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ABSTRACT 

The policy debate on global warming has raised the prospect 

of large taxes on Greenhouse pollutants leading to a very 

substantial rise in the price of energy. Models in which 

output is produced according to a technology in which capital 

(K), labour (L) and energy (E) are substitutable run into the 

difficulty of how to allow parsimoniously for the higher likely 

substitutability between K and E than between L and E. 

Nesting all three factors in a single CES aggregator function is 

unsatisfactory because of the constancy over pairs of factors 

of partial substitution elasticities. This paper is a variation on 

the CES theme. It presents a new composite three-input 

production function (based on CES and Leontief components) 

which allows the partial substitution elasticities between 

capital and labour, capital and energy, and between labour 

and energy, to differ but to remain individually constant. 

JEL classification D2, El. 
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THE NESTED BINARY CES COMPOSITE PRODUCTION FUNCTION: 
CRTS with different (but constant) pair-wise elasticdties 

of substitution among three factors 
by 

Alan A. POWELL and Maureen T. RIMMER* 

Monash Universtty 

1. Motivation 

The policy debate on global warming has raised the prospect of large 
taxes on Greenhouse pollutants (see, e.g., Oliveira Martins et al., 1993). This 
is turn could lead to a very substantial rise in the price of energy. The 
experience of the OPEC oil price shocks suggests that large energy taxes could 
result in significant substitution away fi-om energy and into capital (and to a 
lesser extent, labour). 

The default setting of models in the ORANI (Dixon, Parmenter, Sutton and 
Vincent, 1982) family precludes substitution between primary factors and 
materials (where the latter includes energy and fuels). A simple approach 
towards rectifying this situation is to treat energy as an honorary primary 
factor so that it is included among the inputs in a CES aggregator ftuiction 
near the top of the production tree. 

Of course this is second best. The first best (but usually infeasible) 
alternative is to model the production process in great detail (along the lines of 
activity analysis or the multisectoral CGE approximation thereto). Putting 
energy as an aggregate input near the top of the production structure obviates 
the need for the massive amounts of data reqtiired by the detailed approach. 
There is a serious disadvantage with putting energy along with capital and 
labour into a CES aggregator, though: all three pair-wise substitution elas­
ticities have the same value, a happenstance which can have bizarre conse­
quences. For example, with output held fixed, a large rise tn the price of 
energy will lead to equal percentage rises in the demands for labour and 
capital. In jocular discourse this is referred to as the tread-miR effect of 
greenhouse abatement. 

The problem addressed in this paper is how to nest capital (K), labour (L) 
and energy (E) within a composite or nested production structure in a way 
which allows the Allen-Uzawa partial substitution elasticities Vĵ ,̂ Vj^ and VLE 
to be chosen at will by the person calibrating the model. It is well known that 
a production fiinction in which these three elasticities differ cannot be a CES 
function; i.e., one in which each of the three elasticities is globally constant. 
Whilst several functional forms allow differing Vy values, many of them 

Without implicating him in any remaining errors, we wish to thank Keith R. McLaren 
for critically reading a draft. 
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2 Alan A. Powell and Maureen T. Rimmer 

probably also involve unacceptably large variations in the v^ in response to 
changing relative prices. This is an unwelcome degree of flexibility since 
neither prior beliefs nor econometric evidence give much guidance on what 
sorts of variations are acceptable. 

In this paper we build on two well known and simple tools, the two-factor 
CE^ production function and the Leontief function to obtain a composite 
(nested) production function with the following properties: 

(i) constant returns to scale prevail; 

(ii) the three Allen-Uzawa partial substitution elasticities can dififer in 
virtually any desired way; 

(iii) even under a doubling or more in the price of energy relative to 
capital and labour, the variation in each of the partial substitution 
elasticities is very slight under a suitable calibration of the model. 
Under another calibration of the model, these three elasticities can be kept 
absolutely constant, even when relative prices change by a large multiple. 

Below we assume that labour is a composite obtained by a CRE^H (Hanoch, 
1971) or other aggregation over occupations, and that the (K, L, E} aggregator 
function under focus is nested within a Leontief function (of which the other 
principal arguments are likely to be material inputs). 

2. Structure of the Proposed Composite Production Function 

The nested production function proposed here is built from binary CES 
functions defined on the three factors K (capital), L (labour) and E (energy). 
Notionally each factor is split up into two parts; each of these then combines 
with one of the other two factors in a CES nest, with a total of three such nests 
being formed. This is depicted in Figure 1, while notation is given in Table 1. 
Lower-case Roman letters indicate the proportional changes in the variables 
denoted by the corresponding upper-case letters. Thus, for example, kL sig­
nifies the proportional change in KL , where the latter symbol indicates the 
amount of capital K assigned to the KL nest in Figure 1. 

Formally the production function for the output Y of the (K, L, E) factor 
nest is: 

Y = Min 1 

where 

KL KE LE 
^KL' ^KE' ^LE 

(2.1) 

ij = Aij[5ijij"Py + (1- 5y) Ji'PiJ ]-^/Py (2.2) 

(Y^ ^ . KE, i ^ : i = K. L; j = L, E; î tj) . 
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Figure 1 Triad of binary CES functions. KL, KE and LE combine in fixed 
proportions to give the output Y of the {K, L, E} factor nest. The entities 
shown above against a shaded background are unobservable. Putting î  = 
Lg in (2.2) above indicates the quantity of total labour usage L which is 
assigned to the production of the notional aggregate LE (see Figure 1.) 

The CE^ functions (2.2) can be written schematically: 

ij = CESy(04ji. OjJ); m (2.3) 

for example. 

LE= CESLE(aLEL.aELE) (2.4) 



Alan A. Powell and Maureen T. Rimmer 

3. First-Order Conditions for Cost Minimization 
in Differential and in Levels Form 

First-order conditions for cost-minimization are now written down; levels 
solutions are numbered in formats like (3.1L), while equation numbers like 
(3. ID) are the corresponding linearized (differential, or proportional change) 
forms — note that the latter refer only to the calibration in which the Oj, 
(ij = KL, KE, LE) are absolutely constant. With all three factors commanding 
positive prices, a nece^ary condition for cost minimization is that fixed 
proportions among KE, KL and LE be maintained; that is, that 

Y = la 
'KLJ 

KE 
ICKEJ 

LE 
' L E J 

(3. ID 

y = (kl) = (ke ) = (le) ; (3. ID) 

where y and (ke),_etc.,__are the proportional changes in Y and KE, etc. It is also 
necessary that KE, KL and LE be produced at minimum cost; hence the 
following CES factor demand functions apply: 

kL = (kl ) + OKLSLK (PL - PK) (3.2D) 

^ " SKL PLFKL<̂ KL V ^ ' ^ 
KL=[KL/AJ V - { I - 5 K J [ 7 Y ^ ^ ] 

LK = [ K L / A J 

SKL) PK 

1K= (M ) + OKLSKL (PK - PL) 

n X . . r ( L j j d PK 1 P«L̂ «̂  ^'^'^ ( l - 5 K j . 5 « , | ^ - g ^ — J 

kg = (ke ) + CKESEK (PE " PR) 

KE = [ K E / A J SKE + (1 - S K E ) [ ( I _ ? ) ^ J 
Siffi P E 1 PKE^^KE 

^ . . . 5KE) PK 

CK = (ke ) + OKE^KE (PK - PE) 

1/PKE 

r 
EK = IKE/AKEI 

l/p« 

(l-6KE) + 5 K E | ^ - g ^ — J 

1E= (le ) + OLE^EL (PE • PJ 

(3.2L) 

(3.3D) 

(3.3L) 

(3.4D) 

(3.4L) 

(3.5D) 

(3.5L) 

(3.6D) 
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LE = [LE/ALEI 

eL= (le ) + CTLESLE (PL - PE) 

(1 - SLE) PL 1 P'^*'^^ 
EL =ILE/AJ (I-5LE) + S L E [ ^ ^ ^ - ^ ] 

(3.6L) 

(3.7D) 

(3.7L) 

The levels demands for K, L and E are found by addition of the relevant 
components above: 

K = K L + KE (3.8L) 

E = E K + E L . 

The differential forms of {3.8L)—{3.10L) are: 

"KL^L"*" " K E ^ E ~ ^ ' 

"LK^K + «LE% = ^ • 

"EK^K ••• %L^L ~ ^ ' 

(3.10L) 

(3.8D) 

(3.9D) 

(3.10D) 

Using (3.1) and the above identities, we eliminate some of the unobservables 
(namely, kL, kg, 1 ,̂ 1E, e^, and ei), and obtain the differential forms of the 
factor demand functions: 

k = y + aKL^̂ KL^LK (PL - PR) + " K E ^ ' K E ^ K ^PE ' PK^ • (3.11D) 

1 = y + "LK^KL^KL (PK - PL) + " L E ^ L E ^ E L ^PE • Pi) • (3.12D) 

e = y + " E K ^ K E ^ K E (PK • PE)+ " E L ^ L E ^ L E ^PL ' PE^ (3.13D) 

The corresponding factor demand functions in the levels are obtained by 
making the appropriate substitutions from (3.2L)—(3.7L) into (3.8L)—(3.10L). 

Allen-Uzawa pair-wise substitution elasticities can be defined at two 
different levels: between each pair of factors making up the binary CES nests 



Alan A. PoweU. and Maxxreen T. Rimmer 

Table 1 

Notation 

IiC = KL 

EKsIffi 

E L s L E 

KL 

L R 
K E 

% 
E L 

Lg 
K 
L 
E 

Pj (j=K.L.E) 
Oy (i,j=K,L,E; î tj) 

"ij 

^ j 

«ij 

ij 

a notional CES aggregate of capital and labour 
a notional CE^ aggregate of capital and energy 
a notional CES aggregate of labour and_energy 
the amount of capital assigned to the lO^ nest 
the amount of labour assigned to the KL nest 
the amount of capital assigned to the Iffi nest 
the amount of energy assigned to the HE nest 
the amount of energy assigned to the LE nest 
the amount of labour assigned to the LE nest 
the total use of capital — K = KL+ Kg 
the total use of labour — L s Lj^ + Lg 
the total use of energy — E = Ej^ + E L 
the price of factor j 

the proportion of factor i assigned to nest i j ; for 
example, a^rjj: KL / K is the proportion of capital 
assigned to nest KL. Note that these are 
variables, not parameters. Also note: Xj^iO^p 1. 

the (micro) elasticity qf^substitutiqn between i and 
j in the production of ij (ij = KL, KE, LE) 
multiplicatlve_ parameter of the CES production 
function for ij 

distribution parameter for factor i in the CES 
production function for ij (ij = KL, KE. LE). Thus 

? = Ay[6yij'PiJ + (l-5ij)Ji'PiJ ]"^/PiJ 

where pjj= l /Oj i - 1 

('y"= KL, iffi, ! £ ; i = K, L; j = L, E; i 9t j) 
the overall (macro) elasticity of substitution of 
factor i for factor j (i, j = K, L, E) 
the share of factor i in the value of ij : 

SLK= P L L K / P L L K + P R K L ) 
= PL«LKL / (PL«LKL + PK«KLK) _ 

Outer-nest input-output coefficient for ij 

Hjp A|j /C« : Leontief-CES combined parameter (ij = KL, KE, LE) 
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KL, KE and LE; and among the three aggregate factors K, L and E. Assuming 
price taking behaviour (as we have done above in deriving the factor demands), 
the partial substitution elasticities among the aggregate factors may be defibcied 
as: 

d ln(i) [ JP] 
V a i n P j / [ P L L + P K K + P E E 

(i . j=K.L. E: i ; i j ) 

From (3.1 ID)—(3.13D) it follows that the connection between the two sorts of 
partial substitution elasticities is: 

VKL= «LK«KL^KL P L L + P K K + P E E)/ (PLOLRL + PK«KLK) . (3.15) 

VKE= aEK«KE<̂ KE (PL L + P R K + P R E) / (PEOERE + PK«KEK). (3.16) 

VLE= "EL^LE^^LE (PL L + P R K + P E E)/ (PEKELE + PL«LEL) . (3.17) 

where the a^ (ij = KL, KE, LE) are the partial substitution elasticities applying 

to the binary nests KL, KE and LE. Note that the allocation shares (cijjr, a^^ 

etc.) are variables, rather than parsoneters. 

Equations (3.15)—(3.17) reveal two possibilities for calibration of the 
model: either the micro elasticities (the as) can be treated as parameters, 
implying variation in the macro elasticities (the vs); alternatively (and this 
requires careful interpretation), the macro elasticities can be treated as 
parameters, in which case the micro elasticities must be free to vary. 

The choice between these alternatives depends on how one regards the 
binary nests. If they are taken literally as the preferred technological specifi­
cation, then the constancy of the as will be chosen. This option will guarantee 
global regularity. 

If one regards the available empirical evidence as being conveniently 
summarized by the vs, however, one will not feel squeamish about allowing the 
endogenization of the as as variables while keeping the vs constant at their 
initial values. In this case the binaiy nests are regarded as a convenient 
device for preserving the regularity of the production system (which they will 
do, provided no a is driven to a negative value'); that is, the story about the 
latent variables KL, LE, etc., has only an 'as if interpretation. 

' With each micro production function (those for KL, KE and LE) having just two 
inputs, each cross substitution elasticity must be non-negative to ensure regularity. A 
more general statement of the required curvature conditions is given in Allen (1938), 
p.505. 
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Can a Oy be driven to a negative value by a valid choice of the exogenous 
variables (Y, P^, PL and Pg )? We will show that provided all the v^s have been 
set to positive numbers, the answer is "No!". We wiU do this by reductio ad 
absurdunv 

Suppose some particular Oy were negative. Even so, the Leontief 
production functions (2.3) and the CES demand functions (3.2L)—(3.7L) 
guarantee the positlvity of KL, KE , LE , KL, I ^ , L^, L^, E ^ and E^ (and 
hence of every cxy), as well as of aggregate K, L and E. Now solve the 
relevant equation among (3.15)—(3.17) for the Oy that was assumed to 
be negative. Provided the corresponding Vy has been set to a positive 
value, the solution so obtained is positive, contradicting the initial 
supposition. Hence with every Vy positive, no Oy can be driven to a 
negative value by any set of relative prices, and the global regularity of 
the underlying micro system is preserved. 

4. Illustrative Hypothetical Ptirtial Equilibrium Simulation Experiment 

A simulation experiment was conducted with the aim of illustrating the 
stability of the pair-wise macro substitution elasticities for the nested 
production function described above, and to show that the model can be 
calibrated in such a way that variations in the factor mix under a large 
increase in the price of energy seem plausible. 

The experiment was conducted over 252 sub-intervals with the price of 
energy doubling over the entire interval. This allows results to be plotted as a 
function of the ratio of the price of energy to the prices of the other factors. 

The wage and rental rates PL and Pj^ were set exogenously at one 
throughout the simulations. The initial value of the price of energy Pg was 1. 
The initial values of K, L, E and Y were set at 3, 6, 1 and 10, which would 
reflect a stylized economy in which capital accounted for one third of value 
added, and in which the cost of energy was around one tenth of total value 
added. The initial (arbitrarily selected) values of the macro Allen-Uzawa 
substitution elasticities were: 

V K L = 1 . 2 8 : VKE = 0 . 5 ; VLE = 0 . 1 . 

The value of Vjg_̂  is the default long-run value of capital-labour substitmon 
elasticities In the ORANI model, while the remaining vs are an educated guess. 

The OjS were set initially at the following arbitrary values: 

"KL ~ ^-^^ ' ^'KE ~ ^-^^ • 

"LK= 0-90; «LE= 0.10; 

"EK ~ ^ -^^ • '̂ EL ~ ^'^^ • 
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The constant substitution elasticities within the binary CES nests in the 
base case are determined from (3.15) — (3.17). The resulting values, which are 
held fixed throughout the initial simulation, are: 

Cj^= 1.45, Cf^= 0.40, aLE= 0.34 . 

In each sub-interval, factor demands and the values of the OjS were calculated 
in MS Excel 7 using (3.2L)-(3.7L). The simulation was repeated treating the 
macro substitution elasticities (VĴ L. ^KE ^^'^ ^LE^ ^^ parameters which were 
assigned the values set out above. 

Some of the simulation results are shown in Figures 2a— 2̂f and in Table 
2. Results are given under both choices of parameters: 

• micro partial substitution elasticities, OJQ ,̂ O J ^ and OLE » held constant; 
• macro partial substitution elasticities, Vjĝ , Vj^ and VLE , held constant; 

To enable the charts to be read more easily, each is repeated three times: once 
when the maximum energy price rise envisaged is a doubling; once when it is a 
quintupling; and once when a hundred-fold increase is contemplated. 

Relative to a non-nested 3-factor CES function, the production function 
proposed in this paper is relatively heavily endowed with parameters. Whereas 
the 3-factor CES function has four parameters (one substitution elasticity, one 
parameter to convert from units of input into units of output, and two 
independent distribution parameters), the function (2.1)-{2.2) has nine 
parameters, as follows: 

Parameter 

Mij = \ /^ij 

îj 

total 

Number 

3 
3 
3 

9 

The py s are related to the o^ s in the usual CES way {py= l/cj«- 1); the b^zS 
and data on prices can be used to work out the Oj- s (or vice^versd). To do this 
we note^ that the share of factor i in the value of ij implied by cost 
minimization is 

5^ îi P̂ PiJ ̂ ij 

^'j " 5ij ^ij PjPiJ ^ij + (1-Sy fij PjPy îj ^ '̂ ̂ ^ 

(i,J = K, L. E; î ij) . 

See, e.g., Dixon et aL (1980), p . 298 . 
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Variation in the macro partial substitution elasticities under a doubling 
in the relative price of energy with the micro substitution 

elasticities held constant 

macro 

1,4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0 

partial substitution elasticities 

V 
;; V 

1 

Capital-labour 

Capital-energy 

Labour-energy 

^ \ 1 ' - H 

1.2 1.4 1.6 1.8 

Price of energy relative to capital and labour (multiple) 

Figixre 2a 

Variation in the micro partiaisubstitution elasticities within thethreeCES nests of 
the binary CES composite production function under a doubling in the 

relative price of energy with the macro substitution elasticities held constant 

micro partial substitution elasticities 
1.6 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2-1 

0.0 

^LE 

! 1 -. 1 

Capital-labour 

Capital-energy 

Labour-energy 

—1 1 i 1 1 —) i 

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 

Price of energy relative to capital and labour (multiple) 

Figure 2b 
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0.1 

-0.1 "• 

KL 

LE 

1.5 

Capital-labour 

Variation in the nnacro partial substitution elasticities under a five-fold increase 
in the relative price of energy With the micro substitution 

^. , ^ , . , , . , ,..,. elastidties held constant 
macro partial substitution elasticities 

1.5 

1.3-t 

1.1 -

0.9--

0 . 7 -

0.5 

0.3 

Capital-energy 

Labour-energy 

-f-

2.5 3 3.5 4 4.5 5 

Price of energy relative to capital and labour (niultiple) 

Figure 2c 

Variation in the micropartialsubstitution elastidties within the three CES nests of 
the binary GES composite production function under a five-fold increase in the 

relative price of energy with the macro substitution elasticities held constant 

mic 

1.4-

1.2 

1.0 

0.8 

0.6-

0.4 

0.2 

0.0 

0 partial substitution elasticities 

1 

"KL 

1.5 

Capital-i^our 

Capital-energy 

labour-energy 

2.5 3 3.5 4 4.5 
Price of energy relative to capital and labour (multiple) 

Figure 2d 
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Variation in the macro partial substitution elasticities under a one-hundred-fold increase 
in the relative price, of energy with the micro substitution 

elasticities held constant 

macro partial substitution elasticities 

, 5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 ^ 

1.5 -

1.0 -

0.5 -

0.0 -

1 

Capital-labour ^ . - i * - — • - ' " ' ' * ' ' * ' ' ' ^ 

^ K L , . . - - -

^ _ KE Capital-energy 

V|_g Labour-energy 

1 1 1 1 

21 41 61 81 
Price of energy relative to capital and labour (multiple) 

1 

101 

Figure 2e 

Variation in the micro partidlisubstitution elasticities within the three CES neste of 
the binaiy CES composite production function under a one-hundred -fold increase in the 

relative price of energy with tlie macro substitution elasticities held constant 
micro partial substitution elasticities 

0.0 + 
1 

Capital-energy 

11 21 31 41 51 61 71 81 91 
Price of energy relative to capital and labour (multiple) 

101 

Figiore 2f 
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Table 2 

Simulation Results 

micro substitution elasticities (oy) 
held constant 

macro substitution elasticities 
(vy) held constant 

Pg as a multple of PL or P^ 

L 

K 

E 

Y 

^KL 

^KE 

^LE 

^KL 

^̂ KE 

^LE 

«LK 

«LE 

«KL 

"KE 

«EL 

"EK 

PE 

1 

"e" 
3 

1 

10 

1̂ 8 

Ts 
TT 
1^5 

0.40 

0.34 

.9 

TT 
.75 

.25 

.25 

.75 

1 

2 

6.05 

3.12 

0.88 

10 

1.33 

0.42 

0.09 

1̂ 45 

0.40 

0.34 

0.89 

0.11 

0.72 

0.28 

0.24 

0.76 

2 

5 

6.15 

3.36 

0.77 

10 

1.49 

0.33 

0.08 

1̂ 45 

0.40 

0.34 

0.88 

0.12 

0.67 

0.33 

0.24 

0.76 

5 

100 

7.01 

5.33 

0.63 

10 

4.66 

0.26 

0.08 

1̂ 45 

0.40 

0.34 

0.77 

0.23 

0.42 

0.58 

0.22 

0.78 

100 

2 

6.03 

3.19 

0.83 

10 

1̂ 28 

1 
TT 
1.45 

0.40 

0.34 

0.89 

0.11 

0.72 

0.28 

0.22 

0.78 

2 

5 

6.09 

3.62 

0.64 

10 

1̂ 28 

1 
71 
1.45 

0.40 

0.34 

0.87 

0.13 

0.66 

0.34 

0.18 

0.82 

5 

100 

6.21 

9.24 

0.42 

10 

1̂ 28 

1 
TT 
1.45 

0.40 

0.34 

0.75 

0.25 

0.34 

0.66 

0.36 

0.64 

100 

Note: indicates initial setting, 
capital are held fixed at unity. 

The prices of energy and the rental rate on 
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By definition, however, we also have that 

S.J 
Pi «it i 

{ P i a y i + PjOjJ} • (4.2) 

(i,j = K, L, E; î ij) 

Hence at any given set of factor prices we can infer the values of the 5js fi-om 
the Oĵ s or vice-versa. For example, if the Oĵ s are given (as in the starting 
point for the hypothetical simulation above), we would start by computing Sy. 
We would then calculate the 5yS as 

h 1 + rwj 
l^jJ 

l - S ^ 1/ay |-1 
(4.3) 

The îj.s can then be calcialated using the given oCjjS and the bench-mark data 
on Y, K, L, E, Pj^, Pj^and Pg. If values are 'known' either for the a«s or for the 
VjjS at the bench-mark data setting, then equations (3.15) through (3.17) can 
be used to recover the unknown substitution elasticities (v^s or OyS as the 
case may be). 

In our initial calibration above, we started with OyS and VyS ; equally, we 
could have started with 6yS and a^s. 

5. Concluding Remarks 

The salient lack of flexibility of the multi-factor CE^ production function 
is the constancy over pairs of factors of its partial substitution elasticities. 
Above we have shown how CE^ and Leontief functions can be used to build a 
composite 3-factor production function in which all three Allen-Uzawa partial 
substitution elasticities can differ from one another while individually 
remaining constant. The composite production function is globally regular, 
and is a suitable vehicle to encapsulate prior intuition and/or empirical 
evidence on the ease of substitution that applies between the members of 
different pairs of factors. The above exercise was motivated by the need to 
allow higher substitutability between energy and capital than between labour 
and energy, but the tool is generic. 
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