
ADDENDUM

P 11 Section (1.3): Add at the end of point (i):

“A real time application is the application that requires converging to a decision

within a predetermined time limits”

P 14 section (1.4) para 2, first sentence: delete “a novel pattern detection scheme for

WSNs” and read “a novel pattern detection scheme for WSNs called Cellular Graph

Neuron (CGN)”

P 15 line 1: delete “The scheme reduces” and read “The scheme is called Cellular

weighted Graph Neuron (CwGN) and it reduces”

P 34 section (2.3.3), 10th line: delete “the states are rectangle or circle” and read “the

states can be selected as rectangle and circle”

P 35 para 1, 9th line, delete “i is the class number,”

P 45 2nd line: delete “The neurons in the comparison layer are fed” and read “Each

neuron in the comparison layer is fed”

P 57 para 1, 9th line: delete “increases exponentially” and read “increases in a

quadratic manner”

P 61 para 1, 1st line: delete “propos” and read “proposed”

P 63, 8th line: delete “The memory size of a sensor is intuitively small” and read “The

available memory in each node is small”

P 65 para 1, 11th line: delete “ability to address randomness problems” and read

“ability to deal with problems that involve random occurrence of events and patterns”

P 66 para 1, 3rd line: delete “S” and read “S”

P 66 para 1, 7thline: delete “v” and read “v”

P 66 para 1, 8th line: delete “grows exponentially” and read “grows in a quadratic

manner”

P 70 para 1, 6th line: delete “if we are to the problem of interest” and read “if we are to

solve the problem of interest”

P 78 section (3.2) para 2, 4th line: delete “attempting to achieve” and read “attempting

to achieve are”

P 78 section (3.2) para 2, 4th line: delete “low scheme complexity” and read “low time

complexity”

P 80 Equation (3.1): delete “ɛ ϵ V” and read “ɛi ϵ V”

P 80 Definition (3.2): Add to the end of the definition “In other words, an index i is a

unique number that describes Pi”

P 81 Section (3.2.2), 1st line: delete “The CGN network consists of a set of GN

networks where each GN network reports to another one with reaching the S&I.” and

read “The CGN network is composite of multiple GN networks. Each GN network

performs a set of computations and report its outcomes to another pre-assigned GN

network. This operation continues until delivering all computations to the S&I.”

P 81 Definition (3.2), 3rd line: delete “x” and read “xi”

P 81 Definition (3.2), 4th line: delete “a, v ϵ V” and read “ai, v ϵ V”

P 81 Definition (3.2), 6th line: delete “ɛ ϵ V” and read “ɛi ϵ V”

P 85 para 1, 7thline: delete “i=1” and read “i=1”

P 86 Definition (3.6), 7th line: delete “j” and read “l”

P 88 section (3.2.4), 3rd line: delete “patter” and read “pattern”

P 98 Proposition (3.1): delete “ɛ ϵ V” and read “ɛi ϵ V”

P 106 para 2, 2nd line: delete “increases exponentially” and read “increases in a

quadratic manner”

P 114 Figure (3.15), Y axis: delete “Accurcy” and read “Accuracy”

P 115 para 1, 6th line: add before “Additionally,”:

“The analysis of the scheme shows that it is capable of performing recognition tasks

within a predictable single learning cycle that suits real time applications.”

P 125 Figure 4.1, legend: delete “CWGN” and read “CwGN”

P 127 Definition (4.2), 4th line: delete “as follows.” and read “ . If Δ𝜔𝑖𝐶 = |𝜔𝑖 − 𝜔𝐶|,
and 𝑗 = min⁡{Δ𝜔𝑖𝐶 , 1 ≤ 𝑖 ≤ 𝑛}. Then, Rp=j. This can be also represented using the

following expression.”

P130 para 1, 2nd line: delete “odd numbers” and read “odd number”

P 131 Definition (4.4): Comment: The (→) notation means communicate (or send).

P 131 Figure 4.3, legend, 2nd line: delete “(L1, L2,…, Lm)” and read “(L1, L2,…, L2m)”

P 150: delete Equation (4.16) and read

“𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑠𝑒𝑛𝑠𝑒 + ⁡2. 𝑇𝑠𝑒𝑛𝑑 + 2. 𝑇𝑐𝑜𝑚𝑝𝑎𝑟𝑒 + 𝑇𝑎𝑑𝑑 + 𝑇𝑑𝑒𝑣 + 𝑇𝑠𝑒𝑛𝑑 . (10
log𝑆

2 −

1) + 𝑇𝑎𝑑𝑑 . 10
log𝑆

2 + 𝑇𝑆𝐼”

P 150: delete Equation (4.17) and read

“𝑇𝑡𝑜𝑡𝑎𝑙 = (2 +⁡10
log𝑆

2) . 𝑇𝑠𝑒𝑛𝑑 + (1 + 𝑇𝑎𝑑𝑑).⁡⁡⁡10
log𝑆

2 + 𝑇𝑠𝑒𝑛𝑠𝑒 + 2. 𝑇𝑐𝑜𝑚𝑝𝑎𝑟𝑒 +

𝑇𝑑𝑒𝑣 + 𝑇𝑆𝐼”

P 150: delete Equation (4.18) and read “𝑇𝑡𝑜𝑡𝑎𝑙 = 3. 𝑇1 + 5𝑇2 + (𝑇1 + 𝑇2).⁡⁡10
log𝑆

2 ”

P 150: delete Equation (4.19) and read “𝑇𝑡𝑜𝑡𝑎𝑙 = 3. 𝑇1 + 4𝑇2 + (𝑇1 + 𝑇2).⁡⁡10
log𝑆

2 +
(2. 𝑇2)𝑙𝑜𝑔2(𝑀𝑝)”

P 154: delete Equation (4.22) and read “𝑁𝑧𝑜𝑛𝑒𝑠 = S. (
𝜏−3.𝑇1−4.𝑇2−(2.𝑇2)𝑙𝑜𝑔2(𝑀𝑝)

𝑇1+𝑇2
)
−2

”

P 164 para 2, 2nd line: delete “firstly” and read “first”

P 202 para 1, 15th line: add before “However,”:

“The results show the ability of the CwGN scheme of recognizing transformed

patterns such as translated and dilated hill and valley patterns with higher detection

accuracy levels compared to iconic methods.”

P 209, 7th line: add before “This means”:

“Also, this shows that the scheme is capable of mapping sensory information into

patterns and use the mapped patterns to solve complex decision making problems such

as the wall following robot problem.”

P 212, 7th line: Comment: The threshold 200 was empirically selected based on a

series of experiments to ensure that high peaks of the contour images are marked in

the binary patterns.

P 214 para 2, 8thline: delete “mS” and read “ms”

P 232 para 2, 8th line: delete “have been chose” and read “have been chosen”

P 242 Definition (6.1), 2nd line: delete “of the system” and read “of the GA system”

P 242 Definition (6.1), 5th line: delete “𝑑(𝑀𝑖) = min⁡{(𝑚𝑗, 𝑂𝑃):⁡𝑚𝑗 ∈ 𝑀𝑖}” and read

“𝑑(𝑀𝑖) = min⁡{𝑑(𝑚𝑗, 𝑂𝑃):⁡𝑚𝑗 ∈ 𝑀𝑖}”

Distributed Pattern Recognition Schemes

for Wireless Sensor Networks

by

Waleed Mohammed J. Alfehaid

BSc of Computer Engineering (King Saud University)

MSc of Information Technology (Monash University)

Thesis
Submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy (0190)

Faculty of Information Technology

Monash University

November, 2013

©Copyright

Waleed Mohammed J. Alfehaid

2013

Under the Copyright Act 1968, this thesis must be used only under the

normal conditions of scholarly fair dealing. In particular no results or

conclusions should be extracted from it, nor should it be copied or closely

paraphrased in whole or in part without the written consent of the author.

Proper written acknowledgement should be made for any assistance obtained

from this thesis.

i

Abstract

Smart systems are increasingly in use in daily life applications, replacing old-

fashioned processes and procedures as a result of technological evolution.

However, these systems can be limited in their resources capacity. Wireless

Sensor Networks (WSNs) are considered to be one form of such resource-

constrained smart systems. One of the main goals of WSNs is to sense physical

activities so as to detect events in an area of interest. Adaptive and machine

learning techniques have been proposed and implemented to work in

conjunction with WSNs to serve a number of applications, such as physical

activities detection, network security threats detection, artificial intelligence

applications and decision making support. Pattern recognition is one of the

most useful machine learning techniques that can perform event detection for

WSNs. However, the nature of WSNs poses extreme challenges for the

implementation of these learning techniques so that they can serve the goals of

different types of applications. Such networks have limited resources available

for performing learning operations. Additionally, WSNs are of a dynamic

nature in terms of network deployment and the appearance of activities in the

field of interest. Global events can also span very large regions requiring vast

quantities of data exchange and processing in order to detect such events.

These challenges become critical when detection time limits are required by

applications such as mission critical and online applications.

ii

The aim of this research project is to propose pattern recognition

schemes that are capable of addressing the limitations associated with resource-

constrained networks such as WSNs. The research first investigates the

existing learning techniques for WSNs and their limitations. Then the research

proposes novel collaborative in-network global pattern recognition based event

detection schemes that are light-weight, scalable and suit resource-constrained

networks such as WSNs well. The proposed schemes address the limitations

and challenges for WSNs to provide reasonable detection capabilities for

mission critical, online, and decision making applications. The proposed

schemes adopt the distributed and parallel recognition mechanisms of Graph

Neuron (GN) in order to minimise recognition computations and

communications and thus will lead to maintaining low levels of limited

resources consumption. The distributed network structure of the proposed

schemes will result in loosely coupled connectivity between a network’s nodes

and avoid iterative learning. Hence, the proposed schemes will perform

recognition operations in a single learning cycle of predictable duration, which

will provide online learning capabilities that can support mission critical

applications. In addition to minimal resources and time requirements, the

distributed structure of the schemes will sustain large-scale networks in

performing pattern recognition operations.

To deal with a WSN’s dynamic nature and limited prior knowledge of

events, a pattern transformation invariant scheme is proposed in this research.

The proposed scheme implements a weighting mechanism that searches the

iii

edges and boundaries of patterns and replaces traditional local information

storing. This mechanism allows the scheme to identify dynamic and continuous

changes in patterns. Consequently, the scheme will be capable of performing

recognition operations in dynamic environments and will also provide a high

level of detection accuracy using a minimal amount of available information

about patterns. Required protocols for performing scheme operations are also

presented and discussed.

Theoretical and experimental analysis and evaluation of the presented

schemes is conducted in the research. The evaluation includes time complexity,

recognition accuracy, communicational and computational overhead, energy

consumption and lifetime analysis. The scheme’s performance is also

compared with existing recognition schemes. This shows that the scheme is

capable of minimising computational and communicational overheads in

resource-constrained networks, enabling those networks to perform efficient

recognition activities for patterns that involve transformations within a single

learning cycle while maintaining a high level of scalability and accuracy. The

results show that the scheme’s time complexity is proportional to the square

root of the pattern size which allows the network to scale up to adopt large

patterns. It is shown that a network that implements mica 2 motes and requires

3.0625 milliseconds to send a single message can perform recognition

operations within a single learning cycle duration ranging between 126.4 and

323.1 milliseconds for 10,000- and 40,000-node network settings respectively.

The results also show that energy requirements can be decreased up to 89.66

iv

per cent by using the proposed schemes in comparison to other recognition

techniques. In terms of efficiency, theoretical and experimental analyses show

that the proposed schemes are capable of dealing with transformed patterns

with a high level of accuracy. The analyses show that the scheme is able to

detect translated patterns, rotated or even flipped patterns with a rotational

angle of up to 23 degrees, and dilated patterns with a dilation level of up to 26

per cent. The results show that the proposed schemes have features that will be

best suited for implementing pattern recognition applications on resource-

constrained networks such as WSNs.

The research also discusses the use of the proposed pattern-recognition-

based schemes in different machine learning and artificial intelligence (AI)

applications. This aims to explore new research opportunities that can lead to

enhancing existing schemes’ performance by involving the proposed schemes

in different technological disciplines and models. Two disciplines are presented

as examples in this context: optimisation and classification. In the first

example, a new model that involves the proposed schemes in the process of

optimisation techniques, in this case genetic algorithms (GA), is presented. The

proposed model enhances the performance of traditional GA in terms of speed

and accuracy. The second example proposes a classification model using the

pattern-recognition-based proposed schemes. The proposed model shows a

high level of classification capabilities compared with other well-known

existing schemes.

v

Declaration

In accordance with Monash University Doctorate Regulation 17 / Doctor of

Philosophy and Master of Philosophy (MPhil) regulations the following

declarations are made:

I hereby declare that this thesis contains no material which has been

accepted for the award of any other degree or diploma at any university or

equivalent institution and that, to the best of my knowledge and belief, this

thesis contains no material previously published or written by another person,

except where due reference is made in the text of the thesis.

Waleed M. Aalfehaid

 November 14, 2013

vi

This thesis is dedicated to my beloved parents, my wife Hind, and

my children, who have inspired and supported me in my pursuit of

higher education. This thesis is also dedicated to my brother,

Abdullah, and my father-in-law, who passed away as I worked on

my degree, before I had a chance to say goodbye to them.

vii

Acknowledgements

It would not have been possible for me to accomplish this research project

without the support and help I received from people involved in this project

and those who were around me during the pursuit of my degree. Hence, I

would like to take this opportunity to thank and acknowledge them.

First and foremost, I thank my GOD Allah the Almighty for all blessings

and help I have received in my life and during my pursuit of my degree.

I am grateful and thankful for my supervisors Dr. Asad Khan and Prof.

Bala Srinivasan, for their help, guidance and support in developing my thesis.

This research would not have been possible without their contribution and

support. They trained and guided me in building up my knowledge and in

developing my skills, and finally in writing this thesis. They also helped me

during the hard and sad days that my family and I experienced during my

study.

I would like to thank Dr. Noriaki Sato for his help and support in

improving the structure of my thesis and training me on how to tackle different

types of academic writing issues. I also thank Ms. Anna Thwaites and Ms.

Alison Caddick for proofreading my thesis. I also thank my friends Dr. Aron

Mani and Mr. Yahia Alnashri for reviewing some parts of my mathematical

proofs. Special thanks for my colleagues Mr. Mohammed Alnaeem, Ms. Amiza

Amir, Dr. Anang Amin and Mr. Amir Basirat for their help and support.

viii

Great thanks are also given to my father Mohammed and my mother Hessa

for encouraging me to pursue my degree and for their love, patience and

everything they have given me ever since I was born until this moment. Special

thanks also for my adored wife Hind Altwaijry for surrounding me with love

and care and lighting up my life, making it possible for me to achieve my goals

in this life. She has always been patient, supportive and helpful. I also thank

my children, Khaled, Bader, and Abdullah, for being with me all the time,

making my life enjoyable and giving me great happiness in my life. Many

thanks are due also to my brothers, sisters, nephews and nieces for their love,

support and faithful wishes.

I also thank my friends Fahid Alqahtani, Hamad Alsuhaim, Saleh

Alrubaish, Mohammed Alhabeeb, Abdullah Almuhaideb, Suliman Alsaloom,

Adel Binjahlan, Salem Alkhalaf, Omar Alluhydan, Saleh Alsuhaim, Khaled

Alobyki, Abdullah Binjahlan, and the rest of my friends for supporting me and

being my family during my PhD studies.

Thank you all for making my dreams come true.

 Waleed M. Alfehaid

Monash University

November 2013

ix

Outcomes/Publications

The outcomes of this thesis research have been published as follows:

1. Waleed M. Alfehaid and Asad I. Khan, “Cellular microscopic pattern

recogniser – A distributed computational approach for macroscopic

event detection in WSN,” in Computational Science (ICCS),

Proceedings of the 11th International Conference on Computational

Science, vol. 4, pp. 66-75, 2011.

2. Waleed M. Alfehaid and Asad I. Khan, “A combined pattern

recognition scheme with genetic algorithms for robot guidance using

wireless sensor networks,” in Proceedings of 12th International

Conference on Control Automation Robotics & Vision (ICARCV), pp.

759-764, 2012.

x

Table of Contents

Abstract ... i

Declaration ... v

Acknowledgements ... vii

Outcomes/Publications .. ix

Table of Contents .. x

List of Tables ... xv

List of Figures ... xvi

1 Introduction .. 1

1.1 Challenges and services of WSNs ... 5

1.2 Motivation and Objectives .. 7

1.3 Contributions ... 11

1.4 Thesis Outline .. 14

2 Pattern Recognition in WSNss .. 17

2.1 Introduction ... 17

2.2 Wireless Sensor Networks (WSNs) .. 20

2.2.1 Common WSN network topologies 21

2.2.2 WSN applications.. 23

2.2.3 WSN network architecture .. 25

2.3 Pattern Recognition in WSN ... 28

2.3.1 Threshold-based techniques .. 30

xi

2.3.2 K-nearest neighbour .. 31

2.3.3 Statistical approaches .. 34

2.3.4 Neural networks .. 39

2.3.5 Support vector machines (SVM) 49

2.3.6 Graph neuron (GN) ... 51

2.3.7 Structural and conditional methods 57

2.4 Requirements of Pattern Recognition in WSNs 61

2.5 Comparing Existing Schemes.. 65

2.6 Possible Solution ... 70

2.7 Summary ... 73

3 Cellular Graph Neuron (CGN) for Pattern Recognition in WSNs ..

 .. 75

3.1 Introduction ... 75

3.2 Overview of CGN ... 78

3.2.1 CGN structure ... 79

3.2.2 CGN network .. 81

3.2.3 Memory and bias array.. 87

3.2.4 Network operations ... 88

3.2.5 S&I operations .. 90

3.3 Obtaining pattern in CGN ... 94

3.4 Complexity of CGN schemes .. 98

3.4.1 CGN network size ... 98

3.4.2 CGN communications ... 101

xii

3.4.3 CGN network time .. 103

3.5 Evaluating CGN Performance ... 105

3.5.1 CGN and Hopfield .. 105

3.5.2 First test ... 108

3.5.3 Second test .. 110

3.6 Summary ... 114

4 Cellular Weighted Graph Neuron (CwGN) for Transformation

Invariant Recognition in WSN ... 117

4.1 Introduction ... 117

4.2 Transformation Invariant Recognition Techniques 120

4.3 Overview of Cellular Weighted Pattern Recogniser (CWGN)

 123

4.3.1 Stimulator and interpreter (S&I) 125

4.3.2 CwGN network ... 128

4.3.3 Pattern edge search .. 135

4.4 CWGN Communication Scheme .. 140

4.4.1 CWGN communication requirements 141

4.4.2 CWGN communication protocol 145

4.5 Complexity of CwGN Algorithm .. 147

4.6 Zoning Approach for Online Recognition 151

4.7 CwGN Message Sequence Models 155

4.7.1 Frame-slotted asynchronous CwGN model 158

4.7.2 Frame-slotted synchronous CwGN model 163

xiii

4.7.3 Multi-channel CwGN models ... 167

4.8 Effects of Pattern Transformation on CwGN Recognition ... 172

4.8.1 Pattern translation.. 173

4.8.2 Pattern dilation .. 176

4.8.3 Spatial rotation .. 179

4.9 Summary ... 181

5 Experimental Evaluation of CwGN Schemes 184

5.1 Introduction ... 184

5.2 Accuracy analysis of CwGN ... 186

5.2.1 CwGN accuracy using uniform patterns (shapes dataset).....

 ... 187

5.2.2 CwGN accuracy using non-uniform patterns (contours

dataset) .. 195

5.3 Comparing CwGN Accuracy with other Schemes 201

5.3.1 Hill-Valley problem .. 201

5.3.2 Wall following robot problem ... 204

5.4 CwGN Communicational Overhead Analysis 211

5.4.1 Activation process analysis ... 211

5.4.2 Energy and time analysis .. 214

5.5 Summary ... 226

6 Using CwGN Scheme in Enhancing Optimisation and Pattern

Matching Applications Performance .. 230

6.1 Introduction ... 230

xiv

6.2 Hybrid CwGN-GA Scheme for Autonomous Robot Navigation

using WSN……….. .. 235

6.2.1 Approach ... 238

6.2.2 Performance enhancement .. 241

6.2.3 Autonomous robot navigation using GA 243

6.2.4 Simulation ... 244

6.3 Human Activity Recognition Using WSNs 248

6.3.1 Opportunity dataset ... 252

6.3.2 CwGN for activity recognition.. 253

6.4 Summary ... 259

7 Conclusions and Future Work .. 262

7.1 Summary of the Research .. 262

7.2 Research Contributions and Outcomes 265

7.3 Future Work .. 270

References .. 274

xv

List of Tables

Table 2.1: Comparison of existing pattern recognition schemes for

WSNs. ... 71

Table 3.1: Command messages from BS to network nodes.................. 97

Table 3.2: Description of the terms used for complexity estimation. ... 99

Table 4.1: Description of terms used in CwGN complexity analysis. 148

Table 4.2: Summary of existing MAC protocol types for WSNs. 157

Table 4.3: Summary of communication time overhead (Tcomm) limit

estimates for each CwGN message sequence model. 172

Table 5.1: Recognition accuracy results of different schemes for the hill

and valley dataset .. 203

Table 5.2: Recognition accuracy results of different schemes for the

wall following robot dataset .. 206

Table 5.3: Recognition accuracy results of robot navigation simulation

for different schemes. .. 209

Table 5.4: Average activated nodes. ... 213

Table 5.5: Summary of assumptions used in the simulation. 216

Table 6.1: Recognition accuracy results of opportunity challenge

dataset for different schemes. .. 256

xvi

List of Figures

Figure 1.1: The main components of a WSN sensor 4

Figure 2.1: The three WSN network topologies 22

Figure 2.2: Classification of existing pattern recognition schemes for

WSNs. ... 29

Figure 2.3: KNN classification example. .. 33

Figure 2.4: A simple Bayesian belief network. 36

Figure 2.5: The structure of a feed-forward NN 40

Figure 2.6: The Hopfield network structure .. 41

Figure 2.7: RNN structure ... 44

Figure 2.8: ART network architecture .. 46

Figure 2.9: SVM classes separation .. 50

Figure 2.10: A simple four node GN array ... 52

Figure 2.11: Simple HGN structure .. 54

Figure 2.12: DHGN structure .. 56

Figure 2.13: A simple decision tree example .. 61

Figure 3.1: The two main components of the CGN scheme. 80

Figure 3.2: Active CGN nodes .. 82

Figure 3.3: CGN track of m neuron positions. 83

Figure 3.4: CGN network to adopt a 9 elements binary pattern 86

Figure 3.5: A CGN NP node’s memory structure 88

Figure 3.6: CGN node learning operations steps block diagram. 93

xvii

Figure 3.7: S&I learning operation steps block diagram. 94

Figure 3.8: Block diagram of S&I voting steps. 95

Figure 3.9: Pattern divided into sub-patterns by S&I 96

Figure 3.10: Number of communications in Hopfield and CGN

networks based on pattern size. ... 107

Figure 3.11: Time derived from Big-O analysis for Hopfield and CGN .

 ... 108

Figure 3.12: Original bitmap image patterns for A, I, J, S, X and Z with

sample of recalled distorted images. ... 112

Figure 3.13: Accuracy recall percentage for the CGN 113

Figure 3.14: Memorisation and sample recognition patterns

representing written numbers from 0 to 5. .. 113

Figure 3.15: Average accuracy levels obtained by CGN, Naïve Bayes

and back propagation networks. .. 114

Figure 4.1: The CWGN communication model. 125

Figure 4.2: S&I operations for memorising and recalling patterns. 129

Figure 4.3: Track exchange communications 131

Figure 4.4: CwGN network ... 135

Figure 4.5: CwGN network node operations for weight calculation. . 137

Figure 4.6: Track linking CwGN network communication scheme. .. 141

Figure 4.7: Report messages from a node to its alternative assigned

inner nodes. ... 144

xviii

Figure 4.8: The estimated recall time of the CwGN network with

respect to increasing pattern size... 152

Figure 4.9: The estimated recall time of the CwGN network as a

function of the number of stored patterns ... 152

Figure 4.10: Parallel CwGN network zones 154

Figure 4.11: A general MAC frame structure [35]. 157

Figure 4.12: CwGN FS-Async message sequence model. 159

Figure 4.13: CwGN FS-Async message sequence model scenarios ... 159

Figure 4.14: Message sequence for FS-Async report communications .

 ... 161

Figure 4.15: : CwGN Message sequence for FS-Sync exchange

communicational model. ... 165

Figure 4.16: CwGN message sequence for FS-Sync exchange

communicational model .. 166

Figure 4.17: Message sequence for FS-Sync report communicational

model. .. 167

Figure 4.18: CwGN MC-Async message sequence for exchange

communications when all adjacent nodes to a sending node are active.

 ... 169

Figure 4.19: CwGN Message sequence for MC-Async exchange

communicational model .. 169

xix

Figure 4.20: CwGN MC-Sync message sequence for exchange

communications when all adjacent nodes to a sending node are active.

 ... 170

Figure 4.21: CwGN message sequence for MC-Sync exchange

communicational model .. 170

Figure 4.22: Possible types of pattern transformations. 180

Figure 5.1: Shapes used as the training dataset for the first test series .

 ... 189

Figure 5.2: Sample of altered patterns used as the testing dataset for the

shapes test series. .. 189

Figure 5.3: Sample of altered patterns used as the testing dataset for

complex translation and combination of translation and rotation

transformations. ... 189

Figure 5.4: CwGN network accuracy in detecting spatially rotated

patterns for the shapes dataset ... 190

Figure 5.5: CwGN network accuracy in detecting spatially rotated

patterns for the shapes dataset ... 191

Figure 5.6: CwGN network accuracy in detecting translated patterns for

the shapes dataset .. 193

Figure 5.7: CwGN network accuracy in detecting dilated patterns for

the shapes dataset .. 194

Figure 5.8: CwGN network accuracy in detecting dilated patterns for

the shapes dataset .. 194

xx

Figure 5.9: Process of producing contours training dataset. 196

Figure 5.10: The rest of the non-uniform shape training patterns....... 196

Figure 5.11: CwGN network accuracy in detecting spatially rotated

patterns for the contours dataset .. 197

Figure 5.12: CwGN network accuracy in detecting spatially rotated

patterns for the contours dataset .. 198

Figure 5.13: CwGN network accuracy in detecting dilated patterns for

the contours dataset ... 198

Figure 5.14: CwGN network accuracy in detecting dilated patterns for

the contours dataset ... 199

Figure 5.15: CwGN network accuracy in detecting translated patterns

for the contours dataset ... 200

Figure 5.16: Three samples of hill pattern. ... 203

Figure 5.17: Three samples of valley pattern. 203

Figure 5.18: The ROC space and plots of the hill and valley classes for

CwGN, KNN, Naïve Bayes (NB), and Multi-layer NN schemes. 204

Figure 5.19: The ROC space and plots of the classes used in the wall

following robot problem for CwGN, KNN, Naïve Bayes (NB), and

Multi-layer NN schemes ... 207

Figure 5.20: Room setting for the wall following robot navigation

problem ... 208

Figure 5.21: Robot route obtained by CwGN 209

Figure 5.22: Example of CwGN nodes activation 213

xxi

Figure 5.23. A simple parallel KNN network. 217

Figure 5.24. Average number of communications for CwGN Async,

Sync, and parallel KNN for the shapes and contours datasets. 217

Figure 5.25: Average energy consumption for each network for each

dataset in mJ.. .. 219

Figure 5.26: Average energy consumption for each network for both

shapes and contours datasets in mJ ... 220

Figure 5.27: Average lifetime for CwGN and parallel KNN networks .

 ... 220

Figure 5.28: Available energy for each node in CwGN networks

dealing with the shapes dataset ... 222

Figure 5.29: Available energy for each node in in CwGN networks

dealing with the contours dataset. ... 223

Figure 5.30: Average learning cycle time in milliseconds (ms) for a

CwGN network ... 224

Figure 6.1: The memorisation phase of hybrid CwGN-GA scheme. .. 240

Figure 6.2: The optimisation phase of hybrid CwGN-GA scheme. 241

Figure 6.3: A training map from the contours dataset and a sample of

altered maps used in the testing dataset. ... 245

Figure 6.4: A comparison of the performance between the proposed

combined CwGN-GA and autonomous GA. 2477

Figure 6.5: Connectivity between neighbouring nodes in a 3-D CwGN

track. .. 254

xxii

Figure 6.6: The ROC space and plots of the activity classes for CwGN,

KNN, Naïve Bayes (NB), and Multi-layer NN schemes. 256

1

Chapter 1

1 Introduction

The advance of modern technology in recent decades has had a huge

impact on the way organisations, businesses, and individuals interact with

various technological environments and the means of using their services.

Expectations are growing as new technological capabilities are improving.

Smart systems are more in use in our daily life, replacing old-fashioned

processes and procedures as a result of technological evolution. Embedded

systems are one kind of such smart systems that interact with human lives and

provide a variety of services that can be used in such areas as industrial,

military, medical, and agricultural applications. Embedded systems are usually

small components with limited computational resources that are designed to

perform specific tasks. Such systems exist in numerous applications in our

daily life and can scale in their complexity from performing a single task in

electrical appliances to performing complex control systems decisions [1]. As a

consequence of complexity variations, not every embedded system can be

classified as a smart one. Krishnamurthy [2] says,

A smart system exhibits the three important properties: (i) Interactive,

collective, coordinated and parallel operation (ii) Self-organization

through emergent properties (iii) Adaptive and Flexible operation.

2

According to the Krishnamurthy [2], this means that a system should be

capable of interacting with the environment, capable of being dynamic in

relation to the emergence of new unpredictable properties, and flexible to

environmental changes by using adaptive learning techniques if it is to be

considered a smart system. In simpler terms, Chandrasekaran [3] says,

The public does not expect a smart system to do everything that people

do. It does expect a smart product to be flexible, adaptive, and robust.

The existence of such systems allows the linking of real world activities

to computerised capabilities, paving the way for more interactive methods to

automate processes and make accurate decisions.

With the advent of ad hoc networks, embedded devices can form a

wireless network to communicate with each other in order to perform more

complex tasks [4]. Wireless Sensor Networks (WSNs) are a specific type of

such networks. A WSN consists of a number of smart sensor nodes that sense

physical activities such as motion, heat, speed, and many other environmental

parameters, and provide solutions for multiple applications such as climate

sensing, factory monitoring, traffic monitoring, and pollution measuring [5]. A

sensor node is small in size. It generally varies from the size of a grain to the

size of a coin [6]. A sensor node consists of four main components: a power

unit, a sensing unit, a communication unit, and a processing unit. Because of

the limited size of a sensor, the power source that a sensor is usually equipped

3

with is limited and is often achieved by using batteries. This will affect the

lifetime of the sensor node. To overcome this issue, it is also possible that

sensor nodes be equipped with alternative power resources, such as tiny solar

panels, that can help in increasing a node’s life time. Sensing units should be

capable of doing two tasks: observing the surrounding environment and

transferring the readings to digital data. For example, they might detect the

surrounding temperature and convert the reading into a digital form. The

communication unit of a sensor allows it to communicate with other nodes in

the network. It is considered to be one of the physical layer elements that sends

and receives radio-based signals to and from other nodes. It can also be a laser-

or infrared-based unit. A processing unit is essentially responsible for doing the

computations needed by the sensor and is usually combined with a memory

unit. Other components can also be added to a sensor node, based on

application requirements. Examples of such components may be a GPS unit for

localisation purposes or a mobiliser for node location change estimation. The

main components of a WSN sensor are shown in Figure 1.1 [5, 7].

A WSN can scale to thousands of densely deployed nodes in a vast area

in order to perform its tasks [8]. A WSN node is susceptible to failures for

many reasons, which can lead to communications and information losses

between peer nodes. One reason for such failures could be the harsh

environmental conditions in which WSNs are usually deployed, such as those

of underwater WSNs. Another cause of failure could be dead batteries as

sensor nodes are limited in their energy resources. An adversary attack could

4

also have harmful effects on a node’s functionality. In fact, environmental

factors, limited energy resources, adversary attacks, module failures,

fabrication problems, and being out of communication range are the most

frequent causes of WSN sensor failure [9]. Common dense WSN network

deployment is useful in compensating failed nodes to maintain network

functionality. On the other hand, some applications require topological or

functional changes of a WSN [10]. Consequently, WSNs are usually designed

to be robust in order to self-adapt to node failures, topological changes, and

functional modifications [11].

Figure 1.1: The main components of a WSN sensor [5].

Adaptive learning techniques have been implemented and proposed in

conjunction with WSNs to offer solutions for many problems and scenarios.

Adaptive learning allows WSNs to learn patterns occurring in areas under

surveillance and recognise these patterns when they occur again. This process

is known as Pattern Recognition (PR) and is useful for decision making around

such issues as fire detection, gas leak detection, environmental phenomena

5

warnings, and so forth. Considering that sensor nodes are limited in their

energy, memory and computational resources, traditional applications,

techniques, and protocols that are in use in networks in general are usually not

applicable in WSNs. Hence, adaptive learning and PR techniques such as

Neural Networks (NN), template matching, fuzzy logic, and nearest neighbour

are usually tailored to WSNs’ limitations. The success of WSNs in adopting

such techniques puts WSNs among smart systems that sense the environment,

adapt to changes, and learn from experience in order to provide proper means

for automated and accurate decision making processes [12].

1.1 Challenges and services of WSNs

Wireless sensor networks are described as wireless ad hoc networks as

they share multiple features and characteristics. However, there are several

differences between the two platforms, making WSNs a unique type of ad hoc

network. The differences are carried by the WSNs’ node size, deployment

environment, and flexibility requirements. These factors make the design and

implementation of WSNs challenging. They can be described in the following

way [5, 7, 8, 10, 12, 13]:

i. Limited energy: A WSN node is small in size, which makes it limited

in its energy, memory, and computational resources. The lifetime of a

sensor node is limited and depends on the tasks the sensor is required to

perform. If a sensor is required to maintain continuous computations or

communications, its lifetime will be shortened.

6

ii. Limited memory: This directly affects the ability of sensor nodes

when dealing with computations, queries, and communications, as these

three tasks require a part of the memory to store the result, keep track of

communications, and prepare information for query response.

iii. Limited communication: The communication range of a WSN sensor

is short. Sensors are usually equipped with small communication

devices as they are small in size, causing restrictions such as limited

power of transmission.

iv. Node failure: Sensor nodes in WSNs are susceptible to failure and

damage for reasons such as physical environmental effects and limited

energy. In some applications, sensors are deployed in hostile

environments exposing them to physical dangers such as fire, animals,

storms, and floods. If a sensor survives such effects, it will sooner or

later die due to energy consumption.

v. Network size: In WSNs, the number of sensors can scale to thousands

as some applications need to cover a very large area in order to

efficiently sense the occurring physical features. Additionally, sensors

are usually densely deployed in WSNs to overcome node failure

problems.

vi. Dynamics of the network: WSNs commonly require changes to their

network size and topology. These changes stem from the need to add

nodes to the network, nodes failures, and communications failures. In

addition, the environment a WSN is monitoring is expected to be

7

dynamic, requiring a set of network changes over time. Other

applications require mobile sensor networks, which are of a dynamic

nature in themselves.

vii. Identification issues: In general, sensor nodes in WSNs do not have

unique identifications (ID) that distinguish one node from another. This

is due to the large-scale sensor network size and the dense deployment

of nodes. This means that sensors use broadcast messages to

communicate with neighbouring nodes rather than using point to point

communication.

Applications and network management protocols for wireless sensor

networks require a set of services in order to be functional. These services

include data aggregation, security, sensor deployment, localisation, coverage,

optimisation, and routing. These services should take WSNs’ limitations and

challenges into consideration in order to provide proper quality of service

(QoS) levels for WSN applications and management protocols [13].

1.2 Motivation and Objectives

Wireless sensor networks are used for sensing real environments and

are useful for countless applications. A sensor node is responsible for detecting

and sensing events in a limited surrounding area. However, global events can

span over very large regions, requiring large numbers of sensor readings to be

detected. WSNs can scale to thousands of communicating embedded sensors

8

deployed over a large geographical area. These sensor readings can be used in

a collaborative manner to detect global events. Considering WSNs’ limitations,

designing and implementing collaborative global event detection applications

and schemes is challenging.

Sensory data from thousands of sensors are expected to be processed

and analysed in order to detect global events. Processing such information can

be achieved by using one of two common processing paradigms: centralised

processing or in-network processing. In centralised processing, data will be

forwarded to one (or a set) network entity for processing. Many issues are

related to using this paradigm in global event detection using WSNs. Due to

limited WSN node capabilities, processing data in one entity will exhaust its

computational and communication resources. Data collection and aggregation

towards selected nodes for processing in a WSN creates communication

bottlenecks and can result in a single point of failure problem, threatening the

availability of a service or application [14]. Hence, distributing processing

information among nodes to create an in-network processing paradigm is

favourable as data aggregation and processing tasks are distributed over the

entire network, avoiding the creation of communicational and processing

bottlenecks [15].

Global events occurring in large regions can arise randomly and in

various forms according to environmental factors or the use of mobile entities

[10]. Such random phenomena can result in there being a limited number of

event patterns available to be used in global event detection in the area under

9

surveillance. This randomness of event occurrence can be tackled by using

adaptive learning techniques that are capable of searching for similarities

between a stored event and a currently encountered one. These techniques store

event patterns, allowing WSNs to learn from experience and develop

information about patterns. The changing feature of events could come in

different forms, such as an event pattern dilation, rotation, translation, or as a

combination of these variances. Consequently, efficient detection mechanisms

that are capable of discovering events even if they occur in different forms are

required for global event detection. However, these techniques should address

WSNs’ limitations and challenges in order to provide acceptable levels of QoS

for beneficial applications.

WSNs support a variety of mission critical and decision-making

applications such as battlefield monitoring, robot guidance, and structural

health monitoring. Such applications have unique requirements if they are to be

beneficial. These requirements are driven by the fact that critical applications

should result in decision making at a certain point in time. In general, a WSN

node communicates directly or indirectly with one or more nodes in the

network, called base station and sink nodes, or to an external monitoring server

to deliver sensed and processed information. Fast reporting and delivering of

information to base station nodes, sink nodes, and monitoring servers is one of

the key requirements in mission critical applications. This would include

efficient communication methodology and a global decision-making

mechanism. Reliable and accurate detection is another requirement for accurate

10

decision-making applications in order to avoid wrong actions or delayed

responses. In addition, these applications require the network to be fault

tolerant. This means that a WSN should be capable of dealing with noisy

patterns and faulty nodes [16].

Detection accuracy versus managing energy resources is the main

challenge for providing proper event and pattern detection capabilities for

WSN applications [17]. Existing event detection and pattern recognition

schemes for WSNs use neural networks, support vector machines (SVM),

fuzzy inference systems (FIS), and other detection techniques. These

techniques are generally tailored to provide detection capabilities for specific

applications or problem scenarios. However, these techniques may fulfil some

of the event detection and decision-making application requirements (i.e.

detection accuracy) while failing in respect of other requirements (i.e. light-

weight detection) by adding high communicational or computational overhead

to a WSN. Hence, pattern recognition schemes which lead to event detection in

WSNs that fulfil global event detection for decision-making applications

requirements by balancing detection accuracy and WSN resource-constrained

are required.

The aim of this thesis is to develop and implement collaborative in-

network global event detection schemes that are light-weight, scalable, and

best suit resource-constrained networks such as WSNs. The proposed schemes

address the limitations and challenges for WSNs to provide reasonable QoS for

applications. Additionally, these schemes address the randomness of event

11

occurrences by using adaptive learning techniques and the occurrence changes

related to event patterns such as rotation, translation, and dilation. The schemes

simplify computations for energy conservation and speed up recognition by

leveraging the parallel distributed processing capabilities of WSNs.

Another aim of the thesis is to design decision-making support models

using the proposed event detection techniques. The proposed schemes will be

used in conjunction with decision-making approaches such as Genetic

Algorithms (GA) to speed up the process of optimisation and obtain more

accurate and automated decisions by learning from experience. The detection

and decision-making techniques proposed in this thesis can be applied to

different WSN platforms and any other resource-constrained network

environments for numerous applications and scenarios.

1.3 Contributions

The main contributions of the thesis are:

i. Developing new global pattern recognition based event detection

schemes for resource-constrained networks such as WSNs: The

developed schemes address the limited resources of WSNs by

performing communicational and computational tasks in a distributed

manner. The distributed techniques will be more suited for real time

and real life WSN applications, especially those that require event

detection over a large area in terms of communications and

computations complexity.

12

ii. Developing a pattern transformation invariant scheme for WSNs:

In large regions that are under surveillance, events arise randomly and

changeably. An event could occur in a certain part of the region with a

set of characteristics and it take a long time for a similar event to occur

in a different part of the region with variations to the previous

characteristics. Thus, the proposed detection scheme will address

randomness and changing phenomena by adopting techniques that

make it possible to store events and recognise transformation in

patterns such as translation, dilation, rotation, or a combination of these

factors.

iii. Developing communication protocols for pattern recognition in

resource-constrained networks: Communication protocols are needed

for WSNs to be functional in terms of detection techniques. Such

protocols will be presented in this thesis. They will describe the tasks

and communications required by network nodes to learn and recognise

patterns, from sensing the data to concluding the result.

iv. Integrating recognition schemes with decision-making methods to

enhance decision-making process performance: There are several

types of applications that use WSNs for decision-making purposes,

such as real time applications. In this thesis a pattern recognition based

decision-making model is proposed. The aim of the model is to speed

up the decision-making process by detecting events and suggest

suitable and reliable solutions. By developing such a model, it is

13

possible to automate the entire decision-making process for large

monitored regions, starting with sensing and ending with taking an

action.

v. Designing pattern recognition based classification model for WSNs:

Complex classification problems are common challenging tasks for

resource-constrained networks such as WSNs. In this thesis a pattern

recognition based classification model is proposed. Such a model

demonstrates the ability of the proposed schemes to perform

classification tasks with minimal resource requirements using pattern

recognition capabilities while maintaining high accuracy compared to

other classification schemes. This model shows the advantage of using

pattern recognition capabilities in solving complex classification

problems.

vi. Analysing and evaluating proposed schemes: Analysis and

simulations for the proposed pattern recognition and decision-making

schemes will be conducted in this thesis. This will include time

complexity analysis, analysis of pattern translations effects and storing

patterns, determining accuracy levels of patterns detection, and

decision-making process performance analysis. Additionally, this thesis

will provide a comparison between proposed schemes and other

existing pattern recognition schemes in term of accuracy,

communication overhead, computational overhead, and storage

requirements. The proposed integrated decision-making model will also

14

be compared with other models to evaluate the speed enhancement

gained by applying the proposed model.

1.4 Thesis outline

There are seven chapters in this thesis. In chapter two, a background on

pattern recognition and event detection in wireless sensor networks will be

presented. There will be a detailed analysis of existing pattern recognition

schemes for WSNs, including threshold-based, template matching, nearest

neighbour, statistical, syntactical, fuzzy logic, and neural networks techniques.

Additionally, issues related to implementing such schemes for global event

detection will be discussed. Finally, a set of metrics to evaluate the suitability

of existing schemes for detecting changing events using WSNs will be

presented and a comparison between these schemes provided.

In Chapter three, a novel pattern detection scheme for WSNs will be

presented. The scheme will provide template matching and noisy pattern

recognition capabilities in a light-weight and distributed manner that suits

WSNs. This scheme is fault-tolerant and speeds up recognition by leveraging

the parallel distributed processing capabilities of WSNs. Extended analysis of

the presented scheme will be provided, including time complexity and

simulation tests. Finally, the proposed scheme will be tested and compared

with existing schemes in terms of accuracy and time requirements.

In Chapter four, a novel efficient event detection and pattern

recognition scheme that addresses the problem of changing events such as

15

rotation, dilation, and translation will be presented. The scheme reduces the

number of nodes, required computations, memory resources, and number of

communications needed for performing event detection in WSNs. This is

achieved by adopting distributed and parallel design, along with efficient

activation processes. The network models and protocols of the scheme will be

presented in this chapter. Additionally, this chapter will present a parallel

model that allows the scheme to function under online operations’ constraints.

Extended theoretical analysis of the presented scheme will be provided,

covering time complexity and predictions of pattern transformation recognition

accuracy.

In Chapter five, tests and results that evaluate the presented scheme’s

performance levels will be provided. The chapter starts by evaluating

recognition accuracy levels that can be obtained by the proposed scheme using

different types of transformed datasets. Then, the scheme’s network

performance will be evaluated in terms of time and energy. Finally, the scheme

will be compared with other existing recognition techniques in terms of

recognition accuracy, using different types of standard datasets.

In Chapter six, the capabilities of the proposed schemes will be

demonstrated using two models serving two different application domains. The

first model will demonstrate the ability of the proposed schemes to enhance the

performance of sensory-dependent decision-making systems. A pattern

recognition based decision-making scheme will be presented as an application

of the proposed detection schemes. The proposed decision-making scheme

16

combines detection schemes with genetic algorithms (GA) in order to speed up

finding the optimal solution process. The proposed scheme will be analysed

and evaluated against normal random schemes to measure speed-up

enhancements. The second model will discuss the classification problem of

human activity recognition as an example of a mission critical application. The

aim is to demonstrate the ability of the proposed pattern based recognition

schemes to learn and recognise complex patterns using a minimal amounts of

information and resources to perform classification tasks. Using a standard

dataset, the proposed model will be compared with existing schemes in terms

of performance and resources requirements.

Chapter seven concludes the thesis by summarising the contributions

presented in this thesis. Additionally, issues related to proposed schemes and

future work will be presented in this chapter.

17

Chapter 2

2 Pattern Recognition in WSNs

2.1 Introduction

The main task of a wireless sensor network (WSN) is to sense a

physical or network environment and detect events occurring in the field of

interest or in the monitored network [18]. According to Chandy [19], an event

in general may be seen as “changes in the real state”. More specifically,

Johansson [20] define an event as “Changes that take place in one or more

elements within a large group of these elements”. In sensor networks, Boonma

and Suzuki [21] and Ortmann et al. [22] describe an event as observable

changes in sensors’ readings. More precisely, Zoumboulakis and Roussos [23]

indicate that an event is a collection of sensor readings that describe a specific

or an abnormal activity. In general, we define an event in WSNs as a change in

the state that describes a specific state of predefined phenomena in the field of

interest. Examples of event detection in WSNs include the detection of fires in

forests, a border intruder, network congestion or a network security attack.

Detecting such events can be performed by processing and analysing

sensory information obtained by sensor nodes. Pattern recognition is one

18

commonly used approach for event detection in WSNs and has become the

focus when dealing with event detection problems in the literature, especially

when detecting complex events [24]. Watanabe [25] defines a pattern as the

“opposite of chaos”. Catania et al. [26] define a pattern as “a compact and rich

in semantics representation of raw data”. In this research, a pattern is defined

as a set of raw sensory data that describes the main characteristics of an event.

In other words, a pattern can be seen as the signature of an event.

Pattern recognition is highly affected by the limited resources offered

by WSNs, including limited energy and limited computational,

communicational, and memory resources. In addition to limited resources,

WSNs carry other challenges for event detection. These challenges are related

to the nature of the environments that WSNs are usually deployed in. For

instance, WSNs are usually deployed in hostile environments, making sensors

susceptible to physical damage and intentional tampering. Additionally,

sources of electricity are not usually available for running sensor nodes,

requiring these sensors to be operated using limited batteries. WSNs are also

usually required to communicate in an ad hoc manner using low frequency

radio signals due to the absence of wires in deployed environments. Moreover,

WSNs are usually deployed as large numbers of sensors in order to monitor an

area of interest, which therefore requires the use of low cost sensors. This will

limit the types of instruments and resources that these sensors can be supplied

with. [27]. As a consequence, pattern recognition in WSNs is a matter of trade-

19

off between detection accuracy, the use of limited available resources and

dealing with existing challenges [28].

Other challenges for pattern recognition in WSNs are application

related. WSNs support a variety of real time applications, including battlefield

monitoring, environmental monitoring, emergency relief, microsurgery, and

even more for different disciplines such as health, environment, education,

surveillance, and others. Such applications have unique requirements in order

to be beneficial. These requirements are driven by the fact that real time

applications should result in decision making at a certain point of time. Fast

reporting to the WSN sink or to a monitoring server is one of these

requirements. This would include efficient communication methodology and a

global decision making mechanism. Reliable and accurate detection is another

requirement for critical mission applications in order to reduce false alarms. In

addition, these applications require the network to be fault tolerant. This means

that a WSN should be capable of dealing with noisy patterns and faulty nodes

[16].

Luo et al. [17] state that detection accuracy versus managing energy

resources is the main challenge for providing proper event and pattern

detection capabilities for WSN applications. Existing event detection and

pattern recognition schemes use neural networks, support Vector Machines

(SVM), Fuzzy Inference Systems (FIS), and other detection techniques. These

techniques are generally tailored to provide detection capabilities for specific

applications or problem scenarios. The techniques may fulfil some of the

20

requirements (e.g. detection accuracy) while failing at others (e.g. light weight

detection). Hence, what are required are pattern recognition schemes which

lead to event detection in WSNs that fulfil real time application requirements

by balancing detection accuracy and WSN resource constraints.

In this chapter, existing pattern recognition schemes for WSNs are

presented and analysed. In section 2.2, the chapter starts by briefly introducing

WSNs, including network topologies, applications, and network architecture.

Section 2.3 presents pattern recognition in WSNs. This includes the existing

recognition schemes that have been used in the literature to solve the problem

of pattern recognition in WSNs. Section 2.4 analyses the requirements for

solving such recognition problems, especially when using WSNs for real time

and decision making recognition problems. Section 2.5 compares existing

schemes based on the requirements and discusses the issues related to these

schemes. Section 2.6 discusses possible methods that can be used to overcome

the existing schemes’ limitations to provide real time recognition for large

scale WSNs. Section 2.7 concludes the chapter.

2.2 Wireless Sensor Networks (WSNs)

Wireless sensor networks (WSNs) are a specific type of ad hoc

network. A WSN consists of a number of smart sensor nodes that sense

physical activities such as motion, heat, speed, and many other environmental

parameters. WSNs provide solutions for multiple applications such as climate

sensing, factory monitoring, traffic monitoring, and pollution measuring. A

21

WSN can scale to thousands of densely deployed nodes in order to perform its

tasks. Dense WSN networks are useful because sensor nodes are generally

susceptible to failures. A sensor node is small, its size generally varying from

the size of a grain to the size of a hand. Sensor nodes are limited in their

energy, memory, and computational resources, thereby limiting WSNs.

Consequently, traditional applications and protocols that are in use for

networks in general are usually not applicable in WSNs [6, 7, 29-31].

As discussed in Chapter 1, a sensor node consists of four main

components: a power unit, a sensing unit, a communication unit, and a

processing unit. Some sensors may also include other components to enhance

performance or to perform specific tasks. Solar panels and GPS devices can be

examples of such additional components. Due to the limited size of a sensor,

the capabilities and resources of its components are limited [5, 7]. Sensors are

usually wirelessly connected and densely deployed to construct large scale

WSNs in order to sense and monitor physical environments. The connectivity

between WSN sensors can be done according to different network topologies

as discussed in the following sub-section.

2.2.1 Common WSN network topologies

Three types of network topologies are commonly in use in WSNs: star,

peer-to-peer, and two-tier. In the star topology, a central device is in control of

the network’s communications. This device can be a node, an access point or

any communication unit that is capable of linking nodes. In general, a central

22

device has larger memory capacity, higher processing capabilities and more

energy resources than other nodes in the network. The main issue that restricts

the use of such a topology is the presence of single point failures. The peer-to-

peer network topology allows each node in the network to directly

communicate with its neighbours within its communication range. If a node

needs to communicate with more distant nodes, routing protocols may be used

allowing some nodes in the network to act as routers. The use of such a

topology allows the network to be more fault-tolerant and flexible. However,

managing a WSN that has a peer-to-peer network topology can be challenging.

The two-tier network topology is a combination of star and peer-to-peer

topologies. The network in this topology is divided into groups. Each group is

connected using a star topology. The central devices communicate using a

peer-to-peer topology. The three topologies are depicted in Figure 2.1 [32, 33].

(a) (b) (c)

Figure 2.1: The three WSN network topologies: (a) star, (b) peer-to-

peer, (c) two-tier.

23

2.2.2 WSN applications

Iyer et al. [34] classify the different applications of WSNs as data

gathering, object tracking, and event detection. In data gathering, each sensor

node sends its readings to a sink or a base station either periodically or in

accordance with the sink request. Hence, the main goal for data gathering is

solely to obtain information about the field of interest without in-network

decision making. Intuitively, this means that the sensor nodes of a WSN do not

collaborate to perform computations and/or memorisations on gathered data in

this type of application. Object tracking focuses on monitoring the movement

and the state of one or more objects that enter the field of interest and can use

data gathering applications to achieve this goal. Event detection can be

considered a higher level abstraction of the data that represents a unique

occurrence or a feature in the WSN dataset. As such it is a challenging task that

requires dealing with computational complexity within the resource constraints

of the WSN while often also requiring real time solutions. Furthermore, the

WSN datasets in close proximity to events are often being continuously

generated, meaning a dataset must be analysed just-in-time before the next

dataset is collected.

Chen and Varshney [16] classify WSN applications based on their

requirements as follows:

i. Event-driven (event detection): Event-driven applications in WSNs

are most likely to be real time applications where the network is

analysing sensory data to detect a specific or a set of events. The events

24

in these applications are usually infrequent, which means that sensors

can remain in sleep mode for most of the time. However, these events

are expected to be mission critical and require quick recognition and

reporting. In this application category, the detection requirements are

fast reporting, distributed recognition, reliable, and accurate detection,

noisy patterns detection, and location information providing.

ii. Query-driven (sink-initiated): In this type of application, data is

gathered based on sink commands. Applications of this sort are usually

interactive and mission critical. The sink can send query commands to

obtain sensory data in order to take an action. The requirements of these

applications are fast reporting, fast distribution of sensory data, reliable

reporting, and noisy pattern detection, They can also require location

information reporting.

iii. Continuous and periodic reporting: This is where WSN nodes are

continuously reporting information to the sink according to a specific

timeframe. These applications can be either real time or asynchronous.

For real time applications, the emphasis is on fast information reporting

while noisy patterns and lost information are tolerated (to a certain

extent).

iv. Hybrid models: This is where an application may combine two or

more of the applications presented above. An example of these

applications is tracking-based applications where the network is

interested in detecting intruders in a specific location. The requirements

25

of these types of applications depend on how many application types

they are using. That includes all the above requirements.

2.2.3 WSN network architecture

WSNs are a network of sensor nodes. A set of protocols is necessary to

perform networking functions such as processing information and

communicating with other sensors. In networking, such protocols are

segmented into layers that differentiate between the roles for each protocol.

The standard networking segmentation is the Open System Interconnection

(OSI) network reference model, which was developed to standardise the

protocols of networking by the ISO organisation [35]. Hence the term ISO

reference model is also used to denote the standard model. In this model, the

network protocols are divided into seven layers: Application, Presentation,

Session, Transport, Network, Datalink and Physical. Each layer is assigned

specific roles in the networking process.

WSNs carry unique features and limitations. Consequently, other

network architecture models are available for WSNs in the literature. A

common model for WSNs contains five layers: Application, Transport,

Network, Data-link and Physical [13]. In this sub-section, the tasks for each

layer are briefly presented and discussed.

The Application layer provides high level protocols and applications

that are commonly available on a WSN base station rather than the rest of the

network’s sensors [36]. The absence of this layer from sensors is due to the

26

high level of processing it requires compared to the limited computational

capabilities offered by sensors. A WSN base station is expected to include

much higher computational capabilities that enable the hosting of such high

level processing requirements and achieve a comprehensive outcome for the

whole network.

Transport layer protocols provide reliable communication services

between two ends in the network. In this layer, the protocols ensure the highest

possible level of Quality of Service (QoS). This can be achieved by offering

services such as message segmentation, flow control, congestion control, and

message retransmission for lost packets [37]. The techniques for implementing

and designing transport protocols in WSNs affect the QoS and throughput of a

WSN network and should vary from one application to another as different

applications have different QoS tolerance levels.

The Network layer deals with routing packets within the network. This

includes developing mechanisms for building routing tables to allow sensors to

direct their messages and redirect incoming messages from other sensors to the

proper hop. Unlike traditional networks, WSNs do not provide IP addresses

and hence do not provide IP routing capabilities. The design of network layer

protocols in WSNs should take into consideration network scaling, routing

fairness, and security issues, along with the existence of resource constraints.

In addition, network protocols in such network environments should address

the problem of sensors’ limited lifetime by involving fault tolerance procedures

[13].

27

The Datalink layer or Medium Access Control (MAC) protocols are

used as an underlying layer of the network layer protocols. MAC protocols

control and manage the access of the shared wireless medium between WSN

nodes [38]. In WSNs, the communication environment is noisy and nodes’

resources are limited. Consequently, MAC protocols designed for WSNs pay

attention to power consumption and attempt to reduce collisions between

communicational nodes to avoid retransmission of packets [7]. Nodes in WSNs

usually alternate between active mode and low power consumption sleep mode

to conserve energy resources. Hence, WSN MAC protocols should consider

ways of communicating with nodes that are in sleep mode in order to avoid

occupying communicational channels and increase the throughput of the

network [39]. Traditional MAC protocols for WSNs allow each node to have

only one communication at a time. However, recent WSN MAC protocol

research trends have moved towards multichannel MAC capabilities that allow

a WSN node to have multiple communications at a time to support multi-task

operations [39].

The lowest layer in the model is the WSN Physical layer. This layer

includes all physical components of sensors such as chips, transceivers, and

processors [36]. Small sensor design results in limited resources for WSNs as

limited memory, computational, and communicational resources are available

per sensor. Consequently, these constraints have to be addressed in designing

WSN protocols in any layer in the model. Sensors mostly work in a

28

collaborative manner in order to tackle these limitations and create larger

interactive resources to deal with detection problems.

2.3 Pattern recognition in WSNs

Duda et al. [40] and Wittenburg, et al. [41] divide the process of pattern

recognition into three main stages:

i. Sampling: Sensing data and describing the sensed object.

ii. Feature extraction: Obtaining the main features of sensed objects. The

main goal of feature extraction is to minimise the amount of data

needed to describe a pattern, which then reduces the number of

computations and resources needed to recognise it.

iii. Classification: Using extracted features to classify objects into

categories.

This section will focus on the classification aspects of the pattern

recognition process in WSNs, which can be seen from different perspectives.

For example, Predd et al. [42] discuss the classification of distributed learning

and recognition in WSNs from the network structure perspective. Predd et al.

[42] classify learning approaches as supervised, unsupervised, kernel, and

distributed. Their focus is to classify distributed learning in terms of fusion

centric and ad hoc network topologies. Nakamura et al. [43] present different

classification perspectives for data fusion, one such application being pattern

recognition. Nakamura et al. [43] classify pattern recognition into the

following areas: Bayesian, Dempser-Shapher, Fuzzy Logic, Neural Networks,

29

and Semantic. Any pattern recognition approach is also classified as either

supervised or unsupervised learning. In supervised learning, a teacher entity

provides a set of patterns to train the pattern recognition system before it

encounters incoming data. In unsupervised learning the system starts

classifying incoming patterns immediately. In this section, the different pattern

recognition methods and schemes that have been covered in the literature on

WSNs will be discussed. These schemes can be classified as threshold-based,

K-nearest neighbour, statistical, neural networks, support vector machines,

graph neuron, and conditional schemes. Figure 2.2 summarises the existing

pattern recognition schemes for WSNs.

 Figure 2.2: Classification of existing pattern recognition schemes for

WSNs.

30

2.3.1 Threshold-based techniques

Threshold-based event detection and pattern recognition technique is

one of the simplest and most widely used techniques in WSNs. Each sensor in

this technique is assigned a threshold value or in some cases more than one

threshold value. When a sensor’s reading hits the assigned threshold value, it

declares the detection of the event of interest. As an example of using

threshold-based techniques in WSNs, Kim et al. [44] present a fence

surveillance model that can detect intruders based on thresholds obtained from

the average signal measurements of each sensor. If a node’s reading exceeds its

threshold, it sends a DETECT signal to the base station. Another example can

be seen in the work of Jabbar et al. [45]. In this example, the authors proposed

a threshold-based load balancing technique for routing problems in WSNs.

Threshold-based event detection and pattern recognition techniques are

considered to be light-weight and simple techniques. Additionally, such

techniques do not require complex network communication relationships

between sensor nodes. However, three main issues are related to implementing

threshold-based techniques for pattern recognition in WSNs. First, threshold-

based pattern recognition cannot describe and address complex detection

problems and thus it will cause a high level of false alarms when used in such

problems. Second, such techniques are limited in terms of dealing with noisy

patterns [46]. That WSN patterns are commonly noisy has been discussed in

the literature. Hence, such limitation degrades the suitability of using such

31

techniques for pattern recognition in WSNs. Third, determining threshold

values can be challenging in some applications [47].

Threshold-based techniques provide event detection and pattern

recognition with light-weight capabilities in terms of computations and

communications. However, such techniques provide problem specific solutions

and they are limited in providing high accuracy detection levels in complex

problems and noisy environments.

2.3.2 K-nearest neighbour

K-nearest neighbour (KNN) is one of the simplest non-parametric

classification techniques [48]. Non-parametric classification assumes that the

density distributions of pattern samples are unknown [40]. KNN computes

distance or similarity measures between two data instances and makes a

decision based on the result of the comparison. The distance between two

samples is calculated according to a predefined function. One of the most

popular distance functions in KNN is the Euclidian distance. This function can

be represented as follows [49].

𝑑(𝑥, 𝑦) = √∑(𝑎𝑖(𝑥) − 𝑎𝑖(𝑦))
2

𝑛

𝑖=1

 (2.1)

where d(x,y) is the distance between instances x and y, n is the number of

attributes, and ai is the i’th attribute of the instance.

32

The decision in a KNN algorithm is based on the number of nearest

neighbours K. After calculating the distances to each neighbour, a KNN

scheme will vote among K neighbouring instances to classify an incoming

pattern according to labelled classes. Such voting can be described as follows

[48].

𝐶(𝑥) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦[𝐶(𝑁1),… , 𝐶(𝑁𝑘)] (2.2)

where C(x) is the class label of instance x, C(Ni) is the class label of the i’th

nearest neighbour to instance x, k is the number of nearest neighbours assigned

to KNN, and 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 means the highest number of instances that have the

same class label. A simple classification example using KNN is shown in

Figure 2.3. In this example, seven instances are classified into two classes, C1

(Blue) and C2 (Red). The task is to classify instance x as one of these classes

using KNN. The KNN uses Euclidian distance as the distance function. In

Figure 2.3, (a) shows the use of k=1, (b) k=3, and (c) k=5. The classification

process results in classifying x as C1 when using k=1, as the nearest neighbour

is of class C1, C2 when k=3 as two instances out of three (majority) are of

class C2, and x is C1 when k=5 as three instances out of five are of class C1.

KNN is commonly used as an outlier pattern recognition algorithm in

WSNs [50]. This means that the normal activities of a network are modelled as

pattern instances and stored in the network. A data instance is considered to be

an outlier if its measure is far from the neighbouring instances that represent

normal activities [50]. The main assumption that such techniques are based on

is that an outlier occurrence takes place far from its neighbours [51]. The work

33

of Zhang et al. [52] is an example of the nearest neighbour outlier detection

technique for WSNs. The authors propose a tree aggregation structure where

each node sends some information to its parent. Then, the sink decides the

global n outliers for the network and sends back this information to the

network for verification. The process continues until all the network nodes

agree on the outliers.

(a) C(x) = C1 (b) C(x) = C2 (c) C(x) = C1

 Figure 2.3: KNN classification example. (a) k=1, (b) k=3, and (c) k=5.

Several issues are related to using KNN as a classifier in general and as

a pattern recognition technique in WSNs. First, KNN depends on the use of a

distance function. In some classification problems the standard Euclidian

distance function does not lead to accurate classification [49]. Hence, more

complicated functions might be required. Second, KNN accuracy and

complexity is dependent on the choice of the number of neighbours (k). Such

dependency requires k to be tuned in such a way that it balances complexity

and accuracy. Moreover, such dependency could lead to tuning k according to

probability distribution of data, making the process data-dependent [48].

34

Third, the decision process in KNN is based on majority function. In the case

of tie voting, complex algorithms must be used to break the tie decision. Such

complex algorithms could lead to higher KNN complexity [48]. Fourth, KNN

requires large memory resources to memorise distances between data

instances, especially when used in WSNs [53]. Fifth, KNN requires high

computational resources to compute distances, which makes this technique

lack scalability when implemented in WSNs [50].

2.3.3 Statistical approaches

Statistical pattern recognition schemes are dependent on the probability

of the occurrence of a pattern and the Bayesian decision rule. The theory of

these approaches is based on two major assumptions: recognition decision is

achieved in terms of probability, and the probabilities of occurrence values are

known [40]. In these approaches, the patterns are classified in terms of state of

nature, where each pattern may be assigned to one state. The priority

probability describes the likelihood of a pattern being of a certain class (natural

state). For example, if we are trying to recognise whether a shape is a rectangle

or a circle, the states are rectangle and circle. The priority probability of an

input pattern is determined in accordance with historical data that links the

input pattern’s features (such as input location) to one of the states (i.e.

P(rectangle)=0.26 if the pattern is located in the bottom of an image and

P(circle)=0.74). The decision is made based on the highest prior probability,

which can be expressed as follows. ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

35

⁡⁡⁡𝑖𝑓⁡𝑃(𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒) > 𝑃(𝑐𝑖𝑟𝑐𝑙𝑒), 𝑡ℎ𝑒𝑛⁡𝑡ℎ𝑒⁡𝑅𝑒𝑠𝑢𝑙𝑡⁡𝑖𝑠⁡𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒⁡⁡⁡⁡⁡⁡⁡⁡⁡(2.3)

In order to avoid making the same decision whenever the same

situation is encountered, such statistical models use class-conditional-

probability to reduce the classification error rate (i.e. the shape could be a

rectangle even if located in the bottom of an image) and can be described as an

extra feature that supports the decision making process. For example, the

colour of the shape could be used as a variable that discriminates between a

circle and a rectangle. In order to make a decision about an incoming pattern,

statistical approaches use the Bayesian decision rule. Let x be the statistical

variable, i is the class number, and Ci is class number i. The Bayesian decision

rule can be described as follows [40].

𝑃(𝐶𝑖|𝑥) =
𝑝(𝑥|𝐶𝑖)𝑝(𝐶𝑖)

𝑝(𝑥)
 (2.4)

where P(Ci|x) is the classification of the incoming pattern given x (posterior),

p(x|Ci) is the conditional probability density of class Ci given x, p(Ci) is the

prior probability of class Ci, and p(x) is the evidence probability of x for j

number of entered (stored) classes that can be calculated according to the

following Equation [40].

𝑝(𝑥) = ∑𝑝(𝑥|𝐶𝑖)𝑝(𝐶𝑖)

𝑗

𝑖=1

 (2.5)

 In practical classification problems, statistical approaches use more

than one variable (i.e. feature). If the statistical relationships and dependencies

between variables are known, Bayesian belief networks are used for solving

36

classification problems. Figure 2.4 shows a simple example of a Bayesian

belief network. In this example, four variables A, B, C, and D and their

dependencies are available. The final decision is made based on the

dependencies statistics.

Figure 2.4: A simple Bayesian belief network.

On the other hand, Naive Bayes statistical classification is used when

the statistical relationships and conditional dependencies between variables are

unknown. In this classification method, the assumption that variables (e.g. a, b,

and c) are conditionally independent is taken into account and can be

represented as follows [40].

𝑃(𝑎, 𝑏|𝑐) = 𝑃(𝑎|𝑐)𝑃(𝑏|𝑐) (2.6)

Non-parametric statistical classification methods assume that statistical

density distribution is not available. Hence, such techniques obtain probability

densities from a set of training samples. This assumption is based on the fact

that in most classification problems, probability density of classes is unknown

[40, 50]. Such techniques use distance thresholds based on probability

37

observations to decide the incoming pattern’s class. According to Zhang et. al.

[50], such techniques are commonly used in WSNs as outlier detection

methods and can be classified as histogram and kernel approaches. Histogram

approaches count the probability of the occurrence of data classes and

instances and compare incoming patterns with the calculated probabilities.

Kernel approaches create probability distribution functions and use thresholds

to determine an instance class.

 Mittal et al. [54] presents Bayesian belief network approaches for

weather status detection. Their technique obtains weather attributes such as

humidity and temperature values from WSNs and then applies a two-step

method for classification. The first step constructs the relationship between

obtained attributes and the second step performs the recognition based on the

constructed relationships. Elnahraway and Nath [55] present a Naïve Bayesian

distributed method to detect faulty sensors. Their proposed technique provides

an outlier detection method using spatio-temporal classification where each

node evaluates its readings probability according to one of many predefined

classes. Wu et al. [56] presents a Naïve Bayesian based technique for medical

application. In their work they used WSNs to monitor patients and detect

abnormal gait patterns. Sun and Edward [57] present a non-parametric

distributed statistical approach to detect specific events (e.g. loud cheering) in

sports stadiums. Each sensor in a WSN deployed in a stadium decides the

occurrence of an event locally, based on noise levels, and then sends the result

38

to a cluster head. The cluster head then detects the event based on the optimal

median amongst the collected information from all participating sensors.

Using statistical pattern recognition approaches in WSNs carries a

number of challenges. In most classification problems, such as the ones in

WSNs, the prior knowledge of probability distribution is rare [40, 50, 58].

Consequently, implementing most parametric statistical approaches becomes

unfeasible due to the lack of such knowledge. Non-parametric statistical

approaches are more feasible since such approaches do not require prior

information about probability distribution. However, the accuracy of these

techniques is highly dependent on the number of available training samples as

they construct probability distributions based on available samples [40, 58]. In

WSNs, numbers of samples of patterns and events are limited due to the

randomness feature of information obtaining in WSNs [10, 50]. That is, the

occurrence of an event may be captured on rare occasions. Moreover, obtaining

enough information about an existing pattern to construct probability

distributions is limited due to WSNs’ communicational and computational

limitations [42]. These limitations make the use of non-parametric approaches

in WSNs challenging. In addition, some non-parametric approaches such as

histogram techniques require high communicational overheads to obtain

histogram information [50]. Such requirements contradict the limited

communicational capabilities of WSNs. Other non-parametric approaches such

as kernel techniques require defining thresholds in order to estimate probability

densities. However, determining such thresholds may be challenging [50].

39

2.3.4 Neural networks

Neural networks (NNs), also referred to as Artificial Neural Networks

(ANNs), are computational methods that offer parallelism in pattern learning

and recognition [43]. Associative Memory (AM) is one neural network

approach that is capable of storing and retrieving patterns in a distributed

manner. AM has been discussed in the literature as being able to provide

pattern recognition solutions based on the capability of recalling stored

templates [59]. Additionally, AM networks are capable of dealing with noisy

patterns and considered to be a robust solution [60]. Simply, AM depends on

using small memory chunks available in computational units to achieve

distributed memory management. In this sub-section, various types of NNs are

discussed.

2.3.4.1 Feed-forward NNs

The Feed-forward is a supervised neural network that consists of an

input layer, one or more hidden layers, and an output layer. Each neuron in a

layer is connected to each neuron in the above layer by variable weight values

[61]. Figure 2.5 shows the structure of feed-forward networks [61, 62]. Such

networks are commonly used in pattern recognition applications [40, 63]. The

computations in feed-forward NNs take place in the hidden layers. Each hidden

layer calculates the inner product of inputs with weights, which is called the

network’s activation function. The connections between neurons are usually

called synapses and the values of these synapses are called synapse weights,

40

which are calculated using a non-linear activation function. In this approach,

the activation of a neuron depends on a predefined weight and a bias unit

assigned to neurons [40].

Bias

Neuron

1

Input LayerN-1 N

Hidden Layer

1

Hidden Layer

M

Output Layer

Figure 2.5: The structure of a feed-forward NN that has N inputs and M

hidden layers [61].

Awad et al. [64] use a feed-forward based recognition scheme for

localisation and location estimation in WSNs. The proposed approach uses the

feed-forward network to analyse received signal strength indicators (RSSI) to

estimate the distance between two nodes. Rajkamal and Ranjan [65] use feed-

forward networks to classify exchanged packets between sensors based on the

nature of incoming data in order to control the traffic flow in a WSN. Radial

basis function networks (RBFNs) are one type of the feed-forward network.

RBFN consists of three layers: input, hidden, and output [66]. Ishizuka and M.

Aida [67] use RBFN to achieve efficient low-power sensor placement. Tran

and T. Nguyen [68] use RBFN as a kernel function for a support vector

machine (SVM) technique in the localisation of WSNs’ nodes.

41

2.3.4.2 Hopfield networks

The structure of Hopfield NNs [69] is based on a single-layer network

where each neuron is connected to all other neurons. Figure 2.6 shows the

structure of the Hopfield network. Each connection in the network is measured

as a weight that is assigned during the pattern learning phase. Both connections

that go from one neuron to another must have the same weight. The weight can

be calculated according to the following function.

𝑊𝑖𝑗 = {
∑𝑃𝑖

𝑟𝑃𝑗
𝑟 , 𝑖 ≠ 𝑗

𝑀

𝑟=1

0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖 = 𝑗

 (2.7)

where Wij is the connection weight, P r

i and P r

j are the pattern number r for

neurons i and j respectively, and M is the total number of patterns [59].

Figure 2.6: The Hopfield network structure [70].

The above function describes the Hopfield network in a discrete

representation. G. Massini [70] argues that the Hopfield model is limited in

terms of the number of patterns that can be stored and detected. A continuous

model of a Hopfield network is possible to achieve by taking the differentiation

42

of the above discrete equation. In this model, a global convergence of the

network is not guaranteed [70].

Hopfield neural networks are one of the simplest and most common

types of NNs that have been used for pattern recognition problems in WSNs.

For example, Chen et al. [71] used Hopfield networks for target tracking

applications. The authors propose the use of a data fusion algorithm based on

Hopfield networks to construct the relationships between a WSN’s sensors’

readings and existing target tracks. A target’s track can be detected based on

the obtained relationships. In another example, Tisza et al. [72] propose a

multicast routing protocol for WSNs using Hopfield NNs. The proposed

algorithm is based on the assumption that the routing information obtained by

the network is incomplete. The proposed routing algorithm obtains the

incomplete link’s metrics from the WSN and uses Hopfield networks to create

the best routing tree that fulfils certain quality of service (QoS) criteria (e.g.

routing delay). Levendovszky et al. [73] propose a Hopfield NN-based

datalink layer algorithm for WSNs. The proposed algorithm attempts to

schedule data forwarding in WSNs based on specific QoS metrics. The

obtained QoS metrics are fed into Hopfield networks in order to find data

packets’ optimum forward scheduling times.

2.3.4.3 Recurrent neural networks (RNN)

Recurrent Neural Network (RNN) is a multi-layered structured NN,

also called a feedback neural network. The term feedback means that RNN

43

output is fed back into the input in order to reduce the error percentage and

enhance the recognition accuracy [40]. Such links (i.e. from output to input)

are not available in standard NNs [74]. Figure 2.7 depicts the structure of an

RNN that has input layer, one hidden layer, and one output layer [40].

Connor et al. [75] classify RNNs under two categories: standard and

relaxation. Standard RNNs work as standard NNs with feedback links.

Relaxation RNNs perform learning and recognition continuously until

feedback inputs reach a fixed predefined class. This guarantees a predictable

convergence time. However, in some applications, such as time series

prediction, it is impossible to achieve this target.

Barron et al. [76] and Moustapha and Selmic [74] use RNN-based

techniques for fault detection in WSNs. They use an RNN to model a sensor

node and its related communications with other nodes in the network. Their

aim is to use previous output samples from communicating sensors in addition

to the current and previous output samples of the modelled sensor as an input

to the RNN model in order to detect failures in a dynamic environment.

Another example is the work of Raju et al. [77]. The authors present a faulty

data detection system for WSNs using RNN. The proposed system obtains the

output of a sensor’s neighbours to be fed as input into an RNN model in order

to detect faulty information.

44

Input

layer

Hidden

layer

Output

layer

Figure 2.7: RNN structure [40].

2.3.4.4 Adaptive resonance theory (ART)

Adaptive resonance theory (ART) is a multi-layered unsupervised NN

approach that overcomes the limited learning scalability of NNs. This

limitation is called the stability-plasticity dilemma [78]. ART network

architecture consists of three main layers: input, comparison, and recognition

as shown in Figure 2.8. The input layer receives the pattern and stores it. The

connectivity between input and comparison layers is one-to-one, meaning that

each neuron in the input layer is connected to a corresponding neuron in the

comparison layer using non-modifiable weights. On the other hand, each

neuron in the comparison layer is connected to all neurons in the recognition

layer using modifiable weights. A feedback connection is also available in the

ART structure where each neuron in the recognition layer is linked to all

neurons in the comparison layer. In addition, the architecture uses gain

modules (G1 and G2) and the orienting subsystem (R). These are the signals

45

that control activating and deactivating neurons in the comparison and

recognition layers [79]. The neurons in the comparison layer are fed with three

inputs: the input pattern, the feedback pattern from recognition layer, and the

gain value G1. Neurons in the recognition layer will receive two inputs, from

comparison layer and G2. Recognition is based on calculating the weights and

determining the winning neuron in the recognition layer. The highest weight

neuron will be activated and compared to the stored patterns to find a match. If

no matched pattern is found, the neuron will be de-activated and another

neuron will be activated and compared. This process continues until the

network finds a match. Otherwise, the incoming pattern will be stored [78].

Kulakov and Davcev [80] use ART networks as classifiers to detect

unusual WSN nodes’ behaviour in order to identify intruders. Yuan and Parker

[81] present an ART-based WSN detection system to detect intruders in an

unknown environment. Kumar et al. [82, 83] implement ART networks in

WSNs to classify patterns in order to achieve clustering aggregation in

unknown environments. From the above description and examples, we can see

that ART networks offer scalability in terms of the number of stored patterns.

In addition, these networks are useful for classifying patterns that have no prior

information, such as statistics [82, 83]. However, there is no guaranteed

convergence time, which degrades the suitability of such a scheme for use in

WSNs.

46

RG1

G2

Input layer

Comparison layer

Recognition layer

Input pattern

Figure 2.8: ART network architecture [78].

2.3.4.5 Self-organising maps

Self-Organising Maps (SOM) [84, 85], also called Kohonen maps, are

unsupervised learning mechanisms and considered to be a type of artificial NN.

The neurons in the network are arranged in a regular manner and can be the

shape of one- or many-dimensional spaces. Each neuron in the network is

assigned a random weight in the initialisation. The training process of SOM

goes through two main steps:

 Competition, where training samples are presented to the

network and compared to neurons’ weights, with the neuron of

the maximum value considered to be the winning neuron. The

comparison in this phase is controlled by a discrimination

function such as Euclidean distance or inner product.

 Adaptation, the winning neuron’s weight, is updated in

accordance with the learning rate parameter and the

neighbourhood function.

47

The learning process goes in iterative cycles where the learning rate and

the number of neighbours are reduced at the end of each iteration [86]. After

the completion of the learning process, it is possible to present patterns to the

network to perform classification operations. The weights of each presented

pattern are compared with each neuron’s weight and the neuron that has the

closest weight is classified as the input vector.

Examples of using SOM in WSNs can be seen through the work of

Giorgetti et al. [87] who proposes a localisation mechanism that determines

nodes’ coordinates in WSNs based on SOM. Another example is the work of

Postolache et al. [88] who uses sensor networks and a SOM mechanism to

confirm a sensor’s failure and detect pollution events. Despite the classification

properties offered by SOM, it requires centralised processing to compare

weights and to come up with the output class. Thus, tailoring SOM for use in

WSNs may be resource exhaustive.

2.3.4.6 Issues related to implementing NNs in WSNs

Neural Networks (NN) provide parallel pattern recognition capabilities

for multiple problems. However, there are a number of issues that degrade the

suitability of such techniques for pattern recognition in WSNs. One of the most

prominent issues is the tightly coupled connectivity between neurons. In a

single layered NN such as a Hopfield network, each neuron is connected to

every other neuron in the network. In a multi-layered NN such as feed- forward

networks, each neuron in a layer is connected to each neuron in an upper layer.

48

Such tight connectivity between neurons will require a high number of network

communications between WSN nodes, which means high power consumption.

In addition, such connectivity limits a WSN that implement a NN technique

from scale up in terms of network size.

Pattern recognition using NN techniques involves an iterative process.

This means that a network performs actions such as weight calculations in

repetitive steps until reaching an optimum status. The number of these steps is

usually unpredictable and in some cases is not guaranteed to lead to an optimal

solution. Consequently, the convergence time of an NN technique is high.

Hence, the suitability of such techniques in real time WSN applications is

limited. Moreover, such iterative processes involve a large number of

computations which will result in resource consumption when implemented in

resource-constrained networks such as WSNs.

In some NNs such as Hopfield networks and some types of the feed-

forward networks, predetermined synaptic weights and relationships between

nodes are required. In addition, NNs in general require a large number of

training samples in order to correctly classify incoming patterns. These

requirements may be challenging in some applications, especially for

environments where patterns are expected to occur randomly.

 Generally, NNs offer distributed and parallel pattern recognition

capabilities. However, the performance of such schemes is affected by the

large number of communications, iterative processing, and high computational

resources involved, as well as the non-guaranteed convergence time and the

49

predetermined weights and large number of pattern training samples that are

required. These factors and requirements make the implementation of such

schemes in resource-constrained networks such as WSNs either unfeasible or

challenging.

2.3.5 Support vector machines

Cortes and Vapnik [89] present the principle of support vector

machines (SVM) as a learning and classification mechanism. An SVM network

maps input vectors to high dimensional feature space in a non-linear manner.

Then, a linear decision surface is created in this high space by creating one or

more hyperplanes to perform class separation. The optimal hyperplane between

two classes can be obtained by maximising the margin between the classes’

points.

Figure 2.9 shows an example of a two-dimensional separation problem

for two different classes. The points located on a class margin line are called

support vectors and the distance between two classes’ margin lines is called the

optimal margin. To perform classification, an input pattern is compared with

support vectors to determine which class this pattern should belong to. In

practice, SVMs use a classification function which can be calculated based on

the kernel representation. Hence, the choice of the kernel will have impacts on

the classification process of the network [90].

50

O
ptim

al H
yperplane

O
pt

im
al

m
ar

gi
n

Figure 2.9: SVM classes separation for two classes in a two-

dimensional space. Black vectors (samples) represent the support vector for

each class [89].

Tran and Nguyen [68] use SVMs with an RBFN kernel for error

tolerance localisation in WSNs. The authors propose the use of connectivity

information, such as number of hops, as metrics to classify WSNs and estimate

sensors locations. Xue et al. [91] propose target classification mechanisms

based on SVMs that overcome samples’ false rates in WSNs. The authors

propose the use of energy consumption metrics to construct an SVM-based

classifier for WSNs in two paradigms, namely, centralised and distributed. The

centralised paradigm represents the traditional SVM classifier. In contrast, the

distributed method attempts to use samples (i.e. nodes) close to hyperplanes in

order to reduce classification overhead costs. The main goal of the distributed

classifier is to allow a set of sensors to communicate with a set of cluster heads

to construct an SVM classifier. Abu Sajana et al. [92] also use SVMs to detect

physical intrusion attacks on WSNs containing PIR sensors. The goal is to

reduce false alarms caused by detecting windblown vegetation. They propose

51

the use of HAAR transformation and frequency binning along with SVMs to

solve the addressed classification problem.

The main challenge of using SVMs for classification problems in

WSNs comes from the fact that a technique that implements an SVM classifier

requires centralised processing capabilities in order to create hyperplanes and

classify incoming patterns based on computed information. Another challenge

is related to the number of training samples required. In order to create

separating hyperplanes between classes and correctly classify instances, SVMs

require a large number of training datasets. Such requirements may be

challenging in applications that expect patterns to occur randomly. Another

challenging issue when using SVMs is their dependency on kernel functions.

The use of kernel functions will tie SVM techniques to the issues related to the

kernel itself. For example, an SVM technique that implements an NN method

as its kernel function will suffer from tightly coupled connectivity between

nodes and the iterative processing associated with NNs. Hence, the choice of

the type of kernel function plays a very important role in determining the

suitability of an SVM technique for use in WSNs.

2.3.6 Graph Neuron (GN)

Graph Neuron (GN) [93, 94] is a scheme that creates AM in a fully

parallel-distributed manner over fine grained WSN. GN nodes only

communicate adjacently and in a loosely coupled fashion. Hence, GN offers

light-weight one-shot learning capabilities in a decentralised manner. These

52

characteristics make GN a very suitable approach for real time pattern

recognition in WSNs. In order to perform pattern recognition, each node

initialises a memory structure called the bias array wherein it stores the

incoming pattern as sets of p(value, position) pairs. Each input pattern is

automatically synthesised into its components by the GN array. The GN nodes

corresponding to the respective p(value, position) pairs are activated by the

input pattern. Each activated node exchanges its value and position with its

neighbouring nodes (i.e. previous and next). In the memorisation process, a

node will store the combinations of its own value and its neighbours’ values.

For the recall process, it will look up the bias array for a matching

combination. The node raises a recall, a yes vote, if the combination is found in

its bias array. If all neurons vote yes then the input pattern will be recalled by

the network. Figure 2.10 illustrates the architecture and communications

between GN nodes in a four-position GN array, with two possible values A and

B storing pattern ABBA.

A

B

First Row

(Value A)

1'st Column

(position 1)

ABA B

Second Row

(Value B)

2'nd Column

(position 2)

3'rd Column

(position 3)

4'th Column

(position 4)

B

A

B B

A A A

B

Figure 2.10: A simple four node GN array responds and stores the

incoming pattern ABBA.

53

Despite the light-weight pattern recognition capabilities offered by GN,

the recognition accuracy of GN is affected by the limited perspective of each

neuron as each node only knows about its immediate neighbours. This leads to

the crosstalk problem. For example, if a GN network with a pattern size of five

memorised patterns abcdf and fbcde, the network would falsely recall the

pattern abcde that was never presented to the network. Using GN in WSNs is

also affected by the constraint that each node is required to communicate with

a single entity (i.e. base station) in order to perform pattern recognition

operations. Such requirements increase the number of communications and

overhead over the network.

2.3.6.1 Hierarchal GN (HGN)

Hierarchal Graph Neuron (HGN) [95] fixes the crosstalk problem by

using a pyramidal framework for obtaining a higher perspective on the

incoming pattern. HGN creates a set of layers above the neurons that receive

the incoming pattern. The goals are to provide higher oversight over an

incoming pattern and to minimise direct communications between nodes and

the base station. The structure of HGN is built using layers of GN arrays in a

pyramidal logical shape that allows a single node (the top node in the pyramid)

to classify the incoming pattern and communicate with the base station. Figure

2.11 shows an example of simple binary HGN that handles a five elements

pattern size.

54

Figure 2.11: Simple HGN structure for a 5 elements binary pattern.

The incoming pattern is firstly processed by the base layer of HGN (i.e.

base GN). And then each neuron sends its calculations to its corresponding

higher level neuron. This process continues until the top node of the structure.

This allows neurons in higher levels to build up a higher knowledge about the

incoming pattern. The top node decides the pattern’s index based on a given

command from the base station (memorise or recall). However, if the top node

fails to classify the pattern, the base node communicates with lower level nodes

to vote for an answer. It is noticeable that the neurons in layers higher than the

base layer monitor and manage nodes. That is, these nodes do not receive

pattern elements. Instead, these nodes receive index numbers calculated by the

base layer (and lower level) nodes.

HGN solves the problem of crosstalk associated with GN schemes.

However, the size of HGN can scale substantially with the increase in pattern

size due to the use of managing neurons in its structure. If the pattern size is S

and the number of possible values of a pattern element is v, then the size of the

55

HGN network (HGNsize) can be calculated according to the following

equation [95].

𝐻𝐺𝑁𝑠𝑖𝑧𝑒 = 𝑣 (
𝑆 + 1

2
)
2

 (2.8)

HGN also attempts to reduce direct communications between each node

in the network and the base station. However, with the presence of noisy

patterns, an HGN network’s top node will fail to classify the incoming pattern

and the base station will communicate with nodes in lower layers to vote for an

answer. Consequently, an HGN scheme’s communications are affected by

noisy patterns.

2.3.6.2 Distributed HGN (DHGN)

Distributed HGN (DHGN) [96] attempts to solve the large scale of

HGN and reduce the number of direct communications required for voting.

DHGN splits an incoming pattern into sub-patterns so they can be processed by

multiple HGN networks. Figure 2.12 shows an example of a DHGN structure

for a pattern size of 20 that has been split into 4 sub-patterns and sent to 4

HGNs where each HGN processes 5 elements. Each HGN network processes

the assigned sub-pattern and presents its final result through its top node. The

base station conducts a voting process between the top nodes of the GN

networks in order to make a decision on an incoming pattern.

DHGN reduces the number of nodes required for constructing the

network by limiting the number of managing neurons. However, the use of

56

managing neurons leads to an increase in DHGN size with increase of pattern

size. For example, in a uniform distribution of pattern size S, let Sp be the sub-

pattern size and n HGN networks. Accordingly, a DHGN network size

(DHGNsize) can be calculated according to the following formula.

𝐷𝐻𝐺𝑁𝑠𝑖𝑧𝑒 = 𝑛. 𝑣 (
𝑆𝑝 + 1

2
)
2

 (2.9)

Figure 2.12: DHGN structure for a 20 bits pattern size that has been

divided into 4 sub-patterns.

DHGN adopts an HGN scheme. It has been shown that when a pattern

is distorted (i.e. a noisy pattern) the top node of an HGN will not make a

decision about the incoming pattern. Instead, the base station conducts a voting

process that involves nodes in lower layers in order to inspect the result. In

contrast, DHGN avoids such processes in order to limit direct communications

with the base station and also to speed up the detection process. The major

problem that a DHGN network may encounter is when a distributed noise is

57

present. In such a case, a DHGN network may fail to reach a conclusion about

the incoming pattern. For example, if each sub-pattern in the example given in

Figure 2.12 has been changed by at least one bit, each HGN network would fail

to reach a conclusion regarding the incoming pattern. In other words, all top

nodes will give the result 0 (i.e. fail to recognise the pattern). Since the base

station only conducts the voting process amongst the top nodes of all HGN

networks and does not involve lower layers, the network is unable to determine

the incoming pattern.

GN involves a limited number of communications and computations in

performing learning operations. Such a feature makes GN a very good

candidate for pattern recognition applications in resource-constrained WSNs.

However, the accuracy of GN is limited due to the limited information

available for each node. HGN and DHGN provide higher accuracy levels by

involving a hierarchal network structure. Communications in both schemes are

maintained at low numbers by adopting parallel and distributed mechanisms.

However, the scalability of HGN and DHGN schemes is not best suited for

large scale WSNs as the number of required nodes increases exponentially with

the increase of the problem (pattern) size.

2.3.7 Structural and conditional methods

There are a set of structural and conditional classification methods in

the literature that have been used for classification problems in WSNs. These

methods attempt to create a relationship between pattern elements and are

58

commonly used when non-metric data is available [40, 58]. These techniques

can be categorised as syntactical, fuzzy logic, and decision tree methods.

2.3.7.1 Syntactical classification

The syntactic model describes the relationship between sub-patterns

and patterns by creating structural rules. It adopts language theory where letters

form words and words form sentences based on grammatical rules. In this

model, primitive elements and sub-pattern relationships are analysed to provide

pattern recognition. The main challenge in the syntactic approach is to describe

the relationships (rules) between sub-patterns so as to provide the capability of

pattern recognition and identify primitives that describe patterns [97]. Such

analysis is performed by using different schemes such as NNs, tree grammars,

transformations, and more [98].

Latha et al. [99] use the syntactical method in semantic tracking for

wildlife preservation using WSNs. The syntactical method is used as a

processing stage that checks a node’s detection with other nodes in the same

cluster. Syntactic pattern recognition offers complex pattern recognition if

there is no suitable statistical method available. However, grammars and

recognisers (recognition) are complex, especially with noise [100]. Another

issue with this technique is the large amount of training data required for

training and creating relationships between sub-patterns [58].

59

2.3.7.2 Fuzzy logic

 A system that implements fuzzy logic is usually called a fuzzy

inference system (FIS). An FIS is capable of making conclusions by mapping

inputs to outputs with the aid of membership functions, fuzzy sets, and rule

base [101]. FIS is built up based on three main components: rule base,

membership functions, and reasoning mechanisms [102]. The process of an

FIS starts with classifying inputs to fuzzy sets in accordance with membership

functions. For example, a temperature reading could be classified as high,

medium or low. Then, the rule base is used to make conclusions based on the

classified inputs. Rule base consists of a set of IF-THEN rules that take two or

more variables to come up with a conclusion. An example of a fuzzy base rule

can be described as follows.

𝐼𝑓⁡𝑥⁡𝑖𝑠⁡𝐴⁡𝑎𝑛𝑑⁡𝑦⁡𝑖𝑠⁡𝐵, 𝑡ℎ𝑒𝑛⁡𝑧 = ⁡𝑓(𝑥, 𝑦) (2.10)

where x and y are the classified inputs and z is the output of the FIS. Deriving

such rules for a FIS may requires prior knowledge about the relationships

between variables [101]. Implementing these rules on variables is called fuzzy

reasoning or an approximate reasoning mechanism of a FIS.

Marin-Perianu et al. [101] present a WSN activity recognition system

based on FIS to assist workers in car assembling and training. Zarei et al. [103]

propose a FIS congestion control scheme for WSNs to identify malicious node

activities. Xiufang et al. [104] use FIS to measure the distance between WSN

nodes in order to achieve better localisation. These are some examples of using

60

FIS for inference and recognition in WSNs. The main challenge for FIS is to

derive the IF-THEN rules and fuzzy sets. According to Nakamura et al. [43],

FIS is usually used to control neural networks’ learning rates rather than being

used for recognition. This will lead to the same issues with pattern recognition

in WSNs that are present in NNs. In addition, in most WSN applications,

concluding rules may be challenging.

2.3.7.3 Decision trees

Decision tree approaches are constructed from a set of nodes that are

logically arranged in a tree-like shape. Each node makes a decision about the

incoming pattern feature and, based on that decision, the process questions the

next feature in lower level nodes. Figure 2.13 shows a simple decision tree

example. In this example, five animal classes, eagle, sparrow, monkey, lion,

and sheep are to be recognised by using four features: presence of wings, size,

number of legs, and being a predator. The tree in the example shown in Figure

2.13 has four levels, including the root of the tree. The number of levels

determines the depth of a decision tree. One of the most common decision tree

structures used for classification is the binary decision tree. In such a structure

each node makes one out of two decisions and inspects a single feature at a

node to reduce complexity and time of recognition[58].

61

Figure 2.13: A simple decision tree example for animal classification.

As an example, Bahrepour et. al [105] propos a WSN event detection

mechanism based on a decision tree technique. The proposed scheme

distributes features into several trees where each tree makes one decision.

Finally, a voting process takes place between the results obtained by the trees

to determine the detected event. Decision trees are expected to involve limited

computations and communications. However, decision tree techniques are

affected by noisy patterns, which increase the scheme’s complexity, especially

for large scale trees [106]. Hence, decision trees are more useful as decision

making processes on top of another pattern recognition process.

2.4 Requirements of Pattern Recognition in

WSNs

Pattern recognition in WSNs is affected by the limited physical design

of sensor nodes, the nature of WSNs and the type of patterns a WSN is

62

attempting to deal with. In this sub-section, the requirements of performing

pattern recognition in large scale WSNs for real time applications will be

discussed.

Sensor nodes are generally designed to be small in size. Such design

restricts the resources that can be included in each sensor. As discussed earlier,

a sensor consists of four main components: a processing unit, a communication

unit, a memory unit, and an energy source. The limited size of a sensor results

in the limited size of these components. Consequently, each task assigned to

each component can only use a restricted amount of resources. The energy

source is one of the components that most affects the performance of a sensor

and the design of a WSN. Generally, a sensor uses a battery that has a short

lifetime. Moreover, in most applications, batteries are not likely to be replaced,

which means that the lifetime of the battery determines the lifetime of the

sensor. Since the energy source of a sensor is limited, energy consumption

caused by another sensor’s components must be reduced.

A sensor’s communication is considered to be the most energy

consuming task, and can drain the sensor’s energy resources [18]. Hence, a

pattern recognition scheme in WSNs should involve a limited number of

communications per sensor in order to increase the lifetime of sensors.

Computational capabilities of a sensor node in a WSN are constrained due to

the small sensor size (small processor) and limited energy available.

Consequently, involving large amounts of data processing in a sensor is an

exhaustive task that will shorten the lifetime of the sensor. This is not only

63

because data processing requires energy, but also because the sensor will be

kept in active mode for long periods of time. In addition, the higher the

processing assigned to a sensor, the more time the sensor needs to obtain a

result. If the amount of processing is large, the time needed to get a result out

of this processing may be unexpected. Hence, a pattern recognition algorithm

should involve a controlled amount of data processing for each sensor aligned

with the sensor’s computational resources in order to avoid energy

consumption and to ensure a timely result. The memory size of a sensor is

intuitively small. As a result, each sensor should hold the minimum amount of

data it needs to process and detect patterns in a WSN pattern recognition

scheme.

Other requirements for pattern detection result from the nature of the

WSN network design. As WSNs are deployed in large numbers, network

scaling is an important property for designing a recognition scheme for WSNs.

Size scaling requires managing the way sensors are going to communicate with

each other. The number of communications involved in a WSN scheme design

is crucial as it will determine the number of communications each sensor is

going to handle. This will have ramifications for the sensor’s lifetime as well

as the time needed to obtain a final result from these communications. In real

time applications, convergence time is highly important. In recognition

processes, sensors either send data to a fusion centre or to other sensors in the

network in order to conclude pattern detection. Consequently, the convergence

time of the network is highly dependent on the process of delivering

64

information from one point to another. Generally speaking, scaling a WSN

should maintain a restricted method of communication to conserve energy

resources and speed up the recognition process to support real time recognition

applications in WSNs.

A pattern recognition scheme should have some invariant features. In

WSNs, the need for such features increase because WSNs are dynamic and the

nature of monitored fields of interest is changing. In other words, a stored

pattern in a WSN pattern recognition scheme could appear in different form,

such as location change or size dilation, in the field of interest. Or the topology

of the WSN network or sensor locations may change, meaning the information

stored within the network will have different distribution and relations.

Another problem associated with the nature of WSNs is the restricted number

of training samples available as events generally occur in some form of

randomness [10, 50]. Hence, designing a pattern recognition scheme should

address the restricted amount of training data available as well as the changing

environment in WSN networks and fields.

Noisy patterns are another problem associated with large scale WSNs.

Noisy patterns are a result of the monitoring environment and the limited

lifetime of sensors. As a result of noisy patterns, damage to sensors, dead

sensors, and lost packets could cause the loss of some parts of the detected

pattern. Tolerance management is required to reduce the effect of lost parts of

incoming patterns. It is worth noting that different applications may need

different tolerance levels. However, in WSNs in general, a recognition scheme

65

should be able to detect events and patterns even if some parts of the detected

pattern are lost.

In general, the main requirements of a pattern recognition scheme in

large scale WSNs suitable for real time detection can be summarised as

follows:

 restricted communications,

 restricted computations,

 limited memory requirements,

 ability to scale in terms of network size,

 Predicted convergence time,

 means to addresses invariance properties for dynamic networks

and changing patterns,

 ability to address randomness problems, meaning that the

scheme should maintain high accuracy with a restricted number

of available training samples,

 ability to detect complex patterns, and

 ability to detect noisy patterns.

2.5 Comparing Existing Schemes

This sub-section compares the different presented pattern recognition

schemes in section 2.3 for WSNs based on the requirements listed in the

previous sub-section. The main goal of this research is to present recognition

66

schemes that can be implemented on large scale WSNs for real time

applications and to support decision making processes in intelligent systems.

Most existing schemes are able to implement a number of nodes equal

to the pattern size S. For example, Hopfield networks allow input/output

neurons of size S. In contrast, HGNs and DHGNs require a larger number of

nodes to adopt the same patterns, as can be seen from Equations 2.8 and 2.9.

The higher number of nodes in HGNs and DHGNs is the result of requiring

higher level neuron positions and the need to have one node for each possible

value v in each position. It can be concluded from Equations 2.8 and 2.9 that

the number of nodes (or sensors) grows exponentially with the increase of

pattern size and the number of possible values for each pattern element.

On the other hand, the number of communications involved in neural

networks such as Hopfield networks is high due to tightly coupled connectivity

and iterative processing. The number of communications required for a

Hopfield network is (S×(S-1)) as each node is connected to every other node.

Intuitively, the number of communications grows exponentially with the

increase of pattern size as this number is related to the square of the pattern

size. Since neural networks require iterations to reach an optimal state,

communications between neurons are repeated several times, resulting in high

communicational demand that would be exhaustive if implemented on sensors.

Some statistical approaches such as histogram methods also involve a large

number of communications in order to collect specific information from the

network.

67

From a computational perspective, most of the existing schemes either

provide distributed processing or require centralised processing. SVM, for

example, requires centralised processing in order to create the required

hyperplanes and classify patterns. Statistical approaches require global

information to be available on a centralised component to compute

distributions and perform recognition. There have been attempts to distribute

statistical models amongst sensor nodes in WSNs and compute these

distributions locally before sending the information to a fusion centre or a base

station. The work of Luo et. al [17] is an example of this technique. However,

the accuracy of such techniques would depend on the physical communication

medium’s noise tolerance and the thresholds computed to perform

computations locally in sensors. Neural networks offer parallel and distributed

functionality in terms of computations. However, the iterative process of neural

networks requires a high amount of data processing. KNN techniques can be

seen as simple, distributed approaches for pattern recognition. However, the

computational complexity of a KNN scheme depends on the number of

neighbours k. The higher the value of k, the more complex the scheme

becomes. Hence, tuning the value of k plays a crucial role in determining a

KNN scheme’s computational simplicity.

Decision making support and real time applications require fast pattern

detection. In this area, GN approaches such as HGNs and DHGNs offer one-

cycle recognition that suits such applications. On the other hand, neural

networks, SVM, and decision trees recognition schemes may require more time

68

to converge compared to other existing schemes. A neural network’s

convergence time to an optimum state depends on the number of iterations

involved. A single iteration involves communications and computations to be

performed by neurons. These activities can be time costly as the number of

iterations grows. In SVM schemes, recognition time depends on the selection

of the kernel. If the kernel chosen is one of the time costly techniques, such as

neural networks, the detection time will intuitively increase. The choice of

kernel in this case will be a trade-off between time and other factors such as

accuracy. For decision trees, recognition time depends on the depth of a tree.

The depth of a tree is the number of levels needed to perform recognition and

depends on the number of attributes the tree is inspecting. The more attributes

to inspect the greater the depth of the tree and hence the more time it takes to

conclude a decision about a pattern. In addition to the depth of a tree, the

method used to inspect each attribute affects the time cycle of detection.

The number of available training samples is commonly restricted in

WSNs. Most existing detection schemes require a large amount of data to

correctly recognise and classify patterns. Statistical approaches use training

samples to construct distribution probabilities. The more samples the scheme is

trained with, the higher the accuracy it achieves. Similarly, SVM requires large

amounts of data to create separation hyperplanes. A limited amount of data

could result in inaccurately setting hyperplanes and create large gaps between

classes. Neural networks share the same requirement in order to accurately

create weighting matrices. The limited number of training samples in this case

69

affects the invariant property of a recognition scheme. Statistical, SVM and

neural network approaches are the best candidates for offering this invariant

feature compared to other existing schemes. However, this feature is entangled

with presenting a large number of training samples to a network implementing

such schemes.

Memory requirements per node (or sensor) are limited in most existing

schemes. However, in KNN, each node keeps information about distances to

each of its neighbouring nodes. The amount of memory needed for each node

in this case will depend on the value of k and the number of classes. In HGN,

memory requirements increase in higher nodes in the hierarchy. In the base

layer (i.e. input layer) each node is expected to hold up to (2V) in its memory (v

is the possible number of a pattern’s element values) as each sensor

communicates with its two direct neighbours. Each node in the top position of

the hierarchy of the HGN is expected to hold up to ⁡
𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔⁡𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑣
 .

The aim of event detection in WSNs is to reduce the amount of false

alarms. Simple schemes, such as threshold-based scheme, seem to be perfect

for simple problems. On the other hand, these schemes fail to deal with

complex patterns, leading to false alarms. The nature of WSNs and the fields

they monitor introduce recognition schemes to more complex problems.

Sensors could run out of energy or lose information because of the noise in the

physical transmitting medium. Consequently, schemes should be capable of

overcoming such challenges and offer recognition capabilities despite the lost

information. Several schemes encounter degradation of accuracy caused by

70

such problems. For example, a DHGN scheme might inaccurately classify

patterns when distributed noise is present. If each cluster of a DHGN network

is presented with noise, cluster heads will not be able to conclude sub-pattern

detection and the final voting of the process could lead to inaccurate detection.

Another example is decision tree schemes. These techniques may fail to

correctly classify noisy patterns in large scale networks.

It can be seen that different schemes have different limitations in

regards to the requirements of pattern recognition in large scale WSNs. Table

2.1 shows a comparison between existing pattern recognition schemes in

WSNs. It can be seen from the table that none of the existing schemes can

fulfil all the requirements set. Consequently, new schemes need to be proposed

if we are to the problem of interest.

2.6 Possible Solution

Performing pattern recognition in WSNs requires tackling two

problems: correctly classifying patterns and restricting use of constrained

resources. Solving the problem of pattern recognition in WSNs is seen as a

trade-off between accuracy and resources exhaustion [28, 107]. Existing

solutions do not address the resource-constrained nature of WSNs and assume

reliable message delivery in the network [18]. This causes such schemes to be

resource exhaustive and to require heavy tailoring to suit WSN applications

[108]. In fact, Tanengbaum et al. [27] concluded that existing techniques can

only be implemented on limited scale WSNs.

71

Table 2.1: Comparison of existing pattern recognition schemes for WSNs.

Scheme
Comm-

unications

Comp-

utations
Memory

Network

size
Time

Transform-

ation

invariant

Random

patterns

Complex

patterns

Noisy

patterns

Threshold based Low Low Low Small Low No No No No

KNN Low

High/

Depends on

k

High Small Low No Yes Yes Yes

Statistical Low
High /

Centralised
Moderate Small Low Yes No Yes Yes

Neural networks High High Low Small High Yes No Yes Yes

SVM Low Centralised Low Small Low Yes No Yes Yes

GN Low Low Low Small Low No Yes Yes Yes

HGN Low Low Moderate Large Low No Yes Yes Yes

DHGN Low Low Moderate Large Low No Yes Yes No

Decision trees Low Dependant Low Small Low Yes No Yes No

Target Low Low Low Small Low Yes Yes Yes Yes

72

Using distributed approaches to solve the pattern recognition problem

in WSNs appears in recent research. According to Giridhar and Kumar [109],

sending information from each sensor to the base station or a fusion centre in a

WSN is inefficient. Consequently, according to the authors, the whole network

should perform as a distributed cooperative computational component.

Wittenburg [108] suggests that the processing involved in application levels

should be pushed and distributed in the network level in order to achieve

conservative resource consumption schemes for WSNs. Chamberland and

Veeravalli [18] suggest that the use of distributed pattern recognition is the

most efficient method for WSNs. They mention that data should be computed

by sensors locally, and only part of the resulting information should be sent, in

order to conserve the WSNs’ limited resources. However, the authors highlight

that the choice of which information should be sent to the base station of a

WSN is crucial to such implementation.

The main hypothesis of this research is that a fully distributed scheme,

which works purely with localised node adjacency-based computation, is the

best candidate for solving the problem of event detection in WSNs. Adjacency-

based computations will promote WSNs’ ability to deal with complex,

invariant, and noisy patterns. Additionally, it is expected that using a loosely

coupled connectivity scheme will scale up efficiently in terms of time and

resources management if used in resource-constrained networks such as

WSNs. By offering a fast, accurate, and scalable scheme that suits WSNs, it is

73

possible to use such schemes in decision making to solve far more complex

and real time application problems.

2.7 Summary

This chapter has presented an overview of WSNs and the pattern

recognition challenges that are associated with such networks. WSNs pose

numerous challenges for complex applications such as pattern recognition.

WSNs pose even more challenges if an application is a real time one and needs

to be implemented on a large scale network. These limitations stem from the

constraint resources that a WSN can offer, including computational,

communicational and memory resources. Such limitations make solving

pattern recognition problems in WSNs a trade-off between performance and

resource consumption.

Existing techniques that provide solutions for the pattern recognition

problem in WSNs are threshold-based, KNN, statistical, neural networks,

SVM, GN, HGN, DHGN, and Conditional techniques. Each of these present

several issues when implemented on WSNs. Examples of these issues include

the requirements of centralised processing, iterative processing and large

numbers of communications. Hence, each scheme would need to be heavily

modified to be adopted by WSNs. Existing schemes can be implemented on

limited scale size WSNs. Hence, new contributions should be made towards

enhancing the scalability and performance of pattern recognition.

74

Distributed techniques conserve resources in a way which perfectly

suits the nature of WSNs. Using such techniques allows the spread of

computations across the network. Distributed processing can be achieved by

allowing each node to locally process data and send the final result to another

entity in the network. However, there must be a method for choosing which

other nodes to communicate with, what data should be processed and what

information should be sent.

In WSNs, minimising communications is one of the best resource

utilisation methods. The reason for this is that sending a message from one

node to another is the most energy-consuming task that a sensor can perform.

Hence, this chapter proposes the use of the adjacency communication method

to reduce the number and range of communications. Processing data gained

from adjacent nodes allows the network to communicate and process data in a

loosely coupled fashion. In addition to conserving resources, this would allow

the network to limit recognition time. Such features will make the proposed

methods good candidates for resource-constrained networks such as WSNs,

allowing them to solve real time and complex problems. Additionally, these

methods will be good candidates for hybrid use with other techniques, such as

decision making algorithms, to support high level network processing and

decision making processes.

75

Chapter 3

3 Cellular Graph Neuron (CGN) for

Pattern Recognition in WSNs

3.1 Introduction

Wireless Sensor Networks (WSN) make it possible to sense physical

parameters in a field of interest. These sensory data can be analysed in order to

detect the presence of a physical activity or events in that field and take an

action in accordance with the detected activity. Analysing sensory data is a

computational and processing task that falls under two paradigms, centralised

and in-network [7]. In centralised processing, data obtained by sensor nodes

are aggregated to one machine that has the computational ability to analyse

sensory information. However, this paradigm is considered inefficient in large

scale resource-constrained WSNs, especially for applications that require

limited latency time for data analysis in order to support decision making

processes [109]. In contrast, in-network processing allows network nodes to

perform computations and analysis on obtained data locally and in a distributed

manner. This causes the network to act as a cooperative computational entity

and this capability allows a WSN to reduce the computational and

communicational complexity of processing nodes in the network.

76

The problem of event detection in WSNs can be solved by using in-

network pattern recognition techniques. A pattern may be defined as a set of

raw sensory data that describes the main characteristics of an event [26]. In-

network pattern recognition techniques for WSNs include threshold-based,

template matching, nearest neighbour, fuzzy logic, and neural networks, as

discussed in Chapter 2. Existing pattern recognition schemes for WSNs are

usually tailored to provide detection capabilities for specific applications or

problem scenarios. These techniques may fulfil some event detection

requirements while failing to address WSN resource limitation issues.

As discussed in Chapter 2, Graph Neuron (GN) is a scheme that creates

associative memory (AM) in a fully parallel-distributed manner over fine-

grained WSNs and offers light-weight one-shot learning capabilities. These

characteristics make GN a good candidate for real-time pattern recognition

applications in WSNs. However, the recognition accuracy of GN is affected by

the limited perspective of each neuron, as each node only knows about its

immediate neighbours. Consequently, the hypothesis of this chapter is that

developing a GN-based scheme that addresses the accuracy limitations of GN

would be the best option for solving the problem of pattern recognition in

resource-constrained networks such as WSNs.

In this chapter, a pattern recognition scheme that is capable of detecting

events and noisy patterns while addressing the resource constraints of WSNs is

proposed. The scheme will adopt an in-network processing paradigm by

including GN in its structure. Additionally, the scheme will solve the crosstalk

77

problem that affects GN accuracy by adopting network structures that allow

certain nodes in the network to maintain more information about incoming

patterns rather than being restricted to only adjacent nodes. The proposed

network structure is designed to have the same network size as the GN

network, which maintains the high scalability and the one-shot learning feature

of GN.

The chapter starts by presenting the CGN scheme structure for pattern

recognition in section 3.2. This covers the constraints related to deploying such

a scheme and why these constraints are used. Additionally, this section

analyses the relationship between CGN structural constraints and the network’s

size. The section also discusses the effect of incoming pattern size on the CGN

network size. Additionally, this chapter describes the memory structure,

computations and communications of a CGN. In section 3.3, the scheme’s

method of receiving incoming patterns is presented. This involves determining

which nodes should participate in the learning process. Section 3.4 analyses the

complexity of CGN in terms of memory size, number of communications, and

learning cycle time. The aim of such analyses is to validate the suitability of

CGN for use in WSN environments. This is followed by tests on the CGN

scheme in section 3.5. These tests show the ability of CGN to act as a pattern

recognition scheme despite the presence of noisy patterns. Additionally, this

section presents a comparison between CGN and other existing pattern

recognition schemes. The section compares CGN with Hopfield networks in

terms of communications, computations, and time. Additionally, the section

78

presents a test of handwritten digits as an example for comparison of accuracy

between CGN, Naïve Bayes, and back propagation neural networks,

demonstrating CGN’s superiority. Section 3.6 summarises the chapter.

3.2 Overview of CGN

This section describes the proposed CGN scheme. Part of this section

has been published in [110]. As a first step to achieving efficient pattern

recognition capabilities, the scheme provides the capability of template

matching and noisy patterns recognition in resource-constrained environments

such as WSNs. The main goal of the scheme is to minimise recognition time

and increase network scalability. The scheme allows a WSN to collaborate and

act as an associative memory in order to store and recognise patterns. This is

achieved by creating a network of GN arrays and allows these arrays to

communicate in order to conclude one result. This will allow the network to

process and compute information in a distributed in-network paradigm.

The aim of the CGN network structure is to allow nodes to exchange

information about an incoming pattern for storing and recalling operations

using an in-network processing paradigm. Two goals that the structure is

attempting to achieve, low scheme complexity and high pattern recognition

accuracy. To achieve the first goal, the CGN network structure adopts a GN

scheme as being well known for its low computational, communicational, and

time complexity. This is due to the dependency on adjacency communications

and computations in its structure for pattern recognition operations. Hence, the

79

CGN network structure consists of multiple GN arrays where each array is

assigned to process a sub-pattern of an incoming pattern. To achieve the

second goal, high pattern recognition accuracy, the CGN network structure

provides links between GN arrays to give the whole network a broad overview

of an incoming pattern. Since each GN array manages one sub-pattern, the

links allow some GN arrays to overview the sub-patterns of other GN arrays.

The aim is to have one array that has top overview over the whole incoming

pattern. This array will make the final decision about an incoming pattern and

report the result to the base station.

3.2.1 CGN structure

The CGN scheme involves two main entities, the stimulator and

interpreter (S&I), which is an external computational node, and the CGN

network, as shown in Figure 3.1. The two components communicate with each

other in order to conclude one decision in a predictable learning duration. The

S&I sends commands to the network and the network replies with an index

number. The index number (I) is a unique integer number that describes the

computation outcomes of the network. This index number can be used to

represent a class or a pattern. A command that is sent by the S&I tells network

nodes whether to memorise (store) a pattern or recall (search for) it. Also, the

command will determine the method of obtaining the pattern (i.e. sense

environment).

80

Figure 3.1: The two main components of the CGN scheme.

A CGN scheme’s network structure and S&I depend on the problem’s

pattern size, the possible values of each pattern element, and the index number.

Hence, we must first define these terms. In this research a pattern is defined as

follows.

Definition 3.1: (Pattern) Given a set of possible values 𝑉 =

{𝑥1, 𝑥2, … . . , 𝑥𝑣,⁡⁡⁡⁡⁡⁡𝑥𝑖 , 𝑣 ∈ ℕ}, a pattern is a set of elements that represent

sensory information that can be sensed by a network’s nodes or sent from the

S&I to each node in the network and can be described as follows.

𝑃 = {𝜀1, 𝜀2, … . . , 𝜀S,⁡⁡⁡⁡⁡⁡𝜀 ∈ V, 𝑆 ∈ ℕ} (3.1)

where 𝜀𝑖 is the i’th element of the pattern and S is the number of elements and is

called the pattern size.

Definition 3.2: (Index number) Given a set of patterns {𝑃1, 𝑃2, … , 𝑃𝑛}, 𝑛 ∈ ⁡ℕ,

an index number (𝐼𝑖) is a unique number that describes 𝑃𝑖 in the form

{1, 2, … , 𝑛}, 𝑛 ∈ ⁡ℕ. Hence, 𝐼𝑖 = 𝑖.

81

3.2.2 CGN network

The CGN network consists of a set of GN networks where each GN

network reports to another one with reaching the S&I. A GN network in the

CGN network structure is called a track and each track consists of a set of

neuron positions that communicate with each other using exchange

communications, as described below.

3.2.2.1 Neuron position (NP)

Definition 3.2: (Neuron position) Given a pattern P that has a set of possible

values 𝑉 = {𝑥1, 𝑥2, … . . , 𝑥𝑣 ,⁡⁡⁡⁡⁡⁡𝑥, 𝑣 ∈ ℕ}, a neuron position (NP) is a set of v

network nodes where each node is assigned to manage one x such that 𝑁𝑃 =

{𝑎1, 𝑎2, … . . , 𝑎𝑣,⁡⁡⁡⁡⁡⁡𝑎, 𝑣 ∈ ℕ}. Where 𝑎i is the i’th node in the NP.

Each NP is responsible for sensing or receiving one element of an

incoming pattern such that 𝑃𝜀,𝑁𝑃:⁡𝜀𝑖 → 𝑁𝑃𝑖⁡, 𝜀 ∈ 𝑉, 𝑖 ∈ ℕ where 𝑃𝜀,𝑁𝑃 is the

assignment of an incoming pattern’s elements to NPs. An NP represents a

column in GN. Hence, activation of NP nodes follows similar activation of GN

nodes, as discussed in section 2.2.6. Based on the received element, one node

in each NP is activated. If the element value is 𝑥𝑖, then the node number i in the

NP is activated.

Definition 3.3: (Activate node) Given 𝑁𝑃 = {𝑎1, 𝑎2, … . . , 𝑎𝑣,⁡⁡⁡⁡⁡⁡𝑎, 𝑣 ∈ ℕ} and

a pattern element = 𝑥𝑖, an active node (AN) is the node that is assigned to

manage the value 𝑥𝑖 in the NP such that 𝐴𝑁 = 𝑎𝑖. Active nodes in the network

82

are the nodes that continue learning process operations. Figure 3.2 shows an

example of activating nodes for a binary pattern in 3 NPs.

Figure 3.2: Active CGN nodes in response to the pattern (0,1,1). Red

(shaded) nodes are the active ones.

3.2.2.2 Network track and communications

Definition 3.4: (Network track) A CGN network track (Trk) is a GN network

that consists of a set of NPs where each NP communicates with its direct

neighbour NP in the track. A CGN track can be described as follows.

𝑇𝑟𝑘 = {𝑁𝑃1, 𝑁𝑃2, … . . , 𝑁𝑃𝑚,⁡⁡⁡⁡⁡⁡⁡𝑚 ∈ ℕ} (3.2)

Communications between NPs in the same track are called exchange

communications and can be defined as follows.

Definition 3.5: (Exchange communications) Given a CGN network track (Trk)

that consists of m NPs, exchange communications of a NP are two direct

connections between the activated node in that NP and activated nodes in its

direct neighbour (adjacent) previous (p) and next (n) NPs in the form ⁡⁡𝐴𝑁𝑖 →

83

𝐴𝑁𝑖−1 ∶ 𝑣⁡⁡and 𝐴𝑁𝑖 → 𝐴𝑁𝑖+1 ∶ 𝑣 respectively, where 𝐴𝑁𝑖 is the communicating

(activate) node in NPi and v is the value assigned to the 𝐴𝑁𝑖. Figure 3.3 depicts

a CGN track that consists of m NPs and v possible values. It is assumed that the

first NP is directly adjacent to the last NP.

Figure 3.3: CGN track of m neuron positions.

The CGN network is designed in a cellular structure containing

multiple tracks. The multiple tracks in the network structure aim to enable

parallel processing and information exchange of incoming data. This is

achieved by allowing each track to perform a set of recognition operations on a

sub-pattern in parallel with other tracks. Such a structure also aims to enable

the network to deal with multi-dimensional data types as each track will be

assigned to process one dimension. The aim of the cellular structure is to

deliver computations of network nodes to one track, called the core track,

which contains only one NP, called the core position. To achieve this structure,

84

each track is formed using an odd number of NPs. Using odd numbers in

determining track size ensures the formation of the cellular structure and

simplifies reporting information between tracks. The deployment of the

network begins by implementing the core position in the core track followed

by the next odd numbered set of NPs in the next track and so on until all nodes

have been deployed in the network. This results in tracks that hold odd

numbers of NPs in the form (1, 3, 5,…,2n+1). It is important to highlight that

node deployment in this section is a logical deployment method. In other

words, deployment can be implemented by assigning each node its track and

NP numbers. These numbers will be used to define the tasks that each node

will perform, as will be described in the memory and network operations sub-

sections later in this chapter. Algorithm 3.1 depicts the network deployment

process.

Algorithm 3.1: CGN Network deployment

1. NetworkSize = PatternSize
2. TrackNumber = 1
3. TrackSize = 1
4. DeployedNP = 0
5. While (NetworkSize>0)
6. Deploy a NP in Track(TrackNumber)
7. NetworkSize--
8. DeployedNP++
9. if (DeployedNP ≥ TrackSize)
10. TrackNumber++
11. TrackSize = TrackSize + 2
12. End if
13. End While

85

The aim is to provide the CGN with a cellular network structure that

allows nodes to transmit their results to a core region, which is then responsible

for delivering the final result to the S&I. The size of a track is the number of

NPs it holds and can be calculated as follows.

𝑆𝑖 = 2𝑖 − 1,⁡⁡⁡⁡𝑖 ∈ ℕ, 𝑖 ≥ 1 (3.3)

where 𝑆𝑖 is the size of the i’th track in the network. Here it is assumed that the

first track is the core track and has the value i=1. In order to exchange

information between tracks, each activated node delivers its computation

outcomes (i.e. unique index number) to another activated node in a higher level

track called inner track. Inner track of track i can be formally represented as

follows.

𝑇𝑟𝑘𝑖𝑛𝑛𝑒𝑟 = 𝑇𝑟𝑘𝑖−1,⁡⁡⁡⁡𝑖 ∈ ℕ, 𝑖 ≥ 2 (3.4)

This equation starts from the value i=2 because track 1 has no inner

tracks. Instead it delivers its reports to the S&I directly. Conversely, an outer

track can be described as the lower track level of track i and can be represented

as follows.

𝑇𝑟𝑘𝑜𝑢𝑡𝑒𝑟 = 𝑇𝑟𝑘𝑖+1,⁡⁡⁡⁡𝑖 ∈ ℕ, 1 ≤ 𝑖 ≤ 𝑁𝑡𝑟𝑘 − 1 (3.5)

where Ntrk is the number of the network’s tracks. This means that the last track

in the network has no further outer tracks. Inner and outer tracks are name

conventions that will be used in this research to describe steps of the report

communications process. The communications between the CGN network’s

tracks are called report communications and can be described as follows.

86

Definition 3.6: (Report communications) Given a CGN network that consists

of a set of tracks, a report communication of an active node AN in an NP is the

message (connection) between this node and the activate node in its direct

assigned inner NP that contains the resulting index number (RI) and its value in

the form 𝐴𝑁𝑖,𝑙 → 𝐴𝑁𝑖−1,𝑙 ∶ {𝑅𝐼, 𝑣}, ∀⁡𝑙 < 𝑆𝑖−1 or ⁡𝑁𝑃𝑖,𝑙 → 𝑁𝑃𝑖−1,𝑙−2 ∶

{𝑅𝐼, 𝑣}, ∀⁡𝑙 ≥ 𝑆𝑖−1.

where i is the active node’s NP order in the track, j is the track number, RI is

the computed index number, v is the value of the activated node in 𝑁𝑃𝑖,𝑙, and

𝑆𝑖−1 is the size of the track number (i-1). Since each track is lower than its

outer track by 2 NPs, two NPs track i will have no matching nodes in track i-1

and the report goes for the 𝑁𝑃𝑖−1,𝑙−2. Figure 3.4 depicts a 9 NPs CGN network,

showing both exchange and report communications.

Figure 3.4: CGN network to adopt a 9 elements binary pattern. Red

(shaded) nodes represent activated nodes in response to input pattern, solid

arrows represent exchange communications, dotted arrows represent report

communications and dotted circles show the CGN tracks.

87

3.2.3 Memory and bias array

GN involves initialising memory chunks in each node in order to hold

the node’s information and store the element combinations of a pattern

encountered by the node and its adjacent nodes (i.e. previous and next). Such a

memory chunk is called the bias array of a node and can be described as

follows.

Definition 3.7: (Bias array) Bias array is a part of a CGN node’s memory that

stores information of memorised patterns by generating a unique index number

(I) for each new combination of the adjacent activated nodes’ values and

reports. The index number is associated with the combination in the

form⁡𝐼~{𝑣𝑝, 𝑣𝑛, 𝑟𝑜} in the memory, where 𝑣𝑝is the previous NP activated

node’s value, 𝑣𝑛 is the next NP activated node’s value, and 𝑟𝑜 is the received

report from an NP in the outer track. From Definition 3.6, the received report is

the combination of the activated reporting node value and its computed index

number in the form 𝑟𝑜 = {𝑅𝐼𝑜 , 𝑣𝑜} where 𝑅𝐼𝑜 is the outer reporting node’s

resulting index value and 𝑣𝑜 is the outer node’s assigned value. Consequently,

𝐼~{𝑣𝑝, 𝑣𝑛, 𝑅𝐼𝑜 , 𝑣𝑜}. It is assumed that report elements in the bias array elements

are set to ‘0’ in cases where no report is to be received. Figure 3.5 shows the

representation of a CGN node memory structure.

88

Value
(The assigned x value of the node in its NP)

Position

Track #
(The track number

of the NP)

NP #
(The order of the NP

in its track)

Bias Array

Index Bias{𝑣𝑝, 𝑣𝑛, 𝑅𝐼𝑜 , 𝑣𝑜}

I1

I2

.

.

INpat

{1,0,0,0}

{1,1,0,0}

.

.

{1,1,2,0}

Figure 3.5: A CGN NP node’s memory structure example that includes

the network position of the node (track and NP numbers), its associated

activation value and its bias array. Npat means number of stored patterns in the

network.

3.2.4 Network operations

 The CGN network nodes perform two main operations, namely,

memorisation and recall. In memorisation, network nodes store information

about incoming patter. In recall, network nodes search the stored information

to find associated index numbers that describe the incoming pattern. Figure 3.6

shows a block diagram of the steps each node performs in order to memorise or

recall a pattern. Here we use resulted index (RI) as the index number that an

active node takes as the result of its computations and equals to the generated I

in memorisation or the found I in recall. The steps can be explained as follows.

i. Receive pattern: Each node receives the pattern element based

on the command message received from the S&I. Each NP’s

nodes receive the same pattern element value (x).

89

ii. Activation: Based on the received pattern element value in each

NP, the associated node to the received value is activated based

on Definition 3.2 and the rest of the nodes are deactivated. Only

activated nodes in the network continue the process.

iii. Exchange information: Each activated node exchanges its

value with the previous and next activated nodes using

exchange communications.

iv. Receive reports: Each node receives the reporting messages

from outer track activated nodes. This step is excluded for nodes

that are not assigned as an inner node.

v. Bias search: after receiving all information (exchanged and

reported) from neighbouring nodes, a node searches its bias

array to find a match. If a match is found then the resulting

index (RI) is assigned the associated index number (I) of that

combination. Otherwise, the RI is assigned a new unique index

number in memorisation or the value (0) in recall.

vi. Store information: If the operation is to memorise the pattern

and a new index number is assigned to the RI, the nodes

associate the combination of neighbouring information with the

RI and store it in the bias array.

vii. Report RI: Each node reports the computed RI to its assigned

inner node. Two nodes in each track are excluded from this step.

90

If the activated node is in the core track, it reports the RI directly

to the S&I.

3.2.5 S&I operations

The S&I initiates the CGN process by sending commands to the CGN

network and receiving the RI from the core node. After the S&I receives the

CGN network’s information, it begins the process of memorising or recalling a

pattern. In memorisation, the S&I stores the concluded index number in its

memory. This results in a set of patterns stored in a vector that can be described

as follows.

Definition 3.7. (Pattern vector) Given a set of patterns {𝑃1, 𝑃2, … , 𝑃𝑛}, the S&I

memorises these patterns by obtaining each pattern’s unique index number

from the core NP in the CGN network, assigning the unique index number (𝐼𝑖)

to each pattern and storing the associations as a pattern vector in the S&I in the

following form.

𝑃⃗ = {𝐼1, 𝐼2, … . . , 𝐼𝑖 ,⁡⁡⁡⁡⁡⁡𝐼𝑖 ∈ ℕ} (3.6)

For example, the index number can be used to represent a class in

classification problems. Storing index numbers in the S&I makes it possible to

respond to query requests that may require information about stored patterns in

the network. In recall, the declaration that a pattern has been detected depends

on the CGN network’s outcome. If a valid index number is returned by the

network, the S&I declares that index number as the recalled pattern. Otherwise,

91

the S&I starts a voting process in order to obtain a valid outcome from the

network. The following steps describe the S&I operations as shown in Figure

3.7.

i. Send command: The S&I initiates the CGN learning process by

sending a command to the CGN network’s nodes. The

command includes the operation type (memorise or recall) and

the pattern obtaining method (e.g. obtain sensory information).

ii. Receive RI: The S&I receives the RI from the active node in the

core track NP.

iii. Store pattern: If the operation is to memorise the pattern, the

S&I stores the RI as the ID of the pattern and associates it with

its description in its memory.

iv. Declare pattern: If the operation is to recall a pattern and a

valid RI is received (i.e. RI≠0), the S&I searches its pattern

vector and declares the RI and its associated pattern description

as the recalled pattern. Alternatively, the S&I initiates a voting

process by sending queries to other nodes in the network to

conclude a valid RI.

The voting process is initiated when the core node fails to deliver a

valid index number to the S&I. The following steps describe the voting

process, as shown in Figure 3.8.

92

i. Determine outer track: Since the current contacting track

failed to deliver a valid RI, S&I determines the contacting track

as the outer track according to Equation 3.5. For example, if the

core track Trk=1 fails to deliver a valid RI, the contacting track

becomes Trk=2.

ii. Send query command: The S&I sends query commands to all

active nodes in the current contacting track (outer track)

requesting their resulting indices (RIs). Each node replies by

sending its RI.

iii. Vote RI: After receiving all RIs from active nodes in the current

track, the S&I finds the RI that has the been received from the

majority of nodes in the form 𝑅𝐼 =

𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦⁡(𝑅𝐼1, 𝑅𝐼2, … . , 𝑅𝐼𝑚),𝑚 ∈ ℕ. For example, if the track

size is 3 and two active nodes reply with RI=4 and one node

with RI=1, S&I determines RI=4. If one or more active nodes

reply by invalid RI (i.e. RI=0) or in case of a tie, the S&I repeats

the voting process with the outer track. This continues until

contacting a track that results in a valid RI or until the vote

reaches the outermost track.

iv. Declare pattern: The S&I searches its pattern vector and

declares the RI and its associated pattern description as the

recalled pattern.

93

Figure 3.6: CGN node learning operations steps block diagram.

94

Figure 3.7: S&I learning operation steps block diagram.

3.3 Obtaining Pattern in CGN

To perform event detection and pattern recognition operations, CGN

network pattern obtaining operations are discussed in this section. The CGN

scheme has two types of operations, namely, memorisation and recall. CGN

adopts the supervised pattern recognition manner. This means that a CGN

network will be presented with a set of patterns to store and will then recall

other patterns in accordance with the stored ones. These patterns can be

imposed by the S&I or obtained by sensor readings. Performance of these

operations is initiated by the S&I sending command messages to GN arrays in

95

each track. The command message from the S&I takes the form “C, P”, which

means command (“C”= ‘command’) and pattern (“P”= ‘pattern’). S&I divides

an incoming pattern into sub-patterns where each sub-pattern is managed by

one track (GN array).

Figure 3.8: Block diagram of S&I voting steps.

96

The memorisation operation should always be initiated by the S&I. The

S&I sends a command message to each node in the network of two parts “M,

P”, which means memorise (“M”=‘memorise’) pattern element (“P”=pattern

element). The pattern element part in the message can be provided by the S&I.

Alternatively, the S&I will set the second part to “S”, meaning that the node

should take its sensory information as the incoming pattern element (“S”=

sense). Figure 3.9 shows an example of sending the binary pattern (1, 0, 1, 1, 0,

0, 1, 0, 1) to be stored in a 9 neuron positions size CGN network. The S&I will

break the pattern into three sub-patterns (1), (0, 1, 1), and (0, 0, 1, 0, 1) and

send these sub-patterns to tracks 1, 2, and 3 respectively. The S&I will send the

commands “M, 1” or “M, 0” to each neuron position in the track based on the

value assigned to the position. Alternatively, if the existing pattern in the

sensed environment (for example, temperature readings) is to be stored, the

S&I will send the command “M, S” to all network nodes.

 Figure 3.9: Pattern divided into sub-patterns by S&I. S&I in the base

station (BS) divides a 9 size pattern into 3 sub-patterns and sends each sub-

pattern to track for memorisation.

97

The recall operation, on the other hand, can be initiated automatically in

a periodic manner or by the S&I. In a periodic recall operation, sensor nodes

are given a time cycle where every sensor should take its readings as the

incoming pattern. This suits automated and monitoring applications that require

continuous recognition over the field of interest. S&I initiated recall operations

are obtained by sending a command message of the form “R, P” to all network

nodes, meaning recall (“R”= recall) pattern element. Similar to memorised

commands, the pattern element part of the message can be provided by the S&I

or requested to be sensed by sensor nodes. S&I initiated recall commands suit

applications that require recognition at a certain point of time such as query-

driven applications. Table 3.1 summarises the possible command messages that

can be sent from the S&I to network nodes.

Table 3.1: Command messages from BS to network nodes.

Command Description

(M,S) Memorise (store) the sensory information

(M,X)

Memorise the value “X”, where X is a value of a given pattern

element by the S&I

(R,S) Recall the sensory information

(R,X)

Recall the value “X”, where X is a value of a given pattern element

by the S&I

98

3.4 Complexity of the CGN Scheme

Analysis of the CGN scheme is conducted in the following section. The

aim of a CGN scheme is to provide learning capabilities in resource-

constrained WSNs while maintaining the scalability and speed of a GN

scheme. Hence, the CGN network size, number of communications, and time

analysis is presented. Table 3.2 summarises the terms used in CGN complexity

estimation.

3.4.1 CGN network size

The CGN network size can be described in terms of the problem’s

pattern size as follows.

Proposition 3.1: Given a pattern 𝑃 = {𝜀1, 𝜀2, … . . , 𝜀S,⁡⁡⁡⁡⁡⁡𝜀 ∈ V, 𝑆 ∈ ℕ} and

number of possible values v, the number of required NPs to construct a CGN

network that can adopt P is 𝑁𝑁𝑃 = 𝑆 and the number of nodes required is

𝑁𝑛𝑜𝑑𝑒𝑠 = 𝑣. 𝑆.

Proof: According to the deployment process of the CGN network in algorithm

3.1 and the definition of a CGN track (Definition 3.4), each pattern element 𝜀𝑖

is represented using one NP in the network. Consequently, the number of NPs

is equal to the number of a problem’s pattern size S. According to Definition

99

3.4, each NP contains v nodes where each node is responsible for managing

one value. Hence, the total number of nodes is 𝑣. 𝑆.

Table 3.2: Description of the terms used for complexity estimation.

Symbol Name Description

S Network size

(also pattern size)

Network size in terms of NP is equal to the pattern

size

Ntrk Number of tracks The number of tracks in the network

Si Track i size Number of nodes in track number i

Texch Exchange time The time required by nodes to conduct exchange

communications

Treport Report time The time required by the network to perform report

communications

Tsend Send time The time required to send a message from one node

to another

Tsense Sense time The time required by a node to obtain sensory

information

Ttotal Total network

time

Time required by the CGN network to perform

learning operations

Nexch Number of

exchange

communications

Total number of exchange communications required

by CGN network to perform learning operations

Ncomm Number of

communications

Total number of communications required by CGN

to perform learning operations

Topt Pattern obtaining

time

Total time required for network nodes to obtain

(sense or receive) an incoming pattern

Tactivate Node activation

time

Time required by a single node to activate based on

obtained pattern element

Tbias Bias array search

time

Time required by a node to search its bias array to

find a matching index number

100

It can be seen from Proposition 3.1 that the CGN network maintains the

same size as a GN network. The main point to consider in CGN network size is

the multiplication by v. However, according to Definition 3.3, only one node in

each NP is activated and participates in the learning process. Consequently, the

number of activated nodes in the network during the learning process is equal

to the number of NPs which is equal to S.

CGN network tracks are major components that can be used to estimate

the complexity of a CGN scheme. The number of network tracks can be

estimated as follows.

Proposition 3.2: Given a pattern 𝑃 = {𝜀1, 𝜀2, … . . , 𝜀S,⁡⁡⁡⁡⁡⁡𝜀𝑖 ∈ V, 𝑆 ∈ ℕ}, the

number of required tracks (𝑁𝑡𝑟𝑘) to construct a CGN network that adopts P is

calculated as follows.

𝑁𝑡𝑟𝑘 = √𝑆 (3.7)

Proof: From Equation 3.3, a track size in terms of NPs can be estimated as

𝑆𝑖 = 2𝑖 − 1,⁡where i is the track number. Consequently, the total number of

NPs (S) can be calculated as follows.

𝑆 = ∑ 2𝑖 − 1

𝑁𝑡𝑟𝑘

𝑖=1

⁡⁡

𝑆 = ∑ 2(𝑖 −
1

2
)

𝑁𝑡𝑟𝑘

𝑖=1

⁡⁡

𝑆 = 2. (∑ 𝑖 −
1

2

𝑁𝑡𝑟𝑘

𝑖=1

)⁡⁡⁡

101

𝑆 = 2. (∑ 𝑖

𝑁𝑡𝑟𝑘

𝑖=1

⁡−⁡ ∑
1

2

𝑁𝑡𝑟𝑘

𝑖=1

)⁡⁡⁡

𝑆 = 2. (∑ 𝑖

𝑁𝑡𝑟𝑘

𝑖=1

⁡− ⁡
1

2
. ∑ 1

𝑁𝑡𝑟𝑘

𝑖=1

)⁡⁡

𝑆 = 2. (
𝑁𝑡𝑟𝑘(𝑁𝑡𝑟𝑘 + 1)

2
−⁡

𝑁𝑡𝑟𝑘

2
).⁡⁡

𝑆 = 2.
𝑁𝑡𝑟𝑘

2 + 𝑁𝑡𝑟𝑘 − 𝑁𝑡𝑟𝑘

2
⁡⁡⁡

𝑆 = 𝑁𝑡𝑟𝑘
2⁡⁡⁡

𝑁𝑡𝑟𝑘 = √𝑆⁡⁡

3.4.2 CGN communications

As described in Chapter 2, communication operations are one of the

most important factors for energy consumption in WSNs. Consequently, the

number of communications involved in performing pattern recognition using

CGN can be used as the second aspect of scalability determination. The two

CGN operation types (memorise or recall) need to be considered in estimating

the number of communications in a CGN network. Both memorisation and

recall operations involve exchange communications where each node sends its

information to its adjacent nodes in the same track. That excludes the active

node in the core position as it has no adjacent nodes in the structure with which

to exchange information. Since the network size is equal to the pattern size (S),

the number of exchange communications can be calculated as follows.

102

𝑁𝑒𝑥𝑐ℎ = 2𝑆 − 2 (3.8)

Each active node in the network is required to give one report to its

assigned inner node. Hence, the number of report communications can be

estimated as 𝑁𝑟𝑒𝑝𝑜𝑟𝑡 = 𝑆. This includes the report from the active core node to

the S&I. The S&I sends a command (C, P) to each node in the network to

initiate the memorisation and recall operations. Hence, the number of

command communications will be equal to the total number of nodes 𝑁𝑐𝑚𝑑 =

𝑣. 𝑆. The total number of communications involved in learning operations in a

CGN network can be computed as the sum of the command, exchange and

report communications and can be calculated according to the following

equation.

𝑁𝑐𝑜𝑚𝑚 = (3 + 𝑣)𝑆 − 2 (3.9)

However, in the case of the core node failing to give a valid index

number (i.e. replies by index ‘0’) in a recall operation, the S&I contacts its

outer tracks and starts the voting algorithm. The worst scenario in this case is if

the S&I reaches the outermost track to obtain index voting information. In this

scenario the S&I will contact all active nodes in the network (S), excluding the

core node as it has already given its information using its report message.

Hence, the S&I sends a query message and each active node replies with a

message that contains the index number. This will require 2(𝑆 − 1)

communications. Consequently, the total number of communications in such a

case can be estimated according to the following equation.

103

𝑁𝑐𝑜𝑚𝑚 = (3 + 𝑣)𝑆 − 2 + 2(𝑆 − 1) (3.10)

𝑁𝑐𝑜𝑚𝑚 = (5 + 𝑣)𝑆 − 4 (3.11)

3.4.3 CGN network time

The computational and communication time overheads of a pattern of

size S can be estimated by the duration of each CGN step. The first step is the

pattern obtaining step. This step involves broadcasting the command message

by the S&I, obtaining a pattern and node activation. In this step it is assumed

that the command requests nodes to obtain a pattern through sensing the

environment. It is also assumed that the broadcast command message is

received in parallel by all nodes in the network. The estimated time required

for this step is as follows.

𝑇𝑜𝑝𝑡 = 𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑠𝑒𝑛𝑠𝑒 +⁡𝑇𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 (3.12)

The following step exchanges sensory information by nodes. Taking

parallelism into account, the time estimate can be described as follows.

𝑇𝑒𝑥𝑐ℎ = 2. 𝑇𝑠𝑒𝑛𝑑 (3.13)

This step is followed by report communications. This step involves

searching the bias array and computing the index number. Taking parallelism

into account, all active nodes in each track will perform bias search

simultaneously. Excluding active nodes in the outermost track, each active

node waits for reports from its outer track. Consequently, the reporting time

can be estimated as follows.

104

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 = √𝑆. (𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑏𝑖𝑎𝑠) − 𝑇𝑠𝑒𝑛𝑑 (3.14)

This includes the reporting message from the core node to the S&I.

Consequently, the total duration of a learning cycle for a CGN network can be

estimated as follows.

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑜𝑝𝑡 + 𝑇𝑒𝑥𝑐ℎ + 𝑇𝑟𝑒𝑝𝑜𝑟𝑡 (3.15)

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑠𝑒𝑛𝑠𝑒 +⁡𝑇𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 + 2𝑇𝑠𝑒𝑛𝑑

+ √𝑆. (𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑏𝑖𝑎𝑠) − 𝑇𝑠𝑒𝑛𝑑

(3.16)

𝑇𝑡𝑜𝑡𝑎𝑙 = √𝑆. (𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑏𝑖𝑎𝑠) + 𝑇𝑠𝑒𝑛𝑠𝑒 +⁡𝑇𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 + 2𝑇𝑠𝑒𝑛𝑑 (3.17)

This time estimate works for both memorisation and recall operations in

the network. However, for the worst case scenario in recall where the S&I

contacts the outermost track, the voting process time should be added. In this

case, the S&I will broadcast to each track and receive a response. The

broadcasted message will be received in parallel by active nodes and the reply

messages will also be sent simultaneously. Consequently, the total recall time

in this case can be estimated as follows.

𝑇𝑡𝑜𝑡𝑎𝑙 = √𝑆. (𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑏𝑖𝑎𝑠) + 𝑇𝑠𝑒𝑛𝑠𝑒 +⁡𝑇𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 + 2𝑇𝑠𝑒𝑛𝑑

+ ⁡2𝑇𝑠𝑒𝑛𝑑 ⁡(√𝑆 − 1)

(3.18)

𝑇𝑡𝑜𝑡𝑎𝑙 = √𝑆(3𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑏𝑖𝑎𝑠) + 𝑇𝑠𝑒𝑛𝑠𝑒 +⁡𝑇𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 (3.19)

This time estimate shows that the learning cycle time is proportional to

the square root of the problem size S. It can also be seen that the learning time

cycle can be predicted a priori. From the analysis of a CGN scheme it can be

concluded that the CGN network is capable of maintaining the scalability of

105

the GN network structure by involving S nodes in the learning process. This is

due to the use of an activation mechanism that ensures that only one node in

each NP is activated, according to Definition 3.2 and the analysis of

Proposition 3.1. Additionally, the analysis shows that the scheme is capable of

performing learning operations in predictable time while restricting the

learning cycle to be proportional to the square root of S. Such features make

the scheme a good candidate for implementation for large-scale real time

problems.

3.5 Evaluating CGN Performance

This section presents a comparison and the tests conducted on the CGN

scheme. CGN is compared with a Hopfield network in terms of numbers of

communications and computation time. Two simulation tests were conducted

on CGN. The first test aimed to test the tolerance levels of CGN with regard to

noisy patterns. The test used distorted bitmap images of letters as patterns. The

second test was conducted on handwritten digits to compare CGN with existing

pattern recognition schemes such as Naïve Bayesian and back propagation

networks. In these tests, it is assumed that the CGN network is deployed in a

grid where each pixel is managed by one NP.

3.5.1 CGN and Hopfield

The main goal for a CGN scheme is to provide light-weight and fast

pattern recognition capabilities for WSNs. Two metrics are considered to be

106

the main factors that affect the suitability of a scheme in providing such

capabilities: number of communications and learning time. In WSNs,

communications are the highest source of energy consumption and time

latency. Consequently, the number of communications determines the level of

resource consumption required where implemented in WSNs.

 Hopfield networks require each node in the network to communicate

with each other node in order to compute weights and conclude results. Since

each node in the network has no connection with itself, each node requires a

number of communications equal to (S-1). Thus, the total number of

communications in a Hopfield network can be calculated as S(S-1) or S2-S.

This can be described as a quadratic relationship between the pattern size and

the number of communications. In contrast, referring to Equations 3.9 and

3.11, the total number of communications of a CGN network can be described

as a linear function in relation to the pattern size. Figure 3.10 shows the

increase in the number of communications based on the network size for CGN

and Hopfield networks.

It can be seen from the size relations in Figure 3.10 that the number of

communications in Hopfield networks increases exponentially compared to a

CGN. This indicates the amount of resource consumption reduction that a CGN

network can offer compared to a Hopfield network. The time estimation can be

described using Big-O notation. In this regard, pattern recognition operations

can be used in determining the complexity of the two schemes. A Hopfield

scheme goes through three processes in order to perform pattern recognition

107

operations: weight accumulation, weight determination and network

propagation. In comparison, CGN involves a single learning cycle. Analysing a

Hopfield network, the process of weight accumulation can be denoted as O(S),

the weight determination process can be denoted as O(S2) and network

propagation as O(S3) using Big-O notation. In contrast, CGN pattern

recognition time is proportional to the square root of S and can be denoted as

O(√𝑆). Figure 3.11 shows recognition time derived from Big-O notation

analysis for both Hopfield networks and CGN, based on the assumption that

each computation operation time is 1 microsecond.

Figure 3.10: Number of communications in Hopfield and CGN

networks based on pattern size.

It can be seen from Figure 3.11 and the Big-O notations that the pattern

recognition computational time complexity of the CGN scheme is low

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

To
ta

l N
u

m
b

e
r

o
f

C
o

m
m

u
n

ic
at

io
n

s

Pattern Size

Hopfield

CGN

108

compared to the Hopfield scheme. That means a CGN network concludes its

computations in much less time than a Hopfield network.

Figure 3.11: Time derived from Big-O analysis for Hopfield and CGN.

3.5.2 First test

The first test conducted on the CGN scheme aimed to determine the

level of accuracy of a CGN network and the level of distortion it could tolerate.

For this purpose, bitmap images were selected. Each pixel of the image holds

either 0 or 1 value. By changing a pixel’s value, the pattern will be changed.

By testing each changed pattern against stored original patterns using a CGN

network, it is possible to determine the tolerance and accuracy levels of the

network. This can be achieved by storing a set of patterns and then generating

altered patterns by changing a set of bits of each original one. It is assumed in

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

1 3 5 7 9 11 13 15 17 19

Ti
m

e
 (

se
c)

Pattern size

Hopfield

CGN

109

this test that each pixel is read by one NP that has two nodes, one is assigned to

be activated with 0 value and the other with the value of 1.

In this test, letters “A”, ”I”, “J”, “S”, “X”, and “Z” were represented as

bitmap images of size 7x5 (35 pixels) to be stored in alphabetical order in a

CGN network. These letters were chosen as they carry a level of distinction

when represented in binary bitmap images. By applying Equation 3.2 and 3.7,

6 tracks and 36 neuron positions with two nodes for each were needed to

construct a CGN network that could store the bitmap images. Since the patterns

are binary bitmap images, each neuron position contained two nodes associated

with 0 and 1 values. The images were presented to the CGN network for

memorisation only once for each letter. Each image was then randomly

distorted to varying degrees ranging from 1bit (2.78%) to 15bits (41.67%).

Distortion is calculated as the number of changed bits (from 0 to 1 or vice

versa) to the total number of bits (35 in this test). The distorted images were

presented to the CGN network for recall. Figure 3.12 shows the original bitmap

images and samples of distorted images and the recall results for the distorted

samples.

It can be noted from Figure 3.12 that letters distorted by levels 25% and

above are not visibly recognisable. It also can be noted that the CGN is able to

detect patterns of characters “A”, ”I”, “J”, and “S” with a high level of

distortion — 13bit distortion level (36.11%). The accuracy of the CGN

network’s recall is shown in Figure 3.13. The recall accuracy is calculated as

the number of correctly recognised letters to the total distorted (altered) letters

110

of that letter presented to the network. For example, 100% recall accuracy for a

bitmap pattern (A) means that all altered versions of letter A were recognised

as letter A.

From Figure 3.13 it can be noted that the order of storing patterns has

an effect on accuracy. It can be seen here that the letters stored first have higher

accuracy results, especially after presenting a 16.7% level of distortion where

four patterns scored recall accuracy below 80%. The reason is that when the

CGN network cannot come up with a valid index number it goes through a

voting process. In this case, the CGN network contacted the outermost track.

Since the patterns are small binary images, the outermost track holds limited

information about the pattern, which creates a high level of similarity between

recalled and stored patterns. This test confirmed that the CGN scheme is

capable of detecting distorted patterns. The results also show the ability of the

CGN network to detect patterns of characters “A”, ”I”, “J”, and “S” with a high

level of distortion — a 13bit distortion level (36.11%) — which means that the

network is tolerant to a high level of distortion.

3.5.3 Second test

This test aimed to present the ability of a CGN scheme to deal with

complex and real life problems. It also aimed to compare the CGN’s accuracy

with existing pattern recognition schemes. For this purpose, we chose a

handwritten character recognition problem as such problems require

memorisation of a high amount of training information. This test shows that a

111

CGN scheme is capable of performing a recognition operation using a minimal

amount of training information (i.e. one sample for each class) while still

maintaining a high level of accuracy compared with other schemes. In

accomplishing this aim, a CGN network is capable of addressing the WSN

randomness problem discussed in Chapter 2. The test used the dataset provided

by [111] in [112]. The dataset contains 1593 handwritten patterns for numbers

from 0 to 9. Each number was represented as a 16 × 16 binary pattern. Each

pattern was produced by scanning and pre-processing numbers handwritten by

80 different people. The dataset has 10 classes where each class represents one

number.

To construct a CGN network that is capable of adopting such patterns,

256 neuron positions distributed in 16 tracks were generated. Each neuron

position contained two nodes (0 and 1). The selected classes for comparison

were classes representing numbers from 0 to 5 as these numbers were

distinguished in the handwritten representation. One pattern was selected

randomly from each class for memorisation. This resulted in 6 memorised

patterns to represent numbers from 0 to 5. The rest of the patterns in each class

were used for recognition. This resulted in 955 recognition patterns. Figure

3.14 shows the 6 memorisation patterns and a sample of 6 recognition patterns.

The CGN is compared with Naïve Bayes and back propagation neural

networks. Using a Weka tool [113, 114], a Naïve Bayes network was generated

to perform storing and recognition operations. Figure 3.15 shows the average

recognition accuracy of CGN compared to the Naïve Bayes and back

112

propagation NN schemes. The accuracy percentage is calculated as the number

of correctly recognised patterns to the total number of recognition patterns. To

compare with back propagation NN (BP), three BP implementations were used,

generating a BP with a single hidden layer, generating a BP with two hidden

layers, and generating a BP with three hidden layers. The number of learning

iterations of each structure was set to ranges between 1 (single cycle) and 500

iterations. The best result obtained was with the implementation of BP with

three hidden layers and 200 iterations. The results shown in Figure 3.15 for the

BP NN are based on that structure.

Original

memorised

patterns

00100

01010

10001

11111

10001

10001

10001
0

11111

00100

00100

00100

00100

00100

11111
0

11111

00001

00001

10001

10001

10001

01110
0

01111

10000

10000

01110

00001

00001

01111
0

10001

10001

01010

00100

01010

10001

10001
0

11111

00001

00010

00100

01000

10000

11111
0

Distorted

(5 bits)

(13.89%)

00110
01010

00000

11111

10000

10011

10001

0

11110
00100

00100

00100

00110

00110

00111

0

01111
10001

00001

11001

11001

00001

01110

0

01111
00010

10101

01110

00001

00001

01011

0

10011
10000

00010

00100

00110

10001

10001

0

11011
00001

11010

00101

01100

10000

11111

0

Result A I J S X Z
Distorted

(9 bits)

(25%)

00110
00010

10000

10110

10000

11001

00101

0

11111
01111

00100

11101

01100

00100

01011

0

11101
11001

00011

10001

11000

10110

01110

0

10111
10001

11001

01110

00001

01001

10110

0

00000
11001

01010

01100

00100

10011

11001

0

11111
01001

01010

01111

00001

10100

11011

0

Result S I J S X Z
Distorted

(13 bits)

(36.11%)

00100

10010
00101

10001

01001

10101

00100

0

01101

01100
00000

01000

01110

11100

01001

0

01011

10111
10101

00101

11001

10000

01011

0

01010

01000
10101

11110

01001

00110

01100

0

00101

10100
01011

00111

00010

10111

01001

1

10011

00010
01111

00100

11100

11101

11111

0

Result A I J S I S
Distorted

(15 bits)

(41.67%)

00100

01111
01011

11010

10110

10110

11001

1

01111

00001
11111

01010

10100

11001

11111

0

11110

11101
01111

00101

11001

10100

01101

1

11010

10010
00000

00111

11011

01100

01100

0

01000

10110
00100

10100

11010

10001

00001

1

00101

10001
00010

11011

00100

11001

10111

1

Result A S I I I J

 Figure 3.12: Original bitmap image patterns for A, I, J, S, X and Z with

sample of recalled distorted images ranging from 2.7% to 41.67%. Black

highlight indicates to one value. Zero values are not shown for clarity.

113

Figure 3.13: Accuracy recall percentage for the CGN using 100

randomly distorted patterns per memorised pattern.

 Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6

Training

Recognition

Figure 3.14: Memorisation and sample recognition patterns

representing written numbers from 0 to 5.

Figure 3.15 shows that CGN can provide pattern recognition

capabilities with better accuracy results than Naïve Bayes and BP NN schemes.

These results were achieved by only using one pattern for each pattern for

memorisation. In addition, the CGN scheme is capable of performing pattern

recognition operations in a single cycle with the number of neuron positions

equal to the pattern size. It is important to note that only one node in each

neuron position participates in the learning operations. This means that the

0

10

20

30

40

50

60

70

80

90

100

2.8 5.6 8.3 11.1 13.9 16.7 19.4 22.2 25.0 27.8 30.6 33.3 36.1 38.9

A
cc

u
ra

cy
 %

Distortion %

A

I

J

S

X

Z

114

CGN network requires a number of nodes that are equal to the pattern size to

perform recognition operations. Compared to the back propagation setting for

this example, CGN reduced the number of participating nodes,

communications and iterations needed to perform pattern recognition while

maintaining higher accuracy levels as back propagation networks involve more

neurons to build the multi-layer structure, requiring tightly coupled

connectivity between layers, and requiring 200 iterations to perform

recognition operations. This test demonstrates the capability of a CGN network

to perform complex and real life recognition problems by using a minimal

amount of training information. This addresses the problem of randomness

associated with WSNs.

Figure 3.15: Average accuracy levels obtained by CGN, Naïve Bayes

and back propagation networks.

3.6 Summary

This chapter has presented CGN schemes as a pattern recognition

approach for WSNs. It has been shown that the structure of such schemes is

0

10

20

30

40

50

60

CGN Naive Bayes Back Propagation

A
cc

u
rc

y
(%

)

115

fully distributed and based on the relationships between adjacent nodes. Such

capability limits the number of communications and computations as well as

reducing the consumption of resources, which makes CGN a light-weight

approach that is suitable for implementation in resource-constrained networks

such as WSNs. Additionally, it has been shown that the CGN network structure

is capable of maintaining a high level of scalability by involving each node in

the network in receiving one element of an incoming pattern. This allows a

CGN scheme to provide a scalable solution for large scale WSNs. Moreover,

analysis of the scheme shows that the scheme is capable of performing learning

operations in a single learning cycle that can be predicted. The analysis also

shows that the learning cycle of a CGN grows in proportion to the square root

of the problem size which makes the scheme favourable compared to other

schemes that can involve iterative learning cycles with exponential growth in

terms of time. Such features make the scheme a good candidate for use in real

time applications where time estimates are required.

The two experimental tests show that CGN provides high recognition

accuracy levels for noisy patterns compared to iconic pattern recognition

schemes while involving a minimal amount of training information. From the

analysis and tests conducted on the scheme, it can be concluded that CGN is a

good candidate for implementation in large scale and limited resource WSNs

for real time applications. Additionally, the use of adjacency information

relationships in pattern recognition presented in this chapter will lead to

116

solving the problem of detecting transformed patterns, as will be discussed in

the next chapter.

117

Chapter 4

4 Cellular Weighted Graph Neuron

(CwGN) for Transformation Invariant

Recognition in WSNs

4.1 Introduction

In the previous chapter, the CGN was presented as a light-weight and

distributed pattern recognition scheme that involves a limited number of

communications and computations. Such features suit resource-constrained

systems and networks such as WSNs. It has been shown experimentally that

CGN is capable of dealing with noisy patterns and some complex problems

such as handwritten recognition. However, a CGN scheme is location sensitive

due to its dependency on local nodes’ information storage. In some real life

applications, patterns and network nodes are subject to spatial and topological

changes [115]. This means that a pattern can appear with a level of variations

or transformations such as location change. For example, a malicious intruder

pattern of a WSN can change its location in the network [116]. Another

example can be seen in environmental surveillance systems where events such

as forest fires and hurricanes may appear in different locations and at different

magnitudes [117]. Such dynamics in pattern appearance can impact the

118

accuracy of a recognition system. Dealing with such dynamics could require a

high amount of information that require patterns and their possible dynamics to

be stored in a recognition system in order to efficiently recognise the presence

of these patterns. However, such an approach might not be feasible, for two

main reasons. First, it would require a high amount of resources to store and

search patterns. Second, in some applications the amount of available

information about patterns is limited, as discussed in Chapter 2. Consequently,

a more efficient approach is required.

In this chapter, a novel approach called Cellular weighted Graph

Neuron (CwGN) is proposed to deal with the transformations and dynamics of

pattern recognition problems. As with CGN, the scheme adopts the GN

approach to maintain minimal communicational and computational

requirements to thus provide a light-weight pattern recognition scheme that

suits resource-constrained systems and networks such as WSNs. Instead of

storing pattern information locally on nodes, CwGN implements a weighting

mechanism that searches the edges and boundaries of patterns. The main

hypothesis in this chapter is that by describing patterns using their main edges

and boundaries, it is possible to achieve an efficient recognition scheme that

can detect transformations that may occur in these patterns. The scheme

maintains limited communications and computations by involving local

information exchange and reporting mechanisms that distribute resource

consumption loads amongst the network’s nodes. Additionally, this chapter

will discuss the online recognition capability that can be achieved by using

119

CwGN. In achieving efficient recognition and fast reporting and by limiting

resource consumption, a CwGN scheme shown to be the best option for real

life applications that deal with complex problems in resource-constrained

networks such as WSNs. This chapter also presents descriptions of the required

protocols needed to make the proposed scheme applicable for implementation

in network environments.

This chapter starts by presenting existing transformation invariant

pattern recognition techniques, going on to discusses the limitations of these

techniques. Section 4.2 presents an overview of existing techniques proposed

for pattern transformation recognition. Section 4.3 presents the CwGN scheme,

including memorisation and recall operations, network structure and the

weighting technique. In view of the need for the scheme to be functional in

networking environments, section 4.4 presents the communicational structure

and requirements of the CwGN scheme and its network communication

protocol. Section 4.5 analyses the complexity and the performance of CwGN

with respect to learning cycle duration. Section 4.6 presents a proposed zoning

model to support the online recognition capabilities of the scheme. In section

4.7, required message sequence models for the proposed scheme are presented.

Section 4.8 discusses the effects of different types of pattern transformations on

the recognition capacity of the proposed scheme. Section 4.9 summarises the

chapter.

120

4.2 Transformation Invariant Recognition

Techniques

This section reviews the most relevant research in the area of pattern

transformation-invariant recognition. Convolutional neural networks developed

by Le Cun et al. [118] use multi-layered (deep learning) neural networks to

encode high-dimensional patterns into a one-dimensional vector. That scheme

allows for feature selection by adopting local receptive fields, local weight

sharing, and downsampling architectures [119, 120]. The local receptive fields

allow for the detection of the visual features of a pattern, the downsampling

architecture reduces the dimensionality of the pattern, and the concept of

weight sharing allows for a level of shift and scale invariant detection [120].

Convolutional neural networks have mostly been used for visual pattern

recognition applications such as facial and handwritten recognition

applications. Shock graphs [121], in contrast, attempt to recognise visual

objects by determining the object’s boundaries. This method builds connected

curves and points that describe certain patterns in a tree-like graph. Sebastian et

al. [122] show that using shock patterns allows for 2-D object transformation-

invariant recognition for up to a certain level of transformation. They examined

a set of pattern transformations such as articulation and deformation,

illumination variations, and variations in the scale of objects. Alternatively,

Map Seeking Circuits (MSC) [123] use the mathematical properties of pattern

superpositions to perform template matching, which seeks a set of

121

transformations of an input visual pattern for a set of stored templates. The aim

of the MSC approach is to reduce the growth in the computational complexity

of template matching by parallelising computations in the hardware. MSCs

provide solutions to visual applications such as stereo vision, shape

recognition, and other transformation-recognition problems that can be solved

using iterative processing and the decomposition of pattern transformations

[124].

Despite the transformation detection capabilities discussed above, these

schemes involve computationally intensive (e.g. iterative) operations that are

poorly suited to real time sensory applications due to prolonged learning

cycles, the need for large training datasets that are often not available, and

reliance on specialised hardware. Based on a lattice algebra approach,

morphological associative memories (MAM) [120, 125] are able to detect

pattern transformation in a single step convergence. MAM methods use a

morphological neural network structure that replaces multiplication and

addition operations by addition and convergence maximisation. MAMs have

been shown to be scalable in terms of pattern storage, and capable of detecting

noisy patterns. However, the length of the MAM learning cycle cannot be fully

estimated a priori, as it depends on the size and number of stored patterns [95].

Iftekharuddin [126] presents an online transformation scheme for automatic

target recognition. His scheme addresses the problem of recognising rotation,

translation, and scaling pattern translations in images by adopting adaptive

circuit design, neural networks and reinforcement learning. Despite the level of

122

transformation recognition this scheme provides, it depends on conventional

neural network structures such as feed-forward NNs. In this network structure,

tightly coupled connectivity is required between neuron nodes in each layer.

Sensory information systems such as WSNs have limited communicational

capabilities, making the tightly coupled connectivity structure challenging to

implement [28].

In general, the existing techniques can provide transformation invariant

detection capabilities for pattern recognition problems. However, these

techniques have significant limitations, especially if implemented in resource-

constrained networks. Iterative operations and tightly coupled connectivity

structures are the main problems faced in these schemes as such requirements

involve huge resource consumption, especially when implemented on large

scale networks. Some of these schemes require special centralised hardware

settings to be functional. Such a requirement is not often feasible in resource-

constrained systems and networks. Additionally, the reviewed schemes require

a large database to store information about patterns in order to provide

transformation invariant recognition capabilities. In environments and

applications such as WSN applications, the amount of information available

about incoming patterns is often limited. Another major issue related to these

schemes is the uncertainty in the learning cycle convergence duration. This is

due to the iterative operations and the dependency of learning cycle duration on

the amount of stored information. Such constraints affect the suitability of

these schemes for implementation in real time and mission critical applications

123

as no guarantees for time limits are available. Consequently, this chapter will

present a light-weight pattern recognition scheme that aims to address these

limitations and provide transformation invariant recognition capabilities. The

proposed scheme minimises computations and communications by adopting

local communicational and computational mechanisms in a single learning

cycle. This will lead to minimised resource consumption and increase the

scheme’s scalability by avoiding iterative operations and limiting

communications to adjacency nodes. This also makes it possible to estimate the

learning cycle duration. In addition, the proposed scheme attempts to use

minimal information to perform transformation recognition. With these

features, the proposed scheme will be a light-weight, transformation invariant,

and scalable scheme that is suitable for real time and mission critical

applications for resource-constrained systems and networks such as WSNs.

4.3 Overview of Cellular Weighted Graph

Neuron (CwGN)

This section describes the structure of CwGN and the outcomes that can

be expected from such architecture. Part of this section has been published in

[127]. The main goal of developing the CwGN scheme is to provide efficient

pattern recognition for WSNs while minimising resource consumption and

network size. Olshausen and Field [128] state that coding techniques can

reduce the use of resources and minimise the complexity of incoming patterns

124

so that they can be easily processed. The scheme presented in this section is

based on such considerations. These authors [128] define coding technique as

reproducing an incoming pattern and using a small number of active nodes for

processing at any given time. To achieve the intended level of detection and

minimise resource consumption, CwGN implements local adjacency

computations for coding purposes in a fully distributed and parallel manner

that is capable of detecting pattern transformations such as translation, dilation

and rotation with minimal computational and communication requirements.

CwGN uses weights rather than storing full information about an incoming

pattern. Using weights allows CwGN to be location insensitive as weights are

calculated locally and then accumulated throughout the whole network. Each

node’s weight describes its relationship to its neighbouring nodes. This

translates an incoming pattern into a set of weights that are easier to process

and can be used to distinguish each pattern from the rest.

Data instances are translated into weights that can be used to determine

the boundaries of an incoming pattern. Each node’s weight is a result of the

relationship between its value and its neighbours’ value in terms of change rate

and edge type, which is calculated locally and only once. The change rate can

be defined as the amount of average variance between a node’s value and its

adjacent nodes’ values. Edge type is the order of the node’s value compared to

its neighbouring nodes that can be used to describe the pattern’s boundaries.

Peaks and troughs of a plotted pattern can be examples of two different edge

types. The hypothesis behind such an approach is that patterns can be

125

efficiently recognised based on their boundary information. Since these

boundaries are detected by local nodes’ computations, the number of

communications and amount of resources required is minimised.

Figure 4.1 illustrates the CwGN model. Similar to CGN, the model

involves two main entities: the CwGN network and the stimulator and

interpreter (S&I). The S&I is responsible for sending commands to the CwGN

network. It receives weight and concludes the final decision about an incoming

pattern. A command message can be to either memorise or recall a pattern. It

also includes information about the pattern or commands the network to obtain

sensory information. CwGN network nodes process the S&I command and

reply with a weight (or set of weights). The S&I uses this weight (or

summation of weights) to memorise or recall the sensed or sent pattern.

Figure 4.1: The CWGN communication model.

4.3.1 Stimulator and interpreter (S&I)

This component is responsible for sending commands to the CwGN

network, receiving the weight and making the final decision about an incoming

pattern. CwGN uses the same pattern obtaining method as CGN, as described

126

in section 3.2. Hence, the four commands (M,S), (M,X), (R,S), and (R,X)

described in table 3.1 are used to train a CwGN network and recognise

patterns. CwGN network nodes process the S&I command and respond with a

weight (or set of weights). Weight computations will be discussed later in this

chapter in the edge search section. The S&I uses this weight (or summation of

weights) to memorise or recall the sensed or received patterns. After the S&I

receives the weight from the CwGN network, it begins the process of

memorising or recalling a pattern. In memorisation, the S&I assigns a unique

index number to the pattern, associates this number with the resulting weight,

and stores the index number and the associated weight in its memory. This

results in a set of patterns stored in a vector that can be described as follows.

Definition 4.1: (Pattern vector) Given a set of patterns {𝑃1, 𝑃2, … , 𝑃𝑛}, the S&I

memorises these patterns by obtaining each pattern’s weights (𝜔𝑖) from a

CwGN network, assigning a unique index number (𝐼𝑖) to each pattern and

storing the associations of patterns and weights as a pattern vector in the S&I in

the following form.

𝑃⃗ = {(𝐼1, 𝜔1), (𝐼2, 𝜔2),… . . , (𝐼𝑛, 𝜔𝑛)⁡⁡, 𝐼𝑖 ∈ ℕ,𝜔𝑖 ∈ ℝ} (4.1)

In recall, the S&I searches the pattern vector to find a match. The

declaration that a pattern has been detected depends on the difference between

the CwGN network’s weight and the weights stored in the pattern vector

weights as follows.

127

Definition 4.2: (Recalled pattern) Given a weight calculated by the CwGN

(𝜔𝐶) and a pattern vector, the recalled pattern (𝑅𝑝) will be the index number

with the smallest difference between the calculated weight value and the set of

associated weights in the pattern vector as follows.

𝑅𝑝 = 𝐼[min(Δ𝜔1𝐶 , Δ𝜔1𝐶 , … , Δ𝜔𝑖𝐶)] (4.2)

where Δ𝜔𝑖𝐶 is the difference between the ith stored pattern weight and the

weight calculated by the network for an incoming pattern (current pattern).

Figure 4.2 illustrates the S&I operations. These operations can be summarised

as follows.

i. Send command: The S&I sends the command which contains

the operation (memorise or recall) and the pattern element

obtaining method (direct receive or sense) to all network nodes.

ii. Receive weight: The S&I receives the network’s accumulated

weight from the core node in the network.

iii. Memorise or recall: If the incoming pattern is to be

memorised, the S&I creates a unique index number, associates

this index number with the network’s weight, and stores this

association in its pattern vector. In the case of recall, the S&I

searches for the closest weight in its pattern vector to the

network’s delivered weight and declares its associated pattern as

Rp.

128

4.3.2 CwGN network

CwGN network structure is similar to CGN network structure, as

presented in Chapter 3. However, in CwGN, each neuron position contains

only one node. The aim of the network structure is to have low pattern

recognition scheme complexity, provide parallel processing, provide efficient

recognition, and have a predetermined learning and recognition cycle duration.

A low complexity scheme is achieved with a fully distributed structure that

allows sensor nodes in the network to communicate only with adjacent nodes.

CwGN’s structure allows each node to communicate with two adjacent nodes

for weight calculation and with one adjacent node for outcome reporting.

Efficient recognition is provided by describing the patterns’ boundaries in

terms of weights in order to provide a transformation invariant recognition

feature to the scheme. Using weights aims to allow the detection of any certain

pattern’s boundaries by any node in the network. In other words, the detection

of any desired pattern’s boundary is not associated with static nodes. Instead,

any node in the network is expected to be able to derive the same weight for

such boundary information. By using specific steps for weight reporting,

CwGN will have a single learning and recognition time cycle that can be

predicted and estimated. Once the final weight is delivered to S&I, CwGN does

not need further information from sensor nodes in order to declare the detection

of a specific pattern. Such a feature reduces the need for communications

between S&I and participant nodes in the network.

129

The network structure depends on the size of the problem pattern. The

deployment of the network uses the deployment algorithm described in

Algorithm 3.1. However, it is important to note that CwGN deploys one node

in each step to form network tracks, rather than deploying a set of NP nodes as

in CGN. The deployment process begins by implementing the core node in the

core track followed by the next odd numbered set of nodes in the next track

and so on until all nodes have been deployed in the network. This results in

tracks that hold odd numbers of nodes in the form (1, 3, 5,…,2n+1). The aim is

to provide the CwGN with a cellular network structure that allows nodes to

transmit their results to a core region that is responsible for delivering the final

result to the S&I. These data are computed once to obtain weights that describe

the input pattern.

Figure 4.2: S&I operations for memorising and recalling patterns.

130

The network structure is composed of multiple tracks. A track is a GN

array that consists of a set of odd numbers of nodes of the form (𝑆𝑖 = 2𝑖 − 1),

where 𝑆𝑖 is the size of the track number i (i.e. the number of nodes in track i).

As discussed in Chapter 3, involving multiple tracks in the network structure

aims to enable parallel processing and information exchange of incoming data

by dividing the pattern into a set of sub-patterns. This will also allow the

network to deal with different pattern types that require multi-dimensional

processing. On the other hand, using an odd number of nodes in each track

makes the cellular network structure possible and restricts the number of

communications between tracks. The cellular network structure allows

accumulating nodes’ computation outcomes to one track, called the core track,

which is responsible for delivering these outcomes to the S&I.

Definition 4.3: (Network track) A CwGN network track (Trk) is a GN network

that consists of a set of nodes where each node communicates with its direct

neighbour nodes in the same track. A CwGN track can be described as follows.

𝑇𝑟𝑘𝑖 = {𝑁𝐷𝑖,1, 𝑁𝐷𝑖,2, … . . , 𝑁𝐷𝑖,𝑚,⁡⁡⁡⁡⁡⁡⁡𝑚 ∈ ℕ} (4.3)

where NDi,l is the l’th node in Trki. Each ND is responsible for sensing or

receiving one element of an incoming pattern such that 𝑃𝜀,𝑁𝐷:⁡𝜀𝑖 → 𝑁𝐷𝑖,𝑙⁡, 𝜀 ∈

𝑉, 𝑖 ∈ ℕ, where 𝑃𝜀,𝑁𝐷 is the assignment of an incoming pattern’s elements to

NDs using Definition 3.1.

The communications between track nodes are called exchange

communications and can be defined as follows.

131

Definition 4.4: (Exchange communications) Given a CwGN network track

(Trk) that consists of m nodes, exchange communications of a node are two

direct connections between a node and its direct neighbours (adjacent) previous

(p) and next (n) nodes in the form 𝑁𝐷𝑖 → 𝑁𝐷𝑖−1 ∶ 𝑣, 𝑁𝐷𝑖 → 𝑁𝐷𝑖+1 ∶ 𝑣

respectively.

where 𝐶𝑁𝐷𝑖,𝑝 and C𝑁𝐷𝑖,𝑛 are the exchange communications between the i’th

node and its previous and next nodes respectively, and v is the value assigned

to the 𝑁𝐷𝑖. The number of links in each track is equal to twice the number of

its nodes (2𝑆𝑖). Here, the last node in a track is assumed to communicate with

the first node and vice versa. Figure 4.3 depicts a CwGN track that consists of

m nodes. It is assumed that the first node is directly adjacent to the last node.

Figure 4.3: Track exchange communications. The arrows show the

links between nodes (L1, L2,…, Lm).

Each node in the CwGN network receives its assigned command and

pattern element, exchanges information with adjacent nodes, calculates its

weight, and sends its calculated outcomes to another node in the network,

named its inner node, which resides in the inner track, as described in Equation

132

3.4. The four commands (M,S), (M,X), (R,S), and (R,X) described in Table 3.1

are used to train a CwGN network and recognise patterns. However, it is

important to highlight that CwGN does not use the node activation process

included in CGN as each neuron position holds only one node. Instead, based

on received data from S&I, each node is activated or de-activated according to

activation criteria (e.g. high temperature). Another round of the activation

process is performed by each node after performing exchange communications.

Based on the received data, a node can decide whether to be activated or not. If

the node is obtaining a pattern’s boundary, it gets activated. Only activated

nodes participate in pattern detection steps. This is to maintain limited use of

node resources and to reduce the detection time by limiting the number of

communicating nodes.

The activation process goes through two stages, namely, value

activation and edge activation. A node’s value activation can be achieved by

examining its received value. If a node’s value complies with certain user

defined conditions, it gets activated. One of these conditions is reaching a

certain threshold. This can be formally described as follows.

Definition 4.5. (Node value activation) Given a CwGN node Ni,j that is

assigned to a value v ∈ P, where P = {ε1, ε2, … , εS}, εi ∈ V is the incoming

pattern, Ni,j is activated if v ≥ φ.

133

where i is the node’s position in its track, j is the node’s track number, εn is the

n’th element of P, V is the set of possible values, and φ is the node activation

threshold.

A value activation of a node triggers the start of an exchange

communication process for that node with its adjacent neighbours in the same

track, as described in Definition 4.4. After receiving information from previous

and next nodes, the activated node calculates its edge level according to

Equation 4.4. Based on the resulting edge type, it either de-activates or goes for

the second level of activation called node edge activation, which can be

described as follows.

Definition 4.6. (Node edge activation) Given a CwGN value activated node Ni,j

and its adjacent nodes Ni+1,j and Ni-1,j, the node continues to be active if its edge

type 𝐸𝐷𝑖,𝑗 ∈ 𝐸𝐷𝐴.

where i is the node’s position in its track, j is the node’s track number, 𝐸𝐷𝑖,𝑗 is

the node’s edge type, and 𝐸𝐷𝐴 is the set of activation edges values such that

𝐸𝐷𝐴 = {𝐸𝐷1, 𝐸𝐷2, … , 𝐸𝐷𝑚}. For example, if 𝐸𝐷𝐴 = {𝐷𝐸, 𝐿𝐸}, the node will

get activated only if its edge type is double edge or left edge, as described in

Equation 4.4. Otherwise, the node gets de-activated. Edge activated nodes are

the only nodes that participate in the reporting communication described in

Definition 4.5.

The inner node combines the weights it receives with its own weight

and transmits the accumulated weight to its own inner node. This process

134

continues until a node (or set of nodes) is reached called the core node, which

is responsible for delivering the accumulated weights to the S&I. Delivering

weights to the inner nodes is called report communication and can be formally

described as follows.

Definition 4.7: (Report communications) Given a CwGN network that consists

of a set of tracks, a report communication of a node is the message

(connection) between a node in that track and its direct assigned inner node

that contains the resulting accumulative weight (ω) in the form

𝑅𝑁𝐷𝑖,𝑙:⁡𝑁𝐷𝑖,𝑙 → 𝑁𝐷𝑖−1,𝑙 ∶ 𝜔𝑖,𝑙, ∀⁡𝑙 < 𝑆𝑖−1 or 𝑅𝑁𝐷𝑖,𝑙:⁡𝑁𝐷𝑖,𝑙 → 𝑁𝐷𝑖−1,𝑙−2 ∶

𝜔𝑖,𝑙, ∀⁡𝑙 ≥ 𝑆𝑖−1. Where i is the track number, l is the node’s number in track i,

and 𝑆𝑖−1 is the size of the track number (i-1).

Figure 4.4 depicts a CwGN network of 9 nodes and 3 tracks. Figure 4.5

shows the steps that each node in the network performs in the learning process.

These steps can be described as follows:

i. Receive command: The node receives the broadcasted

command from S&I which contains the operation (memorise or

recall) and the pattern element obtaining method (direct receive

or sense).

ii. Obtain pattern element: Based on the command message, each

node starts obtaining its assigned pattern element 𝜀𝑖. Each node

sets its value (v) according to the obtained pattern element.

135

iii. Exchange communications: Each node performs exchange

communications with its neighbouring nodes and calculates its

weight.

iv. Report communications: After compiling the weight, each

node reports its weight to its assigned inner node. In this step,

each node should wait for reports from outer tracks to

accumulate its weight with the reported weights and then start

the reporting itself. The core node in the network reports its

accumulative weight to the S&I.

Figure 4.4: CwGN network that adopts a 9 elements pattern size. Solid

arrows represent exchange communications, dotted arrows represent report

communications.

4.3.3 Pattern edge search

The CwGN scheme represents patterns in terms of weights. The main

goal of this approach is to enable pattern transformation detection (e.g.

rotation, translation, and dilation). To achieve this goal, the CwGN scheme

136

searches for edges in the pattern’s data domain to determine its boundaries. We

assume that sensor nodes are deployed in a grid-like structure in the field of

interest to obtain sensory information. To calculate a node’s weight, its edge

type is determined in accordance with its own value and the values received

from its adjacent nodes using exchange communications. There are four edge

types: not an edge (NE), when a node’s value is less than or equal to the values

of its neighbouring nodes; right edge (RE), when the node’s value is only

larger than the value of the right node (next value); left edge (LE), when the

node’s value is only larger than the value of its left node (previous value); and

double edge (DE), when the value of the node is larger than the values of both

adjacent nodes.

However, the types and numbers of edges can be changed according to

the recognition problem. For example, the middle element in the pattern (1,1,0)

is described as a right edge (RE), as the value of its right neighbouring element

is lower than its value. Conversely, for the pattern (0,1,1), the middle element

is considered as a left edge (LE). The edge type determination can be described

as a function of the values of the node and its neighbouring nodes in the form

of 𝐸𝐷 = 𝑓(𝐶𝑣, 𝑝𝑣, 𝑛𝑣), where 𝐸𝐷 is the edge type, 𝐶𝑣 is the value of the current

node, 𝑝𝑣is the value of the previous (predecessor) node in the same track and

𝑛𝑣 is the value of the next node (successor) in the same track. This relationship

can be described as the following piecewise function.

137

𝐸𝐷 = {

𝐷𝐸,⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑝𝑣 <⁡𝐶𝑣 >⁡𝑛𝑣

𝐿𝐸,⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑝𝑣 <⁡𝐶𝑣 ≤⁡𝑛𝑣

𝑅𝐸,⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑝𝑣 ≥⁡𝐶𝑣 >⁡𝑛𝑣

𝑁𝐸,⁡⁡⁡⁡⁡⁡⁡⁡⁡Otherwise⁡⁡⁡⁡⁡⁡⁡

 (4.4)

Figure 4.5: CwGN network node operations for weight calculation.

This convention for pattern description is suitable for binary pattern

representation. However, in numerical representations we might encounter the

138

same edge type with a variance in levels. For example, the middle element in

the pattern P1 = {3,3,1} is a right edge element, and the same applies for the

pattern P2 = {92,90,1}. However, these two patterns might be considered as

two different types. Consequently, descriptions of edge levels in the CwGN

scheme must be attained by factorising the percentage variance between a

node’s value and its neighbours’ values in the same track. The variance ratio

between a node (C) and its neighbouring node can be calculated as 𝑉𝑅𝑐𝑁 =

(𝐶𝑣−𝑁𝑣)

𝑁𝑣
. In this expression, N is a neighbouring node (previous or next), and Cv

and Nv indicate the values of the current and neighbouring nodes. However,

this function could lead to the problem of dividing by zero. Thus, in such cases

an assumption should be made, such as considering the ratio to be equal to Cv.

Accordingly, the variance ratio can be expressed as follows.

𝑉𝑅𝑐𝑁 = {

𝐶𝑣 − 𝑁𝑣

|𝑁𝑣|
,⁡⁡⁡⁡⁡⁡⁡⁡𝐶𝑣 > 𝑁𝑣⁡∀⁡𝑁𝑣 ≠ 0

𝐶𝑣⁡,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐶𝑣 > 𝑁𝑣⁡∀⁡𝑁𝑣 = 0
0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡Otherwise

 (4.5)

where VRc,N is the value of the variance ratio of node C value to the

neighbouring node N value. By implementing this equation, each node will

calculate a ratio value that describes the difference between its value and its

neighbour’s value. Thus, we can differentiate between nodes, even between

nodes with the same edge types. Note that this percentage will be equal to 0 if

the relationship to the neighbouring node is not an edge (i.e. the current value

is less than or equal to the neighbouring value).

139

A nodal weight can be calculated using the variance ratio and the edge

type. However, other relational functions can also be used. Each edge type is

assigned a fixed value. The choice of edge value can then be used to factorise

weights and differentiate between edge types. A nodal weight is a function of

its variance ratio to its neighbours, namely, the previous and next nodes, in the

form of 𝜔𝑐 = 𝑓(𝑉𝑅𝑐𝑝, 𝑉𝑅𝑐𝑛),⁡where 𝜔𝑐 is the node’s c (current) weight, p is

the previous node, and n is the next node. This function can be determined as

the summation of 𝑉𝑅𝑐𝑝 and 𝑉𝑅𝑐𝑛. To include the node’s edge types in this

function, we assume that each ED value in Equation (4.4) has been set to a

constant number EDv. Accordingly, the current node’s weight is calculated as

follows.

𝜔𝑐 = 𝐸𝐷𝑣 . 𝑉𝑅𝑐𝑛 + 𝐸𝐷𝑣 . 𝑉𝑅𝑐𝑝⁡ (4.6)

Considering the conditions included in 4.4 and 4.5, this equation will

only have a value if the current node’s value is higher than at least one of its

neighbouring node’s values. This is because the value is multiplied by zero

when the current value is less than or equal to the value of the adjacent node.

To assign each pattern with a unique weight, each node reports its

calculated weight to its assigned inner node in the network. Each inner node

adds the reported weights and reports the result to its assigned inner node. This

continues until each node in the core of the network has reported its

accumulated weight value to the S&I. The S&I normalises the received

accumulated weight by a predefined normalising factor Nf that can be the

pattern (network) size (S). In other words, the ith pattern’s weight (𝜌𝜔𝑖) is the

140

sum of the entire network’s node weights divided by a normalising factor (Nf)

and can be calculated as follows.

𝜌𝜔𝑖 =
∑ 𝜔𝑚

𝑆
𝑚=1

𝑁𝑓
 (4.7)

4.4 CwGN Communication Scheme

In this section, the communications of a CwGN network are described.

This includes adjacency communications, reporting communications, and the

CwGN communication protocol. The CwGN scheme has two types of network

communications scenarios: standard and track-linking communications. In the

standard communication style, nodes exchange information with adjacent

nodes in the same track. In this scenario, the incoming pattern is divided into

several sub-patterns according to the number of tracks, and each sub-pattern’s

weight is calculated separately from those of other sub-patterns. This structure

is useful when different data types and multi-dimensional patterns are to be

processed using one network. The standard is described in Figure 4.4. Track-

linking communication style aims to allow the calculation of weights between

tracks or sub-patterns. This communication paradigm allows one node in each

track to perform adjacent communications with nodes in its outer track. This

will make it possible to avoid losing weights caused by dividing a pattern into

sub-patterns and can be used for one dimensional patterns and single data

types. Figure 4.6 shows the track-linking communication paradigm.

141

Figure 4.6: Track linking CwGN network communication scheme. The

solid arrows indicate information exchange between adjacent nodes and dotted

arrows indicate reporting communications to inner nodes.

4.4.1 CwGN communication requirements

To perform CwGN network node communications, it is assumed that a

medium access control (MAC) protocol is present and available to support the

network. MAC protocols control the communications of a network by setting

the rules and steps for sending information amongst the network’s nodes so as

to share the available medium. In WSNs the efficiency of a MAC protocol will

affect the sensors’ lifetime by reducing transmission collisions, which reduces

the number of retransmissions of packets [7]. In WSNs, nodes conserve energy

resources by alternating between low power sleep mode and active mode.

MAC protocol supports conserving energy resources for WSN nodes by

determining timeslots for sleep and active modes. In addition, when using

MAC protocols, each sensor can have a unique MAC address that differentiates

it from other sensors, allowing direct communication between two nodes. For a

142

CwGN scheme, choosing a MAC protocol should take into account the special

requirements and steps of the network’s communications.

 During the initialisation of a CwGN network, each node should be

provided with a track number that it will work on. This allows the node to

determine its communication process. For example, a node in the outermost

track will send its information to adjacent nodes, receive adjacent nodes’

information, and report its calculated weight to its assigned inner node. A node

in a middle track performs the same steps except that it will wait for reports

from outer track nodes before reporting the accumulated weights to its inner

node. Determining a node’s track can be performed statically or automatically

during the initialisation phase of the CwGN network. Static track determination

means that each node is provided with information about its track, adjacent

nodes in the same track, and its assigned inner node to report its calculated or

accumulated weight. This initialisation would be less complex in terms of

computations and communications. However, the flexibility of adding new

nodes to the network or adopting dynamic changes such as mobile nodes or

clusters will be limited. Automatic track determination can be achieved by

allowing each node to communicate with its neighbouring nodes and allowing

the base station to determine its track, adjacent nodes, and inner nodes after the

deployment of the network. This approach will provide more network

flexibility to adapt to changes that may be required in the network design.

However, this will lead to an increase in the number of communications in the

143

network. It is also important to take into account the distance between nodes

and the communication ranges of sensors in determining the track size.

To ensure the functionality of the CwGN network, each node should be

fed with sufficient information about how to react to failures or de-activated

neighbouring nodes. In WSNs, it is common to have failure nodes that can no

longer communicate due to running out of energy or physical damage. To

overcome the effect of such phenomena on recognition, each node should take

into account the steps for dealing with unavailable nodes. For adjacent nodes

(i.e., predecessor and successor), a node should assume the value of a failure

communicating node to be zero. This is to standardise the weight calculation

with a zero level. To avoid losing weights in cases of inner node failures, each

node should hold (or search for) information about alternative inner nodes.

Each node should be supplied with a list of ordered alternative inner nodes in

the inner track within its communication range. If a node cannot communicate

with its inner node, it sends it weight to the first alternative inner node. If the

alternative node is not responding, it sends it to the second alternative. This

continues until the node reports its weight to one of its assigned inner nodes. If

none of the alternative nodes respond, the node should report its weight to the

base station. Figure 4.7 illustrates the alternative reporting process.

In Figure 4.7 (a), the reporting node, tries to send its weight information

to alternative inner node 1 in the inner track after failing to communicate with

its assigned inner node. In Figure 4.7 (b) the node sends its weight information

to the base station after failing to communicate with all possible alternatives.

144

Since the number of communications of alternative nodes could increase due to

failures occurring in assigned inner nodes, the number of alternatives should be

determined in such a way as to avoid exhausting inner nodes that act as

alternatives. Since each node is presumed to receive only one message at a

time, the learning and recognition duration cycle will be affected by the

number of communications increasing in alternative nodes, as will be discussed

later in this chapter. Consequently, setting the total number of possible

alternative inner nodes should take the effect on the duration of learning cycle

into account. Finally, the base station should be able to predict the time needed

to wait for reports from nodes that are unable to report to their assigned and

alternative inner nodes before it declares the total weight of a pattern.

(a) (b)

Figure 4.7: Report messages from a node to its alternative assigned

inner nodes. (a) Reporting node attempts to send its report to the second

alternative assigned inner node. (b) Reporting node reports directly to the BS

after failing to report to all alternative inner nodes.

145

4.4.2 CwGN communication protocol

The CwGN communication protocol describes the main steps of CwGN

network communications. By completing this protocol, a CwGN network will

memorise or recall an incoming pattern. The protocol consists of four main

steps as follows:

Step 1 S&I  ND1, ND2,……, Nm : (Ci,Pi) {(C1,P1), (C2,P2),.., (Cm,Pm) }

In the first step of the communication, the S&I (i.e. base station) sends

the command Ci and the pattern elements Pi to each node in the network. As

explained in section 3.2, a command can be either to memorise (M) or recall

(R) and the pattern element can be a value to use for training, or (X) to initiate

sensors to use the sensory information. Each node receives only one element of

the pattern. For example, if the pattern is (1,5,7,4), the S&I will send the values

1, 5, 7, and 4 to the nodes 1, 2, 3, and 4 as pattern elements respectively.

Obtaining sensory information can happen in two ways. In the first scenario,

the S&I sends a memorise or recall command to nodes in order to start

obtaining sensory information and continue the communication steps. In the

second scenario, the nodes are programmed to obtain information periodically.

Step 2 NDi  NDp, NDn: vi

Each node in the network NDi starts the information exchange process

with adjacent nodes. After receiving or obtaining the pattern element

information, each node sends its value vi to two nodes: previous NDp, and next

NDn. These nodes are located in the same track on which the first node resides.

The aim of this step is to allow each node to calculate its weight according to

146

Equation 4.6. After completing this step, each node will receive two values

from its adjacent nodes representing the pattern elements by which a node

should calculate its weight

Step 3 NDi  Ninner: 𝜔𝑖

After obtaining pattern information from adjacent nodes and calculating

its weight, each node reports its weight to its assigned inner node in the inner

track. The weight will be a result of computations related to the node’s value

and adjacent nodes’ values. This is applicable to nodes in the outermost track.

For nodes in middle tracks, each node should wait for reports coming from

outer track nodes. Once these reports are obtained, the node adds its calculated

weight to the incoming weights according to Equation 4.6 and then starts the

reporting step. The reporting communication step continues until reaching the

core node. By the end of this step, the core node will obtain the accumulated

weight of the present pattern.

Step 4 NDc  S&I: 𝜔𝑐

The core node (or set of nodes) NDc will send the total pattern’s weight

𝜔𝑐 to the base station in order to store or recall the pattern. The base station

normalises the incoming weight by dividing Nf. The base station holds a

database of trained patterns associated with their weights. If the pattern needs

to be memorised, the base station assigns it a new index number and associates

this index number with the total weight obtained by the network. If the pattern

is to be recalled, the base station searches its database to find the closest value

147

to the total weight given by the CwGN network and declares it as the recalled

pattern.

4.5 Complexity of CwGN Algorithm

This section estimates the complexity of the CwGN algorithm. Table

4.1 defines the terms used in complexity estimation. One of the goals of the

scheme presented here is to provide real time recognition capabilities while

maintaining a low level of resource use to suit WSNs. Hence, estimating the

learning cycle duration is important to evaluate the scheme’s feasibility in

online operations. For such estimation, we assume that all network nodes are

activated by a given pattern to estimate the maximum time required to learn or

recall an incoming pattern. The computational and communication overheads

of a pattern of size S can be estimated by the duration of each CwGN step. The

first step is the pattern receiving step. This step involves broadcasting the

command message by the S&I and sensing the pattern by the nodes. The

estimated time required for this step is as follows.

𝑇𝑟𝑒𝑐 = 𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑠𝑒𝑛𝑠𝑒 (4.8)

The following step exchanges sensory information by nodes. Taking

parallelism into account, the time estimate can be described as follows.

𝑇𝑒𝑥𝑐ℎ = 2. 𝑇𝑠𝑒𝑛𝑑 (4.9)

148

Table 4.1: Description of terms used in CwGN complexity analysis.

Symbol Name Description

𝑁𝑡𝑟𝑘
Number of

tracks
The number of tracks in the network

𝑆
Pattern

(network) size
The problem size which equals the network size

𝑆𝑖 Track i size Number of nodes in track number i

𝑀𝑝
Memorised

patterns
Number of memorised patterns in the S&I

𝑇𝑎𝑑𝑑 Addition time
Time for one node to complete an addition

operation

𝑇𝑆𝐼 S&I time
The time required by the S&I to search or add a

pattern to its database

𝑇𝑐𝑜𝑚𝑝𝑎𝑟𝑒 Compare time
The time required by a node to compare two

weights

𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒
Computing

time

The time required by a node to perform

weighting computations

𝑇𝑑𝑖𝑣 Division time
The time required for a node to complete a

division operation

𝑇𝑒𝑥𝑐ℎ Exchange time The time required by nodes to conduct

exchange communications

𝑇𝑟𝑒𝑎𝑑 Reading time
Time required by S&I to read a single pattern’s

stored weight

𝑇𝑟𝑒𝑐
Pattern

receiving time

The time needed by a CwGN network to obtain

an incoming pattern including the S&I

command

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 Report time
The time required by the network to perform

report communications

𝑇𝑠𝑒𝑛𝑑 Send time
The time required to send a message from one

node to another

𝑇𝑠𝑒𝑛𝑠𝑒 Sense time
The time required by a node to obtain sensory

information

𝑇𝑡𝑜𝑡𝑎𝑙
Total network

time

Time required by the CwGN network to

perform PR operations

This is followed by the computing of weights by nodes. Assuming that

the relation function captures the variance level relations described in

Equations 4.4 and 4.5 that delivers Equation 4.6, the computations involve

149

comparing received values with sensed information, addition, and division

operations. The time required for this step can be estimated as follows.

𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒 = 2. 𝑇𝑐𝑜𝑚𝑝𝑎𝑟𝑒 + 𝑇𝑎𝑑𝑑 + 𝑇𝑑𝑒𝑣 (4.10)

The reporting step is the most time demanding step in the CwGN

scheme as each reporting node waits to receive reports from other nodes in

other tracks. Referring to the deployment process, the number of tracks in a

CwGN network for a pattern size S is equal to the number of deployment

iterations and, according to Equation 3.7, is equal to the square root of S. This

can also be written as 𝑁𝑡𝑟𝑘 = √𝑆 = ⁡⁡⁡ 10
log𝑆

2 . Accordingly, reporting time can

be estimated as the parallel sending time and weight accumulation time as

follows.

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 = 𝑇𝑠𝑒𝑛𝑑. 𝑁𝑡𝑟𝑘 + 𝑇𝑎𝑑𝑑 . (𝑁𝑡𝑟𝑘 − 1) (4.11)

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 = 𝑇𝑠𝑒𝑛𝑑. (10
log𝑆

2 − 1) + 𝑇𝑎𝑑𝑑 . 10
log𝑆

2 (4.12)

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 = (𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑎𝑑𝑑). 10
log𝑆

2 ⁡⁡− 𝑇𝑠𝑒𝑛𝑑 (4.13)

This excludes the outermost track from waiting for reports and includes

the inner node’s report to the S&I. Once the weights are accumulated and

reported to the S&I, the S&I stores or recalls the incoming weight. The S&I

time (TSI) will be equal to Twrite in cases of memorisation. Assuming that S&I

performs a binary search to find the associated pattern, its recall time can be

estimated as follows.

𝑇𝑆𝐼 = (𝑇𝑟𝑒𝑎𝑑 + 𝑇𝑐𝑜𝑚𝑝𝑎𝑟𝑒). 𝑙𝑜𝑔2(𝑀𝑝) (4.14)

The total CwGN network time can be estimated as follows.

150

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑟𝑒𝑐 + 𝑇𝑒𝑥𝑐ℎ + 𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒 + 𝑇𝑟𝑒𝑝𝑜𝑟𝑡 + 𝑇𝑆𝐼 (4.15)

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑠𝑒𝑛𝑠𝑒 + ⁡2. 𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑐𝑜𝑚𝑝𝑎𝑟𝑒 + 𝑇𝑎𝑑𝑑 + 𝑇𝑑𝑒𝑣

+ 𝑇𝑠𝑒𝑛𝑑 . (10
log𝑆

2 − 1) + 𝑇𝑎𝑑𝑑 . 10
log𝑆

2 + 𝑇𝑆𝐼

(4.16)

𝑇𝑡𝑜𝑡𝑎𝑙 = (2 +⁡10
log𝑆

2) . 𝑇𝑠𝑒𝑛𝑑 + (𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑎𝑑𝑑).⁡⁡⁡10
log𝑆

2 + 𝑇𝑠𝑒𝑛𝑠𝑒

+ 2. 𝑇𝑐𝑜𝑚𝑝𝑎𝑟𝑒 + 𝑇𝑑𝑒𝑣 + 𝑇𝑆𝐼

(4.17)

To simplify these calculations, we assume that communicational

operations times (𝑇𝑠𝑒𝑛𝑠𝑒 , 𝑇𝑠𝑒𝑛𝑑, 𝑇𝑟𝑒𝑝𝑜𝑟𝑡) are equal and denoted as (𝑇1).

Similarly, computational operations times (𝑇𝑎𝑑𝑑 , 𝑇𝑐𝑜𝑚𝑝𝑎𝑟𝑒, 𝑇𝑑𝑒𝑣, 𝑇𝑟𝑒𝑎𝑑, 𝑇𝑤𝑟𝑖𝑡𝑒)

are assumed to be equal, and we denote them as (𝑇2). Consequently, 𝑇𝑠𝑖 in

memorisation will be equal to 𝑇2 because it equals 𝑇𝑤𝑟𝑖𝑡𝑒. Accordingly,

substituting 𝑇1 and 𝑇2 into (4.17) can provide an estimate of the total network

time required for memorisation.

𝑇𝑡𝑜𝑡𝑎𝑙 = 3. 𝑇1 + 4𝑇2 + (2. 𝑇1 + 𝑇2).⁡⁡10
log 𝑆

2 (4.18)

In recall, 𝑇𝑆𝐼 will be equal to (2. 𝑇2)𝑙𝑜𝑔2(𝑀𝑝), and the total network

time required for recall can be estimated as follows.

𝑇𝑡𝑜𝑡𝑎𝑙 = 3. 𝑇1 + 3𝑇2 + (2. 𝑇1 + 𝑇2).⁡⁡10
log 𝑆

2

+ (2. 𝑇2)𝑙𝑜𝑔2(𝑀𝑝)

(4.19)

According to these equations, the CwGN network’s response time is

proportional to the square root of the network size in the form of O(√𝑆). This

minimises the effect of pattern size increase and provides the scheme with a

high level of scalability. Figure 4.8 shows the estimated recall time as a

151

function of the pattern size (S); assuming 1 millisecond for T1, 1 microsecond

for T2, and 10000 for Mp. Figure 4.9 shows the estimated recall time for a

CwGN of S=16 according to the increase in the number of stored patterns Mp

with the same set of time assumptions made in Figure 4.8. The figure shows

that the response time increases in proportion to the square root of pattern size

S. Figure 4.9 shows that the response time initially increases but then becomes

insensitive to the increase in the number of stored patterns.

4.6 Zoning Approach for Online and Multi-

Dimensional Recognition

It was shown in the previous section that the time complexity of CwGN

is proportional to the square root of the pattern size. This means that time

complexity has a low increase rate. However, for large scale online

applications, such an increase could reach a level that makes recognition

exceed the online criteria. Another problem is the heterogeneity of incoming

data that may require multi-dimensional processing. An example of such a case

would be having sensor nodes that detect one data type (e.g. temperature) and

other nodes detecting a different data type (e.g. speed). It has been suggested in

sub-section 4.3.2 that such problems can be handled using the multiple tracks

network structure where each track deals with one data type. However, the

constraints of the network structure that require a limited odd number of nodes

in each track can restrict the usefulness of such a solution.

152

Figure 4.8: The estimated recall time of the CwGN network with

respect to increasing pattern size.

Figure 4.9: The estimated recall time of the CwGN network as a

function of the number of stored patterns in the range from 0 to 60000 patterns.

153

To enable online learning and multi-dimensional data processing, the

CwGN network is divided into smaller zones. Each zone is a CwGN network

functions in parallel with other networks to fulfil the following constraint.

𝑇𝑍 + 𝑇𝑆𝐼 ≤ 𝜏 (4.20)

where 𝑇𝑍 is the network zone time and 𝜏 is the upper time limit for completing

an online learning operation. In case of having heterogeneous data types, each

zone is assigned to process only one type. Each zone feeds S&I with its

concluded weight value, as shown in Figure 4.10. To determine the maximum

number of zones (𝑁𝑧𝑜𝑛𝑒𝑠) that fulfil this constraint, it is assumed that 𝑇𝑍 is the

maximum time for a network zone, that is, the time when all nodes in the

network zone are activated. Additionally, it is assumed that the zones are

uniformly distributed such that each zone has the same number of nodes.

Consequently, 𝑇𝑍 will be equal to the total time of a CwGN network of size

𝑆

𝑁𝑧𝑜𝑛𝑒𝑠
 and the network time can be estimated as follows.

𝑇 𝑆
𝑁𝑧𝑜𝑛𝑒𝑠

+ 𝑇𝑆𝐼 = 𝜏,⁡⁡⁡⁡𝑁𝑧𝑜𝑛𝑒𝑠 ∈ ℕ (4.21)

From Equations 4.18 and 4.19, the recall time will always be higher

than the memorisation time when 𝑀𝑝 ≥ 2. This is due to the process by which

the S&I searches for a matching pattern. Assuming that recall time is higher

than memorisation time and substituting (𝑆) with (
𝑆

𝑁𝑧𝑜𝑛𝑒𝑠
) in Equation 4.19, the

number of required network zones can be estimated using Equation 4.21 as

follows.

154

𝑁𝑧𝑜𝑛𝑒𝑠 = S. (
𝜏 − 3. 𝑇1 − 3. 𝑇2 − (2. 𝑇2)𝑙𝑜𝑔2(𝑀𝑝)

2. 𝑇1 + 𝑇2
)

−2

 (4.22)

Figure 4.10: Parallel CwGN network zones

For example, if 𝜏 = 100 milliseconds, 𝑇1 = 1⁡millisecond, 𝑇2 =

1⁡microsecond, and 𝑀𝑝 = 10000 patterns, a CwGN network of size 2448 will

be capable of performing learning operations within the time limit (i.e. 100

milliseconds). This means that the network needs to add one more zone when

increasing the network size by more than 2448 nodes in order to ensure

performance of recognition operations within 100 milliseconds. It is important

to note that this assumes that all nodes in the network are activated, which is

the worst case scenario. The complexity of the CwGN scheme can provide

learning capabilities for large scale patterns within predictable duration limits.

A CwGN network has a predictable logarithmic relationship between network

size and response time. Additionally, the network response time for

memorisation and recall operations is insensitive to increases in the number of

155

stored patterns. Therefore, the CwGN scheme offers a highly scalable network

architecture enabling real time applications.

4.7 CwGN Message Sequence Models

Message sequence models for a CwGN network aim to govern the

message exchange process between active nodes in the MAC layer, in

accordance to the recognition scheme and protocol described in sections 4.3

and 4.4. In addition, the proposed models attempt to minimise

communicational overheads by setting a timing sequence for network nodes to

exchange and report messages thus restricting time delays caused by inactive

nodes. This section will also use the abbreviations listed in table 4.1 when

estimating communicational overheads.

Sub-section 2.2.3 discussed the MAC protocols’ importance for WSN

communications. Additionally, it has been highlighted that traditional protocols

allow a single communicational channel for each node while new research

presents multi-channel protocols to support multi-task operations. In this sub-

section, the different types of existing MAC protocols will be presented, and

MAC message exchange models for a CwGN scheme to function over these

protocols will be proposed. The proposal of these models will help in

estimating the time and resource requirements of a CwGN scheme as

communicational overhead is the most time and resource consuming part of

WSNs. The section will present different sequence models and possible

scenarios for each model while analysing the time overhead for each scenario.

156

MAC protocols use the term frame to describe a message from a node

in the network to another node in the data-link layer. A MAC frame is a

sequence of bits that contains the necessary information to deliver a message

from one node to another [35]. Figure 4.11 shows an example of a MAC frame.

However, different protocols may have different frame structures and bit

lengths for each field. The frame shown in Figure 4.11 contains six fields. The

Preamble field contains a set of bits that are used to occupy the channel. A

receiver will listen to a preamble bit sequence in order to start receiving an

incoming message. In CwGN communication models there are two types of

preamble, namely, sending, and not sending. The sending preamble indicates

that a node is going to send a full frame to the receiver. The not sending

preamble indicates that a node will have no frames to send. The not sending

preamble will be used in reporting communications in order to allow a node to

inform its inner node that it is not edge activated and it will not send weight

information. The Address field is used to determine source and destination

MAC addresses. The Control field is used for control purposes such as

message sequences and acknowledgements. The Checksum field is used for

error detection and correction purposes. The Flag field is used to indicate the

end of transmission.

There are four types of WSN MAC protocols [39]: frame-slotted

synchronous (FS-Sync), frame-slotted asynchronous (FS-Async), MC

synchronous (MC-Sync), and MC asynchronous (MC-Async). Table 4.2

summarises these models and the abbreviations for each one that will be used

157

in the rest of this research. In this sub-section, a CwGN communicational

model for each MAC protocol type will be presented. Additionally, different

possible communicational scenarios will be discussed. This section will also

use the abbreviations listed in Table 4.1 when estimating communication time

complexity for each model.

Figure 4.11: A general MAC frame structure [35].

Table 4.2: Summary of existing MAC protocol types for WSNs.

Protocol type Abbreviation Description

Frame-slotted

asynchronous
(FS-Async)

Uses one MAC channel to

send or receive a message

in an asynchronous mode

Frame-slotted synchronous (FS-Sync)

Uses one MAC channel to

send or receive a message

in a synchronous mode

Multi-channel

asynchronous
(MC-Async)

Divides the MAC channel

into several channels and

sends or receives multiple

messages at the same time

in asynchronous mode

Multi-channel

synchronous
(MC-Sync)

Divides the MAC channel

into several channels and

sends or receives multiple

messages at the same time

in asynchronous mode

158

4.7.1 Frame-slotted asynchronous CwGN model

In this model, each node is allowed to send or receive one frame at a

time. The sending node starts by sending the preamble. A receiving node

senses the channel. In exchange communications, a value active node (as

described in Definition 4.5) will send a MAC frame that has a sending

preamble with its value (v) in the data field to its next node in the track. The

next node will be sensing the channel. Once a preamble is received it starts

receiving the rest of the frame. After the sending node finishes sending the

frame, it starts listening for sending preamble from the next node. If no

preamble is received it starts sending to its previous node. Figure 4.12 and

Figure 4.13 show the communication sequence scenarios for a value active

node (n) and its neighbouring nodes. Figure 4.12 shows the normal message

sequence when the next and previous nodes are both active. Figure 4.13 shows

the scenarios when adjacent nodes to the sending one are inactive. Figure 4.13

(a) shows the sequence when one node (the next node: n+1) is active and the

other node (previous node: n-1) is inactive. Figure 4.13 (b) shows the sequence

when both neighbouring nodes to node n are inactive, Wt is the wait time that a

node should wait before performing other computations or communications, Pt

is the time required to send a full preamble field, and Δt is the error delay time that

may occur in every communication between two nodes due to physical factors.

159

Figure 4.12: CwGN FS-Async message sequence model.

(a) (b)

 Figure 4.13: CwGN FS-Async message sequence model scenarios. (a)

One adjacent node (previous) is inactive. (b) Both adjacent nodes are inactive.

160

In the normal scenario shown in Figure 4.12, the exchange time for the

node (n) can be estimated as 4𝑇𝑠𝑒𝑛𝑑 + 4∆𝑡 as it will send two frames and

receive two messages, where 𝑇𝑠𝑒𝑛𝑑 is the time required to send one frame, and

∆𝑡 is the error delay time that may occur in every communication between two

nodes due to physical factors. In the scenario shown in Figure 4.13 (a) the

previous node (n-1) is inactive. In such a scenario the node n will wait an

amount of time (Wt) that is equal to the time required to send a full preamble

field (Pt) in addition to the ∆𝑡. Hence, the time estimation in such a scenario

will be 3𝑇𝑠𝑒𝑛𝑑 + 𝑃𝑡 + 4∆𝑡. The same will be applicable if the next node is de-

activated and the previous node is active. The last scenario described in Figure

4.13 (b) is when both neighbouring nodes to n are de-activated. In such a

scenario the time estimation will be 2𝑇𝑠𝑒𝑛𝑑 + 2𝑃𝑡 + 4∆𝑡. It can be concluded

that the maximum time required for a node’s exchange communications is.

𝑇𝑒𝑥𝑐ℎ = ⁡4𝑇𝑠𝑒𝑛𝑑 + 4∆𝑡 (4.23)

Pt is shorter than 𝑇𝑠𝑒𝑛𝑑 as the Pt is involved in sending only a sub-part

of the whole frame. The minimum exchange time for a node can be estimated

as follows.

𝑇𝑒𝑥𝑐ℎ = 2𝑇𝑠𝑒𝑛𝑑 + 2𝑃𝑡 + 4∆𝑡 (4.24)

Taking the parallelism design of a CwGN network into account, these

limits can be used to estimate the entire network’s maximum and minimum

exchange time as all the network’s nodes perform exchange communications in

the same time.

161

To perform report communications, an edge activated node (as

described in Definition 4.6) will first wait for reports from outer track nodes.

Then, the activated node will send a MAC frame that has a sending preamble,

with its accumulated weight (𝜔) in the data field to its assigned inner node in

the inner track. The inner node will be sensing the channel. Once a preamble is

received it starts receiving the rest of the frame. If the node is not an edge

active node, the node sends a not sending preamble. This is to minimise the

wait time for the inner node as preamble sending time is less than frame

sending time. Figure 4.14 shows the two possible scenarios of a reporting

process for a node (ni,l), its outer track node (ni,l-1), and its assigned inner node

(ni,l +1), where i is the node’s position in its track and l is the node’s track

number. Figure 4.14 (a) shows the reporting sequence if all nodes are activated

and Figure 4.14 (b) shows the sequence when (ni,l-1) is inactive.

(a) (b)

Figure 4.14: Message sequence for FS-Async report communications.

162

In the first scenario, the report time for the node (n) can be estimated

according to its track number (l) and the total number of the network’s tracks

(Ntrk). Since each active node waits for a report from other active nodes in outer

tracks, the maximum wait time for node ni,l to receive node’s ni,l-1 report can be

estimated as 𝑤𝑡 = (𝑁𝑡𝑟𝑘 − 𝑙)(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡). That estimate is based on the

assumption that all nodes are active and will send report frames. Consequently,

the network’s core node will have a maximum wait time of (𝑁𝑡𝑟𝑘 −

1)(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡). Since the core node will send a report to the S&I, the

maximum reporting time for the network can be estimated as follows.

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 = 𝑁𝑡𝑟𝑘(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡) (4.25)

The minimum report time can be estimated using the second scenario.

In that scenario, if all outer track nodes of node ni,l are inactive, the waiting

time for ni,l can be estimated as 𝑤𝑡 = (𝑁𝑡𝑟𝑘 − 𝑙)(𝑃𝑡 + ∆𝑡). And the minimum

reporting time for the entire network can be estimated as follows.

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 = 𝑁𝑡𝑟𝑘(𝑃𝑡 + ∆𝑡)⁡⁡⁡⁡ (4.26)

The total communication time (𝑇𝑐𝑜𝑚𝑚) of the network can be calculated

as the summation of 𝑇𝑟𝑒𝑝𝑜𝑟𝑡 and 𝑇𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒. Accordingly, the maximum total

communication time in such a model can be estimated as follows.

𝑇𝑐𝑜𝑚𝑚 = (𝑁𝑡𝑟𝑘 + 4)(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡) (4.27)

And the minimum can be estimated as follows.

𝑇𝑐𝑜𝑚𝑚 = (𝑁𝑡𝑟𝑘 + 2)𝑃𝑡 ⁡+ (𝑁𝑡𝑟𝑘 + 4)4∆𝑡 + 2𝑇𝑠𝑒𝑛𝑑 (4.28)

163

4.7.2 Frame-slotted synchronous CwGN model

A synchronous communication model aims to guarantee message

delivery using acknowledgement (Ack) messages. After sending a frame, a

sending node waits a period of time to receive Ack from the receiving node. If

no Ack is received, the sending node retransmits the message assuming that the

sent message was lost. In this sub-section we discuss the synchronous model in

terms of sending frames and acknowledgements without dealing with the

retransmission process as it requires further discussion and research that may

include the physical level. Similar to the FS-Async model described in the

previous sub-section, a value active node starts exchange communications by

sending its value (v) in a MAC frame to its next node in the track. After

receiving the frame, the next node replies with an acknowledgement frame.

Then it sends its own value frame if it is active. If not, the next node sends a

not sending preamble. This is to inform the communicating node that there is

no value to be sent, and to allow it to finalise the information exchange

process. After an activated node performs a successful exchange

communication with its next neighbour, it performs the same steps with its

previous node. Figure 4.15 shows the sequence when all nodes are active.

Figure 4.16 shows two possible scenarios for an active node and its adjacent

nodes: (a) previous node (n-1) is inactive and (b) both previous and next nodes

to node n are inactive.

From Figure 4.15 it can be seen that a full exchange communication of

a node will involve sending and receiving 8 frames. This excludes the

164

retransmission. Hence, the total exchange time for a node in such a scenario

can be estimated as 𝑇𝑒𝑥𝑐ℎ = ⁡8𝑇𝑠𝑒𝑛𝑑 + 8∆𝑡. In the scenario shown in Figure

4.16 (a) the previous node is inactive. Hence node n will either receive a not

sending preamble from n-1 or wait for Pt to retransmit the sent frame.

Consequently, the time of such an exchange scenario will be 𝑇𝑒𝑥𝑐ℎ = ⁡5𝑇𝑠𝑒𝑛𝑑 +

6∆𝑡 + 𝑃𝑡. The same applies if the next node is inactive and the previous one is

active. The last scenario shown in Figure 4.16 (b) requires both inactive

adjacent nodes to send a not sending preamble to allow n to finish the exchange

transmission process. In this case the time estimate will be 𝑇𝑒𝑥𝑐ℎ = ⁡2𝑇𝑠𝑒𝑛𝑑 +

4∆𝑡 + 2𝑃𝑡. Since 𝑃𝑡 is less than 𝑇𝑠𝑒𝑛𝑑, and the network is functioning in

parallel, the maximum exchange time for a network that runs a FS-Sync model

can be estimated as follows.

𝑇𝑒𝑥𝑐ℎ = ⁡8𝑇𝑠𝑒𝑛𝑑 + 8∆𝑡 (4.29)

And the minimum will be as follows.

𝑇𝑒𝑥𝑐ℎ = ⁡2𝑇𝑠𝑒𝑛𝑑 + 4∆𝑡 + 2𝑃𝑡 (4.30)

That, assuming that there is at least one active node in the whole network.

To perform report communications, an edge activated node (as

described in Definition 4.6) will firstly wait for reports from outer track nodes.

Then, it will send an Ack frame to its reporting node. Then, the activated node

will send a MAC frame that has a sending preamble, with its accumulated

weight (𝜔) in the data field, to its assigned inner node in the inner track and

receives an Ack to end the reporting communication. If the reporting or inner

node is not an edge active node, the node sends a not sending preamble. This is

165

to minimise the wait time for the inner node as the preamble sending time is

less than the frame sending time. Figure 4.17 shows the two possible scenarios

for the reporting process for a node (ni,l), its outer track node (ni,l-1), and its

assigned inner node (ni,l +1) where i is the node’s position in its track and l is the

node’s track number. Figure 4.17 (a) shows the reporting sequence if all nodes

are activated and Figure 4.17 (b) shows the sequence when (ni,l-1) is inactive.

In the first scenario, the report time for the node (n) can be estimated in

a similar way to the first reporting scenario presented for the FS-Async in the

previous sub-section. Taking the Ack frames into account, the maximum

reporting time for the network can be estimated as follows.

𝑇𝑟𝑒𝑝𝑜𝑟𝑡 = 2𝑁𝑡𝑟𝑘(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡)⁡⁡⁡⁡ (4.31)

Figure 4.15: : CwGN Message sequence for FS-Sync exchange

communicational model.

166

(a) (b)

Figure 4.16: CwGN message sequence for FS-Sync exchange

communicational model, (a) one adjacent node (previous) is inactive and (b)

both adjacent nodes are inactive.

The minimum report time can be estimated using the second scenario.

In that scenario, if all outer track nodes of node ni,l are inactive, the minimum

reporting time of this model will be similar to the minimum report time of the

FS-Async model which has been estimated according to Equation 4.25. The

total communication time (𝑇𝑐𝑜𝑚𝑚) of the network can be calculated as the

summation of 𝑇𝑟𝑒𝑝𝑜𝑟𝑡 and 𝑇𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒. Accordingly, the maximum total

communication time in such a model can be estimated as follows.

𝑇𝑐𝑜𝑚𝑚 = 2(𝑁𝑡𝑟𝑘 + 4)(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡) (4.32)

167

This is twice the maximum time of the FS-Async communication time

presented in Equation 4.26. However, the minimum communication time for

both models remains the same as that derived in Equation 4.27.

(a) (b)

Figure 4.17: Message sequence for FS-Sync report communicational

model.

4.7.3 Multi-channel CwGN models

In multi-channel (MC) models, a node is capable of handling multiple

communications simultaneously. Similar to frame-slotted models, MC can

work on asynchronous and synchronous modes. Figure 4.18 shows MC-Async

exchange communications when all nodes are value activated. Figure 4.19

168

shows two possible scenarios: (a) one adjacent node is inactive, and (b)

previous and next nodes are inactive.

From Figure 4.18, if all nodes are activated, all nodes will exchange

frames at the same time and the time estimate can be determined as 𝑇𝑠𝑒𝑛𝑑 + ∆𝑡.

However, when there is an inactive node such as in Figures 4.19 (a) and (b),

the time estimate can be 𝑇𝑠𝑒𝑛𝑑 + 2∆𝑡 + 𝑃𝑡. This can be used as the maximum

exchange time as it is higher than the first scenario time estimate. In report

communications, the MC-Async model is similar to the FS-Async mode as

there is only one report frame from one node to another. Hence, the

communication scenarios shown in Figure 4.17 are applicable in this model. As

a consequence, the report time estimates of FS-Async presented in Equations

4.26 and 4.27 represent the time estimates for this model. Thus the maximum

communication time for a network running MC-Async can be estimated as

follows.

𝑇𝑐𝑜𝑚𝑚 = 𝑇𝑠𝑒𝑛𝑑(𝑁𝑡𝑟𝑘 + 1) + ∆𝑡(𝑁𝑡𝑟𝑘 + 2) + 𝑃𝑡 (4.33)

And minimum time can be estimated as follows.

𝑇𝑐𝑜𝑚𝑚 = 𝑁𝑡𝑟𝑘(𝑃𝑡 + ∆𝑡) + 𝑇𝑠𝑒𝑛𝑑 + ∆𝑡⁡⁡⁡ (4.34)

In synchronous communication, each receiving node is expected to

reply to the sending node with an Ack frame to confirm the receipt of the

message. Figure 4.20 shows the exchange communication sequence in an MC-

Sync model. Figure 4.21 shows two possible scenarios: (a) one adjacent node is

inactive, and (b) previous and next nodes are inactive.

169

Figure 4.18: CwGN MC-Async message sequence for exchange

communications when all adjacent nodes to a sending node are active.

(a) (b) (c)

(a) (b)

Figure 4.19: CwGN Message sequence for MC-Async exchange

communicational model. (a) One adjacent node (previous) is inactive and (b)

both adjacent nodes are inactive.

170

Figure 4.20: CwGN MC-Sync message sequence for exchange

communications when all adjacent nodes to a sending node are active.

(a) (b)

Figure 4.21: CwGN message sequence for MC-Sync exchange

communicational model. (a) One adjacent node (previous) is inactive and (b)

both adjacent nodes are inactive.

171

From Figure 4.20, exchange time can be estimated as 2(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡).

This estimate includes Ack frames. The same estimate can be applied to the

second scenario shown in Figure 4.21 (a) as the wait time for a response from

node n-1 overlaps with exchange time with node n+1. In the third scenario

shown in Figure 4.21 (b), time estimate will be 𝑃𝑡 + ∆𝑡 as node n will be

waiting for a not sending preamble. A reporting sequence for this model is

similar to the reporting sequence for the FS-Sync model shown in Figure 4.17

and has the same time estimates derived in Equations 4.31 and 4.32. Hence

maximum network time in such a model can be estimated as follows.

𝑇𝑐𝑜𝑚𝑚 = (2𝑁𝑡𝑟𝑘 + 2)(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡)⁡⁡⁡⁡ (4.35)

Since the third scenarios of both MC-Sync and FS-Sync models are

similar, minimum communication time can be estimated as presented, as in

Equation 4.29.

Table 4.3 summarises the limits of communication time overhead

estimates for each CwGN message sequence model. Experimental analysis on

the four sequence models will be conducted later in Chapter 5 to evaluate the

communication overhead of a CwGN network for each model using different

types of patterns.

172

Table 4.3: Summary of communication time overhead (Tcomm) limit estimates

for each CwGN message sequence model.

Model Minimum time estimate Maximum time estimate

FS-Async (𝑁𝑡𝑟𝑘 + 2)𝑃𝑡 ⁡+ (𝑁𝑡𝑟𝑘 + 4)4∆𝑡

+ 2𝑇𝑠𝑒𝑛𝑑

(𝑁𝑡𝑟𝑘 + 4)(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡)

FS-Sync (𝑁𝑡𝑟𝑘 + 2)𝑃𝑡 ⁡+ (𝑁𝑡𝑟𝑘 + 4)4∆𝑡

+ 2𝑇𝑠𝑒𝑛𝑑

2(𝑁𝑡𝑟𝑘 + 4)(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡)

MC-Async 𝑁𝑡𝑟𝑘(𝑃𝑡 + ∆𝑡) + 𝑇𝑠𝑒𝑛𝑑 + ∆𝑡⁡⁡⁡ 𝑇𝑠𝑒𝑛𝑑(𝑁𝑡𝑟𝑘 + 1)
+ ∆𝑡(𝑁𝑡𝑟𝑘 + 2)
+ 𝑃𝑡

MC-Sync (𝑁𝑡𝑟𝑘 + 2)𝑃𝑡 ⁡+ (𝑁𝑡𝑟𝑘 + 4)4∆𝑡

+ 2𝑇𝑠𝑒𝑛𝑑

(2𝑁𝑡𝑟𝑘 + 2)(𝑇𝑠𝑒𝑛𝑑 + ∆𝑡)⁡⁡⁡⁡

4.8 Effects of Pattern Transformation on CwGN

Recognition

CwGN achieves invariant recognition by using weights rather than

storing the pattern’s information as is done in standard GN. The patterns’

weights are stored in the S&I of a CwGN network as a vector, as described in

Equation 4.1. Recognising an incoming pattern requires comparing the

calculated accumulated weight with the stored patterns’ weights in the S&I

using Equation 4.2. This comparison can be described as follows.

Δ𝜔𝑖𝐶 = |𝜔𝑖 − 𝜔𝐶| (4.36)

where Δ𝜔𝑖𝐶 is the difference between the stored ith pattern’s weight and the

network’s calculated weight for an incoming pattern. Using Equation 4.7, 4.36

can be written as Δ𝜔𝑖𝐶 = |∑ 𝜔𝑖𝑚
𝑆
𝑚=1 -∑ 𝜔𝐶𝑚

𝑆
𝑚=1 | where i is the ith pattern in

the pattern vector, C is the calculated pattern, and m is the pattern element

173

number. The weight is calculated in accordance with the exchange of

communications. Hence, each node’s weight is determined as a function of its

value and the values of its adjacent nodes such that 𝜔𝑚 = 𝑓(𝑐, 𝑝, 𝑛), where c,

p, n are the current, previous, and next nodes’ values. As each node receives

one pattern element, this function can be expressed as 𝜔𝑚 =

𝑓(𝜀𝑚, 𝜀𝑚−1, 𝜀𝑚+1), assuming that a track’s first node communicates with the

track’s last node. Accordingly, the weight difference can be calculated as

follows.

Δ𝜔𝑖𝐶 = |∑ 𝑓(𝜀𝑖𝑚, 𝜀𝑖𝑚−1, 𝜀𝑖𝑚+1)
𝑆
𝑚=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡− ∑ 𝑓(𝜀𝐶𝑚, 𝜀𝐶𝑚−1, 𝜀𝐶𝑚+1)|

𝑆

𝑚=1

(4.37)

To discuss the effect of pattern transformation on CwGN recognition,

we will examine three types of changes below: translation, dilation and spatial

rotation.

4.8.1 Pattern translation

In this research, pattern translation in 1-D space is formally defined as

follows.

Definition 4.8: (Pattern translation) Given a pattern 𝜌 = {𝜀1, 𝜀2, … , 𝜀𝑆} where

𝜀𝑖 is a pattern element in position i, S is the pattern size, and a translation value

(⁡𝛼 ∈ ℕ), (0< 𝛼 < S), pattern translation involves shifting the position of each 𝜀𝑖

174

by the value of 𝛼 with the assumption that (i +⁡𝛼 =i +⁡𝛼 - S), ∀⁡(𝑖 + 𝛼) > 𝑆, (𝛼

>0), and (i+⁡𝛼 =i+⁡𝛼 +S), ∀⁡(𝑖 + 𝛼) ≤ 0, (𝛼 <0).

Proposition 4.1: If 𝛾𝑖 is the translated pattern of the original pattern 𝜌𝑖 by the

value of 𝛼, the difference weight (𝜔𝜌𝑖𝛾𝑖
) will be equal to zero. The accumulated

weight (𝜔𝑖) of the stored pattern 𝜌𝑖 is equal to the accumulated weight of any

translated pattern (𝛾𝑖).

Proof: Let 𝛾𝑖 = {𝛿1, 𝛿2, … , 𝛿𝑆} be the translated pattern of 𝜌𝑖 = {𝜀1, 𝜀2, … , 𝜀𝑆}

by the value of 𝛼. According to Definition 4.8, 𝜀1 = 𝛿1+𝛼, 𝜀2 = 𝛿2+𝛼, …,

𝜀𝑆−2+𝛼 = 𝛿𝛼−2, 𝜀𝑆−1+𝛼 = 𝛿𝛼−1, 𝜀𝑆+𝛼 = 𝛿𝛼, 𝜀𝑆+𝛼+1 = 𝛿𝛼+1 = 𝜀1, 𝜀𝑆+𝛼+2 =

𝛿𝛼+2 = 𝜀2. This means that each element in the translated pattern 𝛾𝑖 maintains

the same neighbouring elements that it had in the original pattern 𝜌𝑖.

As a consequence, the weight difference between any given pattern and

its translated pattern will be equal to zero according to Equation 4.37. This

implies that the CwGN weighting technique is translation invariant as any

translated version of a pattern will result in the same cumulative weight.

Special considerations can lead to slight changes between a pattern’s

weight and its translation weight. The CwGN scheme assumes that the value of

a node that has no reading will be equal to zero. This can happen if a node is

turned off because it has run out of energy, lost communication, or for some

other reason. Additionally, this can also happen in the core track in the

standard communication model. In this case, the weight value of any adjacent

175

node to such lost nodes will change in accordance with the amount of the

change to zero. In Equation 4.5, it has been assumed that the weight of the

node in such a case will be the value of the node itself. Hence, the weight

difference in such a special case will be equal to the value of the difference

between the values of the original and translated elements in that position

(|𝜀𝑖 − 𝜀𝛼𝑖|). However, this amount of change will be reduced by using the

normalising factor (Nf), which can be the pattern (or network) size (S). In

contrast, this effect will increase if Nf is small or when there is a large number

of defect (or non-deployed) nodes.

Another special case might occur when using the standard

communication CwGN network. In this communicational scheme, the pattern

is sub-divided into several sub-patterns and each sub-pattern’s weight is

calculated separately. When translating a pattern, parts of each sub-pattern

could move to another part, causing changes in the neighbouring values, which

may change the values of some sub-pattern weights. However, the CwGN

weighting technique depends on determining the edges of patterns and sub-

patterns. This means that this effect will be minimised if the edges of the

translated pattern maintain the same adjacent node values as the original

pattern. Additionally, division by Nf could also minimise this effect. In general,

the CwGN weighting technique allows for its PR process to be invariant to

pattern translation, especially when using the track linking communication

scheme.

176

4.8.2 Pattern dilation

The dilated pattern is another form of pattern transformation that the

CwGN scheme is capable of detecting. Dilation can occur in three forms:

constant, average, and spatial. These types are defined as follows.

Definition 4.9: (Constant dilation) Given a pattern 𝜌 = {𝜀1, 𝜀2, … , 𝜀𝑆}, where 𝜀𝑖

is a pattern element in position i, S is the pattern size, and the value of dilation

is (𝛼 ϵ ℝ), in constant dilation the value of 𝛼 is added to each pattern element.

Hence, a dilated pattern 𝛾𝛼 = {𝜀1 + 𝛼, 𝜀2 + 𝛼,… , 𝜀𝑆 + 𝛼}, ∀⁡𝛼 ≥ 0.

Proposition 4.2: If 𝛾𝑖 is the constantly dilated pattern of the original pattern 𝜌𝑖

by the value of 𝛼, then the variance value of any given node in the CwGN

network for the dilated pattern is 𝑉𝑅𝑐𝑁𝛼 = |
𝐶𝑣−𝑁𝑣

𝑁𝑣+𝛼
| and the difference value

between (𝑉𝑅𝑐𝑁) for the original pattern and dilated pattern for any node in the

network is ∆𝑉𝑅𝑐𝑁 = |
𝛼

𝑁𝑣+𝛼
. 𝑉𝑐𝑁| .

Proof: Let 𝑉𝑅𝑐𝑁𝛼 be the variance value of any given node in the CwGN

network for the constant dilated pattern 𝛾𝛼of the original pattern 𝜌. Then,

𝑉𝑅𝑐𝑁𝛼 and ∆𝑉𝑅𝑐𝑁 can be calculated as follows.

𝑉𝑅𝑐𝑁𝛼 = |
(𝐶𝑣 + 𝛼) − (𝑁𝑣 + 𝛼)

𝑁𝑣 + 𝛼
| (4.38)

𝑉𝑅𝑐𝑁𝛼 = |
𝐶𝑣 − 𝑁𝑣

𝑁𝑣 + 𝛼
| (4.39)

177

∆𝑉𝑅𝑐𝑁 = |𝑉𝑅𝑐𝑁 −⁡𝑉𝑅𝑐𝑁𝛼| (4.40)

∆𝑉𝑅𝑐𝑁 = |
𝐶𝑣 − 𝑁𝑣

𝑁𝑣
−⁡

𝐶𝑣 − 𝑁𝑣

𝑁𝑣 + 𝛼
| (4.41)

∆𝑉𝑅𝑐𝑁 = |(
𝐶𝑣

𝑁𝑣
− 1) − (

𝐶𝑣 + 𝛼

𝑁𝑣 + 𝛼
− 1)| (4.42)

∆𝑉𝑅𝑐𝑁 = |
𝛼(𝐶𝑣−𝑁𝑣)

𝑁𝑣(𝑁𝑣 + 𝛼)
| (4.43)

∆𝑉𝑅𝑐𝑁 = |
𝛼

(𝑁𝑣 + 𝛼)
. 𝑉𝑐𝑁| (4.44)

Note that the factor |
𝛼

(𝑁𝑣+𝛼)
| value ranges between 0 and 1 and gets

closer to 1 as the value of 𝛼 is increases. Thus, we can conclude that a node’s

weight can increase up to the value of 𝑉𝑐𝑁for a constantly translated pattern.

This predicts that the difference in weight Δ𝜔𝑖𝐶 ⁡in Equation 4.37 for a

constantly dilated pattern will range from 0 to 𝑉𝑐𝑁.

Definition 4.8: (Average dilation) Given a pattern 𝜌 = {𝜀1, 𝜀2, … , 𝜀𝑆}, where 𝜀𝑖

is a pattern element in position i S is the pattern size and the value of dilation is

(𝛼 ϵ ℝ), in average dilation the value of difference average 𝛼𝜀𝑖 is added to each

pattern element. Hence, a dilated pattern 𝛾𝛼 = {𝜀1 + 𝛼𝜀1, 𝜀2 + 𝛼𝜀2, … , 𝜀𝑆 +

𝛼𝜀𝑆}.

Proposition 4.3: If 𝛾𝑖 is the average dilated pattern of the original pattern 𝜌𝑖 by

the value of 𝛼, then the variance value for any given node in the CwGN

network for the dilated pattern is 𝑉𝑅𝑐𝑁𝛼 = 𝑉𝑅𝑐𝑁.

178

Proof: Let 𝑉𝑅𝑐𝑁𝛼 be the variance value of any given node in the CwGN

network for the average dilated pattern 𝛾𝛼of the original pattern 𝜌. Then,

𝑉𝑅𝑐𝑁𝛼 can be calculated as follows.

𝑉𝑅𝑐𝑁𝛼 = |
(𝐶𝑣 + 𝛼𝐶𝑣) − (𝑁𝑣 + 𝛼𝑁𝑣)

𝑁𝑣 + 𝛼𝑁𝑣
| (4.45)

𝑉𝑅𝑐𝑁𝛼 = |
𝐶𝑣(1 + 𝛼)

𝑁𝑣(1 + 𝛼)
−

𝑁𝑣(1 + 𝛼)

𝑁𝑣(1 + 𝛼)
| (4.46)

𝑉𝑅𝑐𝑁𝛼 = |
𝐶𝑣 − 𝑁𝑣

𝑁𝑣
| = ⁡𝑉𝑅𝑐𝑁 (4.47)

It can be concluded from Equation 4.47 that the difference in weight

between a pattern and its average dilated pattern will equal zero. Consequently,

the CwGN is invariant to average dilation. However, special cases may be

excluded. Similar to the problem discussed in pattern translation, a change in

the pattern weight might be encountered due to the assumption that a non-

deployed or off node’s value is zero. However, this effect is reduced by the use

of Nf.

Spatial dilation can be described as the increase in the pattern’s size

when the pattern is modelled in 2-D space. Figure 4.22 shows a pattern and

some of its possible transformations and Figure 4.22 (b) depicts the spatial

dilation of a pattern. The figure shows that the dilated pattern has the same

shape of the original pattern but has been spread out over the area. In this type

of dilation, the main feature that a CwGN scheme is observing is the edges of

the two-dimensional pattern, as it calculates weights based upon variances

179

between pattern elements. Consequently, the change in the number of elements

that represent the edges of a pattern will have the greatest impact on changing

the total weight value. The effect of such dilation can be minimised by the use

of NF. If the NF is the pattern size, such an effect will be lower in large pattern

sizes. This allows the CwGN scheme to be dilation invariant, especially for

problems involving large pattern sizes.

4.8.3 Spatial rotation

Spatial rotation is another form of pattern change that can occur in 2-D

space. In this type of change, the data location moves by an angle of θ in the

field of interest. Figure 4.22 (c) depicts the spatial rotation of a pattern. Similar

to pattern spatial dilation, the rotated pattern has the same original shape

characteristics. However, the rotated pattern changes the location of data by an

angle in the field of interest.

The main effect of spatial rotation on a pattern’s weight calculation is to

change the node’s edge type. In such a pattern, a node’s neighbouring value

could change while the node’s value remains the same. This will result in

changing the edge type of the node, which will change the weight of the whole

pattern. However, a horizontally flipped pattern will maintain similar

neighbouring values.

180

(a) (b) (c)

Figure 4.22: Possible types of pattern transformations. (a) Original

pattern, (b) dilated pattern, and (c) rotated pattern.

Definition 4.9: (Flipped pattern) Given a pattern 𝜌 = {𝜀1, 𝜀2, … , 𝜀𝑆}, where 𝜀𝑖

is a pattern element in position i and S is the pattern size, the flipped pattern 𝛾𝜃⁡

with a value of rotation 𝜃 = 180° such that 𝛾𝜃⁡ = {𝜀𝑆, 𝜀𝑆−1, 𝜀𝑆−2, … , 𝜀1}.

Proposition 4.4: If 𝛾𝜃 is the flipped pattern of the original pattern 𝜌, 𝜃 = 180°,

then the weight difference 𝜔𝜌𝛾 = 0, ∀⁡𝑅𝐸𝑣 = 𝐿𝐸𝑣.

Proof: Let 𝜌 = {𝜀1, 𝜀2, … , 𝜀𝑆}, the flipped pattern will be 𝛾𝜃⁡ =

{𝜀𝑆, 𝜀𝑆−1, 𝜀𝑆−2, … , 𝜀1}. 𝜔𝜌𝛾 can be calculated according to Equation 4.24 as

follows.

𝜔𝜌𝛾 = |∑𝑓(𝜀𝜌𝑖, 𝜀𝜌𝑖−1, 𝜀𝜌𝑖+1)

𝑆

𝑖=1

− ∑𝑓(𝜀𝛾𝑖, 𝜀𝛾𝑖−1, 𝜀𝛾𝑖+1)

𝑆

𝑖=1

| (4.48)

where 𝜀𝜌𝑖 and 𝜀𝛾𝑖 are the element values in position i in 𝜌 and 𝛾, respectively.

As the elements in the flipped pattern maintain the same neighbouring

elements and 𝐿𝐸 = 𝑅𝐸, then 𝑓(𝜀𝑖, 𝜀𝑖−1, 𝜀𝑖+1) = 𝑓(𝜀𝑖, 𝜀𝑖+1, 𝜀𝑖−1), and 𝜔𝜌𝛾 = 0.

This means that the scheme is invariant to flip pattern effect.

181

 The theoretical analysis of the effects of pattern transformations on a

CwGN scheme has been conducted in this section. The analysis shows that the

scheme is invariant to pattern translation, dilation and rotation translation

effects. However, special cases can affect the robustness of the scheme, as

discussed in this section. Experimental tests will be conducted in the next

chapter to present further analysis of the scheme’s transformation invariant

features.

4.9 Summary

In this chapter, the CwGN scheme is presented and discussed in order

address the problems of random and dynamic pattern changes. The goal of the

CwGN scheme is to overcome the location sensitivity problem associated with

the CGN scheme presented in Chapter 3 and provide transformation invariant

recognition capabilities using limited resources to deal with network and

patterns dynamics. The scheme adopts a weighting technique for pattern

memorisation and recognition operations rather than storing information about

the pattern itself. This eliminates the location sensitivity problem associated

with a CGN scheme. The weighting technique is performed by distributing the

computations amongst CwGN network nodes. Each node communicates with

its adjacent nodes to perform its weight calculations and report the outcomes to

another node. This allows the scheme to have the advantages of using

distributed methods, which minimises the scheme’s complexity and also

reduces resource consumption.

182

Similar to the CGN scheme, CwGN involves limited communicational

requirements as each node in the network communicates with its neighbouring

nodes only. Additionally, these communications occur only once for each

pattern. In other words, there is no need for an iterative process. In addition to

the resource conservation provided by such features, it is also possible to

predict the time needed to memorise or recall a pattern. Zoning structure is

presented in order to provide online recognition capability to the CwGN

network structure. This ability allows the scheme to be used in applications that

require time deterministic operations such as real time operations.

The theoretical analysis of the effects of pattern transformations on a

CwGN scheme was conducted in this chapter. Three types of transformations

have been analysed: translation, dilation, and rotation. The theoretical analysis

concluded that the scheme is invariant to these types of transformations. This

concludes that the CwGN is a robust scheme that can detect various types of

pattern transformation. Such recognition capabilities mean that the scheme

requires a limited amount of training information in order to perform pattern

recognition operations, which suits the nature of WSNs.

The capabilities provided by a CwGN scheme, including low

complexity, limited time cycle and limited requirement of training samples

make it the scheme best suited for WSNs, especially for real time and decision

making applications, as discussed in Chapter 2. The next chapter will present

experimental analysis and evaluation of the presented scheme in this chapter.

This will include estimating the number of activated nodes, energy

183

consumption, and learning time required in a CwGN network. Translation

recognition capabilities will be also demonstrated, using different types of

patterns to evaluate the scheme’s recognition accuracy. Additionally, the next

chapter will compare the scheme’s accuracy against existing pattern

recognition schemes, using different types of problems. This involves testing

the ability of the scheme to deal with real life problems.

184

Chapter 5

5 Experimental Evaluation of a CwGN

Scheme

5.1 Introduction

In the previous chapter, a CwGN scheme was introduced as an efficient

pattern recognition scheme for resource-constrained and large scale systems

and networks such as WSNs. The scheme adopts a parallel and distributed in-

network processing mechanism that is based on adjacency information

exchange. Additionally, the scheme involves network node activation and de-

activation processes to limit the number of participating nodes in the pattern

recognition process. The in-network network structure and activation processes

minimise communications and computations in the network, making the

scheme light-weight and scalable so as to run on a limited resource network

environment. Additionally, this allows the scheme to perform recognition

operations within a single and predictable duration learning cycle, which

makes the scheme suitable for online applications such as mission critical

application types.

The scheme also provides pattern transformation detection capabilities

by adopting a weighting technique that searches patterns’ edges. The weighting

185

technique is location insensitive as weights are accumulated from all network

nodes before a conclusion is reached about the detected pattern, which makes

the scheme capable of dealing with topological changes in patterns. This gives

the scheme the ability to efficiently recognise patterns while using minimal

information about patterns. CwGN’s scalability light-weight, single learning

cycle, and efficient recognition features make the scheme the best option for

large scale and limited resource networks such as WSNs.

Theoretical analysis has been conducted on the scheme to evaluate its

time complexity, transformation recognition capabilities, and communicational

overhead. The analysis showed that the scheme has high scalability for

performing pattern transformation recognition efficiently within a single

learning cycle. This chapter presents experimental analysis that evaluates the

scheme’s performance and resource consumption using different types of

problems to confirm the theoretical findings presented in Chapter 4. The

chapter evaluates the activation process of a CwGN scheme by estimating the

number of participating nodes in the recognition process. The scheme’s

recognition accuracy will be evaluated using patterns that carry different types

of transformations. This aims to perform sensitivity analysis of the scheme’s

recognition capabilities and determines its strengths and limitations. Energy

resource consumption and the time required to perform recognition operations

using a CwGN scheme will also be experimentally evaluated in this chapter.

This involves evaluating these parameters using the different message

sequence models presented in the previous chapter. This will also predict the

186

behaviour of CwGN networks running in different models. This chapter also

presents an accuracy comparison between a CwGN scheme and other existing

schemes using standard datasets and tools. Finally, in this chapter, the

capability of the scheme to deal with real life sensory problems will be tested

and compared with other schemes.

This chapter is organised as follows. Section 5.2 presents experimental

accuracy analysis of a CwGN scheme. This involves introducing two types of

datasets to evaluate the scheme’s behaviour in the presence of different

transformation levels. In section 5.3, the scheme will be compared with other

recognition schemes using standard datasets. In addition, this section will

examine the ability of the scheme to deal with real life problems that require

sensory information. In section 5.4 the communicational overhead of a CwGN

scheme in terms of energy and time will be experimentally evaluated. This will

be presented in accordance with the message sequence models presented in the

previous chapter. This will involve presenting a set of assumptions to find

figures for the network’s energy consumption behaviour, the network’s

lifetime, and the time required to perform one learning cycle. Section 5.5

summarises the chapter.

5.2 Accuracy Analysis of CwGN

In this section, the performance in terms of accuracy of a CwGN

scheme will be evaluated using experimental tests. This includes testing the

ability of the scheme to detect patterns with transformations such as translation,

187

rotation, and dilation. Additionally, this section will compare the recognition

accuracy of a CwGN scheme with other schemes. We ran three test series to

assess the accuracy of CwGN transformation recognition using different

datasets. The first uniform shape patterns dataset was called shapes dataset and

the second, using non-uniform map patterns, was called contours dataset.

These datasets will also be used in evaluating the activation process,

communicational overhead, energy consumption, and time requirements. The

next section compares the scheme’s accuracy with KNN, Naïve Bayes, and

neural networks using standard datasets available in [112]. The datasets carry

different types of transformations, as will be discussed.

5.2.1 CwGN Accuracy using uniform patterns (shapes dataset)

The first test aimed to estimate the limits of tolerance of the CwGN

scheme to pattern rotation, dilation, and translation for uniform shape-like

patterns. To perform this test, we constructed a dataset called shapes dataset

that consisted of training and testing pattern datasets. The training dataset was

constructed by creating and using four shapes modelled as a binary image of

size 200x200 pixels, as shown in Figure 5.1. Two shapes from the training

dataset were taken from the dataset presented in [129, 130]. These images were

presented to the CwGN network for memorisation. To construct the testing

dataset, altered versions of these images were produced for recall operations.

Four sets of altered images were generated. In the first set, each image was

rotated counter-clockwise from 1 to 360 degrees, with one degree for each

188

rotation level. In the second altered set, each image was spatially dilated by

scaling the object size using 50 dilating levels. That is, the images were scaled

from 1% to 100% scaling percentages in 2% steps. In the third set, each image

was randomly translated 100 times by shifting the pattern’s location. Figure 5.2

presents a sample of altered images using dilation, rotation, and translation

effects. In the fourth set, each image was altered four times with a complex

translation or a combination of rotation and translation, as shown in the

example in Figure 5.3, to test the ability of the network to recognise such

transformation types. Complex translation of an image involves taking parts of

the image and translating these parts separately to different levels. Complex

dilation involves dilating these parts to different levels as well. In this set, eight

altered images were taken from the dataset presented in [129, 130]. The total

number of altered images is 2052: 359 rotated images, 50 dilated images, 100

translated images, and 4 complex translated images for each original image.

These images were used for testing to determine the boundaries of the CwGN’s

invariant recognition capabilities. These images were presented to the CwGN

network to recall. We ran a simulated CwGN network of 40000 nodes

assuming that the nodes are distributed as a grid and that each node detects one

pixel reading. We set edge values to 0, 0.2, 0.2, and 1 for NE, RE, LE, and DE,

respectively. The normalising factor is set to 40 000, which is the number of

nodes. We first trained the network using the constructed training dataset.

Then, we presented testing datasets for recall.

189

Figure 5.1: Shapes used as the training dataset for the first test series.

Figure 5.2: Sample of altered patterns used as the testing dataset for the

shapes test series.

Figure 5.3: Sample of altered patterns used as the testing dataset for

complex translation and combination of translation and rotation

transformations.

The first set of recall images is the rotated samples. Figure 5.4 and

Figure 5.5 show the accuracy of the system in recalling rotated images. The

accuracy of the network in Figure 5.4 is calculated as the total number of

correctly classified patterns as a percentage of the number of tested rotated

images. The higher the score means the higher the accuracy. Alternatively, the

accuracy shown in Figure 5.5 is calculated using the average weight difference

190

between a recalled (transformed) pattern’s weights and the pattern’s stored

weight using Equation 4.36, as follows.

𝑎𝑖 = |
𝜔𝑐−𝜔𝑖

𝜔𝑖
| (5.1)

where ai is the accuracy of pattern i, 𝜔𝑐 is the recall weight obtained by the

network, and 𝜔𝑖 is the stored weight for pattern i in the network. The accuracy

shown in Figure 5.5 is the average score for all recalled patterns for each

rotational angle using the following equation.

𝑎𝑗 =
∑ 𝑎𝑖

𝑁𝑝𝑎𝑡

𝑖=1

𝑁𝑝𝑎𝑡
 (5.2)

where j is the transformation level which is the rotation angle in this case, aj is

the accuracy of that transformation level, and Npat is the number of stored

patterns, which is equal to 4 in the shapes dataset. Calculating average distance

to the stored weight means that lower scores indicate higher accuracy. The aim

was to evaluate the scheme’s behaviour in accordance with different

transformation levels.

Figure 5.4: CwGN network accuracy in detecting spatially rotated

patterns for the shapes dataset. Accuracy calculated as the number of correctly

recalled patterns. Higher scores mean higher accuracy levels.

0

1

2

3

4

1

2
3

4
5

6
7

8
9

1
1

1

1
3

3

1
5

5

1
7

7

1
9

9

2
2

1

2
4

3

2
6

5

2
8

7

3
0

9

3
3

1

3
5

3

C
o

rr
ec

tl
y

cl
as

si
fi

ed

p
at

te
rn

s

Rotation angle (˚)

191

Figure 5.5: CwGN network accuracy in detecting spatially rotated

patterns for the shapes dataset. Accuracy calculated as the average scores of the

average difference to stored weights. Lower scores mean higher accuracy

levels.

Figure 5.4 shows each rotation angle and the number of correctly

recognised patterns at that angle. It is important to note that the total numbers

of 4 samples were presented per rotational angle. The graph shows that the

CwGN network is highly accurate (4 correctly classified samples) in three

rotational regions. The first area is between 0 and 23 degrees, the second is

between 161 and 202 degrees, the area where patterns are horizontally flipped

or nearly flipped, and the third is between 341 and 360 degrees. In other words,

the CwGN network is capable of efficiently detecting patterns rotated within

these ranges, and could possibly detect higher rotational degrees. Figure 5.5

also shows the average distance to a stored pattern’s weight according to

Equations 5.1 and 5.2. From the figure it can be seen that the weight average

difference increases linearly by increasing the rotation angle, reaching its

highest value (78.77%) at 90˚. The increase in weight difference is caused by

0

20

40

60

80

100

1

1
9

3
7

5
5

7
3

9
1

1
0

9

1
2

7

1
4

5

1
6

3

1
8

1

1
9

9

2
1

7

2
3

5

2
5

3

2
7

1

2
8

9

3
0

7

3
2

5

3
4

3A
ve

ra
ge

 w
e

ig
h

t
d

if
fe

re
n

ce
 (

%
)

Rotation Angle (˚)

192

the change of a nodes’ edge type. Vertical rotation causes some of the active

nodes in the network to change their edge type from double edge (DE) to not

an edge (NE) and vice versa. Since presented patterns are uniform shapes, the

weight difference becomes more sensitive to this effect. After reaching the

highest difference levels, the difference decreases until reaching to the value of

0% at 180˚, which means that the stored weight is equal to its flipped pattern

version weight. This confirms the conditions and results presented in

Proposition 4.4. It can also be seen that the network presents the same

behaviour for the rotation angles ranging between 180˚ and 360˚. This means

that a pattern’s weight is equivalent to its flipped pattern’s weight.

The second set of recall images is the translated and complex

transformed samples. The scheme successfully recognised all patterns

correctly. This shows how the scheme is capable of dealing with translation

and combinations of transformations. Figure 5.6 shows the accuracy of the

translated patterns using the average weight difference in Equations 5.1 and

5.2. The number of iterations is 100. Each iteration involves 4 randomly

translated samples (one for each pattern), which gives a total of 400 samples.

The figure shows the average weight difference for all patterns based on the

iteration number. As can be seen from the figure, the average weight difference

is very low, and in most iterations 0. This confirms the conditions and results

presented in Proposition 4.1. The low difference values scored in some of the

iterations resulted from the special cases discussed in section 4.8.1.

193

Figure 5.6: CwGN network accuracy in detecting translated patterns for

the shapes dataset. Accuracy calculated as the average scores of the average

difference to stored weights. Lower scores mean higher accuracy levels.

The third set of recall samples was the set of dilated images. Figure 5.7

shows the recall accuracy of this set (200 samples were presented for this test).

The graph shows the number of correctly recognised patterns for each level of

spatial dilation. Four samples were presented at each dilation level. The graph

shows that the network is capable of providing perfect recognition accuracy for

dilation levels up to 26%. The network is also capable of correctly classifying

3 patterns for dilation levels up to 58%. Note that increasing the level of

dilation results in a decrease in recognition accuracy. This is due to the increase

in the number of edges in the same area, which increases the weight value and

leads to false recall. Figure 5.8 shows the average weight difference calculated

according to Equations 5.1 and 5.2. The graph shows that the difference

increases by increasing the dilation level, which is consistent with the

0

10

20

30

40

50

60

70

80

90

100

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

A
ve

ra
ge

 w
e

ig
h

t
d

if
fe

re
n

ce
 (

%
)

Iteration number

194

recognition results presented in Figure 5.7. This also confirms the concluded

conditions and results in Proposition 4.2.

Figure 5.7: CwGN network accuracy in detecting dilated patterns for

the shapes dataset. Accuracy calculated as the number of correctly recalled

patterns. Higher scores mean higher accuracy levels.

Figure 5.8: CwGN network accuracy in detecting dilated patterns for

the shapes dataset. Accuracy calculated as the average scores of the average

difference to stored weights. Lower scores mean higher accuracy levels.

0

1

2

3

4

2 8

1
4

2
0

2
6

3
2

3
8

4
4

5
0

5
6

6
2

6
8

7
4

8
0

8
6

9
2

9
8

C
o

rr
ec

tl
y

cl
as

si
fi

ed
 p

at
te

rn
s

Dilation percentage (%)

0

20

40

60

80

100

2 8 14 20 26 32 38 44 50 56 62 68 74 80 86 92 98

A
ve

ra
ge

 w
e

ig
h

t
d

if
fe

re
n

ce
 (

%
)

Dilation percentage (%)

195

5.2.2 CwGN Accuracy using non-uniform patterns (contours

dataset)

The second test series aims to estimate the limits of the CwGN

scheme’s tolerance to pattern rotation, dilation, and translation for non-uniform

patterns. For this purpose, we constructed a dataset called contours dataset that

has training and testing datasets. We generated a training dataset of maps. We

chose five raster map images from [131]. The size of each map is 100x100

pixels. These maps were transformed into contours using Matlab in order to

obtain the heights of the maps. We then transformed the contour maps into

binary map images to mark the highest pixels (peaks) on these maps. Figure

5.9 presents an example in which one such raster map is transformed into a

contour map and then into a binary map. Figure 5.10 shows the rest of resulted

maps from this operation. To create the test maps, we generated 360 rotated

maps (rotating from 0 to 360 degrees), 50 dilated maps (from 2% to 200%

dilation levels with 4% steps), and 100 randomly translated maps for each

training map as the three recall sets. We also generated a fourth recall set in

which each map was randomly altered 100 times with a combination of pattern

dilation, translation, and rotation. The alterations were limited to 15% for

dilation, 10x10 pixels for translation, and 10 degrees for rotation. A total of

2440 test maps were generated for recall. The accuracy of CwGN is calculated

as the total number of correctly recalled patterns as a proportion of the number

of altered images tested. Additionally, the accuracy of each type of

196

transformation was calculated as the average difference in weight values

according to Equations 5.1 and 5.2.

(a)

(b)

(c)

Figure 5.9: Process of producing contours training dataset. (a) A

100×100 pixel size raster map image. (b) Contour transformation of the raster

map. (c) Binary transformation of the contour map. White pixels indicate the

highest points in the map and are represented as ‘1’.

Figure 5.10: The rest of the non-uniform shape training patterns

generated using the same steps as used in Figure 5.9.

Figure 5.11 shows each rotation angle and the number of correctly

classified patterns at this angle. Five samples were tested per rotational angle.

This graph shows the ability of the network to efficiently detect patterns rotated

up to 12 degrees (in clockwise or counter-clockwise directions) or totally

flipped horizontally within the same range of rotation. The system could

possibly detect higher rotational degrees. Figure 5.12 shows the accuracy

calculated in terms of weight difference. Similar to the rotation test conducted

197

on the shapes dataset, this figure shows that the scheme has high accuracy

levels when the rotation value is close to 0˚ or 180˚. This also confirms

Proposition 4.4. However, this figure also shows that the contours dataset has

lower average weight differences compared to the shapes dataset. This

indicates that non-uniform patterns are less sensitive to rotation effects than

uniform patterns. This also indicates that a lower number of active nodes

change their edge type in non-uniform patterns.

Figure 5.11: CwGN network accuracy in detecting spatially rotated

patterns for the contours dataset. Accuracy calculated as the number of

correctly recalled patterns. Higher scores mean higher accuracy levels.

Figure 5.13 shows the recall accuracy of the dilation recall maps in

terms of correctly recognised patterns to the number of tested patterns. The

graph shows that the network is capable of providing perfect recognition

accuracy for dilation levels up to 24%. Additionally, the scheme can recall up

to 4 maps correctly at up to 68% dilation. Figure 5.14 shows the accuracy

levels in terms of weight difference average. The figure shows that accuracy

0

1

2

3

4

5

1
2

1
4

1
6

1
8

1
1

0
1

1
2

1
1

4
1

1
6

1
1

8
1

2
0

1
2

2
1

2
4

1
2

6
1

2
8

1
3

0
1

3
2

1
3

4
1

C
o

rr
ec

tl
y

cl
as

si
fi

ed
 p

at
te

rn
s

Rotation angle (˚)

198

decreases with increased dilation level. These results are consistent with the

findings of the theoretical analysis presented in Proposition 4.2.

Figure 5.12: CwGN network accuracy in detecting spatially rotated

patterns for the contours dataset. Accuracy calculated as the average scores of

the average difference to stored weights. Lower scores mean higher accuracy

levels.

Figure 5.13: CwGN network accuracy in detecting dilated patterns for

the contours dataset. Accuracy calculated as the number of correctly recalled

patterns. Higher scores mean higher accuracy levels.

0

20

40

60

80

100

1

1
9

3
7

5
5

7
3

9
1

1
0

9

1
2

7

1
4

5

1
6

3

1
8

1

1
9

9

2
1

7

2
3

5

2
5

3

2
7

1

2
8

9

3
0

7

3
2

5

3
4

3A
ve

ra
ge

 w
e

ig
h

t
d

if
fe

re
n

ce
 (

%
)

Rotation Angle(˚)

0

1

2

3

4

5

4 16 28 40 52 64 76 88 100 112 124 136 148 160 172 184 196

C
o

rr
ec

tl
y

cl
as

si
fi

ed
 p

at
te

rn
s

Dilation percentage (%)

199

Figure 5.14: CwGN network accuracy in detecting dilated patterns for

the contours dataset. Accuracy calculated as the average scores of the average

difference to stored weights. Lower scores mean higher accuracy levels.

The scheme correctly recalled all translated maps. Figure 5.15 shows

the accuracy levels for each translation iteration in terms of the average weight

difference, calculated according Equations 5.1 and 5.2. Each iteration involved

5 randomly translated samples (one for each contour map). Similar to the

shapes dataset translation test, the average weight difference is low and mostly

equal to 0 in most iterations, meaning that the scheme is invariant to translation

transformations. This also confirms Proposition 4.1. For the multiple

transformation set of recall maps, which involved rotation, dilation, and

translation levels, the network correctly recalled 452 out of 500 altered maps,

representing a 90.4% success rate. This demonstrates the ability of the scheme

to detect patterns in the presence of combinations of pattern transformations

that include rotation, dilation, and translation.

0

20

40

60

80

100

4 16 28 40 52 64 76 88 100112124136148160172184196

w
e

ig
h

t
d

if
fe

re
n

ce
 (

%
)

Dilation level (%)

200

In this section, the CwGN scheme’s performance in terms of accuracy

is experimentally evaluated. The evaluation shows that the scheme is capable

of efficiently detecting translated patterns, rotated or even flipped rotated

patterns of up to 23 degrees in any direction, and dilated patterns of up to 26%

dilation level. In terms of translation, the tests show that the scheme is resilient

to such types of pattern transformation as the scheme was capable of detecting

all translated patterns. This confirms that the CwGN scheme is a

transformation invariant recognition scheme. This also confirms the theoretical

analysis findings presented in Chapter 4.

Figure 5.15: CwGN network accuracy in detecting translated patterns

for the contours dataset. Accuracy calculated as the average scores of the

average difference to stored weights. Lower scores mean higher accuracy

levels.

0

10

20

30

40

50

60

70

80

90

100

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

w
e

ig
h

t
D

if
fe

re
n

ce
 (

%
)

Iteration

201

5.3 Comparing CwGN Accuracy with Other

Schemes

After evaluating the CwGN scheme’s accuracy boundaries, this test

attempts to compare the ability of CwGN to recognise transformed patterns

with existing pattern recognition schemes using standard datasets.

Additionally, this section will test the ability of the scheme to deal with real

life sensory problems. The first test presented in this section uses a standard

dataset that contains a set of pattern transformations. The use of this dataset is

to compare the accuracy of a CwGN scheme with KNN, Naïve Bayes, and

neural networks. The second test uses a sensory dataset that has been obtained

from a real life problem. This test will compare the accuracy of a CwGN

scheme with other schemes designed specifically to deal with such problems.

By evaluating the accuracy of the scheme and comparing it with other existing

schemes, the recognition capabilities of CwGN will be confirmed to be suitable

for dealing with real life pattern recognition problems.

5.3.1 Hill-Valley problem

This sub-section aims to compare the accuracy of a CwGN scheme with

iconic existing schemes using the hill-valley dataset [112]. The dataset contains

606 memorisation patterns and 606 recall patterns. Each pattern consists of 100

variables (i.e. elements). When plotting patterns in two-dimensional space,

each pattern will create either a hill or a valley. Each hill or valley pattern

202

differs in its location and magnitude. This means that a hill or a valley is

translated (shifted) and dilated in the recall dataset. Figure 5.16 and Figure 5.17

show examples of hill and valley patterns respectively. The task is to

differentiate between hill and valley patterns.

A CwGN network of 100 nodes with a track-linking communication

scheme was constructed to memorise and recall the patterns. Each node takes

one value of the pattern. For this problem, we added a new edge type called the

down edge (DW), as we are searching for peaks and troughs in the pattern

field. The DW is activated when the current value of a node is less than the

values of its adjacent nodes. We set the edge values to 0, 0.1, 0.1, 1, and 10 for

NE, RE, LE, DE, and DW, respectively, and the Nf to 100. To compare this

scheme with other schemes, the Weka tool [113, 114] was used to construct

KNN (k=1), Naïve Bayes, and multi-layer perceptron neural networks to

memorise and recall patterns. The percentage accuracy is calculated as the

number of correctly classified patterns as a percentage of the total number of

patterns presented to a network. Table 5.1 shows the accuracy percentage

results obtained by CwGN and other schemes. The table shows that CwGN

successfully differentiated between hill and valley patterns with a high

accuracy compared to other schemes. However, this does not mean that the

scheme is better than the other schemes, as this test only aimed to determine

the accuracy of the CwGN scheme in this special case. Figure 5.18 shows the

receiver operating characteristic (ROC) space and the plots for the two classes

for the CwGN, KNN, Naïve Bayes, and Multi-layer NN schemes. A ROC

203

graph describes the performance of each network based on the false positive

rate (FPR) and true positive rate (TPR). The figure shows that CwGN has

higher detection accuracy and lower error rates compared to the other schemes

in dealing with this problem.

Figure 5.16: Three samples of hill pattern.

Figure 5.17: Three samples of valley pattern.

Table 5.1: Recognition accuracy results of different schemes for the hill and

valley dataset

 CwGN KNN (K=1) Naïve Bayes Multi-layered

NN

Accuracy (%) 95.38 61.88 52.15 52.97

0

10

20

30

40

50

60

70

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

V
al

u
e

Pattern element

Hill 1

Hill 2

Hill 3

0

50

100

150

200

1

1
3

2
5

3
7

4
9

6
1

7
3

8
5

9
7

V
al

u
e

Pattern element

Valley 1

Valley 2

Valley 3

204

Figure 5.18: The ROC space and plots of the hill and valley classes for

CwGN, KNN, Naïve Bayes (NB), and Multi-layer NN schemes.

5.3.2 Wall following robot problem

This sub-section aims to confirm the ability of the CwGN scheme to

deal with real life problems such as artificial intelligence (AI) robot navigation.

Additionally, this test will be used to compare the accuracy of the scheme with

existing recognition schemes and other schemes that are designed specifically

to deal with such problems. In [132], the authors presented the problem of

robot navigation in a closed area such as a room. The task was to allow a

navigating robot to follow a wall (or obstacles) by finding a free-of-collision

route. A robot mounted with 24 ultrasound sensors was used to obtain a

training dataset according to Algorithm 5.1. The robot navigated through a

closed room setting. In [112], the dataset obtained by applying the algorithm

was presented as a training dataset named wall-following robot navigation data

205

set. According to the algorithm description, the dataset contains four classes:

Move Forward (MF), Slight Right Turn (SRT), Sharp Right Turn (ShRT), and

Slight Left Turn (SLT).

Algorithm 5.1: Collision-free rout finding for wall following robot

If Left Distance > 0.9
{
 If Front Distance <= 0.9
 {
 Stop and turn to the right
 } End If
else
{
 Slow down and turn to the left
} End else
} End If
else
{
If Front Distance <= 0.9
 {
 Stop and turn to the right
 } End If
else If Left Distance < 0.55
{
 Slow down and turn to the right
} End else
else
{
 Move forward
} End else
} End else

For a CwGN scheme, this problem would need to take into account the

problem of location-related sensing. The problem focuses on two main values:

left and front sonar sensory readings. The relations between these readings

decide the action that should be taken by the robot. Consequently, a CwGN has

206

been constructed that factorises the reading from left and front sensors. This

means that front and left sensors are assigned different factor values to be

multiplied by the obtained weight. This is to differentiate between left and

front readings. This means the value of 𝜔𝑐 in Equation 4.6 is multiplied by a

location factor depending on the sensor’s assigned detection location (left or

front).

To test the CwGN scheme, the two input datasets provided in [112]

were used and two tests were conducted. The first test aimed to compare the

accuracy levels that a CwGN network can achieve with KNN, Naïve Bayes,

and multi-layered Perceptron neural networks. The second test compared the

classification of CwGN with the schemes designed to handle this problem, as

presented in [132]. To use this dataset in comparing a CwGN scheme with

other classification methods, 50 instances out of each class were chosen for

training and the rest (more than 5000) instances were used for testing. The

results are shown in Table 5.2. Figure 5.19 shows ROC space graph for the

classes: Slight-right-turn (SRT), Sharp-right-turn (ShRT), Move-forward (MF),

and Slight-left-turn (SLT) used to navigate the robot.

Table 5.2: Recognition accuracy results of different schemes for the wall

following robot dataset

Method CWGN KNN(K=1) KNN(k=3)
Naïve
Bayes

Multi-layer
NN

Accuracy
(%)

93.1 78.84 79.17 89.55 77.07

207

It can be seen from Table 5.2 that the accuracy of other techniques is

higher than in the hill and valley test. This is due to the consistency of data in

terms of location and magnitude in this dataset as compared to the test. It can

also be seen from the table that the CwGN scheme achieved a higher

classification accuracy level than the other schemes. This validates the ability

of CwGN to be used as a robot navigation decision making scheme. ROC

graph shown in Figure 5.19 shows that CwGN scheme has lower error rates

compared to other schemes used in this test. This means that the scheme is

capable of handling the problem more efficiently compared to the other

schemes.

Figure 5.19: The ROC space and plots of the classes used in the wall

following robot problem for CwGN, KNN, Naïve Bayes (NB), and Multi-layer

NN schemes.

208

In order to compare CwGN with the methods presented in [132], a

robot simulation was designed. A room setting was created similar to the

obstacle settings in [132], as shown in Figure 5.20. The CwGN network was

trained using the provided training dataset. In this process, the robot in the

simulation then senses the established environment and a decision was made

based on the network’s recognition. The robot moved for 2000 pixels and the

resulting path is provided in Figure 5.21. The figure shows that the network

successfully guided the robot to navigate in the room moving as close as

possible to obstacles while maintaining a collision-free route. To compare

CwGN with the presented schemes in [132], the sensed data was captured and

compared with the results provided by Algorithm 5.1 to obtain the network’s

accuracy.

Figure 5.20: Room setting for the wall following robot navigation

problem similar to the setting presented in [132]. Red pixels are walls and

obstacles and blue pixels are free space.

209

Figure 5.21: Robot route obtained by CwGN. Cyan (light line)

represents the robot route.

The results of the network compared with the schemes presented in

[132] are shown in Table 5.3. Accuracy is calculated as the number of correctly

taken decisions to the total number of decisions. From the table, it can be seen

that the CwGN network was capable of dealing with the problem of the wall

following robot with higher accuracy levels compared to the schemes presented

in [132]. This reflects the high accuracy levels that can be achieved by using a

CwGN recognition scheme in complex sensory problems. This means that the

scheme is capable of dealing with real life complex problems with high

efficiency, which makes it a good candidate for use in various types of sensory

problems.

Table 5.3: Recognition accuracy results of robot navigation simulation for

different schemes.

Method CWGN Elman ME LP MLP

Accuracy
(%)

98.1 96.22 5.22 42.71 97.59

210

 In this part of the experiment, the scheme was compared with other

recognition schemes in terms of accuracy. The comparison included nearest

neighbour, Naïve Bayes, and multi-layer neural network schemes using the hill

and valley and wall following robot standard datasets. The first test showed

that the CwGN scheme was capable of distinguishing between hill and valley

patterns with a 95.38% accuracy level. On the other hand, nearest neighbour,

Naïve Bayes, and multi-layered neural network scored 61.88%, 52.15%, and

52.97% accuracy levels, respectively. This shows the high capability of CwGN

schemes to recognise transformed patterns compared to other existing iconic

schemes. In the second test, CwGN was compared with the iconic recognition

schemes presented in the first test using the wall following robot problem.

CwGN was successful in determining the right actions to be taken by the robot

with an accuracy of 93.1% compared to the other schemes. Additionally, the

scheme was compared with other schemes that were designed to deal with this

problem by implementing a simulation setting. The scheme was successful in

guiding the robot through a closed room following obstacles and walls with a

collision-free route and with an accuracy level of 98.1%, which was the highest

of all the schemes. These results reflect the capability of the CwGN scheme in

recognising transformed patterns and dealing with complex and real life

problems with a high level of accuracy compared to other schemes.

211

5.4 CwGN Communicational Overhead Analysis

This section attempts to experimentally evaluate the CwGN scheme’s

communicational overhead in terms of time and energy requirements. As

discussed in Chapter 2, network communications are considered to be the most

time and energy consuming tasks in WSNs. Hence, this section experimentally

estimates a CwGN network’s learning time cycle duration and energy

consumption based on communicational requirements. The section starts by

analysing the activation process and its effect on communications in the

network and then it presents a time and energy analysis.

5.4.1 Activation process analysis

The activation process of a CwGN network was presented in section

4.3.2. This process involves two types of activations, namely, node value, and

node edge activations. These activations types were described in Definitions

4.5 and 4.6 respectively. The activation process determines the number of the

network’s communications, as only activated nodes in the network participate

in the learning process. This sub-section uses the shapes and contours datasets

presented in the previous section to estimate the number of activated nodes for

each dataset.

Figure 5.22 shows two examples of node value activation. Figure 5.22

(a) shows the activation process of a binary pattern taken from the shapes

dataset. The pattern size S = 40000 and the threshold 𝜑 was set to 1. The nodes

212

are assumed to be deployed in a grid to sense the pattern space. Since the

pattern is binary, activated nodes will form the same shape that appears in the

pattern. The number of activated nodes in this example is 1932 nodes out of

40000. In Figure 5.22 (b) a grey scale contour image is taken from the contours

dataset as the pattern. The possible value of each element in this pattern is 𝑉 =

{0, 1, 2, … , 255}. In this example, the pattern size S = 10000 and the threshold

was set to 200. The number of activated nodes in this example is 235. It can be

seen from the examples shown in Figure 5.22 that the number of nodes that

conduct exchange communications has been reduced from the pattern size to

1932 in the first example and to 235 in the second one instead of involving all

of the network’s nodes in the process (40000 and 10000 for the first and second

examples respectively).

Figure 5.22 also shows the node edge activation of the patterns. The

total number of edge activated nodes in Figure 5.22 (a) is 244 nodes, while it is

141 nodes for the example shown in Figure 5.22 (b). This limits the number of

reporting nodes in the network to the edge activated nodes and relieves the rest

of value activated nodes from sending report messages. This reduces the

resource consumption of these nodes. Table 5.4 summarises the average

number of activated nodes for both datasets.

From Table 5.4 it can be seen that the number of value activated nodes

that will conduct exchange communications is small compared to the total

number of nodes. The number of value activated nodes represents only 5.04%

of the total number of nodes for the shapes dataset and 1.14% for the contours

213

dataset. Additionally, the number of edge activated nodes that will participate

in report communications represents only 0.905% of the network size for the

shapes dataset and 0.79% for the contours dataset. This reflects the amount of

communicational overhead reduction that can be achieved by using the CwGN

scheme.

Original image

Value activated

nodes

Edge activated

nodes

 (a) (b)

Figure 5.22: Example of CwGN nodes activation for (a) shapes dataset,

and (b) contours dataset.

Table 5.4: Average number of activated nodes.

Dataset
Network size

(nodes)

Average value

activated nodes

Average edge

activated nodes

Shapes 40,000 2016 362

Contours 10,000 114 79

214

5.4.2 Energy and time analysis

This sub-section aims to analyse a CwGN scheme from a practical

perspective. The goal is to estimate the lifetime and execution duration of the

network using the communicational models presented in section 4.7. To

achieve this goal, we ran a simulation program that creates and runs a CwGN

network on sensor nodes and derives energy and time readings. As noted, data

transmission is the most time and energy consuming process in WSNs. Hence,

the simulation evaluates these parameters based on the communications

involved in running the network.

We ran the simulation on sensor nodes based on the following

assumptions, as summarised in Table 5.5 [133-135]:

i. The sensor nodes are Mica 2 type.

ii. The frame size is 49 bytes. This includes preamble, addresses,

data, control, checksum, flag, and other fields.

iii. The preamble field is 8 bytes.

iv. Communication data rate is 128 Kbps. This means that sending

a full frame takes 3.0625 milliseconds (mS) and sending a

preamble takes 0.5 ms.

v. Transmitting one byte costs 59.2 micro joules (µJ) and receiving

one byte costs 28.6 µJ. This means that sending a full frame

costs 2.9 milli joules (mJ) (49×59.2 µJ) and receiving a full

frame costs 1.4 mJ.

215

vi. The maximum error in transmission is equal to one clock cycle

and the clock cycle takes 32 microseconds (µs). This means that

Δt = 32 µS.

vii. Each sensor is equipped with 3 volts (V) 30mAh battery. This

battery is chosen as one of smallest commercial batteries. This

means that a full sensor battery capacity is 324 joules.

To run the simulation, we used the shapes and contours datasets

presented in section 5.2. The first dataset represents binary shape patterns of

size 200×200 pixels. This shapes dataset, represents uniform patterns. For the

second dataset, the contours dataset, we chose grey scale contour images of

size 100×100 pixels, representing a non-uniform pattern type. We assume that

the nodes are deployed in a grid, where each node obtains a pixel value. This

requires 40000 nodes to represent the first network and 10000 nodes to

represent the second. Four networks for each dataset were created. Each

network runs in one of the models discussed in section 4.7: FS-Async, FS-

Sync, MC-Async, or MC-Sync. We presented each dataset to its associated

network to perform a learning process. Each dataset contains original and

altered patterns (instances). The altered patterns can be a result of rotated,

dilate, translated or a combination of alterations of the original pattern. The

total number of instances for the first dataset is 2044 patterns and the second is

1805 patterns.

216

Table 5.5: Summary of assumptions used in the simulation.

Sensor type Mica 2

Data transmission rate 128 Kbps

Frame length 49 Bytes

Time to send or receive a frame (Tsend) 3.0625 mS

Energy required to send a full frame 2.9 mJ

Energy required to send a full frame 1.4 mJ

Error rate (Δt) 32 µS

Battery capacity 324 J

To evaluate CwGN communicational and energy overhead, we

implemented the parallel KNN presented in [40] for comparison. We chose this

scheme for its simplicity in its computations and time complexity. Figure 5.23

shows an example of the parallel KNN network. Each node in the network

communicates directly with a central unit (i.e. base station). During

memorisation, each node stores its associated input value. In recall, each node

computes the nearest stored value to the incoming value and reports the

difference to the base station, which concludes the final decision. Figure 5.24

shows the average number of communications involved in performing the

learning cycle for each communicational type (frame slotted and multi-

channel) for shapes and contours datasets. Additionally, the figure shows the

number of communications required to implement parallel KNN for both

datasets.

217

Figure 5.23. A simple parallel KNN network.

Figure 5.24. Average number of communications for CwGN Async,

Sync, and parallel KNN for the shapes and contours datasets.

Since parallel KNN requires each node to conduct one communication

to the base station, its communications average is equal to the pattern size (S),

as shown in Figure 5.23. Figure 5.24 also shows that the average number of

communications reflects the network size and the number of activated nodes.

For example, the Async network involves 4393 communications for the 2016

value activated and 362 edge activated nodes for the shapes dataset. This

includes both exchange and report communications. This is 10.99% of the

4393
8424

40000

307 536

10000

Async Sync Parallel KNN

Average number of communications

Shapes Contours

218

network size and the total communications required by parallel KNN. The

Sync network involves 8424 communications for the same number of activated

nodes for the shapes dataset. This is 22.06% of the network size and the total

communications required by parallel KNN and almost double the average for

the Async communication model. For the contours dataset, Async

communication models recorded an average of 307 communications. This

represents only 3.07% of the network size. The Sync model for the same

dataset recorded an average of 536 communications, which is 5.36% of the

network size.

The average number of communications is expected to have

implications for the communicational overhead in terms of energy and time.

Figure 5.25 shows the average energy consumption obtained by the simulation

for each network type and each dataset. Figure 5.26 shows the average

obtained from using both datasets. This is applied for both multi-channel and

frame-slotted models, with the assumption that both models require the same

amount of energy for each communication. The average values shown in

Figures 5.25 and 5.26 represent the average energy required by a node to

perform a full learning operation and include sending and receiving energy

consumption.

Figure 5.25 confirms that the number of communications has

implications for the average energy consumption. However, this is not

applicable for the parallel KNN since each learning cycle requires all nodes to

participate by sending one message to the base station. This means that the

219

average in this case is equal to the amount of energy required to send one

message. From Figure 5.26 it can be seen that the Sync model requires almost

twice the energy that the Async model does. This is caused by the Ack

messages. However, it can be seen that it is not exactly the case as Sync

average consumption is 188.08% of the Async average. This happens because

of the activation process involved in a CwGN scheme, meaning that not all sent

messages are received. The values shown in Figure 5.26 can be used to

estimate the lifetime of the network. Figure 5.27 shows the lifetime in days for

each network based on the assumption that the network receives one pattern

every one minute.

Figure 5.25: Average energy consumption for each network for each

dataset in mJ. This represents the average energy required by a node to perform

a full learning operation.

Figure 5.27 shows that a CwGN Async network can theoretically last

for more than two years if it is used to obtain one pattern per minute using a

small 3V 30mAh battery (324 Joules). However, other factors may affect that

figure, such as physical sensory faults. Figure 5.27 also shows that the Sync

0.47
0.91

2.90

0.13 0.23

2.90

Async Sync Parallel KNN

Average energy consumption (mJ)

Shapes Contours

220

model could last for more than one year. In contrast, a parallel KNN will last

for less than 3 months in similar conditions. According to Tanenbaum [27], a

short WSN lifetime is almost 6 months. This analysis of a CwGN network

shows that a large scale network can last for 1 or 2 years. This reflects the

amount of communicational overhead reduction that can be achieved by using

a CwGN scheme.

Figure 5.26: Average energy consumption for each network for both

shapes and contours datasets in mJ. This represents the average energy required

by a node to perform a full learning operation.

Figure 5.27: Average lifetime for CwGN and parallel KNN networks.

0.30
0.57

2.90

Async Sync Parallel KNN

Average energy consumption (mJ)

744.72

396.11

77.59

Async Sync Parallel KNN

Average lifetime (days)

221

So far, the analysis has discussed average energy consumption. This

means that all nodes are expected to encounter the same amount of

communicational overhead. However, the network structure and the type of

incoming patterns could affect the behaviour of the network and present

different loads to its nodes. Evaluating the network’s behaviour, Figure 5.28

shows the distribution of available energy in each sensor used in the simulation

for Async and Sync communicational models for the shapes dataset. Figure

5.29 shows the distribution for the contours dataset.

From Figures 5.28 and 5.29, it can be noted that pattern shape can

easily be seen through the energy distribution when presenting a small number

of samples. However, energy distribution takes a cellular form after being

presented with a large number of patterns. This cellular form reflects the

cellular structure of a CwGN network. Both Async and Sync models have

similar cellular distribution but with more consumption in the Sync model. It

can also be seen that the energy distribution in the contours dataset is more

scattered in the field, while it is concentrated in the middle for the shapes

dataset. This is caused by the non-uniform pattern distribution of the contours

dataset compared to the shapes dataset. Finally, both figures show that energy

consumption increases going towards the core region. This is due to the

network structure that involves reporting from outer tracks to inner tracks.

Hence, it can be concluded that a node will have less lifetime as it gets closer

to the core region.

222

After

100

samples

1000

samples

2044

samples

 (a) (b)

Figure 5.28: Available energy for each node in CwGN networks

dealing with the shapes dataset. (a) Network applying Async model and (b)

Network applying Sync model. The nodes are distributed in the field as a grid,

where each pixel depicts one node’s available energy. The colours are in the

range between dark red and dark blue. Dark red indicates more energy

resources left in the node. Dark blue indicates less energy available. Colours in

between (such as yellow and green) indicate energy levels between dark red

and dark blue. Colour bars show exact energy figures.

223

After

10

samples

100

samples

1805

samples

 (a) (b)

Figure 5.29: Available energy for each node in in CwGN networks

dealing with the contours dataset. (a) Network applying Async model and (b)

Network applying Sync model. The nodes are distributed in the field as a grid,

where each pixel depicts one node’s available energy. The colours are in the

range between dark red and dark blue. Dark red indicates more energy

resources left in the node. Dark blue indicates less energy available. Colours in

between (such as yellow and green) indicate energy levels between dark red

and dark blue. Colour bars show exact energy figures.

224

The second factor related to the communications overhead to be

analysed in this section is network time. Learning cycle time (memorisation or

recall operations) can be estimated in terms of computations and

communications. However, it has been discussed theoretically and proven

experimentally that communication time is much higher than other factors in

such computations, as discussed earlier. Unlike energy analysis, the choice of

communicational model (FS or MC) is expected to have an influence on cycle

time. Figure 5.30 shows the average learning cycle time in milliseconds (ms)

that was obtained from the simulation run.

Figure 5.30: Average learning cycle time in milliseconds (ms) for a

CwGN network that runs different communicational models.

135.6

323.1

126.4

307.9

135.8

273.5

126.4

257.5

FS-Async FS-Sync MC-Async MC-Sync

Average network time (ms)

Shapes Contours

225

From Figure 5.30, the average time ranges between 126.4 and 323.1 ms

depending on the communicational model, network size, and dataset type. This

means that a large scale network of a size between 10,000 and 40,000 nodes to

memorise or recall a pattern with a rate of between 3 and 8 samples per second.

It can be noticed from that both datasets involve an almost similar learning

cycle despite the difference in network size. This is the result of two main

factors. The first is that network time is mainly dependent on reporting step

time, as exchange communications occurs in parallel. The second factor is the

type of dataset. The shapes dataset represents uniform objects that are usually

located in the centre of the field. This causes nodes to have condensed

activation. In other words, more active nodes will come from the same track

and hence less reporting messages will be required. Conversely, the contours

dataset contains non-uniform patterns that are scattered all over the field. This

will activate nodes in different tracks and will involve more reporting time.

Another important observation that can be made from Figure 5.30 is

that the difference between frame-slotted and multi-channel models’ time

requirements is small. This is also the result of the fact that reporting time is

the most time consuming part of learning cycle time. In an Async

communicational model, reporting involves only one message from one node

to another. In a Sync model, a sent message will be replied to with an Ack.

However, the message and its acknowledgement cannot be sent

simultaneously. As a consequence, in both models, the use of an MC model

will not speed up the reporting time as no messages will be sent and received in

226

the same time. In contrast, the MC model will speed up exchange

communications. However, such types of communications occur in parallel and

their effect on the learning cycle is minimal.

This section presented a simulation analysis of CwGN network

communications, including energy and time analysis. The energy analysis

showed that a CwGN scheme is capable of limiting the number of

communications and hence limiting the use of energy resources. It was shown

that the network can have a lifetime of two years using one of the smallest

batteries in terms of capacity (30 mAh). This is 8 times higher than other

schemes, such as parallel KNN. The time analysis shows that a CwGN network

can scale up, while having the ability to converge within a time range between

126.4 ms and 323.1 ms or a sample rate between 3 and 8 patterns per second.

These results were obtained by implementing the scheme using different

message sequence models and in accordance with the assumptions made in the

beginning of the section. These results show that a CwGN scheme minimises

communicational overhead, enabling WSNs to scale up efficiently and provide

real-time learning capabilities.

5.5 Summary

In this chapter, the CwGN scheme has been experimentally evaluated

and tested in three main areas: accuracy, comparison, and communicational

overhead. Testing the scheme’s accuracy involved constructing two datasets.

One represented uniform patterns and the other non-uniform patterns. Three

227

main transformation types were tested: translation, rotation, and dilation. The

tests showed that the scheme is capable of recognising patterns with the

presence of these types of transformations. For both datasets, the scheme

successfully recognised all translated patterns, while showing zero or very

small weight differences in most cases between stored and recalled patterns.

For rotation transformations, the scheme showed the ability to recognise

rotated or even flipped rotated patterns of up to 23 degrees in any direction.

The tests showed that any pattern has the same weight of its flipped version

pattern. In terms of dilation, the tests also showed that the scheme is capable of

detecting dilated patterns with up to a 26% dilation level. It was shown that

recognition accuracy is proportional to the dilation level. These results confirm

the theoretical analysis provided in the previous chapter.

Two tests using two standard datasets were conducted to compare a

CwGN scheme with other schemes. The first test used the hill and valley

dataset. The scheme showed a high level of detection accuracy compared to

KNN, Naïve Bayes, and neural networks using this dataset, which confirms the

ability of the scheme to recognise pattern transformations with much higher

accuracy than other schemes. In the second test, the scheme was compared

with a set of other existing and proposed schemes using the wall following

robot dataset. This test demonstrated the recognition capabilities of the CwGN

scheme in dealing with real life problems, achieving high accuracy levels

compared to other schemes, even those designed specifically to deal with such

problems.

228

The communicational overhead of the CwGN network and response

time were experimentally evaluated in this chapter. To achieve this, simulation

tools were constructed based on the activation process and the message

sequence models presented in the previous chapter. Tests showed that the

activation process of the CwGN network made it possible to minimise the

number of required communications. By using the activation process, the

required communications ranged between 3% and 11% of communications

required by other schemes. The achievement of such minimisation is reflective

of the network’s energy consumption, the network having a lifetime that is

eight times higher than other schemes, such as parallel KNN. The time analysis

showed that a CwGN network can scale up to 40000 nodes while having the

ability to converge within a time range of 126.4 ms and 323.1 ms or a sample

rate between 3 and 8 patterns per second.

The experimental analysis presented in this chapter shows that a CwGN

scheme can efficiently recognise transformed patterns, with the ability to scale

up and minimise the network’s communicational overhead as well as

supporting online recognition operations. The comparison presented in this

chapter shows that the scheme can provide higher accuracy levels than other

schemes, even for complex and real life problems. These capabilities make the

scheme the most suited for large scale, resource-constrained, and dynamic

networks such as WSNs. These capabilities also make the scheme suitable for

applications that require online operations and have limited prior information

about problems and surrounding environments. This makes the scheme a good

229

candidate for use in for a variety of problems. The next chapter will discuss the

possibility of using such promising capabilities in different disciplinary areas.

Such a possibility would open the way for new research opportunities making

it possible to involve pattern recognition in dealing with complex problems in

different application domains.

230

Chapter 6

6 Using CwGN Schemes in Enhancing

Optimisation and Pattern Matching

Applications Performance

6.1 Introduction

In the preceding chapters, CwGN schemes were introduced and

evaluated as light-weight and efficient pattern recognition schemes for

resource-constrained and large scale systems and networks such as WSNs.

The scheme minimises communications and computations by adopting a

distributed network structure based on an adjacency computational mechanism.

Additionally, the scheme involves an activation process that minimises the

number of participating nodes in the recognition process in the network in

order to further decrease in the computational and communicational overheads.

The scheme’s computational mechanism involves a weighting technique that is

capable of describing patterns in terms of topological edges in order to find

patterns’ boundaries. This eliminates the scheme’s dependency on location-

based information as weights are calculated and accumulated by network nodes

independently from their physical or logical location. This allows the scheme

to have a transformation invariant feature that allows it to efficiently recognise

231

transformed patterns. These features make the scheme capable of performing

online pattern recognition tasks with a high level of accuracy. Theoretical

analysis and experimental results show that the scheme is capable of

minimising computational and communicational overheads in the network to

perform efficient recognition activities for patterns that involve transformations

such as translation, dilation or rotation within a single learning cycle. Such

features make the scheme best suited for large scale and limited resource

networks such as WSNs.

According to Bishop and Nasrabadi [136], pattern recognition is one of

the methods used for machine learning where a system uses pattern

information for storing and recalling operations. However, machine learning

applications could pose challenging requirements for traditional pattern

recognition schemes. According to Bengio and Lecun [137], the goal of

machine learning research and applications is to develop methods that are

capable of learning complex problems such as behaviours and environments

with minimal prior knowledge in order to support artificial intelligence and

machine decision making processes. Fabisch et al. [138] highlight the most

common characteristics of complex problems learning as large problem

spaces, high levels of data noise and long learning time operations.

Consequently, pattern recognition-based schemes should be able to deal with

complex, noisy, and large scale problems if they are to serve machine learning

applications and support intelligence and automated decision making

processes. Achieving these goals requires pattern recognition schemes to model

232

problems into patterns and to use modelled problems and recognition

capabilities to support decision making methods. However, the lack of prior

knowledge about problems and the limited time requirements of machine

learning applications are still challenging to pattern-based recognition methods.

CwGN schemes’ features, discussed in Chapter 5, show that the type of

scheme has promising capabilities that can be used to address machine learning

application requirements. This chapter aims to use the promising features of

CwGN, a pattern recognition-based scheme, in other machine learning

disciplines that attempt to deal with complex problems. This can be achieved

by involving the scheme in the steps of the problem solving process, where the

scheme can improve the performance of the overall process. For this purpose

two distinct disciplines have been chose as examples of how such promising

schemes can be embedded in the process of dealing with complex problems.

The first discipline example attempts to involve pattern recognition capabilities

with optimisation techniques. The second example attempts to involve a

CwGN scheme in dealing with complex classification problems such as human

activity recognition. These examples pave the way for more innovative

research opportunities in implementing such pattern recognition schemes in

different application domains.

Optimisation techniques attempt to find optimal solutions for a given

problem. Genetic Algorithms (GA) [139] is one example of such techniques.

GA is a robust technique that attempts to find optimal solutions for unknown

problems based on an evolution concept. The technique starts from total

233

randomness to produce a set of solutions and uses a set of operations to allow

this set to evolve from one generation to another to reach the optimal solution.

The survival of a solution in a generation depends on a predefined fitness

function. Despite the technique’s robustness and its capability in solving

problems, it suffers from uncertainty in terms of convergence time. This is due

to the randomness involved in generating solutions. In addition, GA suffers

from the exponential relationship between the problem size and convergence

time, as the search and fitness evaluating time increases by increasing the

problem size [140].

In relation to the first example of using the scheme’s recognition

capabilities in different application domains, this chapter will propose a novel

hybrid model that bolts a pattern recognition-based CwGN scheme to GA to

minimise GA time complexity. The aim of such a hybrid scheme is to allow

GA to learn from experience and solve problems in generating a set of

proposed solutions for other similar problems. To achieve this, a CwGN

network will model problems as patterns and store these patterns along with

information about the GA solution of each problem. Then, when a new

problem is encountered, the network will implement recognition operations on

newly encountered problems to propose a set of possible solutions to the GA to

start with. This means that the evolution process of the GA system will start

from a knowledge-based set of solutions rather than complete randomness. The

hypothesis is that the search time of a GA system will decrease if it is provided

with a solution of a problem that is close to the optimal solution. In other

234

words, the closer the proposed solution to the optimal solution of a problem,

the fewer number of steps a GA requires to converge to the optimal solution.

This chapter will propose a hybrid model and test its feasibility by

implementing a robot guidance problem to compare the performance in terms

of speed and accuracy between the proposed model and the traditional GA

model.

The second discipline that this chapter will present is the use of CwGN

pattern recognition-based schemes in dealing with classification problems. In

classification problems the task is to observe a set of attributes and identify to

which class set these attributes belong. The classification process is based on

training instances where each instance contains a set of attributes. One of the

main issues related to existing classification schemes is that time complexity

increases with the increase of the number of training instances. This is due to

the search process, where an incoming set of attributes will be compared to the

training instances. This chapter will show that a CwGN scheme is capable of

translating attributes into patterns to perform classification operations. The

problem of human activity recognition will be presented in this chapter as an

example of how a CwGN scheme can be used to serve classification purposes.

Such problems involve a high level of noisy data as human behaviour

uncertainty is a key challenge in predicting activities. The scheme will be

tested against one of the popular standard datasets available and will be

compared with iconic schemes that are designed to deal with classification

problems, such as nearest neighbour, Naïve Bayes, and neural networks, in

235

terms of accuracy. The comparison will be based on presenting a limited

number of training samples to evaluate the accuracy of each scheme when

using small quantities of training data to maintain high speed classification

processes.

The chapter is organised as follows. In section 6.2, the hybrid CwGN-

GA model will be presented as an example of using a CwGN scheme in

enhancing the performance of optimisation algorithms. This will include an

overview of GA algorithms, the approach of linking a CwGN scheme with GA,

performance enhancement expectations, the implementation of the robot

navigation problem, and experimental results. In section 6.3, a human activity

recognition problem will be presented as an example of using a CwGN scheme

for classification problems. This will include an overview of human activity

problems, an overview of the testing dataset, and the implementation and

experimental results. Section 6.4 concludes the chapter.

6.2 Hybrid CwGN-GA Schemes for Autonomous

Robot Navigation Using WSN

This section discusses the use of CwGN schemes in enhancing the

performance of GA in terms of accuracy and speed. One of the motives behind

choosing such an application domain in this research is that GA systems have

been used, presented and discussed in the literature to deal with sensory related

problems. For example, Wu and Lui [141] propose a GA-based WSN routing

236

algorithm that creates optimal clusters that minimise routing energy

consumption by balancing energy requirements among cluster heads. Their

fitness function is based upon gathering information about WSN nodes,

including distances and energy status. Martins et al. [142] propose the use of

GA for dealing with WSN coverage problems that need to be addressed in the

network deployment phase or for dealing with coverage problems resulting

from network node failures. Such failures require dynamic connectivity

mechanisms to maintain the intended coverage over an area of interest. The

GA generates a connectivity model between sensor nodes based upon the

energy consumption required for each node to reach its sink. Chin et al. [143]

propose GA-based path planning for robotics based on obtained sensory

information. The sensors collect information about obstacles in the problem

space and provide the collected information to the GA in order to find an

optimal collision-free path based on distance fitness functions.

As discussed earlier, GA systems offer to find optimal solutions for

complex and unknown problems by implementing a set of evolutionary

operations. These operations include crossover, mutation, and fitness

evaluation in each produced generation of the evolutionary process. This

process continues until the GA system reaches an optimal solution to the

problem. Means such as limiting the number of generations may be employed

to end a GA’s computations [144]. The main benefits of using GA are the

ability of finding solutions for complex problems and the ability of dealing

with totally unknown problems [145, 146]. However, one of the main

237

challenges in using GA is the exponential relationship between the problem

size and the its time complexity [140]. Attempts to enhance a GA’s

performance have been studied in depth. These include parameters tuning,

parallel GA, hybrid GA, and other approaches. However, predicting

enhancements of GA systems in terms of time complexity is not always

feasible [140, 145]. In some cases, performance enhancement of GA can be

achieved by using previously solved problems. Hart [147] proves by

experiment that seeding initial population to GA will lead to an optimal

solution in fewer numbers of generations. This phenomenon is called

evolutionary bias or GA drift. However, he also found that the total time of

seeded GA, including obtaining seed solutions, is almost similar to the total

time of running GA with a random initial population.

Motivated by Hart’s [147] experimental findings, in this section we

study the benefit of using GA-solved problems in enhancing and speeding up

the process of finding solutions for other unknown problems. It is hypothesised

that if a GA was given good initial solutions to start with, the scheme would

find better optimal solutions for unknown problems in fewer numbers of

iterations compared to a randomly initialised GA. The challenge here is how to

know what good solutions can be provided to a GA system. This can be

addressed by finding similarities between problems that lead to similarities

between the solutions to these problems. Hence, the second hypothesis that this

section discusses is that if there is a level of a similarity between two problems,

then there is a similarity between the solutions to these problems.

238

Consequently, the proposed scheme in this section is based on these two

hypotheses, where it attempts to find similarities between problems and

propose solutions to the GA. By achieving this, the hybrid scheme will

converge to a better optimal solution to a problem with fewer numbers of

generations compared to a traditional, randomly operated GA. Hence, the task

of the GA in the proposed hybrid model is to find optimal solutions to

problems while the CwGN scheme stores the solutions and attempts to find

similarities between solved problems and new incoming problems to suggest

best stored solutions to the GA. The following sub-section describes the

process of the hybrid scheme in detail.

6.2.1 Approach

The hybrid CwGN-GA model consists of two main components: a GA

system and a CwGN network. The task of the network is to model problems

into patterns, find similarities between patterns and suggest the best available

solutions to the GA. The GA, on the other hand, performs its normal

evolutionary operations to find optimal solutions. This can be achieved in two

stages, namely, memorisation and optimisation. These phases are described in

the following sub-sections.

Memorisation

In the memorisation stage, the aim is to store solutions for known or

existing problems. To perform this stage there should be a set of training

problems that the hybrid scheme can use to train the network. The GA

239

component finds solutions for existing problems and provides a CwGN

network with its outcomes. The network stores information received by the GA

to use it in the optimisation stage. The steps of the memorisation phase for

storing information for a given problem can be described as follows.

i. The GA component runs in random mode to find the optimal

solution for the problem.

ii. The GA sends the solution to the CwGN network.

iii. The network models the problem as a pattern and calculates its

weight according to the steps illustrated in section 4.3.

iv. The network stores the pattern’s weight associated with the

optimal solution received by the GA in the S&I database.

Figure 6.1 shows the relationship between CwGN and GA systems for the

memorisation stage.

Optimisation

In the optimisation stage, the aim is to find similarities between new

problems and already stored problems. This is so as to provide GA with the

best solution available in order to speed up the search process. In this stage, it

is possible to provide GA with one or more solutions to include to its first

generation. This means that the GA will include both suggested and randomly

generated solutions in its first generation. The steps of this stage can be

described as follows.

i. The CwGN network models the problem as a pattern.

240

ii. The network performs recall operations according to the process

described in section 4.3.

iii. The S&I obtains the associated solution to the recalled weight

from its database and sends it to the GA.

iv. The GA includes the provided solution to its first generation

along with randomly produced solutions.

v. The GA functions normally until finding the optimal solution.

Figure 6.1: The memorisation phase of hybrid CwGN-GA scheme.

241

In case of multiple solutions to be provided to the GA, the S&I will

provide the closest weights’ associated solutions and the GA injects the

received solutions into the initial population along with the randomly generated

solutions. The GA continues its operations until the stop criterion is met.

Figure 6.2 shows the process of the optimisation phase.

Figure 6.2: The optimisation phase of hybrid CwGN-GA scheme.

6.2.2 Performance enhancement

Several methods for estimating the time complexity of GA algorithms

have been used in the literature. Drift analysis is one of the key methods that

can be used in estimating the hybrid CwGN-GA scheme’s computations of the

242

distance between the optimal solution (opt) and the set of solutions provided in

each generation [148]. In this method, if 𝑑(𝑚𝑖) is the minimum distance

between opt and set of population members, and ∆𝜑 is the drift to opt, the

estimated time step (𝜏) for a the GA system to reach the optimal solution is

𝑑(𝑚𝑖)

∆𝜑
 [140].

Definition 6.1: (Optimal distance) Let Z be the problem space for a GA

problem, Mi is the set population i of the system, OP is the set of optimal

solutions for the problem where OP ∈ Z, and 𝑑(𝑚𝑗 , 𝑂𝑃)⁡is the distance

between the member j in a given population to one of the OP members. The

optimal distance 𝑑(𝑀𝑖) = min⁡{(𝑚𝑗 , 𝑂𝑃):⁡𝑚𝑗 ∈ 𝑀𝑖}.

The aim of the hybrid scheme is to minimise the optimal distance for

the initial population (𝑑(𝑀0)) in order to reduce the time step 𝜏 by injecting a

set of learned solutions (𝑀∗) into the population. If the solution is good

enough, then 𝑑(𝑀0) = 𝑑(𝑀∗), and there is a high chance that the hybrid

scheme will converge faster than a totally random GA system. The probability

of a random GA system converging faster than the hybrid system occurs when

the selection of 𝑀∗ prevents the random selection from being one of the better

solutions in 𝑀. Such probability can be estimated using the hypergeometric

distribution as follows.

𝑓(𝑋 = 𝑚∗) =
(𝐿
𝑚∗)(

𝑍−𝐿
𝑀−𝑚∗)

(𝑍
𝑀
)

 (6.1)

243

where 𝑍 is the problem size, M is the random population size, 𝑚∗ is the number

of injected solutions in the random population by the hybrid scheme, and 𝐿 is

the set of solutions that satisfy {𝑑(𝑙𝑗) ⁡< 𝑑(𝑀∗) ∶ ⁡ 𝑙𝑗 ⁡ ∈ 𝐿}. The problem size

can be computed in terms of pattern size (S) and possible values of each

pattern’s element (V) as Z=SV.

6.2.3 Autonomous robot navigation using GA

As a proof of concept, we couple the CwGN scheme with a GA system,

as presented in [149] and [150]. However, it is possible to couple the CwGN

with any other type of GA. In [149], the GA system for autonomous robot

navigation allows robots to find a collision-free path from the top left point to

the right bottom point in a 2-D search space. The system assumes that robots

use sensory systems to evaluate the problem space and then use GA to find the

best candidate path. In order to find the best candidate path, the fitness function

for the system evaluates each proposed path in terms of the path’s length (Pl),

number of collisions in the path (Nc), and the number of required robot turns

for that path (Nt). The fitness function can be described as follows [149].

𝑓𝑝 =
𝑓(𝑁𝑐). [𝐿. 𝑓(𝑃𝑙) + 𝑇. 𝑓(𝑁𝑡)].

100
𝐿 + 𝑇

𝑁𝑐2

(6.2)

where L is the weighting factor of length and T is the weighting factor for

turns. The equation calculates the number of turns and the path length then

penalises the result by dividing the square of the number of collisions in that

path. The authors’ hypothesis is that these metrics can be used to find the

244

fastest free-of-collisions path from one point to another. The assumption here is

that turning a robot is one of the most time consuming operations in robot

movement. The navigation scheme’s solution contains a set of points in the

field representing the steps of the robot’s movements. A solution includes two

switching points to determine the robot’s movement direction. The robot starts

with horizontal movement and switches to vertical movement when it reaches

the first switching point. Reaching the second switching point, the robot returns

to horizontal movement again.

6.2.4 Simulation

To test this approach a simulation of autonomous path planning for

mobile robots, presented in [149], was developed as the GA system. The

training dataset generated in the second test in Chapter 4 is used as the original

problem maps to simulate a robot that should find a collision-free-path to cross

from the top left corner to the bottom right corner. It is assumed that sensor

nodes are deployed in a grid over the map to sense heights. It is also assumed

that each peak in a map represents a collision point that the robot should avoid.

The fourth recall set in the second test series in the last chapter is used as the

recall set in this simulation. In the recall set, each map is randomly altered 100

times with a combination of pattern dilation, translation, and rotation. The

alterations were limited to 15% for dilation, 10x10 pixels for translation, and

10 degrees for rotation. A total of 500 test maps were generated for recall.

Figure 6.3 shows one original map and a sample of altered maps of the original

245

one. The use of such maps ensures some level of similarity between training

and testing problems.

Original map

Sample of altered maps

Figure 6.3: A training map from the contours dataset and a sample of

altered maps used in the testing dataset.

The parameters of GA are: 0.033 mutation probability, 0.6 crossover

probability, and a population size of 100. To limit GA search time, we set the

maximum number of generations to 400. Mutation and crossover probability

levels were chosen based on the ability of the GA to find optimal solutions for

246

the training binary maps within the maximum number of generations. An

optimal solution in this test is defined as the solution that scores the highest

fitness value in the last generation of the GA process. The fitness function in

[149] takes the path length, the number of turns, and the number of collisions

into account. We used the same fitness function with a solutions fitness value

between 0 and 10. A solution with a fitness value of 10 is considered the best

solution. For a map size of 100x100, a solution consists of 102 integers that can

be used to guide a robot through the map. This includes two switching points.

To compare the hybrid CwGN-GA scheme with the autonomous GA,

we ran the autonomous GA to find the optimal solutions for the five training

maps used in the second test described section 5.2. The solutions were sent to

the S&I for storing and association with the corresponding map. Both the

coupled CwGN-GA scheme and the autonomous GA were run eight times with

different maximum numbers of generations to find robot guidance solutions for

the 500 test dataset. The maximum numbers of generations for each run time

(for both schemes) were 50, 100, 150, 200, 250, 300, 350, and 400,

respectively. This aimed to test the performance of both schemes when

increasing the time limit. The schemes were run with different maximum

numbers of generations to evaluate the degree of performance enhancement

achieved by this approach. To ensure the accuracy of the comparison, we used

the same pseudo-random number of generations for both schemes. Figure 6.4

shows the performance of the two schemes in terms of the average solution

fitness values and the maximum number of generations. The figure shows that

247

the average fitness values resulting from the proposed coupled CwGN-GA

scheme are always higher than those resulting from the autonomous GA. We

also note that the average fitness value from the combined GA with a

maximum of 250 generations is higher than the average value achieved by

running an autonomous GA for 400 generations. This is due to the proposing of

solutions provided by the CwGN network that drifts the GA search towards the

proposed solution rather than starting from normal GA’s complete randomness.

Figure 6.4: A comparison of the performance between the proposed

combined CwGN-GA and autonomous GA.

Based on this experimental result, the total number of generations used

to find the solutions for the 500 test maps using an autonomous GA can be

calculated as 200000 generations. In contrast, the proposed scheme required

248

127000 generations (including the training phase) to find optimal solutions for

the same set of maps. This represents a reduction of 73000 generations, or

36.5%. This shows that the use of CwGN scheme and limited number of

training samples (5 samples in this experiment) allows GA to find optimal

solutions with a cut off by 36.5% in time. In addition, this test shows that the

proposed hybrid scheme is capable of reaching solutions that have higher

fitness values than traditional GA when using the same number of generations

as a stopping criterion. This means that the solutions obtained in the proposed

hybrid scheme are more feasible for use in solving presented problems than

solutions obtained by normal GA. In general, it can be concluded from this test

that the transformation invariant recognition capability of CwGN can be used

to improve the performance of AI systems such as GAs in terms of speed and

accuracy.

6.3 Human Activity Recognition Using WSNs

This section discusses the feasibility of using a CwGN scheme in

classification problems, the second example of how to use the features of the

scheme in different application domains. In this section, a CwGN model will

be presented that translates attributes into patterns and then uses these patterns

to solve classification problems. It will be shown that such a model is capable

of performing classification using a limited number of training instances with a

high level of accuracy compared to some of the existing classification methods

such as nearest neighbour, Naïve Bayes, and neural networks.

249

One of applications that can be used for this purpose is human activity

recognition systems. Such systems analyse the physical behaviours of

individuals in order to interpret the actual state, action or activity a human is

performing at any given time [151]. These systems can be useful in numerous

applications, such as medical monitoring, habitat monitoring, sports, security,

and so forth. For such systems to be functional, two types of data collection

means are generally used: camera-based means and sensor-based means [152].

Camera-based systems use visual equipment that observes an individual

behaviour and attempts to use these observations for analysis. In senor-based

systems, a set of integrated sensors functions as a WSN to collect sensory

information about the targeted individual. In recent research, sensor-based

activity recognition systems are considered to have the most attraction

compared to camera-based systems [153]. In this section, the focus is on

sensor-based systems as a case study for pattern recognition using CwGN.

Different types of sensors are capable of collecting different types of

measurements. For example, accelerometer sensors measure the acceleration of

an object while gyroscope sensors measure the orientation [154]. These sensors

can be wearable devices that are attached to an individual’s body. Other types

of sensors can be attached to physical objects such as drawers and doors. These

sensors provide sensory information for analytical and pattern recognition

systems that transform measures and readings into activities. Different sensors

measure different readings that can be used for analysis and recognition. For

250

example, accelerometer sensors measure the acceleration rates of an object

while gyroscope sensors measure orientation based on momentum [154].

The literature is rich in research that attempts to solve the problem of

human activity recognition. For example, Parakka et al. [155] use sensor

devices and PDAs to perform online daily life activity recognition based on a

decision tree classifier. Zhu and Wihua [156] use markov models and neural

networks to analyse wearable sensor readings in order to create a human-robot

interaction approach for elderly and disabled people. Zhang et al. [157] present

a sparse representation approach that leads to reducing human activity

recognition complexity using wearable sensor devices. In general,

classification methods such as SVM, neural networks, and Naïve Bayes

algorithms are dominant in solving activity recognition problems in WSNs

[151, 155]. However, no particular method was superior to other methods in

dealing with the problem [155]. These methods could use probabilistic

approaches such as Naïve Bayesian networks. However, such methods require

huge amounts of data to be available and a large amount of analysis is required.

Alternatively, other classification methods such as nearest neighbour can be

used to create a model of relationships between collected.

The problem of human activity recognition using sensor networks

encounters several challenges that limit the capabilities of such systems. These

challenges can be human or technical. Human behaviour is one of the most

important challenges to be addressed [158]. Several difficulties related to

human behaviour emerge in conducting activities. For example, a person may

251

perform more than one action or activity at the same time. Here research needs

to address the question of the means of distinguishing between one activity and

another. Additionally, the behaviour of targeted monitored objects differ from

person to person. For example, a person may perform a set of sequenced

actions in order to complete an activity while another person may carry out a

different sequence in performing the same activity. Other challenges are related

to technical issues include those exposed in the design of sensor networks and

the way these sensors are physically deployed. Activity recognition systems

usually require small wearable devices that are attached to a target or mounted

on surrounding objects. The main challenge in this case is to conserve battery

consumption and reduce memory requirements [158].

 It has been shown that a CwGN scheme reduces the communications

required for performing recognition. Additionally, it has been shown that the

scheme performs learning operations with no memory requirements placed on

the network nodes. Consequently, CwGN is a good candidate for dealing with

the problem of activity recognition as it deals with the major technical

challenges that may be encountered in such applications. In this section, the

CwGN will be compared with other existing techniques using limited collected

data to demonstrate the capability of the scheme in addressing activity

recognition problems.

252

6.3.1 Opportunity dataset

An opportunity dataset [159, 160] is a rich database of collected

information from sensor devices that record the human activities of different

subjects. Sensors are deployed on the body and on surrounding objects. The

sensors deployed include inertial, accelerometer, and compass sensors. The

sensors deployed on the body form a WSN and the ones deployed on objects

form a wired network. The challenge dataset presented in [161] contains the

reading measures of deployed sensors for four subjects. Our focus in this case

study is on the body-worn sensors that represent the WSN part of the setting. In

this case, there were 39 worn sensors that contained information about

subjects’ activities. These sensors were deployed in different parts of each

subject’s body. The types of sensors were as follows: 12 accelerometer sensors,

7 inertial sensors, and 2 compasses. Each accelerometer sensor provided 3D

readings (x,y, and z). Five inertial sensors were deployed on the upper part of

the body and each one contains three 3D readings, namely, acceleration,

orientation, and magnetic field. The other two inertial sensors were deployed

on the shoes of the body (left and right) and each one obtained five 3D

readings, namely, acceleration, orientation, magnetic field, rate of turn, and

angular velocity. Each of the two compasses provided a single reading that

gave the direction of the object. This came to 113 attributes for each data

instance.

The recorded activities were manually labelled. Two types of activities

were targeted, namely, locomotion, and gestures. The locomotion activities

253

included four activities: standing, walking, sitting, and lying down, labelled as

101, 102, 104, and 105 respectively. Gestures included detailed activities such

as opening or closing a drawer. In this case study, locomotion activities were

studied as gesture activities, relying on the wired objects’ mounted sensors.

The case study attempted to classify the four locomotion activities based only

on the measures provided by the body-worn sensors. This means that the time

stamp of when an activity occurred was also neglected. This is to demonstrate

the capability of the CwGN scheme in classifying activities without recording

the historical information about a subject’s behaviour. This is intended to

minimise memory requirements so as to meet WSN resource constraints.

6.3.2 CwGN for activity recognition

An opportunity dataset is used in this case study to address the problem

of activity recognition using CwGN. The first step in the case study was

handling the dataset to represent valid readings to the network. The dataset

provided sensory measures based on time. Each data instance represents the

measures of the sensors at a given time. Some instances in the dataset contain

faulty readings that are denoted as (NaN). In this experiment the instances

containing more than three invalid readings were eliminated.

The second step was to address the relationship between sensors and

S&I in the CwGN network. Since worn sensors give readings in 3D format,

each sensor exchanges information with its adjacent sensors. The network is

made up of 37 nodes that provide the 3D readings. The two compass readings

254

(1D) send information directly to the base station without exchanging. Each

sensor in the network calculates three weights (x, y, and z) in accordance with

Equations 4.3, 4.4, and 4.5. Each value in a certain dimension is considered to

be adjacent to the neighbour’s value of the same dimension. For example, the

value of x in the first sensor is adjacent to the value of x in the second sensor.

Figure 6.5 shows the connectivity relationship between adjacent sensors

(nodes) in the same track of a CwGN network. Each weight is calculated as

follows.

𝜔𝑐𝑑 = 𝐸𝐷𝑣𝑑 . 𝑉𝑅𝑐𝑛𝑑 + 𝐸𝐷𝑣𝑑 . 𝑉𝑅𝑐𝑝𝑑⁡ (6.3)

where d is the dimension (x, y or z). The total current node’s weight can be

calculated as the summation of the three weights as follows.

𝜔𝑐 = 𝜔𝑐𝑥 + 𝜔𝑐𝑦 + 𝜔𝑐𝑧 (6.4)

 Figure 6.5: Connectivity between neighbouring nodes in a 3-D

CwGN track.

The S&I (in the base station) receives the accumulated weight from the

network along with the compass sensors’ readings. According to Equation 4.6,

the S&I normalises the accumulative received weight by the normalising factor

255

(Nf). In this experiment the Nf is a function of the number of participating

sensors and the value of compass sensors as follows.

𝜔 =
∑ 𝜔𝑖

𝑆
𝑖=1

𝐶1 ∗ 𝐶2 ∗ 𝑆
 (6.4)

where 𝜔 is the total weight, 𝜔𝑖 is the i'th sensor’s weight, S is the network size,

C1 is compass one sensor’s value, and C2 is compass two sensor’s value. The

network was trained using 20 randomly selected data instances for each

locomotion class. To compare with other schemes, the Weka [113, 114] tool

was used to simulate three different schemes: KNN (k=1), mlti-layered NN,

and Naïve Bayes. Figure 6.6 shows the receiver operating characteristic

(ROC) space and the plots for the four activity classes for the CwGN, KNN,

Naïve Bayes, and Multi-layer NN schemes. A ROC graph describes the

performance of each network based on the false positive rate (FPR) and true

positive rate (TPR). Table 6.1 shows the details of CwGN and other schemes’

recognition accuracy levels obtained for each class. Accuracy in the table is

calculated as the total number of correctly classified instances (patterns) to the

total number of instances in that class. Overall accuracy is calculated as the

total number of correctly classified instances compared to the total number of

testing instances. The same training and testing datasets were used for all

schemes.

256

Figure 6.6: The ROC space and plots of the activity classes for CwGN,

KNN, Naïve Bayes (NB), and Multi-layer NN schemes.

Table 6.1: Recognition accuracy results of opportunity challenge dataset for

different schemes.

Overall

Class 101 102 104 105 N/A

Training

instances
20 20 20 20 80

Testing

instances
154143 79589 80058 17557 331347

CwGN 45.86% 47.34% 92.48% 33.88% 56.96%

KNN (K=1) 47.24% 32.92% 95.21% 41.04% 55.06%

Naïve Bayes 1.42% 97.54% 6.24% 11.50% 26.21%

Multy-layer NN 37.26% 44.79% 96.26% 40.75% 53.50%

From ROC graph shown in Figure 6.6 and Table 6.1, it can be seen that

Naïve Bayes schemes recorded the lowest overall average recognition accuracy

compared to other schemes. More specifically, the Naïve Bayesian network

classified most incoming instances as pattern 102. This was due to the small

257

number of training samples. As discussed in Chapter 2, Naïve Bayes attempt to

create a probabilistic relationship between training samples and input variables.

Since the number of training samples is limited, these probabilistic

relationships cannot efficiently describe each pattern.

The other schemes produced comparable detection accuracy. However,

both multi-layered NN and KNN schemes have their own requirements to

reach such accuracy levels. Multi-layered NN involved input layers, one

hidden layer that contained 71 nodes, and a four nodes output layer. The

network structure required each node in each layer to communicate with each

node in the higher layer. This means that each node in the input and the output

layers had 71 connections to the hidden layer. Since the input layer contained

113 nodes (the pattern size) and the output layer contained 4 nodes, each node

in the hidden layer had 117 connections to the input and output layers’ nodes.

Similarly, each node in the output layer required four connections to the hidden

layers’ nodes. The total number of connections in this case was 16950.

Additionally, the network required 500 iterations for each incoming pattern in

order to converge. In contrast, a CwGN node involves only three connections

to its adjacent nodes. That includes exchange and report communications.

Since the compass sensors report directly to the S&I, each one of these nodes

requires only one communication to the base station. Consequently, the total

number of communications was 335. Additionally, the CwGN network

involves a single cycle to converge. Such reduction of communications and

258

iterations would have ramifications for the performance of the network in

terms of resource consumption (e.g. energy) and convergence time.

The KNN (with K=1) scheme involves fewer communications and

iterations compared to the multi-layered NN. Each node in a KNN in such

network saves the input values of the training data instances and then compares

incoming pattern values with the stored information. After calculating

distances, the nodes report directly to the base station, which also holds

information about training samples. This requires the memory resources

available in each node to store such information. By increasing the number of

training samples, the memory requirements and the time required to calculate

distances for each node increase. Moreover, the direct communication to the

base station affects the efficiency of the network and may cause a single point

of failure threat. In contrast, the nodes in the CwGN network avoid storing

information about training samples. Alternatively, each node reports the

calculated weight to the S&I through one of its inner nodes in the network.

This alleviates the need for memory resources in each node. Consequently, no

search time is required by nodes to match patterns. Additionally, the S&I (i.e.

base station) receives the accumulative weight from only one node in the

network, which is the core node or its alternative node in case of failure. This

assists in avoiding any single point of failure problem.

It can be seen that the CwGN scheme is capable of offering comparable

and even higher recognition accuracy levels for the challenge dataset with

minimal requirements in terms of the number of training samples, number of

259

communications and convergence time, compared to other iconic schemes. The

problem of human activity recognition could involve using more complicated

means such as filters and physical analysis, which could improve accuracy.

This case study shows that the CwGN scheme is a good candidate to be

integrated with such means in order to solve activity recognition problems in

resource-constrained environments as it scores comparable accuracy levels thus

minimising resources consumption.

6.4 Summary

In this chapter, the CwGN scheme was implemented in two different

application domains. The first one looked at the capability of the scheme in

enhancing the performance and speed of GA for optimisation purposes. More

specifically, the scheme was combined with GA to solve the problem of

autonomous robot navigation based on limited numbers of available samples.

The experimental results show that the scheme was capable of enhancing the

performance of GA in terms of fitness value and convergence time. The

coupled CwGN-GA was capable of providing higher fitness values in the same

number of generations for unknown problems compared to a random GA

system. Additionally, the experimental results show that the coupled scheme

speeds up finding an optimal solution by 36.5% for the same unknown

problems compared to random GA.

The application domain implementation pointed to the ability of the

scheme to use its pattern recognition features for solving classification

260

problems. The problem of human activity recognition using the challenge

opportunity dataset was presented. The experimental results show that the

CwGN scheme is capable of providing higher accuracy levels in detecting and

classifying human activities such as walking, standing, sitting and lying down

with minimal use of resources and with the presence of a high level of noise.

The CwGN was compared with KNN, Naïve Bayes and multi-layered NN. It

was shown that the CwGN is capable of achieving higher accuracy levels using

a very limited number of training samples (i.e. 80 samples). Additionally, it

was shown that the CwGN network involves considerably fewer

communications and a high level of distribution in addressing the problem

compared to the other schemes. Moreover, the scheme was able to successfully

achieve these results in a single learning cycle technique while avoiding storing

information in network nodes. These capabilities would reduce the resources

and time requirements in resource-constrained environments such as WSNs.

The success of the scheme in dealing with such problems demonstrates

its validity for use in optimisation and classification applications. It also

suggests the scheme is a good candidate for implementation in other disciplines

where pattern recognition can be used to enhance the process of problem

solving. This suggests that the scheme will be part of new research areas and

will play an important role in future research contributions. However, this

would require proper analysis, design and modelling of the scheme to adapt to

various problem solving applications. The next chapter of this thesis will

261

summarise the research contributions and findings and discuss the future

research opportunities and limitations of the scheme.

262

Chapter 7

7 Conclusions and Future Work

7.1 Summary of the Research

This research proposes distributed and parallel pattern recognition

schemes that minimise computations and communications by adopting local

processing techniques to provide real time pattern recognition capabilities for

complex problems such as real time event detection, artificial intelligence

applications, and security applications. These features will be best suited to

resource-constrained networks such as WSNs.

This research revised existing pattern recognition schemes for resource-

constrained WSNs. In order to achieve a scalable scheme that meets the

requirements of such networks, the scheme must combine limited

communications and computations with using minimal memory resources.

Additionally, the scheme must also involve low time complexity in order to

serve online recognition applications. To deal with the real life sensory

problems of WSNs, a good recognition scheme is expected to be capable of

dealing with complex and noisy patterns with minimal available information.

These requirements for good schemes derived from the challenges posed by

WSN applications. Existing recognition schemes for WSNs have several

263

limitations in terms of these challenges such as iterative and centralised

processing.

This research proposed light-weight, distributed and efficient pattern

recognition schemes for resource-constrained and large scale systems and

networks such as WSNs. The proposed schemes involve a distributed in-

network processing paradigm that depends on local computations. The first

proposed scheme is called CGN, which provides light-weight template

matching capabilities. The proposed scheme adopts the GN distributed

template matching technique in order to minimise communications and

computations so as to perform recognition operations in a single learning cycle.

The design of CGN is extended in the second proposed scheme to

present a more sophisticated approach that can provide more efficient

recognition capabilities. In addition to the light-weight design, the second

proposed scheme, called CwGN, adopts weighting technique that search for

pattern edges and boundaries. The scheme is capable of detecting different

types of pattern transformation such as translation, rotation, and dilation. The

presented weighting technique depends on the change rate between direct

adjacent nodes to minimise computations and communications. The scheme

also adopts a two steps activation process to reduce the number of participating

nodes in the recognition process so as to minimise communicational overheads

and to increase network scalability. In order to support online operations, a

zoning model was presented. The model addresses the constraints of timing

requirements by allowing a number of CwGN networks to perform recognition

264

operations in a parallel paradigm. Required protocols that describe the network

implementation and the nodes’ message exchanges were also presented in this

research.

This research presented theoretical and experimental analysis of both

schemes, including comparing the proposed schemes with existing techniques.

Theoretical analysis shows that both schemes are capable of converging to

problem solutions within a predictable learning cycle duration that is

proportional to the square root of the problem size. Network computational and

communicational overheads can also be predicted on the basis of problem size.

Additionally, theoretical analyses of CwGN scheme show that the scheme is

capable of performing online operations as well as dealing with transformed

patterns. Experimental evaluation confirmed the findings of the theoretical

analysis. Experimental evaluations of CGN show that the scheme is capable of

performing noisy pattern recognition. On the other hand, experimental

evaluations of CwGN demonstrated the ability of the scheme to deal with

transformed patterns. Moreover, these evaluations show how the network’s

communicational overheads in terms of time and energy can be reduced.

Different experiments on the schemes presented in this research show that both

schemes can perform recognition operations with higher accuracy levels as

compared to other existing techniques.

Finally, the features of CwGN pattern recognition schemes were used to

serve different application domains. Presenting two example models, the

scheme was used in optimisation and classification problems. In the first

265

model, the CwGN scheme was used to enhance the performance of GA

optimisation techniques in terms of fitness value and time. In the second

model, the scheme was used to perform classification operations using its

pattern recognition capabilities in the complex problem of human activity

recognition to show that pattern recognition-based approaches can perform

better than conventional classifiers.

7.2 Research Contributions and Outcomes

The outcomes of this research contribute mainly to the field of pattern

recognition in limited resource networks and systems such as WSNs. More

specifically, this research presents schemes that are capable of performing

efficient online pattern recognition while maintaining minimal resource

requirements that suit such limited systems. The significance of this research

can be encapsulated as four major contributions: light-weight network design,

online recognition performance, noisy, and transformation invariant

recognition, and adaptability to different application domains.

Light-weight and distributed schemes design is the first key

contribution of this research. Such design ensures high network scalability and

increases its lifetime. Light-weight scheme design has been achieved by using

distributed communicational and computational mechanisms, along with

parallel cellular network design that minimises information exchange

overheads. The network design of the schemes limits the number of messages

required for each node to two exchange and one report messages. This relieves

266

network nodes from the tightly coupled connectivity requirements found in

other schemes such as neural networks. If all network nodes participate in the

recognition process, the total number of messages required can be calculated as

3S-2 (S is the pattern size which is equal to the network size). However, the

CwGN scheme’s network design adopts activation mechanisms that minimise

participating network nodes in the recognition process. This leads to further

minimisation in the schemes’ complexity, increases the network’s lifetime, and

increases network scalability. Experiments conducted on the CwGN scheme (in

sub-section 5.4.1) show that the proposed activation process involved a range

of only 1.14% to 5.04% nodes of the total number of the network’s nodes in

the information exchange process. The same experiments showed that a range

of only 0.79% to 0.905% nodes were involved in the reporting process (see

sub-section 5.4.2). In terms of communicational requirements, the experimental

tests show that the communications required for a network of size 40000 nodes

ranges between 4393 and 8424 nodes depending on the message sequence

model. This is a range between 11% and 22.06% of the network size and of the

number of communications required by parallel KNN. It was also shown

experimentally that the number of required communications for a CwGN

network of size 10000 nodes ranged between 307 and 536 nodes. That is a

range between 3.07% and 5.36% of the network size, and of the required

communications of other schemes (see sub-section 5.4.2).

Such minimisation of participating nodes also results in increasing the

lifetime of the network. The tests conducted in this research show that the

267

average energy consumption scored, ranged between 0.3 and 0.57 mJ

depending on the sequence model involved. Other schemes such as parallel

KNN scored an average energy consumption of 2.9 mJ. By analysing these

results, it was shown that a CwGN network can have a lifetime of two years

with one of the smallest batteries in terms of capacity (i.e. 30 mAh or 324

joules). That is 8 times higher than other schemes such as parallel KNN (see

sub-section 5.4.2).

The second significant contribution of this research is achieving pattern

recognition within predictable single learning cycle duration. Such capability

allows the scheme to support online and real time applications. The time

complexity of presented schemes has been estimated as O(√𝑆) in its worst

case. That is when all nodes are activated and participate in the learning

process. In other words, the required time to perform a single learning cycle is

proportional to the square root of the pattern size. This complexity is minimal

compared to other schemes that involve exponential iterative complexity such

as neural networks. The parallel zoning CwGN model ensures a network’s

convergence within time restrictions for online applications support.

The third significant contribution of this research is efficient pattern

recognition capabilities for noisy and transformed patterns. The CGN scheme

presented in chapter 3 is mainly designed to deal with noisy patterns.

Experimental evaluations on the scheme presented in section 3.5 show that the

scheme is capable of dealing with noisy patterns with noise levels reaching

36.11% of the pattern size. In chapter 4, the transformation invariant

268

recognition capability is achieved by the CwGN weighting technique. This

allows recognition of patterns while requiring minimal prior available

information about these patterns. Theoretical and experimental analyses of the

scheme show its ability to deal with translation, rotation, and dilation pattern

transformation types. The results show that the scheme is capable of detecting

translated patterns at any level, dealing with dilation levels up to 26%, and

recognising rotated or even flipped rotated patterns with up to 23 degrees in

any direction. The tests also showed that any pattern has the same weight as its

flipped version pattern.

The fourth significant contribution of this research is the ability of the

presented pattern recognition-based schemes to adapt to other techniques to

serve different technological disciplines and application domains. This research

presented a hybrid CwGN-GA model that contributed to enhancing the

optimisation performance of GA in terms of time and accuracy. The model

presented is always capable of finding better optimal solutions for given

problems compared to traditional GA. The model is also able to provide similar

fitness values to traditional GA for problems while cutting optimisation time

by 36.5% (see sub-section 6.2.4).

The fifth contribution of this research is presenting the advantage of using

pattern recognition based techniques in dealing with classification problems. In

Chapter 6, a CwGN classification model was presented to deal with complex

classification problems such as human activity recognition. Such a model

shows the ability of the scheme to perform classification tasks with minimal

269

resource requirements using pattern recognition capabilities while maintaining

high accuracy compared to other classification schemes. The examples

presented in chapter 6 show the capability of the schemes presented here to

adapt to different types of complex learning applications and systems. This

opens the door for new research opportunities that involve recognition-based

techniques in different research disciplines and application domains.

In general, the goal of the schemes presented in this thesis is to provide

efficient pattern recognition capabilities. Both CGN and CwGN schemes were

compared with other schemes in terms of accuracy. In Chapter 3, a CGN

scheme was compared with Naïve Bayes and neural networks using a complex

handwritten recognition problem. The test showed that the scheme is capable

of dealing with the problem while providing higher accuracy levels compared

to other scheme. In Chapter 5, the CwGN scheme was compared with several

recognition schemes using two standard datasets. The first involved levels of

pattern transformations. The scheme was compared with KNN, Naïve Bayes,

and neural network schemes. The scheme was capable of achieving high an

accuracy level of 95.38% compared to other schemes that scored accuracy

levels ranging between 52.15% and 55.94%. The second test addressed the

problem of robot guidance using a wall using a standard dataset. The scheme

was firstly compared with traditional recognition schemes, then compared with

schemes designed to deal with this specific problem. In both comparisons the

scheme was capable of selecting the best routing decisions with the highest

accuracy levels reaching up to 98.1% compared to other schemes.

270

7.3 Future Work

8 Future Work

This research has presented schemes mainly intended to provide online and

efficient pattern recognition capabilities for large scale and resource-

constrained networks such as WSNs. The features of the proposed schemes

open the way for further enhancements and research opportunities. A useful

extension of this research and further studies could involve the following:

 New techniques for nodal computations outcomes reporting: In sub-

section 4.3.2, reporting mechanisms were presented and discussed.

However, attempts at parallelising nodes’ reports will lead to further

speed up in network performance and further minimisation of a

network’s time complexity. Implementing new techniques to find

alternative reporting paths will also lead to higher network

performance and efficiency. A zoning model was presented in this

research that enhances and supports the online recognition

capabilities of the proposed schemes. Hence, enhancing such

models by researching possible ways to relate different network

zones would extend recognition accuracy capabilities and ensure

further online feature support.

271

 Weighting mechanisms: A weighting technique was adopted in the

proposed CwGN scheme in this research (sub-section 4.3.3). The

weighting technique adopted the change rate or the average change

relationship between an active node and its direct adjacent nodes.

This technique dealt with transformations of patterns such as

translation, rotation, and dilation. A good extension of the research

in this context would be implementing different weighting

techniques that could lead to higher detection accuracy levels and

could deal with other types of transformations and problems. The

tradeoffs between implementing more complex weighting

mechanisms and network performance would be a rich research

area as more complex mechanisms could lead to more costs in

terms of resource consumption and speed. The type of application

and available resources are expected to be the main criteria that

drive such tradeoffs.

 Multi-dimensional design: The proposed schemes in this thesis were

modelled and designed to deal with 1-D, 2-D, and 3-D problems.

For example, the wall following problem presented in sub-section

5.3.2 and the hybrid CwGN-GA model presented in section 6.2 both

deal with 2-D problem types. The human activity classification

model presented in section 6.3 deals with a 3-D problem space.

However, other problems may involve higher dimensionality

requirements. This research proposed the use of multi-track network

272

structures and zoning models to deal with multi-dimensional

problems. However, network structure design constraints of the

proposed schemes can be challenging. Hence, designing and

analysing multi-dimensional network structures based upon the

schemes proposed in this thesis would be a good extension of the

research. New research would focus on design capabilities and

prediction of the behaviour and performance of these schemes when

dealing with multi-dimensional patterns.

 Adaptation to different application domains: The light-weight

capabilities of the schemes proposed in this research can also be

used in different types of application domain. How to use the

recognition capabilities of a CwGN scheme in enhancing

optimisation techniques and solving classification problems was

discussed in Chapter 6. These points to further research

opportunities that involve light-weight pattern recognition-based

techniques such as CwGN in the steps and processes involved in

solving complex real life problems. This could open up a wide area

of research in fields such as artificial intelligence, optimisation,

system security and network management.

In conclusion, this research has presented and demonstrated pattern

recognition schemes that are capable of addressing the limitations associated

with WSNs in serving mission critical and online applications. The schemes

273

presented in this thesis provide efficient recognition and high scalable

capabilities while requiring minimal resources. Such capabilities motivate

further research in the area of WSN pattern recognition and event detection.

The proposed schemes also suggest research in other areas, such as

optimisation and classification. Hence, the schemes proposed in this thesis are

believed to have the potential to serve a wide range of applications beyond the

fields of pattern recognition and WSNs.

274

References

[1] A. Malinowski and Y. Hao, "Comparison of Embedded System Design

for Industrial Applications," IEEE Industrial Informatics, vol. 7, pp.

244-254, 2011.

[2] E. V. Krishnamurthy, "Algorithmic entropy and smart systems," in

Proceedings of International Conference on Intelligent Sensing and

Information Processing, pp. 175-180, 2004.

[3] B. Chandrasekaran, "AI, knowledge, and the quest for smart systems,"

IEEE Expert, vol. 9, pp. 2-5, 1994.

[4] W. Jie and I. Stojmenovic, "Ad hoc networks," Computer, vol. 37, pp.

29-31, 2004.

[5] D. Puccinelli and M. Haenggi, "Wireless sensor networks: applications

and challenges of ubiquitous sensing," IEEE Circuits and Systems, vol.

5, pp. 19-31, 2005.

[6] M. Horton and J. Suh, "A vision for wireless sensor networks," in

Microwave Symposium Digest, 2005 IEEE MTT-S International, vol. 4,

pp.12-17, 2005

[7] I. F. Akyildiz, S. Weilian, Y. Sankarasubramaniam and E. Cayirci, "A

survey on sensor networks," IEEE Communications, vol. 40, pp. 102-

114, 2002.

275

[8] M. Tubaishat and S. Madria, "Sensor networks: An overview," IEEE

Potentials, vol. 22, pp. 20-23, 2003.

[9] P. Jiang, "A new method for node fault detection in wireless sensor

networks," Sensors, vol. 9, pp. 1282-1294, 2009.

[10] C. Farah, F. Schwaner, A. Abedi and M. Worboys, "Distributed

homology algorithm to detect topological events via wireless sensor

networks," IET Wireless Sensor Systems, vol. 1, pp. 151-160, 2011.

[11] P. Ghosh, M. Mayo, V. Chaitankar, T. Habib, E. Perkins and S. K. Das,

"Principles of genomic robustness inspire fault-tolerant WSN

topologies: A network science based case study," in IEEE Pervasive

Computing and Communications Conference (PERCOM Workshops),

pp. 160-165, 2011.

[12] R. V. Kulkarni, A. Forster and G. K. Venayagamoorthy,

"Computational intelligence in wireless sensor networks: A survey,"

IEEE Communications Surveys & Tutorials, vol. 13, pp. 68-96, 2011.

[13] J. Yick, B. Mukherjee and D. Ghosal, "Wireless sensor network

survey," Computer Networks, vol. 52, pp. 2292-2330, 2008.

[14] H. S. AbdelSalam and S. Olariu, "Toward efficient task management in

wireless sensor networks," IEEE Computers, vol. 60, pp. 1638-1651,

2011.

[15] P. Braca, S. Marano and V. Matta, "Enforcing consensus while

monitoring the environment in wireless sensor networks," IEEE Signal

Processing, vol. 56, pp. 3375-3380, 2008.

276

[16] D. Chen and P. Varshney, "QoS support in wireless sensor networks: A

survey," pp. 227-233, 2004.

[17] X. Luo, M. Dong and Y. Huang, "On distributed fault-tolerant detection

in wireless sensor networks," IEEE Computers, vol. 55, pp. 58-70,

2006.

[18] J. F. Chamberland and V. V. Veeravalli, "Wireless sensors in

distributed detection applications," IEEE Signal Processing, vol. 24, pp.

16-25, 2007.

[19] K. Chandy, "Event-driven applications: Costs, benefits and design

approaches," Gartner Application Integration and Web Services

Summit, California Institute of Technology, 2006.

[20] G. Johansson, "Configurations in event perception," Perceiving Events

and Objects, Hillsdale, NJ: Lawrence Erlbaum, pp. 29-122, 1994.

[21] P. Boonma and J. Suzuki, "MONSOON: A coevolutionary

multiobjective adaptation framework for dynamic wireless sensor

networks," in Proceedings of the 41st Annual International Conference

on System Sciences, Hawaii, pp. 497-497, 2008.

[22] S. Ortmann, M. Maaser and P. Langendoerfer, "Adaptive pruning of

event decision trees for energy efficient collaboration in event-driven

WSN," in Mobile and Ubiquitous Systems: Networking & Services,

MobiQuitous, MobiQuitous '09. 6th Annual International, pp. 1-11,

2009.

277

[23] M. Zoumboulakis and G. Roussos, "Complex Event Detection in

Extremely Resource-Constrained Wireless Sensor Networks," Mobile

Networks and Applications, pp. 1-20, 2010.

[24] J. B. Predd, S. R. Kulkarni and H. V. Poor, "Consistency in models for

distributed learning under communication constraints," IEEE

Information Theory, vol. 52, pp. 52-63, 2006.

[25] S. Watanabe, Pattern Recognition: Human and Mechanical. New York:

John Wiley & Sons, Inc., 1985.

[26] B. Catania, A. Maddalena and M. Mazza, "Psycho: A prototype system

for pattern management," in Proceedings of the 31st International

Conference on Very Large Data Bases, pp. 1346-1349, 2005.

[27] A. S. Tanenbaum, C. Gamage and B. Crispo, "Taking sensor networks

from the lab to the jungle," Computer, vol. 39, pp. 98-100, 2006.

[28] V. Cantoni, L. Lombardi and P. Lombardi, "Challenges for data mining

in distributed sensor networks," in 18th International Conference on

Pattern Recognition, 2006 (ICPR), pp. 1000-1007, 2006.

[29] A. Hac, Wireless Sensor Network Designs. Hoboken, NJ: J. Wiley,

2003.

[30] H. Karl and A. Willig, Protocols and Architectures for Wireless Sensor

Networks. Chichester: Wiley-Interscience, 2007.

[31] P. Santi, Topology Control in Wireless ad hoc and Sensor Networks.

Hoboken, N.J.: Wiley, 2006.

278

[32] S. Xingfa, W. Zhi and S. Youxian, "Wireless sensor networks for

industrial applications," in Fifth World Congress on Intelligent Control

and Automation, vol.4, pp. 3636-3640, 2004.

[33] J. Lynch and K. Loh, "A summary review of wireless sensors and

sensor networks for structural health monitoring," Shock and Vibration

Digest, vol. 38, pp. 91-130, 2006.

[34] A. Iyer, S. S. Kulkarni, V. Mhatre and C. P. Rosenberg, "A taxonomy-

based approach to design of large-scale sensor networks," in Wireless

Sensor Networks and Applications, Springer US, s. 1, pp. 3-33, 2008.

[35] A. S. Tanenbaum and D. Wetherall, Computer Networks, 5th ed.

Boston: Pearson Prentice Hall, 2011.

[36] W. Charfi, M. Masmoudi and F. Derbel, "A layered model for wireless

sensor networks," SSD '09. 6th International Multi-Conference on

Systems, Signals and Devices, pp. 1-5, 2009.

[37] W. Chonggang, K. Sohraby, L. Bo, M. Daneshmand and H. Yueming,

"A survey of transport protocols for wireless sensor networks," IEEE

Network, vol. 20, pp. 34-40, 2006.

[38] A. Bachir, M. Dohler, T. Watteyne and K. K. Leung, "MAC essentials

for wireless sensor networks," IEEE Communications Surveys &

Tutorials, vol. 12, pp. 222-248, 2010.

[39] P. Huang, L. Xiao, S. Soltani, M. Mutka and N. Xi, "The evolution of

MAC protocols in wireless sensor networks: A survey," IEEE

Communications Surveys & Tutorials, vol. 15, pp. 101-120, 2013.

279

[40] R. O. Duda, D. G. Stork and P. E. Hart, Pattern Classification, 2nd ed.

New York: Wiley, 2001.

[41] G. Wittenburg, N. Dziengel, C. Wartenburger and J. Schiller, "A

system for distributed event detection in wireless sensor networks,"

Proceedings of the 9th ACM/IEEE International Conference on

Information Processing in Sensor Networks, pp. 94-104, 2010.

[42] J. B. Predd, S. B. Kulkarni and H. V. Poor, "Distributed learning in

wireless sensor networks," IEEE Signal Processing Magazine, vol. 23,

pp. 56-69, 2006.

[43] E. F. Nakamura, A. A. F. Loureiro and A. C. Frery, "Information fusion

for wireless sensor networks: Methods, models, and classifications,"

ACM Computer Survey, vol. 39, No. 9, pp.1-55, 2007.

[44] Y. Kim, J. Kang, D. Kim, E. Kim, P. K. Chong and S. Seo, "Design of

a fence surveillance system based on wireless sensor networks," in

Proceedings of the 2nd International Conference on Autonomic

Computing and Communication Systems, pp. 1-7, 2008.

[45] S. Jabbar, A. E. Butt, N. us Sahar and A. A. Minhas, "Threshold based

load balancing protocol for energy efficient routing in WSN," in 2011

13th International Conference on Advanced Communication

Technology (ICACT), pp. 196-201, 2011.

[46] T. Bokareva, W. Hu, S. Kanhere, B. Ristic, N. Gordon, T. Bessell, M.

Rutten and S. Jha, "Wireless sensor networks for battlefield

280

surveillance," in Proceedings of the Land Warfare Conference,

Brisbane, Australia, 2006.

[47] R. Niu, P. Varshney, M. Moore and D. Klamer, "Decision fusion in a

wireless sensor network with a large number of sensors," Proceedings

of the Seventh International Conference on Information Fusion, pp. 21-

27, 2004.

[48] S. R. Kulkarni, G. Lugosi and S. S. Venkatesh, "Learning pattern

classification-a survey," IEEE Information Theory, vol. 44, pp. 2178-

2206, 1998.

[49] J. Liangxiao, C. Zhihua, W. Dianhong and J. Siwei, "Survey of

omproving K-nearest-neighbor for classification," in Fourth

International Conference on Fuzzy Systems and Knowledge Discovery,

FSKD, pp. 679-683, 2007.

[50] Z. Yang, N. Meratnia and P. Havinga, "Outlier detection techniques for

wireless sensor networks: A survey," IEEE Communications Surveys &

Tutorials, vol. 12, pp. 159-170, 2010.

[51] V. Chandola, A. Banerjee and V. Kumar, "Anomaly detection: A

survey," ACM Computing Surveys (CSUR), vol. 41, pp. 1-58, 2009.

[52] K. Zhang, S. Shi, H. Gao and J. Li, "Unsupervised outlier detection in

sensor networks using aggregation tree," in Advanced Data Mining and

Applications, Springer Berlin / Heidelberg, vol. 4632, pp. 158-169,

2007.

281

[53] L. Dan, K. D. Wong, H. Yu Hen and A. M. Sayeed, "Detection,

classification, and tracking of targets," IEEE Signal Processing

Magazine, vol. 19, pp. 17-29, 2002.

[54] S. Mittal, A. Aggarwal and S. L. Maskara, "Application of Bayesian

belief networks for context extraction from wireless sensors data," in

14th International Conference on Advanced Communication

Technology (ICACT), pp. 410-415, 2012.

[55] E. Elnahrawy and B. Nath, "Context-aware sensors," Proceedings of

European Workshop on Wireless Sensor Networks, pp. 77-93, 2004.

[56] W. H. Wu, A. A. T. Bui, M. A. Batalin, L. K. Au, J. D. Binney and W.

J. Kaiser, "MEDIC: Medical embedded device for individualized care,"

Artificial Intelligence in Medicine, vol. 42, pp. 137-152, 2008.

[57] S. Xusheng and E. J. Coyle, "Low-complexity algorithms for event

detection in wireless sensor networks," IEEE Selected Areas in

Communications, vol. 28, pp. 1138-1148, 2010.

[58] A. K. Jain, R. P. W. Duin and M. Jianchang, "Statistical pattern

recognition: A review," IEEE Pattern Analysis and Machine

Intelligence, vol. 22, pp. 4-37, 2000.

[59] D. Wang, "Pattern recognition: neural networks in perspective," IEEE

Expert, vol. 8, pp. 52-60, 1993.

[60] M. Hattori and M. Hagiwara, "Neural associative memory for

intelligent information processing," in Proceedings of Second

282

International Conference on Knowledge-Based Intelligent Electronic

Systems, KES '98, vol. 2, pp. 377-386, 1998.

[61] G. Peng and L. Xiaolin, "Minimizing distribution cost of distributed

neural networks in wireless sensor networks," in Global

Telecommunications Conference, GLOBECOM '07, IEEE, pp. 790-794,

2007.

[62] J. Nadal, "Study of a growth algorithm for a feedforward network,"

International Journal of Neural Systems, vol. 1, pp. 55-59, 1989.

[63] S. Tamura and M. Tateishi, "Capabilities of a four-layered feedforward

neural network: four layers versus three," IEEE Neural Networks, vol.

8, pp. 251-255, 1997.

[64] A. Awad, T. Frunzke and F. Dressler, "Adaptive distance estimation

and localization in WSN using RSSI measures," in 10th Euromicro

Conference on Digital System Design Architectures, Methods and

Tools, DSD 2007, pp. 471-478, 2007.

[65] R. Rajkamal and P. Vanaja Ranjan, "Packet classification for Network

processors in WSN traffic using ANN," in 6th IEEE International

Conference on Industrial Informatics, INDIN 2008, pp. 707-710, 2008.

[66] X. Wang and S. Wang, "Collaborative signal processing for target

tracking in distributed wireless sensor networks," Journal of Parallel

and Distributed Computing, vol. 67, pp. 501-515, 2007.

[67] M. Ishizuka and M. Aida, "Achieving power-law placement in wireless

sensor networks," Proceedings of the 7th IEEE International

283

Symposium on Autonomous Decentralized Systems (ISADS’05), pp.

661-666, 2005.

[68] D. A. Tran and T. Nguyen, "Localization in wireless sensor networks

based on support vector machines," IEEE Parallel and Distributed

Systems,vol. 19, pp. 981-994, 2008.

[69] J. J. Hopfield and D. W. Tank, "“Neural” computation of decisions in

optimization problems," Biological Cybernetics, vol. 52, pp. 141-152,

1985.

[70] G. Massini, "Hopfield neural network," Substance Use & Misuse, vol.

33, pp. 481-488, 1998.

[71] J. I. Z. Chen, Y. Chieh Chung, H. Meng Tsun and C. Yi Nung,

"Employing CHNN to develop a data refining algorithm for wireless

sensor networks," in World Congress on Computer Science and

Information Engineering, WRI, pp. 24-31, 2009.

[72] D. Tisza, V. Peter, J. Levendovszky and A. Olah, "Multicast routing in

wireless sensor networks with incomplete information," in 11th

European Wireless Conference 2011 - Sustainable Wireless

Technologies (European Wireless), pp. 1-5, 2011.

[73] J. Levendovszky, K. Tornai, G. Treplan and A. Olah, "Novel load

balancing algorithms ensuring uniform packet loss probabilities for

WSN," in IEEE 73rd Vehicular Technology Conference (VTC Spring),

pp. 1-5, 2011.

284

[74] A. I. Moustapha and R. R. Selmic, "Wireless sensor network modeling

using modified recurrent neural networks: application to fault

detection," IEEE Instrumentation and Measurement, vol. 57, pp. 981-

988, 2008.

[75] J. T. Connor, R. D. Martin and L. E. Atlas, "Recurrent neural networks

and robust time series prediction," IEEE Neural Networks, vol. 5, pp.

240-254, 1994.

[76] J. W. Barron, A. I. Moustapha and R. R. Selmic, "Real-time

implementation of fault detection in wireless sensor networks using

neural networks," in Fifth International Conference on Information

Technology: New Generations, ITNG 2008, pp. 378-383, 2008.

[77] A. D. J. Raju and S. S. Manohar, "Recurrent neural network for faulty

data identification in smart grid," in International Conference on

Recent Advancements in Electrical, Electronics and Control

Engineering (ICONRAEeCE), pp. 303-308, 2011.

[78] G. Bartfai and R. White, "Adaptive resonance theory-based modular

networks for incremental learning of hierarchical clusterings,"

Connection Science, vol. 9, pp. 87-112, 1997.

[79] G. Carpenter, S. Grossberg and D. Rosen, "Fuzzy ART: Fast stable

learning and categorization of analog patterns by an adaptive resonance

system," Neural Networks, vol. 4, pp. 759-771, 1991.

[80] A. Kulakov and D. Davcev, "Tracking of unusual events in wireless

sensor networks based on artificial neural-networks algorithms," in

285

International Conference on Information Technology: Coding and

Computing, ITCC 2005, vol. 2, pp. 534-539, 2005.

[81] L. YuanYuan and L. E. Parker, "Detecting and monitoring time-related

abnormal events using a wireless sensor network and mobile robot," in

IEEE/RSJ International Conference on Intelligent Robots and Systems,

IROS 2008, pp. 3292-3298, 2008.

[82] M. Kumar, S. Verma and P. P. Singh, "Data clustering in sensor

networks using ART," in Fourth International Conference on Wireless

Communication and Sensor Networks, WCSN 2008, pp. 51-56, 2008.

[83] M. Kumar, S. Verma and P. P. Singh, "Clustering approach to data

aggregation in wireless sensor networks," in 16th IEEE International

Conference on Networks, ICON 2008, pp. 1-6, 2008.

[84] T. Kohonen, "The self-organizing map," Proceedings of the IEEE, vol.

78, pp. 1464-1480, 1990.

[85] T. Kohonen, "Self-organizing maps," vol. 30, Springer, Berlin,

Heidelberg: Springer Series in Information Sciences, 1995.

[86] S. Wang, "Application of self-organising maps for data mining with

incomplete data sets," Neural Computing & Applications, vol. 12, pp.

42-48, 2003.

[87] G. Giorgetti, S. K. S. Gupta and G. Manes, "Wireless localization using

self-organizing maps," 6th International Conference on Information

Processing in Sensor Networks, Cambridge, Massachusetts, USA, pp.

293-302, 2007.

286

[88] O. A. Postolache, P. M. B. S. Girao, J. M. D. Pereira and H. M. G.

Ramos, "Self-organizing maps application in a remote water quality

monitoring system," IEEE Instrumentation and Measurement, vol. 54,

pp. 322-329, 2005.

[89] C. Cortes and V. Vapnik, "Support-vector networks," Machine

learning, vol. 20, pp. 273-297, 1995.

[90] D. Li, K. Wong, Y. Hu and A. Sayeed, "Detection, classification and

tracking of targets in distributed sensor networks," IEEE Signal

Processing, vol. 19, pp. 17-29, 2002.

[91] W. Xue, W. Sheng, B. Daowei, D. Liang and M. Junjie, "Collaborative

peer-to-peer training and target classification in wireless sensor

Networks," in Future Generation Communication and Networking

(FGCN 2007), vol. 1, pp. 208-213, 2007.

[92] R. Abu Sajana, R. Subramanian, P. V. Kumar, S. Krishnan, B. Amrutur,

J. Sebastian, M. Hegde and S. V. R. Anand, "A low-complexity

algorithm for intrusion detection in a PIR-based wireless sensor

network," in 5th International Conference on Intelligent Sensors,

Sensor Networks and Information Processing (ISSNIP), pp. 337-342,

2009.

[93] A. Khan and V. Ramachandran, "A peer-to-peer associative memory

network for intelligent information systems," presented at the 13th

Australasian Conference on Information Systems, Melbourne,

Australia, vol. 1, pp. 317-326, 2002.

287

[94] A. I. Khan, M. Isreb and R. S. Spindler, "A parallel distributed

application of the wireless sensor network," in Proceedings of Seventh

International Conference on High Performance Computing and Grid in

Asia Pacific Region, pp. 81-88, 2004.

[95] B. B. Nasution and A. I. Khan, "A hierarchical graph neuron scheme

for real-time pattern recognition," IEEE Neural Networks, vol. 19, pp.

212-229, 2008.

[96] A. Khan and A. Amin, "One shot associative memory method for

distorted pattern recognition," AI 2007: Advances in Artificial

Intelligence, pp. 705-709, 2007.

[97] R. Rengaswamy and V. Venkatasubramanian, "A syntactic pattern-

recognition approach for process monitoring and fault diagnosis,"

Engineering Applications of Artificial Intelligence, vol. 8, pp. 35-51,

1995.

[98] F. King-Sun and B. K. Bhargava, "Tree systems for syntactic pattern

recognition," IEEE Computers, vol. C-22, pp. 1087-1099, 1973.

[99] V. Latha, C. Subramaniam and S. Shanmugavel, "Fault tolerant

wireless sensor network using case based reasoning with semantic

tracking," in Proceedings of the 5th WSEAS international conference

on Communications and information technology, pp. 240-246, 2011.

[100] R. J. Hamilton, R. D. Pringle and P. M. Grant, "Syntactic techniques for

pattern recognition on sampled data signals," IEEE Computers and

Digital Techniques, vol. 139, pp. 156-164, 1992.

288

[101] M. Marin-Perianu, C. Lombriser, O. Amft, P. Havinga and G. Tröster,

"Distributed activity recognition with fuzzy-enabled wireless sensor

networks," in Distributed Computing in Sensor Systems. vol. 5067, S.

Nikoletseas, et al., Eds. Berlin / Heidelberg: Springer, pp. 296-313,

2008.

[102] J. S. R. Jang and S. Chuen-Tsai, "Neuro-fuzzy modeling and control,"

Proceedings of the IEEE, vol. 83, pp. 378-406, 1995.

[103] M. Zarei, A. M. Rahmani, A. Sasan and M. Teshnehlab, "Fuzzy based

trust estimation for congestion control in wireless sensor networks," in

International Conference on Intelligent Networking and Collaborative

Systems, INCOS '09, pp. 233-236, 2009.

[104] F. Xiufang, G. Zhanqiang, Y. Mian and X. Shibo, "Fuzzy distance

measuring based on RSSI in Wireless Sensor Network," in 3rd

International Conference on Intelligent System and Knowledge

Engineering, ISKE 2008, pp. 395-400, 2008.

[105] M. Bahrepour, N. Meratnia, M. Poel, Z. Taghikhaki and P. J. M.

Havinga, "Distributed event detection in wireless sensor networks for

disaster management," in 2nd International Conference on Intelligent

Networking and Collaborative Systems (INCOS), pp. 507-512, 2010.

[106] F. Oldewurtel and P. Mahonen, "Neural wireless sensor networks," in

International Conference on Systems and Networks Communications,

ICSNC '06, pp. 28-28, 2006.

289

[107] W. S. Hortos, "Unsupervised algorithms for intrusion detection and

identification in wireless ad hoc sensor networks," in SPIE Defense,

Security, and Sensing, vol. 7352, pp. 73520J, 2009.

[108] G. Wittenburg, N. Dziengel, S. Adler, Z. Kasmi, M. Ziegert and J.

Schiller, "Cooperative event detection in wireless sensor networks,"

IEEE Communications Magazine, vol. 50, pp. 124-131, 2012.

[109] A. Giridhar and P. R. Kumar, "Toward a theory of in-network

computation in wireless sensor networks," IEEE Communications, vol.

44, pp. 98-107, 2006.

[110] W. M. Alfehaid and A. I. Khan, "Cellular microscopic pattern

recogniser – A distributed computational approach for macroscopic

event detection in WSN," in Computational Science (ICCS),

Proceedings of the 11th International Conference on Computational

Science, vol. 4, pp. 66-75, 2011.

[111] S. Tactile, "Semeion Handwritten Digit Data Set", Semeion Research

Center of Sciences of Communication [http://www.semeion.it], Rome,

Italy, 1994, Access date: 23/01/2013.

 [112] A. Asuncion and D. J. Newman, "UCI machine learning repository,"

http://archive.ics.uci.edu/ml, Irvine, CA: University of California,

School of Information and Computer Science, 2007, Access date:

11/03/2013.

290

[113] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann and I. H.

Witten, "The WEKA data mining software: an update," ACM SIGKDD

Explorations Newsletter, vol. 11, pp. 10-18, 2009.

[114] I. Witten, E. Frank, and M. Hall, Data mining: Practical machine

learning tools and techniques, 3rd ed. San Francisco: Morgan

Kaufman, 2011.

[115] C. Farah, C. Zhong, M. Worboys and S. Nittel, "Detecting topological

change using a wireless sensor network," in Geographic Information

Science, Springer, 2008, pp. 55-69.

[116] S. Bo, L. Osborne, X. Yang and S. Guizani, "Intrusion detection

techniques in mobile ad hoc and wireless sensor networks," IEEE

Wireless Communications, vol. 14, pp. 56-63, 2007.

[117] B. Son, Y. Her and J. Kim, "A design and implementation of forest-

fires surveillance system based on wireless sensor networks for South

Korea mountains," International Journal of Computer Science and

Network Security (IJCSNS), vol. 6, pp. 124-130, 2006.

[118] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based

learning applied to document recognition," Proceedings of the IEEE,

vol. 86, pp. 2278-2324, 1998.

[119] C. Nebauer, "Evaluation of convolutional neural networks for visual

recognition," IEEE Neural Networks, vol. 9, pp. 685-696, 1998.

291

[120] F. Jialue, X. Wei, W. Ying and G. Yihong, "Human tracking using

convolutional neural networks," IEEE Neural Networks, vol. 21, pp.

1610-1623, 2010.

[121] K. Siddiqi and B. B. Kimia, "A shock grammar for recognition," in

Proceedings of the 1996 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, CVPR '96, pp. 507-513,

1996.

[122] T. B. Sebastian, P. N. Klein and B. B. Kimia, "Recognition of shapes

by editing their shock graphs," IEEE Pattern Analysis and Machine

Intelligence, vol. 26, pp. 550-571, 2004.

[123] D. W. Arathorn, "Recognition under transformation using superposition

ordering property," Electronics Letters, vol. 37, pp. 164-166, 2001.

[124] T. Gedeon and D. Arathorn, "Convergence of map seeking circuits,"

Journal of Mathematical Imaging and Vision, vol. 29, pp. 235-248,

2007.

[125] G. X. Ritter, P. Sussner and J. L. Diza-de-Leon, "Morphological

associative memories," IEEE Neural Networks, vol. 9, pp. 281-293,

1998.

[126] K. M. Iftekharuddin, "Transformation invariant on-line target

recognition," IEEE Neural Networks, vol. 22, pp. 906-918, 2011.

[127] W. M. Alfehaid, A. I. Khan and A. H. M. Amin, "A combined pattern

recognition scheme with genetic algorithms for robot guidance using

292

wireless sensor networks," in 12th International Conference on Control

Automation Robotics & Vision (ICARCV), pp. 759-764, 2012.

[128] B. A. Olshausen and D. J. Field, "Sparse coding of sensory inputs,"

Current Opinion in Neurobiology, vol. 14, pp. 481-487, 2004.

[129] A. M. Bronstein, M. Bronstein, M. M. Bronstein and R. Kimmel,

Numerical Geometry of Non-rigid Shapes, Springer-Verlag New York

Inc, 2008.

[130] A. Bronstein, M. Bronstein, A. Bruckstein and R. Kimmel, "Analysis of

two-dimensional non-rigid shapes," International Journal of Computer

Vision, vol. 78, pp. 67-88, 2008.

[131] Made with Natural Earth. Free vector and raster map data @

naturalearthdata.com.Available:http://www.naturalearthdata.com/downl

oads/10m-raster-data/10m-cross-blend-hypso/, Access date:15/01/2013.

[132] A. L. Freire, G. A. Barreto, M. Veloso and A. T. Varela, "Short-term

memory mechanisms in neural network learning of robot navigation

tasks: A case study," in 6th Latin American Robotics Symposium

(LARS), pp. 1-6, 2009.

[133] A. S. Wander, N. Gura, H. Eberle, V. Gupta and S. C. Shantz, "Energy

analysis of public-key cryptography for wireless sensor networks," in

Third IEEE International Conference on Pervasive Computing and

Communications, PerCom 2005, pp. 324-328, 2005.

293

[134] G. Guimaraes, E. Souto, D. Sadok and J. Kelner, "Evaluation of

security mechanisms in wireless sensor networks," in Proceedings of

Systems Communications, 2005 Conference, pp. 428-433, 2005.

[135] S. Ping, "Delay measurement time synchronization for wireless sensor

networks," Intellligent Research Berkeley Lab, Intel Research, IRB-TR-

03-013,2003.

[136] C. M. Bishop and N. M. Nasrabadi, Pattern Recognition and Machine

Learning vol. 1. New York: Springer, 2006.

[137] Y. Bengio and Y. LeCun, "Scaling learning algorithms towards AI,"

Large-Scale Kernel Machines, Cambridge, MA: MIT Press, 2007.

[138] A. Fabisch, Y. Kassahun, H. Wöhrle and F. Kirchner, "Learning in

compressed space," Neural Networks, vol. 42, pp. 83-93, 2013.

[139] J. H. Holland, "Genetic algorithms," Scientific American, vol. 267, pp.

66-72, 1992.

[140] J. He and X. Yao, "Drift analysis and average time complexity of

evolutionary algorithms," Artificial Intelligence, vol. 127, pp. 57-85,

2001.

[141] Y. Wu and W. Liu, "Routing protocol based on genetic algorithm for

energy harvesting-wireless sensor networks," Wireless Sensor Systems,

IET, vol. 3, pp. 112-118, 2013.

[142] F. V. C. Martins, E. G. Carrano, E. F. Wanner, R. H. C. Takahashi and

G. R. Mateus, "A hybrid multiobjective evolutionary approach for

294

improving the performance of wireless sensor networks," Sensors

Journal, IEEE, vol. 11, pp. 545-554, 2011.

[143] Y. Soh Chin, V. Ganapathy and C. Lim Ooi, "Improved genetic

algorithms based optimum path planning for mobile robot," in 11th

International Conference on Control Automation Robotics & Vision

(ICARCV), pp. 1565-1570, 2010.

[144] T. A. El-Mihoub, A. A. Hopgood, L. Nolle and A. Battersby, "Hybrid

genetic algorithms: A review," Engineering Letters, vol. 13, pp. 124-

137, 2006.

[145] K. F. Man, K. S. Tang and S. Kwong, "Genetic algorithms: concepts

and applications [in engineering design]," IEEE Industrial Electronics,

vol. 43, pp. 519-534, 1996.

[146] N. Sariff and N. Buniyamin, "An overview of autonomous mobile robot

path planning algorithms," in 4th Student Conference on Research and

Development, SCOReD 2006, pp. 183-188, 2006.

[147] W. E. Hart, T. E. Kammeyer and R. K. Belew, "The role of

development in genetic algorithms," Foundations of Genetic

Algorithms, vol. 3, pp. 315-332, 1994.

[148] P. Oliveto, J. He and X. Yao, "Time complexity of evolutionary

algorithms for combinatorial optimization: A decade of results,"

International Journal of Automation and Computing, vol. 4, pp. 281-

293, 2007.

295

[149] K. H. Sedighi, K. Ashenayi, T. W. Manikas, R. L. Wainwright and H.

M. Tai, "Autonomous local path planning for a mobile robot using a

genetic algorithm," in Proceedings of the IEEE Congress on

Evolutionary Computation, Piscataway, vol. 2, pp. 1338-1345, 2004.

[150] T. W. Manikas, K. Ashenayi and R. L. Wainwright, "Genetic

algorithms for autonomous robot navigation," IEEE Instrumentation &

Measurement, vol. 10, pp. 26-31, 2007.

[151] C. Liming, J. Hoey, C. D. Nugent, D. J. Cook and Y. Zhiwen, "Sensor-

based activity recognition," IEEE Systems, Man, and Cybernetics, Part

C: Applications and Reviews, vol. 42, pp. 790-808, 2012.

[152] C. Liming, C. D. Nugent and W. Hui, "A knowledge-driven approach

to activity recognition in smart homes," IEEE Knowledge and Data

Engineering, vol. 24, pp. 961-974, 2012.

[153] A. Avci, S. Bosch, M. Marin-Perianu, R. Marin-Perianu and P.

Havinga, "Activity recognition using inertial sensing for healthcare,

wellbeing and sports applications: A survey," in 23rd International

Conference on Architecture of Computing Systems (ARCS), pp. 1-10,

2010.

[154] C. Huasong, V. Leung, C. Chow and H. Chan, "Enabling technologies

for wireless body area networks: A survey and outlook," IEEE

Communicationsvol. 47, pp. 84-93, 2009.

[155] J. Parkka, L. Cluitmans and M. Ermes, "Personalization algorithm for

real-time activity recognition using PDA, wireless motion bands, and

296

binary decision tree," IEEE Information Technology in Biomedicine,

vol. 14, pp. 1211-1215, 2010.

[156] C. Zhu and S. Weihua, "Wearable sensor-based hand gesture and daily

activity recognition for robot-assisted living," IEEE Systems, Man and

Cybernetics, Part A: Systems and Humans, vol. 41, pp. 569-573, 2011.

[157] M. Zhang and A. A. Sawchuk, "Human daily activity recognition with

sparse representation using wearable sensors," IEEE Biomedical and

Health Informatics, vol. 17, pp. 553-560, 2013.

[158] A. Avci, S. Bosch, M. Marin-Perianu, R. Marin-Perianu and P.

Havinga, "Activity recognition using inertial sensing for healthcare,

wellbeing and sports applications: A survey," 23rd International

Conference on Architecture of Computing Systems (ARCS), pp. 1-10,

2010.

[159] D. Roggen, A. Calatroni, M. Rossi, T. Holleczek, K. Forster, G.

Troster, P. Lukowicz, D. Bannach, G. Pirkl, A. Ferscha, J. Doppler, C.

Holzmann, M. Kurz, G. Holl, R. Chavarriaga, H. Sagha, H. Bayati, M.

Creatura, J. del R Millan, "Collecting complex activity datasets in

highly rich networked sensor environments," in Seventh International

Conference on Networked Sensing Systems (INSS), pp. 233-240, 2010.

[160] R. Chavarriaga, H. Sagha, A. Calatroni, S. T. Digumarti, G. Tröster, J.

d. R. Millán and D. Roggen, "The opportunity challenge: A benchmark

database for on-body sensor-based activity recognition," Pattern

Recognition Letters, vol. 34, pp. 2033-2042, 2013

297

[161] Opportunistic activity recognition systems. Available:

http://www.opportunity-project.eu, 2011, Access date:12/7/2012.

