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Abstract 

This paper estimates the long-term trends in the daily maxima of tropospheric ozone at six 

sites around the state of Texas. The statistical methodology we use controls for the eflFects of 

meteorological vaxiables because it is known that variables such as temperature, wind speed 

and humidity substantially affect the formation of tropospheric ozone. A nonparametric 

regression model is estimated in which a general trivariate surface is used to model the 

relationship between ozone and these meteorological variables because there is little, or no, 

theory to specify the functional dependence of ozone on these vaxiables. The model also allows 

for the eflFects of wind direction and seasonality. Each function in the model is represented 

as a hnear combination of basis functions located at all of the design points. A trivariate 

basis is used for the function representing the combined effect of temperature, wind speed 

and humidity, while univariate bases are used to represent the other functions in the model. 

To estimate the functions nonparametrically we use a Bayesian hierarchical framework with 

a fractional prior. Due to the high dimensional representation of the signal, a Markov chain 

Monte Carlo sampling scheme employing Gibbs sub-chains that 'focus' on the basis terms 

that are most likely to contribute to the signal is used to carry out the computations. We 



also estimate an appropriate data transformation simultaneously with the function estimates. 

The empirical results indicate that key meteorological variables expledn most of the variation 

in daily ozone maxima through a nonUnear interaction and that their effects are consistent 

across the six sites. However, the estimated trends vary considerably from site to site, even 

within the same city. A simulation based on the design of the data indicates that the Bayesian 

approach is substantially more eflficient than MARS (Friedman, 1991). 

K e y Words : Data transformation; Focused sampling; Nonparametric regression; Reproducing 

kernel; Trivariate Radial Basis 
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1 Introduction 

A major issue with the analysis of data on tropospheric ozone is to establish whether observed 

trends can be attributed to the effects of pollution control programs implemented over the 

past two decades, or whether they are the result of meteorological changes affecting the 

conditions vmder which ozone is generated. Tropospheric ozone refers to ozone in the ambient 

air, not ozone in the upper atmosphere. Ozone in the ambient air is an air pollutant and 

can have a significant impact on people's health, particularly in children, the elderly and 

those with limg disease. Therefore, one would like to see a downward trend through time in 

tropospheric ozone levels. 

The formation of ozone results from a chemical reaction in the ambient eur involving 

nitrogen oxides and volatile organic compounds. The chemical reaction that produces ozone 

is complex and not completely imderstood, even in the laboratory. However, it is known that 

the reaction is largely driven by a combination of key meteorological conditions in what is 

likely to be a nonhneeu* manner. Therefore, even if pollution control programs are successful 

in reducing the emissions of toxic gases into the atmosphere, a downward trend may not be 

observed in the raw ozone data due to the effects of changing meteorological conditions. Such 

conditions shoiild be talcen into accoimt to obtain a reliable estimate of the long-term trend 

in daily ozone levels. 

This paper uses a Bayesian approach to estimate a nonparametric regression model for ob­

servations of daily tropospheric ozone maxima at six monitoring stations in Texas during the 

period 1980-1997. The model incorporates the combined effect of the key variables of wind 

speed, temperature range (which acts as a proxy for sunlight) and humidity as a nonparamet­

ric trivariate interaction surface. The effects of wind direction, seasonal and trend variables 

are accoimted for as additive imivariate nonparametric functions. Each of the functions are 

modeled as linear combinations of basis terms, with locations at all the tmique design points. 

A wide variety of basis expansions can be employed. We use a trivariate radial basis to 

represent the function relating ozone to wind speed, temperature range, and"humidity; uni­

variate reproducing kernels as the basis functions for the imivariate functions relating ozone 



to wind direction; a dummy variable basis to represent the function modeling seasonality; and 

a linear regression spline for the trend function. To estimate the regression coefficients we 

use £in adaptation of the hierarchical Bayesian model initially discTissed in Smith and Kohn 

(1996), coupled with a fractional prior of the type discussed by O'Hagan (1995). To deal 

with the high dimensional basis representation of the regression functions aji adaption of the 

focused sampUng scheme introduced in Wong, Hansen, Kohn cind Smith (1997) is used for 

the computations. As the empirical work here demonstrates, the resulting estimator is both 

automatic and appUcable to complex multiple nonparametric regressions with large sample 

sizes. 

There have been several recent studies of tropospheric ozone. For example, Nychka, Yang 

and Royle (1998) discuss optimal location of monitoring sites in the Chicago urban area for 

spatial models of ambient air ozone, but are not concerned with identifying long-term trends 

or the role of meteorological variation. Carroll, Chen, George, Newton, Schmiediche and 

Wang (1997) also develop a spatial model for twelve monitoring sites in Harris Coimty, Texas. 

Their analysis examines a global trend for the coimty, but does not consider local site-based 

trends, nor take account of the complex nonlinear relationship between key meteorological 

variables and ozone levels. Smith and Huang (1993) and Shively (1990) ainalyzed exceedences 

of legislative thresholds for tropospheric ozone using extreme value theory. However, following 

Cox and Chu (1992), Bloomfield, Royle and Yang (1993) and Niu (1996) we examine daily 

ozone maxima. This provides a better understanding of the trends in long-term (chronic) 

exposure to relatively low levels of ozone than threshold exceedences; an issue that is of keen 

interest to the Texas Natural Resoiurce Conservation Commission, who collected the data in 

this study. Figure 1 provides boxplots of the daily maxima for the Aldine monitoring site, 

indicating that a data transformation may be required to ensure that a Gaussian model for 

the errors is appropriate. Therefore, we estimate a data transformation from a discrete set of 

potential Box-Cox style power transformations simultaneously with the imknown functions. 

These transformations are normalized to be location and scale invariant to make it easier to 

interpret the empirical results. 



Figure 1 About Here. 

Other authors have also accounted for meteorological variation in tropospheric ozone. 

Bloomfield et al. (1993) control for a large number of meteorologicad variables using a two 

stage procedure. First, they use 'loess' (Cleveland, Grosse and Shyu, 1992) to suggest appro­

priate parametric functional forms for the bivaxiate relationships between (i) ozone, temper­

ature and wind speed; and (ii) ozone, temperature and himoidity. These are then included in 

a nonhnear parametric regression. It is difficult to obtain reUable function estimates using 

this approach because loess reUes on a subjective exploratory approach to determine an ap­

propriate smoothing parameter, while the two stage procedure can induce a mis-specification 

problem because each of the functional forms determined in the first stage are obtained with­

out controlling for the other independent variables. Alternatively, Smith and Huang (1993) 

accoimt for ein interaction efî ect between temperature and wind speed by using a parametric 

model with the multipHcation of temperature amd wind speed as an independent variable. 

Rather than pre-determine a parametric regression model, Niu (1996) develops an additive 

nonparametric model in the meteorological vciriables, where the functional relationships are 

estimated firom the data. He adapts a back-fitting algorithm to estimate all the functions, 

while also estimating a parametric time series model for the error terms. Smoothing spUnes 

are used as the univariate smoothers, with smoothing parameters estimated using generalized 

cross-validation. However, efficient determination of the smoothing parameters that drive 

each of the underlying smoothers is often difficult with the mis-specification of any single 

parameter possibly resulting in poor estimates for all component functions. Importantly, the 

model is an cidditive model and no interaction effects between key variables are considered. 

Similarly, Shively and Sager (1997) use an additive model of imivariate smoothing sphnes 

(Wahba, 1990). To attempt to account for interactions some pairwise multiplications of 

the meteorological variables, as well as the meteorological variables themselves, are included 

as regressors. However, it is not clear that such an additive structure is appropriate and 

secondly, no attempt to account for three way interactions is undertaken. 

In comparison to previous work, our procedure does not require the explicit estimation 



of smoothing parameters and can easily incorporate full nonpaxametric interaction surfaces 

through the use of aa appropriate basis, such as the trivariate radial basis in wind speed, 

temperature range and humidity introduced in section 3. Oiur empirical work suggests that 

daily ozone maxima are greatly affected by such interactions. Few alternative data-driven 

methodologies exist that can estimate high dimensional nonpaxametric regression models 

with interaction surfaces and higher sample sizes. For example, tensor product multivariate 

smoothing splines (Gu, Bates, Chen and Wahba, 1989) are O(n^) and are computationally 

infeasible for the large sample sizes used here. While local regression based techniques theo­

retically also extend to such multivariate models, estimation of the bandwidth pau:ameter(s) 

is also computationally infeasible. One viable alternative is MARS (Friedman, 1991) which 

uses a search algorithm on tensor product regression splines. To assess our empirical results, 

a simulation is performed that generate data from both our fitted model and that resulting 

firom a MARS fit to the same regression model. We show that in both cases the Bayesian 

approach is better than MARS at reproducing the true models. 

The paper is organized as follows. Section 2 contains a description of the data analyzed 

in the paper. Section 3 describes the nonpaxametric regression used to model the ozone data, 

including the bases used to model each of the functions. Section 4 discusses how such a model 

can be interpreted in a Bayesian hierarchical firamework and develops the 'focused' Markov 

chain Monte Carlo sampling scheme used to undertake the computation. The empirical 

results are presented and discussed in section 5. The simulation comparison with MARS is 

imdertaken in section 6, while section 7 contains some conclusions. 

2 The Data 

The data used in this paper were collected at six Texas monitoring sites and provided to 

us by the Texas Natural Resource Conservation Commission (TNRCC). Figure 2 provides 

a map showing the location of the sites. The Aldine, Clinton and Northwest Houston sites 

cire located in Houston, the Fort Worth Keller and Dallas North sites axe located in the 

Dallas-Fort Worth Metroplex area, while the final site is located at Beaumont. These sites 



are of particular interest to the TRNCC as they represent the two major metropolitan areas 

of Texas and a major industrial area (Beaimiont). 

—Figure 2 About Here.— 

The data consists of daily maximima ozone values observed at these sites during the 

months May-October over the eighteen year period 1980-1997. The months May-October are 

considered the "high ozone" season and is the time of the year when ozone in the ambient 

air typically creates a problem. Also collected at each site were daily values of importcint 

meteorological variables. The variables we use in our analysis are given below. 

• Ozone {OZ): The daily ozone value used in this study is the maximum of the 13 hourly 

ozone readings (in parts per himdred million) taken each hour from 6am to 6pm. 

• Temperature range {TR): Difference between the minimum and maximum hourly tem­

perature readings for the period 6am to 6pm. The temperature range is a well-accepted 

proxy for the amoimt of sunlight occurring diuring the day because the temperature 

range increases as the amount of sunlight increases. (A direct measinre of sunlight is 

not available at the monitoring sites). The expected relationship between temperatmre 

raoQge and ozone levels is positive. 

• Wind speed (WS): Average of the hourly wind speed readings for the period 6am to 

6pm. The expected effect of increased wind speed is to reduce ozone levels because 

higher wind speed tends to disperse pollutants present in the ambient air. 

The datasets also include four wind direction variables measiuring the proportion of time 

between 6am and 6pm when the hourly wind direction fell into one of four 90 degree quad­

rants. These quadrants differ from site to site and they are defined in table 1. We define 

WDi, WD2, WD3 and WD4 to be the percentage of time from 6ani and 6pni that the wind 

direction fell into each of these fom: quadrants. Because these variables sum to one, we only 

include WD2, WDz and WD4 into otur analysis. 



—Table 1 About Here. 

Two other variables are also used in our regression model and are: 

• Monthly variable (MN): Here, MN = 5,6,7,8,9 or 10 if the observation occurs in 

May, June, July, August, September or October, respectively. This variable is used to 

model seasonality in the ozone data during the high ozone sejison, over and above that 

captured by the meteorological variables above. 

• Annual trend term {YR): YRt = 1,2,..., 18 if day t is in 1980,1984,..., 1997, respec­

tively. This variable is used to model the long-term trend in ozone values. 

The following missing data convention is used for the ozone and meteorological data. If 

more than 7 hourly readings in the period Gam to 6pm eire missing on a given day for the 

ozone or for any meteorological variable, then the data for that day axe considered to be 

missing. Table 2 outUnes the years during which data from each station were collected, along 

with the number of observations and percentage of missing data. 

—Table 2 About Here.— 

3 The Nonparametric Regression Model 

We model daily ozone maxima at each of the six sites with the nonparametric regression 

model 

TxiOZi) = a + hiTRi,WSuHMDi) + f2{WDi,i) + MWD2,i) 

+ h{WDz,i) + h{MNi) + h{YRi) + ei. (3.1) 

Here, / i is a smooth, but unknown, trivariate function that models the interaction effect of 

temperature range, wind speed and humidity. The wind direction effects enter the model 



additively as nonparametric univariate functions /2, /s and f^. k-ay seasonal effect over and 

above that pertaining to the meteorological variables, is captured by /s. The function /e 

measures the long-term trend in ozone, controlling for the effect of meteorological conditions 

and seasonality. 

Figure 1 highlights the highly skewed distribution of deiily maxima of hourly tropospheric 

ozone values. Previous authors consider various Box-Cox style data transformations, but do 

not attempt to estimate such transformations in combination with the signal. Therefore, we 

estimate the most appropriate transformation simultaneously with the unknown functions 

in the regression model at (3.1). We consider a location and scale inveiriant transformation 

Tx{OZ), indexed by A, of the form 

Tx{OZ) = ax + bxtxiOZ) 

where 

I {0Z + 1)^ i fA>0 

log{OZ + l) ifA = 0 

-{OZ + 1)^ i fA<0 

for the discrete set of values of A € A = {-1, -0.75, -0.5, -0.25,0,0.25,0.5,0.75,1.0}. The 

'base' transformation tx is a monotonic Box-Cox style power transformation where we add 

one to OZ because mini(OZi) = 0. For the data collected from each monitoring site, this 

transformation is then normalized by constants ax and 6̂  to produce the data transformation 

Tx- These constants are calculated as in Smith and Kohn (1996) so that the data have 

approximately the same median and inter-quartile range before cind after transformation. 

This normalized transformation is used because it does not alter the scale or location of the 

data and therefore eases the qualitative interpretation of the regression results. 

Each of the imknown functions in the regression at (3.1) is modeled as a linear combination 

of basis functions, so that for any point z in the domain of the independent variable, 

fA^) = Y.^H{z) forj = l,2,...,6. 
i 

The /?/ axe coefficients requiring estimation and the fc^ G & are basis functions located at 



every unique design point. The type of each of the bases B^, B ^ , . . . , B^ axe chosen according 

to the nature of the effect and axe listed below. 

• For the trivariate function we use a radial basis (Powell, 1987; Holmes and Mallick, 

1997), withB^ = {2 ; i ,Z2 ,23 , | | z -Xi | | 2 log( | | z -a ; i | | ) , . . . , | | z - a : „ | | 2 log( | | z -a ;„ | | ) } . 

Here, Xi = {TRi,WSi,HMDiy and z = (21,22,23)'-

• For the imivariate wind direction functions /2,/3 and fi we used a reproducing kernel 

basis (Luo and Wahha, 1997) which Wong et al. (1997) demonstrate is a good basis for 

the estimation of smooth univariate functions. It is defined for each wind direction as 

B^ = {z, R{z, x i ) , . . . , R{z, Xn)}, where Xi = WDj^i eind 

R{z, Xi) = ( - ( | 2 - X.I - \)' + \{\z-xi\- \f - 2 ^ ) /24 

The reproducing kernel basis is defined over the unit interval, so the wind direction 

independent variables are scaled to [0,1] upon calculation of the terms, though the 

results are interpreted on the original scale. 

• The seasonal component /s is modeled using a dummy variable basis which is intended 

to captiure significant monthly deviations in ozone maxima firom the mean a. The basis 

is defined as B^ = {I{z, x i ) , . . . , I{z, x„)} where Xj = MNi and 

1 if 2 = Xj 

0 otherwise 
I{z,Xi) = < 

• The trend component /e uses a linear regression spline because the basis terms aie 

ramp functions that captiure any significant alterations in the trend. The basis is 

B® = {2, (2 — x i ) + , . . . , (2 - Xn)+} where Xj = YRi and (x)+ = max(0, x). 

If there are no rephcated values, each of these bases would contain approximately n terms. 

However, in our datasets there are large number of rephcated values for the independent 

variables, especially for the wind directions, month and year. Table 3 details the number of 

basis terms for each function and the resulting dimension of the basis representation of the 

signal for the data arising from each monitoring site. 



-Table 3 About Here. 

4 Methodology 

4.1 Hierarchical Bayesian Mode l 

Given these basis terms and the index of the data trjinsformation, A, the regression for a 

paiticulax site is simply a parametric Unear model of the form 

yx = Xfi + e (4.1) 

Here, the (n x p) design matrix X is made up of all the basis terms introduced above, 

along with a column of I's for the global intercept a. The p-vector /3 = iPi,l32,--- ,/3p)' 

contadns the regression coefficients, e = (e i , . . . , en) ' ~ N{0,a^ln) are errors and yx = 

{Tx{OZi),... ,Tx{OZn)y is the vector of dependent variable values. 

One way to render this regression nonparametric is to estimate the regression parame­

ters /3 (and hence the unknown functions in equation (3.1)) using a Bayesian hierarchical 

model. This model was discussed in Smith and Kohn (1996) and exphcitly accoimts for the 

uncertainty that each term will enter the regression; a brief exposition is given below. 

Let 7 be a p-vector of indicator variables with the ith element 7i, such that 7i = 0 if 

/3j = 0 and 7J = 1 if ŷ i 7<̂  0. Given 7, let /S^ consist of sdl the nonzero elements of /3 and 

let Xy be the columns of X corresponding to those elements of 7 that are equal to one. 

Therefore, the linear model can be rewritten conditional on 7 as 

y\ = X-r^y + e 

To form the hierarchical model, the following prior assumptions are made on the model 

parameters: 

Al: Following O'Hagan (1995) we take a fractional conditional prior 

pifi^h, a\ A) a p{yx\^^, 1, a^ A)^/" , 



so that 

^^|7,a2,A~iv(Ax^,na2(X;X^)-^) , 

where y.^ = {XlyXy)~^X'^yy This provides little information on the location of/3^ compared 

to the likelihood because the conditional prior variance is scaled up by a factor of n. 

A2: The prior of cr^ is taken a priori independent of 7 and A, so that p(cr^|7, A) a 1/a^. This 

is a commonly used prior for a^ because it makes log(<T̂ ) uniform. 

A3: The prior for 7 is taken a priori independent of A and the elements are independent and 

identically distributed p(7t|7;>ti) = 1/2. This ensures that the prior ^(7) = 2~P. 

A4: All nine potential transformations axe assumed equally likely a priori, with p(A = i) = 1/9 

for z = 1,2,...,9. 

Using these priors, the posterior probability of any paxticulcir subset of variables 7 can be 

calculated as 

Ph\y) oc (n + l)-«-/2 J - 5(^^ A)-"/2JA. 
A6A 

Here, S(7, A) = y'^Vx — y'x^'r{X^^i)~^^!yyx^ "A is the Jacobian of the data transformation 

(see Smith and Kohn (1996) for details on its calculation) and q^ = Yl'i=i 7i is the number of 

non-zero regression coefficients in model 7. This is almost the Schwaxz (1978) information 

criteria for a particular subset of regression terms in the linear model at (4.1). The problem 

here is that 7 has support on OP possible subsets and due to the basis representation of the 

signal is a formidable nuisance parameter in estimating both the regression coefficients /3 and 

transformation A € A in the hierarchical linear model (4.1). 

4.2 Focused Sampling Scheme 

Because of the high dimension of the basis representation of the signal, estimating the re­

gression and transformation parameters in the hierarchical model using the 'one at a time' 

Gibbs sampling scheme discussed in Smith and Kohn (1996) would be computationally bur­

densome. Alternative sampling schemes include the reversible jump saxapler (Green, 1995) 

10 



which has been applied to univariate nonparametric regression models by Denison, Mallick 

and Smith (1998) and radial basis functions by Holmes and Mallick (1997). However, to solve 

this problem we use the following generalization of the Gibbs sampUng scheme discussed in 

Smith and Kohn (1996) and focused sampling steps discussed in Wong, et al., (1997). 

Focused Sampling Scheme. 

Step (0): 

Step (1): 

Step (2): 

Select initicd state 7 

Choose <S C {1,2,... 

Repeat the following 

= 7(0] 

,p} in a probabilistic manner 

M times: 

Sequentially generate 7,|7j54t,y for ' ' es 

The selection of S in Step (1) is performed so that Pr{i G 5) > 0 for i = 1,2,... ,p. In this 

case the resulting Maxkov chain is irreducible and aperiodic and therefore converges to its 

invariant distribution, which is 7|y (Tierney, 1994). 

The scheme is rim in three stages. The first is a warmup period of length 2000 iterations, 

after which the sampler is assumed to have converged. The second is a samphng period of 

length Ki = 1000 iterations in which the distribution of A|y is estimated and from which the 

mode estimate A is obtained. The third samphng period is of length K2 = 4000 and conditions 

on this mode transformation, so that the distribution from which generation is undertaken in 

Step (2) is now 7,|7y5i4i, A = A, y. We condition on such a single best transformation, rather 

than smooth over its distribution, to maice analysis of the results simpler as advocated in 

Box and Cox (1982). 

Step (2) is a Gibbs sub-chain of length M that converges to the conditional posterior 

distribution of the subvector 7t65|7i^5, y. Note that if <S = {1,2, . . . ,p} in Step (1) for every 

iteration of the sampler, then this scheme simply reduces to Gibbs samphng. However, in 

oxii problem p is large, so to both reduce the number of generations required and reduce the 

dependence among Markov chain iterates we use the following at Step (1), for any iteration 

k, to adaptively focus on basis terms that are more likely to be important. 

11 



Step (1) at iteration k 

( la)5i = {i |7r '^ = l};52 = 0 

(lb) doi = l,..,6 

(lb-i)P = m a x ( ^ , 0 . 0 5 ) 

(lb-ii)P = min(l,P) 

(Ib-iii) Add the indices of the each of the basis terms associated 

with function /j to ^2 with probabiUty P. 

(Ic) 5 = 5i U 52 

Here, Pi is the number of basis terms arising firom function fi (see table 3), while ft is the 

number of basis terms actually selected as non-zero for fi in the previous {k — l)th itera­

tion. These steps ensure that the binary vairiables for those terms that were significant last 

iteration are always generated again, labeling them with the index set «Si. We choose a sub­

set of the remaining binary variables, labeled with the indexing set 52, using the following 

probabilistic rule. For each of the functions, we select binary variables to generate with a 

probability that, on average, ensmres at least 5% of the binary variables for each function are 

generated. However, if a function is highly oscillatory aind requires more basis terms in the 

previous iteration, then a large munber of additional indices are selected for generation. This 

ensures that (i) generation of terms is dynamically allocated to those binary variables whose 

corresponding basis terms axe likely to be significant, (ii) Despite the wide discrepancy in 

the number of basis terms for each component signal in the regression model at all six sites 

(see table 3) equal focus can be maintained on each component function. 

This scheme is computationally efficient, compared to the equivalent full Gibbs sampler, 

in that time is not allocated to repeatedly generate the majority of the many binary variables 

that axe unlikely to have a significant impact on the function estimates. We use the iterates 

{7[^1,... ,'f^^'^^} to calculate mixture estimates for the posterior distribution p(A|y) with 

1 ^* 
PiMy) = JfY^ p{M'y^''\ y) and A = axsmax^^^p{X\y) 

12 



The iterates {71^1+^1,... ,-y^^^^ are used to estimate the posterior function means 

E[fi{z)\y, A = A] with the mixtiure estimate 

j y -

Mz) = x"^' where ; 3 = ^ "£ E[^\'YI''\X = X,y] (4.2) 

Here, x" is the pj-vector of terms arising from calculating the basis terms for /j at point 

z. The vector /S is a subset of the elements of fi that correspond to basis terms for 

fi- The conditional expectation at (4.2) can be calculated exactly as /3j = 0|7j = 0 and 

E\j3^h,X,y] = {Xi^Xy)-'X'^yy 

The estimate of the posterior standard deviation of fj evaluated at a point z is calculated 

as 

^i(^)=(^f:(/f(^))'-(/;(^))') 
1/2 

where /j '{z) is the estimate of fj{z) based on the coefficients J5[/3|7'* ,̂ A = A, y]. Estimates 

for the 95% confidence intervals can therefore be derived as fj{z) ± 1.96sj(5;). 

5 Empirical Results 

We estimated the regression model for the data arising from each of the six monitoring sites. 

Starting at a variety of initial states, the Markov chain appears to converge reliably for 

each of the six data sets. For example, figure 3 contains some summaries of the Markov 

chain iterates resulting from the estimation with the Aldine site data, with initial state 

7 = (0,0,... ,0)', A = 0. Figiure 3 (a) demonstrates that the posterior probability p(7^^|y) 

converges to a stable distribution. Figures 3 (b) and (c) provide plots of the number of 

non-zero coefficients q^y] and the ccirdinality of S, respectively. These plots highlight that, 

at any particular iteration, there are around 25-40 non-zero regression coefficients and that 

the sampler only focuses on around 140-190 terms. Therefore, the sampler undertakes about 

one thirteenth of the number of generations required by a Gibbs sampler that generates aU 

the binary indicators. 

13 



—Figure 3 About Here.— 

Table 4 contains a summary of the normalized data transformation estimates for the 

ozone readings collected at all six monitoring sites. Four are logarithmic transformations, 

while the other two are very similar, with A = 1/4 for the Dallas North data and A = —1/4 

for the Northwest Houston data. These confirm the t3T)e of transformations imposed on such 

data by several previous studies. 

—Table 4 About Here. 

5.1 Meteorological Effects 

Figure 4 plots siuface slices of the estimate of the trivariate surface f\ arising from the Aldine 

data. The shces are in humidity, with the nine panels corresponding to the n/10,2n/10,..., 9n/10th 

value of the sorted humidity variable. The surface sUces all show an interaction between TR 

and WS, in that it is a combination of high temperature range and low wind speed that 

results in high ozone levels. There is also a strong himaidity eflfect, with high overall ozone 

readings when the humidity level is low. Moreover, the effect of hmnidity appears to oc-

ciu: as an interaction with the temperature range and wind speed, with the surface slices 

altering substantially as humidity levels increase. For example, at the higher humidity levels 

the temperature range is low and does not have much impact on ozone formation, while 

high wind speeds tend to disperse the precittsors to ozone formation very effectively at high 

humidity levels. At the lower humidity levels, the temperature range has a large effect on 

ozone formation, though even in combination with high wind speeds the precursors to ozone 

formation are not dispersed as effectively as at high humidity levels. 

Figures 4 and 5 About Here 
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Figure 5 provides a plots surface slices of the function 1.96si{TR,WS,HMD) axising 

from the estimation with the Aldine data. To enable a comparison, the scale on the vertical 

axis is the same as that for the function estimate / i found in figure 4. This indicates that the 

trivariate confidence intervals are quite tight, although the standard error values axe higher 

in areas of the domain where the data axe more sparse and at the boundary of the convex 

hull of the data. The latter is the same boimdary value effect frequently seen in bivariate 

and imivariate function estimation. 

The estimates of the trivariate surfaces axe remarkably consistent across sites, even though 

some axe located fax apart, suggesting this is a fundamental meteorological determinant of 

ozone formation. For exaxnple, figure 6 plots the corresponding surface slices axising from 

the estimates at the Fort Worth Keller monitoring site. Note that for figures 4 cuid 6, the 

domain of the estimates will differ because we have plotted the function estimates over the 

convex hull of the each data set. These two trivariate smrface estimates reveal the same basic 

non-linear interaction in the three variables- a profile that is also confirmed by the estimates 

from the remaining four sites. 

Figure 6 About Here. 

Table 5 provides the ranges of the estimates of all the functions at each of the sites and 

demonstrates that, by this measure, humidity, wind speed and temperature range have the 

greatest impact on ozone levels. The table demonstrates that the wind direction variables 

corresponding to /2, /s and /4 axe relatively minor in comparison to the meteorological effects 

captured by / i . We tried replacing the wind direction variables with their interaction with 

wind speed (that is, use the variables WDi * WS) but this did not affect the results in a 

noticeable manner. 

Table 5 About Here. 
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Figure 7 plots the estimates of these functions for the Aldine data, along with the approx­

imate 95% confidence intervals. Notice that the intervals are quite tight (reflecting the fairly 

large sample size used) and that they are tighter for lower values of WDi. This is due to the 

non-imiform distribution of the wind direction variables, with observations clustered at, or 

close to, WDi = 0. As the wind increasingly blows from the South/West and North/East 

(that is, higher values of WD2 and/or WD3) there is a decrease in ozone formation. This 

may be because cleainer aiir is being blown in, compared to the East/South quadrant where 

the precursors to ozone are thought to be blown in firom the Beaimiont shipping channel. 

However, as the wind increasingly blows from the West/North there is a more indeterminant 

effect. 

Figure 7 About Here 

Notice that /a and fi are distinctly nonhnear, while the estimate / i is close to linear. 

Table 6 summarizes the wind direction estimates by outlining whether they were noticeably 

nonlinear and the nature of the function. The siunmary is coded as AB, where A represents 

Unear (L) or nonhnear (N) and B represents increasing (t) decreasing (i) or indeterminant 

(->) levels of ozone as WDi increases. They reveal that the effects axe often nonlinear, which 

is not surprising as wind blowing constantly from one direction coiild result in amy locally 

formed precursors to ozone being blown clear of the monitoring site, while wind blowing only 

partially from any single direction may not result in the precursors being blown clear of the 

monitoring site. In short, the relationship between these wind direction variables and ozone 

levels are probably smooth, but potentially prone to nordinearity. 

Table 6 About Here 
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5.2 Seasonal and Trend Estimates 

Figure 8 plots the seeisonal estimate /s for all six sites, along with the respective 95% confi­

dence intervcils. Five of the six sites have the same basic profile, with a decrease in residual 

ozone levels during May and June, stable levels in July, August and September and a further 

decrease in October. Only the data firom the Deillas North monitoring site has a noticeably 

different profile, with stable or increasing residual ozone levels in May and June, followed 

by a gradual decrease until October. The high degree of similarity in the profiles of /s at 

each of the sites could result from meteorological variation not captured by / i , . . . ,/4 and 

not random over the period May-October. 

—Figures 8 and 9 Here. 

The trend estimates axe plotted in figure 9 and reveal substantial variation in trends at 

the six monitoring sites. This can be partly explained by the different environments in which 

the stations axe located. For example, the estimate in the trend at the Beaumont monitoring 

site is highly variable, which could be due to the concentration of a sizable paxt of the world's 

petrochemical plant in the area. Such industrial activity is thought to have a high impact on 

the formation of ozone and the level of industrial activity is not even throughout the period 

1980-1997. In particular, the years 1991-1995 appear to be periods in which ozone levels 

were high at all sites, apart from CUnton. This could well be due to increased economic 

activity during this period, relative to the previous period. Lastly, figure 10 provides plots 

of the annual means of the raw ozone at each site. A comparison with the trend estimates 

in figure 9 reveals that the meteorological variation appears to mask the undertlying trend 

values quite substantiedly. 

Figure 10 About Here. 
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6 Comparison with MARS 

A popular alternative method for estimating such multivariate nonparametric regression 

models is MARS (multivariate adaptive regression spUnes) proposed by Friedman (1991). 

Other methods include that of Stone, Hansen, Kooperburg and Truong (1996) which is 

similar to MARS in the regression case. We compare the Bayesian estimate to that obtained 

using MARS via a simulation based on the design of the data from the Clinton monitoring 

site. We chose this dataset simply because it has the smallest sample size and therefore is 

the fastest on which to run the simulation. 

In this simulation we estimated the regression model at (3.1) using MARS (version 3.6). 

The procedure does not allow for estimation of a data transformation and therefore we simply 

used the transformed data as the dependent variable. The MARS program uses somewhat 

different bases for the various components, including a tensor product regression spHne basis 

for the trivariate function / i , univariate regression spUnes for the additive functions /2,/3 

and /4 and dummy variable bases for /s and /e. However, linear regression spline terms are 

used instead of the cubic regression spline terms during the search for suitable knot locations 

to provide speedy computations. Once these locations have been determined, estimation is 

undertaken with cubic regression spline terms using these knot locations. 

To compare both the Bayesian estimate (BAYES MODEL) and that provided by MARS 

(MARS MODEL), we simulated data from both and fit both estimators to the data. There­

fore, the simulated datcisets have the same design as the original Clinton data (that is, the 

same independent variable values), though we simulated fifty repUcates of dependent variables 

form each of the two models. We measured the performance of the estimators on reproducing 

both true models by calculating the following distance measine for each replicated dataset 

and both estimators 
I 1804 

«S=l804S®'-« ' ' ' 
t = l 

Here, yi,...,yi804 are the fitted values from the original data (obtained using either the 

BAYES MODEL or MARS MODEL), while ^ i , . . . , yi804 are the fitted values obtained from 

the simulated data using either procedure. Lower values of this distance measure indicate 
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that the estimate is closer to the true model. 

Figure 11 About Here.— 

Figure 11 provides the log{ISE) values for both the estimators for data generated from 

the BAYES MODEL and MARS MODEL. It can be seen that the Bayesian estimator more 

faithfully reproduces the BAYES MODEL, which is to be expected as this model is the 

Bayesian estimate from the original data. However, the Bayesian estimator also more accu­

rately estimates the MARS MODEL. This is remarkable as the Bayesian procedure is not 

only a diflFerent estimation procedure, but is using a different basis than the MARS MODEL. 

These results suggest that the Bayesian approach is substeuitially more efficient than MARS 

when applied to the regression model at (3.1) with the design presented by the Clinton data. 

This corresponds to the simulation results presented in Smith and Kohn (1997) for the case 

of bivariate surface estimation. 

7 Conclusion 

This paper has a number of objectives. First, it demonstrates that the proposed Bayesian 

nonparametric regression method can be applied to a complex regression problem in a larger 

sample size environment. This methodology is very general, with the user able to select 

which bases with which to work. In particular, we demonstrate this by using a trivariate 

radial basis to model the response of the key meteorological variables. 

Second, a high dimensional basis representation is obtained by locating the basis terms at 

each of the design points. Such a large basis cannot be handled effectively using the 'one at 

a time' Gibbs sampling scheme discussed in Smith and Kohn (1996) and requires an alterna­

tive, such as the focused sampling approach. Third, by using a fractional prior for 0y at Al , 

the methodology is fully data-driven. Moreover, an appropriate transformation of the depen­

dent variable from a discrete set of location and scale invariant candidate transformations is 

estimated along with the regression surfaces. 
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Fourth, we have contributed an empirical study that improves understanding of the de­

terminants of tropospheric ozone levels. Here, we have estimated the functional form of the 

dependence of daily ozone maxima on key meteorological variables in a more general and 

flexible way than previous authors who assume a parametric or additive structure. These 

estimates are made more meaningful by their consistency across six diflFerent monitoring sites 

in eueas of concern in Texas. In addition, we provide estimates of meteorologically adjusted 

long-term trends and show they difier substantially from that observed in the unadjusted 

ozone data. 

Lastly, we compare our estimator to MARS, one of the few alternative nonparametric 

regression procedures capable of estimating such a multivariate regression model with the 

sample sizes in our data. We do this using a simulation study based on the design of the 

data at one of the monitoring sites. The results indicate that for this problem, contemporary 

Bayesian nonparametric regression is substantially more reUable than MARS. 
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Monitoring Site 

Aldine 

Chnton 

Northwest Houston 

Dallas North 

Forth Worth Keller 

Beaumont 

Quad 1 (WDi) 

90-180 

325-45 

90-180 

135-225 

68-158 

90-180 

Quadrants 

Quad 2 (WDi) 

180-270 

45-112.5 

180-270 

225-315 

158-248 

180-270 

Quad 3 (WDi) 

270-0 

112.5-202.5 

270-0 

315-45 

248-338 

270-0 

Quad 4 (WDi) 

0-90 

202.5-325 

0-90 

45-135 

338-68 

0-90 

Table 1: Definitions of the quadrant directions in degrees, where 0=North and 180=South. 

Monitoring Site 

CUnton 

Aldine 

Beaumont 

Dallas North 

Fort Worth Keller 

Northwest Houston 

Period Data Collected 

1/5/83-31/10/95 

1/5/80-31/10/97 

25/9/80-30/9/97 

1/5/80-31/10/97 

1/5/83-31/10/97 

1/5/81-31/10/97 

Sample Size (n) 

1804 

2614 

2373 

2737 

2309 

2433 

% missing 

18.30% 

21.07% 

24.28% 

17.36% 

16.34% 

22.22% 

Table 2: Period over which data was collected, resulting number of full observation and 

percentage of data missing within the respective collection periods for all six sites. 
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Domain 

TR,WS,HMD 

WD2 

WDz 

WD4 

MN 

YR 

Total 

Pi 

P2 

Pz 

Pi 

P5 

P6 

P 

Clinton 

1476 

40 

47 

43 

6 

13 

1625 

Aldine 

2247 

36 

35 

37 

6 

18 

2379 

Beaumont 

2077 

36 

33 

34 

6 

18 

2204 

Dallas N. 

2522 

31 

29 

28 

6 

18 

2634 

Ft. Worth KeUer 

2152 

41 

31 

31 

6 

15 

2276 

NW. Houston 

2230 

48 

33 

44 

6 

17 

2378 

Table 3: Total number of basis terms pi for each component function /j for the data corre­

sponding to each of the six sites. Here, p is the total number of basis terms, including the 

global intercept a. 

Monitoring Site 

Clinton 

Aldine 

Beaumont 

Dallas North 

Fort Worth Keller 

Northwest Houston 

A 

0 

0 

0 

0.25 

0 

-0.25 

*A 

logiOZ +1) 

log{OZ +1 ) 

\og{OZ +1) 

{OZ +1)1/4 

\og{OZ +1) 

{OZ + l )- i /4 

H 
-5.0476 

-8.0035 

-4.3399 

-20.8463 

-7.3976 

33.9083 

Â 

6.1658 

7.7103 

5.7708 

17.1196 

7.3989 

43.7684 

Table 4: Estimated transformations for the data at all six sites. 
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Monitoring Site 

Aldine 

CUnton 

Beaumont 

Dallas North 

Fort Worth Keller 

Northwest Houston 

A 
15.154 

10.189 

7.518 

16.142 

9.936 

13.596 

Range of Function Estimate 

h 
2.8983 

1.5789 

1.3882 

0.703 

1.656 

3.457 

h 
2.029 

1.094 

1.125 

1.119 

2.462 

1.583 

h 
2.655 

1.135 

0.965 

2.188 

2.013 

1.790 

h 
1.413 

1.631 

1.314 

1.518 

1.505 

1.491 

h 
1.966 

1.484 

5.074 

1.683 

1.258 

2.681 

Table 5: Range of the estimated functions / i , •.., /e obtained from the data collected at all 

six monitoring sites. 

Monitoring Site 

Aldine 

Clinton 

Beaumont 

Dallas North 

Fort Worth Keller 

Northwest Houston 

h 
u 
Nt 

Li 

Lt 

Li 

Li 

h 
N-> 

N ^ 

N-» 

Ni 

Li 

N-f 

h 
Ni 

N-^ 

N ^ 

Li 

Li 

Ni 

Table 6: Summary of the estimates for /2, /s and /4 for the data collected at each of the six 

data sites. The profile of these functions is summarised as a pair AB, where A represents 

linear (L) or nonlinear (N) and B represents increasing (t) decreasing (i) or indeterminant 

(->) levels of ozone as WD2, WDz and WD4 increases. 
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Figure 1: Boxplots of the daily maxima of hourly tropospheric ozone concentrations (in 

paxts per hundred milUon) during the period 1980-1997 at the Aldine monitoring site. Note 

that the US Environmental Protection Agency's national ambient air quality standard in 12 

pphm. 
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Figure 2: Map providing location of monitoring sites. All six are located in areas of paxticulax 

concern to the Texas Natural Resoxu*ce Conservation Conaanission. 
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Figure 3: Summaries of the Markov chain iterates for the estimation of the regression model 

with the Aldine monitoring site data, (a) The posterior probability pi'f^^y)- (b) The number 

of non-zero coefficients q y]. (c) The cardinality of the focus set S. The plots are produced 

for iterates from the warmup and two sampling periods. 
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Figure 4: The trivariate surface estimate fi{TR,WS,HMD) estimated from the Al-

dine site data. The nine surfaces plotted are of fi{TR,WS,HMD = x) for x = 

n/10,2n/10,..., 9n/10th ordered value of HMD. The bottom left hand panel corresponds 

to low humidity, while the top right hand panel corresponds to high humidity. 



Figure 5: The estimate of the upper confidence interval 1.96Ji for the trivariate function / i 

estimated from the data collected at the Aldine monitoring site. The nine surfaces plotted 

are of 1.96si (TiJ, WS, HMD = x) for x = n /10,2n/10, . . . , 9n/10th ordered value of HMD. 

The range of the vertical axis is set to that used in the plot of / i in figiure 4 to enable 

comparison. 
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Figiure 6: The trivariate surface estimate fi{TR,WS,HMD) estimated from the Forth 

Worth Keller site data. The nine surfaces plotted are of fi{TR,WS,HMD = x) for 

X = n/10,2n/10,... ,9n/10th ordered value of HMD. Note that the humidity levels in 

which the slices axe made will therefore differ sUghtly from that found in the surface shces 

from the Aldine site. 
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Figure 7: (a)-(c) Plots of /2, /a and /4 (bold lines), respectively, for the data collected at the 

Aldine monitoring site. Also plotted are the 95% confidence intervals (dotted lines). 
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Figure 8: The estimated residual seasonal effect for each of the six monitoring sites. In 

each panel, the bold line is the estimate of /s, while the dotted Unes provide 95% confidence 

intervals. 
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Figure 9: The estimated long-term trend in ozone levels for each of the six monitoring sites. 

In each panel, the bold line is the estimate of /e, while the dotted Unes provide 95% confidence 

intervals. 
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Figure 10: Plots of the mean values of the transformated ozone data collected at each of 

the sites. The transformations used axe the estimated data transformations axid enable a 

comparison with the trends plotted in figure 9. 
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Figure 11: Simulation comparison of the MARS and focused sampling based estimates. 

Panel (a) is for data generated from the MARS MODEL and panel (b) is for data gener­

ated from the BAYES MODEL. Each boxplot is constructed from the fifty log{ISE) values 

resulting from the fifty simulation repUcates for each of the two models. 


