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Abstract: This paper considers residuals for time series regression. Despite much 

literature on visual diagnostics for uncorrected data, there is little on the autocorrelated 

case. In order to examine various aspects of the fitted time series regression model, three 

residuals are considered. The fitted regression model can be checked using orthogonal 

residuals; the time series error model can be analysed using marginal residuals; and 

the white noise error component can be tested using conditional residuals. When used 

together, these residuals allow identification of outliers, model mis-specification and 

mean shifts. Due to the sensitivity of conditional residuals to model mis-specification, 

it is suggested that the orthogonal and marginal residuals be examined first. 
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Residual plots for time series regression 

1 Introduction 

Regression models with autocorrelated errors have received much attention in recent yeais. 

An overview of time series regression is presented by Tsay (1984). Influence diagnostics 

axe discussed by Puterman (1988) and Hossain (1990), and outlier detection is considered 

by Tsay (1986) and Ledolter (1988). Haslett and Hayes (1998) and Martin (1992) establish 

generalised versions of residuals and diagnostics that axe commonly used when performing 

Ordinaxy Least Squaxes (OLS) regression. However, there has been little attention given 

to residual diagnostic plots for time series regression. 

We shall consider a linear regression model with an autoregressive (AR) error : 

Yt = f{Xt) + et where <t)p{B)et = zt (1) 

where Xf is a vector of explanatory variables assumed to be known, the regression model 

is / (Xt) = Xf/3 where ^ is a vector of coefficients, (ppiB) = (1 — 4'iB — ^pS^) is a 

polynomial of order p in the backshift operator B, and zt is a zero mean Gaussian white 

noise series with vaxiance a^. 

Model (1) can also be written as 

Y = X/?4-e where e = N(0,E) (2) 

where the correlated error structure is represented in the matrix E which has {i,jY^ el­

ement 7(|i — j \ ) , and where 7 is the autocovariance function of the time series model 

represented by et. This representation of the time series regression model allows Gener­

alised Least Squares (GLS) to be used to estimate the parameters, /?. The use of GLS 

estimation in an iterative procedure is outlined by Judge et al. (1988, p.392), and is the 

method used for obtaining parameter estimates for the examples presented herein. 

The limitation to AR models in (1) is not particularly restrictive as any ARM A model can 

be approximated by a high order AR model (see Brockwell and Davis, 1991, p.91). Hence, 

the results presented within can be extended to regression models with ARMA time series 

errors. 

It is a common practise with ordinaxy regression, where the errors axe imcorrelated (p = 0), 

to plot the residuals against each of the explanatory vaxiables. Patterns in residual plots 

indicate the fitted model is mis-specified. The pattern seen indicates the form of the mis-

specification (e.g., a quadratic shape indicates that a quadratic term should be included 

in the model). 
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Our goal is to produce similar residual plots for models with autocorrelated errors. The 

resulting residual plots should also allow other aspects of the fitted model to be assessed, 

such as checking the assumed properties of zt- In Section 2, we examine a type of residual 

that, whilst being an intuitive diagnostic to use, is sometimes misleading when assessing 

the fitted regression model. In Section 3, a more suitable type of residual is derived, 

with its use demonstrated on examples presented in Section 4. A third type of residuaJ 

examined in Section 5 provides further checking of other elements of the fitted model. 

When used together, these three types of residuals provide the means for assessing various 

aspects of the time series regression model. 

2 Marginal Residuals 

The marginal expectation for model (1) is E(yt |X) = / (Xt) . Departures from the best 

estimate of this expectation axe called marginal residuals, it = Yt — / (Xt) . It would seem 

natural to produce diagnostics plots based on the marginal residuals. This approach is used 

when performing OLS estimation on uncorrelated data, but its use with autocorrelated 

data is problematic. 

Asymptotically, Var(e) = E (following fi:om Proposition 9.7.1 in Fuller, 1996, p.519) and so 

these residuals must be expected to exhibit autocorrelation which may lead to "patterns" 

in a residuaJ plot. These autocorrelation-induced patterns will often interfere with other 

patterns that indicate mis-specification. Consequently, it is difficult to visually identify 

when mis-specification has occurred and what form of mis-specification is present. 

An example of a plot of marginal residuals is shown in Figure 1. This plot is based on the 

mean shift data example which will be presented in Section 4.2. The autocorrelation in 

the data is evident in the residual plot, and makes it difficult to discern the existence of 

other patterns. 

Under the hypothesis that the regression model has been correctly specified, the marginal 

residuals e estimate the unobservable time series error process. It is therefore suggested 

that marginal residuals be plotted in time order. Other types of residuals presented herein 

could also be plotted against time, or against the fitted values as is the norm. 

The nature of marginal residuals allows them to be treated as an observed time series, 

and so current time series diagnostic methods can be utiUsed. For example, parameter 

changes can be detected using techniques discussed in Bagshaw and Johnson (1977), and 

outliers in error models can be identified using methods such as those proposed by Ljung 

(1993) and Ledolter (1988). 
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Figure 1: An example of a plot of marginal residuals where the error model is AR(1). The 
pattern dominating the plot is due to autocorrelation. 

3 Residual Orthogonality 

Let H = X(X'S~-^X)~^X'S~^ denote the hat matrix from a linear model fitted using 

generalized least squares regression. For ordinary least squares, p = 0 and S~^ = a~'^l. 

In this case, 

e'X = ((I - H)Y) 'X = Y'(I - H) 'X = Y'X - Y 'H 'X = 0. (3) 

Similarly, e'Y = e'X/3 = 0. Thus, the marginal residuals are orthogonal to Y and to X. 

We believe that this orthogonality is the essential reason why for uncorrelated observations, 

it 'makes sense' to plot the residuals e against X and Y. 

However, for time series regression, where p > 0, H ' X ^ X and so the above orthogonality 

does not hold. Thus, the vector of residuals, e, is correlated with Y and X. As a 

result, patterns may appear in residual plots when, in fact, the residuals do not vary 

systematically. 

A solution to finding a suitable type of residual for time series regression hes in the above 

orthogonality principle. In the following section, a residual orthogonal to Y and X is 

presented. 

Fraccaro, Hyndman and Veevers 



Residual plots for time series regression 

3.1 The orthogonal residual 

In generalized least squares regression, the normal equations are X'E~^Y = X'S~^X/9. 

Therefore 

X ' S - i ( Y - X / ? ) = X 'S-^e = 0 (4) 

and so V = S~^e is orthogonal to X (and can also be shown to be orthogonal to Y = X/?). 

The orthogonal errors, v, have mean zero and their covariance matrix, Cov(S~-^e) = 

S~^, is not diagonal so they are correlated. However, the covariance has an interesting 

property that arises from the duality between autoregressive and moving average (MA) 

processes. Specifically, the inverse of the autocovariance matrix from an MA(p) process 

is approximately equal to the autocovariance matrix from an AR(p) process (Anderson, 

1976). Murthy (1974) shows that for an AR(p) autocovariance matrix, S , the inverse may 

be represented as 

S-^ = E - i + S-^ (5) 

where S~^ is an MA(p) autocovariance matrix, and S~^ is a matrix of zeros except for 

the leading and trailing p x p submatrices. 

Now, for an MA(p) process, the autocovariance function satisfies j{k) = 0 for k > p. 

Therefore, the matrix S~^ consists of zeros except for the main diagonal and up to p 

off-diagonals either side of the main diagonal. Adding the matrix S~^ only changes some 

of the non-zero values in the matrix S~^ and so S~^ has the same pattern as S~^. 

Therefore, the i"' orthogonal error, Vj, will only be correlated with those p orthogonal 

errors that occur immediately before and after it. For a low order AR process (and with 

sufficiently large n), E~^ is neaxly diagonal, and so the orthogonal errors have low order 

autocorrelation. 

The duality property described above has an important consequence for the use of orthog­

onal residuals, v, in a residual plot. As illustrated in Figure 2, low-order autocorrelation 

is not obvious in a scatterplot. An observer will therefore not be distracted from other 

patterns that may indicate mis-specification or the presence of outlying observations. Sim­

ilarly for orthogonal residuals, low-order autocorrelation will not detract from the presence 

of other patterns or unusual residuals that exist in the plot. 

The orthogonal residuals have covariance matrix 

Cov(S-^e) = S - ^ ( I - H ) E ( I - H ) ' E - ^ 

= S - n i - H ) S ( I - S - i X ( X ' S - i X ) X ' ) S - ^ 
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Figure 2: Left: Simulated AR(1) series showing that the autocorrelation can be confused 
with mis-specification, especially with large (f>. Right: Simulated MA(1) series showing 
that the lower order autocorrelation does not lead to patterns likely to be confused with 
mis-specification regardless of the value of 6. 
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Figure 3: Level of Lake Huron in feet from 1875 to 1972. 

= S -^ ( I -H) (S -X(X 'S - iX ' )X ' )E -^ 

= S-Hl-H)(I-H) 

= s-Hi-H). 

Note that the hat matrix, H, is idempotent. The standard deviation of Vi is therefore 

aV(S-Hl-H)), (6) 

4 Examples using Orthogonal Residuals 

4.1 Lake Huron Data 

Figure 3 shows a plot of the level of Lake Huron in feet, reduced by 570, as recorded over 

the years from 1875 to 1972. The data are listed in Brockwell and Davis (1991, p.555). 

A time series regression model was fitted to the data, with the result summarised in 

Table 1. A linear relationship is shown to exist between lalce level and time, with the 

errors following an AR(2) process. There is a slight downward trend in the lalce level 

during the time in which observations were made. 

In Figure 4 the studentized orthogonal residuals (obtained by dividing Vi by (6)) are 

plotted against the fitted observations, Y. The marginal residuals, plotted in time order, 

are shown in Figure 5. 
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P a r a m e t e r 
Intercept 
Time Index 
AR(2) Model 
Lag 1 Coefficient 
Lag 2 Coefficient 
(J 

Es t ima te 
10.099 
-0.022 

0.977 
-0.278 
0.705 

S td .Er r 
0.4601 
0.0080 

Table 1: Summary of parameter estimation for the Liike Huron data. 

in 
(0 
3 

T3 
CO 

0) 
DC 
"m c o 
O) o 

SI 
•c 

o 

Vi -

CO -

,- -

o -

T— . 
1 

CM . 
1 

• 

^ • • •• 
• • • • • 

• • • 

• 
1 

8.0 

• 

• 
• • 

• • • . 
. . • • • • . 

. . • 

- . . • • . . 
• • 

• • 

8.5 9.0 

Fitted Y 

• 

• 
• • 

• • • 
• 

• . . ; . s % . . 
• • • 
• . . . . . 

• • 
• 

• 

9.5 10.0 

Figure 4: Studentized orthogonal residual plot for the Lake Huron data. 
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Figure 5: Marginal residual plot for the Lake Huron data. 
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Figure 6: Plot ofyi vs Xi for the mean shift simulation data. The mean-shifted observations 
are indicated with squares. 

The marginal residual plot reveals systematic variation in the residuals that could be 

mistalcen as an indication of the fitted model being inadequate. Instead, the pattern 

in this plot is a result of the autocorrelation in the residuals. In contrast, the plot of 

studentized orthogonal residuals does not indicate any such systematic variation. Apart 

from a few possible outliers, the orthogonal residuals indicate that the fitted time series 

regression model is satisfactory in explaining the level of Lake Huron over time. 

4.2 Mean Shifts 

A type of effect that one would like to be able to detect when it occurs within a time series 

is mean shift. This is when the mean of a time series process changes by a fixed quantity 

for several consecutive observations. The following example illustrates how orthogonal 

residuals and marginal residuals can be used together to identify a mean shift. 

A data set of 125 observations was simulated using the formula 

yi = 2-5xi + 1x1 + ^i 

where ej was an AR(1) process with a coefficient of </> = 0.85 and with CF^ = (2.5)'^. The 

variable Xi was randomly generated from the continuous uniform distribution U[l,4]. To 

simulate a mean shift, the value for Cj of observations 70 through 85 was increased by 

10 units. Figure 6 illustrates the relationship between t/j and Xj. The process yi and the 

mean-shifted values cajn be easily seen in Figure 7. 
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Figure 7: Plot of yi in time order for the mean shift simulation data. The mean-shifted 
observations are indicated with squares. 

Parameter 
Intercept 
X 
X^ 
AR(1) Model 
Lag 1 Coefficient 
a 

Es t ima te 
6.30 

-7.23 
7.49 

0.875 
2.921 

Std.Err 
2.49 
1.37 
0.28 

Table 2: Summary of parameter estimation for the mean shift simulation data. 

Table 2 shows the result of fitting a quadratic relationship between yi and Xj. 

As evident from the studentized orthogonal residuals in Figure 8, observations 69, 70 and 

85 have orthogonal residuals remarkably different from the other values. Prom this, it 

could be concluded that the only noticeable feature of the data is the presence of a few 

outhers. In fact, the mean shift is responsible for these large residual values. 

Consider the low-order autocorrelation of orthogonal residuals as discussed in Section 3.1, 

and the covaxiance properties as discussed regarding (5). The residual for observation i 

will depend on the {i — if and (i + 1)* observations. Observation 85 has the same time 

series process mean as observation 84, but not observation 86. Consequently, observation 

85 has a large orthogonal residual value. Similarly observations 69 ajid 70 have large 

residual values. Observation 86 would also be expected to have a large residual value but 
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Figure 8: Plot of studentized orthogonal residuals for the mean shift simulation data. 

the orthogonal residual plot reveals that it does not have a remarkable residual value. 

Observations 71 through 84 all have the same time series process mean as their neighbours, 

and therefore do not have large orthogonal residual values. 

As part of model checking, one would examine the marginal residuals next. When there 

may be mean shifts, it can be useful to view the plot of marginal residuals. Due to their 

autocorrelated nature, marginal residuals can provide insight into the underlying time 

series process. Figure 9 suggests that observations 70 through 85 do not follow the trend 

for marginal residuals established by the other observations. The conclusion to be reached 

here is that the mean shift apparent in Figure 9 is responsible for the indication of outliers 

in the plot of orthogonal residuals, and not the presence of three outlying observations. 

This example highhghts how it can be useful to consider the orthogonal residual plot and 

marginal residual plot together. 

4.3 Mis-specification 

To demonstrate how orthogonal residuals can be used to identify model mis-specification, 

consider the mean shift simulation data presented above. A quadratic relationship was 

used to model the relationship between yi and Xi, based on the pattern suggested in 

Figure 6. Suppose a straight line relationship were fitted instead. Table 3 details the 

resulting parameter estimates, and reveals that a higher order time series error model was 

fitted. 
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Figure 9: Plot of marginal residuals for the mean shift simulation data. The mean-shifted 
observations are indicated with squares. 

Parameter 
Intercept 
X 
AR(2) Model 
Lag 1 Coefficient 
Lag 2 Coefficient 
a 

Estimate 
-32.03 
29.37 

0.354 
0.193 
6.761 

S td .Er r 
2.04 
0.61 

Table 3: Summaxy of parameter estimation for the mean shift simulation data when the 
quadratic term has been omitted from the model. 
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Figure 10: Plot of studentized orthogonal residuals for fitting a mis-specified model to the 
mean shift simulation data. The mean-shifted observations are indicated with squares. 

The studentized orthogonal residuals, shown in Figure 10, display a quadratic pattern, 
suggesting that the fitted regression model has been mis-specified. Note that the pattern 
induced by mis-specification overwhelms any other features in the plot, such as the presence 
of possible outliers indicated in the orthogonal residual plot for the correctly specified 
model. Figure 8. When the marginal residuals are plotted against the fitted values (not 
shown), a quadratic pattern, similar to that displayed in Figure 10, is evident. 

5 Conditional Residuals 

For the time series regression model, it is possible to calculate the expectation of Yt 
conditional on previous values of the observations. Let Y( ^ denote the partitioned vector 
[Yt-p Yt-p+i • • • Yt-i I Yt]'. Then Yj ' has a multivariate normal distribution with mean 

[fiXt-p) fiXt-p+i) ••• /(Xt_i) I f{Xt)]' 

and covariance matrix 
2.p 7p 

I'p 7(0) 
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where Sp has ( i , ; )" ' element 7(|z - j\) (1 < i,j < p), and 7p has ith element 7(p — i). 

Then, applying equation (8a.2.11) of Hao (1973), we obtain 

E[Yt\Yt.i,...,Yt.p,X] = / (Xt)+7pS; 

/ 

V 

[ Yt-p ' 
Yt-p+i 

Yt-i 

— 

/ (Xt-p) 

/(Xt-p+i) 

/ ( X t - i ) 

= (t>iYt-i + (l>2Yt-2 + • • • + (ppYt-p 

+ f{Xt) - <^i/(Xt_i) <l>pf{Xt-p) 

because 7pS~^ = [cpp 0p_i • • • ^i] by the Yule-Walker equations (see, for example. Brock-

well and Davis, 1991, p.239). 

The difference between Yt and this expectation will be referred to as the conditional 

residual (for t > p) 

zt = Yt- 4>iYt-i - 4>2Yt-2 

= ^p{B)et. 

4>pYt.p - f{Xt) + 4>if{Xt-i) + ••• + 4>pfiXt.p) 

Assuming that the regression model has not been mis-specified, the conditional residuals 

will be estimates for the unobservable zt- A plot of conditional residuals can then be used 

to assess whether zt satisfies model assumptions. 

An alternative approach for deriving the conditional residuals is to transform the terms 

in model (2) so that the transformed errors are uncorrelated. Let P be a lower triangular 

matrix such that S"^ = P ' P . Then multiplying (2) by P we obtain P Y = PX/3 -f Pe . 

The covariance matrix for this transformed model is Var(Pe) = P'Vax(e)P = I, so the 

error terms axe independent with unit variance. 

The effect of the transformation is easy to understand, for example, in the AR(1) case 

where 

1 
a 

VI-<p-' 
-cj> 

0 

0 

0 

0 

1 

-<l> 

0 

0 

0 

1 

0 

0 0 

0 0 

0 

1 0 

-<j> 1 

Then, for t > p, the i"* term of Pe is ^{et — 4>e.t-\) = zt/a. However, this transformed 
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Figure 11: Plot of standardised conditional residuals for the Lake Huron data. 

model also allows the calculation of conditional errors for 1 < f < p — 1. 

Generally, for t > p, the (i,i)*'' element of P is 

PtA = < 

1/CT i = t 

-(j)k/(^ i = t-k, k = l,...,p 

0 otherwise; 

(see Knottnerus, 1991, p.15). Consequently, PYt = 4>p{B)Yt/a, PXt = 4>p{B)Xt/a and 

Pet = (t>p{B)et/cr — ztja, for t > p. Therefore, the conditional residuals axe zt = aPit-

The quantities Pet = zt/a will be referred to as standardised conditional residuals. 

A different method of transformation is presented by Seber (1977, p.l72), which results in 

Best Linear Unbiased Scaled (BLUS) residuals. This produces a set of (n—p) transformed 

residuals, as opposed to the n residuals produced from the methods described above. 

5.1 Lake Huron Example 

Figure 11 is a plot of standardised conditional residuals for the Lake Huron data set 

examined above. The conditional residuals are uncorrelated and appear to indicate that 

model assumptions regarding zt are satisfied. 
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5.2 Interpreting Conditional Residuals 

As stated above, the conditional residuals are an estimate of the unobservable zt when the 

model has not been mis-specified. However, mis-specification of the time series error model 

can greatly affect the conditional residuals. Consider an example where the following 

AR(3) time series error model is appropriate 

et = <t>\et-\ + 02et-2 + ^3^4-3 + ^t 

but where an AR(1) error model is used in the time series regression model. The resulting 

conditional residuals are no longer a function of zt alone. This error model mis-specification 

may result in conditional residual plots with patterns induced by autocorrelation. 

Therefore, the procedure used to fit a time series regression model to data affects the way 

the conditional residuals should be interpreted. A procedure that allows the error model to 

be optimally chosen through an iterative procedure (such as in iterative GLS) will usually 

result in conditional residuals demonstrating a white noise pattern. If instead, a procedure 

is used where the analyst specifies the error model, patterns in the conditional residuals 

may be attributable to mis-specification of the error model rather than, say, mean shifts 

or outliers. 

Further complications can arise when the regression model is mis-specified. If the error 

model is fixed by the analyst, unaccounted variation that exists because of the regression 

model mis-specification will not be accounted for in the time series error model. This un­

accounted variation will thus be present in the conditional residuals, resulting in patterns 

in residual plots. 

The situations outlined above indicate the sensitivity of the conditional residual to model 

mis-specification. Due to this sensitivity, it is suggested that conditional residuals be 

only examined once the orthogonal and marginal residuals have been analysed and any 

apparent model mis-specification has been corrected. 

6 Unified Use Of Residuals 

The presentation of marginal, orthogonal and conditional residuals provides a regime for 

model checking and analysis. The following example illustrates how these three types of 

residuals can be used in a unified manner. 

In a metal production facility a response t/i depends on another variable Xi and mea-
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Figure 12: Plot of yi vs Xi for the metal production data. Observations 12 through 14 are 
denoted with a square. Observations 23 and 24 are numbered. 

surements of both are recorded over time. Thirty-six pairs of observations are shown in 

Figure 12, where a linear relationship between yi and Xj appears appropriate. (The data 

presented axe a hneax transformation of observations recorded directly firom the production 

plant. For reasons of confidentiality, the names of the variables and their origin cannot be 

disclosed.) Observations 23 and 24 axe numbered as they axe prominent in the plots to 

follow. Note also the points depicted as squares in the top-hand right corner of the plot; 

these correspond to observations 12 through 14. 

Figure 13 is a plot of yi in time order and shows evidence of autocorrelation. Note that 

observations 12 through 14 appear to be inconsistent with the trend set by the other 

observations. These observations are not necessarily outliers, as they also have large Xj 

values as shown in Figure 12. 

A straight hne relationship between the two vaxiables was fitted, and the result is sum­

marised in Table 4. 

To assess the fit of the model in Table 4, the orthogonal residuals presented in Figiire 14 

axe examined. This plot does not reveal any mis-specification or any other problems in 

the fitted regression model. Observations 23 and 24 axe again labelled. 

Examining the marginal residuals, Figure 15, reveals the imderlying time series error pro­

cess. In this plot, observation numbers 23 and 24 have residual values that axe inconsistent 

with the trend estabhshed by the other values. These two observations do not follow the 

time series error model assumed to be responsible for autocorrelation in the observations. 
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Figure 13: Plot of yi in time order for the metal production data. 

Parameter 
Intercept 
X 
AR(1) Model 
Lag 1 Coefficient 
a 

Estimate 
1.415 
0.479 

0.583 
0.255 

Std.Err 
0.3259 
0.0478 

Table 4: Summary of parameter estimation for the metal production data. 
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Figure 14: Studentized orthogonal residual plot for the metal production data. Observations 
23 and 24 are numbered. 
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Figure 15: Marginal residual plot for the metal production data. Observations 23 and 24 
are numbered. 

Finally, the conditional residuals axe presented in Figure 16. This plot confirms observation 

23 to be discordant. Since observations 23 and 24 are both large and have similar yi values, 

the resulting conditional residual for observation 24 is not discordant. 

The apparently inconsistent conclusions between the three residual plots illustrates the 

point that these plots should be interpreted differently. In the metal production data 

above, observations 23 and 24 have been highlighted as unusual observations. As far as the 

regression model is concerned, these observations axe not outliers. The yi and Xi values for 

these observations axe consistent with other observations. However, the marginal residual 

values suggest these observations to be discordant. Reconciling these two conclusions 

suggests that the process was producing yi values (with associated Xi values) consistent 

with other observations, but that these values were not expected at time points 23 and 

24 - these observations were produced contrary to the underlying autocorrelation. One 

could surmise that some special cause was in effect over these two times. 

7 Conclusion 

We have considered the need for suitable residual diagnostic plots for time series regression. 

Although the marginal residual may be intuitively appealing, it has been shown that 

it is not suitable for identifying mis-specification in the regression model. However, it 

is useful in checking the unobserved time series error process assuming the regression 

model is correctly specified. For identifying model mis-specification, we have proposed the 

orthogonal residual which is orthogonal to both the fitted values and covariates, and which 
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Figure 16: Conditional residual plot for the metal production data. 

possesses low-order autocorrelation. When used in conjunction with marginal residual 

plots, the orthogonal residual plots can help identify mean shifts and other patterns. 

Finally, conditional residuals have been shown to be useful in checking the white noise 

error component. These residuals are sensitive to the regression and error model fitted, 

and it is suggested that they be analysed only after orthogonal jmd marginal residuals are 

examined. 

Together, these three residuals provide the means for examining various aspects of the 

fitted model and for identifying problems such as model mis-specification, mean shifts and 

outhers. 
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