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ABSTRACT 

We propose a new method for estimation of the hazard function from a set of 
censored failure time data, with a view to extending the general approach to more 
complicated models. The approach is based on a mixed model representation of 
penalized spline hazard estimators. One payoff is the automation of the smoothing 
parameter choice through restricted maximum likelihood. Another is the option to 
use standard mixed model software for automatic hazard estimation. 
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1 Introduction 

The hazard function is prominent in the field of survival analysis and is useful in 
many other contexts, such as reliability and actuarial science. While common sur­
vival models, in particular the Cox proportional hazards model (Cox, 1972), do not 
require explicit estimation of the hazard function, there are numerous situations 
where a good hazard estimate is useful. For example, proportional hazard mod­
els in the presence of interval censoring benefit from hazard function estimation (e.g. 
Betensky et al. 2000). 

Nonparametric hazard estimation has an established literature, with the proposal 
of several kernel-based estimators (e.g. Tanner and Wong, 1983; Hjort, 1993) and 
spline-based estimators (e.g. Bloxom, 1985; Etezadi-Amoli and Ciampi, 1987; Senthil­
selvan, 1987; Rosenberg, 1995; Joly, Commenges and Letenneur, 1998; Eilers, 2000; 
O’Sullivan, 1988; Kooperberg et al, 1995). In this paper we take a mixed model ap­
proach to spline estimation of the hazard function. Operationally, our estimate is 
equivalent to a penalized spline fit with a quadratic penalty on the knot coefficients 
(e.g. Eilers and Marx, 1996; Eilers, 2000). However, the mixed model approach has 
the following advantages: 

(1)	 a data-driven rule for choosing the amount of smoothing is easily formulated 
using maximum likelihood. 

(2) the penalized spline hazard estimate can be approximated by a Poisson mixed 
model, with an offset. This allows hazard function estimation to be done using 
standard software such as the SAS macro GLIMMIX. 

(3) it allows for easier extension to more complex models and censoring types. Ex­
amples include additive models, geostatistical models, hazard regression and in­
terval censoring. 

The mixed model/penalized spline approach to hazard estimation is described in 
Section 2. In Section 3 we formulate an automatic smoothing parameter rule based on 
restricted maximum likelihood. Section 4 describes a Poisson mixed model approx­
imation, Section 5 describes standard error estimation and Section 6 demonstrates 
practical efficacy. We conclude with some discussion of possible extensions in Sec­
tion 7. 

2 Mixed model hazard estimation 

Suppose we observe data 
� ��� � � � � 

, ��������� , where 
��� 

is the time to an event, and � � 
is an indicator of non-censoring. Let � � � � be the hazard function of the 

��� 
and 
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����� � � . Then the log-likelihood of the data i� ������ 
�
� � � � ����� � � � � ��� � ���� � � � ��� ����� (1) 

A linear spline model for is� � � � ��� ��� � � � ����� ����� � � � � 
�	

(2) 
���� �

������� ��� � � �	 �where � ��� � � � � and corresponds to being a piecewise linear function with 
knots at . The knots should be relatively dense to allow for detailed struc­
ture in to be estimated. Our implementation chooses the knots to be equally spaced� � � � � � � � ��� � � � � � � � 
with respect to the quantiles of the unique values and sets � ��� � � . 
The answers are quite insensitive to the placement of the knots and this choice rep­
resents a trade-off between computational complexity and the ability to handle fine�
detail. 

If the � are treated as ordinary parameters and estimated via maximization of (1)�then the resulting estimate of will be a somewhat wiggly piecewise linear function. 
A remedy is to treat them as random effects:� � � � � � � � ������ � � � � � ���� � � The amount of smoothing is controlled by and its reciprocal acts as a smoothing 
parameter. � 

Let � � ����� � � � � � � , � ��� � � � � �� � � � � 
,	 �� ��� � � � � � � � � � �	 and � ��� � ������� � ��� � � � � � ���������� 

Then define � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
where	

� � � � � � � � ��� � � � � � � ��� �� ���� � � � � �� � � ��� ��� � � � � � � ����� 
� � � � and, for each 

� 
�

� � 
� 

� �
� 

� 
�

� � 
� , 

� 
� ���� ���� � � � � � �

��
� � � � � � �� ��� � � � � � � � � ����� � 

� 

���� � smallest � � � � such that 
��� � � � 

3 



The log-likelihood is the� � � � � � � � � ��� � � ��� ��� � � � � � � � � � � � ��� ��� � � � � � � � ��� � � � � � � � � � � � � � � � � � � � � � (3) 

The right-hand side of (3) involves an intractable � -dimensional integral. A com­
mon approach to handling this integral is Laplace approximation (e.g. Breslow and 
Clayton, 1993) which, when applied to (3), results i� � � � � � � � � � � � � � � � � � ��� � �� � � � � � � �� � � � � � � � � � � � � � � � � 
where 

� � � � � argmax
� � � � � � � � � � � ��� ��� � � � � � � � ��� � � � � � �� �� � � �

For fixed � � � � � this mixed model approach with Laplace approximation is equiv­
alent to the penalized spline fit 

with � ��� �
� � � ��� � � � �� � � � � 

� �� ��� � argmax� � � � � � � � � � � ��� ��� � � � � � � ��� � ��� � ��� (4)� � � � � 
and has similarities with the B-spline estimator of Eilers (2000). However, as we 
mentioned in the introduction, the mixed model framework has some compelling 
advantages: it has a natural automatic smoothing parameter choice (Section 3) and, 
with some modification, can be implemented using standard software (Section 4). 

The final log-hazard is a piecewise linear function. However, with a dense set of 
knots the final curve estimate will be, visually, quite smooth. Higher degree splines 
will give a mathematically smoother result, but linear splines have the advantage� � � 
of admitting exact expressions for 

� � � � � . Computing formulae are given in the 
Appendix. 

3 Choice of amount of smoothing� � �The reciprocal of acts as a smoothing parameter, and its choice has a profound 
influence on the fit. Therefore it is important to have the option of having the data 
choose the amount of smoothing. 

An obvious solution is to replace 
� � � by its maximum likelihood estimate. How­

ever, restricted maximum likelihood (REML) is slightly more attractive for variance 
component estimation. REML is well-defined for the Gaussian mixed model (see e.g. 
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Searle, Casella and McCulloch, 1992) but is less clear-cut for non-Gaussian models. 
One way around this is to maximize the marginal likelihood, defined by

where is the anti-logarithm of (3). The marginal log-likelihood is then 

� � � ��� � � �� �� � ������ �
� � � � 
� � � � � � � � � � � 

��� � � �
� � � � ��� � � � � � 

�
� � 
� � � � � �� ��� � � � � � � � � 

� 

���
� � � � � � � 

����� 
� 
� � 

� � � 
� �
� 
� � 
���
� � � � � � �

� � � 
� �
� 
� � � � � � 

� � � � � � � � � � � � � � � � � 
� � � � � � 

where � � � � � � � � � � � � � � � � � � � � � � ��� ��� � � � � � � � ��� � � � � � � � � � 
We apply Laplace’s method to approximate 

� ��� � � � � � � . Let 
��� 

and 
��� � 

denote the� � � � ��� ��� ��� vector and � � �� � � � 
dimensional matrix of first- and second-order 

partial derivatives of 
� 

with respect to 
� � � � � � � . The approximation yields� �� ��� � � � � � � � � � � � � � � ��� � � � � �� � � � � � � � � � � � � � � � � � �

� � � � ��� � � � � � � � � � � � � � � � � � � � � ��� � 
where � � � � � � � � � � � � denotes the solution to 

� � � � �� � ��� � � � � . This is analogous to 
the Penalized Quasi-Likelihood (PQL) approach of Breslow and Clayton (1993). 

In the Appendix we give exact, readily computable, formulae for � and 
its first two derivatives with respect to 

� � � � � � � . This allows straightforward estima­
tion of 

� � , � � �� and � � . 

�� � � � � � � � � � � 
4 A simpler alternative 

The hazard estimators, and data-driven smoothing parameter described in the previ­
ous two sections use exact calculation of the cumulative hazard function. However, 
the formulas are quite involved and specialist software is required for its implemen­
tation. In this section we show that a mixed model-based hazard estimate may be 
obtained using standard software. The key is to approximate the cumulative hazard 
function via quadrature. For simplicity we will present the formulae for trapezoidal 
integration. Other quadrature schemes could be used instead.�� 

We first treat the case of no ties: 
������� � � � � � � � . Recall that the likelihood 

depends on the cumulative hazar� � � ��� � � ��� � � � � � � � � � � � � � ��� ���� � � � � � ��� � � � � � ���� � � � � � ����� � � 
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� � � 
Instead of computing the integrals exactly, we can approximate by numerical 
integration using the trapezoidal rule. That i� � � �
where 

� � � 
������
��� 
� 
���
�������� � �� � � 

�� 

� �� 
� �� ��
� � � 
�
� 
�
� 

��� � �����
��� � �� � � � � ����� �� � ��� ��

� � � � ... ������ 
����� 
� ���
... ���
� � 

���
� 

� ... 
�

� 

� 
�
� � 
�.
� 
.� 
� 
.��� � � � � � � � � 

and 
� � � � � 

Then the log-likelihood for 
� � � � � � � � � � is 

� � � �
� � � � � � � � � � � ���� � � � � � � � ��� ����� � � � � �� � � � � � � � � � � �� � � � � � � �� ��� �� � � ����� � � � � � � � � � � �� 

��� � � � � � � � � ���� � � � � � � ������ ����� � � ��� � � � � � ��� ���� ��� � � � � � � � � � � � � � � � � � � � � � 
where 

� 
� 
��� � � � � ��

�����
�
� 
� � ��� � � � ��� � � � � � � � ��� � � � � � � and 

� � �� � � � � � ��� 
� � 
� � � ���� � � � � � � � � � � �� ��� � � � � � � � � � � � � � ��� � � � � � � � � � � � � � � � � � ��� � � �� ��� ��� � � � � � � 

� � � � � � � � � � � � � � � 
This shows that � is approximately the log-likelihood corresponding to a 
Poisson mixed model 

� � �
� � � � � Poisson � � ��� � � � � � � � ��� � � ��� � � � � � ��� � � � ���� � � 

where � � � � � � are known offset values. Thus we can estimate the hazard function 
using mixed Poisson regression. More specifically, we can obtain a REML estimate 
of 
� ��� ��by fitting a mixed Poisson regression with logarithmic link and offset � �� � �� � � using the SAS macro GLIMMIX. 
When there are ties among 

��� � � � � � , we have to modify the above method 
to assure that is well defined. Suppose � � � � � � are all the unique� � � � � � � � � � � � � � � � � � ���� �� � � � � � � � �
values of 

�� � and for � � � , let � � �� � � � � � , and � ��� ��� �� ��� � � � � ���� � � � � � � � � , where 
� � � � 

is the indicator function. It follows that� � � � � � � � � � � � � � � � � � � � � � � � ���� ����� � � ��� �� � � � � � � ���� � � � ��� � � � � � � � � � � � � � � � 
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where 
� � and � � are obtained from 

� 
and � by deleting all the duplicated rows,� � � � � � � � � � � � � � � � � � � � , and � � � � � �� � � � � ��� � � � � � 

� 
� � � �
� � � � � � � � � � 

� � � �
� � 

� 
� � � � � � 

�

� � � �� 
� � 

�
� � � � � � � � � � � 

� � � � � � � � 
� 

�
� 
� � � ��� � � � � � �

� � 

�
� 
� 
� � � � � � � � � � 

� � 

� � � � � ��� � 
� 

� 
Therefore 

� � � � � � � � � � � can be approximated by the log-likelihood corresponding to a 
Poisson mixed model 

� � � � � � Poisson � � ��� � � � � � � � � ���� � � � � � � � � � � ��� � � � ���� � � � 
5 Standard errors 

The covariance matrix of the estimated coefficients given the smoothing paramete� � is approximately 

cov 

� � � � ���� ��� � � � � � � � � � � � � � � � � � � cov 
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 

It follows from likelihood theory that the covariance can be approximated b� � � � � �� �� � � � ��� ��� � � � � � 
cov ��� � � � � � � � � � 

For the quadrature approach of Section 4 the standard errors are given by SAS GLIM-
MIX. 

6 Practical performance 

6.1 Simulations 

In order to assess the performance of these mixed model-based hazard estimates, 
with REML smoothing parameter choice, we simulated data from the following model: 

���
� 
� ��� � � � � � � � � � � � � � �

�
� � � � � � � ��� � � � � � � � � � � � �� � Weibull � � � � Weibull � Binomial � �� � �� Uniform 

� � � � � � � � � � � � � � � 
We used sample sizes � and � . The number of replications in the 
simulation was 300. 
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Figure 1: Estimated 
and the true 
underlying hazard 
function with ��� � � � 
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Figure 1 and 2 give a graphical summary of the results. Figure 1 shows the 
true hazard function and the estimated hazard function with two different methods 
obtained by marginal likelihood approach and the trapezoidal approach with SAS� � � � � � � � � � � � � � � � � ��� � � � � � � �GLIMMIX. Here we chose 30 knots at � � � � � � � quantiles of . 
For this particular data set, the estimated smoothing parameter is 1.70 using the 
marginal likelihood method, and 1.64 by the trapezoidal approach with SAS GLIM-
MIX. As we can see from the graph, the estimated hazard functions by two ap­
proaches are very close. Figure 2 shows the performance of the hazard estimator 
based on the smoothing parameter chosen by the marginal likelihood approach for� � � � � � � �sample sizes � and � . They are obtained by defining the distance 
between the estimated hazard function and the true hazard function to be the root 
mean square 

��� � � � ���� � � � � � ��� � � � � � �� � � � 

�
and using the sample which is near the � th, 50th and 90th percentiles of the dis­
tances based on the 300 realizations. 

To compare the performance of the trapezoidal approach with the marginal like­
lihood approach, 300 sets of such data were simulated and for each realization, we� � � � �computed the corresponding smoothing parameter using both methods. The re­
sulting estimates of were shown in Figure 3. 
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Figure 2: Estimated 
and the true 
underlying hazard 
function: sample 
estimates near the 
median of the 

�
� ’s 

(solid curve), 10th 
percentile (dot-dashed 
curve) and 90th 
percentile (dashed 
curve). The dotted 
curve is the true hazard 
function 
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Figure 3: Estimated 
smoothing parameter 
using trapezoidal 
approach with SAS 
GLIMMIX versus 
marginal likelihood 
approach 
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Marginal Likelihood Approach 

6.2 Example 

An application of our hazard estimator to sports statistics is illustrated in Figure 4. 
The data correspond to runs scored in test cricket innings by Australian player S.R. 
Waugh over the period December 1985 to August 1997. Censoring corresponds to 
the player being ‘not out’ at the completion of the innings. The estimate shows the 
player’s high vulnerability early in the innings and when nearing 200. He also ex­
hibits some slight vulnerability after reaching 50 and after reaching 150. A remark­
able feature of S.R. Waugh’s record is the ability to continue beyond the landmark 
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score of 100 to a score higher than 150 and this is apparent in the dip in the haz­
ard estimate between 100 and 150. Approximate 95% pointwise confidence intervals 
based on the standard error estimation described in Section 5 are indicated by the 
shading. 
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7 Extension 

We have demonstrated that the mixed model approach to hazard estimation per­
forms well and provides an attractive alternative to other methods. However, the 
biggest advantage, in our view, is the straightforward extension to more complex 
models such as hazard regression models with time-varying effects (Kooperberg, 
Stone and Truong, 1995; Fahrmeir and Wagenpfeil, 1996). Finally, this approach 
should also be beneficial in the interval censoring context where hazard estimation 
plays a crucial role (e.g. Betensky et al. 1999, 2000). 
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Figure 4: Estimated 
hazard function for the 
test cricket scores of 
S.R. Waugh (December, 
1985 – August, 1997). 
The shaded region 
corresponds to 
approximate 95% 
pointwise confidence 
intervals based on the 
standard error 
estimation described in 
Section 5. 



Appendix: Computing Formulae 

Let � , � be � � � vectors and � be an � � � vector consisting of elements of the set� � � � � � � � � � � � . Let 
� 

be an � ��� 
matrix and � 

� 
be an� � ��� ���

array. Then define 

� �	 � ��� vector with � th entry equal to � �� matrix with � th entry equal to � �� � � � � � �� 
� � � 
� 
�
� � � � � � � � � � � �� � � � �� � � � array with � th entry equal to � � �

� � �� � � � � � � � vector with the � th entry equal to 0 if � � � � � , � if � � �� � � � � � � ��� matrix with the 
� � � � � th entry equal to 0 if � � � � , � � � � if � � � � � 

� � � � � � � ��� ��� array with the 
� � � � � � � th entry equal to 0 if � � � � , � � � � � if � � � � 

� � � � � � � � � vector with the � th element equal to � � � � �� � � � � � � ��� matrix with the 
� � � � � th element equal to � � � �

� �� ��	 � 
� � � 

�� � � �� � �	 � � �
array with the 

� � � � � � th element equal to 
� � � � ����� �	 � vector with � th entry equal to � ������ �	 � � �

matrix with 
� � � � � th entry equal to � � � � � � � 

��	 ������ � � ��� �
array with 
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