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ABSTRACT


This paper addresses the problem of identifying echelon canonical forms for a vector 

autoregressive moving average model with exogenous variables using finite algorithms. For 

given values of the Kronecker indices a method for estimating the structural parameters 

of a model using ordinary least squares calculations is presented. These procedures give 

rise, rather naturally, to a technique for the determination of the structural indices based 

on the use of conventional model selection criteria. A detailed analysis of the statistical 

properties of the estimation and identification procedures is given and some evidence on 

the practical significance of the results obtained is also provided. Modifications designed 

to improve the performance of the methods are presented. Some discussion of the practical 

significance of the results obtained is also provided. 

Keywords: ARMAX model, consistency, echelon canonical form, efficiency, estimation, iden­

tification, Kronecker invariants, least squares, selection criterion, structure deter­

mination, subspace algorithm. 
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1.	 Introduction 

This paper is concerned with the analysis of multivariate ARMAX systems of the form 
p p	 p� 

A(j)y(t − j) + 
� 

B(j)x(t − j) = 
� 

M(j)ηηη(t − j) . (1.1) 
j=0 j=1	 j=0 

where y(t) is an observable v component vector of outputs, x(t) is an observable u com­

ponent vector of input variables and ηηη(t) is an unobservable vector of v elements that 

characterise the random disturbances, or noise, influencing the system. Interpreting z−1 

as the unit lag operator, viz: z−1y(t) = y(t − 1), (1.1) can be expressed more succinctly 

as 

A(z)y(t) + B(z)x(t) = M(z)ηηη(t) ,	 (1.1�) 

where 
p p	 p

A(z) = 
� 

A(j)z−j , B(z) = 
� 

B(j)z−j and M(z) = 
� 

M(j)z−j , 
j=0 j=1	 j=0 

and with regard to (1.1�) the following conditions will be assumed to hold. 

(A1) The polynomial matrices A(z) and M(z) satisfy det A(z) = 0 and det M(z) = 0, 

|z| ≥ 1. The triple 
�
A(z) : B(z) : M(z)

� 
is (left) coprime and in echelon canonical 

form. 

Writing arc(z) for the r, c th element of A(z) and similarly setting B(z) = 
�
brc(z)

� 
and 

M(z) = 
�
mrc(z)

�
, the echelon canonical form is characterised by the following restrictions 

defining the row degrees and exclusion constraints on the polynomial operators; 
nr

arr(z) = 1 + 
� 

arr(j)z−j , (1.2a) 
j=1 

nr

arc(z) = 
� 

arc(j)z−j , (1.2b) 
j=nr −nrc+1 

nr

brc(z) = 
� 

brc(j)z−j , (1.2c) 
j=1 

nr

mrr(z) = 
� 

mrc(j)z−j , and (1.2d) 
j=0 

mrc(∞) = arc(∞) .	 (1.2e) 
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The integers nr, r = 1, . . . , v, are called the Kronecker indices and they define a multi­

index ν = (n1, . . . , nv ) that determines the internal lag structure of the ARMAX process 

or model. In expression (1.2b) the index 

= min(nr + 1, nc) 
� 

nrc 

r ≥ c 
r, c = 1, . . . , v . (1.3) 

= min(nr, nc) r < c 

See Hannan and Deistler (1988, §2.5) and Reinsel (1993, §3.1) for further details. Hence­

forth ARMAXE (ν) will denote the set of all ARMAX structures in echelon form with 

structural index ν = {n1, . . . , nv}. 
Now suppose that there exists an index ν0 = {n10, . . . , nv0}, nr0 < ∞, r = 1, . . . , v, 

with associated polynomial operators A0(z), B0(z) and M0(z) such that 

A0(z)y(t) + B0(z)x(t) = M0(z)���(t) t = 0, ±1, . . . (1.4) 

where the appendage of a 0 is used to denote evaluation at the true parameter point and 

���(t) is the innovation process associated with y(t). In this case the ARMAXE (ν0) model is 

said to obtain or to hold. The connection between (1.4) and any model of the form (1.1) is 

derived by observing that the residual process ηηη(t) is defined indirectly by inverting M(z) 

to give ηηη(t) = ΨΨΨ(z)y(t) + ΦΦΦ(z)x(t) where ΨΨΨ = M−1A and ΦΦΦ = M−1B, and ηηη(t) = ���(t) 

whenever [ΨΨΨ : ΦΦΦ] = 0 [A0 : B0]. As here, the indeterminant z will often be omittedM−1 

from polynomials and power series where this causes no confusion. 

Let [K : L] = A−1[−B : M]. By Assumption A1 the squared norm of K(z) = 

2 2
�∞

j=1 K(j)z−j , �K� = 
�

j>1 �K(j)� , �K(j)�2 = tr K(j)K(j)�, is bounded and similarly 

�L�2 < ∞. Assume also that the input processes x(t) and ���(t) satisfy: 

(A2) The process ���(t) = 
�
�1(t), . . . , �v (t)

�� is a stationary, ergodic, martingale difference 

sequence. Thus if Ft denotes the σ-algebra generated by ���(s), s ≤ t, then E 
�
���(t) | 

Ft−1

� 
= 0. Furthermore, E 

�
���(t)���(t)� | Ft−1

� 
= ΣΣΣ > 0 and E 

�
�j (t)4

� 
< ∞, j = 

1, . . . , v. 
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(A3) The input x(t) is a zero mean, stationary process independent of ���(t) with finite fourth 

moment. Furthermore, for HT = (log T )c , 1 < c < ∞ 

T

sup � lim T −1 
� 

x(t)x(t + τ )� − ΓΓΓxx(τ)� = O(
�

log log T/T ) 
0≤τ ≤HT 

T →∞ 
t=1 � π 

iωτ Hxx
iω) dωΓΓΓxx(τ) = e (e 

−π 

where Hxx(eiω) is a u×u Hermitian matrix-valued function satisfying clI ≤ Hxx(eiω ) ≤ 

Icu, 0 < cl ≤ cu < ∞, on the interval [−π, π]. 

If the input-output system admits an ARMAX representation of the form (1.4) then there is 

a unique correspondence between K0(z), L0(z) and ΣΣΣ0, and the second moment properties 

of the observable processes y(t) and x(t). In particular, if ΓΓΓyx(z) = 
� 

ΓΓΓyx(s)z−s denotes 

the cross-autocovariance generating function between y(t) and x(t) then 

ΓΓΓyy (z) = K0(z)ΓΓΓxx(z)K0(z−1)� + L0(z)ΣΣΣ0L0(z−1)� and 

ΓΓΓyx(z) = K0(z)ΓΓΓxx(z) 

and in principle K0(z), L0(z) and ΣΣΣ0 can be determined directly from perfect knowledge of 

ΓΓΓyy (z), ΓΓΓxx(z) and ΓΓΓyx(z). See Hannan and Deistler (1988). Such knowledge is generally 

not available however, and the statistical problem being addressed is that of identifying 

and estimating an ARMAXE (ν) model using input-output data. 

Multivariate time series models have, of course, been given considerable attention 

by research workers in the past and accounts of many of the methods and theoretical 

results currently available are given in Hannan and Deistler (1988), Lütkepohl (1991) and 

Reinsel (1993), for example. The question of how best to determine the internal structure 

of a multivariate model in a direct and straightforward manner has not, however, been 

completely resolved. 

In the signal processing literature recent interest has focused on the so called subspace 

identification methods due to Van Overschee and De Moor (1994,1996). These techniques 

adapt ideas introduced in Akaike (1976) and use canonical correlations to estimate the 
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system matrices of an ARMAX model expressed in state-space form. The singular value 

decomposition underlying subspace algorithms can also be used to determine the order or 

McMillan degree d = 
�

r
v 
=1 nr of the system. Subspace algorithms do not discriminate 

between members of the manifold M(m) = {[K : L] : d = m}, the set of rational, 

proper and stable transfer functions of order m, however, since they do not use an explicit 

structural form. Here we consider the echelon canonical form since (i) it is simply expressed 

in terms of zero-one constraints, requiring fewer than n(2v + u) parameters to describe the 

system, and (ii) the set {ARMAXE (ν) : d = m} forms a disjoint cover of M(m), avoiding 

any difficulties associated with overlapping parameterisations, see Guidorzi (1981) and 

Hannan and Deistler (1988). 

Earlier work in the statistics literature that builds on Akaike (1976) can be found in 

Tiao and Tsay (1989), and Nsiri and Roy (1992) and the references contained therein. The 

techniques discussed in Tiao and Tsay (1989) give rise to an approach to the examination 

of vector processes that is based on scalar-component models. An illuminating exposition 

of the similarities and differences between scalar-component models and echelon canonical 

forms and the orders of scalar-component representations and Kronecker indices in the 

context of ARMA processes is given in Tsay (1991). Nsiri and Roy (1992) deal directly with 

the Kronecker indices and their procedure is based on the detection of linear dependences 

implied by different structures. Both methods work in terms of the cross-autocovariances 

of the observed process and rely on the solution of different eigenvalue problems, solving 

the multiple decision problem via a sequence of hypothesis tests. 

An alternative philosophical approach is taken in Hannan and Kavalieris (1984a) and 

Poskitt (1992), where the coefficients of an ARMA model expressed in echelon canonical 

form are estimated and the associated Kronecker indices determined using regression tech­

niques and selection criteria that are structured in terms of the residual sums of squares 

and a penalty adjustment for the number of coefficients fitted, à la AIC (Akaike, 1974) or 

BIC (Schwarz, 1978). Reinsel (1993, §4.5) provides an interesting illustration of the use of 
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some of these different techniques and Lütkepohl and Poskitt (1996) present examples of 

the application of the regression based methodologies. 

A basic purpose of the present paper is to indicate how the latter methodological 

approach can be employed to estimate and identify ARMAX systems using a new and 

simplified approach to the determination of the Kronecker invariants. A second objective 

is to fill a lacuna in the existing theory of multiple time series analysis. Lütkepohl and 

Poskitt (1996) observed that difficulties may arise when attempting to estimate Kronecker 

indices using regression methods because of singularities that are present when examining 

overparameterised models. A precise statement of the theoretical and practical conse­

quences of fitting such models is given here and analytical results on the properties of 

the procedures that parallel those known to obtain in the context of scalar processes are 

developed. 

Until recently little was known of the statistical properties of subspace algorithms but 

work by Peternell et. al. (1996) and Bauer et. al. (1999) has established the consistency 

and asymptotic normality of subspace-based systems parameter estimates under regularity 

conditions similar to those adopted here. These results require that the practitioner specify 

(backward and forward) truncation indices b and f that are bounded below by d but in 

general, of course, the true McMillan degree will not be known. Although it has been 

suggested that b can be chosen by reference to AIC applied to the Stage I (ARX) regression­

autoregression of the following section, precise guidelines on how f should be selected have 

yet to be given. One off-shoot of the results presented in this paper is that the identification 

algorithm described in Section 3 may provide a natural choice of f . 

The paper is organised as follows. In Section 2 a technique for estimating the struc­

tural parameters based on a two-stage least squares process is outlined and some statistical 

properties of the estimates are presented. The identification of the Kronecker invariants is 

then discussed in Section 3. A simple identification algorithm is advanced and theoretical 

results stating conditions under which strong convergence of the estimated values to the 
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true indices can be achieved are obtained. Results that provide an explanation of why the 

use of conventional model selection criterion such as AIC or BIC may lead to overparame­

terisations are also given. The fourth section of the paper presents some empirical evidence 

on the practical impact of the results obtained in Section 3. Section 5 then proposes a 

modification of the identification procedure that gives rise to a consistent model selection 

process that is governed by the law of the iterated logarithm. The sixth section of the 

paper presents some concluding remarks relating to the empirical import of the theoretical 

results obtained. Most proofs are assembled together in Section 7. 

2. Two Stage Least Squares Estimation 

The estimation process presented here is a single equation systems counterpart of an 

original proposal by Durbin (1960), that parallels the first two stages of the well known 

Hannan and Rissanen (1982) technique, see also Hannan and Deistler (1988, §6.5 & §6.7). 

To facilitate the presentation of the estimation method in terms of regular regression 

notation let 

ar (z)y(t) + br(z)x(t) = mr(z)ηηη(t) (2.1) 

denote the rth row of the system as defined in (1.1�). Set ar(z) = 
�p

j=0 ar(j)z−j and let λλλr 

and αααr contain the freely varying parameters in ar(0) and ar(j), j = 1 . . . , p, respectively, 

that are not restricted to be either zero or one by the indentification conditions in (1.2)­

(1.3). Then 

ar(z)y(t) = 
�
Sa(r, ν)(ζζζp ⊗ y(t))

��
αααr + 

�
Sf (r, ν)y(t)

��
λλλr + y(t)�er (2.2a) 

where Sa(r, ν) is a selection matrix that picks out appropriate lagged variables from (ζζζp ⊗ 

y(t)), ζζζ �p = (z−1, . . . , z−p), Sf (r, ν) similarly selects appropriate components from y(t) and 

er = (0, . . . , 0, 1, 0, . . . , 0)� is the rth row of the v × v identity Iv. Reexpressing br(z)x(t) 

and mr(z)ηηη(t) in a similar manner gives 

br(z)x(t) = 
�
Sb(r, ν)(ζζζp ⊗ x(t))

��
βββr (2.2b) 
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and 

(z)ηηη(t) = 
�
Sm(r, ν)(ζζζp ⊗ ηηη(t))

��
µµµ + 

�
Sf (r, ν)ηηη(t)

��
λλλr + ηηη(t)�er (2.2c)mr r 

wherein an obvious notation has been employed for the different selection matrices and 

parameter vectors associated with br(z) and mr(z). Now let θθθr = (ααα�r : βββ�r : λλλ�r : µµµ�r)� 

denote the vector of parameters that appear in the rth equation. Substituting (2.2a)­

(2.2c) in to (2.1) and rearranging terms gives 

yr(t) = Rr,ν (t)�θθθr + ηr(t) 

where the vector of regressors 

⎡ −Sa(r, ν)(ζζζp ⊗ y(t)) ⎤ 

−Sb(r, ν)(ζζζp ⊗ x(t))Rr,ν (t) = ⎢⎣ Sf (r, ν)(ηηη(t) − y(t)) 
⎥⎦ 

Sm(r, ν)(ζζζp ⊗ ηηη(t)) 

is obtained by selecting from the vector of potential variables that occur in the system those 

that appear in the rth equation. Supposing that a realization of T + HT observations on 

y(t) and x(t), t = 1 − HT , . . . , −1, 0, 1, . . . , T , is at hand, T effective observations with 

HT initial values, this construction now allows the two stages of the estimation process to 

be presented in an uncomplicated manner. 

STAGE 1: For r = 1, . . . , v, regress yr(t) on y(t−j) and x(t−j), j = 1, . . . , hT , t = 1, . . . , T , 

to obtain residuals 

hT v u

ε̂r,T (t) = yr (t) − 
��� 

ψ̂rc(j)yc(t − j) + 
� 

φ̂rc(j)xc(t − j)
� 

j=1 c=1 c=1 

where hT →∞ as T →∞, 0 ≤ hT ≤ HT = (log T )c , 1 < c < ∞. 
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ˆSTAGE II: For r = 1, . . . , v determine the least squares estimates [âr,T : b̂r,T : mr,T ], or 

equivalently θθθ̂r,T , by minimising the residual mean square 

T

T −1 
� �

ar(z)y(t) + br(z)x(t) − (mr (z) − e� )�̂��T (t)
�2 

r

t=1 

T

= T −1 
� �

yr(t) − R̂r,ν (t)�θθθr

�2 

t=1 

with respect to the freely varying parameters in [ar : br : mr], or equivalently θθθr, 

where R̂r,ν (t) is defined as for Rr,ν (t) having replaced the unknown ηηη(t − s), s = 

0, . . . , p, by the corresponding innovation estimates obtained at Stage 1. 

Stage I consists of the fitting of a regression-autoregression and the purpose of this 

stage is to provide estimates of ���(t), t = 1, . . . , T , using the observed input and output. 

If hT is sufficiently large we can expect �̂��T (t) = (ε1,T (t), . . . , εv,T (t))� to approximate the 

innovation ���(t) in a reasonable manner since under present assumptions the coefficients 

in ΨΨΨ and ΦΦΦ will decline at an exponential rate. In particular, if ARMAXE (ν0) obtains 

then [ΨΨΨ0 : ΦΦΦ0] = M0
−1[A0 : B0] and a partial fractions expansion of M0(z)−1 indicates 

that |ψrc(j)| and |φrc(j)| are bounded by c0|z0|j , 0 < c0 < ∞, where z0 is the zero 

of M0(z) nearest z = 1. If hT is appropriately prescribed the truncation effect in the| | 
regression-autoregression should therefore be asymptotically negligible. A precise state­

ment concerning the approximation error obtained by substituting �̂��T (t) for ���(t) is given 

in the following lemma. 

LEMMA 2.1. Suppose that the input output system admits an ARMAX representation 

satisfying assumptions (A.1) to (A.4) and that h0T < hT ≤ HT , h0T = log T/(−2 log |z0|). 
Then uniformly in hT 

T

T −1 
� �

�̂��T (t) − ���(t)
��

�̂��T (t − s) − ���(t − s)
�� = O(hT Q

2 
T ) a.s. 

t=s+1 

= δ0,shT T −1(u + v)ΣΣΣ + op(hT T −1) 
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and 
T

T −1 
� 

���(t)
�
�̂��T (t − s) − ���(t − s)

�� = O(hT Q
2 
T ) a.s. 

t=s+1 

= −δ0,shT T −1(u + v)ΣΣΣ + op(hT T −1) 

for s ≥ 0 where Q2 = log log T/T and δ0,s = 1 for s = 0 and is zero otherwise.T 

This result is due to Hannan and Kavalieris (1984a), see also Hannan and Deistler (1988, 

§6.6). 

In the second stage the freely varying parameters of the model are estimated equa­

tion by equation using least squares regressions for each yr(t), r = 1, . . . , v, with �̂��T (t) 

substituted for the unobservable innovations or residual process. The stochastic proper­

ties of these estimates constitute the content of subsequent theoretical developments and 

are presented in the results that follow. In particular, if ĝT (r, ν) = T −1Σyr(t)R̂r,ν (t)�, 

ĜT (r, ν) = T −1Σ ˆ Rr,ν (t)� and σ̂2 (ν) = minθθθr 
T −1 �T ˆ �2 thenRr,ν (t) ˆ

r,T t=1 

�
yr(t) − Rr,ν (t)�θθθr

σ̂2 (ν) = T −1 �T �
yr(t) − R̂r,ν (t)�θθθ̂r,T 

�2 where by definition θθθ̂r,T arises as a solution of r,T t=1 

the least squares normal equations ĜT (r, ν)θθθr = ĝT (r, ν). Expanding the residual mean 

square as 
T

ˆT −1 
� 

yr (t)2 − θθθ
� 
r,T ĜT (r, ν)θθθ̂r,T (2.3) 

t=1 

we see that the limiting behaviour of σ̂r 
2(ν) and θθθ̂r,T is governed by that of the second 

moment quantities in ĝT (r, ν) and ĜT (r, ν). These are described in the following comple­

mentary result. 

LEMMA 2.2. Set 

G(r, ν) = (2π)−1 
� π 

Rr,ν R∗ andr,ν dω 

g(r, ν) = (2π)−1 
�−π

π 

yrRr,ν
∗ dω 

−π 

where ⎡ −Sa(r, ν)
�
ζζζp ⊗ 

�
K(z)Hxx(z)1/2 : L(z)ΣΣΣ1/2�� ⎤ 

⎢⎢⎢−Sb(r, ν)
�
ζζζp ⊗ [Hxx(z)1/2 : 0]

� ⎥⎥⎥Rr,ν (z) = 
Sf (r, ν)

��
K(z)Hxx(z)1/2 : (L(z) − I)ΣΣΣ1/2��⎣ 

Sm(r, ν)
�
ζζζp ⊗ [0 : ΣΣΣ1/2]

� ⎦ 
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and yr(z) = er
� �K(z)Hxx(z)1/2 : L(z)ΣΣΣ1/2� 

. 

Then under the same conditions as for Lemma 2.1 ĜT (r, ν) = G(r, ν) + O(QT ) and 

ĝT (r, ν) = g(r, ν) + O(QT ). 

In the statement of this lemma the argument z = eiω has been omitted and the asterisk 

denotes the complex conjugate transpose, conventions that will be adhered to throughout 

the paper. The proof of this and subsequent lemmas and theorems will be deferred to 

Section 6. A more detailed statement of the behaviour of σ̂2 (ν) and ˆ when the r,T θθθr,T 

structural index of the model ν = ν0 = {n10, . . . , nv0} can now be given in the form of the 

following result. 

LEMMA 2.3. Suppose that assumptions (A1) to (A3) hold and ARMAXE (ν0) obtains. 

If the value hT employed at Stage I is such that h0T < hT ≤ HT and if for r = 1, . . . , v 

nr = nr0, then the Stage II estimate [âr,T : b̂r,T mr,T ] = [ar0 : br0 : mr0] + O(QT ) a.s.: ˆ

and σ̂2 (ν0) = σ2 + o(1) a.s. for all r = 1, . . . , v. r,T rr 

At this point we observe that if ν0 is known then Lemma 2.3 implies that θθθ̂r(q),T 

provides a strongly consistent estimate of θθθr(q)0, q = 1, . . . , v, the parameter values asso­

ciated with the unique representation of the system in terms of the Kronecker invariants. 

The two-stage least squares estimates will, however, be inefficient relative to those given 

by the Gaussian (maximum likelihood) estimator, see Poskitt and Salau (1994). Fully 

efficient estimates can be obtained by use of a full maximum likelihood procedure or by 

implementing Gauss–Newton type iterations using θθθ̂r(q),T , q = 1, . . . , v as starting values, 

as described in Lütkepohl (1991, §7.2-7.4) or Reinsel (1993, §5.1-5.4) for example. Such 

calculations can present difficult computational burdens and complexities, however, and in 

general ν0 will be unknown and a range of values for ν will have to be examined in order 

to estimate ν0 and it would seem prudent to avoid the difficulties just alluded to before 

ν0 has been identified, particularly in view of the curse of dimensionality implicit in the 

analysis of vector processes. We will therefore consider using the statistics derived in the 
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two stages presented above as the fundamental building blocks from which to construct an 

identification algorithm to determine the structural indices. 

3. Identification of the Kronecker Invariants 

The Kronecker indices are not invariant with respect to an arbitrary reordering of the 

elements of y(t) and to this extent the echelon canonical form is only unique modulo such 

rotations. However, the variables in y(t) can always be permuted so that the Kronecker 

indices are arranged in descending order, nr(1) ≥ nr(2) ≥ · · · ≥ nr(v), where r(j), j = 

1, . . . , v, denotes a rearrangement of 1, . . . , v that induces the ordering. If P denotes a 

permutation matrix such that P(1, . . . , v)� = (r(1), . . . , r(v))� it is readily verified that 

[PA(z)P−1 : PB(z) : PM(z)] provides an ARMAX representation of Pyt and that the 

corresponding ARMAXE form has multi-index (nr(1), . . . , nr(v)). Note that the r(j), j = 

1, . . . , v, are unique modulo rotations of the indices that leave the ordering nr(1) ≥ · · · ≥ 

nr(v) unchanged. The nr(j), j = 1, . . . , v, are referred to as the Kronecker invariants. 

When expressed in terms of the Kronecker invariants not only is the representation of the 

system in ARMAXE form canonical, but the individual variables yr(j)(t), j = 1, . . . , v are 

uniquely represented. 

In order to determine the Kronecker invariants let us begin by observing that nr = 

δr[A : B : M], r = 1, . . . , v, the row degrees of [A : B : M], and knowledge of the 

Kronecker index associated with yr(t) tells us the maximium lag of any variables appearing 

in the rth equation of the system. Knowing the ranking of nr relative to the other indices, 

i.e. knowledge that r = r(q), can be of no assistance, however, if the actual values nr(j), j = 

1, . . . , v, and the associated permutation of the variables are not given, for otherwise any 

additional structure inherent in knowing that nr = nr(q) cannot be exploited, unless that 

is nr = nr(v) < nr(j), j = 1, . . . , v − 1, in which case the structure of the rth equation 

is determined solely by nr. Since we wish to consider starting from a position of prior 

ignorance the approach that we shall adopt here is to determine the Kronecker indices by 
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searching through a collection of models for each yr(t) supposing that nr coincides with 

the smallest Kronecker invariant. For any n ≥ 0 let ν(n) = {n, . . . , n}. Formally the 

procedure is described in the following Identification Algorithm: 

For each of r = 1, . . . , v perform steps (I) and (II): 

(I) Calculate σ̂2 (ν(n)) for n = 0, . . . , NT = O(log T ) ≤ hT , the sequence of residual r,T 

mean squares from the following regressions:


For n = 0 the regression of yr(t) on (εj,T (t) − yj (t)), j = 1, . . . v, j =� r.


For n = 1, . . . , NT the regression of yr (t) on (εj,T (t) − yj (t)), j = 1, . . . v, j �= r, plus


the regressors −yj (t − s), j = 1, . . . , v, −xc(t − s), c = 1, . . . u and εj,T (t − s), j =


1, . . . , v, s = 1, . . . , n.


(II) Set the estimate of the rth Kronecker index equal to 

n̂r,T = arg min [Λr,T (ν(n))]. 
0≤n≤NT 

where the criterion function 

Λr,T (ν(n)) = log σ̂2 (ν(n)) + κT [(v − 1) + n(2v + u)]/Tr,T 

and κT is a nonnegative, nondecreasing function of T . 

Note that as one cycles through the algorithm misspecified equations are being esti­

mated for each yr(t), r = 1, . . . , v. This is because the ARMAXE form implies that the 

polynomial operators ar(z), br (z) and mr(z) that appear in the rth row of [A : B : M] 

exhibit additional zero restrictions that are governed by the values of the unknown Kro­

necker indices and such restrictions are not being explicitly accounted for. Thus, whenever 

n < nr0 the rth equation will be misspecified since one or more lagged values required for 

a correct specification will be omitted. By adding additional lags we can therefore expect 

to reduce the magnitude of σ̂2 (ν(n)) until n = nr0. At this point the maximum lag for r,T 

the rth equation will be correctly specified but the equation will be potentially overpa­

rameterised in that some redundant variables may be included. When n > nr0, however, 
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the rth equation will be incorrectly specified once again and overparameterised. Thus we 

might anticipate that if κT is prescribed appropriately the criterion function Λr,T (ν(n)) 

will, asymptotically at least, possess a global minimum when n = nr0 and that this is 

indeed the case is verified in Lemma 3.1. 

LEMMA 3.1. Suppose that x(t), y(t), t = 1, . . . , T , is a realization of an input output 

process satisfying assumptions A1 and A3 and that the conditions stated in Lemma 2.1 

hold. Let n̂r,T , q = 1, . . . , v, denote the estimated Kronecker indices obtained using the 

above identification algorithm. Then for all r = 1, . . . , v; 

(i)	 Λr,T (ν(nr0)) < Λr,T (ν(n)) whenever n < nr0 and lim infT →∞ n̂r,T ≥ nr0 a.s. if 

κT /T 0, and → 

(ii)	 Λr,T (ν(n)) > Λr,T (ν(nr0)) for all n > nr0 and lim supT →∞ n̂r,T ≤ nr(q)0 a.s. if 

log T/κT 0. → 

It is perhaps worth pointing out that the determination of n̂r,T , r = 1, . . . , v, involves 

examining a total of v(NT + 1) different specifications. This is a considerable saving com­

pared, for example, to the (NT + 1)v specifications that would have to be examined if a 

full search over all ARMAX structures in the set {ARMAXE (ν) : ν ∈ {ν = (n1, . . . , nv ) : 

0 ≤ nr ≤ NT , r = 1, . . . , v}} were to be conducted. If v = 4 and NT = 6 this gives only 28 

different equations to be evaluated rather than 2401. Note also that the parameter correc­

tion term κT [(v − 1) + n(2v + u)]/T can be replaced by C(v,u)(T, n)/T where C(v,u)(T, n) 

is any function monotonically nondecreasing in T and n and such that C(v,u)(T, n)/T 0 → 

and C(v,u)(T, n)/ log T →∞ as T →∞ without changing the basic result of the lemma. 

Now let n̂r̂(q),T , q = 1, . . . , v, denote the Kronecker invariants obtained by rearranging 

the n̂r,T , r = 1, . . . , v, into descending order and let r̂(q)T , q = 1, . . . , v, denote the 

reordering of r = 1, . . . , v implied thereby. Note that identification of the Kronecker 

invariants involves the determination of both the value of the invariants themselves and 

the rearrangement P(1, . . . , v)� = (r(1), . . . , r(v))� since the order in which the variables 
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yr(t), r = 1, . . . , v, are presented is arbitrary. From Lemma 3.1 it is clear that n̂r(q)0,T → 

nr(q)0 a.s. as T → ∞ if κT increases with T such that κT /T → 0 and log T/κT → 0. 

Suppose that this is the case and assume that n̂r̂(j),T = nr(j)0, j = 1, . . . , q − 1. Then 

for T sufficiently large the ordering given by n̂r̂(j),T , j = 1, . . . , q, will coincide with that 

given by nr(j)0, j = 1, . . . , q with probability one and hence, modulo invariant rotations, 

the estimate r̂(q)T will converge to r(q)0 a.s. if κT satisfies the requirements of parts 

(i) and (ii) of Lemma 3.1. Induction on n̂r̂(j),T and r̂(j)T , j = 1, . . . , v, now yields the 

following Theorem. 

THEOREM 3.2. Assume that the conditions of Lemma 3.1 hold and the identification 

algorithm is implemented with the penalty term κT → ∞ such that κT /T 0 and → 

log T/κT 0 as T Then modulo invariant rotations r̂(q)T = r(q)0 a.s. for T → → ∞. 

sufficiently large and Pr(limT →∞ n̂r̂(j),T = nr(j)0) = 1, j = 1, . . . , v. 

Lemma (3.1) indicates that use of the identification algorithm in conjunction with 

selection criteria which employ a value of κT that is at most O(log T ), such as AIC or BIC, 

will most likely lead to the n̂r,T , r = 1, . . . , v, overestimating the true Kronecker indices 

and that we will have n̂r,T ≥ nr0, a.s., for T sufficiently large. A more detailed description 

of the extent of such overestimation is given in Theorem 3.4, which is a consequence of the 

following result characterising the properties of the two-stage estimation procedure when 

the Kronecker indices of the fitted model exceed those of the true process. 

LEMMA 3.3. Suppose that assumptions (A1) to (A3) hold, ARMAXE (ν0) obtains, and 

that the value hT employed at Stage I is such that h0T < hT ≤ HT . Suppose also that 

nr ≥ nr0, r = 1, . . . , v. Then for r = 1, . . . , v 

[âr,T : ˆ mr,T ] = ˆ [A0 : B0 : M0] + O(QT )br,T : ˆ χχχ�r,T 

wherein χχχ̂r,T = χχχr0 + op(1) and (χχχr0(z) − er)�w(t) is the minimum mean squared error 

predictor of wr(t) from wj (t − s), s = 0, . . . , nr − nj0, j ∈ Kr0 = {q ∈ {1, . . . , v} : nq0 ≤ 

nr}, w(t) = (w1(t), . . . , wv (t))� = M0(z)���(t). 
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THEOREM 3.4. Let τr 
2(�) = E 

�
(χχχr0(z)w(t))2

� 
be the minimum mean squared error 

from the projection of wr(t) on to the space spanned by wj (t − s), s = 0, . . . , nr − nj0, 

j ∈ Kr0, � = nr − nr0, nr ≥ nr0. If the conditions as stated in Lemma 3.3 obtain and 

Λr,T (ν(n)) is employed at Stage II using the correction factor κT then, for r = 1, . . . , v, 

n̂r,T = (nr0 +nr,T
† )(1+op(1)) where nr,T

† denotes the non-negative integer � that minimises 

hT (u + v) � τ2(�) − 1
� 

+ �(2v + u). r 

σ2κT r,r 

Lemma 3.3 and Theorem 3.4 provide multivariate generalisations of the properties pre­

sented in Theorem 6.6.7 of Hannan and Deistler (1988), see also the comments following 

Theorem 6.7.2, Hannan and Deistler (1988, p.303). From the results given above it is ap­

parent that the exact extent of the overestimation will depend not only on the structure of 

the system under investigation but also the values of hT and κT employed in the analysis. 

4. Empirical Illustrations 

In order to implement the above procedures the practitioner will have to prescribe 

values for the design parameters hT , NT and κT . The first of these can be chosen by using 

AIC to determine the order of the regression-autoregression at the first stage. If hAIC 
T 

denotes the value that minimises T log det T −1 � 
�̂��T (t)�̂��T (t)� + 2hT (v2 + uv), 0 ≤ hT ≤ 

HT = (log T )1.7 then by Theorem 6.6.3 of Hannan and Deistler (1988) and Proposition 

4.3.1 of Lütkepohl (1991) hT = hAIC 
T will satisfy the conditions for application of the 

theoretical results presented above. Once hT has been selected a natural choice for NT 

is hT (u + v)/(2v + u). This value equates the number of freely varying coefficients in 

each equation of an ARMAXE (ν(NT )) system with the number used in the regression­

autoregression, recognising that the purpose of the ARMAX model is to provide a more 

parsimonious but equally adequate representation of the observed multiple time series. 

The choice of κT is guided by Lemma 3.1 and Theorem 3.4, both of which show that any 

tendency to overestimate the Kronecker indices can be balanced by selecting κT to grow 
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at a rate at least as fast as log T . Theorem 3.2 provides an asymptotic justification for a 

wide range of such values but if κT = (log T )1+δ, δ > 0, then strongly consistent estimates 

will be generated. Given that δ can be arbitrarily small, to argue for anything other than 

the use of the limiting value κT = log T in most practical situations seems overly pedantic, 

particularly as time series folk-law suggests that the use of a parameter correction term that 

is too large in relation to T is likely to lead to underestimation, indicating that Theorem 

3.4 may only be relevant when T is quite large. 

In order to investigate the extent to which the predictions of asymptotic theory are 

reflected in finite sample behaviour and provide an indication of the practical significance 

of the results established above, simulation experiments have been used as a vehicle for 

analysing the sampling properties of the identification process. Realizations from bivariate, 

zero mean, (pseudo) Gaussian data generating mechanisms were generated and the sample 

sizes employed in the simulations were T = 75(2N ), N = 0, 1, 2, 3, 4 with the number of 

replications being given by 15(104)/T in each case. The latter rule is motivated by the 

notion that if T is large then large sample theory can be expected to provide a reasonable 

guide to the behaviour of the statistics of interest, whereas if T is small the adequacy of 

asymptotic approximations is questionable and it appears advisable to obtain more precise 

sampling information via an increase in the number of replications to be examined. 

The results presented in Table 1 are derived from an ARMAXE (ν0) process with 

ν0 = (2, 2), 
� 

1.0 − 2.05z−1 + 0.615z−2 2.08z−1 − 0.85 z−2 
�

A0(z) = −1.25z−1 + 0.613z−2 1.0 + 1.1z−1 − 0.938z−2 , 
� 

1.0 − 4.75z−1 + 1.275z−2 4.95z−1 − 1.425z−2 
�

M0(z) = −3.9z−1 + 1.425z−2 1.0 + 4.0z−1 − 1.625z−2 , 

x(t) ≡ 0 and innovation variance-covariance matrix Σ0 given by σ11,0 = σ22,0 = 1.25 

and σ12,0 = 1. The values for the structural and scale parameters employed here are 

taken from Poskitt and Tremayne (1986), where they have been used for similar purposes 

and where some discussion of the experimental design considerations giving rise to such 
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values is provided. For each value of T the operational properties of the technique were 

summarised by dividing the realizations into mutually exclusive sets according to whether 

the structural index ν0 was correctly identified or not. Denoting the first selection category 

by C, its complement was further subdivided into those where the estimated Kronecker 

indices all exceeded ni0, i = 1, 2, denoted E , or otherwise. In all the experiments reported 

here the first stage was implemented using AIC with HT = (log T )1.7 and the average 

value of hAIC 
T for the regression-autoregression, h̄ 

T , is also given. 

TABLE 1 

Results for Process I 

T 75 150 300 600 1200


¯ hT 4.6675 5.406 5.85 6.208 6.616 

Λr,T 0.54 0.69 0.496 0.24 0.04C
(κT = log T ) 0.05 0.18 0.46 0.73 0.95E
Λr,T C 0.28 0.574 0.59 0.3 0.06 
(κT = log T log log T ) 0.01 0.06 0.33 0.69 0.94E 

Note: Entries in body of table give proportionate incidence 
of selection categories. 

The propensity for the n̂r,T to overestimate nr0, r = 1, . . . , v, as T increases when 

κT = log T is clearly illustrated. Although the use of κT = log T log log T results in a 

decrease in the incidence of overestimation, as might be anticipated from the theoretical 

results presented above, the effect is small and transitory, and there is still a marked 

tendency to overestimate when T is large. 

Table 2 provides a similar summary of the experimental outcomes from a data gener­

ating mechanism like the first except that A0(z) and M0(z) are replaced by 
� 

1 − 1.002z−1 + 0.005z−2 2.993z−1 − 0.008z−2 
� 

−1.99 z−1 + 0.001z−2 1 + 0.55 z−1 + 0.002z−2 

and � 
1 + 2z−1 4.333z−1 

� 

−1.167z−1 1 − 2.5z−1 
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respectively. There is still some evidence of a propensity to overestimate the true Kronecker 

indices as the sample size increases for both choices of κT , but it seems that for this process 

T will have to considerably exceed 1200 before the experimental outcomes follow large 

sample dictates with a high degree of regularity. 

TABLE 2


Results for Process II


T 75 150 300 600 1200


¯ hT 2.525 2.998 3.282 3.948 4.6 

Λr,T 

(κT = log T ) 
Λr,T 

(κT = log T log log T ) 

C
E 

C
E 

0.128 
0.0015 

0.045 
0.0005 

0.43 
0.006 

0.251 
0.002 

0.66 
0.036 

0.64 
0.008 

0.676 
0.02 

0.716 
0.016 

0.604 
0.384 

0.624 
0.344 

Note: Entries in body of table give proportionate incidence 
of selection categories. 

A heuristic explanation for the differences observed with these two processes is not 

difficult to find. In both cases ν0 = {2, 2}, but unlike Process I, for Process II the elements 

aij0(2), i, j = 1, 2, are all very small whilst the mij0(2), i, j = 1, 2, are zero. This 

implies that the differences in the residual mean squares σ̂2 (ν(n)) − σ̂2 ({2, 2}), r = 1, 2,r,T r,T 

n = 0, 1, are likely to be much smaller for the second process than for the first. Following 

the developments in Section 3 we can deduce that if T = 1200 and ˆr,T (ν(n)) for n = 0, 1σ2 

exceeds σ̂2 ({2, 2}) by more than 1% then n̂r,T will equal or exceed nr0, but the number r,T 

of observations needs to be increased eightfold in order for a difference between σ̂2 (ν(n)),r,T 

n = 0, 1 and σ̂2 ({2, 2}) of only 0.1% to lead to the same conclusion. Hence the higher r,T 

frequency of occurrence of the event E for Process I than for Process II at these sample 

sizes. 

The outcomes observed above serve to illustrate not only how the extent of overestima­

tion can be influenced by the process under investigation, but also that overestimation can 
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present itself for values of T and the design parameters hT and κT commonly encountered 

and employed in practice. 

5. Second Phase Modifications 

The properties presented in the previous section yield multivariate counterparts to 

phenomena first analysed by Hannan and Kavalieris (1984b) and subsequently described 

in Hannan and Deistler (1988) in the context of scalar models. Recognising that the overes­

timation implicit in Theorem 3.4 stems from the slow rate of convergence of the second mo­

ments of the regression-autoregression residuals to those of the innovation process these au­

thors suggested that the residuals from the first stage be replaced by innovations estimates 

generated using the second stage coefficient values. A similar modification can be con­

ducted here. The �̂��T (t) determined at Stage I are replaced by �̃��T (t) = (�̃1,T (t), . . . , ̃�v,T (t))� 

where �̃��T (t) is generated recursively from 

TTp̂ p̂ p̂

˜ ˜ ˜
� 

MT (j)�̃��T (t − j) = 
� 

AT (j)y(t − j) + 
� 

BT (j)x(t − j) , 
j=0 j=0 j=1 

for t ≥ 1−HT with initial values �̃��T (t) = 0, t ≤ −HT , an ARMAXE system wherein p̂T = 

˜ ˜maxr=1,...,v n̂r,T and [ÃT : BT : MT ] denotes the system coefficient estimates obtained 

T

from the second stage, single equation least squares calculations carried out with those 

elements that are prescribed to zero by the echelon form based on the Kronecker invariants 

n̂r̂(j),T , j = 1, . . . , v set equal to zero. The second stage and identification algorithm are 

then repeated using �̃��T (t) in place of �̂��T (t). The following lemma indicates the nature of 

the improvement obtained by using �̃��T (t) rather than �̂��T (t) to estimate ���(t). 

LEMMA 5.1. Suppose that the conditions of Lemma 3.1 obtain and that the identifica­

tion algorithm is applied with κT of order O(log T ) at most. Then for 0 ≤ s ≤ HT 

T

T −1 
� �

�̃��T (t) − ���(t)
��

�̃��T (t − s) − ���(t − s)
�� = O(Q2 

T ) and 
t=s+1


T


T −1 
� 

���(t)
�
�̃��T (t − s) − ���(t − s)

�� = O(QT 
2 ) . 

t=s+1 
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The effect of the replacement is to improve the convergence rate of the residual mean 

square whilst leaving the properties of the coefficient estimates unchanged and simulation 

results presented in Hannan and Kavalieris (1984b) for the scalar case suggest that this 

enhances the performance of the model selection process. 

More recently Kavalieris (1991) has pointed out that with univariate ARMA mod­

els a repetition of the second stage is not necessary and that a marked improvement in 

performance can be achieved by basing the model selection criterion directly on the sec­

ond stage innovations estimates. Reinsel (1993, §4.5) describes the application of a direct 

mutivariate generalisation of Kavalieris’ procedure to vector ARMA models expressed in 

normalised, simply identified form. In the current situation an immediate generalisation 

of this type is not possible because the generation of the �̃r,T (t), r = 1 . . . , v, must be 

done simultaneously and this requires knowledge of the whole system. Such knowledge 

will not be forthcoming untill all the Kronecker invariants have been ascertained following 

a first pass through the identification algorithm. Nonetheless, an analogous procedure can 

be implemented by combining the innovations estimates �̃��T (t) with the different Stage II 

coefficient estimates [ˆ : ˆ mr,T ] that will become available once a first pass throughar,T br,T : ˆ

the identification algorithm has been completed. 

Let 

T

˜2 
σ̂r,T (ν) = T −1 

� �
âr,T (z)y(t) + b̂r,T (z)x(t) − ( ˆ r)�̃��T (t)

�2 
mr,T (z) − e�

t=1 

T

= T −1 
� �

yr(t) − R̃r,ν (t)�θθθ̂r,T 
�2


t=1


where [âr,T : b̂r,T : ˆ θθθr,T , are the second stage coefficient estimatesmr,T ], or equivalently ˆ

obtained for the rth equation of an ARMAXE (ν) system and R̃r,ν (t) is defined as for 

R̂r,ν (t) except that �̃��T (t) replaces �̂��T (t). Now set 

Λ̃r,T (ν(n)) = log σ̂̃
2 

(ν(n)) + κ̃T [(v − 1) + n(2v + u)]/Tr,T 
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where κ̃T is a nonnegative, nondecreasing function of T and define the estimate of the rth 

Kronecker index to be equal to 

ñr,T = arg min [Λ̃r,T (ν(n))]. 
0≤n≤n̂r,T 

This modification determines the Kronecker indices as previously, but the new innovations 

estimates are combined with the second stage coefficient values to produce a different 

estimate of the residual variance and the ñr,T , r = 1, . . . , v are obtained by taking the 

previous estimates n̂r,T , r = 1, . . . , v as upper bounds and ascertaining whether the 

modification indicates the desirability of reducing these values. The following theorem 

and subsequent corollary show that strong consistency can be achieved via the modified 

identification algorithm with a lower bound to the rate of increase in κ̃T governed by the 

law of the iterated logarithm. 

THEOREM 5.2. Suppose that the assumptions of Lemma 5.1 hold. If the modified 

identification algorithm is applied using Λ̃r(ν(n)) with κ̃T such that κ̃T / log log T → ∞ 

and κ̃T /T 0 as T →∞ then limT →∞ ñr,T = nr0, r = 1, . . . , v with probability one. → 

COROLLARY 5.3. Let ñr̃(q),T , q = 1, . . . , v, denote the Kronecker invariants obtained 

by rearranging the ñr,T , r = 1, . . . , v, into descending order and let r̃(q)T , q = 1, . . . , v, 

denote the permutation of r = 1, . . . , v implied thereby. If κ̃T → ∞ such that κ̃T /T 0 → 

and log log T/κ̃T 0 as T →∞ then modulo invariant rotations r̃(j)T = r(j)0 a.s. for T → 

sufficiently large and Pr(limT →∞ ñr̃(j),T = nr(j)0) = 1, j = 1, . . . , v. 

Some idea of the impact of the above modification can be gained from Table 3. This 

table reports the outcomes observed when Λ̃r(ν(n)) with κ̃T = log log T is employed to 

identify the kronecker indices in the simulation experiments previously used to illustrate the 

sampling properties of the identification process in Section 4. Once again there is a higher 

frequency of occurrence of the event E , indicating that the estimated Kronecker indices 

all exceeded ni0, i = 1, 2, for Process I than for Process II, confirming that the sample 
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sizes needed before the asymptotic theory starts to bight may vary considerably from 

process to process. Nevertheless, the improvement in the performance of the identification 

methodology is clearly illustrated by the increased frequency with which the event C occurs 

for both processes, indicating that the structural index ν0 is now being correctly identified 

much more regularly. 

TABLE 3


Results for Λ̃r(ν(n)) with κ̃T = log log T


T 75 150 300 600 1200


Process I 0.59 0.73 0.88 0.94 0.98C 
0.06 0.16 0.16 0.002 0.001E

Process II 0.64 0.88 0.94 1.00 0.97C
E 0.001 0.002 0.008 0.0 0.0 

Note: Entries in body of table give proportionate incidence 
of selection categories. 

6. Concluding Remarks 

This paper has examined a generalisation of the Hannan and Rissanen (1982) tech­

nique of model selection to vector ARMAX processes expressed in echelon canonical form. 

It has shown that the phenomenon of order overestimation first analysed in the context of 

scalar models by Hannan and Kavalieris (1984b), and subsequently described in Hannan 

and Deistler (1988), carries over to the vector case, leading to the possible overestimation 

of the true Kronecker indices. 

Such overestimation does not of itself constitute a condemnation of the identification 

algorithm since the purpose of the analysis may not be to determine nr0, r = 1, . . . , v, 

exactly. Indeed, as pointed out in the introduction, recent work on the statistical properties 

of subspace algorithms requires that the practitioner specify a truncation index f ≥ d0 = 
�v

r=1 nr0, the true McMillan degree, see Bauer et. al. (1999). The results presented in this 



23 

paper suggest that the identification procedure of Section 3 may well provide a very sensible 

data directed method of selecting this truncation index, namely f = d̂T = 
�v

r=1 n̂r,T . The 

following result is an immediate consequence of the previous analytical developments. 

COROLLARY 6.1. Suppose that assumptions (A1) to (A3) hold whilst ARMAXE (ν0) 

obtains, that the value hT employed at Stage I is such that h0T < hT ≤ HT and the 

Identification Algorithm is implemented using the correction factor κT where κT /T 0 → 

as T →∞. Then 
d̂T ≥ d0 a.s. 

= (d0 + d†T )(1 + op(1)) 

where d† = n† + + n† and the nr,T
† , r = 1, . . . , v, are as defined in Theorem 3.4.T 1,T v,T· · · 

If the relative-efficiency of subspace-based system parameter estimates is inversely 

related to the magnitude of f , as appears to be the case from the variance formulas given 

in Bauer et. al. (1999), then Corollary 5.1 intimates that d̂T is likely to provide a value 

of f that will yield estimates with relatively good performance. Thus the choice b = hAIC 
T 

determined at Stage I in conjunction with f = d̂T as determined from the identification 

algorithm applied at Stage II with κT = log T suggests itself as a natural pairing for the two 

truncation indices input into subspace algorithms. Note also that if nr ≥ nr0, r = 1, . . . , v, 

and


[ ˆ : ˆ ˆAT BT : MT ] = 

⎡ 

⎢⎣


â1,T : b̂1,T : m̂1,T 
.
. . 

ˆ : ˆav,T : b̂v,T mv,T 

⎤ 

⎥⎦


ˆ ˆthen by Lemma 3.2 [ÂT : B̂T : MT ] = XT [A0 : B0 : M0] + O(QT ) where the common 

factor matrix X̂�
T = [χχχ̂1,T : . . . : χχχ̂v,T ]. It follows that under appropriate regularity 

ˆ Â−1 ˆ ˆ ˆthe transfer function [K̂T : LT ] = T [−BT : MT ] will satisfy [K̂T : LT ] = [K0 : 

L0] + O(QT ). This suggests that the Stage II regression estimates upon which d̂T are 

based might be usefully employed to construct initial values suitable for implementing the 

two-stage canonical correlation analysis subspace algorithm developed in Peternell et. al. 

(1996). 
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If the correct identification of nr0, r = 1, . . . , v, is important for the subsequent analy­

sis, modifications of the Hannan and Rissanen (1982) technique due to Hannan and Kava­

lieris (1984b), and Kavalieris (1991), that are designed to circumvent the overestimation 

problem, have also been extended to cover the class of vector ARMAX processes expressed 

in echelon canonical form. These modifications give rise to order selection algorithms that 

yield strongly consistent estimates of the Kronecker indices and they have been shown to 

produce a marked improvement in the performance of the model selection process. 

Finally, given that the overestimation is rooted in the use of the first stage regression­

autoregression residuals as innovations estimates, it seems natural to consider the possi­

bility of avoiding the use of the regression-autoregression residuals altogether rather than 

contemplating latter stage modifications. A method of parameter estimation and order 

determination for scalar ARMA models that does not depend on estimating the innova­

tions is presented in Poskitt and Chung (1996). The adaptation of their approach to the 

current situation is the subject of work in progress. 

7. Proofs 

7.1 Proof of Lemma 2.2 : Consider first ĜT (r, ν). This symmetric matrix contains ten 

unique matrix blocks corresponding to the partitions induced by the mean squares and 

cross-products of the variables contained in the four-way partition of R̂r,ν (t). The matrix 

in the second block of rows and third block of columns, for example, contains 

T

T −1 
� 

Sb(r, ν)
�
ζζζp ⊗ x(t)

��
y(t) − ̂���r(t)

��
Sf (r, ν)� 

t=1 

T

.= Sb(r, ν)T −1 
� ⎢⎣

⎡ 
x(t − 1)

�
y(

.. 

t) − ̂���T (t)
�� 

⎦⎥
⎤ 

Sf (r, ν)� . 
t=1 x(t − p)

�
y(t) − ̂���T (t)

�� 

It is therefore necessary to determine the asymptotic properties of autocovariance estimates
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of the form 
T

Cx(y−�̂)(j) = T −1 
� 

x(t − j)
�
y(t) − ̂���T (t)

�� 
, j = 1, . . . , p 

t=j+1 

= Cxy (j) − Cx�(j) + Cx(�−�̂)(j) . 

From the results presented in Hannan and Deistler (1988, §5.3) the first term is ΓΓΓxy (j) + 

O(QT ) and similarly the second is O(QT ) from the assumed independence of x(t) and ���(t). 

The Cauchy–Schwarz inequality applied to the elements of Cx(�−�̂)(j) indicates that these 

are bounded by terms involving C(�−�̂)(�−�̂)(0), which from Lemma 2.1 are O(QT 
2 log T ). 

Bringing these results together gives 

(2π)−1 
� π 

Sb(r, ν)(ζζζp ⊗ HxxK∗)Sf (r, ν)� dω + O(QT ) . 
−π 

Applying parallel arguments to the remaining subblocks of ĜT (r, ν) and handling ĝT (r, ν) 

analogously gives the desired result. 

7.2 Proof of Lemma 2.3 : Suppose that G(r, ν0) is singular for some r = 1, . . . , v. Then 

G(r, ν0)θθθ̄ 
r = 0 for some nonzero vector θθθ̄ 

r = (ααᾱ�r : βββ̄ 
r 
� 

: λλλ̄ 
r 
� 

: µµµ̄�r)� and 

2πθθθ̄
� 
rG(r, ν0)θθθ̄ 

r = 
� π 

(ārK − b̄r)Hxx(ārK − b̄r)∗+ 
−π 

(ārL − ¯ )ΣΣΣ(ār mr)∗ dωmr L − ¯

= 0. 

Assumptions (A1) to (A3) imply that ¯ (z)K(z) = ¯ (z) and ¯ (z)L(z) = ¯ (z) a.e., 

|z| = 1, and hence that {ar0(z) + ār(q)(z)}K(z) = {br0(z) + b̄r(q)(z)} and {ar(q)0(a) + 

ār(q)(z)}L(z) = {mr0(z) + mr(q)(z)} a.e., | | = 1, giving a different representation of K 

ar br ar mr

¯ z

and L within the same canonical form. By reductio ad absurdum it follows that G(r, ν0) 

is nonsingular. Since G(r, ν0) is nonsingular ĜT (r, ν0) will, with probability one, be non­

singular for T sufficiently large because the inequality λmin[A + B] ≥ λmin[A] + λmin[B] 

where λmin[ ] denotes the smallest eigenvalue of the corresponding matrix implies that ·
λmin

�
ĜT (r, ν0)

� ≥ λmin

�
G(r, ν0)

� 
+ λmin

�
ĜT (r, ν0) − G(r, ν0)

�
. Hence from Lemma 2.2 

λmin

�
ĜT (r, ν0)

� ≥ λmin

�
G(r, ν0)

�
(1 + O(QT )) 

≥ λmin

�
G(r, ν0)

�
/2 
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for T sufficiently large. Suppressing the arguments r and ν0 for simplicity, from Lemma 

(2.2) and the inequality �ĜT (θθθ̂T −θθθ0)� ≤ �G−ĜT �·�θθθ0�+�ĝT −g� we can conclude that 

�ĜT (θθθ̂T −θθθ0)� = O(QT ) since �θθθ0� < ∞ by assumption. It follows that θθθ̂r,T = θθθr0 +O(QT ) 

and that [âr,T : b̂r,T mr,T ] converges to [ar0 : br0 : mr0] as stated.: ˆ

A direct consequence of applying Lemma 2.2 and the immediately preceding result 

to equation (2.3) is that σ̂2 (ν0) converges a.s. to e� (0)er G(r, ν0)θθθr0. Now r,T rΓΓΓyy − θθθr
�
0

let Rr,ν (t) be defined as for R̂r,ν (t) except that �̂��T (t) is replaced by ���(t) everywhere it 

occurs. Regarding yr(t) and the elements of Rr,ν (t) as members of the Hilbert space of 

random variables and recalling the well known isomorphism between the time and fre­

quency domains (Rozanov 1967) we see that G(r, ν) and g(r, ν) are the Grammians of 

these variables. Moreover yr(t) = fr0(t) + �r(t) where fr0(t) = Rr,ν0 (t)
�θθθr0, from which 

it follows that G(r, ν0)θθθr0 = g(r, ν0) and θθθr0 determines the projection of yr(t) on to the 

manifold spanned by Rr,ν0 (t). The squared norm of the residual from that projection is 

then e� (0)er G(r, ν0)θθθr0 = σ2 and hence σ̂2 (ν0) = σ2 + o(1) a.s. as required.rΓΓΓyy − θθθ�r0 rr r,T rr 

7.3 Proof of Lemma 3.1 : The proof of the first part of Lemma 3.1 is modeled on that of 

Lemma 2.1(c) of Pőtscher(1989). To begin recall that σ̂2 (ν) is the residual mean squarer,T 

from the regression of yr(t) on the regressors in R̂r,ν (t). Now let ν0(r, n) denote the mul­

tiindex {n10, . . . , n(r−1)0, n, n(r+1)0, . . . , nv0}, set Fν0(r,n)(t)� = 
�
fr0(t) : Rr,ν0(r,n)(t)�

� 
and 

F̂ν0(r,n)(t) = 
�
fr0(t) : R̂r,ν0(r,n)(t)

�
. A similar logic to that employed in Lemma 2.3 shows 

that when n < nr0 the variables in Fν0(r,n)(t) are linearly independent almost surely for 

all t, from which we can conclude that lim infT →∞ λmin

��
t Fν0(r,n)(t)Fν0(r,n)(t)�

�
/T > 

0, a.s.. Expanding T −1 �
t(F̂ν0(r,n)(t)F̂ν0(r,n)(t)� − Fν0(r,n)(t)Fν0(r,n)(t)�), in terms of 

F̂ν0(r,n)(t)−Fν0(r,n)(t) and Fν0(r,n)(t), applying the Cauchy-Schwartz inequality, and using 

the bounds T −1 �
t ||F̂ν0(r,n)(t) − Fν0(r,n)(t)|| ≤ T −1 �

t ||(���(t) − �̂��T (t))||2 = O(hT QT 
2 ) and 

2 ˆT −1 �
t ||Fν0(r,n)(t)|| = O(1), leads to the result λmin

��
t Fν0(r,n)(t)F̂ν0(r,n)(t)�

�
/T > 0 

with probability one as T → ∞. Consequently, for T sufficiently large, F̂ν0(r,n)(t) consti­
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tutes a set of linearly independent variables. From (1.6) of Lai and Wei (1982) it follows 

that the residual mean square from the projection of fr0(t) on to the space spanned by 

R̂r,ν0(r,n)(t) is bounded below by a constant ρr0(n) > 0. An argument similar to that em­

ployed by Pőtscher(1989, p1268) in proving his Lemma 2.1 therefore leads to the conclusion 

σ2 (t)2 σ2 σ2that ˆr,T {ν0(r, n)} > ρr0(n)(1 + o(1)) + T −1 �T
t=1 εr . Since ˆr,T {ν0} = rr + o(1) 

by Lemma 2.3 and T −1 �
t
T 
=1 εr(t)2 

rr a.s. by assumption (A2) it follows thatσ2 → 

σ̂2 σ2 
r,T {ν0(r, n)} − ˆr,T {ν0} > ρr0(n)(1 + o(1)) for all n < nr0. 

Now, the residual mean square from the regression of yr(t) on R̂r,ν(n)(t)� equals 

σ̂2 (t) on the com­r,T {ν0(r, n)} minus the regression mean square obtained by regressing yr

ponent of R̂r,ν(n)(t) orthogonal to R̂r,ν0(r,n)(t). If n < nr(v)0 then R̂r,ν(n)(t) = R̂r,ν0(r,n)(t) 

and ˆr,T {ν(n)} = ˆr,T {ν0(r, n)} for all r = 1, . . . , v. If, on the other hand, n > nq0 forσ2 σ2 

some q, q = r, then the equation aq0(z)y(t) + bq0(z)x(t) = mq0(z)���(t), the qth row of 

the ARMAXE (ν0) system defines an exact linear relationship between y(t − s), x(t − s) 

and ���(t − s), s = 0, . . . , nj0, that implies that the additional variables yj (t − s), s = 

0, . . . , n − nj0, appearing in Rr,ν(n)(t) are linearly dependent on those already contained 

in Rr,ν0(r,n)(t). From Lemma 2.2 it follows that asymptotically R̂r,ν(n)(t) and R̂r,ν0(r,n)(t) 

will span the same space and that σ̂2 
r,T {ν0(r, n)} + O(h1/2 

r,T {ν(n)} = σ̂2 
T QT ). Hence 

σ2 σ2 σ2 σ2log 
�
ˆr,T {ν(n)}/ˆr,T {ν(nr0)}

� 
= log 

�
ˆr,T {ν0(r, n)}/ˆr,T {ν0}

� 
+ o(1) 

and consequently 

lim inf log 
�
ˆr,T {ν(n)}/σ̂2 

rr)σ2 
r,T {ν(nr0)}

� 
> log(1 + ρr0(n)(1 − δ)/σ2 

T →∞ 

with probability one for any δ, 0 < δ < 1. The assumption κT /T 0 therefore implies that → 

Λr,T (ν(nr0)) < Λr,T (ν(n)) a.s. if n < nr0 because κT /(T log(1 + ρr0(n)(1 − δ)/σ2 )) 0rr → 

a.s. and lim infT →∞ n̂r,T ≥ nr(q)0 as required. 
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In addition, for any n the inequality


T T n

ˆ 2log+(
� 

||Rr,ν (t)|| 2) ≤ O
� 
log+ {

�
(
� 

�y(t − j)� 2 + ��̂��T (t − j)� 2) + ||x(t − j)|| }� 

t=1 t=1 j=0 

T

= O(log n) + O
� 
log{O(

� 
�y(t)� 2 + ��̂��T (t)� 2 + ||x(t)|| 2)}� 

, 
t=1 

where log+(x) denotes the positive part of log(x), applies. The right hand side is O(log T ) a.s. 

2since 
�

t �y(t)�2 and 
�

t ||x(t)||2 are both O(T ) and 
�

t ��̂��T (t)� ≤ 
�

t ����(t)�2+
�

t �(���(t)− 

�̂��T (t))�2 is at most O(T ) + O(HT log log T ) by Lemma 2.1. Thus sufficient conditions for 

the application of Lemma 2.2(b) of Pőtscher(1989) are satisfied because log(
�

t ||R̂r,ν (t)||2) 
is of smaller order than κT a.s. if log T/κT 0 and therefore the results as stated in (ii)→ 

hold. 

7.4 Proof of Lemma 3.3 : Lemma 3.3 corresponds to Lemma 2.2 when ν = ν0 with 

χχχr0(z) = er. If nr nr0, r = 1, . . . , v, however, and at least one inequality is strict,≥ 

nq > nq0 say, then the qth row of [A0 : B0 : M0] defines an exact linear relationship 

between the elements of y(t − s), x(t − s) and ���(t − s), s = 0, . . . , nq0, that implies that 

the variables in Rr,ν (t) are linearly dependent. Therefore, see Poskitt (1992 p.17), there 

exists a nonzero vector that annihilates G(r, ν). Thus the convergence argument used to 

establish Lemma 2.2 is not available as G(r, ν) has less than full rank. In order to handle 

such singularities we employ an adaptation of a method outlined in Hannan and Deistler 

(1988, pp. 307-308). Since [A0 : B0 : M0] is coprime it follows from the generalised Bezout 

identity (Kailath 1980, p.382) that (u + v) × v, (u + v) × u and (u + v) × v matrix operators 

�A0, �B0 and �M0 exist such that 
� �A0 �B0 �M0 

� 

A0 B0 M0 

is unimodular and postmultiplying [ar : br : mr] by the inverse of this matrix yields a 

one-to-one coordinate transformation to a new parameter vector (ξξξ�r : χχχ
�
r) such that 

[ξξξ�r : χχχ
�
r ] 

� �
A
A
0

0 �
B
B
0

0 �
M
M

0

0 
� 

= [ar : br : mr] . 
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[A−1From the properties of Bezout identity it follows that ξξξr(z) is strictly proper and ar 0 (B0 : 

M0)] − [−br : mr] = 0 if and only if ξξξ = 0. In this case [ar : br : mr ] = χχχ� [A0 : B0 : M0]r r 

and this vector must constitute the rth row of an echelon form whose Kronecker indices 

are nr, r = 1, . . . , v. That such a linear combination exists is verified by construction. 

Let Er(z) denote the elementary v ×v row transformation matrix that simultaneously 

multiplies the rth row of [A0 : B0 : M0] by (1 + dz−1), d < 1 but otherwise arbitrary,| | 
and adds to it −arj0(nr0 − nj0 +1)z−(nr0−nj0+1) times row j if nj0 ≤ nr0 +1, j = 1, . . . , v, 

j = r. Then Er[A0 : B0 : M0] is in echelon form with row degrees nj0 j = 1, . . . , v, j = r, 

and nr0 +1. A similar transformation can then be applied to [Er(A0 : B0 : M0)] to increase 

the degree of any other row. By repeated application of such transformations the degree 

of each row of [A0 : B0 : M0] can be increased as required untill the resultant echelon 

form, [Ā : ¯ ¯ r = 1, . . . , v. The rth row of [ ̄ B : M] equalsB : M] say, has row degrees nr, A : ¯ ¯

χχχ�r[A0 : B0 : M0] where χχχ�r is the rth row of a product of elementary row transformation 

matrices and has elements 
nr −nj0 

χr,j (z) = 
� 

χr,j (s)z−s , nj0 ≤ nr 

s=0 

= 0 , otherwise 

for j = 1, . . . , v, j = r, and 
nr −nr0 

χr,r(z) = 1 + 
� 

χr,r (s)z−s . 
s=1 

Thus the vector χχχ contains polynomials of degree nr − nj0 in the jth location, j ∈ Kr0,r 

and is otherwise zero. 

Transforming from [a : b : m] to [ξξξ� : χχχ�] we find that 

ar (z)y(t) + br(z)x(t) − 
�
mr(z) − e�r

�
�̂��T (t) 

= 
�
χχχ (z)�A0(z) + ξξξ (z)��A0(z)

�
y(t) + 

�
χχχ (z)�B0(z) + ξξξ (z)��B0(z)

�
x(t)r r r r

− 
�
χχχr (z)�M0(z) + ξξξr(z)��M0(z) − e�r

�
�̂��T (t) 

= e�r{���(t) − (M0(z) − I)(�̂��T (t) − ���(t))} − (χχχr (z) − er)�M0(z)(�̂��T (t) − ���(t)) 

+ ξξξ (z)�
��A0(z)y(t) + �B0(z)x(t) −�M0(z)�̂T (t)

�
r
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where the last line follows from its predecessor by adding and subtracting (χχχ�rM0(z) − 

e�r )���(t) and then rearranging and simplifying the expression using the fact that A0(z)y(t)+ 

B0(z)x(t) − M0(z)���(t) = 0. It follows that ˆr,T (ν) equals the residual mean square fromσ2 

the regression of ŵr(t) = e�r{���(t)−(M0(z)−I)(�̂��T (t)−���(t))} on appropriate lagged values of 

M0(z)(�̂��T (t)−���(t)) and z(t) = 
��A0(z)y(t)+�B0(z)x(t)−�M0(z)�̂T (t)

� 
with coefficients 

corresponding to the elements of [ξξξr(z)� : χχχr (z)�] not known to be either zero or one. 

Argument by contradiction now shows that the least squares coefficient values must satisfy 

ar,T : b̂r,T : ˆ χχχ�r,T r,T[ˆ mr,T ] = ˆ [A0 : B0 : M0] + ξξξ̂
� 

[�A0 : �B0 : �M0]. 

We will now establish that ξξξ̂r,T = O(QT ). To this end note that, by definition, 

hT +h0 

¯ ¯z(t) = 
� 

ΨΨΨ(j)y(t − j) − ΦΦΦ(j)x(t − j) 
j=0 

for some fixed integer h0 > 0 where [ ̄ ΦΦΦ] = [�A0 −�M0 
ˆ : −�B0+�M0ΦΦΦ̂T ] and fromΨΨΨ : ¯ ΨΨΨT 

Hannan and Deistler (1988, Theorem 6.6.10) it follows that the matrix of mean squares 

and cross products with T −1 � 
z(t − s)z(t − r)� in the (s, r)th block, s, r = 1, . . . , δ(ξξξ ),r 

converges to a nonsingular limit. From Theorem 5.3.1 of Hannan and Deistler (1988) we 

also conclude that T −1 � 
z(t − s)���(t)� = O(QT ), s = 1, . . . , δ(ξξξr). Similarly T −1 �

t y(t − 

s){�̂��T (t − r) − ���(t − r)}� = O(QT ) for any s and r. That this equality obtains can be seen 

by substituting for �̂��T (t) − ���(t) and rewriting the transpose of the quantity of interest as 

hT

T −1 
��� �

ΨΨΨ̂T (j) − ΨΨΨ0(j)
�
y(t − r − j)y(t − s)� − 

�
ΦΦΦ̂T (j) − ΦΦΦ0(j)

�
x(t − r − j)y(t − s)�

� 

t j=1 

plus a remainder term that is o(T −1/2), this order of magnitude arising from the fact 

that 
�

j>hT 
�ΨΨΨ0(j) : ΦΦΦ0(j)� is dominated by const · |z0|hT , hT > h0T and 

� �ΓΓΓyy (k) : 

ΓΓΓxy(k)� < ∞. Since T −1 �[y(t − s) : x(t − s)]y(t − r)� = [ΓΓΓyy(s − r) : ΓΓΓxy (s − r)]+ O(QT ) 

and sup1≤j≤hT �ΨΨΨ̂T (j) − ΨΨΨ0(j) : ΦΦΦ̂T (j) − ΦΦΦ0(j)� = O(QT ), see Hannan and Deistler (1988, 

Corollary 6.6.2), the stated result follows. The same argument can now be used to show 

that T −1 �
t x(t−s){�̂��T (t−r)−���(t−r)}� = O(QT ) by simply replacing y(t−s) by x(t−s). 
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This implies not only that T −1 �
t z(t − s)wr(t) = O(QT ) but also that the sample cross­

covariance matrix between the regressors in z(t − s) and M0(z)(�̂��T (t − r) − ���(t − r)) is 

O(QT ) and thus we can conclude that ξξξ̂r,T = O(QT ), as claimed. 

Finally, using the immediately preceding results we see that the coefficients in χχχ̂r,T 

are obtained from the regression of ŵr(t) on e�j M0(z)(�̂��T (t − s) − ���(t − s)), s = 0, . . . , nr − 

nj0, j ∈ Kr0, plus a correction term O(QT ). From Lemma 2.1, however, 

T

T −1 
� 

M0(z)(�̂��T (t − s)−���(t − s))(�̂��T (t − r) − ���(t − r))�M0(z)� = 
t=1 � π 

(u + v)hT (2πT )−1 M0ΣΣΣM∗
0e iω(s−r)dω + op(hT T −1) 

−π 

and 
T

T −1 
� 

M0(z)(�̂��T (t − s)−���(t − s)) ̂wr(t) = 
t=1 

(u + v)hT (2πT )−1 
� π 

M0ΣM∗
0ere iωsdω + op(hT T −1) . 

−π 

Neglecting terms that are op(1) it is readily verified that χχχ̂r,T corresponds to the solution 

of the Toeplitz equations associated with the minimum mean squared error prediction of 

wr(t) from wj (t − s), s = 0, . . . , nr − nj0, j ∈ Kr0. This completes the proof. 

σ27.5 Proof of Theorem 3.4 : Recall from the above that when n ≥ nr0 ˆr,T (ν(n)) equals the 

residual mean square from the regression of ŵr (t) = e�
�
���(t)−(M0(z)−I)(�̂��T (t)−���(t))

� 
onr

e�j M0(z)(�̂��T (t − s) − ���(t − s)) s = 0, . . . , nr − nj0, j ∈ Kr0, plus O(Q2 ). Using Lemma 2.1T 

once more we find that 
T T

T −1 
� 

ŵr(t)2 = T −1 
� 

�r(t)2 + (u + v)hT (2πT )−1e�r
� � π 

(M0Σ0M∗
0 − ΣΣΣ0)dω

�
er 

t=1 t=1 −π 

plus op(hT T −1). Subtracting the regression mean square, which has already been shown to 

equal that from the optimal prediction of wr(t) from wj (t−s), s = 0, . . . , nr −nj0, j ∈ Kr0, 

yields the result that 

T

σ2ˆr,T (ν(n)) = T −1 
� 

�r(t)2 + (u + v)hT T −1(τr 
2(�) − σ2 ) + op(1) ,rr 

t=1 
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where � = n − nr0. Substituting into Λr,T (ν(n)), replacing T −1 �T 
�r(t)2 by σ2 + o(1)t=1 rr 

and rearranging terms gives 

Λr,T (ν(n)) = log σ2 + (u + v)hT T −1(τ2(�)/σ2 
rr − 1)rr r 

+ 
�
(v − 1) + n(2v + u)

�
κT T −1 + op(1) , 

from which the result presented in the theorem follows directly. 

7.6 Proof of Lemma 5.1: To prove Lemma 5.1 let [ ̃ ΔΦΦΦ0T ] = [ ̃ ΦΦΦT ] − [ΨΨΨ0 : ΦΦΦ0]ΔΨΨΨ0T : ˜ ΨΨΨT : ˜

where the coefficients of [ ΨΨΨ̃T : ΦΦΦ̃T ] are generated from the recursions 

i� 
M̃T (j)[ΨΨΨ̃T (i − j) : ΦΦΦ̃T (i − j)] = [ÃT (i) : B̃T (i)] , i = 1, . . . , p̂T , 

j=0 

= 0 , i > p̂T , 

with initial conditions [ ΨΨΨ̃T (0) : ΦΦΦ̃T (0)] = [Iv : 0]. Expanding �̃��T (t − s) − ���(t − s) in terms 

of [ ΔΨΨΨ˜
0T : ˜

t=s+1(˜ΔΦΦΦ0T ] and substituting into T −1 �T 
���T (t − s) − ���(t − s))���(t)�, for example, 

we obtain 

T HT

T −1 
� ��

[ ˜ ΔΦΦΦ0T (j)x(t − s − j)]���(t)�
�

ΔΨΨΨ0T (j)y(t − s − j) : ˜
t=s+1 j=1 

T t−s+HT −1 

+ T −1 
� 

ΔΨΨΨ0T (j)y(t − s − j) : ˜
� � 

[ ˜ ΔΦΦΦ0T (j)x(t − s − j)]���(t)�
� 

t=s+1 j=HT +1 

T ∞
− T −1 

� � � 
[ΨΨΨ0(j)y(t − s − j) : ΦΦΦ0(j)x(t − s − j)]���(t)�

� 
. 

t=s+1 j=t−s+HT 

The first term is O(Q2 ) because T −1 �T 
���(t)[y(t − s)� : x(t − s)�] = O(QT ), 0 < s ≤T t=s+1 

(log T )c , c > 1, by Theorem 5.3.1 of Hannan and Deistler (1988) and, as will be shown 

˜ : ˜below, �ΔΨΨΨ0T ΔΦΦΦ0T � = O(QT ). The norm of the second term is bounded by 

T

˜T −1 
� 

����(t)� 
t−s+HT −1 

�ΔΨΨΨ0T (j)y(t − s − j) : ˜
� 

ΔΦΦΦ0T (j)x(t − s − j)� , 
t=s+1 j=HT +1 

which is less than 

T 1/4 
T +HT −1 

� ̃ ΔΦΦΦ0T (j)�T −1 
T

�y(t − s − j)� : x(t − s − j)��o(1) 
� 

ΔΨΨΨ0T (j) : ˜
� 

j=HT +1 t=s+1 
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since ����(t)� = o(t1/4) by finiteness of the fourth moment. By stationarity and ergodicity 

T −1 �T
t=s+1 �y(t−s−j)� : x(t−s−j)�� converges to E [�y(t)� : x(t)��] < ∞ and the second 

term is therefore o(T 1/4QT ). Similarly, the third term is of smaller order than T −1/2 since 
�

j>HT 
�ΨΨΨ0(j) : ΦΦΦ0(j)� = o(T −1/2). Hence T −1 �T 

���(t)(�̃��T (t−s)−���(t−s))� = O(QT 
2 )t=s+1 

as required. The first part of Lemma 5.1 is established in a similar manner. 

To show that lim supT →∞ � ̃ : ˜ = O(QT ) suppose that this statement isΔΨΨΨ0T ΔΦΦΦ0T � 

false. Then there exists a subsequence, still denoted by T , and a constant C < ∞ such that 

� ̃ ΔΦΦΦ0T � > CQT + δ, δ > 0. But from Lemma 3.1 ˆΔΨΨΨ0T : ˜ nr,T ≥ nr0, r = 1, . . . , v, a.s. as 

˜T →∞ and, therefore, by Lemma 3.3 [ÃT : B̃T : MT ] = X̂T [A0 : B0 : M0] + O(QT ) and 

˜ ˆ ˆMT [ΨΨΨ̃T : ΦΦΦ̃T ] − XT M0[ΨΨΨ0 : ΦΦΦ0] = [ÃT : B̃T ] − XT [A0 : B0] = O(QT ) . 

Also, by the same lemma, X̂�
T = [χχχ̂1,T , . . . , χχχ̂v,T ] converges in probability to the matrix 

X0
� = [χχχ10, . . . , χχχv0] of minimum mean squared error filter coefficients. X0(z) is non­

singular, |z| ≥ 1, because otherwise there would exist a linear combination of the sta­

tionary processes χχχ� (z)w(t), r = 1, . . . , v that would equal zero ∀ t a.s., implying thatr0

w(t) = M0(z)���(t) has less than maximal rank, contradicting assumptions (A1) and (A4), 

see Rozanov(1967, §2.6 & 2.9). Thus there exists a sub-subsequence such that X̂T is non­

˜ M−1X−1M−1 ˆsingular a.s. and hence T = 0 T + O(QT ). From this we conclude that there 

exists a C � < ∞ such that � ̃ : ˜ = CQT + (C � − C)QTΔΨΨΨ0T and we haveΔΦΦΦ0T � ≤ C �QT 

arrived at a contradiction to � ̃ : ˜ + δ.ΔΨΨΨ0T ΔΦΦΦ0T � > CQT 

7.6 Proof of Theorem 5.2: To prove Theorem 5.2 note that 

T

σ̂̃r,T (ν) ≥ min T −1 
� �

yr(t) − R̃r,ν (t)�θθθr

�2 

θθθr t=1 

and, as will be shown below, 

T

σ̂̃r,T (ν0) = T −1 
��

yr(t) − fr0(t) + (Rr,ν0 (t) − R̃r,ν0 (t))
�θθθ̂rT + Rr,ν0 (t)

�(θθθr0 − θθθ̂r,T )
�2 

t=1 

T

= T −1 
� 

εr(t)2 + O(Q2 
T ) , 

t=1 
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the last line arising directly from Lemmas 2.4 and 5.1. Following the proof of Lemma 3.3(i) 

substituting R̃r,ν(n)(t) for R̂r,ν(n)(t) therefore leads to the conclusion that 

2 2
lim inf log 

�
σ̃̂ σ̂

� 
> log(1 + ρr0(n)(1 − δ)/σ2 )r,T {ν(n)}/˜

r,T {ν(nr0)} rr
T →∞ 

with probability one for any δ, 0 < δ < 1, if n < nr0 and hence that lim infT →∞ ñr,T ≥ nr0 

a.s. if κ̃T /T 0. → 

When n ≥ nr0 we can expand σ̂̃r,T (ν(n)) by replacing y(t) by K(z)x(t) + L(z)���(t) 

and rearranging terms to give 

T

˜2 
σ̂r,T {ν(n)} = T −1 

��
âr,T (z)y(t) + b̂r,T (z)x(t) − ( ˆ r)�̃��T (t)

�2 
mr,T (z) − e�

t=1 

T

= T −1 
��

e�r���(t) − ( ˆ r(q)){�̃��T (t) − ���(t)}mr,T (z) − e�

t=1 

+ (âr,T (z)K(z) + b̂r,T (z))x(t) + (âr,T (z)L(z) − ˆ .mr,T (z))���(t)
�2 

But both 

âr,T K + b̂r,T = (âr,T − χχχ̂�r,T A0)K + (b̂r,T − χχχ̂�r,T B0) 

and 

ˆ mr,T = (ˆ χχχ�r,T mr,T − ˆ M0)ar,T L − ˆ ar,T − ˆ A0)L − ( ˆ χχχ�r,T 

are of order O(QT ) by Lemma 3.3 and both are strictly proper. Truncating âr,T K + b̂r,T 

and âr,T L − ˆ after HT terms and using Theorem 5.3.1 of Hannan and Deistler (1988)mr,T 

once more in conjunction with Lemma 5.1 now yields the result that 

T

˜2 
σ̂r,T {ν(n)} = T −1 

� 
�r(t)2 + O(Q2 

T ) . 
t=1 

Therefore, the probability that Λ̃r,T {ν(n)} − Λ̃r,T {ν(nr0)} will be negative or zero for 

T > T � will be arbitrarily small as T � → ∞ if κ̃T / log log T → ∞ and this completes the 

proof of the theorem. 
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