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Abstract: The “Theta method” of forecasting performed particularly well in the M3­
competition and is therefore of interest to forecast practitioners. The description of 
the method given by Assimakopoulos and Nikolopoulos (2000) involves several pages of 
algebraic manipulation and is difficult to comprehend. We show that the method can 
be expressed much more simply; furthermore we show that the forecasts obtained are 
equivalent to simple exponential smoothing with drift. 
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1 Introduction 

The “Theta method” of forecasting was introduced by Assimakopoulos and Nikolopou­
los (2000), hereafter referred to as A&N. Their description of the method is complicated 
and confusing and involves several pages of algebra. However, the method performed 
particularly well in the M3-competition (Makridakis & Hibon, 2000), and is therefore of 
interest to forecast practitioners. 

We examine the Theta method and show that it can be expressed much more simply 
than in A&N; furthermore we show that the forecasts obtained are equivalent to simple 
exponential smoothing (SES) with drift. Using this equivalence, we derive appropriate 
prediction intervals for the method based on a state space model underlying SES with 
drift. Finally, we show that SES with drift can produce better forecasts than the Theta 
method if the parameters are optimized using a maximum likelihood approach. 

Section 2 reproduces the main results from A&N using a different (and much simpler) 
notation. We obtain an explicit expression for point forecasts in Section 3 and show that 
these are equivalent to the point forecasts from SES with drift. In Section 4, we describe a 
state space model with equivalent forecasts, thus enabling the computation of prediction 
intervals and likelihood estimates. Finally, in Section 5 we compare the Theta method 
with fully optimized SES with drift to the annual data from the M3-competition. 
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2 Unmasking the Theta method 

2 Theta Method 

Let {X1, . . . , Xn} denote the observed univariate time series. From this series A&N con­
struct a new series {Y1(θ), . . . , Yn(θ)} such that 

Yt
��(θ) = θXt

�� (1) 

where Xt
�� denotes the second difference of Xt and Yt

��(θ) denotes the second difference 
of Yt(θ). We note that (1) is a second-order difference equation and has the solution (see, 
e.g., Box, Jenkins & Reinsel, 1994, pp.120–125) 

Yt(θ) = aθ + bθ(t − 1) + θXt (2) 

where aθ and bθ are constants. Thus Yt(θ) is equivalent to a linear function of Xt with a 
linear trend added. A&N call Yt(θ) a “theta line”. 

For a fixed θ, A&N find the values of Y1(θ) and Y2(θ) − Y1(θ) which minimize the sum 
of squared differences 

t t 

∑

i=1 

[Xt − Yt(θ)]2 = ∑

i=1 

[(1 − θ)Xt − aθ − bθ(t − 1)]2 .


This is equivalent to minimizing the above sum of squares with respect to aθ and bθ. 
Thus, it is a simple regression of (1 − θ)Xt against time t − 1. Therefore the solution is 
simply 

b̂θ,n =

6(1 − θ) 
n2 − 1 

2
 n 

∑
tXt − (n + 1)X̄
n
t=1 

and âθ,n = (1 − θ)X̄ − b̂θ,n(n − 1)/2. 

The equivalent results are derived in more than two pages of algebra by A&N. 

Note that the mean value of the new series is 

Ȳ(θ) = âθ,n + b̂θ,n(n − 1)/2 + θX̄ = X̄, 

the same result A&N derived in one-third of a page using their notation. Furthermore, 
it is easy to see that 1 [Yt(1 + p) + Yt(1 − p)] = Xt since â1+p,n + â1−p,n = 0 and b̂1+p,n +2
b̂1−p,n = 0; this result takes up about half a page in A&N. 

Forecasts from the Theta method are obtained by a weighted average of forecasts of Yt(θ) 
for different values of θ. However, A&N only explain how to get forecasts for θ = 0 and 
θ = 2, the set-up they used in the M3-competition. In this case they define 

X̂n+h = 1
2 [Ŷn+h(0) + Ŷn+h(2)] 

where Ŷn+h(0) is obtained by extrapolating the linear part of (2) and Ŷn+h(2) is obtained 
using simple exponential smoothing on the series {Yt(2)}. Hence, 

Ŷn+h(0) = â0,n + b̂0,n(n + h − 1) (3) 
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3 Unmasking the Theta method 

and (see Makridakis, Wheelwright & Hyndman, 1998, p.149) 

Ŷn+h(2) = α 
n

∑
−1 

(1 − α)iYn−i(2) + (1 − α)nY1(2) (4) 
i=0 

where α is the smoothing parameter for the SES. 

So far we have simply shown how A&N’s results can be replicated much more easily 
using our notation. The rest of our paper gives new results concerning this forecasting 
methodology. 

3 Point forecasts 

The above results can be combined to obtain a simple expression for the forecasts X̂n+h. 
From (4) we obtain 

Ŷn+h(2) = α 
n

∑
−1 

(1 − α)i 
� 

â2,n + b̂2,n(n − i − 1) + 2Xn−i 

� 
+ (1 − α)n(â2,n + 2X1) 

i=0 

= â2,n + b̂2,n n − 
1 

+
(1 − α)n 

+ 2X̃n+h
α α 

where X̃n+h is the SES forecast of the series {Xt}. Noting that â2,n = a0,n and b̂2,n = 
−b̂0,n, we obtain 

− ˆ

X̂n+h = X̃n+h + 2
1 b̂0,n h − 1 + 

α 
1 − 

(1 − 
α

α)n 

. (5) 

For large n, this can be written as 

X̂n+h = X̃n+h + 1 b̂0,n(h − 1 + 1/α).2 

Thus it is SES with an added trend where the slope of the trend is half that of the fitted 
trend line through the original time series. 

4 Underlying stochastic models 

A&N do not give an underlying stochastic model for their forecasting method. However, 
it is possible to find such a model using a state space approach. Let X1 = �1 be fixed and 
for t = 2, 3, . . ., 

Xt = �t−1 + b + εt (6) 
and �t = �t−1 + b + αεt (7) 

where {εt} is Gaussian white noise with mean zero and variance σ2. 
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Then Xt follows a state space model which gives forecast equivalent to SES with drift. 
This is a special case of Holt’s method with the smoothing parameter for the slope set to 
zero. Note that Xt can also be written as 

Xt = Xt−1 + b + (α − 1)εt−1 + εt, 

that is an ARIMA(0,1,1) process with drift (see Box, Jenkins & Reinsel, 1994, pp.125–126). 

Now, the point forecasts for {Xt} are given by (see, e.g., Hyndman et al., 2001) 

X̂n+h = �n + hb. 

Further, we note that 

X̂t+1 | X1, . . . , Xt = Xt + b + (α − 1)εt (8) 
and that εt = Xt − Xt−1 − b + (1 − α)εt−1. (9) 

By repeatedly substituting (9) into (8), we obtain 

X̂n+1 | X1, . . . , Xn = α 
n

i=

−

0

1 
(1 − α)iXn−i + (1 − α)nX1 + 

α 
b 

[1 − (1 − α)n]∑ 

= X̃n+1 + 
b 

[1 − (1 − α)n]
α 

where X̃n+1 is the SES forecast. Similarly, the h-step ahead forecast is: 

X̂n+h | X1, · · · , Xn = X̃n+1 + b h − 1 + 
α 
1 − (1−α)n+1

.
α 

Thus, we obtain identical point forecasts as for the Theta method (5) if b = b̂0,n/2. 

Furthermore, our state space approach enables us to obtain maximum likelihood esti­
mates of b and it provides prediction intervals. For example, 95% prediction intervals for 
h period ahead forecasts are given by 

X̂t+h ± 1.96σ (h − 1)α2 + 1. 

(Equivalent results are obtained using the ARIMA(0,1,1) model.) 

5 Application to Annual M3 Competition Data 

The preceding analysis suggests we may be able to obtain better forecasts if we optimize 
the value of b rather than setting it equal to b̂0,n/2. To evaluate this idea, we apply the 
model to the 645 annual series from the M3 competition (Makridakis and Hibon, 2000). 
We computed forecasts up to 6 steps ahead and then we computed the symmetric mean 
absolute percentage error (SMAPE) as in Makridakis and Hibon (2000). 

In these comparisons, we use a different initialization to that described above. Rather 
than fixing �1, we fix �0 and then optimize the likelihood of the state space model (6) 
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5 Unmasking the Theta method 

Table 1: Average SMAPE for the annual M3 competition data


Methods Forecasting Horizons Average

1 2 3 4 5 6 1 to 4 1 to 6


(1) A&N Theta method 8.0 12.2 16.7 19.2 21.7 23.6 14.02 16.90 
(2) Recalculated Theta method 8.2 12.3 16.4 18.6 21.2 23.0 13.89 16.62 
(3) SES with drift 7.9 12.1 18.6 17.2 20.6 22.9 13.95 16.55 

and (7) over the parameters �0, b and α as described in Ord, Koehler and Snyder (1997). 
To initialize the optimization, we use the same procedure as outlined in Hyndman et 
al. (2001). The value of α was constrained to lie between 0.1 and 0.99. The results are 
presented in Table 1. 

Table 1 shows the average SMAPE for: (1) the original A&N forecasts (as given in Makri­
dakis & Hibon, 2000); (2) our forecasts using the Theta method described in A&N; and 
(3) forecasts based on the state space model (6) and (7). Our results differ slightly from 
those of A&N, probably because we initialized the SES differently, and possibly also be­
cause we estimated the smoothing parameter α differently (we used a likelihood ap­
proach). 

Note that the state space model performs better than the Theta method for all forecasting 
horizons except h = 3. This is because the state space model performs relatively badly 
for series N0529, particularly for forecasting horizon 3. If series N0529 is omitted, the 
state space SMAPE for h = 3 becomes 16.3. 

6 Conclusion 

We have demonstrated that the Theta method proposed by A&N is simply a special case 
of SES with drift where the drift parameter is half the slope of the linear trend fitted 
to the data. We have also demonstrated that prediction intervals and likelihood-based 
estimation of the parameters can be obtained using a state space model. 
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