proposed schemes to enhance the 

performance of sensory-dependent decision-making systems. A pattern 

recognition based decision-making scheme will be presented as an application 

of the proposed detection schemes. The proposed decision-making scheme 
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combines detection schemes with genetic algorithms (GA) in order to speed up 

finding the optimal solution process. The proposed scheme will be analysed 

and evaluated against normal random schemes to measure speed-up 

enhancements. The second model will discuss the classification problem of 

human activity recognition as an example of a mission critical application. The 

aim is to demonstrate the ability of the proposed pattern based recognition 

schemes to learn and recognise complex patterns using a minimal amounts of 

information and resources to perform classification tasks. Using a standard 

dataset, the proposed model will be compared with existing schemes in terms 

of performance and resources requirements. 

Chapter seven concludes the thesis by summarising the contributions 

presented in this thesis. Additionally, issues related to proposed schemes and 

future work will be presented in this chapter.    
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Chapter 2 

2 Pattern Recognition in WSNs 

 

2.1 Introduction 

The main task of a wireless sensor network (WSN) is to sense a 

physical or network environment and detect events occurring in the field of 

interest or in the monitored network [18]. According to Chandy [19], an event 

in general may be seen as “changes in the real state”. More specifically, 

Johansson [20] define an event as “Changes that take place in one or more 

elements within a large group of these elements”. In sensor networks, Boonma 

and Suzuki [21] and Ortmann et al. [22] describe an event as observable 

changes in sensors’ readings. More precisely, Zoumboulakis and Roussos [23] 

indicate that an event is a collection of sensor readings that describe a specific 

or an abnormal activity. In general, we define an event in WSNs as a change in 

the state that describes a specific state of predefined phenomena in the field of 

interest. Examples of event detection in WSNs include the detection of fires in 

forests, a border intruder, network congestion or a network security attack.  

Detecting such events can be performed by processing and analysing 

sensory information obtained by sensor nodes.  Pattern recognition is one 
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commonly used approach for event detection in WSNs and has become the 

focus when dealing with event detection problems in the literature, especially 

when detecting complex events [24]. Watanabe [25] defines a pattern as the 

“opposite of chaos”. Catania et al. [26] define a pattern as “a compact and rich 

in semantics representation of raw data”. In this research, a pattern is defined 

as a set of raw sensory data that describes the main characteristics of an event. 

In other words, a pattern can be seen as the signature of an event.  

Pattern recognition is highly affected by the limited resources offered 

by WSNs, including limited energy and limited computational, 

communicational, and memory resources. In addition to limited resources, 

WSNs carry other challenges for event detection. These challenges are related 

to the nature of the environments that WSNs are usually deployed in. For 

instance, WSNs are usually deployed in hostile environments, making sensors 

susceptible to physical damage and intentional tampering. Additionally, 

sources of electricity are not usually available for running sensor nodes, 

requiring these sensors to be operated using limited batteries. WSNs are also 

usually required to communicate in an ad hoc manner using low frequency 

radio signals due to the absence of wires in deployed environments. Moreover, 

WSNs are usually deployed as large numbers of sensors in order to monitor an 

area of interest, which therefore requires the use of low cost sensors. This will 

limit the types of instruments and resources that these sensors can be supplied 

with. [27]. As a consequence, pattern recognition in WSNs is a matter of trade-
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off between detection accuracy, the use of limited available resources and 

dealing with existing challenges [28]. 

Other challenges for pattern recognition in WSNs are application 

related. WSNs support a variety of real time applications, including battlefield 

monitoring, environmental monitoring, emergency relief, microsurgery, and 

even more for different disciplines such as health, environment, education, 

surveillance, and others. Such applications have unique requirements in order 

to be beneficial. These requirements are driven by the fact that real time 

applications should result in decision making at a certain point of time. Fast 

reporting to the WSN sink or to a monitoring server is one of these 

requirements. This would include efficient communication methodology and a 

global decision making mechanism. Reliable and accurate detection is another 

requirement for critical mission applications in order to reduce false alarms. In 

addition, these applications require the network to be fault tolerant. This means 

that a WSN should be capable of dealing with noisy patterns and faulty nodes 

[16].  

Luo et al. [17] state that detection accuracy versus managing energy 

resources is the main challenge for providing proper event and pattern 

detection capabilities for WSN applications. Existing event detection and 

pattern recognition schemes use neural networks, support Vector Machines 

(SVM), Fuzzy Inference Systems (FIS), and other detection techniques. These 

techniques are generally tailored to provide detection capabilities for specific 

applications or problem scenarios. The techniques may fulfil some of the 
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requirements (e.g. detection accuracy) while failing at others (e.g. light weight 

detection). Hence, what are required are pattern recognition schemes which 

lead to event detection in WSNs that fulfil real time application requirements 

by balancing detection accuracy and WSN resource constraints. 

In this chapter, existing pattern recognition schemes for WSNs are 

presented and analysed.  In section 2.2, the chapter starts by briefly introducing 

WSNs, including network topologies, applications, and network architecture. 

Section 2.3 presents pattern recognition in WSNs. This includes the existing 

recognition schemes that have been used in the literature to solve the problem 

of pattern recognition in WSNs. Section 2.4 analyses the requirements for 

solving such recognition problems, especially when using WSNs for real time 

and decision making recognition problems. Section 2.5 compares existing 

schemes based on the requirements and discusses the issues related to these 

schemes. Section 2.6 discusses possible methods that can be used to overcome 

the existing schemes’ limitations to provide real time recognition for large 

scale WSNs. Section 2.7 concludes the chapter.  

2.2 Wireless Sensor Networks (WSNs) 

Wireless sensor networks (WSNs) are a specific type of ad hoc 

network. A WSN consists of a number of smart sensor nodes that sense 

physical activities such as motion, heat, speed, and many other environmental 

parameters. WSNs provide solutions for multiple applications such as climate 

sensing, factory monitoring, traffic monitoring, and pollution measuring. A 
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WSN can scale to thousands of densely deployed nodes in order to perform its 

tasks. Dense WSN networks are useful because sensor nodes are generally 

susceptible to failures. A sensor node is small, its size generally varying from 

the size of a grain to the size of a hand. Sensor nodes are limited in their 

energy, memory, and computational resources, thereby limiting WSNs. 

Consequently, traditional applications and protocols that are in use for 

networks in general are usually not applicable in WSNs [6, 7, 29-31]. 

As discussed in Chapter 1, a sensor node consists of four main 

components: a power unit, a sensing unit, a communication unit, and a 

processing unit. Some sensors may also include other components to enhance 

performance or to perform specific tasks. Solar panels and GPS devices can be 

examples of such additional components. Due to the limited size of a sensor, 

the capabilities and resources of its components are limited [5, 7]. Sensors are 

usually wirelessly connected and densely deployed to construct large scale 

WSNs in order to sense and monitor physical environments. The connectivity 

between WSN sensors can be done according to different network topologies 

as discussed in the following sub-section. 

2.2.1 Common WSN network topologies 

Three types of network topologies are commonly in use in WSNs: star, 

peer-to-peer, and two-tier. In the star topology, a central device is in control of 

the network’s communications. This device can be a node, an access point or 

any communication unit that is capable of linking nodes. In general, a central 
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device has larger memory capacity, higher processing capabilities and more 

energy resources than other nodes in the network. The main issue that restricts 

the use of such a topology is the presence of single point failures. The peer-to-

peer network topology allows each node in the network to directly 

communicate with its neighbours within its communication range. If a node 

needs to communicate with more distant nodes, routing protocols may be used 

allowing some nodes in the network to act as routers. The use of such a 

topology allows the network to be more fault-tolerant and flexible. However, 

managing a WSN that has a peer-to-peer network topology can be challenging. 

The two-tier network topology is a combination of star and peer-to-peer 

topologies. The network in this topology is divided into groups. Each group is 

connected using a star topology. The central devices communicate using a 

peer-to-peer topology. The three topologies are depicted in Figure 2.1 [32, 33]. 

 

 

   

(a) (b) (c) 

 

Figure 2.1: The three WSN network topologies: (a) star, (b) peer-to-

peer, (c) two-tier. 
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2.2.2 WSN applications 

Iyer et al. [34] classify the different applications of WSNs as data 

gathering, object tracking, and event detection. In data gathering, each sensor 

node sends its readings to a sink or a base station either periodically or in 

accordance with the sink request. Hence, the main goal for data gathering is 

solely to obtain information about the field of interest without in-network 

decision making. Intuitively, this means that the sensor nodes of a WSN do not 

collaborate to perform computations and/or memorisations on gathered data in 

this type of application. Object tracking focuses on monitoring the movement 

and the state of one or more objects that enter the field of interest and can use 

data gathering applications to achieve this goal. Event detection can be 

considered a higher level abstraction of the data that represents a unique 

occurrence or a feature in the WSN dataset. As such it is a challenging task that 

requires dealing with computational complexity within the resource constraints 

of the WSN while often also requiring real time solutions. Furthermore, the 

WSN datasets in close proximity to events are often being continuously 

generated, meaning a dataset must be analysed just-in-time before the next 

dataset is collected. 

Chen and Varshney [16] classify WSN applications based on their 

requirements as follows: 

i. Event-driven (event detection): Event-driven applications in WSNs 

are most likely to be real time applications where the network is 

analysing sensory data to detect a specific or a set of events. The events 
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in these applications are usually infrequent, which means that sensors 

can remain in sleep mode for most of the time. However, these events 

are expected to be mission critical and require quick recognition and 

reporting. In this application category, the detection requirements are 

fast reporting, distributed recognition, reliable, and accurate detection, 

noisy patterns detection, and location information providing. 

ii. Query-driven (sink-initiated): In this type of application, data is 

gathered based on sink commands. Applications of this sort are usually 

interactive and mission critical. The sink can send query commands to 

obtain sensory data in order to take an action. The requirements of these 

applications are fast reporting, fast distribution of sensory data, reliable 

reporting, and noisy pattern detection, They can also require location 

information reporting. 

iii. Continuous and periodic reporting: This is where WSN nodes are 

continuously reporting information to the sink according to a specific 

timeframe. These applications can be either real time or asynchronous. 

For real time applications, the emphasis is on fast information reporting 

while noisy patterns and lost information are tolerated (to a certain 

extent).  

iv. Hybrid models: This is where an application may combine two or 

more of the applications presented above. An example of these 

applications is tracking-based applications where the network is 

interested in detecting intruders in a specific location. The requirements 
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of these types of applications depend on how many application types 

they are using. That includes all the above requirements. 

2.2.3 WSN network architecture 

WSNs are a network of sensor nodes. A set of protocols is necessary to 

perform networking functions such as processing information and 

communicating with other sensors. In networking, such protocols are 

segmented into layers that differentiate between the roles for each protocol. 

The standard networking segmentation is the Open System Interconnection 

(OSI) network reference model, which was developed to standardise the 

protocols of networking by the ISO organisation [35]. Hence the term ISO 

reference model is also used to denote the standard model. In this model, the 

network protocols are divided into seven layers: Application, Presentation, 

Session, Transport, Network, Datalink and Physical. Each layer is assigned 

specific roles in the networking process.  

WSNs carry unique features and limitations. Consequently, other 

network architecture models are available for WSNs in the literature. A 

common model for WSNs contains five layers: Application, Transport, 

Network, Data-link and Physical [13]. In this sub-section, the tasks for each 

layer are briefly presented and discussed.  

The Application layer provides high level protocols and applications 

that are commonly available on a WSN base station rather than the rest of the 

network’s sensors [36]. The absence of this layer from sensors is due to the 
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high level of processing it requires compared to the limited computational 

capabilities offered by sensors. A WSN base station is expected to include 

much higher computational capabilities that enable the hosting of such high 

level processing requirements and achieve a comprehensive outcome for the 

whole network. 

Transport layer protocols provide reliable communication services 

between two ends in the network. In this layer, the protocols ensure the highest 

possible level of Quality of Service (QoS). This can be achieved by offering 

services such as message segmentation, flow control, congestion control, and 

message retransmission for lost packets [37]. The techniques for implementing 

and designing transport protocols in WSNs affect the QoS and throughput of a 

WSN network and should vary from one application to another as different 

applications have different QoS tolerance levels.  

The Network layer deals with routing packets within the network. This 

includes developing mechanisms for building routing tables to allow sensors to 

direct their messages and redirect incoming messages from other sensors to the 

proper hop. Unlike traditional networks, WSNs do not provide IP addresses 

and hence do not provide IP routing capabilities. The design of network layer 

protocols in WSNs should take into consideration network scaling, routing 

fairness, and security issues, along with the existence of resource constraints. 

In addition, network protocols in such network environments should address 

the problem of sensors’ limited lifetime by involving fault tolerance procedures 

[13].  
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The Datalink layer or Medium Access Control (MAC) protocols are 

used as an underlying layer of the network layer protocols. MAC protocols 

control and manage the access of the shared wireless medium between WSN 

nodes [38]. In WSNs, the communication environment is noisy and nodes’ 

resources are limited. Consequently, MAC protocols designed for WSNs pay 

attention to power consumption and attempt to reduce collisions between 

communicational nodes to avoid retransmission of packets [7]. Nodes in WSNs 

usually alternate between active mode and low power consumption sleep mode 

to conserve energy resources.  Hence, WSN MAC protocols should consider 

ways of communicating with nodes that are in sleep mode in order to avoid 

occupying communicational channels and increase the throughput of the 

network [39]. Traditional MAC protocols for WSNs allow each node to have 

only one communication at a time. However, recent WSN MAC protocol 

research trends have moved towards multichannel MAC capabilities that allow 

a WSN node to have multiple communications at a time to support multi-task 

operations [39].  

The lowest layer in the model is the WSN Physical layer. This layer 

includes all physical components of sensors such as chips, transceivers, and 

processors [36]. Small sensor design results in limited resources for WSNs as 

limited memory, computational, and communicational resources are available 

per sensor. Consequently, these constraints have to be addressed in designing 

WSN protocols in any layer in the model. Sensors mostly work in a 
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collaborative manner in order to tackle these limitations and create larger 

interactive resources to deal with detection problems.  

2.3 Pattern recognition in WSNs 

Duda et al. [40] and Wittenburg, et al. [41] divide the process of pattern 

recognition into three main stages:  

i. Sampling: Sensing data and describing the sensed object.  

ii. Feature extraction: Obtaining the main features of sensed objects. The 

main goal of feature extraction is to minimise the amount of data 

needed to describe a pattern, which then reduces the number of 

computations and resources needed to recognise it. 

iii. Classification: Using extracted features to classify objects into 

categories.  

This section will focus on the classification aspects of the pattern 

recognition process in WSNs, which can be seen from different perspectives. 

For example, Predd et al. [42] discuss the classification of distributed learning 

and recognition in WSNs from the network structure perspective. Predd et al. 

[42] classify learning approaches as supervised, unsupervised, kernel, and 

distributed. Their focus is to classify distributed learning in terms of fusion 

centric and ad hoc network topologies. Nakamura et al. [43] present different 

classification perspectives for data fusion, one such application being pattern 

recognition. Nakamura et al. [43] classify pattern recognition into the 

following areas: Bayesian, Dempser-Shapher, Fuzzy Logic, Neural Networks, 
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and Semantic. Any pattern recognition approach is also classified as either 

supervised or unsupervised learning. In supervised learning, a teacher entity 

provides a set of patterns to train the pattern recognition system before it 

encounters incoming data. In unsupervised learning the system starts 

classifying incoming patterns immediately. In this section, the different pattern 

recognition methods and schemes that have been covered in the literature on 

WSNs will be discussed. These schemes can be classified as threshold-based, 

K-nearest neighbour, statistical, neural networks, support vector machines, 

graph neuron, and conditional schemes. Figure 2.2 summarises the existing 

pattern recognition schemes for WSNs. 

 

 Figure 2.2: Classification of existing pattern recognition schemes for 

WSNs. 
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2.3.1 Threshold-based techniques 

Threshold-based event detection and pattern recognition technique is 

one of the simplest and most widely used techniques in WSNs. Each sensor in 

this technique is assigned a threshold value or in some cases more than one 

threshold value. When a sensor’s reading hits the assigned threshold value, it 

declares the detection of the event of interest. As an example of using 

threshold-based techniques in WSNs, Kim et al. [44] present a fence 

surveillance model that can detect intruders based on thresholds obtained from 

the average signal measurements of each sensor. If a node’s reading exceeds its 

threshold, it sends a DETECT signal to the base station. Another example can 

be seen in the work of Jabbar et al. [45]. In this example, the authors proposed 

a threshold-based load balancing technique for routing problems in WSNs.  

Threshold-based event detection and pattern recognition techniques are 

considered to be light-weight and simple techniques. Additionally, such 

techniques do not require complex network communication relationships 

between sensor nodes. However, three main issues are related to implementing 

threshold-based techniques for pattern recognition in WSNs. First, threshold-

based pattern recognition cannot describe and address complex detection 

problems and thus it will cause a high level of false alarms when used in such 

problems. Second, such techniques are limited in terms of dealing with noisy 

patterns [46]. That WSN patterns are commonly noisy has been discussed in 

the literature. Hence, such limitation degrades the suitability of using such 
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techniques for pattern recognition in WSNs. Third, determining threshold 

values can be challenging in some applications [47]. 

Threshold-based techniques provide event detection and pattern 

recognition with light-weight capabilities in terms of computations and 

communications. However, such techniques provide problem specific solutions 

and they are limited in providing high accuracy detection levels in complex 

problems and noisy environments. 

2.3.2 K-nearest neighbour 

K-nearest neighbour (KNN) is one of the simplest non-parametric 

classification techniques [48]. Non-parametric classification assumes that the 

density distributions of pattern samples are unknown [40]. KNN computes 

distance or similarity measures between two data instances and makes a 

decision based on the result of the comparison. The distance between two 

samples is calculated according to a predefined function. One of the most 

popular distance functions in KNN is the Euclidian distance. This function can 

be represented as follows [49]. 

 

𝑑(𝑥, 𝑦) = √∑(𝑎𝑖(𝑥) − 𝑎𝑖(𝑦))
2

𝑛

𝑖=1

 (2.1) 

where d(x,y) is the distance between instances x and y, n is the number of 

attributes, and ai is the i’th attribute of the instance.  
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The decision in a KNN algorithm is based on the number of nearest 

neighbours K. After calculating the distances to each neighbour, a KNN 

scheme will vote among K neighbouring instances to classify an incoming 

pattern according to labelled classes. Such voting can be described as follows 

[48]. 

𝐶(𝑥) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦[𝐶(𝑁1),… , 𝐶(𝑁𝑘)] (2.2) 

where C(x) is the class label of instance x, C(Ni) is the class label of the i’th 

nearest neighbour to instance x, k is the number of nearest neighbours assigned 

to KNN, and 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 means the highest number of instances that have the 

same class label. A simple classification example using KNN is shown in 

Figure 2.3. In this example, seven instances are classified into two classes, C1 

(Blue) and C2 (Red). The task is to classify instance x as one of these classes 

using KNN. The KNN uses Euclidian distance as the distance function. In 

Figure 2.3, (a) shows the use of k=1, (b) k=3, and (c) k=5. The classification 

process results in classifying x as C1 when using k=1, as the nearest neighbour 

is of class C1, C2 when k=3 as two instances out of three (majority) are of 

class C2, and x is C1 when k=5 as three instances out of five are of class C1. 

KNN is commonly used as an outlier pattern recognition algorithm in 

WSNs [50]. This means that the normal activities of a network are modelled as 

pattern instances and stored in the network. A data instance is considered to be 

an outlier if its measure is far from the neighbouring instances that represent 

normal activities [50]. The main assumption that such techniques are based on 

is that an outlier occurrence takes place far from its neighbours [51]. The work 
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of Zhang et al. [52] is an example of the nearest neighbour outlier detection 

technique for WSNs. The authors propose a tree aggregation structure where 

each node sends some information to its parent. Then, the sink decides the 

global n outliers for the network and sends back this information to the 

network for verification. The process continues until all the network nodes 

agree on the outliers. 

 

   

(a) C(x) = C1 (b) C(x) = C2 (c) C(x) = C1 

 Figure 2.3: KNN classification example. (a) k=1, (b) k=3, and (c) k=5. 

Several issues are related to using KNN as a classifier in general and as 

a pattern recognition technique in WSNs. First, KNN depends on the use of a 

distance function. In some classification problems the standard Euclidian 

distance function does not lead to accurate classification [49]. Hence, more 

complicated functions might be required. Second, KNN accuracy and 

complexity is dependent on the choice of the number of neighbours (k). Such 

dependency requires k to be tuned in such a way that it balances complexity 

and accuracy. Moreover, such dependency could lead to tuning k according to 

probability distribution of data, making the process data-dependent [48].  
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Third, the decision process in KNN is based on majority function. In the case 

of tie voting, complex algorithms must be used to break the tie decision. Such 

complex algorithms could lead to higher KNN complexity [48]. Fourth, KNN 

requires large memory resources to memorise distances between data 

instances, especially when used in WSNs [53]. Fifth, KNN requires high 

computational resources to compute distances, which makes this technique 

lack scalability when implemented in WSNs [50].  

2.3.3 Statistical approaches 

Statistical pattern recognition schemes are dependent on the probability 

of the occurrence of a pattern and the Bayesian decision rule. The theory of 

these approaches is based on two major assumptions: recognition decision is 

achieved in terms of probability, and the probabilities of occurrence values are 

known [40]. In these approaches, the patterns are classified in terms of state of 

nature, where each pattern may be assigned to one state. The priority 

probability describes the likelihood of a pattern being of a certain class (natural 

state). For example, if we are trying to recognise whether a shape is a rectangle 

or a circle, the states are rectangle and circle. The priority probability of an 

input pattern is determined in accordance with historical data that links the 

input pattern’s features (such as input location) to one of the states (i.e. 

P(rectangle)=0.26 if the pattern is located in the bottom of an image and 

P(circle)=0.74). The decision is made based on the highest prior probability, 

which can be expressed as follows. ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 
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⁡⁡⁡𝑖𝑓⁡𝑃(𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒) > 𝑃(𝑐𝑖𝑟𝑐𝑙𝑒), 𝑡ℎ𝑒𝑛⁡𝑡ℎ𝑒⁡𝑅𝑒𝑠𝑢𝑙𝑡⁡𝑖𝑠⁡𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒⁡⁡⁡⁡⁡⁡⁡⁡⁡(2.3) 

In order to avoid making the same decision whenever the same 

situation is encountered, such statistical models use class-conditional-

probability to reduce the classification error rate (i.e. the shape could be a 

rectangle even if located in the bottom of an image) and can be described as an 

extra feature that supports the decision making process. For example, the 

colour of the shape could be used as a variable that discriminates between a 

circle and a rectangle. In order to make a decision about an incoming pattern, 

statistical approaches use the Bayesian decision rule. Let x be the statistical 

variable, i is the class number, and Ci is class number i. The Bayesian decision 

rule can be described as follows [40]. 

𝑃(𝐶𝑖|𝑥) =
𝑝(𝑥|𝐶𝑖)𝑝(𝐶𝑖)

𝑝(𝑥)
 (2.4) 

where P(Ci|x) is the classification of the incoming pattern given x (posterior),  

p(x|Ci) is the conditional probability density of class Ci given x, p(Ci) is the 

prior probability of class Ci, and p(x) is the evidence probability of x for j 

number of entered (stored) classes that can be calculated according to the 

following Equation [40]. 

𝑝(𝑥) = ∑𝑝(𝑥|𝐶𝑖)𝑝(𝐶𝑖)

𝑗

𝑖=1

 (2.5) 

 In practical classification problems, statistical approaches use more 

than one variable (i.e. feature). If the statistical relationships and dependencies 

between variables are known, Bayesian belief networks are used for solving 
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classification problems. Figure 2.4 shows a simple example of a Bayesian 

belief network. In this example, four variables A, B, C, and D and their 

dependencies are available. The final decision is made based on the 

dependencies statistics. 

 

Figure 2.4: A simple Bayesian belief network. 

On the other hand, Naive Bayes statistical classification is used when 

the statistical relationships and conditional dependencies between variables are 

unknown. In this classification method, the assumption that variables (e.g. a, b, 

and c) are conditionally independent is taken into account and can be 

represented as follows [40]. 

𝑃(𝑎, 𝑏|𝑐) = 𝑃(𝑎|𝑐)𝑃(𝑏|𝑐) (2.6) 

Non-parametric statistical classification methods assume that statistical 

density distribution is not available. Hence, such techniques obtain probability 

densities from a set of training samples. This assumption is based on the fact 

that in most classification problems, probability density of classes is unknown 

[40, 50]. Such techniques use distance thresholds based on probability 
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observations to decide the incoming pattern’s class. According to Zhang et. al. 

[50], such techniques are commonly used in WSNs as outlier detection 

methods and can be classified as histogram and kernel approaches. Histogram 

approaches count the probability of the occurrence of data classes and 

instances and compare incoming patterns with the calculated probabilities. 

Kernel approaches create probability distribution functions and use thresholds 

to determine an instance class. 

 Mittal et al. [54] presents Bayesian belief network approaches for 

weather status detection. Their technique obtains weather attributes such as 

humidity and temperature values from WSNs and then applies a two-step 

method for classification. The first step constructs the relationship between 

obtained attributes and the second step performs the recognition based on the 

constructed relationships. Elnahraway and Nath [55] present a Naïve Bayesian 

distributed method to detect faulty sensors. Their proposed technique provides 

an outlier detection method using spatio-temporal classification where each 

node evaluates its readings probability according to one of many predefined 

classes. Wu et al. [56] presents a Naïve Bayesian based technique for medical 

application. In their work they used WSNs to monitor patients and detect 

abnormal gait patterns. Sun and Edward [57] present a non-parametric 

distributed statistical approach to detect specific events (e.g. loud cheering) in 

sports stadiums. Each sensor in a WSN deployed in a stadium decides the 

occurrence of an event locally, based on noise levels, and then sends the result 



 

38 

 

 

to a cluster head. The cluster head then detects the event based on the optimal 

median amongst the collected information from all participating sensors.   

Using statistical pattern recognition approaches in WSNs carries a 

number of challenges. In most classification problems, such as the ones in 

WSNs, the prior knowledge of probability distribution is rare [40, 50, 58]. 

Consequently, implementing most parametric statistical approaches becomes 

unfeasible due to the lack of such knowledge. Non-parametric statistical 

approaches are more feasible since such approaches do not require prior 

information about probability distribution. However, the accuracy of these 

techniques is highly dependent on the number of available training samples as 

they construct probability distributions based on available samples [40, 58]. In 

WSNs, numbers of samples of patterns and events are limited due to the 

randomness feature of information obtaining in WSNs [10, 50]. That is, the 

occurrence of an event may be captured on rare occasions. Moreover, obtaining 

enough information about an existing pattern to construct probability 

distributions is limited due to WSNs’ communicational and computational 

limitations [42]. These limitations make the use of non-parametric approaches 

in WSNs challenging. In addition, some non-parametric approaches such as 

histogram techniques require high communicational overheads to obtain 

histogram information [50]. Such requirements contradict the limited 

communicational capabilities of WSNs. Other non-parametric approaches such 

as kernel techniques require defining thresholds in order to estimate probability 

densities. However, determining such thresholds may be challenging [50].   



 

39 

 

 

2.3.4 Neural networks 

Neural networks (NNs), also referred to as Artificial Neural Networks 

(ANNs), are computational methods that offer parallelism in pattern learning 

and recognition [43].  Associative Memory (AM) is one neural network 

approach that is capable of storing and retrieving patterns in a distributed 

manner. AM has been discussed in the literature as being able to  provide 

pattern recognition solutions based on the capability of recalling stored 

templates [59].  Additionally, AM networks are capable of dealing with noisy 

patterns and considered to be a robust solution [60]. Simply, AM depends on 

using small memory chunks available in computational units to achieve 

distributed memory management. In this sub-section, various types of NNs are 

discussed.  

2.3.4.1 Feed-forward NNs 

The Feed-forward is a supervised neural network that consists of an 

input layer, one or more hidden layers, and an output layer. Each neuron in a 

layer is connected to each neuron in the above layer by variable weight values 

[61]. Figure 2.5 shows the structure of feed-forward networks [61, 62]. Such 

networks are commonly used in pattern recognition applications [40, 63]. The 

computations in feed-forward NNs take place in the hidden layers. Each hidden 

layer calculates the inner product of inputs with weights, which is called the 

network’s activation function. The connections between neurons are usually 

called synapses and the values of these synapses are called synapse weights, 
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which are calculated using a non-linear activation function. In this approach, 

the activation of a neuron depends on a predefined weight and a bias unit 

assigned to neurons [40]. 

Bias

Neuron 

1

Input LayerN-1 N

Hidden Layer

1

Hidden Layer

M

Output Layer

 

Figure 2.5: The structure of a feed-forward NN that has N inputs and M 

hidden layers [61]. 

 

 

Awad et al. [64] use a feed-forward based recognition scheme for 

localisation and location estimation in WSNs. The proposed approach uses the 

feed-forward network to analyse received signal strength indicators (RSSI) to 

estimate the distance between two nodes. Rajkamal and Ranjan [65] use feed-

forward networks to classify exchanged packets between sensors based on the 

nature of incoming data in order to control the traffic flow in a WSN. Radial 

basis function networks (RBFNs) are one type of the feed-forward network. 

RBFN consists of three layers: input, hidden, and output [66]. Ishizuka and M. 

Aida [67] use RBFN to achieve efficient low-power sensor placement. Tran 

and T. Nguyen [68] use RBFN as a kernel function for a support vector 

machine (SVM) technique in the localisation of WSNs’ nodes. 



 

41 

 

 

2.3.4.2 Hopfield networks 

The structure of Hopfield NNs [69] is based on a single-layer network 

where each neuron is connected to all other neurons.  Figure 2.6 shows the 

structure of the Hopfield network. Each connection in the network is measured 

as a weight that is assigned during the pattern learning phase. Both connections 

that go from one neuron to another must have the same weight. The weight can 

be calculated according to the following function.  

𝑊𝑖𝑗 = {
∑𝑃𝑖

𝑟𝑃𝑗
𝑟 , 𝑖 ≠ 𝑗

𝑀

𝑟=1

0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖 = 𝑗

 (2.7) 

where Wij is the connection weight, P r

i  and P r

j  are the pattern number r for 

neurons i and j respectively, and M is the total number of patterns [59].  

 

Figure 2.6: The Hopfield network structure [70]. 

The above function describes the Hopfield network in a discrete 

representation. G. Massini [70] argues that the Hopfield model is limited in 

terms of the number of patterns that can be stored and detected. A continuous 

model of a Hopfield network is possible to achieve by taking the differentiation 
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of the above discrete equation. In this model, a global convergence of the 

network is not guaranteed [70].  

Hopfield neural networks are one of the simplest and most common 

types of NNs that have been used for pattern recognition problems in WSNs. 

For example, Chen et al. [71] used Hopfield networks for target tracking 

applications. The authors propose the use of a data fusion algorithm based on 

Hopfield networks to construct the relationships between a WSN’s sensors’ 

readings and existing target tracks. A target’s track can be detected based on 

the obtained relationships. In another example, Tisza et al. [72] propose a 

multicast routing protocol for WSNs using Hopfield NNs. The proposed 

algorithm is based on the assumption that the routing information obtained by 

the network is incomplete. The proposed routing algorithm obtains the 

incomplete link’s metrics from the WSN and uses Hopfield networks to create 

the best routing tree that fulfils certain quality of service (QoS) criteria (e.g. 

routing delay).  Levendovszky et al. [73] propose a Hopfield NN-based 

datalink layer algorithm for WSNs. The proposed algorithm attempts to 

schedule data forwarding in WSNs based on specific QoS metrics. The 

obtained QoS metrics are fed into Hopfield networks in order to find data 

packets’ optimum forward scheduling times. 

2.3.4.3 Recurrent neural networks (RNN) 

Recurrent Neural Network (RNN) is a multi-layered structured NN,   

also called a feedback neural network. The term feedback means that RNN 
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output is fed back into the input in order to reduce the error percentage and 

enhance the recognition accuracy [40]. Such links (i.e. from output to input) 

are not available in standard NNs [74]. Figure 2.7 depicts the structure of an 

RNN that has input layer, one hidden layer, and one output layer [40].  

Connor et al. [75] classify RNNs under two categories:  standard and 

relaxation. Standard RNNs work as standard NNs with feedback links. 

Relaxation RNNs perform learning and recognition continuously until 

feedback inputs reach a fixed predefined class. This guarantees a predictable 

convergence time. However, in some applications, such as time series 

prediction, it is impossible to achieve this target.   

Barron et al. [76] and Moustapha and Selmic [74] use RNN-based 

techniques for fault detection in WSNs. They use an RNN to model a sensor 

node and its related communications with other nodes in the network. Their 

aim is to use previous output samples from communicating sensors in addition 

to the current and previous output samples of the modelled sensor as an input 

to the RNN model in order to detect failures in a dynamic environment. 

Another example is the work of Raju et al. [77]. The authors present a faulty 

data detection system for WSNs using RNN. The proposed system obtains the 

output of a sensor’s neighbours to be fed as input into an RNN model in order 

to detect faulty information. 
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Figure 2.7: RNN structure [40]. 

2.3.4.4 Adaptive resonance theory (ART) 

Adaptive resonance theory (ART) is a multi-layered unsupervised NN 

approach that overcomes the limited learning scalability of NNs. This 

limitation is called the stability-plasticity dilemma [78].  ART network 

architecture consists of three main layers: input, comparison, and recognition 

as shown in Figure 2.8. The input layer receives the pattern and stores it. The 

connectivity between input and comparison layers is one-to-one, meaning that 

each neuron in the input layer is connected to a corresponding neuron in the 

comparison layer using non-modifiable weights. On the other hand, each 

neuron in the comparison layer is connected to all neurons in the recognition 

layer using modifiable weights. A feedback connection is also available in the 

ART structure where each neuron in the recognition layer is linked to all 

neurons in the comparison layer. In addition, the architecture uses gain 

modules (G1 and G2) and the orienting subsystem (R). These are the signals 
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that control activating and deactivating neurons in the comparison and 

recognition layers [79]. The neurons in the comparison layer are fed with three 

inputs: the input pattern, the feedback pattern from recognition layer, and the 

gain value G1. Neurons in the recognition layer will receive two inputs, from 

comparison layer and G2. Recognition is based on calculating the weights and 

determining the winning neuron in the recognition layer. The highest weight 

neuron will be activated and compared to the stored patterns to find a match. If 

no matched pattern is found, the neuron will be de-activated and another 

neuron will be activated and compared. This process continues until the 

network finds a match. Otherwise, the incoming pattern will be stored [78].  

Kulakov and Davcev [80] use ART networks as classifiers to detect 

unusual WSN nodes’ behaviour in order to identify intruders. Yuan and Parker 

[81] present an ART-based WSN detection system to detect intruders in an 

unknown environment. Kumar et al. [82, 83] implement ART networks in 

WSNs to classify patterns in order to achieve clustering aggregation in 

unknown environments. From the above description and examples, we can see 

that ART networks offer scalability in terms of the number of stored patterns. 

In addition, these networks are useful for classifying patterns that have no prior 

information, such as statistics [82, 83]. However, there is no guaranteed 

convergence time, which degrades the suitability of such a scheme for use in 

WSNs.  
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Figure 2.8: ART network architecture [78]. 

2.3.4.5 Self-organising maps  

Self-Organising Maps (SOM) [84, 85], also called Kohonen maps, are 

unsupervised learning mechanisms and considered to be a type of artificial NN. 

The neurons in the network are arranged in a regular manner and can be the 

shape of one- or many-dimensional spaces. Each neuron in the network is 

assigned a random weight in the initialisation. The training process of SOM 

goes through two main steps:  

 Competition, where training samples are presented to the 

network and compared to neurons’ weights, with the neuron of 

the maximum value considered to be the winning neuron. The 

comparison in this phase is controlled by a discrimination 

function such as Euclidean distance or inner product.  

 Adaptation, the winning neuron’s weight, is updated in 

accordance with the learning rate parameter and the 

neighbourhood function.  
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The learning process goes in iterative cycles where the learning rate and 

the number of neighbours are reduced at the end of each iteration [86]. After 

the completion of the learning process, it is possible to present patterns to the 

network to perform classification operations. The weights of each presented 

pattern are compared with each neuron’s weight and the neuron that has the 

closest weight is classified as the input vector.         

Examples of using SOM in WSNs can be seen through the work of 

Giorgetti et al. [87] who proposes a localisation mechanism that determines 

nodes’ coordinates in WSNs based on SOM. Another example is the work of 

Postolache et al. [88] who uses sensor networks and a SOM mechanism to 

confirm a sensor’s failure and detect pollution events. Despite the classification 

properties offered by SOM, it requires centralised processing to compare 

weights and to come up with the output class. Thus, tailoring SOM for use in 

WSNs may be resource exhaustive. 

2.3.4.6 Issues related to implementing NNs in WSNs 

Neural Networks (NN) provide parallel pattern recognition capabilities 

for multiple problems. However, there are a number of issues that degrade the 

suitability of such techniques for pattern recognition in WSNs. One of the most 

prominent issues is the tightly coupled connectivity between neurons. In a 

single layered NN such as a Hopfield network, each neuron is connected to 

every other neuron in the network. In a multi-layered NN such as feed- forward 

networks, each neuron in a layer is connected to each neuron in an upper layer. 
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Such tight connectivity between neurons will require a high number of network 

communications between WSN nodes, which means high power consumption. 

In addition, such connectivity limits a WSN that implement a NN technique 

from scale up in terms of network size. 

Pattern recognition using NN techniques involves an iterative process. 

This means that a network performs actions such as weight calculations in 

repetitive steps until reaching an optimum status. The number of these steps is 

usually unpredictable and in some cases is not guaranteed to lead to an optimal 

solution. Consequently, the convergence time of an NN technique is high. 

Hence, the suitability of such techniques in real time WSN applications is 

limited. Moreover, such iterative processes involve a large number of 

computations which will result in resource consumption when implemented in 

resource-constrained networks such as WSNs. 

In some NNs such as Hopfield networks and some types of the feed-

forward networks, predetermined synaptic weights and relationships between 

nodes are required. In addition, NNs in general require a large number of 

training samples in order to correctly classify incoming patterns. These 

requirements may be challenging in some applications, especially for 

environments where patterns are expected to occur randomly. 

    Generally, NNs offer distributed and parallel pattern recognition 

capabilities. However, the performance of such schemes is affected by the 

large number of communications, iterative processing, and high computational 

resources involved, as well as the non-guaranteed convergence time and the 
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predetermined weights and large number of pattern training samples that are 

required. These factors and requirements make the implementation of such 

schemes in resource-constrained networks such as WSNs either unfeasible or 

challenging.   

2.3.5 Support vector machines  

Cortes and Vapnik [89] present the principle of support vector 

machines (SVM) as a learning and classification mechanism. An SVM network 

maps input vectors to high dimensional feature space in a non-linear manner. 

Then, a linear decision surface is created in this high space by creating one or 

more hyperplanes to perform class separation. The optimal hyperplane between 

two classes can be obtained by maximising the margin between the classes’ 

points.  

Figure 2.9 shows an example of a two-dimensional separation problem 

for two different classes. The points located on a class margin line are called 

support vectors and the distance between two classes’ margin lines is called the 

optimal margin. To perform classification, an input pattern is compared with 

support vectors to determine which class this pattern should belong to. In 

practice, SVMs use a classification function which can be calculated based on 

the kernel representation. Hence, the choice of the kernel will have impacts on 

the classification process of the network [90].  
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Figure 2.9: SVM classes separation for two classes in a two-

dimensional space. Black vectors (samples) represent the support vector for 

each class [89]. 

 

Tran and Nguyen [68] use SVMs with an RBFN kernel for error 

tolerance localisation in WSNs. The authors propose the use of connectivity 

information, such as number of hops, as metrics to classify WSNs and estimate 

sensors locations. Xue et al. [91] propose target classification mechanisms 

based on SVMs that overcome samples’ false rates in WSNs. The authors 

propose the use of energy consumption metrics to construct an SVM-based 

classifier for WSNs in two paradigms, namely, centralised and distributed. The 

centralised paradigm represents the traditional SVM classifier. In contrast, the 

distributed method attempts to use samples (i.e. nodes) close to hyperplanes in 

order to reduce classification overhead costs. The main goal of the distributed 

classifier is to allow a set of sensors to communicate with a set of cluster heads 

to construct an SVM classifier. Abu Sajana et al. [92] also use SVMs to detect 

physical intrusion attacks on WSNs containing PIR sensors. The goal is to 

reduce false alarms caused by detecting windblown vegetation. They propose 
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the use of HAAR transformation and frequency binning along with SVMs to 

solve the addressed classification problem. 

The main challenge of using SVMs for classification problems in 

WSNs comes from the fact that a technique that implements an SVM classifier 

requires centralised processing capabilities in order to create hyperplanes and 

classify incoming patterns based on computed information. Another challenge 

is related to the number of training samples required. In order to create 

separating hyperplanes between classes and correctly classify instances, SVMs 

require a large number of training datasets. Such requirements may be 

challenging in applications that expect patterns to occur randomly. Another 

challenging issue when using SVMs is their dependency on kernel functions. 

The use of kernel functions will tie SVM techniques to the issues related to the 

kernel itself. For example, an SVM technique that implements an NN method 

as its kernel function will suffer from tightly coupled connectivity between 

nodes and the iterative processing associated with NNs. Hence, the choice of 

the type of kernel function plays a very important role in determining the 

suitability of an SVM technique for use in WSNs.  

2.3.6 Graph Neuron (GN) 

Graph Neuron (GN) [93, 94] is a scheme that creates AM in a fully 

parallel-distributed manner over fine grained WSN. GN nodes only 

communicate adjacently and in a loosely coupled fashion. Hence, GN offers 

light-weight one-shot learning capabilities in a decentralised manner. These 
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characteristics make GN a very suitable approach for real time pattern 

recognition in WSNs. In order to perform pattern recognition, each node 

initialises a memory structure called the bias array wherein it stores the 

incoming pattern as sets of p(value, position) pairs. Each input pattern is 

automatically synthesised into its components by the GN array. The GN nodes 

corresponding to the respective p(value, position) pairs are activated by the 

input pattern. Each activated node exchanges its value and position with its 

neighbouring nodes (i.e. previous and next). In the memorisation process, a 

node will store the combinations of its own value and its neighbours’ values. 

For the recall process, it will look up the bias array for a matching 

combination. The node raises a recall, a yes vote, if the combination is found in 

its bias array. If all neurons vote yes then the input pattern will be recalled by 

the network. Figure 2.10 illustrates the architecture and communications 

between GN nodes in a four-position GN array, with two possible values A and 

B storing pattern ABBA.  

A

B
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1'st Column  
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ABA B

Second Row 

(Value B)

2'nd Column  

(position 2)

3'rd Column  
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(position 4)

B

A

B B

A A A

B

 

Figure 2.10: A simple four node GN array responds and stores the 

incoming pattern ABBA. 
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Despite the light-weight pattern recognition capabilities offered by GN, 

the recognition accuracy of GN is affected by the limited perspective of each 

neuron as each node only knows about its immediate neighbours. This leads to 

the crosstalk problem. For example, if a GN network with a pattern size of five 

memorised patterns abcdf and fbcde, the network would falsely recall the 

pattern abcde that was never presented to the network. Using GN in WSNs is 

also affected by the constraint that each node is required to communicate with 

a single entity (i.e. base station) in order to perform pattern recognition 

operations. Such requirements increase the number of communications and 

overhead over the network.  

2.3.6.1 Hierarchal GN (HGN) 

Hierarchal Graph Neuron (HGN) [95] fixes the crosstalk problem by 

using a pyramidal framework for obtaining a higher perspective on the 

incoming pattern. HGN creates a set of layers above the neurons that receive 

the incoming pattern. The goals are to provide higher oversight over an 

incoming pattern and to minimise direct communications between nodes and 

the base station. The structure of HGN is built using layers of GN arrays in a 

pyramidal logical shape that allows a single node (the top node in the pyramid) 

to classify the incoming pattern and communicate with the base station. Figure 

2.11 shows an example of simple binary HGN that handles a five elements 

pattern size.  
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Figure 2.11: Simple HGN structure for a 5 elements binary pattern.  

The incoming pattern is firstly processed by the base layer of HGN (i.e. 

base GN). And then each neuron sends its calculations to its corresponding 

higher level neuron. This process continues until the top node of the structure. 

This allows neurons in higher levels to build up a higher knowledge about the 

incoming pattern. The top node decides the pattern’s index based on a given 

command from the base station (memorise or recall). However, if the top node 

fails to classify the pattern, the base node communicates with lower level nodes 

to vote for an answer. It is noticeable that the neurons in layers higher than the 

base layer monitor and manage nodes. That is, these nodes do not receive 

pattern elements. Instead, these nodes receive index numbers calculated by the 

base layer (and lower level) nodes.  

HGN solves the problem of crosstalk associated with GN schemes. 

However, the size of HGN can scale substantially with the increase in pattern 

size due to the use of managing neurons in its structure. If the pattern size is S 

and the number of possible values of a pattern element is v, then the size of the 
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HGN network (HGNsize) can be calculated according to the following 

equation [95]. 

𝐻𝐺𝑁𝑠𝑖𝑧𝑒 = 𝑣 (
𝑆 + 1

2
)
2

 (2.8) 

HGN also attempts to reduce direct communications between each node 

in the network and the base station. However, with the presence of noisy 

patterns, an HGN network’s top node will fail to classify the incoming pattern 

and the base station will communicate with nodes in lower layers to vote for an 

answer. Consequently, an HGN scheme’s communications are affected by 

noisy patterns. 

2.3.6.2 Distributed HGN (DHGN) 

Distributed HGN (DHGN) [96] attempts to solve the large scale of 

HGN and reduce the number of direct communications required for voting. 

DHGN splits an incoming pattern into sub-patterns so they can be processed by 

multiple HGN networks. Figure 2.12 shows an example of a DHGN structure 

for a pattern size of 20 that has been split into 4 sub-patterns and sent to 4 

HGNs where each HGN processes 5 elements. Each HGN network processes 

the assigned sub-pattern and presents its final result through its top node. The 

base station conducts a voting process between the top nodes of the GN 

networks in order to make a decision on an incoming pattern.   

DHGN reduces the number of nodes required for constructing the 

network by limiting the number of managing neurons. However, the use of 
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managing neurons leads to an increase in DHGN size with increase of pattern 

size. For example, in a uniform distribution of pattern size S, let Sp be the sub-

pattern size and n HGN networks. Accordingly, a DHGN network size 

(DHGNsize) can be calculated according to the following formula. 

𝐷𝐻𝐺𝑁𝑠𝑖𝑧𝑒 = 𝑛. 𝑣 (
𝑆𝑝 + 1

2
)
2

 (2.9) 

 

 

Figure 2.12: DHGN structure for a 20 bits pattern size that has been 

divided into 4 sub-patterns. 

 

 

DHGN adopts an HGN scheme. It has been shown that when a pattern 

is distorted (i.e. a noisy pattern) the top node of an HGN will not make a 

decision about the incoming pattern. Instead, the base station conducts a voting 

process that involves nodes in lower layers in order to inspect the result. In 

contrast, DHGN avoids such processes in order to limit direct communications 

with the base station and also to speed up the detection process. The major 

problem that a DHGN network may encounter is when a distributed noise is 
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present. In such a case, a DHGN network may fail to reach a conclusion about 

the incoming pattern. For example, if each sub-pattern in the example given in 

Figure 2.12 has been changed by at least one bit, each HGN network would fail 

to reach a conclusion regarding the incoming pattern. In other words, all top 

nodes will give the result 0 (i.e. fail to recognise the pattern). Since the base 

station only conducts the voting process amongst the top nodes of all HGN 

networks and does not involve lower layers, the network is unable to determine 

the incoming pattern.    

GN involves a limited number of communications and computations in 

performing learning operations. Such a feature makes GN a very good 

candidate for pattern recognition applications in resource-constrained WSNs. 

However, the accuracy of GN is limited due to the limited information 

available for each node. HGN and DHGN provide higher accuracy levels by 

involving a hierarchal network structure. Communications in both schemes are 

maintained at low numbers by adopting parallel and distributed mechanisms. 

However, the scalability of HGN and DHGN schemes is not best suited for 

large scale WSNs as the number of required nodes increases exponentially with 

the increase of the problem (pattern) size.     

2.3.7 Structural and conditional methods 

There are a set of structural and conditional classification methods in 

the literature that have been used for classification problems in WSNs. These 

methods attempt to create a relationship between pattern elements and are 
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commonly used when non-metric data is available [40, 58]. These techniques 

can be categorised as syntactical, fuzzy logic, and decision tree methods. 

2.3.7.1 Syntactical classification 

The syntactic model describes the relationship between sub-patterns 

and patterns by creating structural rules. It adopts language theory where letters 

form words and words form sentences based on grammatical rules. In this 

model, primitive elements and sub-pattern relationships are analysed to provide 

pattern recognition. The main challenge in the syntactic approach is to describe 

the relationships (rules) between sub-patterns so as to provide the capability of 

pattern recognition and identify primitives that describe patterns [97]. Such 

analysis is performed by using different schemes such as NNs, tree grammars, 

transformations, and more [98].  

Latha et al. [99] use the syntactical method in semantic tracking for 

wildlife preservation using WSNs. The syntactical method is used as a 

processing stage that checks a node’s detection with other nodes in the same 

cluster. Syntactic pattern recognition offers complex pattern recognition if 

there is no suitable statistical method available. However, grammars and 

recognisers (recognition) are complex, especially with noise [100].  Another 

issue with this technique is the large amount of training data required for 

training and creating relationships between sub-patterns [58].  
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2.3.7.2 Fuzzy logic 

  A system that implements fuzzy logic is usually called a fuzzy 

inference system (FIS). An FIS is capable of making conclusions by mapping 

inputs to outputs with the aid of membership functions, fuzzy sets, and rule 

base [101]. FIS is built up based on three main components: rule base, 

membership functions, and reasoning mechanisms [102].  The process of an 

FIS starts with classifying inputs to fuzzy sets in accordance with membership 

functions. For example, a temperature reading could be classified as high, 

medium or low. Then, the rule base is used to make conclusions based on the 

classified inputs. Rule base consists of a set of IF-THEN rules that take two or 

more variables to come up with a conclusion. An example of a fuzzy base rule 

can be described as follows. 

𝐼𝑓⁡𝑥⁡𝑖𝑠⁡𝐴⁡𝑎𝑛𝑑⁡𝑦⁡𝑖𝑠⁡𝐵, 𝑡ℎ𝑒𝑛⁡𝑧 = ⁡𝑓(𝑥, 𝑦) (2.10) 

where x and y are the classified inputs and z is the output of the FIS. Deriving 

such rules for a FIS may requires prior knowledge about the relationships 

between variables [101]. Implementing these rules on variables is called fuzzy 

reasoning or an approximate reasoning mechanism of a FIS.  

Marin-Perianu et al. [101] present a WSN activity recognition system 

based on FIS to assist workers in car assembling and training. Zarei et al. [103] 

propose a FIS congestion control scheme for WSNs to identify malicious node 

activities. Xiufang et al. [104] use FIS to measure the distance between WSN 

nodes in order to achieve better localisation. These are some examples of using 
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FIS for inference and recognition in WSNs. The main challenge for FIS is to 

derive the IF-THEN rules and fuzzy sets. According to Nakamura et al. [43], 

FIS is usually used to control neural networks’ learning rates rather than being 

used for recognition. This will lead to the same issues with pattern recognition 

in WSNs that are present in NNs. In addition, in most WSN applications, 

concluding rules may be challenging. 

2.3.7.3 Decision trees 

Decision tree approaches are constructed from a set of nodes that are 

logically arranged in a tree-like shape. Each node makes a decision about the 

incoming pattern feature and, based on that decision, the process questions the 

next feature in lower level nodes. Figure 2.13 shows a simple decision tree 

example. In this example, five animal classes, eagle, sparrow, monkey, lion, 

and sheep are to be recognised by using four features: presence of wings, size, 

number of legs, and being a predator. The tree in the example shown in Figure 

2.13 has four levels, including the root of the tree. The number of levels 

determines the depth of a decision tree. One of the most common decision tree 

structures used for classification is the binary decision tree. In such a structure 

each node makes one out of two decisions and inspects a single feature at a 

node to reduce complexity and time of recognition[58].  

 



 

61 

 

 

 

Figure 2.13: A simple decision tree example for animal classification.    

As an example, Bahrepour et. al [105] propos a WSN event detection 

mechanism based on a decision tree technique. The proposed scheme 

distributes features into several trees where each tree makes one decision. 

Finally, a voting process takes place between the results obtained by the trees 

to determine the detected event. Decision trees are expected to involve limited 

computations and communications. However, decision tree techniques are 

affected by noisy patterns, which increase the scheme’s complexity, especially 

for large scale trees [106]. Hence, decision trees are more useful as decision 

making processes on top of another pattern recognition process.     

2.4 Requirements of Pattern Recognition in 

WSNs 

Pattern recognition in WSNs is affected by the limited physical design 

of sensor nodes, the nature of WSNs and the type of patterns a WSN is 
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attempting to deal with. In this sub-section, the requirements of performing 

pattern recognition in large scale WSNs for real time applications will be 

discussed.  

Sensor nodes are generally designed to be small in size. Such design 

restricts the resources that can be included in each sensor. As discussed earlier, 

a sensor consists of four main components: a processing unit, a communication 

unit, a memory unit, and an energy source. The limited size of a sensor results 

in the limited size of these components. Consequently, each task assigned to 

each component can only use a restricted amount of resources. The energy 

source is one of the components that most affects the performance of a sensor 

and the design of a WSN. Generally, a sensor uses a battery that has a short 

lifetime. Moreover, in most applications, batteries are not likely to be replaced, 

which means that the lifetime of the battery determines the lifetime of the 

sensor. Since the energy source of a sensor is limited, energy consumption 

caused by another sensor’s components must be reduced. 

A sensor’s communication is considered to be the most energy 

consuming task, and can drain the sensor’s energy resources [18]. Hence, a 

pattern recognition scheme in WSNs should involve a limited number of 

communications per sensor in order to increase the lifetime of sensors. 

Computational capabilities of a sensor node in a WSN are constrained due to 

the small sensor size (small processor) and limited energy available. 

Consequently, involving large amounts of data processing in a sensor is an 

exhaustive task that will shorten the lifetime of the sensor. This is not only 
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because data processing requires energy, but also because the sensor will be 

kept in active mode for long periods of time. In addition, the higher the 

processing assigned to a sensor, the more time the sensor needs to obtain a 

result. If the amount of processing is large, the time needed to get a result out 

of this processing may be unexpected. Hence, a pattern recognition algorithm 

should involve a controlled amount of data processing for each sensor aligned 

with the sensor’s computational resources in order to avoid energy 

consumption and to ensure a timely result. The memory size of a sensor is 

intuitively small. As a result, each sensor should hold the minimum amount of 

data it needs to process and detect patterns in a WSN pattern recognition 

scheme.  

Other requirements for pattern detection result from the nature of the 

WSN network design. As WSNs are deployed in large numbers, network 

scaling is an important property for designing a recognition scheme for WSNs. 

Size scaling requires managing the way sensors are going to communicate with 

each other. The number of communications involved in a WSN scheme design 

is crucial as it will determine the number of communications each sensor is 

going to handle. This will have ramifications for the sensor’s lifetime as well 

as the time needed to obtain a final result from these communications. In real 

time applications, convergence time is highly important. In recognition 

processes, sensors either send data to a fusion centre or to other sensors in the 

network in order to conclude pattern detection. Consequently, the convergence 

time of the network is highly dependent on the process of delivering 
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information from one point to another. Generally speaking, scaling a WSN 

should maintain a restricted method of communication to conserve energy 

resources and speed up the recognition process to support real time recognition 

applications in WSNs.  

A pattern recognition scheme should have some invariant features. In 

WSNs, the need for such features increase because WSNs are dynamic and the 

nature of monitored fields of interest is changing. In other words, a stored 

pattern in a WSN pattern recognition scheme could appear in different form, 

such as location change or size dilation, in the field of interest. Or the topology 

of the WSN network or sensor locations may change, meaning the information 

stored within the network will have different distribution and relations. 

Another problem associated with the nature of WSNs is the restricted number 

of training samples available as events generally occur in some form of 

randomness [10, 50]. Hence, designing a pattern recognition scheme should 

address the restricted amount of training data available as well as the changing 

environment in WSN networks and fields.  

Noisy patterns are another problem associated with large scale WSNs. 

Noisy patterns are a result of the monitoring environment and the limited 

lifetime of sensors. As a result of noisy patterns, damage to sensors, dead 

sensors, and lost packets could cause the loss of some parts of the detected 

pattern. Tolerance management is required to reduce the effect of lost parts of 

incoming patterns. It is worth noting that different applications may need 

different tolerance levels. However, in WSNs in general, a recognition scheme 
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should be able to detect events and patterns even if some parts of the detected 

pattern are lost. 

In general, the main requirements of a pattern recognition scheme in 

large scale WSNs suitable for real time detection can be summarised as 

follows: 

 restricted communications, 

 restricted computations, 

 limited memory requirements, 

 ability to scale in terms of network size, 

 Predicted convergence time, 

 means to addresses invariance properties for dynamic networks 

and changing patterns, 

 ability to address randomness problems, meaning that the 

scheme should maintain high accuracy with a restricted number 

of available training samples, 

 ability to detect complex patterns, and 

 ability to detect noisy patterns. 

2.5 Comparing Existing Schemes 

This sub-section compares the different presented pattern recognition 

schemes in section 2.3 for WSNs based on the requirements listed in the 

previous sub-section. The main goal of this research is to present recognition 
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schemes that can be implemented on large scale WSNs for real time 

applications and to support decision making processes in intelligent systems.  

Most existing schemes are able to implement a number of nodes equal 

to the pattern size S. For example, Hopfield networks allow input/output 

neurons of size S. In contrast, HGNs and DHGNs require a larger number of 

nodes to adopt the same patterns, as can be seen from Equations 2.8 and 2.9. 

The higher number of nodes in HGNs and DHGNs is the result of requiring 

higher level neuron positions and the need to have one node for each possible 

value v in each position. It can be concluded from Equations 2.8 and 2.9 that 

the number of nodes (or sensors) grows exponentially with the increase of 

pattern size and the number of possible values for each pattern element.  

On the other hand, the number of communications involved in neural 

networks such as Hopfield networks is high due to tightly coupled connectivity 

and iterative processing. The number of communications required for a 

Hopfield network is (S×(S-1)) as each node is connected to every other node. 

Intuitively, the number of communications grows exponentially with the 

increase of pattern size as this number is related to the square of the pattern 

size. Since neural networks require iterations to reach an optimal state, 

communications between neurons are repeated several times, resulting in high 

communicational demand that would be exhaustive if implemented on sensors.  

Some statistical approaches such as histogram methods also involve a large 

number of communications in order to collect specific information from the 

network.   
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From a computational perspective, most of the existing schemes either 

provide distributed processing or require centralised processing. SVM, for 

example, requires centralised processing in order to create the required 

hyperplanes and classify patterns. Statistical approaches require global 

information to be available on a centralised component to compute 

distributions and perform recognition. There have been attempts to distribute 

statistical models amongst sensor nodes in WSNs and compute these 

distributions locally before sending the information to a fusion centre or a base 

station. The work of Luo et. al [17] is an example of this technique. However, 

the accuracy of such techniques would depend on the physical communication 

medium’s noise tolerance and the thresholds computed to perform 

computations locally in sensors. Neural networks offer parallel and distributed 

functionality in terms of computations. However, the iterative process of neural 

networks requires a high amount of data processing. KNN techniques can be 

seen as simple, distributed approaches for pattern recognition. However, the 

computational complexity of a KNN scheme depends on the number of 

neighbours k. The higher the value of k, the more complex the scheme 

becomes. Hence, tuning the value of k plays a crucial role in determining a 

KNN scheme’s computational simplicity. 

Decision making support and real time applications require fast pattern 

detection. In this area, GN approaches such as HGNs and DHGNs offer one-

cycle recognition that suits such applications. On the other hand, neural 

networks, SVM, and decision trees recognition schemes may require more time 
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to converge compared to other existing schemes. A neural network’s 

convergence time to an optimum state depends on the number of iterations 

involved. A single iteration involves communications and computations to be 

performed by neurons. These activities can be time costly as the number of 

iterations grows. In SVM schemes, recognition time depends on the selection 

of the kernel. If the kernel chosen is one of the time costly techniques, such as 

neural networks, the detection time will intuitively increase. The choice of 

kernel in this case will be a trade-off between time and other factors such as 

accuracy. For decision trees, recognition time depends on the depth of a tree. 

The depth of a tree is the number of levels needed to perform recognition and 

depends on the number of attributes the tree is inspecting. The more attributes 

to inspect the greater the depth of the tree and hence the more time it takes to 

conclude a decision about a pattern. In addition to the depth of a tree, the 

method used to inspect each attribute affects the time cycle of detection.  

The number of available training samples is commonly restricted in 

WSNs. Most existing detection schemes require a large amount of data to 

correctly recognise and classify patterns. Statistical approaches use training 

samples to construct distribution probabilities. The more samples the scheme is 

trained with, the higher the accuracy it achieves. Similarly, SVM requires large 

amounts of data to create separation hyperplanes. A limited amount of data 

could result in inaccurately setting hyperplanes and create large gaps between 

classes. Neural networks share the same requirement in order to accurately 

create weighting matrices. The limited number of training samples in this case 
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affects the invariant property of a recognition scheme. Statistical, SVM and 

neural network approaches are the best candidates for offering this invariant 

feature compared to other existing schemes. However, this feature is entangled 

with presenting a large number of training samples to a network implementing 

such schemes.  

Memory requirements per node (or sensor) are limited in most existing 

schemes. However, in KNN, each node keeps information about distances to 

each of its neighbouring nodes. The amount of memory needed for each node 

in this case will depend on the value of k and the number of classes. In HGN, 

memory requirements increase in higher nodes in the hierarchy. In the base 

layer (i.e. input layer) each node is expected to hold up to (2V) in its memory (v 

is the possible number of a pattern’s element values) as each sensor 

communicates with its two direct neighbours. Each node in the top position of 

the hierarchy of the HGN is expected to hold up to ⁡
𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔⁡𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑣
 .  

The aim of event detection in WSNs is to reduce the amount of false 

alarms. Simple schemes, such as threshold-based scheme, seem to be perfect 

for simple problems. On the other hand, these schemes fail to deal with 

complex patterns, leading to false alarms. The nature of WSNs and the fields 

they monitor introduce recognition schemes to more complex problems. 

Sensors could run out of energy or lose information because of the noise in the 

physical transmitting medium. Consequently, schemes should be capable of 

overcoming such challenges and offer recognition capabilities despite the lost 

information. Several schemes encounter degradation of accuracy caused by 
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such problems. For example, a DHGN scheme might inaccurately classify 

patterns when distributed noise is present. If each cluster of a DHGN network 

is presented with noise, cluster heads will not be able to conclude sub-pattern 

detection and the final voting of the process could lead to inaccurate detection. 

Another example is decision tree schemes. These techniques may fail to 

correctly classify noisy patterns in large scale networks.  

It can be seen that different schemes have different limitations in 

regards to the requirements of pattern recognition in large scale WSNs. Table 

2.1 shows a comparison between existing pattern recognition schemes in 

WSNs. It can be seen from the table that none of the existing schemes can 

fulfil all the requirements set. Consequently, new schemes need to be proposed 

if we are to the problem of interest.   

2.6 Possible Solution 

Performing pattern recognition in WSNs requires tackling two 

problems: correctly classifying patterns and restricting use of constrained 

resources. Solving the problem of pattern recognition in WSNs is seen as a 

trade-off between accuracy and resources exhaustion [28, 107].  Existing 

solutions do not address the resource-constrained nature of WSNs and assume 

reliable message delivery in the network [18]. This causes such schemes to be 

resource exhaustive and to require heavy tailoring to suit WSN applications 

[108]. In fact, Tanengbaum et al. [27] concluded that existing techniques can 

only be implemented on limited scale WSNs.
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Table 2.1: Comparison of existing pattern recognition schemes for WSNs. 

Scheme 
Comm-

unications 

Comp-

utations 
Memory 

Network 

size 
Time 

Transform-

ation 

invariant 

Random 

patterns 

Complex 

patterns 

Noisy 

patterns 

Threshold based Low Low Low Small Low No No No No 

KNN Low 

High/ 

Depends on 

k 

High Small Low No Yes Yes Yes 

Statistical Low 
High / 

Centralised 
Moderate Small Low Yes No Yes Yes 

Neural networks High High Low Small High Yes No Yes Yes 

SVM Low Centralised Low Small Low Yes No Yes Yes 

GN Low Low Low Small Low No Yes Yes Yes 

HGN Low Low Moderate Large Low No Yes Yes Yes 

DHGN Low Low Moderate Large Low No Yes Yes No 

Decision trees Low Dependant Low Small Low Yes No Yes No 

Target Low Low Low Small Low Yes Yes Yes Yes 
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Using distributed approaches to solve the pattern recognition problem 

in WSNs appears in recent research. According to Giridhar and Kumar [109], 

sending information from each sensor to the base station or a fusion centre in a 

WSN is inefficient. Consequently, according to the authors, the whole network 

should perform as a distributed cooperative computational component. 

Wittenburg [108] suggests that the processing involved in application levels 

should be pushed and distributed in the network level in order to achieve 

conservative resource consumption schemes for WSNs. Chamberland and 

Veeravalli [18] suggest that the use of distributed pattern recognition is the 

most efficient method for WSNs. They mention that data should be computed 

by sensors locally, and only part of the resulting information should be sent, in 

order to conserve the WSNs’ limited resources. However, the authors highlight 

that the choice of which information should be sent to the base station of a 

WSN is crucial to such implementation.    

The main hypothesis of this research is that a fully distributed scheme, 

which works purely with localised node adjacency-based computation, is the 

best candidate for solving the problem of event detection in WSNs. Adjacency-

based computations will promote WSNs’ ability to deal with complex, 

invariant, and noisy patterns. Additionally, it is expected that using a loosely 

coupled connectivity scheme will scale up efficiently in terms of time and 

resources management if used in resource-constrained networks such as 

WSNs. By offering a fast, accurate, and scalable scheme that suits WSNs, it is 
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possible to use such schemes in decision making to solve far more complex 

and real time application problems. 

2.7 Summary 

This chapter has presented an overview of WSNs and the pattern 

recognition challenges that are associated with such networks. WSNs pose 

numerous challenges for complex applications such as pattern recognition. 

WSNs pose even more challenges if an application is a real time one and needs 

to be implemented on a large scale network. These limitations stem from the 

constraint resources that a WSN can offer, including computational, 

communicational and memory resources. Such limitations make solving 

pattern recognition problems in WSNs a trade-off between performance and 

resource consumption.  

Existing techniques that provide solutions for the pattern recognition 

problem in WSNs are threshold-based, KNN, statistical, neural networks, 

SVM, GN, HGN, DHGN, and Conditional techniques. Each of these present 

several issues when implemented on WSNs. Examples of these issues include 

the requirements of centralised processing, iterative processing and large 

numbers of communications. Hence, each scheme would need to be heavily 

modified to be adopted by WSNs. Existing schemes can be implemented on 

limited scale size WSNs. Hence, new contributions should be made towards 

enhancing the scalability and performance of pattern recognition. 
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Distributed techniques conserve resources in a way which perfectly 

suits the nature of WSNs. Using such techniques allows the spread of 

computations across the network. Distributed processing can be achieved by 

allowing each node to locally process data and send the final result to another 

entity in the network. However, there must be a method for choosing which 

other nodes to communicate with, what data should be processed and what 

information should be sent. 

In WSNs, minimising communications is one of the best resource 

utilisation methods. The reason for this is that sending a message from one 

node to another is the most energy-consuming task that a sensor can perform. 

Hence, this chapter proposes the use of the adjacency communication method 

to reduce the number and range of communications. Processing data gained 

from adjacent nodes allows the network to communicate and process data in a 

loosely coupled fashion. In addition to conserving resources, this would allow 

the network to limit recognition time. Such features will make the proposed 

methods good candidates for resource-constrained networks such as WSNs, 

allowing them to solve real time and complex problems. Additionally, these 

methods will be good candidates for hybrid use with other techniques, such as 

decision making algorithms, to support high level network processing and 

decision making processes.   
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Chapter 3 

3 Cellular Graph Neuron (CGN) for 

Pattern Recognition in WSNs 
 

3.1 Introduction 

Wireless Sensor Networks (WSN) make it possible to sense physical 

parameters in a field of interest. These sensory data can be analysed in order to 

detect the presence of a physical activity or events in that field and take an 

action in accordance with the detected activity. Analysing sensory data is a 

computational and processing task that falls under two paradigms, centralised 

and in-network [7]. In centralised processing, data obtained by sensor nodes 

are aggregated to one machine that has the computational ability to analyse 

sensory information. However, this paradigm is considered inefficient in large 

scale resource-constrained WSNs, especially for applications that require 

limited latency time for data analysis in order to support decision making 

processes [109]. In contrast, in-network processing allows network nodes to 

perform computations and analysis on obtained data locally and in a distributed 

manner. This causes the network to act as a cooperative computational entity 

and this capability allows a WSN to reduce the computational and 

communicational complexity of processing nodes in the network.    
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The problem of event detection in WSNs can be solved by using in-

network pattern recognition techniques. A pattern may be defined as a set of 

raw sensory data that describes the main characteristics of an event [26].  In-

network pattern recognition techniques for WSNs include threshold-based, 

template matching, nearest neighbour, fuzzy logic, and neural networks, as 

discussed in Chapter 2. Existing pattern recognition schemes for WSNs are 

usually tailored to provide detection capabilities for specific applications or 

problem scenarios. These techniques may fulfil some event detection 

requirements while failing to address WSN resource limitation issues.  

As discussed in Chapter 2, Graph Neuron (GN) is a scheme that creates 

associative memory (AM) in a fully parallel-distributed manner over fine-

grained WSNs and offers light-weight one-shot learning capabilities. These 

characteristics make GN a good candidate for real-time pattern recognition 

applications in WSNs. However, the recognition accuracy of GN is affected by 

the limited perspective of each neuron, as each node only knows about its 

immediate neighbours. Consequently, the hypothesis of this chapter is that 

developing a GN-based scheme that addresses the accuracy limitations of GN 

would be the best option for solving the problem of pattern recognition in 

resource-constrained networks such as WSNs.    

In this chapter, a pattern recognition scheme that is capable of detecting 

events and noisy patterns while addressing the resource constraints of WSNs is 

proposed. The scheme will adopt an in-network processing paradigm by 

including GN in its structure. Additionally, the scheme will solve the crosstalk 
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problem that affects GN accuracy by adopting network structures that allow 

certain nodes in the network to maintain more information about incoming 

patterns rather than being restricted to only adjacent nodes.  The proposed 

network structure is designed to have the same network size as the GN 

network, which maintains the high scalability and the one-shot learning feature 

of GN.  

The chapter starts by presenting the CGN scheme structure for pattern 

recognition in section 3.2. This covers the constraints related to deploying such 

a scheme and why these constraints are used. Additionally, this section 

analyses the relationship between CGN structural constraints and the network’s 

size. The section also discusses the effect of incoming pattern size on the CGN 

network size. Additionally, this chapter describes the memory structure, 

computations and communications of a CGN. In section 3.3, the scheme’s 

method of receiving incoming patterns is presented. This involves determining 

which nodes should participate in the learning process. Section 3.4 analyses the 

complexity of CGN in terms of memory size, number of communications, and 

learning cycle time. The aim of such analyses is to validate the suitability of 

CGN for use in WSN environments. This is followed by tests on the CGN 

scheme in section 3.5. These tests show the ability of CGN to act as a pattern 

recognition scheme despite the presence of noisy patterns. Additionally, this 

section presents a comparison between CGN and other existing pattern 

recognition schemes. The section compares CGN with Hopfield networks in 

terms of communications, computations, and time. Additionally, the section 
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presents a test of handwritten digits as an example for comparison of accuracy 

between CGN, Naïve Bayes, and back propagation neural networks, 

demonstrating CGN’s superiority. Section 3.6 summarises the chapter.  

3.2 Overview of CGN  

This section describes the proposed CGN scheme. Part of this section 

has been published in [110]. As a first step to achieving efficient pattern 

recognition capabilities, the scheme provides the capability of template 

matching and noisy patterns recognition in resource-constrained environments 

such as WSNs. The main goal of the scheme is to minimise recognition time 

and increase network scalability. The scheme allows a WSN to collaborate and 

act as an associative memory in order to store and recognise patterns. This is 

achieved by creating a network of GN arrays and allows these arrays to 

communicate in order to conclude one result. This will allow the network to 

process and compute information in a distributed in-network paradigm.  

The aim of the CGN network structure is to allow nodes to exchange 

information about an incoming pattern for storing and recalling operations 

using an in-network processing paradigm. Two goals that the structure is 

attempting to achieve, low scheme complexity and high pattern recognition 

accuracy. To achieve the first goal, the CGN network structure adopts a GN 

scheme as being well known for its low computational, communicational, and 

time complexity. This is due to the dependency on adjacency communications 

and computations in its structure for pattern recognition operations. Hence, the 
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CGN network structure consists of multiple GN arrays where each array is 

assigned to process a sub-pattern of an incoming pattern. To achieve the 

second goal, high pattern recognition accuracy, the CGN network structure 

provides links between GN arrays to give the whole network a broad overview 

of an incoming pattern. Since each GN array manages one sub-pattern, the 

links allow some GN arrays to overview the sub-patterns of other GN arrays. 

The aim is to have one array that has top overview over the whole incoming 

pattern. This array will make the final decision about an incoming pattern and 

report the result to the base station.  

3.2.1    CGN structure 

The CGN scheme involves two main entities, the stimulator and 

interpreter (S&I), which is an external computational node, and the CGN 

network, as shown in Figure 3.1. The two components communicate with each 

other in order to conclude one decision in a predictable learning duration. The 

S&I sends commands to the network and the network replies with an index 

number. The index number (I) is a unique integer number that describes the 

computation outcomes of the network. This index number can be used to 

represent a class or a pattern. A command that is sent by the S&I tells network 

nodes whether to memorise (store) a pattern or recall (search for) it. Also, the 

command will determine the method of obtaining the pattern (i.e. sense 

environment). 
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Figure 3.1: The two main components of the CGN scheme. 

A CGN scheme’s network structure and S&I depend on the problem’s 

pattern size, the possible values of each pattern element, and the index number. 

Hence, we must first define these terms. In this research a pattern is defined as 

follows. 

 

Definition 3.1: (Pattern) Given a set of possible values 𝑉 =

{𝑥1, 𝑥2, … . . , 𝑥𝑣,⁡⁡⁡⁡⁡⁡𝑥𝑖 , 𝑣 ∈ ℕ}, a pattern is a set of elements that represent 

sensory information that can be sensed by a network’s nodes or sent from the 

S&I to each node in the network and can be described as follows. 

𝑃 = {𝜀1, 𝜀2, … . . , 𝜀S,⁡⁡⁡⁡⁡⁡𝜀 ∈ V, 𝑆 ∈ ℕ} (3.1) 

where 𝜀𝑖 is the i’th element of the pattern and S is the number of elements and is 

called the pattern size.  

Definition 3.2: (Index number) Given a set of patterns {𝑃1, 𝑃2, … , 𝑃𝑛}, 𝑛 ∈ ⁡ℕ, 

an index number (𝐼𝑖) is a unique number that describes 𝑃𝑖 in the form 

{1, 2, … , 𝑛}, 𝑛 ∈ ⁡ℕ. Hence, 𝐼𝑖 = 𝑖. 
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3.2.2 CGN network 

The CGN network consists of a set of GN networks where each GN 

network reports to another one with reaching the S&I. A GN network in the 

CGN network structure is called a track and each track consists of a set of 

neuron positions that communicate with each other using exchange 

communications, as described below. 

3.2.2.1 Neuron position (NP) 

Definition 3.2: (Neuron position) Given a pattern P that has a set of possible 

values 𝑉 = {𝑥1, 𝑥2, … . . , 𝑥𝑣 ,⁡⁡⁡⁡⁡⁡𝑥, 𝑣 ∈ ℕ}, a neuron position (NP) is a set of v 

network nodes where each node is assigned to manage one x such that 𝑁𝑃 =

{𝑎1, 𝑎2, … . . , 𝑎𝑣,⁡⁡⁡⁡⁡⁡𝑎, 𝑣 ∈ ℕ}. Where 𝑎i is the i’th node in the NP.  

Each NP is responsible for sensing or receiving one element of an 

incoming pattern such that  𝑃𝜀,𝑁𝑃:⁡𝜀𝑖 → 𝑁𝑃𝑖⁡, 𝜀 ∈ 𝑉, 𝑖 ∈ ℕ where 𝑃𝜀,𝑁𝑃 is the 

assignment of an incoming pattern’s elements to NPs. An NP represents a 

column in GN. Hence, activation of NP nodes follows similar activation of GN 

nodes, as discussed in section 2.2.6. Based on the received element, one node 

in each NP is activated. If the element value is 𝑥𝑖, then the node number i in the 

NP is activated.  

Definition 3.3: (Activate node) Given 𝑁𝑃 = {𝑎1, 𝑎2, … . . , 𝑎𝑣,⁡⁡⁡⁡⁡⁡𝑎, 𝑣 ∈ ℕ} and 

a pattern element = 𝑥𝑖, an active node  (AN) is the node that is assigned to 

manage the value 𝑥𝑖 in the NP such that 𝐴𝑁 = 𝑎𝑖. Active nodes in the network 
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are the nodes that continue learning process operations. Figure 3.2 shows an 

example of activating nodes for a binary pattern in 3 NPs. 

 

 

Figure 3.2: Active CGN nodes in response to the pattern (0,1,1). Red 

(shaded) nodes are the active ones. 

 

3.2.2.2 Network track and communications 

Definition 3.4: (Network track) A CGN network track (Trk) is a GN network 

that consists of a set of NPs where each NP communicates with its direct 

neighbour NP in the track. A CGN track can be described as follows.  

𝑇𝑟𝑘 = {𝑁𝑃1, 𝑁𝑃2, … . . , 𝑁𝑃𝑚,⁡⁡⁡⁡⁡⁡⁡𝑚 ∈ ℕ} (3.2) 

Communications between NPs in the same track are called exchange 

communications and can be defined as follows. 

Definition 3.5: (Exchange communications) Given a CGN network track (Trk) 

that consists of m NPs, exchange communications of a NP are two direct 

connections between the activated node in that NP and activated nodes in its 

direct neighbour (adjacent) previous (p) and next (n) NPs in the form ⁡⁡𝐴𝑁𝑖 →
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𝐴𝑁𝑖−1 ∶ 𝑣⁡⁡and 𝐴𝑁𝑖 → 𝐴𝑁𝑖+1 ∶ 𝑣 respectively, where 𝐴𝑁𝑖 is the communicating 

(activate) node in NPi and v is the value assigned to the 𝐴𝑁𝑖. Figure 3.3 depicts 

a CGN track that consists of m NPs and v possible values. It is assumed that the 

first NP is directly adjacent to the last NP.    

 

 

Figure 3.3: CGN track of m neuron positions. 

The CGN network is designed in a cellular structure containing 

multiple tracks. The multiple tracks in the network structure aim to enable 

parallel processing and information exchange of incoming data. This is 

achieved by allowing each track to perform a set of recognition operations on a 

sub-pattern in parallel with other tracks. Such a structure also aims to enable 

the network to deal with multi-dimensional data types as each track will be 

assigned to process one dimension. The aim of the cellular structure is to 

deliver computations of network nodes to one track, called the core track, 

which contains only one NP, called the core position. To achieve this structure, 
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each track is formed using an odd number of NPs. Using odd numbers in 

determining track size ensures the formation of the cellular structure and 

simplifies reporting information between tracks. The deployment of the 

network begins by implementing the core position in the core track followed 

by the next odd numbered set of NPs in the next track and so on until all nodes 

have been deployed in the network. This results in tracks that hold odd 

numbers of NPs in the form (1, 3, 5,…,2n+1). It is important to highlight that 

node deployment in this section is a logical deployment method. In other 

words, deployment can be implemented by assigning each node its track and 

NP numbers. These numbers will be used to define the tasks that each node 

will perform, as will be described in the memory and network operations sub-

sections later in this chapter. Algorithm 3.1 depicts the network deployment 

process. 

 

Algorithm 3.1: CGN Network deployment 

1. NetworkSize = PatternSize 
2. TrackNumber = 1 
3. TrackSize = 1 
4. DeployedNP = 0 
5. While (NetworkSize>0) 
6.  Deploy a NP in Track(TrackNumber) 
7.  NetworkSize-- 
8. DeployedNP++ 
9. if (DeployedNP ≥ TrackSize) 
10.  TrackNumber++ 
11.  TrackSize = TrackSize + 2 
12. End if 
13. End While 
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The aim is to provide the CGN with a cellular network structure that 

allows nodes to transmit their results to a core region, which is then responsible 

for delivering the final result to the S&I. The size of a track is the number of 

NPs it holds and can be calculated as follows.  

𝑆𝑖 = 2𝑖 − 1,⁡⁡⁡⁡𝑖 ∈ ℕ, 𝑖 ≥ 1 (3.3) 

where 𝑆𝑖 is the size of the i’th track in the network. Here it is assumed that the 

first track is the core track and has the value i=1. In order to exchange 

information between tracks, each activated node delivers its computation 

outcomes (i.e. unique index number) to another activated node in a higher level 

track called inner track. Inner track of track i can be formally represented as 

follows. 

𝑇𝑟𝑘𝑖𝑛𝑛𝑒𝑟 = 𝑇𝑟𝑘𝑖−1,⁡⁡⁡⁡𝑖 ∈ ℕ, 𝑖 ≥ 2 (3.4) 

This equation starts from the value i=2 because track 1 has no inner 

tracks. Instead it delivers its reports to the S&I directly. Conversely, an outer 

track can be described as the lower track level of track i and can be represented 

as follows. 

𝑇𝑟𝑘𝑜𝑢𝑡𝑒𝑟 = 𝑇𝑟𝑘𝑖+1,⁡⁡⁡⁡𝑖 ∈ ℕ, 1 ≤ 𝑖 ≤ 𝑁𝑡𝑟𝑘 − 1 (3.5) 

where Ntrk is the number of the network’s tracks. This means that the last track 

in the network has no further outer tracks. Inner and outer tracks are name 

conventions that will be used in this research to describe steps of the report 

communications process. The communications between the CGN network’s 

tracks are called report communications and can be described as follows.  
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Definition 3.6: (Report communications) Given a CGN network that consists 

of a set of tracks, a report communication of an active node AN in an NP is the 

message (connection) between this node and the activate node in its direct 

assigned inner NP that contains the resulting index number (RI) and its value in 

the form 𝐴𝑁𝑖,𝑙 → 𝐴𝑁𝑖−1,𝑙 ∶ {𝑅𝐼, 𝑣}, ∀⁡𝑙 < 𝑆𝑖−1 or ⁡𝑁𝑃𝑖,𝑙 → 𝑁𝑃𝑖−1,𝑙−2 ∶

{𝑅𝐼, 𝑣}, ∀⁡𝑙 ≥ 𝑆𝑖−1. 

where i is the active node’s NP order in the track, j is the track number, RI is 

the computed index number, v is the value of the activated node in 𝑁𝑃𝑖,𝑙, and 

𝑆𝑖−1 is the size of the track number (i-1).  Since each track is lower than its 

outer track by 2 NPs, two NPs track i will have no matching nodes in track i-1 

and the report goes for the 𝑁𝑃𝑖−1,𝑙−2. Figure 3.4 depicts a 9 NPs CGN network, 

showing both exchange and report communications.  

 

Figure 3.4: CGN network to adopt a 9 elements binary pattern. Red 

(shaded) nodes represent activated nodes in response to input pattern, solid 

arrows represent exchange communications, dotted arrows represent report 

communications and dotted circles show the CGN tracks. 
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3.2.3 Memory and bias array 

GN involves initialising memory chunks in each node in order to hold 

the node’s information and store the element combinations of a pattern 

encountered by the node and its adjacent nodes (i.e. previous and next). Such a 

memory chunk is called the bias array of a node and can be described as 

follows. 

 

Definition 3.7: (Bias array) Bias array is a part of a CGN node’s memory that 

stores information of memorised patterns by generating a unique index number 

(I) for each new combination of the adjacent activated nodes’ values and 

reports. The index number is associated with the combination in the 

form⁡𝐼~{𝑣𝑝, 𝑣𝑛, 𝑟𝑜} in the memory, where 𝑣𝑝is the previous NP activated 

node’s value, 𝑣𝑛 is the next NP activated node’s value, and 𝑟𝑜 is the received 

report from an NP in the outer track. From Definition 3.6, the received report is 

the combination of the activated reporting node value and its computed index 

number in the form 𝑟𝑜 = {𝑅𝐼𝑜 , 𝑣𝑜} where 𝑅𝐼𝑜 is the outer reporting node’s 

resulting index value and 𝑣𝑜 is the outer node’s assigned value. Consequently, 

𝐼~{𝑣𝑝, 𝑣𝑛, 𝑅𝐼𝑜 , 𝑣𝑜}. It is assumed that report elements in the bias array elements 

are set to ‘0’ in cases where no report is to be received. Figure 3.5 shows the 

representation of a CGN node memory structure. 
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Value 
(The assigned x value of the node in its NP) 

Position 

Track # 
(The track number 

of the NP) 

 

NP # 
(The order of the NP 

in its track) 

 

Bias Array 

Index Bias{𝑣𝑝, 𝑣𝑛, 𝑅𝐼𝑜 , 𝑣𝑜} 

I1 

I2 

. 

. 

INpat 

{1,0,0,0} 

{1,1,0,0} 

. 

. 

{1,1,2,0} 

  

Figure 3.5: A CGN NP node’s memory structure example that includes 

the network position of the node (track and NP numbers), its associated 

activation value and its bias array. Npat means number of stored patterns in the 

network. 

 

3.2.4 Network operations 

 The CGN network nodes perform two main operations, namely, 

memorisation and recall. In memorisation, network nodes store information 

about incoming patter. In recall, network nodes search the stored information 

to find associated index numbers that describe the incoming pattern. Figure 3.6 

shows a block diagram of the steps each node performs in order to memorise or 

recall a pattern. Here we use resulted index (RI) as the index number that an 

active node takes as the result of its computations and equals to the generated I 

in memorisation or the found I in recall. The steps can be explained as follows. 

i. Receive pattern: Each node receives the pattern element based 

on the command message received from the S&I. Each NP’s 

nodes receive the same pattern element value (x). 
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ii. Activation: Based on the received pattern element value in each 

NP, the associated node to the received value is activated based 

on Definition 3.2 and the rest of the nodes are deactivated. Only 

activated nodes in the network continue the process. 

iii. Exchange information: Each activated node exchanges its 

value with the previous and next activated nodes using 

exchange communications.  

iv. Receive reports: Each node receives the reporting messages 

from outer track activated nodes. This step is excluded for nodes 

that are not assigned as an inner node. 

v. Bias search: after receiving all information (exchanged and 

reported) from neighbouring nodes, a node searches its bias 

array to find a match. If a match is found then the resulting 

index (RI) is assigned the associated index number (I) of that 

combination. Otherwise, the RI is assigned a new unique index 

number in memorisation or the value (0) in recall. 

vi. Store information: If the operation is to memorise the pattern 

and a new index number is assigned to the RI, the nodes 

associate the combination of neighbouring information with the 

RI and store it in the bias array. 

vii. Report RI: Each node reports the computed RI to its assigned 

inner node. Two nodes in each track are excluded from this step. 
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If the activated node is in the core track, it reports the RI directly 

to the S&I. 

3.2.5 S&I operations 

The S&I initiates the CGN process by sending commands to the CGN 

network and receiving the RI from the core node. After the S&I receives the 

CGN network’s information, it begins the process of memorising or recalling a 

pattern. In memorisation, the S&I stores the concluded index number in its 

memory. This results in a set of patterns stored in a vector that can be described 

as follows. 

 

Definition 3.7. (Pattern vector) Given a set of patterns {𝑃1, 𝑃2, … , 𝑃𝑛}, the S&I 

memorises these patterns by obtaining each pattern’s unique index number 

from the core NP in the CGN network, assigning the unique index number (𝐼𝑖) 

to each pattern and storing the associations as a pattern vector in the S&I in the 

following form. 

𝑃⃗ = {𝐼1, 𝐼2, … . . , 𝐼𝑖 ,⁡⁡⁡⁡⁡⁡𝐼𝑖 ∈ ℕ} (3.6) 

For example, the index number can be used to represent a class in 

classification problems. Storing index numbers in the S&I makes it possible to 

respond to query requests that may require information about stored patterns in 

the network. In recall, the declaration that a pattern has been detected depends 

on the CGN network’s outcome. If a valid index number is returned by the 

network, the S&I declares that index number as the recalled pattern. Otherwise, 
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the S&I starts a voting process in order to obtain a valid outcome from the 

network. The following steps describe the S&I operations as shown in Figure 

3.7. 

i. Send command: The S&I initiates the CGN learning process by 

sending a command to the CGN network’s nodes. The 

command includes the operation type (memorise or recall) and 

the pattern obtaining method (e.g. obtain sensory information). 

ii. Receive RI: The S&I receives the RI from the active node in the 

core track NP. 

iii. Store pattern: If the operation is to memorise the pattern, the 

S&I stores the RI as the ID of the pattern and associates it with 

its description in its memory.  

iv. Declare pattern: If the operation is to recall a pattern and a 

valid RI is received (i.e. RI≠0), the S&I searches its pattern 

vector and declares the RI and its associated pattern description 

as the recalled pattern. Alternatively, the S&I initiates a voting 

process by sending queries to other nodes in the network to 

conclude a valid RI. 

 

The voting process is initiated when the core node fails to deliver a 

valid index number to the S&I. The following steps describe the voting 

process, as shown in Figure 3.8.  
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i. Determine outer track: Since the current contacting track 

failed to deliver a valid RI, S&I determines the contacting track 

as the outer track according to Equation 3.5. For example, if the 

core track Trk=1 fails to deliver a valid RI, the contacting track 

becomes Trk=2. 

ii. Send query command: The S&I sends query commands to all 

active nodes in the current contacting track (outer track) 

requesting their resulting indices (RIs). Each node replies by 

sending its RI.  

iii. Vote RI: After receiving all RIs from active nodes in the current 

track, the S&I finds the RI that has the been received from the 

majority of nodes in the form 𝑅𝐼 =

𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦⁡(𝑅𝐼1, 𝑅𝐼2, … . , 𝑅𝐼𝑚),𝑚 ∈ ℕ. For example, if the track 

size is 3 and two active nodes reply with RI=4 and one node 

with RI=1, S&I determines RI=4. If one or more active nodes 

reply by invalid RI (i.e. RI=0) or in case of a tie, the S&I repeats 

the voting process with the outer track. This continues until 

contacting a track that results in a valid RI or until the vote 

reaches the outermost track. 

iv. Declare pattern: The S&I searches its pattern vector and 

declares the RI and its associated pattern description as the 

recalled pattern. 
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Figure 3.6: CGN node learning operations steps block diagram. 
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Figure 3.7: S&I learning operation steps block diagram. 

3.3 Obtaining Pattern in CGN 

To perform event detection and pattern recognition operations, CGN 

network pattern obtaining operations are discussed in this section. The CGN 

scheme has two types of operations, namely, memorisation and recall. CGN 

adopts the supervised pattern recognition manner. This means that a CGN 

network will be presented with a set of patterns to store and will then recall 

other patterns in accordance with the stored ones. These patterns can be 

imposed by the S&I or obtained by sensor readings. Performance of these 

operations is initiated by the S&I sending command messages to GN arrays in 
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each track. The command message from the S&I takes the form “C, P”, which 

means command (“C”= ‘command’) and pattern (“P”= ‘pattern’). S&I divides 

an incoming pattern into sub-patterns where each sub-pattern is managed by 

one track (GN array). 

 

 

Figure 3.8: Block diagram of S&I voting steps. 
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The memorisation operation should always be initiated by the S&I. The 

S&I sends a command message to each node in the network of two parts “M, 

P”, which means memorise (“M”=‘memorise’) pattern element (“P”=pattern 

element). The pattern element part in the message can be provided by the S&I. 

Alternatively, the S&I will set the second part to “S”, meaning that the node 

should take its sensory information as the incoming pattern element (“S”= 

sense). Figure 3.9 shows an example of sending the binary pattern (1, 0, 1, 1, 0, 

0, 1, 0, 1) to be stored in a 9 neuron positions size CGN network. The S&I will 

break the pattern into three sub-patterns (1), (0, 1, 1), and (0, 0, 1, 0, 1) and 

send these sub-patterns to tracks 1, 2, and 3 respectively. The S&I will send the 

commands “M, 1” or “M, 0” to each neuron position in the track based on the 

value assigned to the position. Alternatively, if the existing pattern in the 

sensed environment (for example, temperature readings) is to be stored, the 

S&I will send the command “M, S” to all network nodes. 

 

 Figure 3.9: Pattern divided into sub-patterns by S&I. S&I in the base 

station (BS) divides a 9 size pattern into 3 sub-patterns and sends each sub-

pattern to track for memorisation. 
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The recall operation, on the other hand, can be initiated automatically in 

a periodic manner or by the S&I. In a periodic recall operation, sensor nodes 

are given a time cycle where every sensor should take its readings as the 

incoming pattern. This suits automated and monitoring applications that require 

continuous recognition over the field of interest. S&I initiated recall operations 

are obtained by sending a command message of the form “R, P” to all network 

nodes, meaning recall (“R”= recall) pattern element. Similar to memorised 

commands, the pattern element part of the message can be provided by the S&I 

or requested to be sensed by sensor nodes. S&I initiated recall commands suit 

applications that require recognition at a certain point of time such as query-

driven applications. Table 3.1 summarises the possible command messages that 

can be sent from the S&I to network nodes.  

 

Table 3.1: Command messages from BS to network nodes. 

Command Description 

(M,S) Memorise (store) the sensory information 

(M,X) 

Memorise the value “X”, where X is a value of a given pattern 

element by the S&I 

(R,S) Recall the sensory information 

(R,X) 

Recall the value “X”, where X is a value of a given pattern element 

by the S&I 
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3.4 Complexity of the CGN Scheme 

Analysis of the CGN scheme is conducted in the following section. The 

aim of a CGN scheme is to provide learning capabilities in resource-

constrained WSNs while maintaining the scalability and speed of a GN 

scheme. Hence, the CGN network size, number of communications, and time 

analysis is presented. Table 3.2 summarises the terms used in CGN complexity 

estimation.   

3.4.1 CGN network size 

The CGN network size can be described in terms of the problem’s 

pattern size as follows. 

 

Proposition 3.1: Given a pattern 𝑃 = {𝜀1, 𝜀2, … . . , 𝜀S,⁡⁡⁡⁡⁡⁡𝜀 ∈ V, 𝑆 ∈ ℕ} and 

number of possible values v, the number of required NPs to construct a CGN 

network that can adopt P is 𝑁𝑁𝑃 = 𝑆 and the number of nodes required is 

𝑁𝑛𝑜𝑑𝑒𝑠 = 𝑣. 𝑆. 

 

Proof: According to the deployment process of the CGN network in algorithm 

3.1 and the definition of a CGN track (Definition 3.4), each pattern element 𝜀𝑖 

is represented using one NP in the network. Consequently, the number of NPs 

is equal to the number of a problem’s pattern size S. According to Definition 
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3.4, each NP contains v nodes where each node is responsible for managing 

one value. Hence, the total number of nodes is 𝑣. 𝑆. 

 

Table 3.2: Description of the terms used for complexity estimation. 

Symbol Name Description 

S Network size 

(also pattern size) 

Network size in terms of NP  is equal to the pattern 

size 

Ntrk Number of tracks The number of tracks in the network 

Si Track i  size Number of nodes in track number i 

Texch Exchange time The time required by nodes to conduct exchange 

communications 

Treport Report time The time required by the network to perform report 

communications 

Tsend Send time The time required to send a message from one node 

to another 

Tsense Sense time The time required by a node to obtain sensory 

information 

Ttotal Total network 

time 

Time required by the CGN network to perform 

learning operations 

Nexch Number of 

exchange 

communications 

Total number of exchange communications required 

by CGN network to perform learning operations 

Ncomm Number of 

communications 

Total number of communications required by CGN 

to perform learning operations 

Topt Pattern obtaining 

time 

Total time required for network nodes to obtain 

(sense or receive) an incoming pattern 

Tactivate Node activation 

time 

Time required by a single node to activate based on 

obtained pattern element 

Tbias Bias array search 

time 

Time required by a node to search its bias array to 

find a matching index number 
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It can be seen from Proposition 3.1 that the CGN network maintains the 

same size as a GN network. The main point to consider in CGN network size is 

the multiplication by v. However, according to Definition 3.3, only one node in 

each NP is activated and participates in the learning process. Consequently, the 

number of activated nodes in the network during the learning process is equal 

to the number of NPs which is equal to S. 

CGN network tracks are major components that can be used to estimate 

the complexity of a CGN scheme. The number of network tracks can be 

estimated as follows. 

 

Proposition 3.2: Given a pattern 𝑃 = {𝜀1, 𝜀2, … . . , 𝜀S,⁡⁡⁡⁡⁡⁡𝜀𝑖 ∈ V, 𝑆 ∈ ℕ}, the 

number of required tracks (𝑁𝑡𝑟𝑘) to construct a CGN network that adopts P is 

calculated as follows. 

𝑁𝑡𝑟𝑘 = √𝑆 (3.7) 

Proof: From Equation 3.3, a track size in terms of NPs can be estimated as 

𝑆𝑖 = 2𝑖 − 1,⁡where i is the track number. Consequently, the total number of 

NPs (S) can be calculated as follows. 

𝑆 = ∑ 2𝑖 − 1

𝑁𝑡𝑟𝑘

𝑖=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

𝑆 = ∑ 2(𝑖 −
1

2
)

𝑁𝑡𝑟𝑘

𝑖=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

𝑆 = 2. (∑ 𝑖 −
1

2

𝑁𝑡𝑟𝑘

𝑖=1

)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 
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𝑆 = 2. (∑ 𝑖

𝑁𝑡𝑟𝑘

𝑖=1

⁡−⁡ ∑
1

2

𝑁𝑡𝑟𝑘

𝑖=1

)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

𝑆 = 2. (∑ 𝑖

𝑁𝑡𝑟𝑘

𝑖=1

⁡− ⁡
1

2
. ∑ 1

𝑁𝑡𝑟𝑘

𝑖=1

)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

𝑆 = 2. (
𝑁𝑡𝑟𝑘(𝑁𝑡𝑟𝑘 + 1)

2
−⁡

𝑁𝑡𝑟𝑘

2
).⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

𝑆 = 2.
𝑁𝑡𝑟𝑘

2 + 𝑁𝑡𝑟𝑘 − 𝑁𝑡𝑟𝑘

2
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

𝑆 = 𝑁𝑡𝑟𝑘
2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

𝑁𝑡𝑟𝑘 = √𝑆⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

3.4.2 CGN communications 

As described in Chapter 2, communication operations are one of the 

most important factors for energy consumption in WSNs. Consequently, the 

number of communications involved in performing pattern recognition using 

CGN can be used as the second aspect of scalability determination. The two 

CGN operation types (memorise or recall) need to be considered in estimating 

the number of communications in a CGN network. Both memorisation and 

recall operations involve exchange communications where each node sends its 

information to its adjacent nodes in the same track. That excludes the active 

node in the core position as it has no adjacent nodes in the structure with which 

to exchange information. Since the network size is equal to the pattern size (S), 

the number of exchange communications can be calculated as follows.  
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𝑁𝑒𝑥𝑐ℎ = 2𝑆 − 2 (3.8) 

Each active node in the network is required to give one report to its 

assigned inner node. Hence, the number of report communications can be 

estimated as 𝑁𝑟𝑒𝑝𝑜𝑟𝑡 = 𝑆. This includes the report from the active core node to 

the S&I. The S&I sends a command (C, P) to each node in the network to 

initiate the memorisation and recall operations. Hence, the number of 

command communications will be equal to the total number of nodes 𝑁𝑐𝑚𝑑 =

𝑣. 𝑆. The total number of communications involved in learning operations in a 

CGN network can be computed as the sum of the command, exchange and 

report communications and can be calculated according to the following 

equation. 

𝑁𝑐𝑜𝑚𝑚 = (3 + 𝑣)𝑆 − 2 (3.9) 

However, in the case of the core node failing to give a valid index 

number (i.e. replies by index ‘0’) in a recall operation, the S&I contacts its 

outer tracks and starts the voting algorithm. The worst scenario in this case is if 

the S&I reaches the outermost track to obtain index voting information. In this 

scenario the S&I will contact all active nodes in the network (S), excluding the 

core node as it has already given its information using its report message. 

Hence, the S&I sends a query message and each active node replies with a 

message that contains the index number. This will require 2(𝑆 − 1) 

communications. Consequently, the total number of communications in such a 

case can be estimated according to the following equation. 
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𝑁𝑐𝑜𝑚𝑚 = (3 + 𝑣)𝑆 − 2 + 2(𝑆 − 1) (3.10) 

𝑁𝑐𝑜𝑚𝑚 = (5 + 𝑣)𝑆 − 4 (3.11) 

3.4.3 CGN network time 

The computational and communication time overheads of a pattern of 

size S can be estimated by the duration of each CGN step. The first step is the 

pattern obtaining step. This step involves broadcasting the command message 

by the S&I, obtaining a pattern and node activation. In this step it is assumed 

that the command requests nodes to obtain a pattern through sensing the 

environment. It is also assumed that the broadcast command message is 

received in parallel by all nodes in the network. The estimated time required 

for this step is as follows. 

𝑇𝑜𝑝𝑡 = 𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑠𝑒𝑛𝑠𝑒 +⁡𝑇𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 (3.12) 

The following step exchanges sensory information by nodes. Taking 

parallelism into account, the time estimate can be described as follows. 

𝑇𝑒𝑥𝑐ℎ = 2. 𝑇𝑠𝑒𝑛𝑑 (3.13) 

This step is followed by report communications. This step involves 

searching the bias array and computing the index number. Taking parallelism 

into account, all active nodes in each track will perform bias search 

simultaneously. Excluding active nodes in the outermost track, each active 

node waits for reports from its outer track. Consequently, the reporting time 

can be estimated as follows. 
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𝑇𝑟𝑒𝑝𝑜𝑟𝑡 = √𝑆. (𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑏𝑖𝑎𝑠) − 𝑇𝑠𝑒𝑛𝑑 (3.14) 

This includes the reporting message from the core node to the S&I. 

Consequently, the total duration of a learning cycle for a CGN network can be 

estimated as follows. 

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑜𝑝𝑡 + 𝑇𝑒𝑥𝑐ℎ + 𝑇𝑟𝑒𝑝𝑜𝑟𝑡 (3.15) 

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑠𝑒𝑛𝑠𝑒 +⁡𝑇𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 + 2𝑇𝑠𝑒𝑛𝑑

+ √𝑆. (𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑏𝑖𝑎𝑠) − 𝑇𝑠𝑒𝑛𝑑 

(3.16) 

𝑇𝑡𝑜𝑡𝑎𝑙 = √𝑆. (𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑏𝑖𝑎𝑠) + 𝑇𝑠𝑒𝑛𝑠𝑒 +⁡𝑇𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 + 2𝑇𝑠𝑒𝑛𝑑 (3.17) 

This time estimate works for both memorisation and recall operations in 

the network. However, for the worst case scenario in recall where the S&I 

contacts the outermost track, the voting process time should be added. In this 

case, the S&I will broadcast to each track and receive a response. The 

broadcasted message will be received in parallel by active nodes and the reply 

messages will also be sent simultaneously. Consequently, the total recall time 

in this case can be estimated as follows. 

𝑇𝑡𝑜𝑡𝑎𝑙 = √𝑆. (𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑏𝑖𝑎𝑠) + 𝑇𝑠𝑒𝑛𝑠𝑒 +⁡𝑇𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 + 2𝑇𝑠𝑒𝑛𝑑

+ ⁡2𝑇𝑠𝑒𝑛𝑑 ⁡(√𝑆 − 1) 

(3.18) 

𝑇𝑡𝑜𝑡𝑎𝑙 = √𝑆(3𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑏𝑖𝑎𝑠) + 𝑇𝑠𝑒𝑛𝑠𝑒 +⁡𝑇𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 (3.19) 

This time estimate shows that the learning cycle time is proportional to 

the square root of the problem size S. It can also be seen that the learning time 

cycle can be predicted a priori. From the analysis of a CGN scheme it can be 

concluded that the CGN network is capable of maintaining the scalability of 
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the GN network structure by involving S nodes in the learning process. This is 

due to the use of an activation mechanism that ensures that only one node in 

each NP is activated, according to Definition 3.2 and the analysis of 

Proposition 3.1. Additionally, the analysis shows that the scheme is capable of 

performing learning operations in predictable time while restricting the 

learning cycle to be proportional to the square root of S. Such features make 

the scheme a good candidate for implementation for large-scale real time 

problems. 

3.5 Evaluating CGN Performance 

This section presents a comparison and the tests conducted on the CGN 

scheme. CGN is compared with a Hopfield network in terms of numbers of 

communications and computation time. Two simulation tests were conducted 

on CGN. The first test aimed to test the tolerance levels of CGN with regard to 

noisy patterns. The test used distorted bitmap images of letters as patterns. The 

second test was conducted on handwritten digits to compare CGN with existing 

pattern recognition schemes such as Naïve Bayesian and back propagation 

networks. In these tests, it is assumed that the CGN network is deployed in a 

grid where each pixel is managed by one NP. 

3.5.1 CGN and Hopfield  

The main goal for a CGN scheme is to provide light-weight and fast 

pattern recognition capabilities for WSNs. Two metrics are considered to be 
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the main factors that affect the suitability of a scheme in providing such 

capabilities: number of communications and learning time. In WSNs, 

communications are the highest source of energy consumption and time 

latency. Consequently, the number of communications determines the level of 

resource consumption required where implemented in WSNs.  

  Hopfield networks require each node in the network to communicate 

with each other node in order to compute weights and conclude results. Since 

each node in the network has no connection with itself, each node requires a 

number of communications equal to (S-1). Thus, the total number of 

communications in a Hopfield network can be calculated as S(S-1) or S2-S. 

This can be described as a quadratic relationship between the pattern size and 

the number of communications. In contrast, referring to Equations 3.9 and 

3.11, the total number of communications of a CGN network can be described 

as a linear function in relation to the pattern size.  Figure 3.10 shows the 

increase in the number of communications based on the network size for CGN 

and Hopfield networks. 

It can be seen from the size relations in Figure 3.10 that the number of 

communications in Hopfield networks increases exponentially compared to a 

CGN. This indicates the amount of resource consumption reduction that a CGN 

network can offer compared to a Hopfield network. The time estimation can be 

described using Big-O notation. In this regard, pattern recognition operations 

can be used in determining the complexity of the two schemes. A Hopfield 

scheme goes through three processes in order to perform pattern recognition 
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operations: weight accumulation, weight determination and network 

propagation. In comparison, CGN involves a single learning cycle. Analysing a 

Hopfield network, the process of weight accumulation can be denoted as O(S), 

the weight determination process can be denoted as O(S2) and network 

propagation as O(S3) using Big-O notation. In contrast, CGN pattern 

recognition time is proportional to the square root of S and can be denoted as 

O(√𝑆). Figure 3.11 shows recognition time derived from Big-O notation 

analysis for both Hopfield networks and CGN, based on the assumption that 

each computation operation time is 1 microsecond.  

 

 

Figure 3.10: Number of communications in Hopfield and CGN 

networks based on pattern size. 

 

It can be seen from Figure 3.11 and the Big-O notations that the pattern 

recognition computational time complexity of the CGN scheme is low 
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compared to the Hopfield scheme. That means a CGN network concludes its 

computations in much less time than a Hopfield network.  

 

 

Figure 3.11: Time derived from Big-O analysis for Hopfield and CGN. 
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this test that each pixel is read by one NP that has two nodes, one is assigned to 

be activated with 0 value and the other with the value of 1.  

In this test, letters “A”, ”I”, “J”, “S”, “X”, and “Z” were represented as 

bitmap images of size 7x5 (35 pixels) to be stored in alphabetical order in a 

CGN network. These letters were chosen as they carry a level of distinction 

when represented in binary bitmap images. By applying Equation 3.2 and 3.7, 

6 tracks and 36 neuron positions with two nodes for each were needed to 

construct a CGN network that could store the bitmap images. Since the patterns 

are binary bitmap images, each neuron position contained two nodes associated 

with 0 and 1 values. The images were presented to the CGN network for 

memorisation only once for each letter. Each image was then randomly 

distorted to varying degrees ranging from 1bit (2.78%) to 15bits (41.67%). 

Distortion is calculated as the number of changed bits (from 0 to 1 or vice 

versa) to the total number of bits (35 in this test). The distorted images were 

presented to the CGN network for recall. Figure 3.12 shows the original bitmap 

images and samples of distorted images and the recall results for the distorted 

samples.  

It can be noted from Figure 3.12 that letters distorted by levels 25% and 

above are not visibly recognisable. It also can be noted that the CGN is able to 

detect patterns of characters “A”, ”I”, “J”, and “S” with a high level of 

distortion — 13bit distortion level (36.11%). The accuracy of the CGN 

network’s recall is shown in Figure 3.13. The recall accuracy is calculated as 

the number of correctly recognised letters to the total distorted (altered) letters 
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of that letter presented to the network. For example, 100% recall accuracy for a 

bitmap pattern (A) means that all altered versions of letter A were recognised 

as letter A. 

From Figure 3.13 it can be noted that the order of storing patterns has 

an effect on accuracy. It can be seen here that the letters stored first have higher 

accuracy results, especially after presenting a 16.7% level of distortion where 

four patterns scored recall accuracy below 80%. The reason is that when the 

CGN network cannot come up with a valid index number it goes through a 

voting process. In this case, the CGN network contacted the outermost track. 

Since the patterns are small binary images, the outermost track holds limited 

information about the pattern, which creates a high level of similarity between 

recalled and stored patterns. This test confirmed that the CGN scheme is 

capable of detecting distorted patterns. The results also show the ability of the 

CGN network to detect patterns of characters “A”, ”I”, “J”, and “S” with a high 

level of distortion — a 13bit distortion level (36.11%) — which means that the 

network is tolerant to a high level of distortion. 

3.5.3 Second test 

This test aimed to present the ability of a CGN scheme to deal with 

complex and real life problems. It also aimed to compare the CGN’s accuracy 

with existing pattern recognition schemes. For this purpose, we chose a 

handwritten character recognition problem as such problems require 

memorisation of a high amount of training information. This test shows that a 
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CGN scheme is capable of performing a recognition operation using a minimal 

amount of training information (i.e. one sample for each class) while still 

maintaining a high level of accuracy compared with other schemes. In 

accomplishing this aim, a CGN network is capable of addressing the WSN 

randomness problem discussed in Chapter 2. The test used the dataset provided 

by [111] in [112]. The dataset contains 1593 handwritten patterns for numbers 

from 0 to 9. Each number was represented as a 16 × 16 binary pattern. Each 

pattern was produced by scanning and pre-processing numbers handwritten by 

80 different people. The dataset has 10 classes where each class represents one 

number.   

To construct a CGN network that is capable of adopting such patterns, 

256 neuron positions distributed in 16 tracks were generated. Each neuron 

position contained two nodes (0 and 1). The selected classes for comparison 

were classes representing numbers from 0 to 5 as these numbers were 

distinguished in the handwritten representation. One pattern was selected 

randomly from each class for memorisation. This resulted in 6 memorised 

patterns to represent numbers from 0 to 5. The rest of the patterns in each class 

were used for recognition. This resulted in 955 recognition patterns. Figure 

3.14 shows the 6 memorisation patterns and a sample of 6 recognition patterns. 

The CGN is compared with Naïve Bayes and back propagation neural 

networks. Using a Weka tool [113, 114], a Naïve Bayes network was generated 

to perform storing and recognition operations. Figure 3.15 shows the average 

recognition accuracy of CGN compared to the Naïve Bayes and back 
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propagation NN schemes. The accuracy percentage is calculated as the number 

of correctly recognised patterns to the total number of recognition patterns. To 

compare with back propagation NN (BP), three BP implementations were used, 

generating a BP with a single hidden layer, generating a BP with two hidden 

layers, and generating a BP with three hidden layers. The number of learning 

iterations of each structure was set to ranges between 1 (single cycle) and 500 

iterations. The best result obtained was with the implementation of BP with 

three hidden layers and 200 iterations. The results shown in Figure 3.15 for the 

BP NN are based on that structure. 
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 Figure 3.12: Original bitmap image patterns for A, I, J, S, X and Z with 

sample of recalled distorted images ranging from 2.7% to 41.67%. Black 

highlight indicates to one value. Zero values are not shown for clarity. 
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Figure 3.13: Accuracy recall percentage for the CGN using 100 

randomly distorted patterns per memorised pattern. 
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Figure 3.14: Memorisation and sample recognition patterns 

representing written numbers from 0 to 5. 
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CGN network requires a number of nodes that are equal to the pattern size to 

perform recognition operations. Compared to the back propagation setting for 

this example, CGN reduced the number of participating nodes, 

communications and iterations needed to perform pattern recognition while 

maintaining higher accuracy levels as back propagation networks involve more 

neurons to build the multi-layer structure, requiring tightly coupled 

connectivity between layers, and requiring 200 iterations to perform 

recognition operations. This test demonstrates the capability of a CGN network 

to perform complex and real life recognition problems by using a minimal 

amount of training information. This addresses the problem of randomness 

associated with WSNs. 

 

 

Figure 3.15: Average accuracy levels obtained by CGN, Naïve Bayes 

and back propagation networks. 
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fully distributed and based on the relationships between adjacent nodes. Such 

capability limits the number of communications and computations as well as 

reducing the consumption of resources, which makes CGN a light-weight 

approach that is suitable for implementation in resource-constrained networks 

such as WSNs. Additionally, it has been shown that the CGN network structure 

is capable of maintaining a high level of scalability by involving each node in 

the network in receiving one element of an incoming pattern. This allows a 

CGN scheme to provide a scalable solution for large scale WSNs. Moreover, 

analysis of the scheme shows that the scheme is capable of performing learning 

operations in a single learning cycle that can be predicted. The analysis also 

shows that the learning cycle of a CGN grows in proportion to the square root 

of the problem size which makes the scheme favourable compared to other 

schemes that can involve iterative learning cycles with exponential growth in 

terms of time. Such features make the scheme a good candidate for use in real 

time applications where time estimates are required. 

The two experimental tests show that CGN provides high recognition 

accuracy levels for noisy patterns compared to iconic pattern recognition 

schemes while involving a minimal amount of training information. From the 

analysis and tests conducted on the scheme, it can be concluded that CGN is a 

good candidate for implementation in large scale and limited resource WSNs 

for real time applications. Additionally, the use of adjacency information 

relationships in pattern recognition presented in this chapter will lead to 
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solving the problem of detecting transformed patterns, as will be discussed in 

the next chapter. 
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Chapter 4 

4 Cellular Weighted Graph Neuron 

(CwGN) for Transformation Invariant 

Recognition in WSNs  
 

4.1 Introduction 

In the previous chapter, the CGN was presented as a light-weight and 

distributed pattern recognition scheme that involves a limited number of 

communications and computations. Such features suit resource-constrained 

systems and networks such as WSNs. It has been shown experimentally that 

CGN is capable of dealing with noisy patterns and some complex problems 

such as handwritten recognition. However, a CGN scheme is location sensitive 

due to its dependency on local nodes’ information storage. In some real life 

applications, patterns and network nodes are subject to spatial and topological 

changes [115]. This means that a pattern can appear with a level of variations 

or transformations such as location change. For example, a malicious intruder 

pattern of a WSN can change its location in the network [116]. Another 

example can be seen in environmental surveillance systems where events such 

as forest fires and hurricanes may appear in different locations and at different 

magnitudes [117]. Such dynamics in pattern appearance can impact the 
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accuracy of a recognition system. Dealing with such dynamics could require a 

high amount of information that require patterns and their possible dynamics to 

be stored in a recognition system in order to efficiently recognise the presence 

of these patterns. However, such an approach might not be feasible, for two 

main reasons. First, it would require a high amount of resources to store and 

search patterns. Second, in some applications the amount of available 

information about patterns is limited, as discussed in Chapter 2. Consequently, 

a more efficient approach is required. 

In this chapter, a novel approach called Cellular weighted Graph 

Neuron (CwGN) is proposed to deal with the transformations and dynamics of 

pattern recognition problems. As with CGN, the scheme adopts the GN 

approach to maintain minimal communicational and computational 

requirements to thus provide a light-weight pattern recognition scheme that 

suits resource-constrained systems and networks such as WSNs. Instead of 

storing pattern information locally on nodes, CwGN implements a weighting 

mechanism that searches the edges and boundaries of patterns. The main 

hypothesis in this chapter is that by describing patterns using their main edges 

and boundaries, it is possible to achieve an efficient recognition scheme that 

can detect transformations that may occur in these patterns. The scheme 

maintains limited communications and computations by involving local 

information exchange and reporting mechanisms that distribute resource 

consumption loads amongst the network’s nodes. Additionally, this chapter 

will discuss the online recognition capability that can be achieved by using 
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CwGN. In achieving efficient recognition and fast reporting and by limiting 

resource consumption, a CwGN scheme shown to be the best option for real 

life applications that deal with complex problems in resource-constrained 

networks such as WSNs. This chapter also presents descriptions of the required 

protocols needed to make the proposed scheme applicable for implementation 

in network environments.  

This chapter starts by presenting existing transformation invariant 

pattern recognition techniques, going on to discusses the limitations of these 

techniques. Section 4.2 presents an overview of existing techniques proposed 

for pattern transformation recognition. Section 4.3 presents the CwGN scheme, 

including memorisation and recall operations, network structure and the 

weighting technique. In view of the need for the scheme to be functional in 

networking environments, section 4.4 presents the communicational structure 

and requirements of the CwGN scheme and its network communication 

protocol. Section 4.5 analyses the complexity and the performance of CwGN 

with respect to learning cycle duration. Section 4.6 presents a proposed zoning 

model to support the online recognition capabilities of the scheme. In section 

4.7, required message sequence models for the proposed scheme are presented. 

Section 4.8 discusses the effects of different types of pattern transformations on 

the recognition capacity of the proposed scheme. Section 4.9 summarises the 

chapter.  
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4.2 Transformation Invariant Recognition 

Techniques 

This section reviews the most relevant research in the area of pattern 

transformation-invariant recognition. Convolutional neural networks developed 

by Le Cun et al. [118] use multi-layered (deep learning) neural networks to 

encode high-dimensional patterns into a one-dimensional vector. That scheme 

allows for feature selection by adopting local receptive fields, local weight 

sharing, and downsampling architectures [119, 120]. The local receptive fields 

allow for the detection of the visual features of a pattern, the downsampling 

architecture reduces the dimensionality of the pattern, and the concept of 

weight sharing allows for a level of shift and scale invariant detection [120]. 

Convolutional neural networks have mostly been used for visual pattern 

recognition applications such as facial and handwritten recognition 

applications. Shock graphs [121], in contrast, attempt to recognise visual 

objects by determining the object’s boundaries. This method builds connected 

curves and points that describe certain patterns in a tree-like graph. Sebastian et 

al. [122] show that using shock patterns allows for 2-D object transformation-

invariant recognition for up to a certain level of transformation. They examined 

a set of pattern transformations such as articulation and deformation, 

illumination variations, and variations in the scale of objects. Alternatively, 

Map Seeking Circuits (MSC) [123] use the mathematical properties of pattern 

superpositions to perform template matching, which seeks a set of 
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transformations of an input visual pattern for a set of stored templates. The aim 

of the MSC approach is to reduce the growth in the computational complexity 

of template matching by parallelising computations in the hardware. MSCs 

provide solutions to visual applications such as stereo vision, shape 

recognition, and other transformation-recognition problems that can be solved 

using iterative processing and the decomposition of pattern transformations 

[124].   

Despite the transformation detection capabilities discussed above, these 

schemes involve computationally intensive (e.g. iterative) operations that are 

poorly suited to real time sensory applications due to prolonged learning 

cycles, the need for large training datasets that are often not available, and 

reliance on specialised hardware. Based on a lattice algebra approach, 

morphological associative memories (MAM) [120, 125] are able to detect 

pattern transformation in a single step convergence. MAM methods use a 

morphological neural network structure that replaces multiplication and 

addition operations by addition and convergence maximisation. MAMs have 

been shown to be scalable in terms of pattern storage, and capable of detecting 

noisy patterns. However, the length of the MAM learning cycle cannot be fully 

estimated a priori, as it depends on the size and number of stored patterns [95]. 

Iftekharuddin [126] presents an online transformation scheme for automatic 

target recognition. His scheme addresses the problem of recognising rotation, 

translation, and scaling pattern translations in images by adopting adaptive 

circuit design, neural networks and reinforcement learning. Despite the level of 
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transformation recognition this scheme provides, it depends on conventional 

neural network structures such as feed-forward NNs. In this network structure, 

tightly coupled connectivity is required between neuron nodes in each layer. 

Sensory information systems such as WSNs have limited communicational 

capabilities, making the tightly coupled connectivity structure challenging to 

implement [28].  

In general, the existing techniques can provide transformation invariant 

detection capabilities for pattern recognition problems. However, these 

techniques have significant limitations, especially if implemented in resource-

constrained networks.  Iterative operations and tightly coupled connectivity 

structures are the main problems faced in these schemes as such requirements 

involve huge resource consumption, especially when implemented on large 

scale networks. Some of these schemes require special centralised hardware 

settings to be functional. Such a requirement is not often feasible in resource-

constrained systems and networks. Additionally, the reviewed schemes require 

a large database to store information about patterns in order to provide 

transformation invariant recognition capabilities. In environments and 

applications such as WSN applications, the amount of information available 

about incoming patterns is often limited. Another major issue related to these 

schemes is the uncertainty in the learning cycle convergence duration. This is 

due to the iterative operations and the dependency of learning cycle duration on 

the amount of stored information. Such constraints affect the suitability of 

these schemes for implementation in real time and mission critical applications 
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as no guarantees for time limits are available. Consequently, this chapter will 

present a light-weight pattern recognition scheme that aims to address these 

limitations and provide transformation invariant recognition capabilities. The 

proposed scheme minimises computations and communications by adopting 

local communicational and computational mechanisms in a single learning 

cycle. This will lead to minimised resource consumption and increase the 

scheme’s scalability by avoiding iterative operations and limiting 

communications to adjacency nodes. This also makes it possible to estimate the 

learning cycle duration. In addition, the proposed scheme attempts to use 

minimal information to perform transformation recognition. With these 

features, the proposed scheme will be a light-weight, transformation invariant, 

and scalable scheme that is suitable for real time and mission critical 

applications for resource-constrained systems and networks such as WSNs.     

4.3 Overview of Cellular Weighted Graph 

Neuron (CwGN) 

This section describes the structure of CwGN and the outcomes that can 

be expected from such architecture. Part of this section has been published in 

[127]. The main goal of developing the CwGN scheme is to provide efficient 

pattern recognition for WSNs while minimising resource consumption and 

network size. Olshausen and Field [128] state that coding techniques can 

reduce the use of resources and minimise the complexity of incoming patterns 
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so that they can be easily processed. The scheme presented in this section is 

based on such considerations. These authors [128] define coding technique as 

reproducing an incoming pattern and using a small number of active nodes for 

processing at any given time. To achieve the intended level of detection and 

minimise resource consumption, CwGN implements local adjacency 

computations for coding purposes in a fully distributed and parallel manner 

that is capable of detecting pattern transformations such as translation, dilation 

and rotation with minimal computational and communication requirements. 

CwGN uses weights rather than storing full information about an incoming 

pattern. Using weights allows CwGN to be location insensitive as weights are 

calculated locally and then accumulated throughout the whole network. Each 

node’s weight describes its relationship to its neighbouring nodes. This 

translates an incoming pattern into a set of weights that are easier to process 

and can be used to distinguish each pattern from the rest.  

Data instances are translated into weights that can be used to determine 

the boundaries of an incoming pattern. Each node’s weight is a result of the 

relationship between its value and its neighbours’ value in terms of change rate 

and edge type, which is calculated locally and only once. The change rate can 

be defined as the amount of average variance between a node’s value and its 

adjacent nodes’ values. Edge type is the order of the node’s value compared to 

its neighbouring nodes that can be used to describe the pattern’s boundaries. 

Peaks and troughs of a plotted pattern can be examples of two different edge 

types. The hypothesis behind such an approach is that patterns can be 
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efficiently recognised based on their boundary information. Since these 

boundaries are detected by local nodes’ computations, the number of 

communications and amount of resources required is minimised.   

Figure 4.1 illustrates the CwGN model. Similar to CGN, the model 

involves two main entities: the CwGN network and the stimulator and 

interpreter (S&I). The S&I is responsible for sending commands to the CwGN 

network. It receives weight and concludes the final decision about an incoming 

pattern. A command message can be to either memorise or recall a pattern. It 

also includes information about the pattern or commands the network to obtain 

sensory information. CwGN network nodes process the S&I command and 

reply with a weight (or set of weights). The S&I uses this weight (or 

summation of weights) to memorise or recall the sensed or sent pattern. 

 

Figure 4.1: The CWGN communication model. 

4.3.1 Stimulator and interpreter (S&I) 

This component is responsible for sending commands to the CwGN 

network, receiving the weight and making the final decision about an incoming 

pattern. CwGN uses the same pattern obtaining method as CGN, as described 
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in section 3.2. Hence, the four commands (M,S), (M,X), (R,S), and (R,X) 

described in table 3.1 are used to train a CwGN network and recognise 

patterns. CwGN network nodes process the S&I command and respond with a 

weight (or set of weights). Weight computations will be discussed later in this 

chapter in the edge search section. The S&I uses this weight (or summation of 

weights) to memorise or recall the sensed or received patterns. After the S&I 

receives the weight from the CwGN network, it begins the process of 

memorising or recalling a pattern. In memorisation, the S&I assigns a unique 

index number to the pattern, associates this number with the resulting weight, 

and stores the index number and the associated weight in its memory. This 

results in a set of patterns stored in a vector that can be described as follows. 

 

Definition 4.1: (Pattern vector) Given a set of patterns {𝑃1, 𝑃2, … , 𝑃𝑛}, the S&I 

memorises these patterns by obtaining each pattern’s weights (𝜔𝑖) from a 

CwGN network, assigning a unique index number (𝐼𝑖) to each pattern and 

storing the associations of patterns and weights as a pattern vector in the S&I in 

the following form. 

𝑃⃗ = {(𝐼1, 𝜔1), (𝐼2, 𝜔2),… . . , (𝐼𝑛, 𝜔𝑛)⁡⁡, 𝐼𝑖 ∈ ℕ,𝜔𝑖 ∈ ℝ} (4.1) 

In recall, the S&I searches the pattern vector to find a match. The 

declaration that a pattern has been detected depends on the difference between 

the CwGN network’s weight and the weights stored in the pattern vector 

weights as follows. 
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Definition 4.2: (Recalled pattern) Given a weight calculated by the CwGN 

(𝜔𝐶) and a pattern vector, the recalled pattern (𝑅𝑝) will be the index number 

with the smallest difference between the calculated weight value and the set of 

associated weights in the pattern vector as follows. 

𝑅𝑝 = 𝐼[min(Δ𝜔1𝐶 , Δ𝜔1𝐶 , … , Δ𝜔𝑖𝐶)] (4.2) 

where Δ𝜔𝑖𝐶 is the difference between the ith stored pattern weight and the 

weight calculated by the network for an incoming pattern (current pattern). 

Figure 4.2 illustrates the S&I operations. These operations can be summarised 

as follows. 

i. Send command: The S&I sends the command which contains 

the operation (memorise or recall) and the pattern element 

obtaining method (direct receive or sense) to all network nodes. 

ii. Receive weight: The S&I receives the network’s accumulated 

weight from the core node in the network. 

iii. Memorise or recall: If the incoming pattern is to be 

memorised, the S&I creates a unique index number, associates 

this index number with the network’s weight, and stores this 

association in its pattern vector. In the case of recall, the S&I 

searches for the closest weight in its pattern vector to the 

network’s delivered weight and declares its associated pattern as 

Rp. 
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4.3.2 CwGN network 

CwGN network structure is similar to CGN network structure, as 

presented in Chapter 3. However, in CwGN, each neuron position contains 

only one node. The aim of the network structure is to have low pattern 

recognition scheme complexity, provide parallel processing, provide efficient 

recognition, and have a predetermined learning and recognition cycle duration. 

A low complexity scheme is achieved with a fully distributed structure that 

allows sensor nodes in the network to communicate only with adjacent nodes. 

CwGN’s structure allows each node to communicate with two adjacent nodes 

for weight calculation and with one adjacent node for outcome reporting. 

Efficient recognition is provided by describing the patterns’ boundaries in 

terms of weights in order to provide a transformation invariant recognition 

feature to the scheme. Using weights aims to allow the detection of any certain 

pattern’s boundaries by any node in the network. In other words, the detection 

of any desired pattern’s boundary is not associated with static nodes. Instead, 

any node in the network is expected to be able to derive the same weight for 

such boundary information. By using specific steps for weight reporting, 

CwGN will have a single learning and recognition time cycle that can be 

predicted and estimated. Once the final weight is delivered to S&I, CwGN does 

not need further information from sensor nodes in order to declare the detection 

of a specific pattern. Such a feature reduces the need for communications 

between S&I and participant nodes in the network. 
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The network structure depends on the size of the problem pattern. The 

deployment of the network uses the deployment algorithm described in 

Algorithm 3.1. However, it is important to note that CwGN deploys one node 

in each step to form network tracks, rather than deploying a set of NP nodes as 

in CGN. The deployment process begins by implementing the core node in the 

core track followed by the next odd numbered set of nodes in the next track 

and so on until all nodes have been deployed in the network. This results in 

tracks that hold odd numbers of nodes in the form (1, 3, 5,…,2n+1). The aim is 

to provide the CwGN with a cellular network structure that allows nodes to 

transmit their results to a core region that is responsible for delivering the final 

result to the S&I. These data are computed once to obtain weights that describe 

the input pattern. 

 

Figure 4.2: S&I operations for memorising and recalling patterns. 



 

130 

 

The network structure is composed of multiple tracks. A track is a GN 

array that consists of a set of odd numbers of nodes of the form (𝑆𝑖 = 2𝑖 − 1), 

where 𝑆𝑖 is the size of the track number i (i.e. the number of nodes in track i). 

As discussed in Chapter 3, involving multiple tracks in the network structure 

aims to enable parallel processing and information exchange of incoming data 

by dividing the pattern into a set of sub-patterns. This will also allow the 

network to deal with different pattern types that require multi-dimensional 

processing. On the other hand, using an odd number of nodes in each track 

makes the cellular network structure possible and restricts the number of 

communications between tracks. The cellular network structure allows 

accumulating nodes’ computation outcomes to one track, called the core track, 

which is responsible for delivering these outcomes to the S&I.  

Definition 4.3: (Network track) A CwGN network track (Trk) is a GN network 

that consists of a set of nodes where each node communicates with its direct 

neighbour nodes in the same track. A CwGN track can be described as follows.  

𝑇𝑟𝑘𝑖 = {𝑁𝐷𝑖,1, 𝑁𝐷𝑖,2, … . . , 𝑁𝐷𝑖,𝑚,⁡⁡⁡⁡⁡⁡⁡𝑚 ∈ ℕ} (4.3) 

where NDi,l is the l’th node in Trki. Each ND is responsible for sensing or 

receiving one element of an incoming pattern such that  𝑃𝜀,𝑁𝐷:⁡𝜀𝑖 → 𝑁𝐷𝑖,𝑙⁡, 𝜀 ∈

𝑉, 𝑖 ∈ ℕ, where 𝑃𝜀,𝑁𝐷 is the assignment of an incoming pattern’s elements to 

NDs using Definition 3.1.  

The communications between track nodes are called exchange 

communications and can be defined as follows. 

 



 

131 

 

Definition 4.4: (Exchange communications) Given a CwGN network track 

(Trk) that consists of m nodes, exchange communications of a node are two 

direct connections between a node and its direct neighbours (adjacent) previous 

(p) and next (n) nodes in the form 𝑁𝐷𝑖 → 𝑁𝐷𝑖−1 ∶ 𝑣, 𝑁𝐷𝑖 → 𝑁𝐷𝑖+1 ∶ 𝑣 

respectively. 

where 𝐶𝑁𝐷𝑖,𝑝 and C𝑁𝐷𝑖,𝑛 are the exchange communications between the i’th 

node and its previous and next nodes respectively, and v is the value assigned 

to the 𝑁𝐷𝑖. The number of links in each track is equal to twice the number of 

its nodes (2𝑆𝑖). Here, the last node in a track is assumed to communicate with 

the first node and vice versa. Figure 4.3 depicts a CwGN track that consists of 

m nodes. It is assumed that the first node is directly adjacent to the last node. 

 

 

Figure 4.3: Track exchange communications. The arrows show the 

links between nodes (L1, L2,…, Lm). 

 

Each node in the CwGN network receives its assigned command and 

pattern element, exchanges information with adjacent nodes, calculates its 

weight, and sends its calculated outcomes to another node in the network, 

named its inner node, which resides in the inner track, as described in Equation 
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3.4. The four commands (M,S), (M,X), (R,S), and (R,X) described in Table 3.1 

are used to train a CwGN network and recognise patterns. However, it is 

important to highlight that CwGN does not use the node activation process 

included in CGN as each neuron position holds only one node. Instead, based 

on received data from S&I, each node is activated or de-activated according to 

activation criteria (e.g. high temperature).  Another round of the activation 

process is performed by each node after performing exchange communications. 

Based on the received data, a node can decide whether to be activated or not. If 

the node is obtaining a pattern’s boundary, it gets activated. Only activated 

nodes participate in pattern detection steps. This is to maintain limited use of 

node resources and to reduce the detection time by limiting the number of 

communicating nodes. 

The activation process goes through two stages, namely, value 

activation and edge activation. A node’s value activation can be achieved by 

examining its received value. If a node’s value complies with certain user 

defined conditions, it gets activated. One of these conditions is reaching a 

certain threshold. This can be formally described as follows. 

 

Definition 4.5. (Node value activation) Given a CwGN node Ni,j that is 

assigned to a value  v ∈ P, where P = {ε1, ε2, … , εS}, εi ∈ V is the incoming 

pattern, Ni,j is activated if v ≥ φ. 
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where i is the node’s position in its track, j is the node’s track number, εn is the 

n’th element of P, V is the set of possible values, and φ is the node activation 

threshold.  

A value activation of a node triggers the start of an exchange 

communication process for that node with its adjacent neighbours in the same 

track, as described in Definition 4.4. After receiving information from previous 

and next nodes, the activated node calculates its edge level according to 

Equation 4.4. Based on the resulting edge type, it either de-activates or goes for 

the second level of activation called node edge activation, which can be 

described as follows. 

Definition 4.6. (Node edge activation) Given a CwGN value activated node Ni,j 

and its adjacent nodes Ni+1,j and Ni-1,j, the node continues to be active if its edge 

type 𝐸𝐷𝑖,𝑗 ∈ 𝐸𝐷𝐴. 

where i is the node’s position in its track, j is the node’s track number, 𝐸𝐷𝑖,𝑗 is 

the node’s edge type, and 𝐸𝐷𝐴 is the set of activation edges values such that 

𝐸𝐷𝐴 = {𝐸𝐷1, 𝐸𝐷2, … , 𝐸𝐷𝑚}. For example, if 𝐸𝐷𝐴 = {𝐷𝐸, 𝐿𝐸}, the node will 

get activated only if its edge type is double edge or left edge, as described in 

Equation 4.4. Otherwise, the node gets de-activated. Edge activated nodes are 

the only nodes that participate in the reporting communication described in 

Definition 4.5. 

The inner node combines the weights it receives with its own weight 

and transmits the accumulated weight to its own inner node. This process 
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continues until a node (or set of nodes) is reached called the core node, which 

is responsible for delivering the accumulated weights to the S&I. Delivering 

weights to the inner nodes is called report communication and can be formally 

described as follows. 

Definition 4.7: (Report communications) Given a CwGN network that consists 

of a set of tracks, a report communication of a node is the message 

(connection) between a node in that track and its direct assigned inner node 

that contains the resulting accumulative weight (ω) in the form 

𝑅𝑁𝐷𝑖,𝑙:⁡𝑁𝐷𝑖,𝑙 → 𝑁𝐷𝑖−1,𝑙 ∶ 𝜔𝑖,𝑙, ∀⁡𝑙 < 𝑆𝑖−1 or 𝑅𝑁𝐷𝑖,𝑙:⁡𝑁𝐷𝑖,𝑙 → 𝑁𝐷𝑖−1,𝑙−2 ∶

𝜔𝑖,𝑙, ∀⁡𝑙 ≥ 𝑆𝑖−1. Where i is the track number, l is the node’s number in track i, 

and  𝑆𝑖−1 is the size of the track number (i-1).  

Figure 4.4 depicts a CwGN network of 9 nodes and 3 tracks. Figure 4.5 

shows the steps that each node in the network performs in the learning process. 

These steps can be described as follows: 

i. Receive command: The node receives the broadcasted 

command from S&I which contains the operation (memorise or 

recall) and the pattern element obtaining method (direct receive 

or sense). 

ii. Obtain pattern element: Based on the command message, each 

node starts obtaining its assigned pattern element 𝜀𝑖. Each node 

sets its value (v) according to the obtained pattern element. 
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iii. Exchange communications: Each node performs exchange 

communications with its neighbouring nodes and calculates its 

weight. 

iv. Report communications: After compiling the weight, each 

node reports its weight to its assigned inner node. In this step, 

each node should wait for reports from outer tracks to 

accumulate its weight with the reported weights and then start 

the reporting itself. The core node in the network reports its 

accumulative weight to the S&I. 

 

Figure 4.4: CwGN network that adopts a 9 elements pattern size. Solid 

arrows represent exchange communications, dotted arrows represent report 

communications. 

 

4.3.3 Pattern edge search 

The CwGN scheme represents patterns in terms of weights. The main 

goal of this approach is to enable pattern transformation detection (e.g. 

rotation, translation, and dilation). To achieve this goal, the CwGN scheme 
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searches for edges in the pattern’s data domain to determine its boundaries. We 

assume that sensor nodes are deployed in a grid-like structure in the field of 

interest to obtain sensory information. To calculate a node’s weight, its edge 

type is determined in accordance with its own value and the values received 

from its adjacent nodes using exchange communications. There are four edge 

types: not an edge (NE), when a node’s value is less than or equal to the values 

of its neighbouring nodes; right edge (RE), when the node’s value is only 

larger than the value of the right node (next value); left edge (LE), when the 

node’s value is only larger than the value of its left node (previous value); and 

double edge (DE), when the value of the node is larger than the values of both 

adjacent nodes. 

However, the types and numbers of edges can be changed according to 

the recognition problem. For example, the middle element in the pattern (1,1,0) 

is described as a right edge (RE), as the value of its right neighbouring element 

is lower than its value. Conversely, for the pattern (0,1,1), the middle element 

is considered as a left edge (LE). The edge type determination can be described 

as a function of the values of the node and its neighbouring nodes in the form 

of 𝐸𝐷 = 𝑓(𝐶𝑣, 𝑝𝑣, 𝑛𝑣), where 𝐸𝐷 is the edge type, 𝐶𝑣 is the value of the current 

node, 𝑝𝑣is the value of the previous (predecessor) node in the same track and 

𝑛𝑣 is the value of the next node (successor) in the same track. This relationship 

can be described as the following piecewise function. 
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𝐸𝐷 = {

𝐷𝐸,⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑝𝑣 <⁡𝐶𝑣 >⁡𝑛𝑣

𝐿𝐸,⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑝𝑣 <⁡𝐶𝑣 ≤⁡𝑛𝑣

𝑅𝐸,⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑝𝑣 ≥⁡𝐶𝑣 >⁡𝑛𝑣

𝑁𝐸,⁡⁡⁡⁡⁡⁡⁡⁡⁡Otherwise⁡⁡⁡⁡⁡⁡⁡

 (4.4) 

 

 

 

Figure 4.5: CwGN network node operations for weight calculation.    

This convention for pattern description is suitable for binary pattern 

representation. However, in numerical representations we might encounter the 
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same edge type with a variance in levels. For example, the middle element in 

the pattern P1 = {3,3,1} is a right edge element, and the same applies for the 

pattern P2 = {92,90,1}. However, these two patterns might be considered as 

two different types. Consequently, descriptions of edge levels in the CwGN 

scheme must be attained by factorising the percentage variance between a 

node’s value and its neighbours’ values in the same track. The variance ratio 

between a node (C) and its neighbouring node can be calculated as 𝑉𝑅𝑐𝑁 =

(𝐶𝑣−𝑁𝑣)

𝑁𝑣
. In this expression, N is a neighbouring node (previous or next), and Cv 

and Nv indicate the values of the current and neighbouring nodes. However, 

this function could lead to the problem of dividing by zero. Thus, in such cases 

an assumption should be made, such as considering the ratio to be equal to Cv. 

Accordingly, the variance ratio can be expressed as follows.  

𝑉𝑅𝑐𝑁 = {

𝐶𝑣 − 𝑁𝑣

|𝑁𝑣|
,⁡⁡⁡⁡⁡⁡⁡⁡𝐶𝑣 > 𝑁𝑣⁡∀⁡𝑁𝑣 ≠ 0

𝐶𝑣⁡,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐶𝑣 > 𝑁𝑣⁡∀⁡𝑁𝑣 = 0
0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡Otherwise

 (4.5) 

where VRc,N is the value of the variance ratio of node C value to the 

neighbouring node N value. By implementing this equation, each node will 

calculate a ratio value that describes the difference between its value and its 

neighbour’s value. Thus, we can differentiate between nodes, even between 

nodes with the same edge types. Note that this percentage will be equal to 0 if 

the relationship to the neighbouring node is not an edge (i.e. the current value 

is less than or equal to the neighbouring value).  
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A nodal weight can be calculated using the variance ratio and the edge 

type. However, other relational functions can also be used. Each edge type is 

assigned a fixed value. The choice of edge value can then be used to factorise 

weights and differentiate between edge types. A nodal weight is a function of 

its variance ratio to its neighbours, namely, the previous and next nodes, in the 

form of 𝜔𝑐 = 𝑓(𝑉𝑅𝑐𝑝, 𝑉𝑅𝑐𝑛),⁡where 𝜔𝑐 is the node’s c (current) weight, p is 

the previous node, and n is the next node. This function can be determined as 

the summation of 𝑉𝑅𝑐𝑝 and 𝑉𝑅𝑐𝑛. To include the node’s edge types in this 

function, we assume that each ED value in Equation (4.4) has been set to a 

constant number EDv. Accordingly, the current node’s weight is calculated as 

follows. 

𝜔𝑐 = 𝐸𝐷𝑣 . 𝑉𝑅𝑐𝑛 + 𝐸𝐷𝑣 . 𝑉𝑅𝑐𝑝⁡ (4.6) 

Considering the conditions included in 4.4 and 4.5, this equation will 

only have a value if the current node’s value is higher than at least one of its 

neighbouring node’s values. This is because the value is multiplied by zero 

when the current value is less than or equal to the value of the adjacent node.  

To assign each pattern with a unique weight, each node reports its 

calculated weight to its assigned inner node in the network. Each inner node 

adds the reported weights and reports the result to its assigned inner node. This 

continues until each node in the core of the network has reported its 

accumulated weight value to the S&I. The S&I normalises the received 

accumulated weight by a predefined normalising factor Nf that can be the 

pattern (network) size (S). In other words, the ith pattern’s weight (𝜌𝜔𝑖) is the 
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sum of the entire network’s node weights divided by a normalising factor (Nf) 

and can be calculated as follows. 

𝜌𝜔𝑖 =
∑ 𝜔𝑚

𝑆
𝑚=1

𝑁𝑓
 (4.7) 

4.4 CwGN Communication Scheme 

In this section, the communications of a CwGN network are described. 

This includes adjacency communications, reporting communications, and the 

CwGN communication protocol. The CwGN scheme has two types of network 

communications scenarios: standard and track-linking communications. In the 

standard communication style, nodes exchange information with adjacent 

nodes in the same track. In this scenario, the incoming pattern is divided into 

several sub-patterns according to the number of tracks, and each sub-pattern’s 

weight is calculated separately from those of other sub-patterns. This structure 

is useful when different data types and multi-dimensional patterns are to be 

processed using one network. The standard is described in Figure 4.4.   Track-

linking communication style aims to allow the calculation of weights between 

tracks or sub-patterns. This communication paradigm allows one node in each 

track to perform adjacent communications with nodes in its outer track. This 

will make it possible to avoid losing weights caused by dividing a pattern into 

sub-patterns and can be used for one dimensional patterns and single data 

types. Figure 4.6 shows the track-linking communication paradigm. 
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Figure 4.6: Track linking CwGN network communication scheme. The 

solid arrows indicate information exchange between adjacent nodes and dotted 

arrows indicate reporting communications to inner nodes. 

 

4.4.1 CwGN communication requirements 

To perform CwGN network node communications, it is assumed that a 

medium access control (MAC) protocol is present and available to support the 

network. MAC protocols control the communications of a network by setting 

the rules and steps for sending information amongst the network’s nodes so as 

to share the available medium. In WSNs the efficiency of a MAC protocol will 

affect the sensors’ lifetime by reducing transmission collisions, which reduces 

the number of retransmissions of packets [7]. In WSNs, nodes conserve energy 

resources by alternating between low power sleep mode and active mode. 

MAC protocol supports conserving energy resources for WSN nodes by 

determining timeslots for sleep and active modes. In addition, when using 

MAC protocols, each sensor can have a unique MAC address that differentiates 

it from other sensors, allowing direct communication between two nodes. For a 
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CwGN scheme, choosing a MAC protocol should take into account the special 

requirements and steps of the network’s communications. 

   During the initialisation of a CwGN network, each node should be 

provided with a track number that it will work on. This allows the node to 

determine its communication process. For example, a node in the outermost 

track will send its information to adjacent nodes, receive adjacent nodes’ 

information, and report its calculated weight to its assigned inner node. A node 

in a middle track performs the same steps except that it will wait for reports 

from outer track nodes before reporting the accumulated weights to its inner 

node. Determining a node’s track can be performed statically or automatically 

during the initialisation phase of the CwGN network. Static track determination 

means that each node is provided with information about its track, adjacent 

nodes in the same track, and its assigned inner node to report its calculated or 

accumulated weight. This initialisation would be less complex in terms of 

computations and communications. However, the flexibility of adding new 

nodes to the network or adopting dynamic changes such as mobile nodes or 

clusters will be limited. Automatic track determination can be achieved by 

allowing each node to communicate with its neighbouring nodes and allowing 

the base station to determine its track, adjacent nodes, and inner nodes after the 

deployment of the network. This approach will provide more network 

flexibility to adapt to changes that may be required in the network design. 

However, this will lead to an increase in the number of communications in the 
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network. It is also important to take into account the distance between nodes 

and the communication ranges of sensors in determining the track size. 

To ensure the functionality of the CwGN network, each node should be 

fed with sufficient information about how to react to failures or de-activated 

neighbouring nodes. In WSNs, it is common to have failure nodes that can no 

longer communicate due to running out of energy or physical damage. To 

overcome the effect of such phenomena on recognition, each node should take 

into account the steps for dealing with unavailable nodes. For adjacent nodes 

(i.e., predecessor and successor), a node should assume the value of a failure 

communicating node to be zero. This is to standardise the weight calculation 

with a zero level. To avoid losing weights in cases of inner node failures, each 

node should hold (or search for) information about alternative inner nodes. 

Each node should be supplied with a list of ordered alternative inner nodes in 

the inner track within its communication range. If a node cannot communicate 

with its inner node, it sends it weight to the first alternative inner node. If the 

alternative node is not responding, it sends it to the second alternative. This 

continues until the node reports its weight to one of its assigned inner nodes. If 

none of the alternative nodes respond, the node should report its weight to the 

base station. Figure 4.7 illustrates the alternative reporting process. 

In Figure 4.7 (a), the reporting node, tries to send its weight information 

to alternative inner node 1 in the inner track after failing to communicate with 

its assigned inner node. In Figure 4.7 (b) the node sends its weight information 

to the base station after failing to communicate with all possible alternatives. 
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Since the number of communications of alternative nodes could increase due to 

failures occurring in assigned inner nodes, the number of alternatives should be 

determined in such a way as to avoid exhausting inner nodes that act as 

alternatives. Since each node is presumed to receive only one message at a 

time, the learning and recognition duration cycle will be affected by the 

number of communications increasing in alternative nodes, as will be discussed 

later in this chapter. Consequently, setting the total number of possible 

alternative inner nodes should take the effect on the duration of learning cycle 

into account. Finally, the base station should be able to predict the time needed 

to wait for reports from nodes that are unable to report to their assigned and 

alternative inner nodes before it declares the total weight of a pattern.  

 

 

  

(a) (b) 

Figure 4.7: Report messages from a node to its alternative assigned 

inner nodes. (a) Reporting node attempts to send its report to the second 

alternative assigned inner node. (b) Reporting node reports directly to the BS 

after failing to report to all alternative inner nodes. 
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4.4.2 CwGN communication protocol 

The CwGN communication protocol describes the main steps of CwGN 

network communications. By completing this protocol, a CwGN network will 

memorise or recall an incoming pattern. The protocol consists of four main 

steps as follows: 

Step 1 S&I  ND1, ND2,……, Nm : (Ci,Pi) {(C1,P1), (C2,P2),.., (Cm,Pm) } 

In the first step of the communication, the S&I (i.e. base station) sends 

the command Ci and the pattern elements Pi to each node in the network. As 

explained in section 3.2, a command can be either to memorise (M) or recall 

(R) and the pattern element can be a value to use for training, or (X) to initiate 

sensors to use the sensory information. Each node receives only one element of 

the pattern. For example, if the pattern is (1,5,7,4), the S&I will send the values 

1, 5, 7, and 4 to the nodes 1, 2, 3, and 4 as pattern elements respectively. 

Obtaining sensory information can happen in two ways. In the first scenario, 

the S&I sends a memorise or recall command to nodes in order to start 

obtaining sensory information and continue the communication steps. In the 

second scenario, the nodes are programmed to obtain information periodically.  

Step 2 NDi  NDp, NDn: vi 

Each node in the network NDi starts the information exchange process 

with adjacent nodes. After receiving or obtaining the pattern element 

information, each node sends its value vi to two nodes: previous NDp, and next 

NDn. These nodes are located in the same track on which the first node resides. 

The aim of this step is to allow each node to calculate its weight according to 
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Equation 4.6. After completing this step, each node will receive two values 

from its adjacent nodes representing the pattern elements by which a node 

should calculate its weight 

Step 3 NDi  Ninner: 𝜔𝑖 

After obtaining pattern information from adjacent nodes and calculating 

its weight, each node reports its weight to its assigned inner node in the inner 

track. The weight will be a result of computations related to the node’s value 

and adjacent nodes’ values. This is applicable to nodes in the outermost track. 

For nodes in middle tracks, each node should wait for reports coming from 

outer track nodes. Once these reports are obtained, the node adds its calculated 

weight to the incoming weights according to Equation 4.6 and then starts the 

reporting step. The reporting communication step continues until reaching the 

core node. By the end of this step, the core node will obtain the accumulated 

weight of the present pattern. 

Step 4 NDc  S&I: 𝜔𝑐   

The core node (or set of nodes) NDc will send the total pattern’s weight 

𝜔𝑐 to the base station in order to store or recall the pattern. The base station 

normalises the incoming weight by dividing Nf. The base station holds a 

database of trained patterns associated with their weights. If the pattern needs 

to be memorised, the base station assigns it a new index number and associates 

this index number with the total weight obtained by the network. If the pattern 

is to be recalled, the base station searches its database to find the closest value 
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to the total weight given by the CwGN network and declares it as the recalled 

pattern.  

4.5 Complexity of CwGN Algorithm 

This section estimates the complexity of the CwGN algorithm. Table 

4.1 defines the terms used in complexity estimation. One of the goals of the 

scheme presented here is to provide real time recognition capabilities while 

maintaining a low level of resource use to suit WSNs. Hence, estimating the 

learning cycle duration is important to evaluate the scheme’s feasibility in 

online operations. For such estimation, we assume that all network nodes are 

activated by a given pattern to estimate the maximum time required to learn or 

recall an incoming pattern. The computational and communication overheads 

of a pattern of size S can be estimated by the duration of each CwGN step. The 

first step is the pattern receiving step. This step involves broadcasting the 

command message by the S&I and sensing the pattern by the nodes. The 

estimated time required for this step is as follows. 

𝑇𝑟𝑒𝑐 = 𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑠𝑒𝑛𝑠𝑒 (4.8) 

The following step exchanges sensory information by nodes. Taking 

parallelism into account, the time estimate can be described as follows. 

𝑇𝑒𝑥𝑐ℎ = 2. 𝑇𝑠𝑒𝑛𝑑 (4.9) 
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Table 4.1: Description of terms used in CwGN complexity analysis.  

Symbol Name Description 

𝑁𝑡𝑟𝑘 
Number of 

tracks 
The number of tracks in the network 

𝑆 
Pattern 

(network) size 
The problem size which equals the network size 

𝑆𝑖 Track i  size Number of nodes in track number i 

𝑀𝑝 
Memorised 

patterns 
Number of memorised patterns in the S&I 

𝑇𝑎𝑑𝑑 Addition time 
Time for one node to complete an addition 

operation 

𝑇𝑆𝐼 S&I time 
The time required by the S&I to search or add a 

pattern to its database 

𝑇𝑐𝑜𝑚𝑝𝑎𝑟𝑒 Compare time 
The time required by a node to compare two 

weights 

𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒 
Computing 

time 

The time required by a node to perform 

weighting computations 

𝑇𝑑𝑖𝑣 Division time 
The time required for a node to complete a 

division operation 

𝑇𝑒𝑥𝑐ℎ Exchange time The time required by nodes to conduct 

exchange communications 

𝑇𝑟𝑒𝑎𝑑 Reading time 
Time required by S&I to read a single pattern’s 

stored weight 

𝑇𝑟𝑒𝑐 
Pattern 

receiving time 

The time needed by a CwGN network to obtain 

an incoming pattern including the S&I 

command 

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 Report time 
The time required by the network to perform 

report communications 

𝑇𝑠𝑒𝑛𝑑 Send time 
The time required to send a message from one 

node to another 

𝑇𝑠𝑒𝑛𝑠𝑒 Sense time 
The time required by a node to obtain sensory 

information 

𝑇𝑡𝑜𝑡𝑎𝑙 
Total network 

time 

Time required by the CwGN network to 

perform PR operations 

 

This is followed by the computing of weights by nodes. Assuming that 

the relation function captures the variance level relations described in 

Equations 4.4 and 4.5 that delivers Equation 4.6, the computations involve 
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comparing received values with sensed information, addition, and division 

operations. The time required for this step can be estimated as follows. 

𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒 = 2. 𝑇𝑐𝑜𝑚𝑝𝑎𝑟𝑒 + 𝑇𝑎𝑑𝑑 + 𝑇𝑑𝑒𝑣 (4.10) 

The reporting step is the most time demanding step in the CwGN 

scheme as each reporting node waits to receive reports from other nodes in 

other tracks. Referring to the deployment process, the number of tracks in a 

CwGN network for a pattern size S is equal to the number of deployment 

iterations and, according to Equation 3.7, is equal to the square root of S. This 

can also be written as 𝑁𝑡𝑟𝑘 = √𝑆 = ⁡⁡⁡ 10
log𝑆

2 . Accordingly, reporting time can 

be estimated as the parallel sending time and weight accumulation time as 

follows. 

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 = 𝑇𝑠𝑒𝑛𝑑. 𝑁𝑡𝑟𝑘 + 𝑇𝑎𝑑𝑑 . (𝑁𝑡𝑟𝑘 − 1) (4.11) 

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 = 𝑇𝑠𝑒𝑛𝑑. (10
log𝑆

2 − 1) + 𝑇𝑎𝑑𝑑 . 10
log𝑆

2  (4.12) 

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 = (𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑎𝑑𝑑). 10
log𝑆

2 ⁡⁡− 𝑇𝑠𝑒𝑛𝑑 (4.13) 

This excludes the outermost track from waiting for reports and includes 

the inner node’s report to the S&I. Once the weights are accumulated and 

reported to the S&I, the S&I stores or recalls the incoming weight. The S&I 

time (TSI) will be equal to Twrite in cases of memorisation.  Assuming that S&I 

performs a binary search to find the associated pattern, its recall time can be 

estimated as follows. 

𝑇𝑆𝐼 = (𝑇𝑟𝑒𝑎𝑑 + 𝑇𝑐𝑜𝑚𝑝𝑎𝑟𝑒). 𝑙𝑜𝑔2(𝑀𝑝) (4.14) 

The total CwGN network time can be estimated as follows. 
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𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑟𝑒𝑐 + 𝑇𝑒𝑥𝑐ℎ + 𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒 + 𝑇𝑟𝑒𝑝𝑜𝑟𝑡 + 𝑇𝑆𝐼 (4.15) 

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑠𝑒𝑛𝑠𝑒 + ⁡2. 𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑐𝑜𝑚𝑝𝑎𝑟𝑒 + 𝑇𝑎𝑑𝑑 + 𝑇𝑑𝑒𝑣

+ 𝑇𝑠𝑒𝑛𝑑 . (10
log𝑆

2 − 1) + 𝑇𝑎𝑑𝑑 . 10
log𝑆

2 + 𝑇𝑆𝐼 

(4.16) 

𝑇𝑡𝑜𝑡𝑎𝑙 = (2 +⁡10
log𝑆

2 ) . 𝑇𝑠𝑒𝑛𝑑 + (𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑎𝑑𝑑).⁡⁡⁡10
log𝑆

2 + 𝑇𝑠𝑒𝑛𝑠𝑒

+ 2. 𝑇𝑐𝑜𝑚𝑝𝑎𝑟𝑒 + 𝑇𝑑𝑒𝑣 + 𝑇𝑆𝐼 

(4.17) 

To simplify these calculations, we assume that communicational 

operations times (𝑇𝑠𝑒𝑛𝑠𝑒 , 𝑇𝑠𝑒𝑛𝑑, 𝑇𝑟𝑒𝑝𝑜𝑟𝑡) are equal and denoted as (𝑇1). 

Similarly, computational operations times (𝑇𝑎𝑑𝑑 , 𝑇𝑐𝑜𝑚𝑝𝑎𝑟𝑒, 𝑇𝑑𝑒𝑣, 𝑇𝑟𝑒𝑎𝑑, 𝑇𝑤𝑟𝑖𝑡𝑒) 

are assumed to be equal, and we denote them as (𝑇2). Consequently, 𝑇𝑠𝑖 in 

memorisation will be equal to 𝑇2 because it equals 𝑇𝑤𝑟𝑖𝑡𝑒. Accordingly, 

substituting 𝑇1 and 𝑇2 into (4.17) can provide an estimate of the total network 

time required for memorisation. 

𝑇𝑡𝑜𝑡𝑎𝑙 = 3. 𝑇1 + 4𝑇2 + (2. 𝑇1 + 𝑇2).⁡⁡10
log 𝑆

2  (4.18) 

In recall, 𝑇𝑆𝐼 will be equal to (2. 𝑇2)𝑙𝑜𝑔2(𝑀𝑝), and the total network 

time required for recall can be estimated as follows. 

𝑇𝑡𝑜𝑡𝑎𝑙 = 3. 𝑇1 + 3𝑇2 + (2. 𝑇1 + 𝑇2).⁡⁡10
log 𝑆

2

+ (2. 𝑇2)𝑙𝑜𝑔2(𝑀𝑝) 

(4.19) 

According to these equations, the CwGN network’s response time is 

proportional to the square root of the network size in the form of O(√𝑆). This 

minimises the effect of pattern size increase and provides the scheme with a 

high level of scalability. Figure 4.8 shows the estimated recall time as a 
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function of the pattern size (S); assuming 1 millisecond for T1, 1 microsecond 

for T2, and 10000 for Mp. Figure 4.9 shows the estimated recall time for a 

CwGN of S=16 according to the increase in the number of stored patterns Mp 

with the same set of time assumptions made in Figure 4.8. The figure shows 

that the response time increases in proportion to the square root of pattern size 

S. Figure 4.9 shows that the response time initially increases but then becomes 

insensitive to the increase in the number of stored patterns. 

4.6 Zoning Approach for Online and Multi-

Dimensional Recognition 

It was shown in the previous section that the time complexity of CwGN 

is proportional to the square root of the pattern size. This means that time 

complexity has a low increase rate. However, for large scale online 

applications, such an increase could reach a level that makes recognition 

exceed the online criteria. Another problem is the heterogeneity of incoming 

data that may require multi-dimensional processing. An example of such a case 

would be having sensor nodes that detect one data type (e.g. temperature) and 

other nodes detecting a different data type (e.g. speed). It has been suggested in 

sub-section 4.3.2 that such problems can be handled using the multiple tracks 

network structure where each track deals with one data type. However, the 

constraints of the network structure that require a limited odd number of nodes 

in each track can restrict the usefulness of such a solution.  
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Figure 4.8: The estimated recall time of the CwGN network with 

respect to increasing pattern size.  

 

 

 

 

 

Figure 4.9: The estimated recall time of the CwGN network as a 

function of the number of stored patterns in the range from 0 to 60000 patterns. 
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To enable online learning and multi-dimensional data processing, the 

CwGN network is divided into smaller zones. Each zone is a CwGN network 

functions in parallel with other networks to fulfil the following constraint.  

𝑇𝑍 + 𝑇𝑆𝐼 ≤ 𝜏 (4.20) 

where 𝑇𝑍 is the network zone time and 𝜏 is the upper time limit for completing 

an online learning operation. In case of having heterogeneous data types, each 

zone is assigned to process only one type. Each zone feeds S&I with its 

concluded weight value, as shown in Figure 4.10. To determine the maximum 

number of zones (𝑁𝑧𝑜𝑛𝑒𝑠) that fulfil this constraint, it is assumed that 𝑇𝑍 is the 

maximum time for a network zone, that is, the time when all nodes in the 

network zone are activated. Additionally, it is assumed that the zones are 

uniformly distributed such that each zone has the same number of nodes. 

Consequently, 𝑇𝑍 will be equal to the total time of a CwGN network of size 

𝑆

𝑁𝑧𝑜𝑛𝑒𝑠
 and the network time can be estimated as follows. 

𝑇 𝑆
𝑁𝑧𝑜𝑛𝑒𝑠

+ 𝑇𝑆𝐼 = 𝜏,⁡⁡⁡⁡𝑁𝑧𝑜𝑛𝑒𝑠 ∈ ℕ (4.21) 

From Equations 4.18 and 4.19, the recall time will always be higher 

than the memorisation time when 𝑀𝑝 ≥ 2. This is due to the process by which 

the S&I searches for a matching pattern. Assuming that recall time is higher 

than memorisation time and substituting (𝑆) with (
𝑆

𝑁𝑧𝑜𝑛𝑒𝑠
) in Equation 4.19, the 

number of required network zones can be estimated using Equation 4.21 as 

follows. 
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𝑁𝑧𝑜𝑛𝑒𝑠 = S. (
𝜏 − 3. 𝑇1 − 3. 𝑇2 − (2. 𝑇2)𝑙𝑜𝑔2(𝑀𝑝)

2. 𝑇1 + 𝑇2
)

−2

 (4.22) 

 

 

Figure 4.10: Parallel CwGN network zones 

For example, if 𝜏 = 100 milliseconds, 𝑇1 = 1⁡millisecond, 𝑇2 =

1⁡microsecond, and 𝑀𝑝 = 10000 patterns, a CwGN network of size 2448 will 

be capable of performing learning operations within the time limit (i.e. 100 

milliseconds). This means that the network needs to add one more zone when 

increasing the network size by more than 2448 nodes in order to ensure 

performance of recognition operations within 100 milliseconds. It is important 

to note that this assumes that all nodes in the network are activated, which is 

the worst case scenario. The complexity of the CwGN scheme can provide 

learning capabilities for large scale patterns within predictable duration limits. 

A CwGN network has a predictable logarithmic relationship between network 

size and response time. Additionally, the network response time for 

memorisation and recall operations is insensitive to increases in the number of 
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stored patterns. Therefore, the CwGN scheme offers a highly scalable network 

architecture enabling real time applications. 

4.7 CwGN Message Sequence Models 

Message sequence models for a CwGN network aim to govern the 

message exchange process between active nodes in the MAC layer, in 

accordance to the recognition scheme and protocol described in sections 4.3 

and 4.4. In addition, the proposed models attempt to minimise 

communicational overheads by setting a timing sequence for network nodes to 

exchange and report messages thus restricting time delays caused by inactive 

nodes. This section will also use the abbreviations listed in table 4.1 when 

estimating communicational overheads. 

Sub-section 2.2.3 discussed the MAC protocols’ importance for WSN 

communications. Additionally, it has been highlighted that traditional protocols 

allow a single communicational channel for each node while new research 

presents multi-channel protocols to support multi-task operations. In this sub-

section, the different types of existing MAC protocols will be presented, and 

MAC message exchange models for a CwGN scheme to function over these 

protocols will be proposed. The proposal of these models will help in 

estimating the time and resource requirements of a CwGN scheme as 

communicational overhead is the most time and resource consuming part of 

WSNs. The section will present different sequence models and possible 

scenarios for each model while analysing the time overhead for each scenario. 
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MAC protocols use the term frame to describe a message from a node 

in the network to another node in the data-link layer. A MAC frame is a 

sequence of bits that contains the necessary information to deliver a message 

from one node to another [35]. Figure 4.11 shows an example of a MAC frame. 

However, different protocols may have different frame structures and bit 

lengths for each field. The frame shown in Figure 4.11 contains six fields. The 

Preamble field contains a set of bits that are used to occupy the channel. A 

receiver will listen to a preamble bit sequence in order to start receiving an 

incoming message. In CwGN communication models there are two types of 

preamble, namely, sending, and not sending. The sending preamble indicates 

that a node is going to send a full frame to the receiver. The not sending 

preamble indicates that a node will have no frames to send. The not sending 

preamble will be used in reporting communications in order to allow a node to 

inform its inner node that it is not edge activated and it will not send weight 

information. The Address field is used to determine source and destination 

MAC addresses. The Control field is used for control purposes such as 

message sequences and acknowledgements. The Checksum field is used for 

error detection and correction purposes. The Flag field is used to indicate the 

end of transmission. 

There are four types of WSN MAC protocols [39]: frame-slotted 

synchronous (FS-Sync), frame-slotted asynchronous (FS-Async), MC 

synchronous (MC-Sync), and MC asynchronous (MC-Async). Table 4.2 

summarises these models and the abbreviations for each one that will be used 
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in the rest of this research. In this sub-section, a CwGN communicational 

model for each MAC protocol type will be presented. Additionally, different 

possible communicational scenarios will be discussed. This section will also 

use the abbreviations listed in Table 4.1 when estimating communication time 

complexity for each model. 

 

 

Figure 4.11: A general MAC frame structure [35]. 

 

Table 4.2: Summary of existing MAC protocol types for WSNs. 

Protocol type Abbreviation Description 

Frame-slotted 

asynchronous 
(FS-Async) 

Uses one MAC channel to 

send or receive a message 

in an asynchronous mode  

Frame-slotted synchronous (FS-Sync) 

Uses one MAC channel to 

send or receive a message 

in a synchronous mode 

Multi-channel 

asynchronous 
(MC-Async) 

Divides the MAC channel 

into several channels and 

sends or receives multiple  

messages at the same time 

in asynchronous mode 

Multi-channel 

synchronous 
(MC-Sync) 

Divides the MAC channel 

into several channels and 

sends or receives multiple  

messages at the same time 

in asynchronous mode 
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4.7.1 Frame-slotted asynchronous CwGN model 

In this model, each node is allowed to send or receive one frame at a 

time. The sending node starts by sending the preamble. A receiving node 

senses the channel. In exchange communications, a value active node (as 

described in Definition 4.5) will send a MAC frame that has a sending 

preamble with its value (v) in the data field to its next node in the track. The 

next node will be sensing the channel. Once a preamble is received it starts 

receiving the rest of the frame. After the sending node finishes sending the 

frame, it starts listening for sending preamble from the next node. If no 

preamble is received it starts sending to its previous node. Figure 4.12 and 

Figure 4.13 show the communication sequence scenarios for a value active 

node (n) and its neighbouring nodes. Figure 4.12 shows the normal message 

sequence when the next and previous nodes are both active. Figure 4.13 shows 

the scenarios when adjacent nodes to the sending one are inactive. Figure 4.13 

(a) shows the sequence when one node (the next node: n+1) is active and the 

other node (previous node: n-1) is inactive. Figure 4.13 (b) shows the sequence 

when both neighbouring nodes to node n are inactive, Wt is the wait time that a 

node should wait before performing other computations or communications, Pt 

is the time required to send a full preamble field, and Δt is the error delay time that 

may occur in every communication between two nodes due to physical factors.  
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Figure 4.12: CwGN FS-Async message sequence model. 

  

(a) (b) 

   

 Figure 4.13: CwGN FS-Async message sequence model scenarios. (a) 

One adjacent node (previous) is inactive. (b) Both adjacent nodes are inactive. 
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In the normal scenario shown in Figure 4.12, the exchange time for the 

node (n) can be estimated as 4𝑇𝑠𝑒𝑛𝑑 + 4∆𝑡 as it will send two frames and 

receive two messages, where 𝑇𝑠𝑒𝑛𝑑 is the time required to send one frame, and 

∆𝑡 is the error delay time that may occur in every communication between two 

nodes due to physical factors. In the scenario shown in Figure 4.13 (a) the 

previous node (n-1) is inactive. In such a scenario the node n will wait an 

amount of time (Wt) that is equal to the time required to send a full preamble 

field (Pt) in addition to the ∆𝑡. Hence, the time estimation in such a scenario 

will be 3𝑇𝑠𝑒𝑛𝑑 + 𝑃𝑡 + 4∆𝑡. The same will be applicable if the next node is de-

activated and the previous node is active. The last scenario described in Figure 

4.13 (b) is when both neighbouring nodes to n are de-activated. In such a 

scenario the time estimation will be 2𝑇𝑠𝑒𝑛𝑑 + 2𝑃𝑡 + 4∆𝑡. It can be concluded 

that the maximum time required for a node’s exchange communications is. 

𝑇𝑒𝑥𝑐ℎ = ⁡4𝑇𝑠𝑒𝑛𝑑 + 4∆𝑡 (4.23) 

Pt is shorter than 𝑇𝑠𝑒𝑛𝑑 as the Pt  is involved in sending only a sub-part 

of the whole frame. The minimum exchange time for a node can be estimated 

as follows. 

𝑇𝑒𝑥𝑐ℎ = 2𝑇𝑠𝑒𝑛𝑑 + 2𝑃𝑡 + 4∆𝑡 (4.24) 

Taking the parallelism design of a CwGN network into account, these 

limits can be used to estimate the entire network’s maximum and minimum 

exchange time as all the network’s nodes perform exchange communications in 

the same time. 
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To perform report communications, an edge activated node (as 

described in Definition 4.6) will first wait for reports from outer track nodes. 

Then, the activated node will send a MAC frame that has a sending preamble, 

with its accumulated weight (𝜔) in the data field to its assigned inner node in 

the inner track. The inner node will be sensing the channel. Once a preamble is 

received it starts receiving the rest of the frame. If the node is not an edge 

active node, the node sends a not sending preamble. This is to minimise the 

wait time for the inner node as preamble sending time is less than frame 

sending time. Figure 4.14 shows the two possible scenarios of a reporting 

process for a node (ni,l), its outer track node (ni,l-1), and its assigned inner node 

(ni,l +1), where i is the node’s position in its track and l is the node’s track 

number. Figure 4.14 (a) shows the reporting sequence if all nodes are activated 

and Figure 4.14 (b) shows the sequence when (ni,l-1) is inactive. 

  

(a) (b) 

Figure 4.14: Message sequence for FS-Async report communications.  
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In the first scenario, the report time for the node (n) can be estimated 

according to its track number (l) and the total number of the network’s tracks 

(Ntrk). Since each active node waits for a report from other active nodes in outer 

tracks, the maximum wait time for node ni,l to receive node’s ni,l-1 report can be 

estimated as 𝑤𝑡 = (𝑁𝑡𝑟𝑘 − 𝑙)(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡). That estimate is based on the 

assumption that all nodes are active and will send report frames. Consequently, 

the network’s core node will have a maximum wait time of (𝑁𝑡𝑟𝑘 −

1)(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡). Since the core node will send a report to the S&I, the 

maximum reporting time for the network can be estimated as follows. 

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 = 𝑁𝑡𝑟𝑘(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡) (4.25) 

The minimum report time can be estimated using the second scenario. 

In that scenario, if all outer track nodes of node ni,l are inactive, the waiting 

time for ni,l can be estimated as 𝑤𝑡 = (𝑁𝑡𝑟𝑘 − 𝑙)(𝑃𝑡 + ∆𝑡). And the minimum 

reporting time for the entire network can be estimated as follows. 

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 = 𝑁𝑡𝑟𝑘(𝑃𝑡 + ∆𝑡)⁡⁡⁡⁡ (4.26) 

The total communication time (𝑇𝑐𝑜𝑚𝑚) of the network can be calculated 

as the summation of  𝑇𝑟𝑒𝑝𝑜𝑟𝑡 and 𝑇𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒. Accordingly, the maximum total 

communication time in such a model can be estimated as follows. 

𝑇𝑐𝑜𝑚𝑚 = (𝑁𝑡𝑟𝑘 + 4)(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡) (4.27) 

And the minimum can be estimated as follows. 

𝑇𝑐𝑜𝑚𝑚 = (𝑁𝑡𝑟𝑘 + 2)𝑃𝑡 ⁡+ (𝑁𝑡𝑟𝑘 + 4)4∆𝑡 + 2𝑇𝑠𝑒𝑛𝑑 (4.28) 
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4.7.2 Frame-slotted synchronous CwGN model 

A synchronous communication model aims to guarantee message 

delivery using acknowledgement (Ack) messages. After sending a frame, a 

sending node waits a period of time to receive Ack from the receiving node. If 

no Ack is received, the sending node retransmits the message assuming that the 

sent message was lost. In this sub-section we discuss the synchronous model in 

terms of sending frames and acknowledgements without dealing with the 

retransmission process as it requires further discussion and research that may 

include the physical level. Similar to the FS-Async model described in the 

previous sub-section, a value active node starts exchange communications by 

sending its value (v) in a MAC frame to its next node in the track. After 

receiving the frame, the next node replies with an acknowledgement frame. 

Then it sends its own value frame if it is active. If not, the next node sends a 

not sending preamble. This is to inform the communicating node that there is 

no value to be sent, and to allow it to finalise the information exchange 

process. After an activated node performs a successful exchange 

communication with its next neighbour, it performs the same steps with its 

previous node. Figure 4.15 shows the sequence when all nodes are active. 

Figure 4.16 shows two possible scenarios for an active node and its adjacent 

nodes: (a) previous node (n-1) is inactive and (b) both previous and next nodes 

to node n are inactive. 

From Figure 4.15 it can be seen that a full exchange communication of 

a node will involve sending and receiving 8 frames. This excludes the 
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retransmission. Hence, the total exchange time for a node in such a scenario 

can be estimated as 𝑇𝑒𝑥𝑐ℎ = ⁡8𝑇𝑠𝑒𝑛𝑑 + 8∆𝑡. In the scenario shown in Figure 

4.16 (a) the previous node is inactive. Hence node n will either receive a not 

sending preamble from n-1 or wait for Pt to retransmit the sent frame. 

Consequently, the time of such an exchange scenario will be 𝑇𝑒𝑥𝑐ℎ = ⁡5𝑇𝑠𝑒𝑛𝑑 +

6∆𝑡 + 𝑃𝑡. The same applies if the next node is inactive and the previous one is 

active. The last scenario shown in Figure 4.16 (b) requires both inactive 

adjacent nodes to send a not sending preamble to allow n to finish the exchange 

transmission process. In this case the time estimate will be 𝑇𝑒𝑥𝑐ℎ = ⁡2𝑇𝑠𝑒𝑛𝑑 +

4∆𝑡 + 2𝑃𝑡. Since 𝑃𝑡 is less than 𝑇𝑠𝑒𝑛𝑑, and the network is functioning in 

parallel, the maximum exchange time for a network that runs a FS-Sync model 

can be estimated as follows. 

𝑇𝑒𝑥𝑐ℎ = ⁡8𝑇𝑠𝑒𝑛𝑑 + 8∆𝑡 (4.29) 

And the minimum will be as follows. 

𝑇𝑒𝑥𝑐ℎ = ⁡2𝑇𝑠𝑒𝑛𝑑 + 4∆𝑡 + 2𝑃𝑡 (4.30) 

That, assuming that there is at least one active node in the whole network. 

To perform report communications, an edge activated node (as 

described in Definition 4.6) will firstly wait for reports from outer track nodes. 

Then, it will send an Ack frame to its reporting node. Then, the activated node 

will send a MAC frame that has a sending preamble, with its accumulated 

weight (𝜔) in the data field, to its assigned inner node in the inner track and 

receives an Ack to end the reporting communication. If the reporting or inner 

node is not an edge active node, the node sends a not sending preamble. This is 
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to minimise the wait time for the inner node as the preamble sending time is 

less than the frame sending time. Figure 4.17 shows the two possible scenarios 

for the reporting process for a node (ni,l), its outer track node (ni,l-1), and its 

assigned inner node (ni,l +1) where i is the node’s position in its track and l is the 

node’s track number. Figure 4.17 (a) shows the reporting sequence if all nodes 

are activated and Figure 4.17 (b) shows the sequence when (ni,l-1) is inactive. 

In the first scenario, the report time for the node (n) can be estimated in 

a similar way to the first reporting scenario presented for the FS-Async in the 

previous sub-section. Taking the Ack frames into account, the maximum 

reporting time for the network can be estimated as follows. 

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 = 2𝑁𝑡𝑟𝑘(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡)⁡⁡⁡⁡ (4.31) 

 

 

Figure 4.15: : CwGN Message sequence for FS-Sync exchange 

communicational model. 
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(a) (b) 

 

Figure 4.16: CwGN message sequence for FS-Sync exchange 

communicational model, (a) one adjacent node (previous) is inactive and (b) 

both adjacent nodes are inactive. 
 

 

The minimum report time can be estimated using the second scenario. 

In that scenario, if all outer track nodes of node ni,l are inactive, the minimum 

reporting time of this model will be similar to the minimum report time of the 

FS-Async model which has been estimated according to Equation 4.25. The 

total communication time (𝑇𝑐𝑜𝑚𝑚) of the network can be calculated as the 

summation of 𝑇𝑟𝑒𝑝𝑜𝑟𝑡 and 𝑇𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒. Accordingly, the maximum total 

communication time in such a model can be estimated as follows. 

𝑇𝑐𝑜𝑚𝑚 = 2(𝑁𝑡𝑟𝑘 + 4)(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡) (4.32) 
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This is twice the maximum time of the FS-Async communication time 

presented in Equation 4.26. However, the minimum communication time for 

both models remains the same as that derived in Equation 4.27. 

 

  

(a) (b) 

 

 

Figure 4.17: Message sequence for FS-Sync report communicational 

model. 

 

4.7.3 Multi-channel CwGN models 

In multi-channel (MC) models, a node is capable of handling multiple 

communications simultaneously. Similar to frame-slotted models, MC can 

work on asynchronous and synchronous modes. Figure 4.18 shows MC-Async 

exchange communications when all nodes are value activated. Figure 4.19 
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shows two possible scenarios: (a) one adjacent node is inactive, and (b) 

previous and next nodes are inactive. 

From Figure 4.18, if all nodes are activated, all nodes will exchange 

frames at the same time and the time estimate can be determined as 𝑇𝑠𝑒𝑛𝑑 + ∆𝑡. 

However, when there is an inactive node such as in Figures 4.19 (a) and (b), 

the time estimate can be 𝑇𝑠𝑒𝑛𝑑 + 2∆𝑡 + 𝑃𝑡. This can be used as the maximum 

exchange time as it is higher than the first scenario time estimate. In report 

communications, the MC-Async model is similar to the FS-Async mode as 

there is only one report frame from one node to another. Hence, the 

communication scenarios shown in Figure 4.17 are applicable in this model. As 

a consequence, the report time estimates of FS-Async presented in Equations 

4.26 and 4.27 represent the time estimates for this model. Thus the maximum 

communication time for a network running MC-Async can be estimated as 

follows. 

𝑇𝑐𝑜𝑚𝑚 = 𝑇𝑠𝑒𝑛𝑑(𝑁𝑡𝑟𝑘 + 1) + ∆𝑡(𝑁𝑡𝑟𝑘 + 2) + 𝑃𝑡 (4.33) 

And minimum time can be estimated as follows. 

𝑇𝑐𝑜𝑚𝑚 = 𝑁𝑡𝑟𝑘(𝑃𝑡 + ∆𝑡) + 𝑇𝑠𝑒𝑛𝑑 + ∆𝑡⁡⁡⁡ (4.34) 

In synchronous communication, each receiving node is expected to 

reply to the sending node with an Ack frame to confirm the receipt of the 

message. Figure 4.20 shows the exchange communication sequence in an MC-

Sync model. Figure 4.21 shows two possible scenarios: (a) one adjacent node is 

inactive, and (b) previous and next nodes are inactive. 
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Figure 4.18: CwGN MC-Async message sequence for exchange 

communications when all adjacent nodes to a sending node are active. 

   

(a) (b) (c) 

 

  

(a) (b) 

Figure 4.19: CwGN Message sequence for MC-Async exchange 

communicational model. (a) One adjacent node (previous) is inactive and (b) 

both adjacent nodes are inactive. 
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Figure 4.20: CwGN MC-Sync message sequence for exchange 

communications when all adjacent nodes to a sending node are active. 

 

 

  

(a) (b) 

Figure 4.21: CwGN message sequence for MC-Sync exchange 

communicational model. (a) One adjacent node (previous) is inactive and (b) 

both adjacent nodes are inactive. 
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From Figure 4.20, exchange time can be estimated as 2(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡). 

This estimate includes Ack frames. The same estimate can be applied to the 

second scenario shown in Figure 4.21 (a) as the wait time for a response from 

node n-1 overlaps with exchange time with node n+1. In the third scenario 

shown in Figure 4.21 (b), time estimate will be 𝑃𝑡 + ∆𝑡 as node n will be 

waiting for a not sending preamble. A reporting sequence for this model is 

similar to the reporting sequence for the FS-Sync model shown in Figure 4.17 

and has the same time estimates derived in Equations 4.31 and 4.32. Hence 

maximum network time in such a model can be estimated as follows. 

𝑇𝑐𝑜𝑚𝑚 = (2𝑁𝑡𝑟𝑘 + 2)(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡)⁡⁡⁡⁡ (4.35) 

Since the third scenarios of both MC-Sync and FS-Sync models are 

similar, minimum communication time can be estimated as presented, as in 

Equation 4.29.   

Table 4.3 summarises the limits of communication time overhead 

estimates for each CwGN message sequence model. Experimental analysis on 

the four sequence models will be conducted later in Chapter 5 to evaluate the 

communication overhead of a CwGN network for each model using different 

types of patterns.  
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Table 4.3: Summary of communication time overhead (Tcomm) limit estimates 

for each CwGN message sequence model. 

Model Minimum time estimate Maximum time estimate 

FS-Async (𝑁𝑡𝑟𝑘 + 2)𝑃𝑡 ⁡+ (𝑁𝑡𝑟𝑘 + 4)4∆𝑡

+ 2𝑇𝑠𝑒𝑛𝑑 

(𝑁𝑡𝑟𝑘 + 4)(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡) 

FS-Sync (𝑁𝑡𝑟𝑘 + 2)𝑃𝑡 ⁡+ (𝑁𝑡𝑟𝑘 + 4)4∆𝑡

+ 2𝑇𝑠𝑒𝑛𝑑 

2(𝑁𝑡𝑟𝑘 + 4)(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡) 

MC-Async 𝑁𝑡𝑟𝑘(𝑃𝑡 + ∆𝑡) + 𝑇𝑠𝑒𝑛𝑑 + ∆𝑡⁡⁡⁡ 𝑇𝑠𝑒𝑛𝑑(𝑁𝑡𝑟𝑘 + 1)
+ ∆𝑡(𝑁𝑡𝑟𝑘 + 2)
+ 𝑃𝑡 

MC-Sync (𝑁𝑡𝑟𝑘 + 2)𝑃𝑡 ⁡+ (𝑁𝑡𝑟𝑘 + 4)4∆𝑡

+ 2𝑇𝑠𝑒𝑛𝑑 

(2𝑁𝑡𝑟𝑘 + 2)(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡)⁡⁡⁡⁡ 

 

4.8 Effects of Pattern Transformation on CwGN 

Recognition 

CwGN achieves invariant recognition by using weights rather than 

storing the pattern’s information as is done in standard GN. The patterns’ 

weights are stored in the S&I of a CwGN network as a vector, as described in 

Equation 4.1. Recognising an incoming pattern requires comparing the 

calculated accumulated weight with the stored patterns’ weights in the S&I 

using Equation 4.2. This comparison can be described as follows. 

Δ𝜔𝑖𝐶 = |𝜔𝑖 − 𝜔𝐶| (4.36) 

where Δ𝜔𝑖𝐶 is the difference between the stored ith pattern’s weight and the 

network’s calculated weight for an incoming pattern. Using Equation 4.7, 4.36 

can be written as Δ𝜔𝑖𝐶 = |∑ 𝜔𝑖𝑚
𝑆
𝑚=1 -∑ 𝜔𝐶𝑚

𝑆
𝑚=1 | where i is the ith pattern in 

the pattern vector, C is the calculated pattern, and m is the pattern element 
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number. The weight is calculated in accordance with the exchange of 

communications. Hence, each node’s weight is determined as a function of its 

value and the values of its adjacent nodes such that 𝜔𝑚 = 𝑓(𝑐, 𝑝, 𝑛), where c, 

p, n are the current, previous, and next nodes’ values. As each node receives 

one pattern element, this function can be expressed as 𝜔𝑚 =

𝑓(𝜀𝑚, 𝜀𝑚−1, 𝜀𝑚+1), assuming that a track’s first node communicates with the 

track’s last node. Accordingly, the weight difference can be calculated as 

follows. 

Δ𝜔𝑖𝐶 = |∑ 𝑓(𝜀𝑖𝑚, 𝜀𝑖𝑚−1, 𝜀𝑖𝑚+1)
𝑆
𝑚=1   

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡− ∑ 𝑓(𝜀𝐶𝑚, 𝜀𝐶𝑚−1, 𝜀𝐶𝑚+1)|

𝑆

𝑚=1

 

(4.37) 

To discuss the effect of pattern transformation on CwGN recognition, 

we will examine three types of changes below: translation, dilation and spatial 

rotation. 

4.8.1 Pattern translation 

In this research, pattern translation in 1-D space is formally defined as 

follows.  

 

Definition 4.8: (Pattern translation) Given a pattern 𝜌 = {𝜀1, 𝜀2, … , 𝜀𝑆} where 

𝜀𝑖 is a pattern element in position i, S is the pattern size, and a translation value 

(⁡𝛼 ∈ ℕ), (0< 𝛼 < S), pattern translation involves shifting the position of each 𝜀𝑖 
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by the value of 𝛼 with the assumption that (i +⁡𝛼 =i +⁡𝛼 - S), ∀⁡(𝑖 + 𝛼) > 𝑆, (𝛼 

>0), and (i+⁡𝛼 =i+⁡𝛼 +S), ∀⁡(𝑖 + 𝛼) ≤ 0, (𝛼 <0). 

 

Proposition 4.1: If 𝛾𝑖 is the translated pattern of the original pattern 𝜌𝑖 by the 

value of 𝛼, the difference weight (𝜔𝜌𝑖𝛾𝑖
) will be equal to zero. The accumulated 

weight (𝜔𝑖) of the stored pattern 𝜌𝑖 is equal to the accumulated weight of any 

translated pattern (𝛾𝑖). 

 

Proof:  Let 𝛾𝑖 = {𝛿1, 𝛿2, … , 𝛿𝑆} be the translated pattern of  𝜌𝑖 = {𝜀1, 𝜀2, … , 𝜀𝑆} 

by the value of 𝛼. According to Definition 4.8, 𝜀1 = 𝛿1+𝛼, 𝜀2 = 𝛿2+𝛼, …, 

𝜀𝑆−2+𝛼 = 𝛿𝛼−2, 𝜀𝑆−1+𝛼 = 𝛿𝛼−1, 𝜀𝑆+𝛼 = 𝛿𝛼, 𝜀𝑆+𝛼+1 = 𝛿𝛼+1 = 𝜀1, 𝜀𝑆+𝛼+2 =

𝛿𝛼+2 = 𝜀2. This means that each element in the translated pattern 𝛾𝑖 maintains 

the same neighbouring elements that it had in the original pattern 𝜌𝑖.  

As a consequence, the weight difference between any given pattern and 

its translated pattern will be equal to zero according to Equation 4.37. This 

implies that the CwGN weighting technique is translation invariant as any 

translated version of a pattern will result in the same cumulative weight.  

Special considerations can lead to slight changes between a pattern’s 

weight and its translation weight. The CwGN scheme assumes that the value of 

a node that has no reading will be equal to zero. This can happen if a node is 

turned off because it has run out of energy, lost communication, or for some 

other reason. Additionally, this can also happen in the core track in the 

standard communication model. In this case, the weight value of any adjacent 
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node to such lost nodes will change in accordance with the amount of the 

change to zero. In Equation 4.5, it has been assumed that the weight of the 

node in such a case will be the value of the node itself. Hence, the weight 

difference in such a special case will be equal to the value of the difference 

between the values of the original and translated elements in that position 

(|𝜀𝑖 − 𝜀𝛼𝑖|). However, this amount of change will be reduced by using the 

normalising factor (Nf ), which can be the pattern (or network) size (S). In 

contrast, this effect will increase if Nf is small or when there is a large number 

of defect (or non-deployed) nodes.  

Another special case might occur when using the standard 

communication CwGN network. In this communicational scheme, the pattern 

is sub-divided into several sub-patterns and each sub-pattern’s weight is 

calculated separately. When translating a pattern, parts of each sub-pattern 

could move to another part, causing changes in the neighbouring values, which 

may change the values of some sub-pattern weights. However, the CwGN 

weighting technique depends on determining the edges of patterns and sub-

patterns. This means that this effect will be minimised if the edges of the 

translated pattern maintain the same adjacent node values as the original 

pattern. Additionally, division by Nf could also minimise this effect. In general, 

the CwGN weighting technique allows for its PR process to be invariant to 

pattern translation, especially when using the track linking communication 

scheme. 
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4.8.2 Pattern dilation 

The dilated pattern is another form of pattern transformation that the 

CwGN scheme is capable of detecting. Dilation can occur in three forms: 

constant, average, and spatial. These types are defined as follows. 

 

Definition 4.9: (Constant dilation) Given a pattern 𝜌 = {𝜀1, 𝜀2, … , 𝜀𝑆}, where 𝜀𝑖 

is a pattern element in position i, S is the pattern size, and the value of dilation 

is (𝛼 ϵ ℝ), in constant dilation the value of 𝛼 is added to each pattern element. 

Hence, a dilated pattern 𝛾𝛼 = {𝜀1 + 𝛼, 𝜀2 + 𝛼,… , 𝜀𝑆 + 𝛼}, ∀⁡𝛼 ≥ 0. 

 

Proposition 4.2: If 𝛾𝑖 is the constantly dilated pattern of the original pattern 𝜌𝑖 

by the value of 𝛼, then the variance value of any given node in the CwGN 

network for the dilated pattern is 𝑉𝑅𝑐𝑁𝛼 = |
𝐶𝑣−𝑁𝑣

𝑁𝑣+𝛼
| and the difference value 

between (𝑉𝑅𝑐𝑁) for the original pattern and dilated pattern for any node in the 

network is ∆𝑉𝑅𝑐𝑁 = |
𝛼

𝑁𝑣+𝛼
. 𝑉𝑐𝑁| . 

 

Proof: Let 𝑉𝑅𝑐𝑁𝛼 be the variance value of any given node in the CwGN 

network for the constant dilated pattern 𝛾𝛼of the original pattern 𝜌. Then, 

𝑉𝑅𝑐𝑁𝛼 and ∆𝑉𝑅𝑐𝑁 can be calculated as follows. 

𝑉𝑅𝑐𝑁𝛼 = |
(𝐶𝑣 + 𝛼) − (𝑁𝑣 + 𝛼)

𝑁𝑣 + 𝛼
| (4.38) 

𝑉𝑅𝑐𝑁𝛼 = |
𝐶𝑣 − 𝑁𝑣

𝑁𝑣 + 𝛼
| (4.39) 
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∆𝑉𝑅𝑐𝑁 = |𝑉𝑅𝑐𝑁 −⁡𝑉𝑅𝑐𝑁𝛼| (4.40) 

∆𝑉𝑅𝑐𝑁 = |
𝐶𝑣 − 𝑁𝑣

𝑁𝑣
−⁡

𝐶𝑣 − 𝑁𝑣

𝑁𝑣 + 𝛼
| (4.41) 

∆𝑉𝑅𝑐𝑁 = |(
𝐶𝑣

𝑁𝑣
− 1) − (

𝐶𝑣 + 𝛼

𝑁𝑣 + 𝛼
− 1)| (4.42) 

∆𝑉𝑅𝑐𝑁 = |
𝛼(𝐶𝑣−𝑁𝑣)

𝑁𝑣(𝑁𝑣 + 𝛼)
| (4.43) 

∆𝑉𝑅𝑐𝑁 = |
𝛼

(𝑁𝑣 + 𝛼)
. 𝑉𝑐𝑁| (4.44) 

Note that the factor |
𝛼

(𝑁𝑣+𝛼)
| value ranges between 0 and 1 and gets 

closer to 1 as the value of 𝛼 is increases. Thus, we can conclude that a node’s 

weight can increase up to the value of 𝑉𝑐𝑁for a constantly translated pattern. 

This predicts that the difference in weight Δ𝜔𝑖𝐶 ⁡in Equation 4.37 for a 

constantly dilated pattern will range from 0 to 𝑉𝑐𝑁.  

 

Definition 4.8: (Average dilation) Given a pattern 𝜌 = {𝜀1, 𝜀2, … , 𝜀𝑆}, where 𝜀𝑖 

is a pattern element in position i S is the pattern size and the value of dilation is 

(𝛼 ϵ ℝ), in average dilation the value of difference average 𝛼𝜀𝑖 is added to each 

pattern element. Hence, a dilated pattern 𝛾𝛼 = {𝜀1 + 𝛼𝜀1, 𝜀2 + 𝛼𝜀2, … , 𝜀𝑆 +

𝛼𝜀𝑆}. 

 

Proposition 4.3: If 𝛾𝑖 is the average dilated pattern of the original pattern 𝜌𝑖 by 

the value of 𝛼, then the variance value for any given node in the CwGN 

network for the dilated pattern is 𝑉𝑅𝑐𝑁𝛼 = 𝑉𝑅𝑐𝑁. 
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Proof: Let 𝑉𝑅𝑐𝑁𝛼 be the variance value of any given node in the CwGN 

network for the average dilated pattern 𝛾𝛼of the original pattern 𝜌. Then, 

𝑉𝑅𝑐𝑁𝛼 can be calculated as follows. 

𝑉𝑅𝑐𝑁𝛼 = |
(𝐶𝑣 + 𝛼𝐶𝑣) − (𝑁𝑣 + 𝛼𝑁𝑣)

𝑁𝑣 + 𝛼𝑁𝑣
| (4.45) 

𝑉𝑅𝑐𝑁𝛼 = |
𝐶𝑣(1 + 𝛼)

𝑁𝑣(1 + 𝛼)
−

𝑁𝑣(1 + 𝛼)

𝑁𝑣(1 + 𝛼)
| (4.46) 

𝑉𝑅𝑐𝑁𝛼 = |
𝐶𝑣 − 𝑁𝑣

𝑁𝑣
| = ⁡𝑉𝑅𝑐𝑁 (4.47) 

It can be concluded from Equation 4.47 that the difference in weight 

between a pattern and its average dilated pattern will equal zero. Consequently, 

the CwGN is invariant to average dilation. However, special cases may be 

excluded. Similar to the problem discussed in pattern translation, a change in 

the pattern weight might be encountered due to the assumption that a non-

deployed or off node’s value is zero. However, this effect is reduced by the use 

of Nf. 

Spatial dilation can be described as the increase in the pattern’s size 

when the pattern is modelled in 2-D space. Figure 4.22 shows a pattern and 

some of its possible transformations and Figure 4.22 (b) depicts the spatial 

dilation of a pattern. The figure shows that the dilated pattern has the same 

shape of the original pattern but has been spread out over the area. In this type 

of dilation, the main feature that a CwGN scheme is observing is the edges of 

the two-dimensional pattern, as it calculates weights based upon variances 
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between pattern elements. Consequently, the change in the number of elements 

that represent the edges of a pattern will have the greatest impact on changing 

the total weight value. The effect of such dilation can be minimised by the use 

of NF. If the NF is the pattern size, such an effect will be lower in large pattern 

sizes.  This allows the CwGN scheme to be dilation invariant, especially for 

problems involving large pattern sizes. 

4.8.3 Spatial rotation 

Spatial rotation is another form of pattern change that can occur in 2-D 

space. In this type of change, the data location moves by an angle of θ in the 

field of interest. Figure 4.22 (c) depicts the spatial rotation of a pattern. Similar 

to pattern spatial dilation, the rotated pattern has the same original shape 

characteristics. However, the rotated pattern changes the location of data by an 

angle in the field of interest. 

The main effect of spatial rotation on a pattern’s weight calculation is to 

change the node’s edge type. In such a pattern, a node’s neighbouring value 

could change while the node’s value remains the same. This will result in 

changing the edge type of the node, which will change the weight of the whole 

pattern. However, a horizontally flipped pattern will maintain similar 

neighbouring values.  
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(a) (b) (c) 

Figure 4.22: Possible types of pattern transformations. (a) Original 

pattern, (b) dilated pattern, and (c) rotated pattern. 

 

Definition 4.9: (Flipped pattern) Given a pattern 𝜌 = {𝜀1, 𝜀2, … , 𝜀𝑆}, where 𝜀𝑖 

is a pattern element in position i and S is the pattern size, the flipped pattern 𝛾𝜃⁡ 

with a value of rotation 𝜃 = 180° such that 𝛾𝜃⁡ = {𝜀𝑆, 𝜀𝑆−1, 𝜀𝑆−2, … , 𝜀1}. 

 

Proposition 4.4: If 𝛾𝜃 is the flipped pattern of the original pattern 𝜌, 𝜃 = 180°, 

then the weight difference 𝜔𝜌𝛾 = 0, ∀⁡𝑅𝐸𝑣 = 𝐿𝐸𝑣. 

 

Proof: Let 𝜌 = {𝜀1, 𝜀2, … , 𝜀𝑆}, the flipped pattern will be 𝛾𝜃⁡ =

{𝜀𝑆, 𝜀𝑆−1, 𝜀𝑆−2, … , 𝜀1}. 𝜔𝜌𝛾 can be calculated according to Equation 4.24 as 

follows. 

𝜔𝜌𝛾 = |∑𝑓(𝜀𝜌𝑖, 𝜀𝜌𝑖−1, 𝜀𝜌𝑖+1)

𝑆

𝑖=1

− ∑𝑓(𝜀𝛾𝑖, 𝜀𝛾𝑖−1, 𝜀𝛾𝑖+1)

𝑆

𝑖=1

| (4.48) 

where 𝜀𝜌𝑖 and 𝜀𝛾𝑖 are the element values in position i in 𝜌 and 𝛾, respectively. 

As the elements in the flipped pattern maintain the same neighbouring 

elements and 𝐿𝐸 = 𝑅𝐸, then 𝑓(𝜀𝑖, 𝜀𝑖−1, 𝜀𝑖+1) = 𝑓(𝜀𝑖, 𝜀𝑖+1, 𝜀𝑖−1), and 𝜔𝜌𝛾 = 0. 

This means that the scheme is invariant to flip pattern effect.  



 

181 

 

 The theoretical analysis of the effects of pattern transformations on a 

CwGN scheme has been conducted in this section. The analysis shows that the 

scheme is invariant to pattern translation, dilation and rotation translation 

effects. However, special cases can affect the robustness of the scheme, as 

discussed in this section. Experimental tests will be conducted in the next 

chapter to present further analysis of the scheme’s transformation invariant 

features. 

4.9 Summary 

In this chapter, the CwGN scheme is presented and discussed in order 

address the problems of random and dynamic pattern changes. The goal of the 

CwGN scheme is to overcome the location sensitivity problem associated with 

the CGN scheme presented in Chapter 3 and provide transformation invariant 

recognition capabilities using limited resources to deal with network and 

patterns dynamics. The scheme adopts a weighting technique for pattern 

memorisation and recognition operations rather than storing information about 

the pattern itself. This eliminates the location sensitivity problem associated 

with a CGN scheme. The weighting technique is performed by distributing the 

computations amongst CwGN network nodes. Each node communicates with 

its adjacent nodes to perform its weight calculations and report the outcomes to 

another node. This allows the scheme to have the advantages of using 

distributed methods, which minimises the scheme’s complexity and also 

reduces resource consumption. 
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Similar to the CGN scheme, CwGN involves limited communicational 

requirements as each node in the network communicates with its neighbouring 

nodes only. Additionally, these communications occur only once for each 

pattern. In other words, there is no need for an iterative process. In addition to 

the resource conservation provided by such features, it is also possible to 

predict the time needed to memorise or recall a pattern. Zoning structure is 

presented in order to provide online recognition capability to the CwGN 

network structure. This ability allows the scheme to be used in applications that 

require time deterministic operations such as real time operations.  

The theoretical analysis of the effects of pattern transformations on a 

CwGN scheme was conducted in this chapter. Three types of transformations 

have been analysed: translation, dilation, and rotation. The theoretical analysis 

concluded that the scheme is invariant to these types of transformations. This 

concludes that the CwGN is a robust scheme that can detect various types of 

pattern transformation. Such recognition capabilities mean that the scheme 

requires a limited amount of training information in order to perform pattern 

recognition operations, which suits the nature of WSNs.  

The capabilities provided by a CwGN scheme, including low 

complexity, limited time cycle and limited requirement of training samples 

make it the scheme best suited for WSNs, especially for real time and decision 

making applications, as discussed in Chapter 2. The next chapter will present 

experimental analysis and evaluation of the presented scheme in this chapter. 

This will include estimating the number of activated nodes, energy 
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consumption, and learning time required in a CwGN network. Translation 

recognition capabilities will be also demonstrated, using different types of 

patterns to evaluate the scheme’s recognition accuracy. Additionally, the next 

chapter will compare the scheme’s accuracy against existing pattern 

recognition schemes, using different types of problems. This involves testing 

the ability of the scheme to deal with real life problems.  
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Chapter 5 

5 Experimental Evaluation of a CwGN 

Scheme 
 

5.1 Introduction 

In the previous chapter, a CwGN scheme was introduced as an efficient 

pattern recognition scheme for resource-constrained and large scale systems 

and networks such as WSNs. The scheme adopts a parallel and distributed in-

network processing mechanism that is based on adjacency information 

exchange. Additionally, the scheme involves network node activation and de-

activation processes to limit the number of participating nodes in the pattern 

recognition process. The in-network network structure and activation processes 

minimise communications and computations in the network, making the 

scheme light-weight and scalable so as to run on a limited resource network 

environment. Additionally, this allows the scheme to perform recognition 

operations within a single and predictable duration learning cycle, which 

makes the scheme suitable for online applications such as mission critical 

application types. 

The scheme also provides pattern transformation detection capabilities 

by adopting a weighting technique that searches patterns’ edges. The weighting 
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technique is location insensitive as weights are accumulated from all network 

nodes before a conclusion is reached about the detected pattern, which makes 

the scheme capable of dealing with topological changes in patterns. This gives 

the scheme the ability to efficiently recognise patterns while using minimal 

information about patterns.  CwGN’s scalability light-weight, single learning 

cycle, and efficient recognition features make the scheme the best option for 

large scale and limited resource networks such as WSNs. 

Theoretical analysis has been conducted on the scheme to evaluate its 

time complexity, transformation recognition capabilities, and communicational 

overhead. The analysis showed that the scheme has high scalability for 

performing pattern transformation recognition efficiently within a single 

learning cycle. This chapter presents experimental analysis that evaluates the 

scheme’s performance and resource consumption using different types of 

problems to confirm the theoretical findings presented in Chapter 4. The 

chapter evaluates the activation process of a CwGN scheme by estimating the 

number of participating nodes in the recognition process. The scheme’s 

recognition accuracy will be evaluated using patterns that carry different types 

of transformations. This aims to perform sensitivity analysis of the scheme’s 

recognition capabilities and determines its strengths and limitations. Energy 

resource consumption and the time required to perform recognition operations 

using a CwGN scheme will also be experimentally evaluated in this chapter. 

This involves evaluating these parameters using the different message 

sequence models presented in the previous chapter. This will also predict the 
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behaviour of CwGN networks running in different models. This chapter also 

presents an accuracy comparison between a CwGN scheme and other existing 

schemes using standard datasets and tools. Finally, in this chapter, the 

capability of the scheme to deal with real life sensory problems will be tested 

and compared with other schemes.       

This chapter is organised as follows. Section 5.2 presents experimental 

accuracy analysis of a CwGN scheme. This involves introducing two types of 

datasets to evaluate the scheme’s behaviour in the presence of different 

transformation levels. In section 5.3, the scheme will be compared with other 

recognition schemes using standard datasets. In addition, this section will 

examine the ability of the scheme to deal with real life problems that require 

sensory information. In section 5.4 the communicational overhead of a CwGN 

scheme in terms of energy and time will be experimentally evaluated. This will 

be presented in accordance with the message sequence models presented in the 

previous chapter. This will involve presenting a set of assumptions to find 

figures for the network’s energy consumption behaviour, the network’s 

lifetime, and the time required to perform one learning cycle. Section 5.5 

summarises the chapter. 

5.2 Accuracy Analysis of CwGN  

In this section, the performance in terms of accuracy of a CwGN 

scheme will be evaluated using experimental tests. This includes testing the 

ability of the scheme to detect patterns with transformations such as translation, 



 

187 

 

rotation, and dilation. Additionally, this section will compare the recognition 

accuracy of a CwGN scheme with other schemes. We ran three test series to 

assess the accuracy of CwGN transformation recognition using different 

datasets. The first uniform shape patterns dataset was called shapes dataset and 

the second, using non-uniform map patterns, was called contours dataset. 

These datasets will also be used in evaluating the activation process, 

communicational overhead, energy consumption, and time requirements. The 

next section compares the scheme’s accuracy with KNN, Naïve Bayes, and 

neural networks using standard datasets available in [112]. The datasets carry 

different types of transformations, as will be discussed.  

5.2.1 CwGN Accuracy using uniform patterns (shapes dataset) 

The first test aimed to estimate the limits of tolerance of the CwGN 

scheme to pattern rotation, dilation, and translation for uniform shape-like 

patterns. To perform this test, we constructed a dataset called shapes dataset 

that consisted of training and testing pattern datasets. The training dataset was 

constructed by creating and using four shapes modelled as a binary image of 

size 200x200 pixels, as shown in Figure 5.1. Two shapes from the training 

dataset were taken from the dataset presented in [129, 130]. These images were 

presented to the CwGN network for memorisation. To construct the testing 

dataset, altered versions of these images were produced for recall operations. 

Four sets of altered images were generated. In the first set, each image was 

rotated counter-clockwise from 1 to 360 degrees, with one degree for each 
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rotation level. In the second altered set, each image was spatially dilated by 

scaling the object size using 50 dilating levels. That is, the images were scaled 

from 1% to 100% scaling percentages in 2% steps. In the third set, each image 

was randomly translated 100 times by shifting the pattern’s location. Figure 5.2 

presents a sample of altered images using dilation, rotation, and translation 

effects. In the fourth set, each image was altered four times with a complex 

translation or a combination of rotation and translation, as shown in the 

example in Figure 5.3, to test the ability of the network to recognise such 

transformation types. Complex translation of an image involves taking parts of 

the image and translating these parts separately to different levels. Complex 

dilation involves dilating these parts to different levels as well. In this set, eight 

altered images were taken from the dataset presented in [129, 130]. The total 

number of altered images is 2052: 359 rotated images, 50 dilated images, 100 

translated images, and 4 complex translated images for each original image. 

These images were used for testing to determine the boundaries of the CwGN’s 

invariant recognition capabilities. These images were presented to the CwGN 

network to recall. We ran a simulated CwGN network of 40000 nodes 

assuming that the nodes are distributed as a grid and that each node detects one 

pixel reading. We set edge values to 0, 0.2, 0.2, and 1 for NE, RE, LE, and DE, 

respectively. The normalising factor is set to 40 000, which is the number of 

nodes. We first trained the network using the constructed training dataset. 

Then, we presented testing datasets for recall.  
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Figure 5.1: Shapes used as the training dataset for the first test series. 

    

Figure 5.2: Sample of altered patterns used as the testing dataset for the 

shapes test series. 

    

Figure 5.3: Sample of altered patterns used as the testing dataset for 

complex translation and combination of translation and rotation 

transformations. 

 

The first set of recall images is the rotated samples. Figure 5.4 and 

Figure 5.5 show the accuracy of the system in recalling rotated images. The 

accuracy of the network in Figure 5.4 is calculated as the total number of 

correctly classified patterns as a percentage of the number of tested rotated 

images. The higher the score means the higher the accuracy. Alternatively, the 

accuracy shown in Figure 5.5 is calculated using the average weight difference 
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between a recalled (transformed) pattern’s weights and the pattern’s stored 

weight using Equation 4.36, as follows. 

𝑎𝑖 = |
𝜔𝑐−𝜔𝑖

𝜔𝑖
| (5.1) 

where ai is the accuracy of pattern i, 𝜔𝑐 is the recall weight obtained by the 

network, and 𝜔𝑖 is the stored weight for pattern i in the network. The accuracy 

shown in Figure 5.5 is the average score for all recalled patterns for each 

rotational angle using the following equation. 

𝑎𝑗 =
∑ 𝑎𝑖

𝑁𝑝𝑎𝑡

𝑖=1

𝑁𝑝𝑎𝑡
 (5.2) 

where j is the transformation level which is the rotation angle in this case, aj is 

the accuracy of that transformation level, and Npat is the number of stored 

patterns, which is equal to 4 in the shapes dataset. Calculating average distance 

to the stored weight means that lower scores indicate higher accuracy. The aim 

was to evaluate the scheme’s behaviour in accordance with different 

transformation levels.   

 

Figure 5.4: CwGN network accuracy in detecting spatially rotated 

patterns for the shapes dataset. Accuracy calculated as the number of correctly 

recalled patterns. Higher scores mean higher accuracy levels. 
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Figure 5.5: CwGN network accuracy in detecting spatially rotated 

patterns for the shapes dataset. Accuracy calculated as the average scores of the 

average difference to stored weights. Lower scores mean higher accuracy 

levels. 

 

Figure 5.4 shows each rotation angle and the number of correctly 

recognised patterns at that angle. It is important to note that the total numbers 

of 4 samples were presented per rotational angle. The graph shows that the 

CwGN network is highly accurate (4 correctly classified samples) in three 

rotational regions. The first area is between 0 and 23 degrees, the second is 

between 161 and 202 degrees, the area where patterns are horizontally flipped 

or nearly flipped, and the third is between 341 and 360 degrees. In other words, 

the CwGN network is capable of efficiently detecting patterns rotated within 

these ranges, and could possibly detect higher rotational degrees. Figure 5.5 

also shows the average distance to a stored pattern’s weight according to 

Equations 5.1 and 5.2. From the figure it can be seen that the weight average 

difference increases linearly by increasing the rotation angle, reaching its 

highest value (78.77%) at 90˚. The increase in weight difference is caused by 
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the change of a nodes’ edge type. Vertical rotation causes some of the active 

nodes in the network to change their edge type from double edge (DE) to not 

an edge (NE) and vice versa. Since presented patterns are uniform shapes, the 

weight difference becomes more sensitive to this effect. After reaching the 

highest difference levels, the difference decreases until reaching to the value of 

0% at 180˚, which means that the stored weight is equal to its flipped pattern 

version weight. This confirms the conditions and results presented in 

Proposition 4.4. It can also be seen that the network presents the same 

behaviour for the rotation angles ranging between 180˚ and 360˚. This means 

that a pattern’s weight is equivalent to its flipped pattern’s weight.       

The second set of recall images is the translated and complex 

transformed samples. The scheme successfully recognised all patterns 

correctly. This shows how the scheme is capable of dealing with translation 

and combinations of transformations. Figure 5.6 shows the accuracy of the 

translated patterns using the average weight difference in Equations 5.1 and 

5.2. The number of iterations is 100. Each iteration involves 4 randomly 

translated samples (one for each pattern), which gives a total of 400 samples. 

The figure shows the average weight difference for all patterns based on the 

iteration number. As can be seen from the figure, the average weight difference 

is very low, and in most iterations 0. This confirms the conditions and results 

presented in Proposition 4.1. The low difference values scored in some of the 

iterations resulted from the special cases discussed in section 4.8.1. 
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Figure 5.6: CwGN network accuracy in detecting translated patterns for 

the shapes dataset. Accuracy calculated as the average scores of the average 

difference to stored weights. Lower scores mean higher accuracy levels. 

 

The third set of recall samples was the set of dilated images. Figure 5.7 

shows the recall accuracy of this set (200 samples were presented for this test). 

The graph shows the number of correctly recognised patterns for each level of 

spatial dilation. Four samples were presented at each dilation level. The graph 

shows that the network is capable of providing perfect recognition accuracy for 

dilation levels up to 26%.  The network is also capable of correctly classifying 

3 patterns for dilation levels up to 58%. Note that increasing the level of 

dilation results in a decrease in recognition accuracy. This is due to the increase 

in the number of edges in the same area, which increases the weight value and 

leads to false recall. Figure 5.8 shows the average weight difference calculated 

according to Equations 5.1 and 5.2. The graph shows that the difference 

increases by increasing the dilation level, which is consistent with the 
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recognition results presented in Figure 5.7. This also confirms the concluded 

conditions and results in Proposition 4.2.  

 

 

Figure 5.7: CwGN network accuracy in detecting dilated patterns for 

the shapes dataset. Accuracy calculated as the number of correctly recalled 

patterns. Higher scores mean higher accuracy levels. 

 

 

 

Figure 5.8: CwGN network accuracy in detecting dilated patterns for 

the shapes dataset. Accuracy calculated as the average scores of the average 

difference to stored weights. Lower scores mean higher accuracy levels. 
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5.2.2 CwGN Accuracy using non-uniform patterns (contours 

dataset) 

The second test series aims to estimate the limits of the CwGN 

scheme’s tolerance to pattern rotation, dilation, and translation for non-uniform 

patterns. For this purpose, we constructed a dataset called contours dataset that 

has training and testing datasets. We generated a training dataset of maps. We 

chose five raster map images from [131]. The size of each map is 100x100 

pixels.  These maps were transformed into contours using Matlab in order to 

obtain the heights of the maps. We then transformed the contour maps into 

binary map images to mark the highest pixels (peaks) on these maps. Figure 

5.9 presents an example in which one such raster map is transformed into a 

contour map and then into a binary map. Figure 5.10 shows the rest of resulted 

maps from this operation. To create the test maps, we generated 360 rotated 

maps (rotating from 0 to 360 degrees), 50 dilated maps (from 2% to 200% 

dilation levels with 4% steps), and 100 randomly translated maps for each 

training map as the three recall sets. We also generated a fourth recall set in 

which each map was randomly altered 100 times with a combination of pattern 

dilation, translation, and rotation. The alterations were limited to 15% for 

dilation, 10x10 pixels for translation, and 10 degrees for rotation. A total of 

2440 test maps were generated for recall. The accuracy of CwGN is calculated 

as the total number of correctly recalled patterns as a proportion of the number 

of altered images tested. Additionally, the accuracy of each type of 
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transformation was calculated as the average difference in weight values 

according to Equations 5.1 and 5.2. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 5.9: Process of producing contours training dataset. (a) A 

100×100 pixel size raster map image. (b) Contour transformation of the raster 

map. (c) Binary transformation of the contour map. White pixels indicate the 

highest points in the map and are represented as ‘1’. 

 

    

Figure 5.10: The rest of the non-uniform shape training patterns 

generated using the same steps as used in Figure 5.9. 

 

Figure 5.11 shows each rotation angle and the number of correctly 

classified patterns at this angle. Five samples were tested per rotational angle. 

This graph shows the ability of the network to efficiently detect patterns rotated 

up to 12 degrees (in clockwise or counter-clockwise directions) or totally 

flipped horizontally within the same range of rotation. The system could 

possibly detect higher rotational degrees. Figure 5.12 shows the accuracy 

calculated in terms of weight difference. Similar to the rotation test conducted 
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on the shapes dataset, this figure shows that the scheme has high accuracy 

levels when the rotation value is close to 0˚ or 180˚. This also confirms 

Proposition 4.4. However, this figure also shows that the contours dataset has 

lower average weight differences compared to the shapes dataset. This 

indicates that non-uniform patterns are less sensitive to rotation effects than 

uniform patterns. This also indicates that a lower number of active nodes 

change their edge type in non-uniform patterns. 

 

 

Figure 5.11: CwGN network accuracy in detecting spatially rotated 

patterns for the contours dataset. Accuracy calculated as the number of 

correctly recalled patterns. Higher scores mean higher accuracy levels. 

 

Figure 5.13 shows the recall accuracy of the dilation recall maps in 

terms of correctly recognised patterns to the number of tested patterns. The 

graph shows that the network is capable of providing perfect recognition 

accuracy for dilation levels up to 24%. Additionally, the scheme can recall up 

to 4 maps correctly at up to 68% dilation. Figure 5.14 shows the accuracy 

levels in terms of weight difference average. The figure shows that accuracy 
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decreases with increased dilation level. These results are consistent with the 

findings of the theoretical analysis presented in Proposition 4.2.  

 

 

Figure 5.12: CwGN network accuracy in detecting spatially rotated 

patterns for the contours dataset. Accuracy calculated as the average scores of 

the average difference to stored weights. Lower scores mean higher accuracy 

levels. 

 

 

Figure 5.13: CwGN network accuracy in detecting dilated patterns for 

the contours dataset. Accuracy calculated as the number of correctly recalled 

patterns. Higher scores mean higher accuracy levels. 
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Figure 5.14: CwGN network accuracy in detecting dilated patterns for 

the contours dataset. Accuracy calculated as the average scores of the average 

difference to stored weights. Lower scores mean higher accuracy levels. 

 

The scheme correctly recalled all translated maps. Figure 5.15 shows 

the accuracy levels for each translation iteration in terms of the average weight 

difference, calculated according Equations 5.1 and 5.2. Each iteration involved 

5 randomly translated samples (one for each contour map). Similar to the 

shapes dataset translation test, the average weight difference is low and mostly 

equal to 0 in most iterations, meaning that the scheme is invariant to translation 

transformations. This also confirms Proposition 4.1. For the multiple 

transformation set of recall maps, which involved rotation, dilation, and 

translation levels, the network correctly recalled 452 out of 500 altered maps, 

representing a 90.4% success rate. This demonstrates the ability of the scheme 

to detect patterns in the presence of combinations of pattern transformations 

that include rotation, dilation, and translation.  
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In this section, the CwGN scheme’s performance in terms of accuracy 

is experimentally evaluated. The evaluation shows that the scheme is capable 

of efficiently detecting translated patterns, rotated or even flipped rotated 

patterns of up to 23 degrees in any direction, and dilated patterns of up to 26% 

dilation level. In terms of translation, the tests show that the scheme is resilient 

to such types of pattern transformation as the scheme was capable of detecting 

all translated patterns. This confirms that the CwGN scheme is a 

transformation invariant recognition scheme. This also confirms the theoretical 

analysis findings presented in Chapter 4. 

 

 

Figure 5.15: CwGN network accuracy in detecting translated patterns 

for the contours dataset. Accuracy calculated as the average scores of the 

average difference to stored weights. Lower scores mean higher accuracy 

levels. 
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5.3 Comparing CwGN Accuracy with Other 

Schemes 

After evaluating the CwGN scheme’s accuracy boundaries, this test 

attempts to compare the ability of CwGN to recognise transformed patterns 

with existing pattern recognition schemes using standard datasets. 

Additionally, this section will test the ability of the scheme to deal with real 

life sensory problems. The first test presented in this section uses a standard 

dataset that contains a set of pattern transformations. The use of this dataset is 

to compare the accuracy of a CwGN scheme with KNN, Naïve Bayes, and 

neural networks. The second test uses a sensory dataset that has been obtained 

from a real life problem. This test will compare the accuracy of a CwGN 

scheme with other schemes designed specifically to deal with such problems. 

By evaluating the accuracy of the scheme and comparing it with other existing 

schemes, the recognition capabilities of CwGN will be confirmed to be suitable 

for dealing with real life pattern recognition problems. 

5.3.1 Hill-Valley problem   

This sub-section aims to compare the accuracy of a CwGN scheme with 

iconic existing schemes using the hill-valley dataset [112]. The dataset contains 

606 memorisation patterns and 606 recall patterns. Each pattern consists of 100 

variables (i.e. elements). When plotting patterns in two-dimensional space, 

each pattern will create either a hill or a valley. Each hill or valley pattern 
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differs in its location and magnitude. This means that a hill or a valley is 

translated (shifted) and dilated in the recall dataset. Figure 5.16 and Figure 5.17 

show examples of hill and valley patterns respectively. The task is to 

differentiate between hill and valley patterns.  

A CwGN network of 100 nodes with a track-linking communication 

scheme was constructed to memorise and recall the patterns. Each node takes 

one value of the pattern. For this problem, we added a new edge type called the 

down edge (DW), as we are searching for peaks and troughs in the pattern 

field. The DW is activated when the current value of a node is less than the 

values of its adjacent nodes. We set the edge values to 0, 0.1, 0.1, 1, and 10 for 

NE, RE, LE, DE, and DW, respectively, and the Nf to 100. To compare this 

scheme with other schemes, the Weka tool [113, 114] was used to construct 

KNN (k=1), Naïve Bayes, and multi-layer perceptron neural networks to 

memorise and recall patterns. The percentage accuracy is calculated as the 

number of correctly classified patterns as a percentage of the total number of 

patterns presented to a network. Table 5.1 shows the accuracy percentage 

results obtained by CwGN and other schemes. The table shows that CwGN 

successfully differentiated between hill and valley patterns with a high 

accuracy compared to other schemes. However, this does not mean that the 

scheme is better than the other schemes, as this test only aimed to determine 

the accuracy of the CwGN scheme in this special case. Figure 5.18 shows the 

receiver operating characteristic (ROC) space and the plots for the two classes 

for the CwGN, KNN, Naïve Bayes, and Multi-layer NN schemes. A ROC 
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graph describes the performance of each network based on the false positive 

rate (FPR) and true positive rate (TPR). The figure shows that CwGN has 

higher detection accuracy and lower error rates compared to the other schemes 

in dealing with this problem. 

 

Figure 5.16: Three samples of hill pattern. 

 

Figure 5.17: Three samples of valley pattern. 

Table 5.1: Recognition accuracy results of different schemes for the hill and 

valley dataset 

 CwGN KNN (K=1) Naïve Bayes Multi-layered 

NN 

Accuracy (%) 95.38 61.88 52.15 52.97 
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Figure 5.18: The ROC space and plots of the hill and valley classes for 

CwGN, KNN, Naïve Bayes (NB), and Multi-layer NN schemes. 

  

5.3.2 Wall following robot problem 

This sub-section aims to confirm the ability of the CwGN scheme to 

deal with real life problems such as artificial intelligence (AI) robot navigation. 

Additionally, this test will be used to compare the accuracy of the scheme with 

existing recognition schemes and other schemes that are designed specifically 

to deal with such problems. In [132], the authors presented the problem of 

robot navigation in a closed area such as a room. The task was to allow a 

navigating robot to follow a wall (or obstacles) by finding a free-of-collision 

route. A robot mounted with 24 ultrasound sensors was used to obtain a 

training dataset according to Algorithm 5.1. The robot navigated through a 

closed room setting. In [112], the dataset obtained by applying the algorithm 

was presented as a training dataset named wall-following robot navigation data 
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set. According to the algorithm description, the dataset contains four classes: 

Move Forward (MF), Slight Right Turn (SRT), Sharp Right Turn (ShRT), and 

Slight Left Turn (SLT).  

 

Algorithm 5.1: Collision-free rout finding for wall following robot 

If Left Distance > 0.9 
{ 
 If Front Distance <= 0.9 
 { 
  Stop and turn to the right 
 } End If 
else 
{ 
 Slow down and turn to the left 
} End else 
} End If  
else 
{ 
If Front Distance <= 0.9 
 { 
  Stop and turn to the right 
 } End If 
else If Left Distance < 0.55 
{ 
 Slow down and turn to the right 
} End else  
else 
{ 
 Move forward 
} End else 
} End else 
 

 

For a CwGN scheme, this problem would need to take into account the 

problem of location-related sensing. The problem focuses on two main values: 

left and front sonar sensory readings. The relations between these readings 

decide the action that should be taken by the robot. Consequently, a CwGN has 
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been constructed that factorises the reading from left and front sensors. This 

means that front and left sensors are assigned different factor values to be 

multiplied by the obtained weight. This is to differentiate between left and 

front readings.  This means the value of 𝜔𝑐 in Equation 4.6 is multiplied by a 

location factor depending on the sensor’s assigned detection location (left or 

front). 

To test the CwGN scheme, the two input datasets provided in [112] 

were used and two tests were conducted. The first test aimed to compare the 

accuracy levels that a CwGN network can achieve with KNN, Naïve Bayes, 

and multi-layered Perceptron neural networks. The second test compared the 

classification of CwGN with the schemes designed to handle this problem, as 

presented in [132]. To use this dataset in comparing a CwGN scheme with 

other classification methods, 50 instances out of each class were chosen for 

training and the rest (more than 5000) instances were used for testing. The 

results are shown in Table 5.2. Figure 5.19 shows ROC space graph for the 

classes: Slight-right-turn (SRT), Sharp-right-turn (ShRT), Move-forward (MF), 

and Slight-left-turn (SLT) used to navigate the robot. 

 

Table 5.2:  Recognition accuracy results of different schemes for the wall 

following robot dataset 

Method CWGN KNN(K=1) KNN(k=3) 
Naïve 
Bayes 

Multi-layer 
NN 

Accuracy 
(%) 

93.1 78.84 79.17 89.55 77.07 
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It can be seen from Table 5.2 that the accuracy of other techniques is 

higher than in the hill and valley test. This is due to the consistency of data in 

terms of location and magnitude in this dataset as compared to the test. It can 

also be seen from the table that the CwGN scheme achieved a higher 

classification accuracy level than the other schemes. This validates the ability 

of CwGN to be used as a robot navigation decision making scheme. ROC 

graph shown in Figure 5.19 shows that CwGN scheme has lower error rates 

compared to other schemes used in this test. This means that the scheme is 

capable of handling the problem more efficiently compared to the other 

schemes. 

 

Figure 5.19: The ROC space and plots of the classes used in the wall 

following robot problem for CwGN, KNN, Naïve Bayes (NB), and Multi-layer 

NN schemes. 
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In order to compare CwGN with the methods presented in [132], a 

robot simulation was designed. A room setting was created similar to the 

obstacle settings in [132], as shown in Figure 5.20. The CwGN network was 

trained using the provided training dataset. In this process, the robot in the 

simulation then senses the established environment and a decision was made 

based on the network’s recognition. The robot moved for 2000 pixels and the 

resulting path is provided in Figure 5.21. The figure shows that the network 

successfully guided the robot to navigate in the room moving as close as 

possible to obstacles while maintaining a collision-free route. To compare 

CwGN with the presented schemes in [132], the sensed data was captured and 

compared with the results provided by Algorithm 5.1 to obtain the network’s 

accuracy.  

 

Figure 5.20: Room setting for the wall following robot navigation 

problem similar to the setting presented in [132]. Red pixels are walls and 

obstacles and blue pixels are free space. 
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Figure 5.21: Robot route obtained by CwGN. Cyan (light line) 

represents the robot route. 

 

The results of the network compared with the schemes presented in 

[132] are shown in Table 5.3. Accuracy is calculated as the number of correctly 

taken decisions to the total number of decisions. From the table, it can be seen 

that the CwGN network was capable of dealing with the problem of the wall 

following robot with higher accuracy levels compared to the schemes presented 

in [132]. This reflects the high accuracy levels that can be achieved by using a 

CwGN recognition scheme in complex sensory problems. This means that the 

scheme is capable of dealing with real life complex problems with high 

efficiency, which makes it a good candidate for use in various types of sensory 

problems.  

 

Table 5.3:  Recognition accuracy results of robot navigation simulation for 

different schemes. 

Method CWGN Elman ME LP MLP 

Accuracy 
(%) 

98.1 96.22 5.22 42.71 97.59 
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 In this part of the experiment, the scheme was compared with other 

recognition schemes in terms of accuracy. The comparison included nearest 

neighbour, Naïve Bayes, and multi-layer neural network schemes using the hill 

and valley and wall following robot standard datasets. The first test showed 

that the CwGN scheme was capable of distinguishing between hill and valley 

patterns with a 95.38% accuracy level. On the other hand, nearest neighbour, 

Naïve Bayes, and multi-layered neural network scored 61.88%, 52.15%, and 

52.97% accuracy levels, respectively. This shows the high capability of CwGN 

schemes to recognise transformed patterns compared to other existing iconic 

schemes. In the second test, CwGN was compared with the iconic recognition 

schemes presented in the first test using the wall following robot problem. 

CwGN was successful in determining the right actions to be taken by the robot 

with an accuracy of 93.1% compared to the other schemes. Additionally, the 

scheme was compared with other schemes that were designed to deal with this 

problem by implementing a simulation setting. The scheme was successful in 

guiding the robot through a closed room following obstacles and walls with a 

collision-free route and with an accuracy level of 98.1%, which was the highest 

of all the schemes. These results reflect the capability of the CwGN scheme in 

recognising transformed patterns and dealing with complex and real life 

problems with a high level of accuracy compared to other schemes. 
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5.4 CwGN Communicational Overhead Analysis  

This section attempts to experimentally evaluate the CwGN scheme’s 

communicational overhead in terms of time and energy requirements. As 

discussed in Chapter 2, network communications are considered to be the most 

time and energy consuming tasks in WSNs. Hence, this section experimentally 

estimates a CwGN network’s learning time cycle duration and energy 

consumption based on communicational requirements. The section starts by 

analysing the activation process and its effect on communications in the 

network and then it presents a time and energy analysis. 

5.4.1 Activation process analysis 

The activation process of a CwGN network was presented in section 

4.3.2. This process involves two types of activations, namely, node value, and 

node edge activations. These activations types were described in Definitions 

4.5 and 4.6 respectively. The activation process determines the number of the 

network’s communications, as only activated nodes in the network participate 

in the learning process. This sub-section uses the shapes and contours datasets 

presented in the previous section to estimate the number of activated nodes for 

each dataset. 

Figure 5.22 shows two examples of node value activation. Figure 5.22 

(a) shows the activation process of a binary pattern taken from the shapes 

dataset. The pattern size S = 40000 and the threshold 𝜑 was set to 1. The nodes 
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are assumed to be deployed in a grid to sense the pattern space. Since the 

pattern is binary, activated nodes will form the same shape that appears in the 

pattern. The number of activated nodes in this example is 1932 nodes out of 

40000. In Figure 5.22 (b) a grey scale contour image is taken from the contours 

dataset as the pattern. The possible value of each element in this pattern is 𝑉 =

{0, 1, 2, … , 255}. In this example, the pattern size S = 10000 and the threshold 

was set to 200. The number of activated nodes in this example is 235. It can be 

seen from the examples shown in Figure 5.22 that the number of nodes that 

conduct exchange communications has been reduced from the pattern size to 

1932 in the first example and to 235 in the second one instead of involving all 

of the network’s nodes in the process (40000 and 10000 for the first and second 

examples respectively).  

Figure 5.22 also shows the node edge activation of the patterns. The 

total number of edge activated nodes in Figure 5.22 (a) is 244 nodes, while it is 

141 nodes for the example shown in Figure 5.22 (b).  This limits the number of 

reporting nodes in the network to the edge activated nodes and relieves the rest 

of value activated nodes from sending report messages. This reduces the 

resource consumption of these nodes. Table 5.4 summarises the average 

number of activated nodes for both datasets.  

From Table 5.4 it can be seen that the number of value activated nodes 

that will conduct exchange communications is small compared to the total 

number of nodes. The number of value activated nodes represents only 5.04% 

of the total number of nodes for the shapes dataset and 1.14% for the contours 
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dataset. Additionally, the number of edge activated nodes that will participate 

in report communications represents only 0.905% of the network size for the 

shapes dataset and 0.79% for the contours dataset. This reflects the amount of 

communicational overhead reduction that can be achieved by using the CwGN 

scheme. 

 

 

Original image 

  

Value activated 

nodes 

  

Edge activated 

nodes 

  

 (a) (b) 

Figure 5.22: Example of CwGN nodes activation for (a) shapes dataset, 

and (b) contours dataset. 

 

Table 5.4: Average number of activated nodes. 

Dataset 
Network size 

(nodes) 

Average value 

activated nodes 

Average edge 

activated nodes 

Shapes 40,000 2016 362 

Contours 10,000 114 79 
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5.4.2 Energy and time analysis 

This sub-section aims to analyse a CwGN scheme from a practical 

perspective. The goal is to estimate the lifetime and execution duration of the 

network using the communicational models presented in section 4.7.  To 

achieve this goal, we ran a simulation program that creates and runs a CwGN 

network on sensor nodes and derives energy and time readings. As noted, data 

transmission is the most time and energy consuming process in WSNs. Hence, 

the simulation evaluates these parameters based on the communications 

involved in running the network.      

We ran the simulation on sensor nodes based on the following 

assumptions, as summarised in Table 5.5 [133-135]: 

i. The sensor nodes are Mica 2 type. 

ii. The frame size is 49 bytes. This includes preamble, addresses, 

data, control, checksum, flag, and other fields. 

iii. The preamble field is 8 bytes. 

iv. Communication data rate is 128 Kbps. This means that sending 

a full frame takes 3.0625 milliseconds (mS) and sending a 

preamble takes 0.5 ms. 

v. Transmitting one byte costs 59.2 micro joules (µJ) and receiving 

one byte costs 28.6 µJ. This means that sending a full frame 

costs 2.9 milli joules (mJ) (49×59.2 µJ) and receiving a full 

frame costs 1.4 mJ. 
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vi. The maximum error in transmission is equal to one clock cycle 

and the clock cycle takes 32 microseconds (µs). This means that 

Δt = 32 µS. 

vii. Each sensor is equipped with 3 volts (V) 30mAh battery. This 

battery is chosen as one of smallest commercial batteries. This 

means that a full sensor battery capacity is 324 joules. 

 

To run the simulation, we used the shapes and contours datasets 

presented in section 5.2. The first dataset represents binary shape patterns of 

size 200×200 pixels. This shapes dataset, represents uniform patterns. For the 

second dataset, the contours dataset, we chose grey scale contour images of 

size 100×100 pixels, representing a non-uniform pattern type. We assume that 

the nodes are deployed in a grid, where each node obtains a pixel value. This 

requires 40000 nodes to represent the first network and 10000 nodes to 

represent the second. Four networks for each dataset were created. Each 

network runs in one of the models discussed in section 4.7: FS-Async, FS-

Sync, MC-Async, or MC-Sync. We presented each dataset to its associated 

network to perform a learning process. Each dataset contains original and 

altered patterns (instances). The altered patterns can be a result of rotated, 

dilate, translated or a combination of alterations of the original pattern. The 

total number of instances for the first dataset is 2044 patterns and the second is 

1805 patterns. 
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Table 5.5: Summary of assumptions used in the simulation.  

Sensor type Mica 2 

Data transmission rate 128 Kbps 

Frame length 49 Bytes 

Time to send or receive a frame (Tsend) 3.0625 mS 

Energy required to send a full frame 2.9 mJ 

Energy required to send a full frame 1.4 mJ 

Error rate (Δt) 32 µS 

Battery capacity 324 J 

 

To evaluate CwGN communicational and energy overhead, we 

implemented the parallel KNN presented in [40] for comparison. We chose this 

scheme for its simplicity in its computations and time complexity. Figure 5.23 

shows an example of the parallel KNN network. Each node in the network 

communicates directly with a central unit (i.e. base station). During 

memorisation, each node stores its associated input value. In recall, each node 

computes the nearest stored value to the incoming value and reports the 

difference to the base station, which concludes the final decision. Figure 5.24 

shows the average number of communications involved in performing the 

learning cycle for each communicational type (frame slotted and multi-

channel) for shapes and contours datasets. Additionally, the figure shows the 

number of communications required to implement parallel KNN for both 

datasets.  
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Figure 5.23. A simple parallel KNN network. 

 

Figure 5.24. Average number of communications for CwGN Async, 

Sync, and parallel KNN for the shapes and contours datasets. 

 

Since parallel KNN requires each node to conduct one communication 

to the base station, its communications average is equal to the pattern size (S), 

as shown in Figure 5.23. Figure 5.24 also shows that the average number of 

communications reflects the network size and the number of activated nodes. 

For example, the Async network involves 4393 communications for the 2016 

value activated and 362 edge activated nodes for the shapes dataset. This 

includes both exchange and report communications. This is 10.99% of the 
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network size and the total communications required by parallel KNN. The 

Sync network involves 8424 communications for the same number of activated 

nodes for the shapes dataset. This is 22.06% of the network size and the total 

communications required by parallel KNN and almost double the average for 

the Async communication model. For the contours dataset, Async 

communication models recorded an average of 307 communications. This 

represents only 3.07% of the network size. The Sync model for the same 

dataset recorded an average of 536 communications, which is 5.36% of the 

network size.  

The average number of communications is expected to have 

implications for the communicational overhead in terms of energy and time. 

Figure 5.25 shows the average energy consumption obtained by the simulation 

for each network type and each dataset. Figure 5.26 shows the average 

obtained from using both datasets. This is applied for both multi-channel and 

frame-slotted models, with the assumption that both models require the same 

amount of energy for each communication. The average values shown in 

Figures 5.25 and 5.26 represent the average energy required by a node to 

perform a full learning operation and include sending and receiving energy 

consumption.  

Figure 5.25 confirms that the number of communications has 

implications for the average energy consumption. However, this is not 

applicable for the parallel KNN since each learning cycle requires all nodes to 

participate by sending one message to the base station. This means that the 
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average in this case is equal to the amount of energy required to send one 

message. From Figure 5.26 it can be seen that the Sync model requires almost 

twice the energy that the Async model does. This is caused by the Ack 

messages. However, it can be seen that it is not exactly the case as Sync 

average consumption is 188.08% of the Async average. This happens because 

of the activation process involved in a CwGN scheme, meaning that not all sent 

messages are received. The values shown in Figure 5.26 can be used to 

estimate the lifetime of the network. Figure 5.27 shows the lifetime in days for 

each network based on the assumption that the network receives one pattern 

every one minute.  

 

 

Figure 5.25: Average energy consumption for each network for each 

dataset in mJ. This represents the average energy required by a node to perform 

a full learning operation. 

 

Figure 5.27 shows that a CwGN Async network can theoretically last 

for more than two years if it is used to obtain one pattern per minute using a 

small 3V 30mAh battery (324 Joules). However, other factors may affect that 

figure, such as physical sensory faults. Figure 5.27 also shows that the Sync 
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model could last for more than one year. In contrast, a parallel KNN will last 

for less than 3 months in similar conditions. According to Tanenbaum [27], a 

short WSN lifetime is almost 6 months. This analysis of a CwGN network 

shows that a large scale network can last for 1 or 2 years. This reflects the 

amount of communicational overhead reduction that can be achieved by using 

a CwGN scheme. 

 

 

Figure 5.26: Average energy consumption for each network for both 

shapes and contours datasets in mJ. This represents the average energy required 

by a node to perform a full learning operation. 

 

 

Figure 5.27: Average lifetime for CwGN and parallel KNN networks. 
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So far, the analysis has discussed average energy consumption. This 

means that all nodes are expected to encounter the same amount of 

communicational overhead. However, the network structure and the type of 

incoming patterns could affect the behaviour of the network and present 

different loads to its nodes. Evaluating the network’s behaviour, Figure 5.28 

shows the distribution of available energy in each sensor used in the simulation 

for Async and Sync communicational models for the shapes dataset. Figure 

5.29 shows the distribution for the contours dataset. 

From Figures 5.28 and 5.29, it can be noted that pattern shape can 

easily be seen through the energy distribution when presenting a small number 

of samples. However, energy distribution takes a cellular form after being 

presented with a large number of patterns. This cellular form reflects the 

cellular structure of a CwGN network. Both Async and Sync models have 

similar cellular distribution but with more consumption in the Sync model. It 

can also be seen that the energy distribution in the contours dataset is more 

scattered in the field, while it is concentrated in the middle for the shapes 

dataset. This is caused by the non-uniform pattern distribution of the contours 

dataset compared to the shapes dataset. Finally, both figures show that energy 

consumption increases going towards the core region. This is due to the 

network structure that involves reporting from outer tracks to inner tracks. 

Hence, it can be concluded that a node will have less lifetime as it gets closer 

to the core region.   
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 (a) (b) 

Figure 5.28: Available energy for each node in CwGN networks 

dealing with the shapes dataset. (a) Network applying Async model and (b) 

Network  applying Sync model. The nodes are distributed in the field as a grid, 

where each pixel depicts one node’s available energy. The colours are in the 

range between dark red and dark blue. Dark red indicates more energy 

resources left in the node. Dark blue indicates less energy available. Colours in 

between (such as yellow and green) indicate energy levels between dark red 

and dark blue. Colour bars show exact energy figures. 
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 (a) (b) 

Figure 5.29: Available energy for each node in in CwGN networks 

dealing with the contours dataset. (a) Network applying Async model and (b) 

Network applying Sync model. The nodes are distributed in the field as a grid, 

where each pixel depicts one node’s available energy. The colours are in the 

range between dark red and dark blue. Dark red indicates more energy 

resources left in the node. Dark blue indicates less energy available. Colours in 

between (such as yellow and green) indicate energy levels between dark red 

and dark blue. Colour bars show exact energy figures. 
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The second factor related to the communications overhead to be 

analysed in this section is network time. Learning cycle time (memorisation or 

recall operations) can be estimated in terms of computations and 

communications. However, it has been discussed theoretically and proven 

experimentally that communication time is much higher than other factors in 

such computations, as discussed earlier. Unlike energy analysis, the choice of 

communicational model (FS or MC) is expected to have an influence on cycle 

time. Figure 5.30 shows the average learning cycle time in milliseconds (ms) 

that was obtained from the simulation run. 

 

 

 

Figure 5.30: Average learning cycle time in milliseconds (ms) for a 

CwGN network that runs different communicational models. 
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From Figure 5.30, the average time ranges between 126.4 and 323.1 ms 

depending on the communicational model, network size, and dataset type. This 

means that a large scale network of a size between 10,000 and 40,000 nodes to 

memorise or recall a pattern with a rate of between 3 and 8 samples per second. 

It can be noticed from that both datasets involve an almost similar learning 

cycle despite the difference in network size. This is the result of two main 

factors. The first is that network time is mainly dependent on reporting step 

time, as exchange communications occurs in parallel. The second factor is the 

type of dataset. The shapes dataset represents uniform objects that are usually 

located in the centre of the field. This causes nodes to have condensed 

activation. In other words, more active nodes will come from the same track 

and hence less reporting messages will be required. Conversely, the contours 

dataset contains non-uniform patterns that are scattered all over the field. This 

will activate nodes in different tracks and will involve more reporting time.  

Another important observation that can be made from Figure 5.30 is 

that the difference between frame-slotted and multi-channel models’ time 

requirements is small. This is also the result of the fact that reporting time is 

the most time consuming part of learning cycle time. In an Async 

communicational model, reporting involves only one message from one node 

to another. In a Sync model, a sent message will be replied to with an Ack. 

However, the message and its acknowledgement cannot be sent 

simultaneously. As a consequence, in both models, the use of an MC model 

will not speed up the reporting time as no messages will be sent and received in 
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the same time. In contrast, the MC model will speed up exchange 

communications. However, such types of communications occur in parallel and 

their effect on the learning cycle is minimal.  

This section presented a simulation analysis of CwGN network 

communications, including energy and time analysis. The energy analysis 

showed that a CwGN scheme is capable of limiting the number of 

communications and hence limiting the use of energy resources. It was shown 

that the network can have a lifetime of two years using one of the smallest 

batteries in terms of capacity (30 mAh). This is 8 times higher than other 

schemes, such as parallel KNN. The time analysis shows that a CwGN network 

can scale up, while having the ability to converge within a time range between 

126.4 ms and 323.1 ms or a sample rate between 3 and 8 patterns per second. 

These results were obtained by implementing the scheme using different 

message sequence models and in accordance with the assumptions made in the 

beginning of the section. These results show that a CwGN scheme minimises 

communicational overhead, enabling WSNs to scale up efficiently and provide 

real-time learning capabilities.  

5.5 Summary 

In this chapter, the CwGN scheme has been experimentally evaluated 

and tested in three main areas: accuracy, comparison, and communicational 

overhead. Testing the scheme’s accuracy involved constructing two datasets. 

One represented uniform patterns and the other non-uniform patterns. Three 
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main transformation types were tested: translation, rotation, and dilation. The 

tests showed that the scheme is capable of recognising patterns with the 

presence of these types of transformations. For both datasets, the scheme 

successfully recognised all translated patterns, while showing zero or very 

small weight differences in most cases between stored and recalled patterns. 

For rotation transformations, the scheme showed the ability to recognise 

rotated or even flipped rotated patterns of up to 23 degrees in any direction. 

The tests showed that any pattern has the same weight of its flipped version 

pattern. In terms of dilation, the tests also showed that the scheme is capable of 

detecting dilated patterns with up to a 26% dilation level. It was shown that 

recognition accuracy is proportional to the dilation level. These results confirm 

the theoretical analysis provided in the previous chapter.  

Two tests using two standard datasets were conducted to compare a 

CwGN scheme with other schemes. The first test used the hill and valley 

dataset. The scheme showed a high level of detection accuracy compared to 

KNN, Naïve Bayes, and neural networks using this dataset, which confirms the 

ability of the scheme to recognise pattern transformations with much higher 

accuracy than other schemes. In the second test, the scheme was compared 

with a set of other existing and proposed schemes using the wall following 

robot dataset. This test demonstrated the recognition capabilities of the CwGN 

scheme in dealing with real life problems, achieving high accuracy levels 

compared to other schemes, even those designed specifically to deal with such 

problems.  
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The communicational overhead of the CwGN network and response 

time were experimentally evaluated in this chapter. To achieve this, simulation 

tools were constructed based on the activation process and the message 

sequence models presented in the previous chapter. Tests showed that the 

activation process of the CwGN network made it possible to minimise the 

number of required communications. By using the activation process, the 

required communications ranged between 3% and 11% of communications 

required by other schemes. The achievement of such minimisation is reflective 

of the network’s energy consumption, the network having a lifetime that is 

eight times higher than other schemes, such as parallel KNN. The time analysis 

showed that a CwGN network can scale up to 40000 nodes while having the 

ability to converge within a time range of 126.4 ms and 323.1 ms or a sample 

rate between 3 and 8 patterns per second. 

The experimental analysis presented in this chapter shows that a CwGN 

scheme can efficiently recognise transformed patterns, with the ability to scale 

up and minimise the network’s communicational overhead as well as 

supporting online recognition operations. The comparison presented in this 

chapter shows that the scheme can provide higher accuracy levels than other 

schemes, even for complex and real life problems. These capabilities make the 

scheme the most suited for large scale, resource-constrained, and dynamic 

networks such as WSNs. These capabilities also make the scheme suitable for 

applications that require online operations and have limited prior information 

about problems and surrounding environments. This makes the scheme a good 
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candidate for use in for a variety of problems. The next chapter will discuss the 

possibility of using such promising capabilities in different disciplinary areas. 

Such a possibility would open the way for new research opportunities making 

it possible to involve pattern recognition in dealing with complex problems in 

different application domains.   
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Chapter 6 

6 Using CwGN Schemes in Enhancing 

Optimisation and Pattern Matching 

Applications Performance 
 

6.1 Introduction 

In the preceding chapters, CwGN schemes were introduced and 

evaluated as light-weight and efficient pattern recognition schemes for 

resource-constrained and large scale systems and networks such as WSNs.   

The scheme minimises communications and computations by adopting a 

distributed network structure based on an adjacency computational mechanism. 

Additionally, the scheme involves an activation process that minimises the 

number of participating nodes in the recognition process in the network in 

order to further decrease in the computational and communicational overheads. 

The scheme’s computational mechanism involves a weighting technique that is 

capable of describing patterns in terms of topological edges in order to find 

patterns’ boundaries. This eliminates the scheme’s dependency on location-

based information as weights are calculated and accumulated by network nodes 

independently from their physical or logical location. This allows the scheme 

to have a transformation invariant feature that allows it to efficiently recognise 
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transformed patterns. These features make the scheme capable of performing 

online pattern recognition tasks with a high level of accuracy. Theoretical 

analysis and experimental results show that the scheme is capable of 

minimising computational and communicational overheads in the network to 

perform efficient recognition activities for patterns that involve transformations 

such as translation, dilation or rotation within a single learning cycle. Such 

features make the scheme best suited for large scale and limited resource 

networks such as WSNs. 

According to Bishop and Nasrabadi [136], pattern recognition is one of 

the methods used for machine learning where a system uses pattern 

information for storing and recalling operations. However, machine learning 

applications could pose challenging requirements for traditional pattern 

recognition schemes. According to Bengio and Lecun [137], the goal of 

machine learning research and applications is to develop methods that are 

capable of learning complex problems such as behaviours and environments 

with minimal prior knowledge in order to support artificial intelligence and 

machine decision making processes. Fabisch et al.  [138] highlight the most 

common characteristics of complex problems learning as  large problem 

spaces, high levels of data noise and long learning time operations. 

Consequently, pattern recognition-based schemes should be able to deal with 

complex, noisy, and large scale problems if they are to serve machine learning 

applications and support intelligence and automated decision making 

processes. Achieving these goals requires pattern recognition schemes to model 



 

232 

problems into patterns and to use modelled problems and recognition 

capabilities to support decision making methods. However, the lack of prior 

knowledge about problems and the limited time requirements of machine 

learning applications are still challenging to pattern-based recognition methods. 

CwGN schemes’ features, discussed in Chapter 5, show that the type of 

scheme has promising capabilities that can be used to address machine learning 

application requirements. This chapter aims to use the promising features of 

CwGN, a pattern recognition-based scheme, in other machine learning 

disciplines that attempt to deal with complex problems.  This can be achieved 

by involving the scheme in the steps of the problem solving process, where the 

scheme can improve the performance of the overall process. For this purpose 

two distinct disciplines have been chose as examples of how such promising 

schemes can be embedded in the process of dealing with complex problems. 

The first discipline example attempts to involve pattern recognition capabilities 

with optimisation techniques. The second example attempts to involve a 

CwGN scheme in dealing with complex classification problems such as human 

activity recognition. These examples pave the way for more innovative 

research opportunities in implementing such pattern recognition schemes in 

different application domains. 

Optimisation techniques attempt to find optimal solutions for a given 

problem. Genetic Algorithms (GA) [139] is one example of such techniques. 

GA is a robust technique that attempts to find optimal solutions for unknown 

problems based on an evolution concept. The technique starts from total 
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randomness to produce a set of solutions and uses a set of operations to allow 

this set to evolve from one generation to another to reach the optimal solution. 

The survival of a solution in a generation depends on a predefined fitness 

function. Despite the technique’s robustness and its capability in solving 

problems, it suffers from uncertainty in terms of convergence time. This is due 

to the randomness involved in generating solutions. In addition, GA suffers 

from the exponential relationship between the problem size and convergence 

time, as the search and fitness evaluating time increases by increasing the 

problem size [140].  

In relation to the first example of using the scheme’s recognition 

capabilities in different application domains, this chapter will propose a novel 

hybrid model that bolts a pattern recognition-based CwGN scheme to GA to 

minimise GA time complexity. The aim of such a hybrid scheme is to allow 

GA to learn from experience and solve problems in generating a set of 

proposed solutions for other similar problems. To achieve this, a CwGN 

network will model problems as patterns and store these patterns along with 

information about the GA solution of each problem. Then, when a new 

problem is encountered, the network will implement recognition operations on 

newly encountered problems to propose a set of possible solutions to the GA to 

start with. This means that the evolution process of the GA system will start 

from a knowledge-based set of solutions rather than complete randomness. The 

hypothesis is that the search time of a GA system will decrease if it is provided 

with a solution of a problem that is close to the optimal solution. In other 
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words, the closer the proposed solution to the optimal solution of a problem, 

the fewer number of steps a GA requires to converge to the optimal solution. 

This chapter will propose a hybrid model and test its feasibility by 

implementing a robot guidance problem to compare the performance in terms 

of speed and accuracy between the proposed model and the traditional GA 

model. 

The second discipline that this chapter will present is the use of CwGN 

pattern recognition-based schemes in dealing with classification problems. In 

classification problems the task is to observe a set of attributes and identify to 

which class set these attributes belong. The classification process is based on 

training instances where each instance contains a set of attributes. One of the 

main issues related to existing classification schemes is that time complexity 

increases with the increase of the number of training instances. This is due to 

the search process, where an incoming set of attributes will be compared to the 

training instances. This chapter will show that a CwGN scheme is capable of 

translating attributes into patterns to perform classification operations. The 

problem of human activity recognition will be presented in this chapter as an 

example of how a CwGN scheme can be used to serve classification purposes. 

Such problems involve a high level of noisy data as human behaviour 

uncertainty is a key challenge in predicting activities. The scheme will be 

tested against one of the popular standard datasets available and will be 

compared with iconic schemes that are designed to deal with classification 

problems, such as nearest neighbour, Naïve Bayes, and neural networks, in 
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terms of accuracy. The comparison will be based on presenting a limited 

number of training samples to evaluate the accuracy of each scheme when 

using small quantities of training data to maintain high speed classification 

processes. 

The chapter is organised as follows. In section 6.2, the hybrid CwGN-

GA model will be presented as an example of using a CwGN scheme in 

enhancing the performance of optimisation algorithms. This will include an 

overview of GA algorithms, the approach of linking a CwGN scheme with GA, 

performance enhancement expectations, the implementation of the robot 

navigation problem, and experimental results. In section 6.3, a human activity 

recognition problem will be presented as an example of using a CwGN scheme 

for classification problems. This will include an overview of human activity 

problems, an overview of the testing dataset, and the implementation and 

experimental results. Section 6.4 concludes the chapter. 

6.2 Hybrid CwGN-GA Schemes for Autonomous 

Robot Navigation Using WSN 

This section discusses the use of CwGN schemes in enhancing the 

performance of GA in terms of accuracy and speed. One of the motives behind 

choosing such an application domain in this research is that GA systems have 

been used, presented and discussed in the literature to deal with sensory related 

problems. For example, Wu and Lui [141] propose a GA-based WSN routing 
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algorithm that creates optimal clusters that minimise routing energy 

consumption by balancing energy requirements among cluster heads. Their 

fitness function is based upon gathering information about WSN nodes, 

including distances and energy status.  Martins et al. [142] propose the use of 

GA for dealing with WSN coverage problems that need to be addressed in the 

network deployment phase or for dealing with coverage problems resulting 

from network node failures. Such failures require dynamic connectivity 

mechanisms to maintain the intended coverage over an area of interest. The 

GA generates a connectivity model between sensor nodes based upon the 

energy consumption required for each node to reach its sink.  Chin et al. [143] 

propose GA-based path planning for robotics based on obtained sensory 

information. The sensors collect information about obstacles in the problem 

space and provide the collected information to the GA in order to find an 

optimal collision-free path based on distance fitness functions.   

As discussed earlier, GA systems offer to find optimal solutions for 

complex and unknown problems by implementing a set of evolutionary 

operations. These operations include crossover, mutation, and fitness 

evaluation in each produced generation of the evolutionary process. This 

process continues until the GA system reaches an optimal solution to the 

problem. Means such as limiting the number of generations may be employed 

to end a GA’s computations [144]. The main benefits of using GA are the 

ability of finding solutions for complex problems and the ability of dealing 

with totally unknown problems [145, 146]. However, one of the main 
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challenges in using GA is the exponential relationship between the problem 

size and the its time complexity [140]. Attempts to enhance a GA’s 

performance have been studied in depth. These include parameters tuning, 

parallel GA, hybrid GA, and other approaches. However, predicting 

enhancements of GA systems in terms of time complexity is not always 

feasible [140, 145]. In some cases, performance enhancement of GA can be 

achieved by using previously solved problems. Hart [147] proves by 

experiment that seeding initial population to GA will lead to an optimal 

solution in fewer numbers of generations. This phenomenon is called 

evolutionary bias or GA drift. However, he also found that the total time of 

seeded GA, including obtaining seed solutions, is almost similar to the total 

time of running GA with a random initial population.  

Motivated by Hart’s [147] experimental findings, in this section we 

study the benefit of using GA-solved problems in enhancing and speeding up 

the process of finding solutions for other unknown problems. It is hypothesised 

that if a GA was given good initial solutions to start with, the scheme would 

find better optimal solutions for unknown problems in fewer numbers of 

iterations compared to a randomly initialised GA. The challenge here is how to 

know what good solutions can be provided to a GA system. This can be 

addressed by finding similarities between problems that lead to similarities 

between the solutions to these problems. Hence, the second hypothesis that this 

section discusses is that if there is a level of a similarity between two problems, 

then there is a similarity between the solutions to these problems. 
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Consequently, the proposed scheme in this section is based on these two 

hypotheses, where it attempts to find similarities between problems and 

propose solutions to the GA. By achieving this, the hybrid scheme will 

converge to a better optimal solution to a problem with fewer numbers of 

generations compared to a traditional, randomly operated GA.  Hence, the task 

of the GA in the proposed hybrid model is to find optimal solutions to 

problems while the CwGN scheme stores the solutions and attempts to find 

similarities between solved problems and new incoming problems to suggest 

best stored solutions to the GA. The following sub-section describes the 

process of the hybrid scheme in detail. 

6.2.1 Approach 

The hybrid CwGN-GA model consists of two main components: a GA 

system and a CwGN network. The task of the network is to model problems 

into patterns, find similarities between patterns and suggest the best available 

solutions to the GA. The GA, on the other hand, performs its normal 

evolutionary operations to find optimal solutions. This can be achieved in two 

stages, namely, memorisation and optimisation. These phases are described in 

the following sub-sections.  

Memorisation 

In the memorisation stage, the aim is to store solutions for known or 

existing problems. To perform this stage there should be a set of training 

problems that the hybrid scheme can use to train the network. The GA 
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component finds solutions for existing problems and provides a CwGN 

network with its outcomes. The network stores information received by the GA 

to use it in the optimisation stage. The steps of the memorisation phase for 

storing information for a given problem can be described as follows. 

i. The GA component runs in random mode to find the optimal 

solution for the problem. 

ii. The GA sends the solution to the CwGN network. 

iii. The network models the problem as a pattern and calculates its 

weight according to the steps illustrated in section 4.3.  

iv. The network stores the pattern’s weight associated with the 

optimal solution received by the GA in the S&I database. 

Figure 6.1 shows the relationship between CwGN and GA systems for the 

memorisation stage. 

Optimisation 

In the optimisation stage, the aim is to find similarities between new 

problems and already stored problems. This is so as to provide GA with the 

best solution available in order to speed up the search process. In this stage, it 

is possible to provide GA with one or more solutions to include to its first 

generation. This means that the GA will include both suggested and randomly 

generated solutions in its first generation. The steps of this stage can be 

described as follows. 

 

i. The CwGN network models the problem as a pattern. 
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ii. The network performs recall operations according to the process 

described in section 4.3. 

iii. The S&I obtains the associated solution to the recalled weight 

from its database and sends it to the GA.  

iv. The GA includes the provided solution to its first generation 

along with randomly produced solutions. 

v. The GA functions normally until finding the optimal solution. 

 

 

Figure 6.1: The memorisation phase of hybrid CwGN-GA scheme. 
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In case of multiple solutions to be provided to the GA, the S&I will 

provide the closest weights’ associated solutions and the GA injects the 

received solutions into the initial population along with the randomly generated 

solutions. The GA continues its operations until the stop criterion is met. 

Figure 6.2 shows the process of the optimisation phase. 

 

Figure 6.2: The optimisation phase of hybrid CwGN-GA scheme. 

6.2.2 Performance enhancement 

Several methods for estimating the time complexity of GA algorithms 

have been used in the literature. Drift analysis is one of the key methods that 

can be used in estimating the hybrid CwGN-GA scheme’s computations of the 
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distance between the optimal solution (opt) and the set of solutions provided in 

each generation [148]. In this method, if 𝑑(𝑚𝑖) is the minimum distance 

between opt and set of population members, and ∆𝜑  is the drift to opt, the 

estimated time step (𝜏) for a the GA system to reach the optimal solution is 

𝑑(𝑚𝑖)

∆𝜑
 [140].  

Definition 6.1: (Optimal distance) Let Z be the problem space for a GA 

problem, Mi is the set population i of the system, OP is the set of optimal 

solutions for the problem where OP ∈ Z, and 𝑑(𝑚𝑗 , 𝑂𝑃)⁡is the distance 

between the member j in a given population to one of the OP members. The 

optimal distance 𝑑(𝑀𝑖) = min⁡{(𝑚𝑗 , 𝑂𝑃):⁡𝑚𝑗 ∈ 𝑀𝑖}.    

The aim of the hybrid scheme is to minimise the optimal distance for 

the initial population (𝑑(𝑀0)) in order to reduce the time step 𝜏 by injecting a 

set of learned solutions (𝑀∗) into the population. If the solution is good 

enough, then 𝑑(𝑀0) = 𝑑(𝑀∗), and there is a high chance that the hybrid 

scheme will converge faster than a totally random GA system. The probability 

of a random GA system converging faster than the hybrid system occurs when 

the selection of 𝑀∗ prevents the random selection from being one of the better 

solutions in 𝑀. Such probability can be estimated using the hypergeometric 

distribution as follows.  

𝑓(𝑋 = 𝑚∗) =
( 𝐿
𝑚∗)(

𝑍−𝐿
𝑀−𝑚∗)

(𝑍
𝑀
)

 (6.1) 
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where 𝑍 is the problem size, M is the random population size, 𝑚∗ is the number 

of injected solutions in the random population by the hybrid scheme, and 𝐿 is 

the set of solutions that satisfy {𝑑(𝑙𝑗) ⁡< 𝑑(𝑀∗) ∶ ⁡ 𝑙𝑗 ⁡ ∈ 𝐿}. The problem size 

can be computed in terms of pattern size (S) and possible values of each 

pattern’s element (V) as Z=SV.   

6.2.3 Autonomous robot navigation using GA 

As a proof of concept, we couple the CwGN scheme with a GA system, 

as presented in [149] and [150]. However, it is possible to couple the CwGN 

with any other type of GA. In [149], the GA system for autonomous robot 

navigation allows robots to find a collision-free path from the top left point to 

the right bottom point in a 2-D search space. The system assumes that robots 

use sensory systems to evaluate the problem space and then use GA to find the 

best candidate path. In order to find the best candidate path, the fitness function 

for the system evaluates each proposed path in terms of the path’s length (Pl), 

number of collisions in the path (Nc), and the number of required robot turns 

for that path (Nt). The fitness function can be described as follows [149]. 

𝑓𝑝 =
𝑓(𝑁𝑐). [𝐿. 𝑓(𝑃𝑙) + 𝑇. 𝑓(𝑁𝑡)].

100
𝐿 + 𝑇

𝑁𝑐2
 

(6.2) 

where L is the weighting factor of length and T is the weighting factor for 

turns. The equation calculates the number of turns and the path length then 

penalises the result by dividing the square of the number of collisions in that 

path. The authors’ hypothesis is that these metrics can be used to find the 
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fastest free-of-collisions path from one point to another. The assumption here is 

that turning a robot is one of the most time consuming operations in robot 

movement. The navigation scheme’s solution contains a set of points in the 

field representing the steps of the robot’s movements. A solution includes two 

switching points to determine the robot’s movement direction. The robot starts 

with horizontal movement and switches to vertical movement when it reaches 

the first switching point. Reaching the second switching point, the robot returns 

to horizontal movement again.  

6.2.4 Simulation 

To test this approach a simulation of autonomous path planning for 

mobile robots, presented in [149], was developed as the GA system. The 

training dataset generated in the second test in Chapter 4 is used as the original 

problem maps to simulate a robot that should find a collision-free-path to cross 

from the top left corner to the bottom right corner. It is assumed that sensor 

nodes are deployed in a grid over the map to sense heights. It is also assumed 

that each peak in a map represents a collision point that the robot should avoid. 

The fourth recall set in the second test series in the last chapter is used as the 

recall set in this simulation. In the recall set, each map is randomly altered 100 

times with a combination of pattern dilation, translation, and rotation. The 

alterations were limited to 15% for dilation, 10x10 pixels for translation, and 

10 degrees for rotation. A total of 500 test maps were generated for recall. 

Figure 6.3 shows one original map and a sample of altered maps of the original 
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one. The use of such maps ensures some level of similarity between training 

and testing problems. 

Original map 

 

Sample of altered maps 

  

Figure 6.3: A training map from the contours dataset and a sample of 

altered maps used in the testing dataset. 

 

The parameters of GA are: 0.033 mutation probability, 0.6 crossover 

probability, and a population size of 100. To limit GA search time, we set the 

maximum number of generations to 400. Mutation and crossover probability 

levels were chosen based on the ability of the GA to find optimal solutions for 
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the training binary maps within the maximum number of generations. An 

optimal solution in this test is defined as the solution that scores the highest 

fitness value in the last generation of the GA process. The fitness function in 

[149] takes the path length, the number of turns, and the number of collisions 

into account. We used the same fitness function with a solutions fitness value 

between 0 and 10. A solution with a fitness value of 10 is considered the best 

solution. For a map size of 100x100, a solution consists of 102 integers that can 

be used to guide a robot through the map. This includes two switching points. 

To compare the hybrid CwGN-GA scheme with the autonomous GA, 

we ran the autonomous GA to find the optimal solutions for the five training 

maps used in the second test described section 5.2. The solutions were sent to 

the S&I for storing and association with the corresponding map. Both the 

coupled CwGN-GA scheme and the autonomous GA were run eight times with 

different maximum numbers of generations to find robot guidance solutions for 

the 500 test dataset. The maximum numbers of generations for each run time 

(for both schemes) were 50, 100, 150, 200, 250, 300, 350, and 400, 

respectively. This aimed to test the performance of both schemes when 

increasing the time limit. The schemes were run with different maximum 

numbers of generations to evaluate the degree of performance enhancement 

achieved by this approach. To ensure the accuracy of the comparison, we used 

the same pseudo-random number of generations for both schemes. Figure 6.4 

shows the performance of the two schemes in terms of the average solution 

fitness values and the maximum number of generations. The figure shows that 
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the average fitness values resulting from the proposed coupled CwGN-GA 

scheme are always higher than those resulting from the autonomous GA. We 

also note that the average fitness value from the combined GA with a 

maximum of 250 generations is higher than the average value achieved by 

running an autonomous GA for 400 generations. This is due to the proposing of 

solutions provided by the CwGN network that drifts the GA search towards the 

proposed solution rather than starting from normal GA’s complete randomness.  

 

 

Figure 6.4: A comparison of the performance between the proposed 

combined CwGN-GA and autonomous GA. 

 

Based on this experimental result, the total number of generations used 

to find the solutions for the 500 test maps using an autonomous GA can be 

calculated as 200000 generations. In contrast, the proposed scheme required 
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127000 generations (including the training phase) to find optimal solutions for 

the same set of maps. This represents a reduction of 73000 generations, or 

36.5%. This shows that the use of CwGN scheme and limited number of 

training samples (5 samples in this experiment) allows GA to find optimal 

solutions with a cut off by 36.5% in time. In addition, this test shows that the 

proposed hybrid scheme is capable of reaching solutions that have higher 

fitness values than traditional GA when using the same number of generations 

as a stopping criterion. This means that the solutions obtained in the proposed 

hybrid scheme are more feasible for use in solving presented problems than 

solutions obtained by normal GA. In general, it can be concluded from this test 

that the transformation invariant recognition capability of CwGN can be used 

to improve the performance of AI systems such as GAs in terms of speed and 

accuracy. 

6.3 Human Activity Recognition Using WSNs 

This section discusses the feasibility of using a CwGN scheme in 

classification problems, the second example of how to use the features of the 

scheme in different application domains. In this section, a CwGN model will 

be presented that translates attributes into patterns and then uses these patterns 

to solve classification problems. It will be shown that such a model is capable 

of performing classification using a limited number of training instances with a 

high level of accuracy compared to some of the existing classification methods 

such as nearest neighbour, Naïve Bayes, and neural networks.  
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One of applications that can be used for this purpose is human activity 

recognition systems. Such systems analyse the physical behaviours of 

individuals in order to interpret the actual state, action or activity a human is 

performing at any given time [151]. These systems can be useful in numerous 

applications, such as medical monitoring, habitat monitoring, sports, security, 

and so forth. For such systems to be functional, two types of data collection 

means are generally used: camera-based means and sensor-based means [152]. 

Camera-based systems use visual equipment that observes an individual 

behaviour and attempts to use these observations for analysis. In senor-based 

systems, a set of integrated sensors functions as a WSN to collect sensory 

information about the targeted individual. In recent research, sensor-based 

activity recognition systems are considered to have the most attraction 

compared to camera-based systems [153]. In this section, the focus is on 

sensor-based systems as a case study for pattern recognition using CwGN. 

Different types of sensors are capable of collecting different types of 

measurements. For example, accelerometer sensors measure the acceleration of 

an object while gyroscope sensors measure the orientation [154]. These sensors 

can be wearable devices that are attached to an individual’s body. Other types 

of sensors can be attached to physical objects such as drawers and doors. These 

sensors provide sensory information for analytical and pattern recognition 

systems that transform measures and readings into activities. Different sensors 

measure different readings that can be used for analysis and recognition. For 



 

250 

example, accelerometer sensors measure the acceleration rates of an object 

while gyroscope sensors measure orientation based on momentum [154].   

The literature is rich in research that attempts to solve the problem of 

human activity recognition. For example, Parakka et al. [155] use sensor 

devices and PDAs to perform online daily life activity recognition based on a 

decision tree classifier. Zhu and Wihua [156] use markov models and neural 

networks to analyse wearable sensor readings in order to create a human-robot 

interaction approach for elderly and disabled people. Zhang et al. [157] present 

a sparse representation approach that leads to reducing human activity 

recognition complexity using wearable sensor devices. In general, 

classification methods such as SVM, neural networks, and Naïve Bayes 

algorithms are dominant in solving activity recognition problems in WSNs 

[151, 155]. However, no particular method was superior to other methods in 

dealing with the problem [155]. These methods could use probabilistic 

approaches such as Naïve Bayesian networks. However, such methods require 

huge amounts of data to be available and a large amount of analysis is required. 

Alternatively, other classification methods such as nearest neighbour can be 

used to create a model of relationships between collected. 

The problem of human activity recognition using sensor networks 

encounters several challenges that limit the capabilities of such systems. These 

challenges can be human or technical. Human behaviour is one of the most 

important challenges to be addressed [158]. Several difficulties related to 

human behaviour emerge in conducting activities. For example, a person may 
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perform more than one action or activity at the same time. Here research needs 

to address the question of the means of distinguishing between one activity and 

another. Additionally, the behaviour of targeted monitored objects differ from 

person to person. For example, a person may perform a set of sequenced 

actions in order to complete an activity while another person may carry out a 

different sequence in performing the same activity. Other challenges are related 

to technical issues include those exposed in the design of sensor networks and 

the way these sensors are physically deployed. Activity recognition systems 

usually require small wearable devices that are attached to a target or mounted 

on surrounding objects. The main challenge in this case is to conserve battery 

consumption and reduce memory requirements [158]. 

 It has been shown that a CwGN scheme reduces the communications 

required for performing recognition. Additionally, it has been shown that the 

scheme performs learning operations with no memory requirements placed on 

the network nodes. Consequently, CwGN is a good candidate for dealing with 

the problem of activity recognition as it deals with the major technical 

challenges that may be encountered in such applications. In this section, the 

CwGN will be compared with other existing techniques using limited collected 

data to demonstrate the capability of the scheme in addressing activity 

recognition problems. 
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6.3.1 Opportunity dataset 

An opportunity dataset [159, 160] is a rich database of collected 

information from sensor devices that record the human activities of different 

subjects. Sensors are deployed on the body and on surrounding objects. The 

sensors deployed include inertial, accelerometer, and compass sensors. The 

sensors deployed on the body form a WSN and the ones deployed on objects 

form a wired network. The challenge dataset presented in [161] contains the 

reading measures of deployed sensors for four subjects. Our focus in this case 

study is on the body-worn sensors that represent the WSN part of the setting. In 

this case, there were 39 worn sensors that contained information about 

subjects’ activities. These sensors were deployed in different parts of each 

subject’s body. The types of sensors were as follows: 12 accelerometer sensors, 

7 inertial sensors, and 2 compasses. Each accelerometer sensor provided 3D 

readings (x,y, and z). Five inertial sensors were deployed on the upper part of 

the body and each one contains three 3D readings, namely, acceleration, 

orientation, and magnetic field. The other two inertial sensors were deployed 

on the shoes of the body (left and right) and each one obtained five 3D 

readings, namely, acceleration, orientation, magnetic field, rate of turn, and 

angular velocity. Each of the two compasses provided a single reading that 

gave the direction of the object. This came to 113 attributes for each data 

instance. 

The recorded activities were manually labelled. Two types of activities 

were targeted, namely, locomotion, and gestures. The locomotion activities 
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included four activities: standing, walking, sitting, and lying down, labelled as 

101, 102, 104, and 105 respectively. Gestures included detailed activities such 

as opening or closing a drawer. In this case study, locomotion activities were 

studied as gesture activities, relying on the wired objects’ mounted sensors. 

The case study attempted to classify the four locomotion activities based only 

on the measures provided by the body-worn sensors. This means that the time 

stamp of when an activity occurred was also neglected. This is to demonstrate 

the capability of the CwGN scheme in classifying activities without recording 

the historical information about a subject’s behaviour. This is intended to 

minimise memory requirements so as to meet WSN resource constraints. 

6.3.2 CwGN for activity recognition 

An opportunity dataset is used in this case study to address the problem 

of activity recognition using CwGN. The first step in the case study was 

handling the dataset to represent valid readings to the network. The dataset 

provided sensory measures based on time. Each data instance represents the 

measures of the sensors at a given time. Some instances in the dataset contain 

faulty readings that are denoted as (NaN). In this experiment the instances 

containing more than three invalid readings were eliminated.  

The second step was to address the relationship between sensors and 

S&I in the CwGN network. Since worn sensors give readings in 3D format, 

each sensor exchanges information with its adjacent sensors. The network is 

made up of 37 nodes that provide the 3D readings. The two compass readings 
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(1D) send information directly to the base station without exchanging. Each 

sensor in the network calculates three weights (x, y, and z) in accordance with 

Equations 4.3, 4.4, and 4.5. Each value in a certain dimension is considered to 

be adjacent to the neighbour’s value of the same dimension. For example, the 

value of x in the first sensor is adjacent to the value of x in the second sensor. 

Figure 6.5 shows the connectivity relationship between adjacent sensors 

(nodes) in the same track of a CwGN network. Each weight is calculated as 

follows. 

𝜔𝑐𝑑 = 𝐸𝐷𝑣𝑑 . 𝑉𝑅𝑐𝑛𝑑 + 𝐸𝐷𝑣𝑑 . 𝑉𝑅𝑐𝑝𝑑⁡ (6.3) 

where d is the dimension (x, y or z). The total current node’s  weight can be 

calculated as the summation of the three weights as follows. 

𝜔𝑐 = 𝜔𝑐𝑥 + 𝜔𝑐𝑦 + 𝜔𝑐𝑧 (6.4) 

 

 

   Figure 6.5: Connectivity between neighbouring nodes in a 3-D 

CwGN track. 

 

The S&I (in the base station) receives the accumulated weight from the 

network along with the compass sensors’ readings. According to Equation 4.6, 

the S&I normalises the accumulative received weight by the normalising factor 
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(Nf). In this experiment the Nf is a function of the number of participating 

sensors and the value of compass sensors as follows. 

𝜔 =
∑ 𝜔𝑖

𝑆
𝑖=1

𝐶1 ∗ 𝐶2 ∗ 𝑆
 (6.4) 

where 𝜔  is the total weight, 𝜔𝑖 is the i'th sensor’s weight, S is the network size, 

C1 is compass one sensor’s value, and C2 is compass two sensor’s value. The 

network was trained using 20 randomly selected data instances for each 

locomotion class. To compare with other schemes, the Weka  [113, 114] tool 

was used to simulate three different schemes: KNN (k=1), mlti-layered NN, 

and  Naïve Bayes. Figure 6.6 shows the receiver operating characteristic 

(ROC) space and the plots for the four activity classes for the CwGN, KNN, 

Naïve Bayes, and Multi-layer NN schemes. A ROC graph describes the 

performance of each network based on the false positive rate (FPR) and true 

positive rate (TPR). Table 6.1 shows the details of CwGN and other schemes’ 

recognition accuracy levels obtained for each class. Accuracy in the table is 

calculated as the total number of correctly classified instances (patterns) to the 

total number of instances in that class.  Overall accuracy is calculated as the 

total number of correctly classified instances compared to the total number of 

testing instances. The same training and testing datasets were used for all 

schemes.   
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Figure 6.6: The ROC space and plots of the activity classes for CwGN, 

KNN, Naïve Bayes (NB), and Multi-layer NN schemes. 

 

 

Table 6.1: Recognition accuracy results of opportunity challenge dataset for 

different schemes. 

 
Overall 

Class 101 102 104 105 N/A 

Training 

instances 
20 20 20 20 80 

Testing 

instances 
154143 79589 80058 17557 331347 

CwGN 45.86% 47.34% 92.48% 33.88% 56.96% 

KNN (K=1) 47.24% 32.92% 95.21% 41.04% 55.06% 

Naïve Bayes 1.42% 97.54% 6.24% 11.50% 26.21% 

Multy-layer NN 37.26% 44.79% 96.26% 40.75% 53.50% 

 

From ROC graph shown in Figure 6.6 and Table 6.1, it can be seen that 

Naïve Bayes schemes recorded the lowest overall average recognition accuracy 

compared to other schemes. More specifically, the Naïve Bayesian network 

classified most incoming instances as pattern 102. This was due to the small 
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number of training samples. As discussed in Chapter 2, Naïve Bayes attempt to 

create a probabilistic relationship between training samples and input variables. 

Since the number of training samples is limited, these probabilistic 

relationships cannot efficiently describe each pattern.  

The other schemes produced comparable detection accuracy. However, 

both multi-layered NN and KNN schemes have their own requirements to 

reach such accuracy levels. Multi-layered NN involved input layers, one 

hidden layer that contained 71 nodes, and a four nodes output layer. The 

network structure required each node in each layer to communicate with each 

node in the higher layer. This means that each node in the input and the output 

layers had 71 connections to the hidden layer. Since the input layer contained 

113 nodes (the pattern size) and the output layer contained 4 nodes, each node 

in the hidden layer had 117 connections to the input and output layers’ nodes. 

Similarly, each node in the output layer required four connections to the hidden 

layers’ nodes. The total number of connections in this case was 16950. 

Additionally, the network required 500 iterations for each incoming pattern in 

order to converge. In contrast, a CwGN node involves only three connections 

to its adjacent nodes. That includes exchange and report communications. 

Since the compass sensors report directly to the S&I, each one of these nodes 

requires only one communication to the base station. Consequently, the total 

number of communications was 335. Additionally, the CwGN network 

involves a single cycle to converge. Such reduction of communications and 
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iterations would have ramifications for the performance of the network in 

terms of resource consumption (e.g. energy) and convergence time. 

The KNN (with K=1) scheme involves fewer communications and 

iterations compared to the multi-layered NN. Each node in a KNN in such 

network saves the input values of the training data instances and then compares 

incoming pattern values with the stored information. After calculating 

distances, the nodes report directly to the base station, which also holds 

information about training samples. This requires the memory resources 

available in each node to store such information. By increasing the number of 

training samples, the memory requirements and the time required to calculate 

distances for each node increase. Moreover, the direct communication to the 

base station affects the efficiency of the network and may cause a single point 

of failure threat. In contrast, the nodes in the CwGN network avoid storing 

information about training samples. Alternatively, each node reports the 

calculated weight to the S&I through one of its inner nodes in the network. 

This alleviates the need for memory resources in each node. Consequently, no 

search time is required by nodes to match patterns. Additionally, the S&I (i.e. 

base station) receives the accumulative weight from only one node in the 

network, which is the core node or its alternative node in case of failure. This 

assists in avoiding any single point of failure problem. 

It can be seen that the CwGN scheme is capable of offering comparable 

and even higher recognition accuracy levels for the challenge dataset with 

minimal requirements in terms of the number of training samples, number of 
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communications and convergence time, compared to other iconic schemes. The 

problem of human activity recognition could involve using more complicated 

means such as filters and physical analysis, which could improve accuracy. 

This case study shows that the CwGN scheme is a good candidate to be 

integrated with such means in order to solve activity recognition problems in 

resource-constrained environments as it scores comparable accuracy levels thus 

minimising resources consumption.  

6.4 Summary 

In this chapter, the CwGN scheme was implemented in two different 

application domains. The first one looked at the capability of the scheme in 

enhancing the performance and speed of GA for optimisation purposes. More 

specifically, the scheme was combined with GA to solve the problem of 

autonomous robot navigation based on limited numbers of available samples. 

The experimental results show that the scheme was capable of enhancing the 

performance of GA in terms of fitness value and convergence time. The 

coupled CwGN-GA was capable of providing higher fitness values in the same 

number of generations for unknown problems compared to a random GA 

system. Additionally, the experimental results show that the coupled scheme 

speeds up finding an optimal solution by 36.5% for the same unknown 

problems compared to random GA.  

The application domain implementation pointed to the ability of the 

scheme to use its pattern recognition features for solving classification 
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problems. The problem of human activity recognition using the challenge 

opportunity dataset was presented. The experimental results show that the 

CwGN scheme is capable of providing higher accuracy levels in detecting and 

classifying human activities such as walking, standing, sitting and lying down 

with minimal use of resources and with the presence of a high level of noise. 

The CwGN was compared with KNN, Naïve Bayes and multi-layered NN. It 

was shown that the CwGN is capable of achieving higher accuracy levels using 

a very limited number of training samples (i.e. 80 samples). Additionally, it 

was shown that the CwGN network involves considerably fewer 

communications and a high level of distribution in addressing the problem 

compared to the other schemes. Moreover, the scheme was able to successfully 

achieve these results in a single learning cycle technique while avoiding storing 

information in network nodes. These capabilities would reduce the resources 

and time requirements in resource-constrained environments such as WSNs. 

The success of the scheme in dealing with such problems demonstrates 

its validity for use in optimisation and classification applications. It also 

suggests the scheme is a good candidate for implementation in other disciplines 

where pattern recognition can be used to enhance the process of problem 

solving.  This suggests that the scheme will be part of new research areas and 

will play an important role in future research contributions. However, this 

would require proper analysis, design and modelling of the scheme to adapt to 

various problem solving applications. The next chapter of this thesis will 



 

261 

summarise the research contributions and findings and discuss the future 

research opportunities and limitations of the scheme.  
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Chapter 7 

7 Conclusions and Future Work 

7.1 Summary of the Research 

This research proposes distributed and parallel pattern recognition 

schemes that minimise computations and communications by adopting local 

processing techniques to provide real time pattern recognition capabilities for 

complex problems such as real time event detection, artificial intelligence 

applications, and security applications. These features will be best suited to 

resource-constrained networks such as WSNs.  

This research revised existing pattern recognition schemes for resource-

constrained WSNs. In order to achieve a scalable scheme that meets the 

requirements of such networks, the scheme must combine limited 

communications and computations with using minimal memory resources. 

Additionally, the scheme must also involve low time complexity in order to 

serve online recognition applications. To deal with the real life sensory 

problems of WSNs, a good recognition scheme is expected to be capable of 

dealing with complex and noisy patterns with minimal available information. 

These requirements for good schemes derived from the challenges posed by 

WSN applications. Existing recognition schemes for WSNs have several 
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limitations in terms of these challenges such as iterative and centralised 

processing. 

This research proposed light-weight, distributed and efficient pattern 

recognition schemes for resource-constrained and large scale systems and 

networks such as WSNs. The proposed schemes involve a distributed in-

network processing paradigm that depends on local computations. The first 

proposed scheme is called CGN, which provides light-weight template 

matching capabilities. The proposed scheme adopts the GN distributed 

template matching technique in order to minimise communications and 

computations so as to perform recognition operations in a single learning cycle.  

The design of CGN is extended in the second proposed scheme to 

present a more sophisticated approach that can provide more efficient 

recognition capabilities. In addition to the light-weight design, the second 

proposed scheme, called CwGN, adopts weighting technique that search for 

pattern edges and boundaries. The scheme is capable of detecting different 

types of pattern transformation such as translation, rotation, and dilation. The 

presented weighting technique depends on the change rate between direct 

adjacent nodes to minimise computations and communications. The scheme 

also adopts a two steps activation process to reduce the number of participating 

nodes in the recognition process so as to minimise communicational overheads 

and to increase network scalability. In order to support online operations, a 

zoning model was presented. The model addresses the constraints of timing 

requirements by allowing a number of CwGN networks to perform recognition 
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operations in a parallel paradigm. Required protocols that describe the network 

implementation and the nodes’ message exchanges were also presented in this 

research. 

This research presented theoretical and experimental analysis of both 

schemes, including comparing the proposed schemes with existing techniques. 

Theoretical analysis shows that both schemes are capable of converging to 

problem solutions within a predictable learning cycle duration that is 

proportional to the square root of the problem size. Network computational and 

communicational overheads can also be predicted on the basis of problem size. 

Additionally, theoretical analyses of CwGN scheme show that the scheme is 

capable of performing online operations as well as dealing with transformed 

patterns. Experimental evaluation confirmed the findings of the theoretical 

analysis. Experimental evaluations of CGN show that the scheme is capable of 

performing noisy pattern recognition. On the other hand, experimental 

evaluations of CwGN demonstrated the ability of the scheme to deal with 

transformed patterns.  Moreover, these evaluations show how the network’s 

communicational overheads in terms of time and energy can be reduced. 

Different experiments on the schemes presented in this research show that both 

schemes can perform recognition operations with higher accuracy levels as 

compared to other existing techniques. 

Finally, the features of CwGN pattern recognition schemes were used to 

serve different application domains. Presenting two example models, the 

scheme was used in optimisation and classification problems. In the first 
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model, the CwGN scheme was used to enhance the performance of GA 

optimisation techniques in terms of fitness value and time. In the second 

model, the scheme was used to perform classification operations using its 

pattern recognition capabilities in the complex problem of human activity 

recognition to show that pattern recognition-based approaches can perform 

better than conventional classifiers.  

7.2 Research Contributions and Outcomes 

The outcomes of this research contribute mainly to the field of pattern 

recognition in limited resource networks and systems such as WSNs. More 

specifically, this research presents schemes that are capable of performing 

efficient online pattern recognition while maintaining minimal resource 

requirements that suit such limited systems. The significance of this research 

can be encapsulated as four major contributions: light-weight network design, 

online recognition performance, noisy, and transformation invariant 

recognition, and adaptability to different application domains.  

Light-weight and distributed schemes design is the first key 

contribution of this research. Such design ensures high network scalability and 

increases its lifetime. Light-weight scheme design has been achieved by using 

distributed communicational and computational mechanisms, along with 

parallel cellular network design that minimises information exchange 

overheads. The network design of the schemes limits the number of messages 

required for each node to two exchange and one report messages. This relieves 
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network nodes from the tightly coupled connectivity requirements found in 

other schemes such as neural networks. If all network nodes participate in the 

recognition process, the total number of messages required can be calculated as 

3S-2 (S is the pattern size which is equal to the network size). However, the 

CwGN scheme’s network design adopts activation mechanisms that minimise 

participating network nodes in the recognition process. This leads to further 

minimisation in the schemes’ complexity, increases the network’s lifetime, and 

increases network scalability. Experiments conducted on the CwGN scheme (in 

sub-section 5.4.1) show that the proposed activation process involved a range 

of only 1.14% to 5.04% nodes of the total number of the network’s nodes in 

the information exchange process. The same experiments showed that a range 

of only 0.79% to 0.905% nodes were involved in the reporting process (see 

sub-section 5.4.2). In terms of communicational requirements, the experimental 

tests show that the communications required for a network of size 40000 nodes 

ranges between 4393 and 8424 nodes depending on the message sequence 

model. This is a range between 11% and 22.06% of the network size and of the 

number of communications required by parallel KNN. It was also shown 

experimentally that the number of required communications for a CwGN 

network of size 10000 nodes ranged between 307 and 536 nodes. That is a 

range between 3.07% and 5.36% of the network size, and of the required 

communications of other schemes (see sub-section 5.4.2).  

Such minimisation of participating nodes also results in increasing the 

lifetime of the network. The tests conducted in this research show that the 
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average energy consumption scored, ranged between 0.3 and 0.57 mJ 

depending on the sequence model involved. Other schemes such as parallel 

KNN scored an average energy consumption of 2.9 mJ. By analysing these 

results, it was shown that a CwGN network can have a lifetime of two years 

with one of the smallest batteries in terms of capacity (i.e. 30 mAh or 324 

joules). That is 8 times higher than other schemes such as parallel KNN (see 

sub-section 5.4.2). 

The second significant contribution of this research is achieving pattern 

recognition within predictable single learning cycle duration. Such capability 

allows the scheme to support online and real time applications. The time 

complexity of presented schemes has been estimated as O(√𝑆) in its worst 

case. That is when all nodes are activated and participate in the learning 

process. In other words, the required time to perform a single learning cycle is 

proportional to the square root of the pattern size. This complexity is minimal 

compared to other schemes that involve exponential iterative complexity such 

as neural networks. The parallel zoning CwGN model ensures a network’s 

convergence within time restrictions for online applications support. 

The third significant contribution of this research is efficient pattern 

recognition capabilities for noisy and transformed patterns. The CGN scheme 

presented in chapter 3 is mainly designed to deal with noisy patterns. 

Experimental evaluations on the scheme presented in section 3.5 show that the 

scheme is capable of dealing with noisy patterns with noise levels reaching 

36.11% of the pattern size. In chapter 4, the transformation invariant 
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recognition capability is achieved by the CwGN weighting technique. This 

allows recognition of patterns while requiring minimal prior available 

information about these patterns. Theoretical and experimental analyses of the 

scheme show its ability to deal with translation, rotation, and dilation pattern 

transformation types. The results show that the scheme is capable of detecting 

translated patterns at any level, dealing with dilation levels up to 26%, and 

recognising rotated or even flipped rotated patterns with up to 23 degrees in 

any direction. The tests also showed that any pattern has the same weight as its 

flipped version pattern. 

The fourth significant contribution of this research is the ability of the 

presented pattern recognition-based schemes to adapt to other techniques to 

serve different technological disciplines and application domains. This research 

presented a hybrid CwGN-GA model that contributed to enhancing the 

optimisation performance of GA in terms of time and accuracy. The model 

presented is always capable of finding better optimal solutions for given 

problems compared to traditional GA. The model is also able to provide similar 

fitness values to traditional GA for problems while cutting optimisation time 

by 36.5% (see sub-section 6.2.4).  

The fifth contribution of this research is presenting the advantage of using 

pattern recognition based techniques in dealing with classification problems. In 

Chapter 6, a CwGN classification model was presented to deal with complex 

classification problems such as human activity recognition. Such a model 

shows the ability of the scheme to perform classification tasks with minimal 
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resource requirements using pattern recognition capabilities while maintaining 

high accuracy compared to other classification schemes. The examples 

presented in chapter 6 show the capability of the schemes presented here to 

adapt to different types of complex learning applications and systems. This 

opens the door for new research opportunities that involve recognition-based 

techniques in different research disciplines and application domains. 

In general, the goal of the schemes presented in this thesis is to provide 

efficient pattern recognition capabilities. Both CGN and CwGN schemes were 

compared with other schemes in terms of accuracy. In Chapter 3, a CGN 

scheme was compared with Naïve Bayes and neural networks using a complex 

handwritten recognition problem. The test showed that the scheme is capable 

of dealing with the problem while providing higher accuracy levels compared 

to other scheme. In Chapter 5, the CwGN scheme was compared with several 

recognition schemes using two standard datasets. The first involved levels of 

pattern transformations. The scheme was compared with KNN, Naïve Bayes, 

and neural network schemes. The scheme was capable of achieving high an 

accuracy level of 95.38% compared to other schemes that scored accuracy 

levels ranging between 52.15% and 55.94%. The second test addressed the 

problem of robot guidance using a wall using a standard dataset. The scheme 

was firstly compared with traditional recognition schemes, then compared with 

schemes designed to deal with this specific problem. In both comparisons the 

scheme was capable of selecting the best routing decisions with the highest 

accuracy levels reaching up to 98.1% compared to other schemes. 
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7.3 Future Work 

8 Future Work 

This research has presented schemes mainly intended to provide online and 

efficient pattern recognition capabilities for large scale and resource-

constrained networks such as WSNs. The features of the proposed schemes 

open the way for further enhancements and research opportunities. A useful 

extension of this research and further studies could involve the following: 

  

 New techniques for nodal computations outcomes reporting: In sub-

section 4.3.2, reporting mechanisms were presented and discussed. 

However, attempts at parallelising nodes’ reports will lead to further 

speed up in network performance and further minimisation of a 

network’s time complexity. Implementing new techniques to find 

alternative reporting paths will also lead to higher network 

performance and efficiency. A zoning model was presented in this 

research that enhances and supports the online recognition 

capabilities of the proposed schemes. Hence, enhancing such 

models by researching possible ways to relate different network 

zones would extend recognition accuracy capabilities and ensure 

further online feature support. 



 

271 

 Weighting mechanisms: A weighting technique was adopted in the 

proposed CwGN scheme in this research (sub-section 4.3.3). The 

weighting technique adopted the change rate or the average change 

relationship between an active node and its direct adjacent nodes. 

This technique dealt with transformations of patterns such as 

translation, rotation, and dilation. A good extension of the research 

in this context would be implementing different weighting 

techniques that could lead to higher detection accuracy levels and 

could deal with other types of transformations and problems. The 

tradeoffs between implementing more complex weighting 

mechanisms and network performance would be a rich research 

area as more complex mechanisms could lead to more costs in 

terms of resource consumption and speed. The type of application 

and available resources are expected to be the main criteria that 

drive such tradeoffs. 

 Multi-dimensional design: The proposed schemes in this thesis were 

modelled and designed to deal with 1-D, 2-D, and 3-D problems. 

For example, the wall following problem presented in sub-section 

5.3.2 and the hybrid CwGN-GA model presented in section 6.2 both 

deal with 2-D problem types. The human activity classification 

model presented in section 6.3 deals with a 3-D problem space. 

However, other problems may involve higher dimensionality 

requirements. This research proposed the use of multi-track network 
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structures and zoning models to deal with multi-dimensional 

problems. However, network structure design constraints of the 

proposed schemes can be challenging.  Hence, designing and 

analysing multi-dimensional network structures based upon the 

schemes proposed in this thesis would be a good extension of the 

research. New research would focus on design capabilities and 

prediction of the behaviour and performance of these schemes when 

dealing with multi-dimensional patterns.    

 Adaptation to different application domains: The light-weight 

capabilities of the schemes proposed in this research can also be 

used in different types of application domain. How to use the 

recognition capabilities of a CwGN scheme in enhancing 

optimisation techniques and solving classification problems was 

discussed in Chapter 6. These points to further research 

opportunities that involve light-weight pattern recognition-based 

techniques such as CwGN in the steps and processes involved in 

solving complex real life problems. This could open up a wide area 

of research in fields such as artificial intelligence, optimisation, 

system security and network management.   

 

In conclusion, this research has presented and demonstrated pattern 

recognition schemes that are capable of addressing the limitations associated 

with WSNs in serving mission critical and online applications. The schemes 
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presented in this thesis provide efficient recognition and high scalable 

capabilities while requiring minimal resources. Such capabilities motivate 

further research in the area of WSN pattern recognition and event detection. 

The proposed schemes also suggest research in other areas, such as 

optimisation and classification. Hence, the schemes proposed in this thesis are 

believed to have the potential to serve a wide range of applications beyond the 

fields of pattern recognition and WSNs.   
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