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LEAD TIME DEMAND FOR SIMPLE EXPONENTIAL SMOOTHING 

Abstract 

A new simple formvila is found to correct the imderestimation of the standard 

deviation for total lead time demand when using simple exponential smoothing. The 

traditional formula for the standard deviation of lead time demand is to multiply the standard 

deviation for the one-period-ahead forecast error (estimated by using the residuals) by the 

square root of the number of periods in the lead time. It has been shown by others that the 

traditional formula significantly underestimates variation in the lead time demand when the 

mean of the process is somewhat changing and simple exponential smoothing is appropriate. 

This new formula allows one to see readily the significant size of the underestimation of the 

traditional formula and can easily be implemented in practice. The formula is derived by 

using a state space model for simple exponential smoothing. 

KEYWORDS: Lead time demand, exponential smoothing, prediction intervals, safety stock 

Introduction 

The incorrect estimation of the variance for forecast error when simple exponential 

smoothing is used in computerized inventory control systems has been examined in many 

studies (for example see Johnston and Harrison', Newbold and Bos ,̂ and Harvey and 

Snyder^). Originally, R. G. Brown'' proposed estimating the standard deviation for the total 

lead time demand by multiplying the standard deviation, a, for the demand one-period-ahead 

by the square root of the number of periods, h, in the lead time (i.e., c^. We will call this 

estimate the "traditional formula." This formula is appropriate if a stationary model is 

generating the time series, that is, if the smoothing constant for the simple exponential 
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smoothing process is zero. However, the point of using exponential smoothing is to account 

for the changing mean or level of the time series (a nonstationary process). Hence, it is 

important to determine the effect of a nonzero smoothing constant on the variance of the total 

lead time demand. Previous studies (Johnston and Harrison' and Harvey and Snyder̂ ) have 

shown that this variance is significantly underestimated. 

In this paper, we develop a simple formula for computing the variance of total lead 

time demand that accounts for both the length of the lead time and the size of the smoothing 

constant in simple exponential smoothing. For the generating model, we use one of the two 

models studied by Muth^ Both models assume constant variance for the error term. We 

choose the model with a single source of random error (SSRE) for several reasons. It is 

directly equivalent to the ARIMA(0,1,1) model with no restriction on the correlations. 

Muth's other model has two sources of random error and is appropriate only for time series 

for which the correlation of the differenced time series at lag 1 is negative. The SSRE model 

can be expressed in a form that allows one to see immediately the connection between the 

exponential smoothing method and the model (Ord, Koehler, and Snyder*). Most 

importantly, with the SSRE model one can easily compute the variance for the lead time 

demand and correct for the imderestimation of the variance by the traditional formula. In 

fact, we show that the following adjustment factor replaces "^ in the traditional formula: 

f(a,h) = V(h + a(h - l)h(l + a(2h -1)/6)) (1) 

where h is the length of the lead time and a is the smoothing constant. 

In the next section we provide a background discussion of the models that assume 

constant variance for the one-period-ahead errors and that produce point forecasts that 

correspond to those fi-om the simple exponential smoothing method. Then we use the SSRE 
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model to compute the variance of the total lead time demand that contains the adjustment 

factor in Equation (1). We present a table that illustrates the importance of applying this 

adjustment factor in computing the standard deviation for different lead times and smoothing 

constants. We end the paper with a discussion of the practical implications of this adjustment 

factor for order-up-to levels in inventory control and for time series with trend. 

Models for Simple Exponential Smoothing 

The traditional formula (a"^) for the standard deviation of total lead time demand 

(Brown'') is appropriate for the following model: 

y, = m + e, (2) 

where y, is the value of the time series at time t, m is the mean of this time series, a^ is its 

variance, and values of y, at different time periods are independent of each other. If we have 

observed y, for t = 1,2,.. .,n, then 

Var(total lead time demand for h time periods) 

h 
= Var( 2 y„,j) 

j=l 

= a^h (traditional formula) 

Clearly this model does not allow for the changing mean, m,, that is implied by the 

method of simple exponential smoothing. Mutĥ  proposed two models which he rationalized 

to underlie simple exponential smoothing. The first model has two sources of statistically 

independent random errors, e, and v,. The model has the form 

y, = m,.i + e, (3a) 

m, = m,., + v, (3b) 

where additional assumptions are that m,., is the mean of y, and of m, at time t-1, the e, are 

independent, the v, are independent, the variance of e, is the constant a/, and the variance of 
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V, is the constant â .̂ 

The second model (SSRE) has one source of random error. We write it in a form that 

clearly shows the cormection with simple exponential smoothing (Snyder^). This model is 

y, = m,.,+e, (4a) 

m, = m,., + ae, (4b) 

where a is the smoothing parameter, m,.i is the mean of y, at time t-1, the e, are independent, 

and c^ is the variance of e,. 

Both Models 3 and 4 are ARIMA(0,1,1) processes. However, for Model 3, it can be 

shown that 

Cov(Ay„Ay,,) = -aeV(cTe^+0 

which can never be positive. The SSRE model does not have this restriction and is equivalent 

to the ARIMA (0,1,1) model 

yt = yt.i + e, + (l-a)e, . , . (5) 

Prediction 

The prediction of the typical series value y„+j beyond period n is conditional on the 

sample yi,y2,->yn- For convenience, it is initially assumed that the seed level irio, the 

smoothing parameter a, and the standard deviation a are known exactly. Information until 

the end of period n is now denoted by I„ = (y],y2,...,y„,mo,a,c). The problem is to find the 

distribution of y„+j | !„. For the SSRE Model 4, back-substitution of the recurrence 

relationship (4b) yields 

J 
m„̂ j = m„ + a 2 e„̂ i (6) 

i=l 
so that 

J-1 
y„̂ j = m„ + a S e„̂ i + e„̂ j (7) 

i=l 



Thus, E (y„+j I In) = m„ as suggested above. Furthermore, 

Var(y„Jl„) = 0 - l ) a V + sl (8) 

In inventory control applications, the primary interest is in total demand over a lead time h. 

By aggregating (7) we obtain 

h h-1 
2 y„.j=hm„+ 2 (1+(h-j)a)e„,j + e„,h (9) 

j=l j=l 

h 
Thus, the mean lead time demand, E( S y„+j 11„) = hnin, is given by the usual formula. 

j=l 

The variance, however, is given by the more complex formula 

h 
Var( 2 y„ ĵ|l„) = cy2[h + a(h-l)h(l+a(2h-l)/6)]. (10) 

j=l 

= a'f'(a,h) 

where f(a,h) is defined in Equation 1. See the Appendix 1 for more details on the derivation. 

When there is no structual change and, as a consequence a = 0, the standard deviation 

reduces to the traditional square root formula CT"^ . The second term under the square root 

symbol in Equation (1) (i.e., a(h-l)h(l+a(2h-l)/6)) may be viewed as the correction to the 

traditional formula required to allow for the impact of structural change. The significance of 

this correction term can be gauged from Table 1 where f(a,h) has been calculated for a range 

of values of the lead time and the smoothing parameter. Focussing, in particular, on the case 

of a lead time of h = 9 weeks, the first cell shows the V9, the factor that would be used in 

many conventional implementations of inventory control software. The remainder of the 

column shows much larger values than 3. This indicates that the standard deviation of total 
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lead time demand is seriously underestimated if the traditional formula is used with forecasts 

from simple exponential smoothing in the usiial context of positive smoothing parameter 

values. This highlights, in a more transparent way, the problem associated with the 

traditional formula originally exposed in Brown" and then elaborated by Johnston & 

Harrison' and by Harvey & Snyder̂ . 

- Insert Table 1 -

Conclusion 

The adjustment factors are very important for computing safety stocks in inventory 

that are not too small. Order-up-to levels when using simple exponential smoothing would 

have the form: 

hm„ + kaf(a,h) 

where k would depend on the customer service objective and the type of distribution for e,. 

Since we have a model for exponential smoothing, we can use a maximum likelihood 

procedure to estimate lUo, a, and s. However, the replacement of "v^by f(a,h) can be 

implemented in any computerized system that currently uses simple exponential smoothing. 

While Equation 1 is simple to program, it may not be immediately obvious how the 

standard deviation changes with h and a. A lower bound for f(a,h) is given by 

g(a,h) = Vh(l + a(h-l)/2) (11) 

where g(a,h) is correct for a = 0 or h = 1 and an underestimate otherwise (see Appendix 2). 

When using g(a,h) as an approximation for f(a,h) in Table 1, the maximiun error occurs for 

a = 1 and h = 10 and is less than 12%. The limiting value of the error for all a as h increases 

is 13.4%. Those values contrast with the use of ^ in the traditional formula, where the 



corresponding errors are 84% and 100%. 

From Equation 11 we can readily comprehend the impact of h and a on the standard 

deviation. Indeed the approximate adjustment g(a,h) will often be accurate enough and can 

be evaluated even more quickly than f(a,h). 

It is also very easy to extend these results to the case when there is trend in the 

demand. Model 4 can be expanded to a model that underlies the Holt smoothing method as 

follows (Snyder*): 

y. = m,., + b,., + e, 

m, = m,., + b,., + a,e, 

b, = b,., + a2e, 

where m, is the level of the time series at time t, b, is the growth rate at time t, and tti and aj 

are parameters. If the level is changing (a, *• 0) and the growth rate is constant (a2 = 0), the 

adjustment factor is f(a„h). If the growth rate is changing, the adjustment factor must 

necessarily be larger and can be derived in the same manner as Equation 10. 



Appendix 1 

Derivation of the Variance for Total Lead Time Demand 

Starting with Equation (9) for total lead time demand, 

h h-1 
Var( S y„,JlJ = Var(hm„+ S (1 + (h-j)a)e„,j + e„,J IJ 

j=l j=l 

h-1 
= c^ (1 + E (1 +ia)^) 

i=l 

h-1 
= CT'CI+S ( l+2ia + iV)) 

i=l 

h-1 h-1 
= ô  (h + E 2ia + 2 î â ) 

i=l i=l 

= a^ \h + 2a (h - \)(h) + a? Oi - nfh¥2h-ni 
2 6 

= c^ [h + a (h-l)h(l + a (2h-l)/6)] 

Appendix 2 

Approximation to f(a,h) 

Completing the square for 1 + a(h-l) in Equation 1, yields 

f(a,h) = Vh(l + a(h-l)/2)^ + a'h(h^ -1)/12 

An approximation to f(a,h) is given by 

g(a,h) = Vh(l+a(h-l)/2), 

which is clearly a lower bound. 
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Table 1 
Standard Deviation Adjustment Factor, f(a,h) 

a 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

1 

1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

2 

1.41 
1.49 
1.56 
1.64 
1.72 
1.80 
1.89 
1.97 
2.06 
2.15 
2.24 

3 

1.73 
1.91 
2.10 
2.29 
2.49 
2.69 
2.90 
3.11 
3.32 
3.53 
3.74 

4 

2.00 
2.31 
2.64 
2.98 
3.32 
3.67 
4.03 
4.39 
4.75 
5.11 
5.48 

Lead time, h 

5 

2.24 
2.70 
3.19 
3.70 
4.22 
4.74 
5.27 
5.81 
6.34 
6.88 
7.42 

6 

2.45 
3.09 
3.77 
4.47 
5.18 
5.89 
6.62 
7.35 
8.07 
8.81 
9.54 

7 

2.65 
3.48 
4.36 
5.27 
6.19 
7.12 
8.06 
9.00 
9.94 

10.89 
11.83 

8 

2.83 
3.87 
4.98 
6.12 
7.27 
8.43 
9.59 

10.76 
11.93 
13.11 
14.28 

9 

3.00 
4.27 
5.62 
7.00 
8.39 
9.80 

11.21 
12.62 
14.04 
15.46 
16.88 

10 

3.16 
4.67 
6.28 
7.92 
9.57 

11.24 
12.91 
14.58 
16.26 
17.94 
19.62 


