
MONASH I 
E'METRICS! 
WP 
16/95 ! 

ISSN 1032-3813 
ISBN 0 7326 0777 9 

MONASH UNIVERSITY 

AUSTRALIA 

BAYESIAN ANALYSIS OF A COINTEGRATION MODEL 

USING MARKOV CHAIN MONTE CARLO 

Gael Martin 

Working Paper 16/95 
October 1995 

DEPARTMENT OF ECONOMETRICS 



DONALD COCHRAWE L'BRARY 

ECONOIVilCS 

Bayesian Analysis of a Cointegration Model 
Using Markov Chain Monte Carlo* 

Gael Martin 
Department of Econometrics, 

Monash University, 
Clayton, Victoria 3168, 

Australia. 
Gael.Martin@BusEco.monash.edu.au 

July 1995 

Abstrac t 

This paper presents a strategy for conducting Bayesian inference 
within the context of the trianguiax cointegration model. The numer­
ical analysis is based on a hybrid of the Gibbs and Metropolis Markov 
Chaiin Monte Carlo methods. The use of a combination of two Markov 
Cheiin algorithms rather than a straight Gibbs Saimpler occurs as a 
consequence of the complications induced by the prior specification. 
The specific form of the latter is, in turn, required for two purposes. 
First, in order to offset an identification problem which occurs when 
the cointegration model is extended to allow for the possibility of no 
cointegration. Second, in order to allow for an objective prior density 
on the parameter which determines the existence of cointegration. 

*I wotild like to thank Brett Inder, Catherine Forbes, Herman van Dijk, Vance Martin, 
Brendan McCabe and Max King for helpful comments on an earlier draft of this paper. 
Any mistakes remain, of course, my own responsibility. 
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1 Introduction 
In this paper, we propose a Bayesian approach to both testing for a coin-
tegrating relationship between two or more time series and estimating that 
relationship, if it is deemed to exist. The method uses the triangular system 
representation of the cointegration model, as used extensively by Phillips and 
various co-authors in the Classical cointegration hterature. (See, for exam­
ple, PhiUips 1991c and 1994 and Phillips and Hansen (1990)). The nimierical 
technique used to produce estimates of the posterior densities of interest is 
a hybrid of the Gibbs and Metropolis Markov Chain Monte Carlo (MCMC) 
algorithms. (See Gelfand and Smith (1990) and Smith and Roberts (1993)). 

We demonstrate that the use of the triangular system to model cointe­
gration, in combination with the assimiption of normally distributed errors, 
would potentially render flat prior inference on both the parameter control-
Ung the presence of cointegration £ind the cointegrating parameter(s) them­
selves, extremely simple via a straight forward appUcation of Gibbs Sampling. 
However, two compUcations arise. 

First and most fundamentally, ein identification problem will be shown 
to obtain when the triangular model of cointegration is extended to allow 
for a lack of cointegration, in order for an initial test of cointegration to be 
performed. Following an idea of Kleibergen and Van Dijk (1994a. and b.), 
we choose to solve this identification problem via the use of a Jeffreys' prior. 
This solution produces a joint posterior density, for which the associated 
conditional densities to be used in the Gibbs sampling are, in part, non­
standard and, hence, difficult to simulate from. We choose to circumvent this 
problem by inserting, at the points in the Gibbs Sampler where simulation 
is difficult, sub-chains produced by an alternative Markov chain strategy, 
namely the MetropoUs algorithm. We show that, as a consequence of the 
fax:t that the underlying identification problem does not impact at the level 
of the full conditional densities, there is an obvious choice of candidate density 
to be used in the Metropolis algorithm. 

A second problem axises from an issue which has been discussed else­
where in the literature (see, in particular, the Journal of Applied Econo­
metrics, (1991)), namely the appropriate way in which to model a-priori 
non-informativeness in a time series context. As concerns a cointegration 



model, the point is that a flat prior on the parameter controlUng the pres­
ence of cointegration is not a true representation of a-priori objectivity. Such 
a prior, in fact, serves to bias posterior inference in favour of cointegration. 
(See also PhiUips (1993)). The incorporation of the appropriate objective 
prior introduces a non-standard aspect into the Gibbs strategy. The man­
agement of this induced complication is also possible via the imbedding of a 
Metropolis sub-chain, although the choice of candidate density may become 
more problematic. 

The paper is organized as follows. Section 2 provides an outline of both 
the model and the inferential objectives. Section 3 demonstrates the identifi­
cation problem which arises and its solution via the JeSreys' prior principle.' 
The proposed hybrid Gibbs/Metropolis samphng method is then described 
in Section 4, along with an informal discussion of the required convergence 
criteria. In Section 5, we demonstrate the abiUty of the proposed MCMC 
method to reproduce the exact marginal densities. We also provide the re­
sults of a small Monte Carlo study, in which the Bayesian inferences are 
compared with Classical alternatives. Although prehminary, these results 
tend to suggest that the Bayesian method provides a very viable alternative 
to the Classical procedures. The paper then gives some conclusions in Sec­
tion 6. An outUne of the formal conditions for the convergence of the Gibbs 
and MetropoUs Markov chain algorithms is provided in the Appendix. 

2 The Model and the Inferenticd Objectives 

Consider the following bivariate model for the generation, at time t, of ob­
servations on the variables y and i respectively: 

yt = 0xt + uu (1) 

Xt = Xt-l - U2t (2) 

The error vector Ut = (uu,U2f)' is assumed to be an autoregressive process, 
characterized as B{L)ut = ej , where B{L) is a matrix of finite degree, one­
sided polynomials in the lag operator L of the form: 

B(L) = 
bn{L) bn{L) 
b2l{L) b22{L) (3) 

where: 
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bij{L) = bijo - Yl ^iJkL , z, j = 1,2, 
fc=i 

with bijo = 1 unless all coefficients are set to zero, in which case bjjo = 0 also. 
It is assumed that ê  = (eu, e2t)' has a bivariate Normal distribution of the 
form: 

eu 
e2t 

NID{ 0 
0 ,S = 0"11 

0'21 

(712 

(722 
), (7i2 = 0-21. (4) 

Given the /(I) natiure of the regressor, (1) potentially represents a coin-
tegrating relationship between two / ( I ) variables. It is of interest both to 
test for this possibility and to estimate the value of 0 in the event that the 
latter is concluded to be the parajneter of a cointegrating relationship. 

There are several points to maJce regarding the chosen model specification. 
The first concerns the off-diagonal terms in the B{L) matrix. It can be shown 
that the presence of a non-zero 621 (L) polynomial has non-trivial implications 
for the presence or not of a cointegrating relationship between Xt and yt 
. In addition, the allowance of a non-zero bi2{L) polynomial, produces an 
identification problem which does not seem to be solvable via the method to 
be outlined in the paper. As such, we begin by imposing the restriction of a 
diagonal B{L) matrix. 

The specification of a diagonal B{L) matrix obviously imposes a simpler 
autocorrelation structure on Uu and U2t • In addition, the restriction 621 (L) = 
0, in particular, implies that Xt is strongly exogenous} We believe, however, 
that the allowance of a certain level of endogeneity of Xt via a non-diagonal E 
matrix, plus the allowance of general AR specifications for 6n(-^) and 622 (•t') 
provides a rich enough parameterization for the model to be useful. Methods 
for handhng the model with a full B{L) matrix are the subject of current 
research. 

The basic mechanics of the procedure demonstrated in the paper remain 
the same when the model is ziltered in such a way that (1) represents either a 
multiple regression equation or a multivariate system of equations (in which 
case yt becomes a vector and B a matrix), so long as the particular structure 
of the model is maintained. As a consequence, we are justified in simpUfying 
the exposition by presenting results for the bivariate case. 

^See Engle, Hendry and Richard (1983). 



The fundamentals of the method are invariant to the inclusion of a drift 
and/or a deterministic trend term in the equation for Xt . As a consequence, 
we abstract from these elements. The inclusion of a constant term in the 
model does, however, have a significant impact on the procedure. Whilst 
the additional identification problem which it induces can be tackled via a 
straight forward extension of the Jeffreys' prior used to solve the fundamental 
identification problem in the niodel, the impact of the lack of identification 
at the level of the full conditional densities alters the convergence properties 
of the proposed Gibbs - based MCMC scheme. In order to limit the scope of 
the paper, we do not consider this problem in any detail. 

2.1 Inference regarding the presence of cointegration 

The first step in the inferential process is to determine whether the error 
term, Uu , is stationary and the associated regression equation for yt and Xt 
a cointegrating one as a consequence. Given that an assessment of cointegra­
tion is to be performed, the prior density for the parameters determining the 
autocorrelation structure of Uu will allow for non-stationarity in the latter. 
The assessment will then be based upon the relative probabilities of station-
arity and non-stationarity as calculated from the marginal density of the 
parameter controUing the unit root. This approach thus requires a reparam-
eterization of the autocorrelation structure in uu along the Unes used in an 
augmented Dickey Fuller test, so that the single marginal density associated 
with the paraimeter controlling the unit root is the basis of inference. 

The equating of cointegration and non-cointegration respectively with the 
relevant marginal probabilities of stationarity and non-stationarity, does ren­
der the natinre of the testing problem shghtly difi'erent from that of a standard 
Classical residual-based cointegration test. If the probability of stationarity 
is high enough for the hypothesis of cointegration to be " accepted", then one 
is indeed in the standard situation, whereby two /(I) variables have been 
found to possess an /(O) linear combination. If, on the other hand, the error 
term is deemed to be non-stationary, then the regression structure of (1) 
impUes that yt is explosive. 

Two points need to be made here. First, in order for such a finding to 
be consistent with the pre-testing on yt and Xt which has, by assumption, 
preceded the cointegration analysis, it would appear to be necessary to use 
a Bayesian unit root test in which the possibiUty of an explosive yt (and 
Xt ) is allowed for. Second, in order to preclude a-priori the possibility of 



a highly explosive error term and, hence, a yt series which would not be a 
contender in terms of cointegration with Xt , the marginal prior on the unit 
root parameter in the error term may well need to be tnmcated at some 
point beyond 1. This latter point shall be raised again in Section 3. 

2.2 Estimation of the cointegrating parameter 

Once the decision has been maxie as to the likelihood of a cointegrating re­
lationship existing, inference regarding the parameter of that relationship 
may proceed, based on the marginal density fimction for 0. The prior on 
the parameter controlUng the stationarity in Uu could be restricted to the 
stationary part of the parameter space, in accordance with the finding of 
cointegration, if so desired. We choose to demonstrate the proposed inferen­
tial method without the restriction of cointegration imposed at any point, in 
order to simplify the exposition. Only a minor modification of the numerical 
technique used would be needed to incorporate the cointegration restriction. 

3 An Identification Problem and its Solution 
via the Jeffreys' Prior Principle. 

In their 1994 papers, Kleibergen and Van Dijk encounter an identification 
problem, the consequence of which is the lack of proper marginal posterior 
densities for use in Bayesian inference. The solution which they propose 
involves the appUcation of the Jeffreys' principle for prior density elicitation."^ 

An identification problem also arises within the context of the present 
model specification, with the Jeflfreys' prior principle again providing the 
remedy. The nature of the problem is most easily demonstrated within the 
context of a very reduced form of the model with 6ii(L) = 1 — 0iL and 
b22{L) = 1.̂  The features of the problem and the solution to it that we 
suggest remain fundamentally the same when uu and U2t are allowed to be 
general AR processes. The restrictions 612(L) = 621 (L) = 0 will be imposed 
from this point onwards. 

We shall assume prior independence between the parameter matrix E £ind 
the remaining pareimeters in the model, namely 0 and 0i. As such, we can 

^See also Schotman and Van Dijk (1991). 
^The notation 0i is used in order to be consistent with that used when bn{L) is 

reparameterized later in the Section. 



decompose the joint prior for all pairameters as: 

p{L,P,(i>y)cxp{E).p{P,cj>,). (5) 

As we shall see, it is the form assumed by the second component in (5) 
which has implications for parameter identification. For the time being, we 
shall allow this component to be a uniform, or flat, density fimction. For E 
we shall utiUze the noninformative Jeffreys' prior, | /£ | ' oc |E| , where 
/E denotes the submatrix of the information matrix which relates to the 
elements of E; i.e. / s = £{-8"^ In L/dT,dT,'). This particular prior on E, in 
combination with the joint flat prior on /3 and 01, allows standard Bayesiari 
analysis to be performed, with the precise nature of the identification problem 
able to be easily highlighted. 

Given the distributional assimiptions underlying the model and the choice 
of priors as discussed above, the form of the joint posterior density is: 

p(/3,0i,E) oc |E | - ("^^ ' /^exp{-l /2(EeeE-ieO} 
' (6) 

oc |Er<"- ' ' ' / ' . exp{- l /2 t r (E- i5 )} , 

with (/3,(^i,E) defined on D = M^xR^ x SP^', where S^^' denotes the space of 
(2 X 2) positive definite sjmimetric matrices. The vectors x and y denote the 
n-dimensional observation vectors and 5 = ^t^t^'t- ^^ ^̂ ® simplified version 
of the model, eu = (1 — 0iZ/)uu = (1 — <l>iL){yt — Pxt) and e2t = U2t. 

Stand£u:d techniques enable integration with respect to E, yielding the 
following form for the joint density of 0 and 0i: 

p(/3,0i|y,x) a {Ci +C2/32 - 2(73^}""/^ (7) 

where: 

Ci = E[(l - (t>iL)yt]' E Ax2 - [Z{1 - 0iL)y,Ax,]2, 

C2 = n i l - (l>iL)x,]' t Ax2 - [ n i - (PiL)xtAxt]\ 

Cz =E(l-0iL)yt( l -0iL)xeEAx2-
t t 

E ( l - 0iL)ytAxt].E(l - 0iL)xtAxt] 
t 

and we further define: 
C4 — Ci — C3/C2. 
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It can be seen that when ©i = 1, both C2 and C3 = 0. This in turn 
implies that the joint density for (5 and 0i is a constant function of and, 
hence, fails to identify /5, when ©1 = 1. The integral, with respect to /3, of 
this slice of the joint density, being unbounded, ascribes an infinite value to 
the marginal density of (bi at the point ^1 = 1. 

For 01 ^ 1, standard integration techniques can again be used to produce 
respectively the conditional and marginal densities: 

p(/31(/.i,y,x) ex [sl]-'"[l + (/? - ^)V[(n - l)sl]]-" (8) 

and: 
p(0i|y,x)ocC2-^/'C4-^"-^'/^ (9) 

where 0 = C3/C2 and (n — l)s^ = C4/C2. L'Hopital's rule can be apphed 
to the relevant quantities in (8) and (9) in order to ascertain the nature of 
these densities as 0i approaches 1. We find that the Student t density for 
0 conditional on (j)i has both mean and variance approaching 00 as 01 —> 1. 
The marginal density of </>! approaches 00 as ©1 —> 1. 

If the impact of the lack of identification of /? at 0i = 1 were to be felt only 
at that single point, then the solution would be to simply redefine the joint 
density function as (6) with support D' = D fl {(/?, 0 i ,E) ;0i 7̂  1}. This 
amounts to finding a joint density which is equivalent almost everywhere 
(with respect to Lebesque measure) to the original density, but which does 
not incorporate the identification problem. Our inferences regarding both /3 
and 01 would be unaffected by such a change in the definition of the joint 
posterior. 

What we find, however, is that the impact of a "near" lack of identification 
can be significant for a wide range of 0i values around 1, depending on the 
nature of the true underlying data generating process (dgp). Figures la 
and Ic provide examples of the marginal density of 0i when the data has 
been generated from processes with true values of 0.5 and 0.9 respectively 
for 01. As is quite evident, when the bulk of the density is situated well 
below 01 = 1, as in Figure la, there is only a slight asymptoting effect on 
the density for values of 0i airound 1. In the case of Figure Ic. however, the 
distortion of the density is significant, with an artificial global mode being 



produced at a point arbitrarily close to 1."* Figures lb. and Id. present 
the corresponding marginal (3 densities, the flat tails of the latter density 
indicating the potential impact of the near identification problem on the 
existence of marginal moments for /5. 

We can shed more light on the impact of this near lack of identification 
on the marginal density of (bx specifically, by analyzing more closely the 
two quantities, €2^'"^ and C^^"" ^̂ , of which p((pi|y,x) is comprised. It is 
straight forward to show that C2 is a quadratic function of (pi which assumes 
a minimum value of zero at (ii = 1, irrespective of the true value of 0i in the 
imderlying dgp. The only data dependent aspect of C2 (and, hence Co ) is 
the degree of concentration of the fimction around its minimxmi (maximum) 
value, and that is, in turn, aflPected by x only. 

CA on the other hand, is a quadratic function of (i)\ whose minimum value 
occurs at a value of related to the OLS estimator of di in the hypothetical 
regression model u^ — uu- i + e\t and which, as a consequence, is directly 
affected by the true value of 0i. 

In summary, the marginal density of 0i is the product of a well-behaved 
function of 0i, (7"^""^^' ^ which possesses sensible inferential content regard­
ing 4>x, and a function, C^ , which possesses no such content. The latter, 
moreover, serves to dominate the former function, for certain dgp's, produc­
ing a density with a large amount of probability content around 0i = 1, even 
when the true <j)x is well into the stationary region. It would appear to be 
desirable, therefore, to somehow offset the C^ factor, in order to produce 
sensible inferences. 

As has been alluded to several times now, the elimination of the impax:t 
— 1/2 

of the identification problem, of which the distortion induced by Q is the 
manifestation, may be achieved via the use of a particular Jeffreys' prior. 
The latter is proportional to the determinant of the information matrix and, 
hence, related to the inverse of the covariance matrix of the relevant posterior 
density. In the case of potentially unidentified parameters, it should tend to 
offiset the infinite conditional variances which occur at the points at which 
the parameters become unidentified, as well as eUminating any associated 
irregvilarity in the marginal densities in regions of a near lack of identification. 

"•These densities are typical of densities resulting from the specified types of dpg's. 
Numerical integration was used to produce these densities and those in Figure 2. The 
MCMC algorithm is not applied until Section 4. The value <t>\ = 1 has been eliminated 
from the support of the density for the purpose of producing the graphs. 

10 



As pointed out by Kleibergen and Van Dijk, the success of the Jeffreys' prior 
in this regard depends crucially on the way in which the expectations within 
it are evaluated. 

In order to derive the appropriate form of the Jeffreys' prior, it is neces­
sary to allow the identification problem to reveal itself in the full likelihood 
function. That is, the relevant parameter must fail to be identified by the 
full UkeUhood function in order for the Jeffreys' prior, as derived from that 
function, to be operational in terms of offsetting the lack of identification. 
In our case, the identification problem is revealed only after integration with 
respect to E. However, a simple decomposition of the full likehhood along 
the following hues enables the lack of identification of /? when </>i = 1 to 
manifest itself appropriately: 

.L(E,/3,0i |y,x) oc |E^" /^exp{- l /2 f r (E- l5 )} 

a ar"f . exp{-l/(2(7n.2) Uiy't - P^'t) - (<7i2/a22)Ax,]2} 

.<T27/'exp{-l/(2a22)i:[Aa;e]2}, 

(10) 
where t/t = yt-(piyt-i, x^ = X(-0i i t_ i and an.2 = <Tn—(^12/(^22- Maintain­
ing the assumption of prior independence of S and the remaining parameters, 
the first Hne of (10) can be used to derive the Jeffreys prior for S, namely, 
|E|~ . With this independence assumed, the element (Ji2/cr22 appearing in 
the second Une of (10) can be replaced by the artificial paremieter a, and the 
Jeffreys prior for 0 and a conditioneil on ^1 can be derived from this first part 
of the decomposition, being the only part of (10) in which these parameters 
appear. 

We wish therefore to derive the determinant of the (2x 2) information 
matrix: 

h>a = E 
-52 In L/a/?2 - a In L/d0da 1 , 
-d'\nL/dad0 -dHnL/da' ' -dlnL/d0da = 

dHnL/dad0. 

where it is impUcit that all differentiation is conditional on 0i. It is simple 

11 



to show that the elements of this matrix reduce to: 

E{-dHnL/d(3') ={l/crn.2)Enxt-cj),xt.iy = ( lMi .2 )^ (x*V) , 

E{-dHnL/dl3da) = {l/au.2)Ei:{xt-<Pix,.,)Axt = (l/cru.2)^(x"Ax) 

and : 
E{-d^\nL/da^) = {\/au.i)EY.^xl = (lMi.2)£^(Ax'Ax), 

t 

where x* and Ax are the observation vectors for x^ and Axt = Xt — Xt-i 
respectively. As such, the Jeffreys' prior, which is proportional to the square 
root of the determinant, is defined by: 

|/;3,«|'/' OC {£;(x*'x').f;(Ax'Ax) - [E(x"Ax)]'}'/2 

A marginal Jeffreys' prior on d can also be defined as I J oc {E{—d In L/d(f)1)y^'^. 
With the first exponent term in (10) once again being the only relevant 
term, the form of the latter prior can be derived as {EY^t{ul^_i)y^'^ = 
{£;(u;_lUl,_^)}^/^ withui,_i = (u icUn, . . . ,ui„_i)'. 

The combination of the conditional and marginal priors then leads to an 
impUed joint prior for a, /3, and 0i and of the form: 

{f;(x*V).£;(Ax'Ax) - [E(x*'Ax)]'}i/2 {£;(u;__iUi,_i)}i/2 (ji) 

Given that a is only an eirtificial parameter introduced for the purposes of 
the derivation, we can view the above prior in terms of the decomposition: 
p{l3\<f>i)•p{<pi)• The imphed marginal prior on 0 is obviously flat. 

The source of the distortion in the di density, namely the quantity C^ 
is equivalent to the inverse of the first br£u:keted part of (11), so long as the 
expectations of the functions of Xt which appear are replaced by their realized 
values. Given that Xt is weakly exogenous with respect to both P and 0i, by 
virtue of the imposition of a zero value for 621 (•^), this form of evaluation of 
the expectations imphes no loss of information with regard to the parameters 
of interest. This particular version of the Jeffreys' prior is then sufficient to 
exactly ofltset the impact of the identification problem. Given that we shall 
also be allowing for the marginal Jeffreys' prior on (pi, we shall sometimes 
refer to this conditional Jefloreys' prior as the "smoothing" prior, so as to 
avoid possible confusion. 

12 



Figure 2. Marginsd posterior densities for 0i and 0 based on the 
condit ional Jeffreys' pr ior for 6 given (^i. 
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Figures 2a and 2c present the "smoothed" versions of the densities in 
Figures la and Ic respectively.^ As would be anticipated, given the small 

I / O 

impact of the C2 factor on the <j)i density given in Figure la, the eradica­
tion of it in Figure 2a affects the density only slightly. The same can be said 
of the corresponding /3 density in Figure 2b. The difference between the ^1 
densities in Figures Ic and 2c, however, is much more marked, with the latter 
displaying nothing of the irregularity present in the former. The impact on 
the /? density, as seen in Figxare 2d, is to produce better tail behaviour. The 
15 mode, it will be noted, is not affected by the smoothing process. 

As to the expectation appearing in the marginal prior for (pi, its evaluation 
as a realized value has more significant implications for the natiure of the 
prior information being specified about the parameters. If the expectation of 
u'l _iUi _i is taJcen to be equivalent to the sample value, then the temporal 
dependence of Ut on 0i is being ignored and the resultant prior on 0i is flat. 
If, on the other hand, the time series structure of uu is exphcitly taken into 
account, then the form of the marginal prior for 0i (given the assumption of 
a value of 0 for UQ ) is given by: 

p(0O ^ {E[Y.u\,_,]y'^ 

^ \ {[1/(1 - <P\)][n - (1 - 0?")/(l - <i>\)]y" 01 # 1 (12) 
"^X {n (n - l ) / 2} i /2 ^ ^ ^ 1 

The form of this density (for n = 50) is given in Figiire 3. 
As discussed by PhiUips (1991a and b), (12) is the true Jeffreys' prior and, 

as such, is noninformative or objective in the sense that such a prior is.^ One 
manifestation of this noninforniativeness is the way in which the Jeffreys' 
prior, as depicted in Figure 3, being a function as it is of the structure of 
the underlying model, reflects that model in an appropriate manner. In 
particulair, the high weight given to large values of 0i by the Jeflreys' prior 
reflects the fax;t that with an AR(1) model, the data would provide much 
more information about 01 as 0i increased. 

^The margined prior on <i)\ is still flat at this stage. 
^See Box and Tiao (1973, Chpl) for one interpretation of the sense in which the Jeffreys' 

prior is "noninformative". 
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Figure 3. Margined Jeffreys' prior for 0i 
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Given the shape of the marginal Jeffeys' prior, it is obvious that-its use 
would produce a meirginai posterior density for (b\ with more probability con­
tent in the non-stationary region than would the AISQ of a flat prior on 0i. 
Given that 0i is the parameter of an AR(1) error process, one could argue a 
large mass of probabiUty associated with very large values of 4>\ is not appro­
priate. That is, a-priori, we are hkely to beUeve that a highly explosive error 
process is an imlikely feature of a sensibly specified cointegrating regression. 

Phillips (1993) suggests a modification of the Jeffreys' prior which reflects 
this a-priori reasoning by assigning low probabiMty to high values of 0i. Some 
thought, however, needs to be given to the extent of "truncation" required 
in any psurticular instEmce. As such, once again in order to limit the scope 
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of the paper, we compare inferences based only on the flat and mirestricted 
Jeffreys' priors for 0i. 

The prior appropriate for the model incorporating general AR polynomi­
als 6ii(L) and b22{L), of orders pn and P22 respectively, is derived in precisely 
the same way as (11). In order to characterize a nnit root in Uu in terms of 
the single parameter 0i, bii{L)ut and bn{L)^t are reparameterized respec­
tively as: 

6ii(L)uif = uu - (f>iuu-i - hiuu-i - un-2) 0pu(^u-pii+i - "u-pn) 
= Uu - 0'Uif_i 

= " " ! £ . 

and: 

6ii(L)Xj = xt- (j)iXt-i - <i>2{xt^i - Xt-2) 0pii(xe_pii+i - xt-p^j 
= Xt- (^'X[_i 

where: 
01 = ^111 + ^112 H 1- ^llpu 

is a measure the long-term memory of the process, and the remaining pa­
rameters are defined by (pk = — Yl^=2 ^iifc' A; = 2 , 3 , . . . ,pu- In addition, we 
express b22{L)Axt as: 

brz{L)^t =^t- ^t-i - 6221(2:1-1 - xt-2) 622p22(2:t-p22+i - 2;f_p22) 
= Xt — (l,b22)x[_i 

Using this parameterization (and the obvious associated vector notation), 
the resultant prior specification is of the form: 

{ ( x ' V ) . ( x " V ' ) - ( x " x " ) n ^ / ^ { ^ E | " " - i u ; , _ i | } ^ / 2 (13) 
t 

The first bracketed term is derived in exactly the same fashion as the 
corresponding term in (11), except that the conditioning is now on 0 and 622 • 
Once again, the expectations with respect to Xt are equated with the realized 
values, in order to ensure that this factor exactly offsets the identification 
problem which occurs in the more general specification when the two terms 
Xj and x" coincide. This coincidence of values occiurs at the points in the 
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joint parameter space where (pi = I, (pi = 6221-1, i = 2 , 3 , . . . ,min(pnP22) 
and any excess elements in (j) or b22 equal zero. ^ 

The second term in (13) is an obvious extension of the corresponding term 
in (11), whilst the impUcit third term, namely the marginal prior for b22 is 
flat. The reason for the latter is that the marginal Jeffreys' prior for b22 is a 
function of expectations of Xt only. With these expectations being required 
to be set to the realized values, the prior becomes a constant function with 
respect to 622 • The use of a flat prior for this set of time series parameters 
is obviously in conflict with the allowance of a non-flat prior for (p. 

Before moving on to consideration of the details of the numerical method 
to be appUed in the paper, it is of interest to compare our inferential approach 
with that of one particular Classical single equation method, namely that of 
Phillips and Loretan (1991). Couching their method within the context of the 
simple model initially considered in this Section, it involves the application 
of non-linear least squares (NLS) to the transformed and augmented model: 

y;=:Px; + aAxt + rjt (14) 

Conditional on 01, the OLS estimator of P is equivalent to the mean of our 
conditional density of P given 0i. When 0i = 1, (14) exhibits perfect multi-
coUinearity in the regressors and the OLS estimator of /3 is imdeflned. This 
is simply a different manifestation of the identification problem encountered 
in our approach, with near perfect multicoUinearity likely to have a similar 
impact on the Classical estimates as a near lack of identification does on the 
flat prior Bayesian inferences. That is, although Classical inference proceeds 
on the assumption that 0 is the parameter of a cointegrating relationship 
and that <pi is less than 1, so long as the criterion function to be optimized 
does not incorporate this restriction, then it will be flat in the directions 
of 0 and a when (pi = 1. Even if this restriction were imposed, it would 
not eliminate the problem of the likelihood being close to flat in regions of 
neai multicoUinearity. If this part of the paremieter space were empirically 
significant, then the effect would be to produce convergence problems and 
ineflicient estimates. Since we explicitly adjust for the identification prob­
lem in ovir method, we would anticipate that our inferences would be more 
accurate than those produced by the Classical procedure. 

Another way of looking at this is to compare the mean of the marginal 
density of ^, E{l3\y,x) =/J?(/3 |0i ,y,x)p(0i |y,x)d0i, as an estimator of/?, 
with the estimator of Phillips and Loretan. Whilst the Classical estimator 
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is equivalent to the conditional mean above, conditional on one particular 
estimate of (pi as produced in the estimation process, the marginal mean is 
the average of the conditional mean with respect to the marginal density of 
(pi. It is this marginal posterior of 01 which contains in it the factor C2 
which adjusts for the identification problem. As such, we would expect the 
marginal mean and, in the case of a symmetric density, any other location 
measure, to be a more efficient estimator then the Classical alternative. The 
Monte Carlo results which we present in Section 5 certainly confirm this 
intuition. 

4 The Theory and Mechanics of the Gibbs 
Sampling and Metropolis algorithms 

The proposal of this paper is to produce estimates of the marginal densities 
of interest, namely those of /5 and the unit root parameter via a combination 
of MCMC sampling strategies. A brief explanation of the general nature 
of the two samphng schemes to be used, Gibbs and Metropolis, shall be 
given, followed by a more detailed description of their appUcation to the 
particular model at hand. With reference made to the formal convergence 
theory presented in the Appendix, we then demonstrate that the hybrid 
scheme does appear to satisfy the various conditions for convergence to the 
joint posterior distribution. For recent papers discussing both the theory and 
implementation of MCMC procedures see Tierney (1991), Smith and Roberts 
(1993) and Roberts and Smith (1994). The book by Tanner (1994) also 
provides informative and comprehensive discussion of the methods within 
the broader context of Bayesian computational methods. 

4.1 The Gibbs Sampling Algorithm 

As applied in a Bayesian context, Gibbs s£impUng involves an iterative gen­
eration of random drawings from all of the conditional (posterior) densities 
associated with the joint posterior density of interest. As will be discussed in 
Section 4.4, as long as certain conditions axe satisfied by both the joint poste­
rior and the induced conditionals, these drawings represent a realization of a 
Markov chain with equifibriiuii distribution equal to the joint posterior. The 
drawings pertaining to any particular parameter also represent a simulated 
sample from the marginal posterior density of that parameter. 
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Demonstrating the procedure for the case of our specific parameter group­
ings: /?, (f), b22 and E, the steps of the algorithm are as follows: 

Step 1 Specify initial values for 0, b22 and E, (j)^°l, bg^ and H^^l 

Step 2 Cycle iteratively through the four conditional densities, drawing re­
spectively: 

1. /?(') frompi(/?W|,^('-i),b^!r'\E('-i',y,x), 

2. 0(') fromp2(0(')|/3('\b55r",S('-^':y,x), 

3. b̂ 2̂  from p3(bg|/3W,0('\E('-i),y,x) and 

4. EW from P4(2^'^|;9W,0('',bg,y,x) until i = M. 

Given the satisfaction of the required convergence conditions, the reaUzed 
values, viewed as random variables, converge in distribution to the relevant 
marginal and joint distributions as M —> oc. Alternatively, with M being 
large enough for convergence to have occurred, the continued application 
of the algorithm for a further N iterations produces both a sample of A'' 
(/3, ((), b22, E) values from the joint posterior density and a sample of N values 
of any individual parameter (parameter set) from its marginal (joint) density. 

Obviovisly, in order for the Gibbs Sampler to be operational, one needs to 
be able to sample from the conditioned densities. The presence of both the 
conditional Jeffreys' prior for 0 given <f) and b22 and the marginal Jeffreys' 
prior for 0 render the conditional densities of the parameter vectors 0 and b22 
non-standard in form, such that direct simulation from them is not possible. 
Several different options are available in such a circumstance, all of which 
are variants on the idea of drawing from the imattainable distributions in­
directly, via another distribution.. We choose to use the so-called Metropolis 
algorithm. 

The reasons for the choice of the Metropolis algorithm are two-fold. First, 
being another Markov chain algorithm, if embedded appropriately within an 
outer Gibbs algorithm, the theory of Markov chains can be applied in a 
straight forward manner to the hybrid chain so produced to prove conver­
gence. Second, we show that the nature of the identification problem is such 
that there is an obvious choice for the so-called candidate density to be used 
in the algorithm, one which, moreover, remains appropriate no matter what 
the dimension of 0 and b22. 
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4.2 The Metropolis Algorithm 

The Metropolis algorithm was originally proposed by Metropohs et al. (1953). 
Since then, a variety of different versions of the algorithm have been proposed 
and used within different statistical contexts. (See, for example, Hanmiers-
ley and Handscomb (1964, Section 9.3) and Hastings (1970)). The Hastings 
version of the algorithm represents a sufficiently general one to nest certain 
other special cases, and is therefore a useful version to define. We shall 
demonstrate it with reference to generation from the conditional density for 
(p {P2{-) above). The description is directly applicable to generation from the 
conditional density of b22 also. 

The basic thrust of the Metropohs algorithm is to simulate a value of 
0 indirectly, via a so-called candidate density q, with the latter having the 
properties of being both a good match for p2 and easy to simulate from. 
Having a non-standard form, the integrating constant of p2 is obviously un­
known. Fortunately, the Metropolis algorithm uses p2 in its unnormalized 
form only. Any reference to p2 in this section will therefore be modulo inte­
grating constant. 

The steps of the Metropohs procedure, as inserted into the Gibbs al­
gorithm at iteration i and as allowed to run itself for k iterations, are as 
follows: 

Step 1 Given values /?^*\ b22 and E '̂̂  as produced at the ith iteration of the 
Gibbs algorithm, parameterize a candidate density q via these values. 

Step 2 Draw a candidate value for (^('\ 0% from q{-\P^'\h'^i,'E'^'^) 

Step 3 Calculate the probabihty: 

a(0(->).0-) = min{(p2((/.-)/g(0-))/(p2(0('-^^)/9(0('-^>)),l} 
if P2(<^^'-'')9(0-) > 0; 

= 1 
if P2{<i>^'-'M<pn = o, 

where 0^'~^\ being the value for 4> as produced in iteration i — 1 of 
the Gibbs algorithm, represents the starting value for the Metropolis 
subchain in iteration i. 

Step 4 With probability a, take <f)* as the first value for 0̂ '̂  in the sub-chain 
of length k, say <I)^^{1), otherwise take 0^(1) = 0('-^'. 
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Step 5 Generate values for O^^^ij), j = 2,3,...,A;, by cycling repeatedly 
through Steps 2 to 4, with the relevant comparison value ( 0(*~'' in 
the above description) being (p '̂̂ J — 1) at iteration j . 

. Step 6 Take (/)(') (fc) as the value for (p'^'K 

On the assumption that both q and p2 satisfy certain regularity condi­
tions, continuation of this process produces a Markov chain with transition 
probabilities related to the above probability of acceptance and with equi­
librium distribution equivalent to p2- Subsequent to convergence to this 
distribution, any realization of the chain can be viewed as an observation 
from p2-

Strictly speaJdng, the above steps would appear to produce what Tier-
ney (1991) terms an independence chain, since the parameterization of q is 
not updated within the sub-chain to cater for the changing values in that 
chain. As noted in the Appendix, the use of such a chain enables stronger 
conclusions to be drawn with reference to convergence. 

4.3 The Gibbs/Metropolis Strategy as Applied to the 
Cointegration Model 

We shall now outline the precise form of the conditional densities which arise 
in the case of our particular model. Utilizing the notation of Section 3., and 
remembering that x* and x " are functions of the p£u:£imeter vectors 0 and 
b22 respectively, the joint posterior is proportional to: 

|j,|-(„+3)/2 exp{(- l /2) f rE- 'S} . (15) 

{(x-V).(x"V) - {x"^")y^'-{EE\<t-i<t-i\y^"^-
t 

In applying the formal convergence criteria from Markov chain theory, it shall 
be convenient for us to eliminate from the support the sub-space on which the 
joint posterior density is rendered equal to zero by the conditional Jeffreys' 
prior. As such, from this point on we shall define the almost everywhere (with 
respect to Lebesgue measure) equivalent joint posterior as (15) defined on the 
support/?* = £>n{(/9,0,b22,2);x* 7̂  x " } , whereD = E^xE^" XRW^XSP^' . 
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4.3.1 ;9|0,b22,S,y,x 

A Uttle algebraic manipulation leads to a conditional density for 0 which is 
Normal in form, with mean, P = B1/B2 and variance, var{P) = o-ii.2J57^ , 
where Bi = Zt{xl[y't - (cTi2M2)a:r]), B2 = E t K ) ^ and: 

y*t =yt- (Pm-i - Mvt-i - yt-2) ^vnivt-pu+i - vt-pn) 
= yt- (t)'y[-i 

From the form of the conditional density of /3, we note that when condi­
tioning on E is maintained, the identification problem which eventuates after 
integration with respect to E, does not present itself. We also note that the 
prior density, not being a function of /5, does not impinge on the conditional 
density of /3. 

4.3.2 (^|/3,b22,E,y,x 

Without the presence of the prior density, similar manipulations to those used 
in the derivation of the density for /3 would lead to a multivaiiate Normal 
density for (j) with mean, 4> = {U{'U{)~^{U{'[\Xi - {(r\il<T22)'X-"\) and variance, 
var[(t>) = (yu.2{U{'U[)-' , where U[ = (u^o. ^^i- • • • > ^\n-i)'• 

With the inclusion of the prior density, the conditional density for © is 
proportional to the product of the kernel of this Normal density and the full 
prior, viewed as a fimction of (/>: 

{j:(x,-0X-i)^-E«')'-E(^^-«-i)(^r)]'}^/'-{£^Ehu-iurt-i|}^/' 
t t t t 

(16) 
It is obvious that this product produces a conditional density which is non­
standard. Let us assume for the moment that the final fine in (16) is not a 
function of (̂ , so that the only compUcating factor is the conditional smooth­
ing prior. Due to the way in which (̂  enters this factor, conditioning on 
the remaining parameters does help to simpUfy the expression of the prior, 
viewed as a fimction of (b. The ordinate of the conditional density for is the 
product of the multivariate Normal ordinate and the ordinate of a function 
which possesses the multi-dimensional analogue of a v-shape. The latter 
function attains a minimimi value which is arbitrarily close to zero at the set 
of values for the <j)i (arbitrarily close to the set) at which the identification 
problem arises. 
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Figures 4. and 5. Illustration of the impact of the smoothing prior 
at the conditional level 
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In the case of being one-dimensional (being denoted by 0i), the situation 
can be represented graphically as in Figures 4 and 5. In Figures 4a and 5a we 
present, for dgp's with a true value for of 0.5 and 0.9 respectively, the Normal 
kernel and the smoothing fimction, both separately numerically normalized. 
In Figures 4b and 5b, the normalized product, or the conditional density of 
(pi, is then presented along with the Normal density alone. The parameters 
on which the densities depend are assigned values via application of 20 iter­
ations of the hybrid MCMC chain. Given that a single set of conditioning 
parameters axe being used, the diagrams represent only one Normal kernel 
and conditionEil density from the whole set of such functions. 

It is obvious in Figure 4, that as a result of the true dgp causing the 
Normal kernel to be centred well below one, the v-shaped smoothing function 
has minimal impact. As such, the overall conditional density for (pi is well 
matched by the Normal density. The Normal density also serves as a good 
match for the conditional density in Figure 5. We do notice, however, a 
small hump after 1 in the conditional density, obviously a consequence of 
the slightly more significant impact of the smoothing factor on the Normeil 
kernel, when the latter has more mass in the region close to 1. 

The point of this demonstration is twofold. First, it indicates the way 
in which the conditional Jeffreys' prior has only a relatively minor effect at 
the conditional level. This compares with its impact at the marginal level, 
where it serves to render a density which is very irregular, well-behaved. 
Second, it highlights the fact, related to the first, that the irreguiarity which 
obtains in the marginal density of 0i and for which the Jeffreys' prior factor 
has been introduced, is not present at the level of the conditional density. 
As such, that part of the conditional density which would be present if no 
adjustment were made for the identification problem, namely the Normal 
kernel, represents a well-behaved approximation to the overall conditional 
density which incorporates the smoothing factor. 

Assviming that these same points are relevant when 0 is of more than one 
dimension, the (normalized) Normal kernel, with mean and variance as given 
above would therefore appeeir to represent 2in obvious choice for candidate 
density q in a Metropolis algorithm as applied to the conditional density of 
0. 

When allowance is made for a non-constant fimction of 0 in the last line 
of (16), the above reasoning would appear to continue to apply. A small 
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amoimt of experimentation with different data sets indicates that the impact 
of the marginal Jeffreys' prior for 0i is minimal at the conditional level, at 
least when the Normal kernel does not have a significant amount of mass 
around 1. This is despite the fact that at the marginal level, it is sometimes 
the case that the marginal Jeffreys' prior on 0i induces bimodality in the 
posterior density/ We shall consequently continue to use the Normal kernel 
as candidate density, but with note being taken of the convergence behaviour 
of the algorithm, as compared with that of the algorithm incorporating a flat 
marginal prior on ^ i . 

4.3.3 b22|/3,</.,S 

The conditional density of the remaining set of autocorrelation parameters 
can be derived in similar fashion to that of ((>. Define U2t-i = {u2t-\, U2t-2, • • • • 

U2t-p22)', U2 = ( u 2 0 , U 2 i , . . . , U 2 „ _ i ) ' , U2 = (^21 , U22, • • • , •ii2n)' a n d 0-22.1 = 

(T22 — cri2/<7ii- The conditional density of b22 is proportional to: 

exp{-l/(2a22.i)(b22 - b22)'(C/2t/2)(b22 - b22)}. 

{ E K ) ' - E ( ^ t - ( l ,b '22)x[_ j2 - E ( x : ) ( x , - ( l ,b '22)x[_J]2}^/2 , (17) 
t t t 

where the first part of the density is a Normal kernel, with mean vector and 
covariance matrix given respectively by 622 = (f^2^2)~H^2[^2 — (o'i2/o"ii)uJ]) 
and uar(b22) = cr22.i(^2^2)~S with uj being the vector of observations on 
" i t = = • " " - < / > ' u i t - i -

Since, the elements of b22 enter the smoothing factor of the prior density 
in exactly the same maimer as do the elements of (i), the same comments 
which lead there to the choice of the Normal kernel as candidate density in 
the requisite application of a MetropoUs algorithm, apply here. 

4.3.4 E|/3,0,b22 

The conditional density for E can be read directly from the joint density as 
Inverted Wishait with n degrees of freedom and parameter matrix 5~ ' . 

Generation of values from the Normal densities involves a straight forward 
use of the GAUSS command RNDN. Generation of values from the Inverted 

^See Phillips (1991a) for a demonstration of a similar finding in the AR(l)/unit root 
model case. 
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Wishart density is achieved by taking the inverse of matrix values generated 
from the associated (non-inverted) Wishart density. The latter simulation 
is performed by generating (via RNDN) n two-dimensional normal deviates 
Zt = {zn,Zi2)', with mean zero and variance covariance matrix S~^. The 
random matrix E~' = E^ZtZ- then represents a realization of a Wishart 
variable with degrees of freedom n and covariance matrix S~^. The inverse 
of this realization is the required realization of E. 

Once the simulated values have been produced via the hybrid algorithm, 
estimates of the marginal densities of interest need to be produced for the 
purpose of inference. Via a Rao-Blackwell type argument, (see Gelfand 
and Smith (1990) for discussion on this point), it can be shown that the 
most accurate estimate of either marginal posterior of interest, p(/5|y, x) or 
p(^i|y)X), is a finite mixture density estimate. Demonstrated for the (3 
marginal, this estimate is given by: 

p{P\y) = (l/iV)5;f^^pi(/?l0W,bg,EW,y,x), (18) 

where A'̂  is the number of simulated sets of parameter values. (18) is, of 
course, simply the sample estimate of the expectation impUcit in the rela­
tionship between a conditional and a marginal density. 

Since the conditional density for /? is Normal in form, the component 
densities to be used in the mixture density estimate are known in their en­
tirety; i.e. including their integrating constant.^ In the case of 0i however, 
the relevant conditional density, which is simply the full conditional density 
for the vector 0 but with only <pi viewed as the argument of interest, has 
a non-standard form. As a consequence, one-dimensional numerical integra­
tion needs to be performed on each of the A'' components in the mixture 
density estimate. This requirement obviously has impUcations for the speed 
with which results can be produced. However, the impact does not appear 
to be burdensome. 

4.4 Convergence of the Markov Chain 

There are two points to consider in relation to the question of convergence 
of the hybrid Markov chain to the joint posterior distribution. First, the 

Îf 0 had been a multidimensional vector, its conditional density would have had the 
multivariate Normal form. However, if only one particular element of 0 were of interest, 
the marginal density estimate would simply be based on the one-dimensional conditional 
density as read directly from the multivariate conditional. 
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structure of the Markov chain must be such that this joint posterior repre­
sents the so-called stationary or invariant distribution of the chain. Second, 
the structure of the chain must also be such that convergence towards the 
invariant distribution does indeed occur; i.e. that the chain is ergodic. If a 
straight Gibbs sampler were being used, then we would just need to consider 
these two points as they pertain to it alone. However, with a Metropolis 
algorithm embedded within the Gibbs Sampler at two points, we need to 
also ensure convergence to the relevant conditional distributions, so that the 
overall algorithm converges to the joint distribution. 

4.4.1 Convergence of the Metropolis sub-chains 

In the Metropolis sub-chains, we require convergence to the conditional distri­
butions of and 0 and b22 respectively. If it can be shown that the associated 
conditional densities are well-behaved bounded functions, then the distribu­
tions are both non-zero, finite probabiUty measures over the space (D*, HJ*), 
where W is the cr-field coimtably generated from D*. As per the discussion 
in the Appendix, the conditional distributions are, in that event, feasible 
invariant probability distributions for the Metropohs chains. In both appli­
cations of the Metropohs algorithm, the conditional density is the product 
of a Normal density kernel and the prior function. For b22, the latter com­
prises the C2 function viewed as a fvmction of b22, whilst for 0, the prior 
comprises the product of C2 {4>) and the marginal Jeffreys' prior on 0. As 
long as the tails of the Normal kernel dominate the prior function in each 
case, as the argmnent of the density moves towards the outer regions of D*, 
then the density will be bounded. This issue needs to be examined further 
theoretically. However, numerical consideration of the situation, at least for 
the case of the reduced model with 4> one-dimensional and b22 = 0, suggests 
that such a density is boimded. 

With reference to the results in the Appendix, we can say that the 
Metropolis sub-chains are uniformly ergodic for the relevant conditional dis­
tributions, denoted by p(.), if the ratio p{-)/q{-) in each case is both bounded 
emd boimded away from zero. In each case, the density p(.) is positive ev­
erywhere on D* as a resiilt of the definition oi D' and, as argued above, 
apparently bounded. Being a Normal density function, q{.) is obviously both 
boimded and never equal to zero. As such, the ratio of p(.)/g(.) can be 
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assumed to satisfy the sufficient condition for uniform ergodicity.^ 

4,4.2 Convergence of the Gibbs chain 

Assuming that at both points at which it is used, the Metropolis algorithm is 
run until convergence to the relevant conditional distribution is attained, the 
hybrid algorithm can be viewed as producing successive iterations from ail 
of the full conditional distributions induced by the joint posterior. As indi­
cated by the results in the Appendix, whether these iterations then represent 
successive values of a Markov chain with the joint posterior as equilibrium 
distribution, depends on the features of both the joint distribution and the 
induced conditional densities, where the latter comprise the transition kernel 
of the Gibbs algorithm. 

In this case, the first step is to. ascertain whether or not the joint posterior 
distribution defines a non-zero, finite measure on D'. Once again, the latter 
requirement is determined by the nature of the interaction between the prior 
and the remaining part of the posterior function. We assume that this inter­
action is such that the total mass of the joint measure on D* is finite and the 
joint posterior a valid invariemt probabiUty distribution as a consequence. 

Sufficient conditions for convergence to the joint posterior are that the 
latter is lower semicontinuous at zero, that the integral of the joint density 
with respect to each individual parameter set is locally bounded and that D* 
is cormected. All of these conditions axe satisfied in our particular situation. 
As such, we can conclude that the outer Gibbs chain is (simply) ergodic. 

5 Numerical Application of the Method 

We shall now apply the proposed method to particular sets of numerical 
data. The data is all artificially simulated, with a view to demonstrating 
both the forms of the relevant densities given different underlying generat­
ing processes, and the nature of the convergence of the MCMC method in 
different environments. In order to get some feel for the repeated sampling 
performance of inferences based on the marginal densities, in comparison 

^We note that since D' has the subspace on which p(.) = 0 omitted, we shall essentially 
restrict the domain of q{.) correspondingly. This amounts to simply ignoring any values 
drawn from q(.) which fall mto this subspace, and drawing another set for entry into the 
edgorithm. 
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with relevant Classical alternatives, we present the results of a small Monte 
Carlo experiment. 

The fundamentals of our method are quite adequately illustrated within 
the context of the very simple framework based on bu{Li) = I — (piL and 
b22{L) = 1. An added advantage of using such a simple specification is that 
the marginal densities of cpi and 3 can be easily produced via low-dimensional 
niunerical integration, for the purpose of illustrating the accuracy of the 
MCMC method in reproducing the "exact" densities. 

The model used to generate the data is thus: 

yt =3xt + uu, 
Xt = X ( _ i + U 2 t , ^ g ^ 

uit =©iUit_i+eu and 
W2f = e2t, 

with (eu, 624)' generated as multivariate Normal with zero mean and variance 
covariance matrix: 

<7ii (7i2 

<̂ 21 ^22 
, Cri2 = (T21. 

In Sections 5.1 and 5.2, we illustrate the impact on the marginal densities 
of <pi and P respectively, and the MCMC estimation thereof, of variation in 
01 in the true dgp. The values of P, ai2, crii and (T22 in the generating 
process remain fixed at 3, 0.5, 1 and 1 respectively. As a consequence of the 
latter two vgJues, cri2 can be interpreted as the correlation between cu and 
621- The MCMC density estimates are produced using the following iteration 
strategy. After a "burn-out" period of M, we take into the sample the 
output of every r th iteration, the intermittent sampUng of the chain aimed at 
speeding up convergence via a breaking of the Markovian dependence. With 
A'̂  denoting the final number of sample values from which density estimates 
are constructed, the MCMC densities are produced from a total of {r + [N + 
(M/r)]) — M iterations for the outer Gibbs chain. For all examples, we 
use M = 400 and r = 10. For a reasonable degree of convergence to be 
attained, we require different values of N. Typically, values ranging from 
200 to 500 for A'' are sufficient.. In all instances, we perform 20 iterations 
of the Metropolis sub-chain before taking a value as a realization firom the 
relevant conditional density. Experimentation with the number of MetropoUs 
iterations here indicated that little was gained, in terms of the accuracy of 
the final density estimates, by increasing the number beyond 20. 
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Where it is appropriate, we provide with each graph, the appropriate 
summary of the relevant density. In the case of the marginal 0i densities 
for example, we provide the mode of the density, plus the probabihty of 
either cointegration or non-cointegration, depending on the nature of the 
imderlying dgp. In the case of the marginal (3 densities, we report the mode 
of each density. The reason why we concentrate upon modal point estimates 
is that we have yet to formally establish the existence of moments for the 
marginal densities. 

5.1 The impact of true 01 on the marginal density of 
01. 

Figures 6, 7, and 8 demonstrate the types of marginal densities available 
for the computation of the relative probabilities of stationarity and non-
stationarity. Figures 6 and 8a are based on a fiat marginal prior for 0i whilst 
Figures 7 and 8b use a Jeffreys' marginal prior. The inferences yielded by 
of all densities in Figures 6 and 7 are very accurate. When the true ^i 
is less than 1 and cointegration is present as a consequence, the densities 
assign probabilities to that hypothesis which exceed 0.97. With the sample 
produced from an underlying dgp with 0i = 1, as in Figure 8, we see that, as 
anticipated, the marginal Jeffreys' prior produces a larger probabihty content 
in the non-stationary region thein does the flat marginal prior. In the Monte 
Carlo results presented below, we see that this probability is close to 50% 
on average in repeated samples. We note that the modes of the marginal 
densities provide very accurate point estimates of the true 4>i in all of the 
diagrams. 

The MCMC densities reproduce the exact densities with great precision in 
Figures 6 and 7. In Figure 8a. convergence has virtually occurred, but with 
a large number of iterations having been required (A'̂  = 1000). In Figure 
8b, convergence has not quite yet occurred, even with the larger nmnber of 
iterations. As previously discussed, when the Normal caindidate densities 
used in the Metropolis sub-chains have a lot of mass axoimd 1, the impact 
of the prior function, particularly the marginal Jefl&reys' prior, may be quite 
signific£int. Such a situation is obviously Ukely when the true 0i = 1. In such 
a case, a very large number of iterations may be required for convergence. 
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Figures 6. and 7. Smoothed marginal posteriors for ©i based on 
a marginal and Jeffreys' prior for <pi respectively. 
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Figure 8. Smoothed marginal posteriors for (pi when the true 
01 = 1 

(flat and Jeffreys' marginal prior respectively) 
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Figure 9. Marginal posteriors for 0 based on the 
conditional Jeffreys' prior 
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5.2 The impact of t rue 01 on the marginal density of 

We provide examples in Figures 9a and 9b of the types of densities which 
result when yt and Xt are and are not cointegrated respectively. ̂ ° A couple of 
points are worth noting. First, the MCMC density is able to accurately mimic 
the exact density in the cointegration case; less so in the non-cointegration 
case. Second, the density in the latter case provides the sort of information 
which one would wish for in this context: the density is very variable, making 
for a very wide interval estimate, with the tail behaviour indicating that 
moments may not exist. When Xt and yt are not cointegrated, it is desirable 
that inference about P be imprecise in this way. When cointegration exists, 
on the other hand, inference is accurate both in terms of the location and 
the degree of dispersion of the marginal density. The Monte Carlo results 
provided in Section 5.3 demonstrate that this accuracy continues to obtain 
in a repeated sampling context, when the mode is used as a point estimator. 

5.3 A Monte Carlo Experiment 

The main aims of this very limited Monte Carlo study are twofold. First, 
we wish to assess the accuracy, in terms of bias and root mean square error 
(RMSE) in repeated samples, of our modal estimator of /5 compEired with two 
of the main single equation Classical alternatives, namely the Fully Modified 
OLS procedure (FMOLS) of PhiUips and Hansen (1990) and the method 
of Philhps and Loretan (1991) discussed earUer (PL). Second, we wish to 
compare the quality of our inferences regarding (pi and, hence, the presence 
of cointegration, with that of Classical inference based on the application of 
the Dickey Fuller test to the OLS residuals. 

With reference to the second aim, we compute, in the case of a true 
stationary error, the average in repeated samples of the probability of coin­
tegration as based on the two different possible marginal posteriors for (pu 
i.e. as based on a fiat and Jeffreys' marginal prior respectively for 0i. We 
then compare the nature of the information conveyed by this probability with 
the empirical power of the Dickey Puller test. Note that we are not directly 

'°The marginal density of 0 is invariant to the marginal prior density used for (f)i. 

34 



comparing the two different probabilities, Bayesian and Classical, as they are 
not commensurate measurements. We are simply attempting to answer the 
question: given the true nature of the process underlying the data, which 
inferential method, whose properties are summarized by the two respective 
probabilities, is Ukely to provide the most accurate reflection of that process. 

In the case of a true non-stationary error, we compute the average proba­
bility of non-cointegration, along with the empirical size of the Dickey Fuller 

test. 11 

The results for inference regarding (5 are given in Tables 1. The results 
for inference regarding 4)\ are given in Tables 2 and 3. The sample size used 
in all experiments was 50 and the nimiber of replications 1000. 

Table 1. Estimation of f3 

BIAS 

RMSE 

(3 MODE 
FMOLS'^ 

PL 

P MODE 
FMOLS 

PL 

(t>x = 

(Ti2 = 0.5 

0.042 
0.074 

-2.080 

0.244 
0.257 

10.426 

0.9 

<Ti2 = 0.9 

0.039 
0.119 

-0.610 

0.150 
0.224 
4.346 

01 = 1.0 

(Ti2 = 0.5 

0.532 
0.608 

-5.516 

1.065 
1.713 

27.058 

With reference to estimation of 0 when it is the parameter of a cointe-
grating relationship, the results indicate that the modal estimator has both 
smaller bias and smaller RMSE than the main Classical alternatives. More­
over, £in increase in the correlation between the two underlying error pro­
cesses, which is one aspect of the degree of endogeneity of xt, does not ap­
pear to worsen the repeated sample behaviour of the mode, in contrast to the 

*̂A 5% critical value of -2.9 for the Dickey Fuller test was computed numerically from 
10,000 replications of the model under the null of <j>i = 1. 

^^The FMOLS procedure was implemented with the non-parametric estimate of the 
long-run variance based on a lag length appropriate for an AR(1) process with a parameter 
value as specified in the true dgp. 
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FMOLS procedure. When Xt and yt are not cointegrated, on the other hand, 
the modal estimate, whilst still exhibiting an ability to estimate the value 
of more accurately than the FMOLS estimate, mimics in a broad sense the 
behaviour of the Classical estimator. That is, both are (relative to the coin-
tegration case) imprecise estimators of /3. Phillips (1986) has outUned the 
behaviour of various sample moments and certeiin statistics which are built 
from these moments, in such a context. For example, the OLS estimator 
converges to a random variable in the limit. The point is that the essence of 
these results is likely to be apphcable to all the estimators considered here, 
in which case we would anticipate the highly variable results across samples 
which we have observed. 

As regards the PL estimates, which have been computed using the Max-
imiun Likelihood (ML) routine in GAUSS, we have found them to be ex­
tremely sensitive to the choice of starting values. In particulair, any depsurtiue 
in the starting values from the true specification has been fovmd to adversely 
affect the accuracy of the estimates. The tabulated results exemplify this sit­
uation. In contrast, our MCMC method, which also requires the specification 
of starting values, is consistent with the theoretical Markov chain property of 
being invariant to the particular choice made, as long as a sufficient number 
of iterations axe performed. 

The sensitivity of the ML estimates is presvmiably a reflection of the po­
tential multicolHnearity/identification problem associated Avith the PL model 
specification, which was alluded to earlier. Since we have adjusted for this 
problem, prior to applying the Markov chain procedure, we would anticipate 
the apparent insensitivity to steirting values which the latter exhibits. We 
asstune that these same comments would apply had NLS been used rather 
than ML estimation to produce the PL results. 

As concerns inference about 4>i, the contrast between the Bayesian and 
Classiceil results is rather marked. The notorious lack of power of the residual-
based tests is exempUfied by the Dickey Fuller results. Even when the error 
term is clearly stationary, 0i equalling 0.9, the test has an empirical power of 
only 15% when cri2 = 0.5, less when cri2 is higher. The Bayesian method, on 
the other hand has an average probabiUty of stationarity which is very high 
in all settings. Due to a tendency of the marginal (j)i density, under both the 
flat and JeflEreys' marginal priors for (pi, to become more concentrated about 
the true value of 0i as (T12 increases, the probability of stationarity tends 
towards a desirable figure of 100% as 0-12 increases. 
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Table 2. Inference Regarding Cointegration 

Average 
Pr(0i < 1) 

Average 
Pr(<^i > 1) 

Emp. Power 
Emp. Size 

Flat 
Jeffreys' 

Flat 
Jeffreys' 

DF 
DF 

<j),= 

(712 = 0.5 

0.967 
0.788 

0.145 

= 0.9 

an = 0.9 

0.991 
0.969 

0.121 

dx = 1.0 

(7i2 = 0.5 

0.229 
0.512 

0.058 

When cointegration is not present, the Bayesian method, in particular 
as based on the marginal Jeffreys' prior, still gives a large probability, on 
average, to the correct hypothesis. Of course, since we are computing the 
probabiUty of non-stationarity in the error (rather than the probabiUty of a 
unit root per se), this probability would be larger, the further above 1 is the 
true value of 0i, since the marginal densities would tend to be centred to the 
right of 1. 

The impact on the modal estimates of 0i of the marginal Jeffreys' prior for 
(pi is interesting in the hght of recent theoretical developments regarding the 
reduction in the bias of ML estimates obtained by " modifying" the likeUhood 
function by a Jeffreys' prior.^^ As Table 5 indicates, there is a significant 
reduction in the small sample bias of the modal estimate of 0i when the 
marginal Jeffreys' prior on (pi is used. This is suggestive of the possibility 
that the theoretical results alluded to, which have been developed within the 
context of identically and independently distributed data, are also applicable 

'^See Firth (1993). A related strand of the literature, dating from the work of Welsh and 
Peers (1965) demonstrates the improvement in frequentist coverage of Bayesian interval 
estimates obtained using a Jefteys' prior. See also the relevant discussion in Phillips 
(1991a and b). The way in which a Jefi&reys' prior serves to produce inferences which tally, 
in some sense, with associated Classical inferences, can be viewed as another manifestation 
of its noninformativeness. 
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to dependent, possibly non-stationary data. 

Table 3 Estimation of 4>\ 

BIAS 

RMSE 

Flat 
Jeffreys' 

Flat 
Jeffreys' 

</-! = 

0-12 = 0 .5 

-0.061 
-0:023 

0.102 
0.134 

= 0.9 

an = 0.9 

-0.021 
-0.014 

0.050 
0.051 

0, = 1.0 

(7i2 = 0.5 

-0.055 
-0.018 

0.088 
0.099 

6 Conclusions 

The paper has presented a new way of approaching inference in a cointe-
gration context. The inferences are based upon marginal posterior density 
functions, which are able to be accurately estimated by a combination of 
MCMC methods. The main contributions of the paper are twofold. First, it 
provides evidence that such posterior based inference may provide highly in­
formative and accurate information about both the presence of cointegration 
and the nature of the cointegrating relationship. Second, it provides an easy 
to implement strategy for accurately estimating the relevant marginal densi­
ties in the typical case where the dimension of the model precludes numerical 
integration. 
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A General Convergence Conditions 

for Markov Chains 

We present the formal convergence theory as it relates both to general Markov 
chains and to the specific Gibbs and Metropohs algorithms. The papers 
to which we refer are Tierney (1991) and Roberts and Smith (1994). In 
addition, we cite the book by Nummelin (1984), which outUnes the properties 
of Markov chains as defined on general measiurable spaces. 

A time-homogenous (discrete time, continuous state space) Markov chain 
on a measvirable space {E,E), where E is a cr-field countably generated from 
E, is a sequence of (possibly vector valued) random variables {Xn,n > 0} 
on {E.E) whose conditional, or transition, probabihties, satisfy the so-called 
Markov property and are independent of time. For such a chain, we can 
define the transition kemal on {E,E) as K : E x E —* M"*", such that, with 
respect to a cr-finite raeasiu-e u on E: 

K{Xo,A) = P{X„+i e A\Xo,Xr,...,X^} = P{X„^, € A|X„} = P{X, e A\Xo} 

for all measurable A. Assuming that, for any XQ 6 E, K is absolutely 
continuous with respect to u, K{.,.) can be expressed as the integral of a 
transition density kemal k as follows: 

K{Xo,A)= f k{Xo,X,)du{X,). 
JA 
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Recalling the use of the notation p(.)- ?(•) and a{.) for the target 
(invariant) density, candidate density and acceptance probabiUty respectively 
for the Metropolis algorithm, the Metropolis density kernal (describing only 
accepted iterations) is defined as: 

k„iXo,X,) = q{Xo,XMXo,Xi). 

The Gibbs transition density kernal is given by: 

kaiXo. A',) = p(xJ" |Xf ' , X f , . . . . X f ).p(Xj"|X{", Xf ' , . . . , X r Y . . . 

. . . . p ( X » ' | X i " , X i " , . . . . X » ' , ) . 

where X = {Xi,X2,... .Xk) defines the chosen blocking of an m-dimensional 
random variable X, with 1 < A; < m. 

A Maxkov chain has an invariant distribution, TT, if the transition kernal 
K satisfies: 

7r{A) = J K{Xo,A)d7r{Xo). 

If 0 < TT{E) < oo , then with the satisfaction of a convergence condition to 
be described below, TT is the unique invariant probabiUty distribution for the 
chain. (See Nummelin (1984, Chp. 5). 

Having established that TT is a positive, finite measure on the space, we 
then need to determine: 

1. That the structvire of K{XQ, A) is such that TT is the invariant distri­
bution of the chain,; and 

2. That TT is the equilibrium distribution, in the sense that it is the unique 
invarigmt distribution towards which convergence occurs for 7r-almost all 
^0 (^0 £ E). This can be expressed as : 

Um ir(Xo,A) = TT{A) 
n—•oo 

for TT-almost XQ and all measurable sets A. K"{.) denotes the nth iterate of 
the kemal K, representing the probabiUty of entering set A after n steps of 
the chain from a starting value of XQ. 

Assuming that 1. is satisfied, 2. reqmres that the Markov chain is both 
irreducible and aperiodic. A Markov chain with invariant distribution TT is 
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said to be TT-irreducible if for each A eE with Tr{A) > 0, /C"(Xo,A) > 0 
for some n > 1. That is, the chain has a positive probability of entering a 
set i4, to which the distribution TT ascribes positive probability, in a finite 
number of steps from an initial value XQ. A chain is periodic if there exists 
an integer d > 2 and a sequence {Eo,Ei,..., Ed-i} of d non-empty disjoint 
sets in E such that for alH = 0 , 1 , . . . , d — 1, and all XQ G Ei, P{XQ, EJ) = I 
for j = {i + l)(modd). The chain is aperiodic if it is not periodic. 

A TT-irreducible Markov chain with unique invariant probability distribu­
tion TT is positive recurrent in the sense that for each A with n{A) > 0: 

P{X„ e A i.o.\Xo} > 0 for all XQ and 
P{Xn e A i.o.\Xo} = 1 for 7r-ahnost all XQ. 

The chain is Harris recurrent if P{Xn € A i.o.\Xo} = 1 for all XQ. The 
notation "z.o." denotes infinitely often. (See Nummelin (1984, Chp.3)). 

We can now bring together the above definitions and discussion into the 
following formal theorem, whose proof can be found in NummeUn (1984). 

Theorem 1 If a Markov chain {X„,n > 0} with kemal K has invariant 
(probability) distribution TT and is TT-irreducible, then TT is the unique invariant 
distribution for {X„}. / / {Xn} is also aperiodic then for ir-almost XQ: 

| | /^„(Xo,.)-7r||-0 

where \\.\\ denotes total variation distance. If [Xn] is Harris recurrent, then 
the convergence occurs for all XQ. In the latter case, the chain is said to be 
simply ergodic. 

With reference to the Metropolis algorithm, we can state the following 
Lemmas, whose proofs are all to be found in Tierney (1991): 

Lemma 1 (a) For any q, a Metropolis chain is reversible in the sense that: 

p{XQ)q{XQ,Xi)a{XQ,X,) = p{Xi)q{XuXQ)a{XuXQ). 

This property ensures that the distribution P associated with the density p is 
the invariant distribution of the chain. 

(b) A P-irreducible Metropolis chain is also Harris recurrent. 

As a consequence of Lemma i., we can conclude that any P-irreducible, 
aperiodic Metropolis chain is simply ergodic. 
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Lemma 2 An independence Metropolis chain with invariant distribution P 
is P-irreducible and aperiodic if and only if q{.) is positive v-almost every­
where on E. 

For a independence chain, we can in fact go further, via the following 
Lemma: 

Lemmia 3 An independence Metropolis chain is uniformly ergodic for 
P ifp{.)/q{-) is bounded and bounded away from zero, where an ergodic chain 
with kernal K and invariant distribution P is called uniformly ergodic if: 

||/f"(Xo, .)-/'(•)II < Mr" 

for some r < 1 and constant M. 

With reference to the Gibbs algorithm, conditional probabihty manipu­
lations reveal that for well-defined conditional densities, kG{XQ,Xi) is asso­
ciated with a kernal function which has invariant distribution equal to the 
distribution of X. The following Lemmas then provide conditions for the ex­
istence of a well-defined kernal density and for convergence to the invariant 
distribution (TT). Lemma 4- requires the following definition: 

Definition 1 A function h : W^ —» R"*" is lower semicontinuous at 0 if, for 
all X with h{X) > 0, there exists an open neighbourhood Nx B X and e > 0 
such that, for all Y G Nx, h{Y) > e > 0. 

Lemma 4 For u m-dimensional Lebesgue measure, if TT is lower semicon­
tinuous at zero, then j 7r{X)dXj > 0 for j = l.2,...,k. 

Proof; See Roberts and Smith (1994)-

If the condition in Lemma 4 holds, then kc is a well-defined kernal density 
and TT an invariant distribution for the chain. 

Lemma 5 For v m-dimensional Lebesgue measure, if TT is lower semicon­
tinuous at zero, E is connected and f 7r{X)dXj is locally bounded, then the 
Gibbs chain is n-irreducible and aperiodic. 

Proof; See Roberts and Smith (1994)-

Lemma 6 Suppose a Markov chain with kernal K has invariant distribution 
•K and is TT-irreducible. If K{XQ^.) is absolutely continuous with respect to n 
for all XQ, then {Xn} is Harris recurrent. 
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Proof: See Tierney (1991) and NunmieUn (1984). 

For standard problems, in which the multivariate space E can be decom­
posed as flî  Ei, it is straight forward to show that 7r(A) = 0 =» '̂(-'̂ Oi A) = 0 
for measiurable sets A, when K{.,.) is the Gibbs kernal. As such, Harris re­
currence can be viewed as being satisfied by most Gibbs Samplers and the 
conditions in Lemma 5. viewed as sufficient for a Gibbs chain to be simply 
ergodic for TT. 
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