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Abstract 

Traditional computerised inventory control systems usually rely on exponential smoothing to 

forecast the demand for fast moving inventories. Practices in relation to slow moving 

inventories are more varied, but the Croston method is often used. It is an adaptation of 

exponential smoothing that 1) incorporates a Bernoulli process to capture the sporadic nature of 

demand and 2) allows the average variability to change over time. The Croston approach is 

critically appraised in this paper. Corrections are made to underlying theory and modifications 

are proposed to overcome certain implementation difficulties. A parametric bootstrap approach 

is outlined that integrates demand forecasting with inventory control. The approach is illustrated 

on real demand data for car parts. 
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1. Introduction 

An understanding of key features of demand data is important when developing computer 

systems for forecasting and inventory control. Plots of demand for three parts carried by an 

Australian subsidiary of a Japanese car company are shown in Figure 1. It is emphasised that the 

data genuinely measure demand and not sales. The data are of Australia-wide monthly demand 

over a three-year period. The raw data may be found in Appendix 2. It should be emphasised 

the series are not meant to be representative of all types of demand series encountered in 

practice. The series were chosen because they were considered to be typical of those that cause 

difficulties in conventional inventory control systems. 

Insert Figure 1 about here 

Car Part 1 is slow moving and unaffected by structural change. Car Part 2 is also slow moving, 

but its level and variability appear to be in decline: it is possibly reaching the end of its life 

cycle. Car Part 3 is relatively fast moving, but is also in a declining phase. The graphs for parts 

1 and 2 highlight the important point that demand series can contain many zero values. 

Although not illustrated here, series with a majority of zero values are common. A forecasting 

technique that allows for the possibility of zero values, but still works with fast moving 

inventories like Car Part 3, is most desirable. It eliminates the need to make artificial 

distinctions between slow and fast moving items, something that researchers (Johnston and 

Boylan, 1996b) have perceived as being a critical issue in applied forecasting. 

Simple exponential smoothing (Brown,1959) has been the mainstay of forecasting for inventory 

control (Gardner, 1985). A special adaptation (Croston, 1972) of this method, incorporating a 

Bernoulli process, is often recommended for cases with intermittent demand (Willemain et al, 

1994). The focus of this paper is on an improved version of the Croston approach and its use in 

inventory control. Emphasis is placed on the need to correctly specify the statistical models for 

the generation of approximations to the probability distributions of lead-time demand. A 

parametric bootstrap method is proposed for determining appropriate values for inventory 

control parameters. The proposed approach and its more traditional counterparts are applied to 

the demand data in Figure 1. They are compared using computed values of ordering parameters 

required for inventory control. 

3/29 




2. Current Approaches to Forecasting 

2.1 Simple Exponential Smoothing (SES) 

A local level model, a special case of the single source of error state-space family of models 

(Snyder, 1985; Ord, Koehler and Snyder, 1997), is used as the statistical framework for simple 

exponential. It is a structural representation of the ARIMA(0,1,1) process, the latter being the 

framework traditionally used for simple exponential smoothing (Muth, 1960; Box and Jenkins, 

1976). In the local level model, demand yt during a typical period t, is determined by the 

equation 

yt = µt−1 + ε t . (2.1) 

The first term on the right hand side of this equation is referred to as the underlying level. It is 

lagged because the demands that flow in during period t are assumed to depend on the state of 

the market at the start of period t. The second term is a disturbance that represents unanticipated 

demand. All disturbances are normally distributed with mean 0 and common variance σ 2 . It is 

also assumed that ε t is uncorrelated with all earlier underlying levels. 

The underlying level potentially changes over time in response to unanticipated changes in 

market structure. It is governed by the transition equation 

µt = µt −1 +αε t  (2.2) 

where the so-called smoothing parameter α determines the rate of change in the underlying 

level. It is possible that α = 0 : the case of no structural change. The transition equation is 

seeded with 

µ0 = µ . (2.3) 

The seed level µ , the smoothing parameter α and the variance σ 2 are unknown and must be 

estimated from a sample y y, ,K, y  of size n. For any trial values of these quantities, simple 1 2 n 

exponential smoothing may be applied to determine a series of one-step ahead prediction errors 

e e, ,K,e . Simple exponential smoothing involves m | , ,  y ,K, y , a quantity that = µ µ α  1 2 n t t 1 t 

will be referred to as the local level. This notation reflects the fact that the local level, at any 

point of time, depends on the past trajectory of the time series, together with the specified 

values of the seed level µ and smoothing parameter α . At stage t the algorithm entails the 

calculation of the one-step ahead prediction error 

et = yt − mt  (2.4) 

and the revision of the local level with the recurrence relationship 
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mt = mt−1 +αet . 	(2.5) 

In contrast to the original unconditional µt , the mt are fixed quantities for specified values of 

µ and α . 

In practice, the seed level µ is often estimated using a heuristic such as the simple average of 

the first three series values. An alternative is to find that value that minimises the sum of 

n 

squared errors ∑et 
2 . There are cogent arguments for both strategies and it is not a purpose of 

t =1 

this paper to dwell on the choice between them.  In this paper, the optimisation approach is 

adopted. One advantage is that exponential smoothing then accommodates the important special 

case of no structural change (where α = 0 ). It collapses to a classical simple average in this 

circumstance. If there is a preference in practice for the heuristic, the method presented here can 

be adapted accordingly. Forecasts are insensitive to the seed value when α is not close to zero, 

so both initialisation strategies yield similar results in this circumstance. The least squares 

estimates are designated by µ̂ and α$ . Estimates of the corresponding conditional means are 

denoted by m$ t . The estimate of the variance of unanticipated demand is given by the formula 

n 
2 2σ̂ e n 	 (2.6) = ∑ t


t=1


Prediction with simple exponential smoothing has traditionally been handled using ad-hoc 

model-free strategies. More reliable analytical approaches for deriving the distributions of lead

time demand (Johnston and Harrison, 1986; Harvey and Snyder, 1990; Snyder, Koehler and 

Ord, 1999) now exist and may be used in their place. A simple alternative, that exploits the 

extensive computational capacities of modern computers, is based on the following simulation 

method. Assuming that the problem is to find the distribution of aggregate demand over a lead

time n 1, +� + n h�, it consists of the following steps: 

1.	 Use Monte Carlo random number generation methods to obtain values for the errors 

εn+1, ,K εn h  from a normal distribution with mean zero and variance σ 2 .+ 

2.	 Use the local level model, as described by equations (2.1) and (2.2), to generate a 

realisation yn+1, , yn h  K +  of future series values. 

n h+ 

3.	 Calculate lead-time demand ∑ yt . 
t n 1= +  

This procedure is repeated many times. Replication i of lead-time demand is denoted by 
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n h+ 

∑ yt 
( )i . Taken together, these quantities form a sample that may be used to approximate the 

t n  1= +  

lead-time demand distribution. 

Steps 1 and 2 of this simulation procedure requires values for µ , α  and σ 2 , but these are 

unknown. The corresponding least squares estimates are used in their place, meaning that the 

simulation method becomes what is commonly called a ‘parametric bootstrap’. Like all such 

approaches, the effect of sampling error is ignored. The consequent loss of accuracy is usually 

tolerable because sampling error is a second-order effect. Despite this drawback, the parametric 

bootstrap method provides a much sounder basis for the determination of the lead-time demand 

distribution than the ad hoc approaches commonly in use. 

2.2 The Croston Method 

It was argued by Croston (1972) that simple exponential smoothing is not appropriate for 

inventories with intermittent demand. In appendix B of his paper, he outlines a model of 

intermittent demand, a method for estimating key quantities in the model and a method for 

predicting lead time demand for reorder level determination from a sample. The model is cast as 

an ARIMA(0,1,1) process that is assumed to apply only at those intermittent periods when 

transactions occur. A Bernoulli process governs the time between such active periods, the 

discrete analogue of a Poisson process. 

The Croston model may be seen as an adaptation of the conventional local level model to allow 

for the intermittent nature of demand. An additional random variable xt is used to indicate 

those periods in which transactions take place. This binary random variable is governed by a 

Bernoulli distribution with parameter p, the probability of there being some demand in a given 

period. It is used to force the local level and disturbance variance to zero in inactive periods. 

The model is 

ty 1t t tx µ ε− = +  (2.7) 

where 

tµ 1t tµ αε− = +  (2.8) 

The disturbances are still independently and normally distributed, with a common mean 0. 

However, the variance in period t is augmented by the binary variable to become xtσ
2 . The 

ARIMA model in the original representation has been replaced by its state space analogue, the 

local level model. This is a change of form, rather than substance, to clarify the link with 

exponential smoothing. Note that, unlike the underlying level µt , both p and σ 2  are not 
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subscripted by time. These quantities are implicitly assumed to remain unchanged over time. 

The Croston method, as distinct from his model, involves finding exponentially weighted 

moving averages (EWMA) of three quantities: 

1. the positive series values yt , 

2. the associated absolute errors et , 

3. the elapsed times between successive active periods (periods in which transactions 

occur). 

It then involves finding the underlying mean demand from the ratio of the first and third 

EWMA’s. 

The EWMA’s in his method use the same smoothing parameter. Croston is vague about how 

this quantity should be chosen. He indicates  “if the series i s short it may have to be chosen 

arbitrarily from experience”. He is also vague about the choice of seed values for the EWMA’s. 

He seems to place himself in the heuristic rather than the optimisation school. As indicated 

earlier, this is a legitimate stance to take when confronted with the realities of business 

environment. 

The exponentially weighted averages in steps 2 and 3 of his method are designed to detect and 

allow for changes in the variability of demand and mean frequency of active periods. A method 

along these lines would therefore be expected to work well for Car Part 2 depicted in Figure 1. 

Because of its focus on intermittent demands, the Croston method has been the subject of 

considerable interest. Nevertheless, a number of problems have been identified. Rao (1973) 

found errors in the algebra. Johnston and Boylan (1996a) expressed concern about a measure of 

the variability of demand that does not incorporate the effect of uncertainty in the elapsed times 

between active periods. Their proposed solution based on renewal theory, however, assumes 

that means and variances are constant, something that diverges from the spirit of the exponential 

smoothing methods.  It is not suitable, for example, for inventories like Car Part 2 depicted in 

Figure 1. Thus, it can be argued that the variability problem they identified with the Croston 

method remains to be resolved. 

There are further problems with Croston’s paper that have not so far been identified in print. 

Inconsistencies exist between model and method in relation to the second and third 

exponentially weighted averages. In order to justify the use of these EWMA’s, it is necessary to 

assume that σ 2  and p change over time. It may be true in practice that these quantities change. 
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But they are assumed to be constant in his model. For consistency it is necessary to replace the 

n n n 
2 2offending EWMA’s by the formulae σ̂ = ∑  ∑ x  and p̂ = x n  . This modified et t ∑ t 

t=1 t=1 t=1 

version of his method will be called MCROST. 

3. New Methods 

The simulation method outlined for simple exponential smoothing may be adapted to generate 

an approximation for the lead-time demand distribution from the Croston model. An iteration 

would involve the following steps: 

1. Generate values for the errors εn+ K n h  1, ,ε + from a normal distribution with mean 0 and 

variance σ 2 . 

2. Generate values for the indicator variables xn+1, , xn h  from a Bernoulli distribution K + 

with probability p. 

3. Generate a realisation yn+1, , yn h  of future series values from the modified local level K + 

model equations (2.7) and (2.8). 
n h+ 

4. Calculate lead-time demand with ∑ yt . 
= +t n 1 

There is, however, a serious logical difficulty. Nothing in the local level component of the 

Croston model inhibits the simulation of negative synthetic data, something that is incompatible 

with the reality that demand can never be negative. One possible way around this difficulty is to 

apply exponential smoothing to the logarithm of the data. The weakness of this strategy is that 

the raw series may contain zeroes. ( )  does not exist! log 0

Another possible fix might be to round all negative values to zero. There would then be two 

sources of zeros in the model: the Bernoulli process and the local level model. It would not be 

possible to distinguish between both sources in real data. The Croston model is not viable as a 

mechanism for generating prediction distributions without an alteration to overcome this basic 

flaw. 

3.1 Log-Space Adaptation (LOG) 

An adaptation that leads to a new model, and hence a new approach to forecasting, is to enforce 

non-negative demands using the equation 

+y = x exp ( )y . (3.1) t t t 
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Series values are now represented by the non-negative quantity yt 
+ . We still use yt , but it is 

now treated as a latent variable. It is governed by the local level model equations (2.1) and (2.2). 

It therefore continues to take both positive and negative values. Like the corrected version of the 

Croston model above, the variance of the disturbances is given by xtσ
2 . The xt  are again 

governed by a Bernoulli distribution with probability p. 

The corresponding smoothing equations are: 

 +log ( )y if x = 1 t t yt =   (3.2) 
arbitrary if x = 0 t 

e = x (y − m −1 )	 (3.3) t	 t t t 

mt = mt−1 +αet	  (3.4) 

m0 = µ	 (3.5) 

n 

Both µ  and α are again chosen to minimise the sum of squared errors criterion ∑et 
2 . The 

t =1 

n n 
2 2variance and proportion of active periods are again estimated with σ̂ = ∑  ∑ xt  and et 

t=1 t=1 

n 

p̂ = ∑ xt n . Prediction distributions may be generated using an appropriate bootstrap 
t=1 

procedure. 

3.2 Adaptive Variance Version (AVAR) 

A strength of the Croston method, in its original form, is its capacity to allow for changes to the 

underlying variability in a time series. This is achieved by permitting the mean absolute 

deviation (MAD) to change over time. In this section a new model is introduced. It differs from 

the Croston method in two further respects: 

1.	 Variability is measured in terms of variances instead of MADs. Variances have more 

convenient algebraic properties. 

2.	 A second smoothing parameter β is used in the equation that defines how the 

variability changes over time. Croston uses the same smoothing parameter in the 

equations that describe how both the level and variability change over time. It is 

difficult to believe that structural change generally has the same impact on levels and 

variances. 

The model consists of equations (3.1), (2.1) and (2.2). Now the disturbances are governed by 
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the assumption ε t ~ NID  0,  σ t 
2 
−1 , the time dependent variances evolving according to the 

equation: 

( )

2 2 2 2σ = σ + β x e( −σ ) . (3.6) 
t t−1 t t t−1 

Again it is assumed that the xt are governed by a Bernoulli distribution with constant 

probability p. The initial conditions are 0 = σ 2 = 2 σ 2  is a starting value for µ µ  and σ  where 
0 

the variance. 

The smoothing equations (3.2)-(3.5) in the previous method are now modified by the equation: 

2 2 2 2 s = st− + β (e − s 1 )  (3.7) t 1 t t−


2 2 2
where s = | ,σ α β  , , , y1,K, ytσ µ . Furthermore, this recurrence relationship is seeded with 
t t 

s2 = σ 2 . (3.8) 
0 

2The unknowns in this method of smoothing include µ ,σ α , β, . These are chosen to minimise 

the criterion 

n n 

N s  e s  t 
2 
−1 (3.9) ∏ t 

2 
−1 ∑ t 

2 

t =1 t=1 

n n 

where N = ∑ x . Also, p̂ = x n  . It is shown in Appendix 1 that maximum likelihood t ∑ t 
t=1 t=1 

estimates result from this strategy. 

Note that in the special case where β = 0 and the variances are constant, the criterion (3.9) 

collapses to a conventional sum of squared errors. In other cases where β > 0 , it appears that 

the additional terms in (3.9) are required to allow for heteroscedasticity. Dividing each squared 

error by a variance term standardises it. The effect is to place less weight on those errors 

associated with higher variances. The geometric mean term is a measure of average variability. 

Multiplying by the geometric mean de-standardises the standardised sum of squared errors. 

Prediction can again be carried out with an appropriate adaptation of the earlier parametric 

bootstrap approaches. 

4. Integration with Inventory Control Theory 

Most inventory control models used in practice (Brown, 1957) are built on stationary demand 

distribution assumptions. Yet the forecasting models underlying the exponential smoothing 

methods involve non-stationary stochastic processes. Thus, in typical computer implementations 
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of the theory, forecasts from non-stationary models are fed into inventory formulae based on 

stationary demand distribution assumptions. The use of inconsistent models like this is dictated 

by the fact that the theory of non-stationary inventory control is inherently more complex than 

its stationary counterpart and is therefore perceived, rightly or wrongly, as more difficult to 

implement in practice (Hax and Candea, 1984, pp 239-240). 

Satisfactory methods for inventory control, based on the same assumptions as exponential 

smoothing, are yet to be devised. It is not intended to propose a solution here to this difficult 

problem. We shall instead follow current practice and show how to adapt the traditional 

approach to inventory control to the case where a lead-time demand distribution has been 

approximated by a simulated sample. Thus the working hypothesis is that the structure of the 

demand process remains unchanged in all future periods, even though we have allowed for 

structural change in the past while generating the required forecasts. Use of a hypothesis like 

this is not ideal, but it is necessary until a workable non-stationary inventory theory has been 

developed. 

Brown’s approach to inventory control was adapted in Snyder (1984) to handle demands 

generated by gamma probability distribution. The methods described here are similar except the 

gamma distribution is replaced by the simulated demand data from the above forecasting 

procedures. 

4.1 Order-Up-To Level System: Zero Lead Time Case 

When there is no delivery lag, and hence no need to account for outstanding replenishment 

orders, the order-up-to level (OUL) represents the ideal level for stock. Assuming that 

replenishment orders are only placed periodically, the aim is to order enough to ensure that 

stock rises to this ideal level. At the beginning of each period the order-up-to level then 

represents the amount of stock available to meet an uncertain demand during the following 

review period. Shortages occur if demand during a review period exceeds the OUL. Thus the 

choice of the OUL is critical to the successful operation of the system. The distinctive feature of 

the customer service level approach is that a performance target is set in terms of what may be 

termed the fill-rate. This is the proportion of demand, on average, that is satisfied without 

backlogging. The aim is choose the OUL so that the fill-rate equals a level specified by 

management (eg 95 percent). 

b g  
K b denote the simulated demands for the next period. If S represents the Let yn 

1 
+1, , yn+ 

N 
1
g 

unknown OUL, the fill-rate statistic may be defined as an ‘ensemble’ average 
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N + N 

∑
 ∑
i if = −1 S
      (4.1) 
b g
+1yn yb g

+1 − n 
i=1 i=1 

where the superscript + designates the positive part of the associated number. An implicit 

equation solver, such as the goal seeker in Microsoft Excel, can then be used to find the value 

for S that achieves a pre-specified value of the fill-rate f. 

4.2 Order-Up-To Level System: Positive Lead Time Case 

This methodology can be extended to cases of a non-zero delivery lag h. The OUL now 

represents the ideal level for the stock status: the stock and quantity on order less the backlog. 

An order, which is placed at time n, is sufficient in size to raise the stock status to the OUL. 

This order is delivered at time n h + ++ and affects the stock level in the review period n h 1 . 

The excess demand is the difference between the closing and opening backlogs in period 

n h 1 . The fill-rate may therefore be defined as the ensemble statistic: + +

N   n h  1 
i 

+
 + 

i 
+ + +  n h  

  y( ) − S −  y( ) − S ∑ ∑ t  ∑ t  
f = −1 

i=1   t n  = +  1 

N 

  t n  = +  1   
   (4.2) 

( )i∑ yn h 1+ +  
i=1 

Again S may be chosen using an appropriate solver to achieve a pre-specified value of the fill
+ 

term is deleted we obtain the sample analogue of Brown’s (1959) partial expectation approach 

for determining the OUL. Nowadays, with the computerisation of inventory systems, stocks are 

reviewed more frequently. It is then more likely to have significant opening backlogs following 

a replenishment delivery. It is safer not to use the approximation. Note also, when h = 0 , this 

term is undefined. Formula (4.1) then applies. 

4.3 Reorder Level Systems 

Deliveries may be constrained to be multiples of a fixed quantity Q. The size of this quantity 

may be dictated by packing and transportation considerations. It may also be justified in terms 

of Wilson’s classical economic order quantity theory (Snyder, 1973) when there is a fixed 

acquisition cost associated with each order. Either way, an order may now have the capacity to 

meet demand over many review periods. To ensure long run balance, it is not normally possible 

to continue the practice associated with the above OUL systems, of placing orders at the start of 

each review period. Orders are deferred until those reviews where the stock status has dropped 

below a critical value called the reorder level (ROL). Denoting it by R, the ROL is related to the 

OUL by the equation S R Q= +  . 

n h+ 
a f  −∑ t
i S
rate f. Note that the opening backlog term in (4.2) is often quite small. If this y 

t n 1= +  
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Matters are made more complicated in this type of system by the fact that the stock status 

following each review is no longer constant. It is shown in Hadley and Whitin (1963), that if the 

demand distribution is stationary, the stock status immediately following each review can be 

modelled as a doubly stochastic Markov Chain. From this they establish that its movements are 

ultimately governed by a uniform steady state distribution. The mass of this distribution is 1 Q 

over the domain � �R S, . 

To simulate the average performance of the system, N values u1, ,uN are generated from a K 

uniform distribution over the unit interval 0 1, . Corresponding values of the stock status are 

then given by R u+ iQ , so that the fill-rate is now given by 

�
� � ��


+ + 

R  u Q  � −− −  
N n h 1+ +  n h+ 

∑
 ∑
 ∑
ib g  ib g  R  u Q  − −  y yi it t 
i=1 1 t n 1= +t = 

f = −1 .   (4.3) N 
i y b g∑ n h+ +1 

i=1 

Assuming that Q is known and that management has specified a target value for the fill-rate f, 

an implicit function solver can be used to find the corresponding value of the reorder level R. 

This formula for the fill-rate is strictly only applicable when a stationary stochastic process 

generates demands. Because it relies on the steady state distribution of the stock status, (4.3) is a 

measure of the long-term performance of the system. When the non-stationary process 

underlying exponential smoothing generates demands, a steady state does not exist. Given that 

there is no reasonable alternative in this situation, however, the use of this formula is 

recommended until the matter is properly resolved. 

5. Examples 

The forecasting methods and their performance are illustrated here by applying them to the 

demand data in Appendix 2. This is the data depicted in Figure 1. As the Australian stores of the 

company are replenished by deliveries from Japan, the delivery lead-time is assumed to be 3

months. The review period is assumed to be one month in length because the demand data is 

collated on a monthly basis. In reality, the review period is much less than this. However, 

demand data collated over the shorter review period was unavailable. It is also assumed that an 

OUL system is employed to control stocks. In reality, a reorder level control system is used. 

This deviation from reality is adopted to ensure that differences in extraneous factors, such as 

the size of Q, do not confound the conclusions. 

The sample size being 36, the start of month 37 corresponds to the ‘current’ review. Any order 

placed at this point of time is assumed to arrive three months later at the beginning of month 40. 
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The primary aim at the start of month 37, therefore, is to control inventories in month 40. A 

target fill-rate of 95 percent is employed. 

Five methods are compared: 

GAM The gamma probability distribution approach (Snyder, 1984) for obtaining 

order-up-to levels. Being based on a stationary demand process, the 

associated mean and variance are estimated by a simple average and the 

classical variance formula. This case is included for benchmarking 

purposes. 

SES This applies simple exponential smoothing, as described in section 2.1, to 

the data. It ignores the possibility that the data may pertain to a slow 

moving inventory. 

MCROST The Croston method implemented with the modifications specified in 

section 2.2. 

LOG The adaptation of MCROST described in section 3.1. A log-transform is 

applied to non-zero demands. 

AVAR The adaptive variance approach detailed in section 3.2. The adaptive 

variance recurrence relationship (3.7) is seeded with a value obtained from 

the classical sample variance formula applied to the first 12-months of 

data. The method proved to be unstable for optimised values of the seed 

variance. 

Lead-time demand distributions, for methods 2-4, are derived using suitably adapted parametric 

bootstrap procedures. These are based on 10,000 replications. 

Each of Tables 1-3 summarises the results for a car part. Each column corresponds to one of 

above methods. It is important to note that some of the results in the final two columns are not 

comparable with those in earlier columns because they refer to statistics calculated in log-space 

rather than raw-space. The final row contains the most important results: the OULs that achieve 

the 95 percent fill-rate target. These OULs are all expressed in terms of the raw-space and are 

therefore comparable. The performance of a method can be gauged by the size of the associated 

OUL. Ideally, the OUL should be as low as possible. The rows before the last one contain 

auxiliary information. The first row provides the simple average of the entire series. Rows 2 and 

3 contain levels for the start and end of the sampling period. The next two rows list the 

estimates of the level and variance equation smoothing parameters. The three subsequent rows 

contain variance estimates. The next row has the estimate of the active periods proportion. The 

second last row is provided for those methods that do not impose non-negativity conditions on 

demands. 
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------------------------------------------------------------------------------------------------------------------- 

Car Part 1 

From the demand series shown in Figure 1, Car Part 1 appears to have a stable market over 

time. The results obtained from the five methods are shown in Table 1. The following points 

can be observed about the results: 

• 	 The result α̂ = 0 for the four exponential smoothing methods confirms the structural 

stability in the levels. The graph for AVAR consequently shows the smoothed series in 

Figure 2 as a horizontal line. It is a simple average of the data. This example highlights 

the need to allow for the possibility that α = 0 , something that is not done in 

conventional implementations of exponential smoothing. 

• 	 In AVAR β̂ > 0 . Thus although the underlying level remains unchanged, the variance 

does change. The variance in log-space almost halves over the 36 periods. One would 

expect this reduction to lead to a fall in safety stocks. 

• 	 Despite this, the OULs of the exponential smoothing methods are about the same. The 

OUL represents that supply required to satisfy demand over a 4-month period. The 

maximum 4-month aggregate of demand in the final year is 7, occurring from April to 

July. The OUL’s are all large enough to meet successive 4-monthly demands, the 

exception being the period April to July. The results are all plausible in this sense. 

Insert Table 1 and Figure 2 about here 

Car Part 2 

The series for Car Part 2 displayed in Figure 1 shows a distinct downward trend, something that 

is assumed to be a reflection of structural change in the market place. For example, the series 

might represent demand of a part for an old model of car. The results in Table 3 suggest that: 

• 	 The estimates of the smoothing parameter α are all strictly positive. All the 

exponential smoothing methods detect the downward trend – see Figure 2 for the drop 

in the smoothed series. 

• 	 The estimate of the smoothing parameter β is also positive. The drop in the variance is 

quite substantial. 

• 	 The classical stationary demand method, in this case based on a gamma probability 

distribution, assumes that there is no structural change. Large distant past values of the 

time series are weighted equally with more recent observations in generating the 

forecasts. Thus, the OUL from this method is geared to handling demands for a market 

structure that no longer exists and is, as a consequence, too large. The results for SES, 

MCROST and LOG are lower. AVAR, however, yields the lowest OUL. It allows for 
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the decline in variability in the data. The largest 4-month run of demand in the final 

year is only 4. Practitioners would probably argue that all OUL’s are too high. The 

result from the AVAR method might just be acceptable. 

• 	 The proportion of 0.35 negative simulated demands for the conventional local level 

model is quite high. Yet, the effect of the negative values on the OUL appears to have 

been minimal. 

Insert Table 2 about here 

Car Part 3 

The final series consists of demand for the fast moving Car Part 3. Again, a slowly declining 

market is assumed to reflect the effect of structural change. It is interesting to note that: 

• 	 The maximum 4-monthly run of demand in the final year is 167. Remarkably, AVAR 

yields an OUL slightly above this figure. 

• 	 The estimate of the smoothing parameter α is about 0.2 for all exponential smoothing 

methods. This indicates that structural change impacts the data. A comparison of the 

OUL’s from the Gamma distribution and exponential smoothing approaches 

demonstrates sizeable benefits from the use of exponentially weighted averages instead 

of a simple average. 

• 	 The estimate of the smoothing parameter β is zero. The variability in the demand 

series appears not to change much over time. 

• 	 The estimate of the binomial probability p is one. In this circumstance, LOG has 

appropriately collapsed to classical simple exponential smoothing, albeit in log-space. 

AVAR has collapsed to a variant of simple exponential smoothing that allows for 

changes to variability as well as changes to the mean. In other words, these methods 

provide a unified approach to forecasting demand for slow and fast moving inventories. 

The distinction between slow and fast-moving inventories is made automatically 

through the estimation of p. There is no need to implement separate methods of 

forecasting for slow and fast moving items and to employ heuristics to distinguish 

between the two cases. 

• 	 It might be expected that LOG and AVAR should yield almost identical results in this 

situation. Yet, the OUL is lower for AVAR. The standard deviations for LOG is 0.14. 

The estimate of the standard deviation in period 36 for AVAR is 0.08. The difference in 

these figures leads to the observed difference in the associated OUL’s. Why does such a 

discrepancy occur? The variances (equally weighted versions in log space) for years 1 
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to 3 are 0.08, 0.14 and 0.13 respectively. Thus, there was a significant increase in 

relative variability between years 1 and 2. Then it stabilised between years 2 and 3. 

Thus, the variance recurrence relationship is initiated with the lower value 0.08. 

Because the variability stabilised in years 2 and 3, the best estimate of the smoothing 

parameter β was found to be almost zero. Therefore, the variance did not adjust much 

to the higher variability in the second and third years. It is not possible, on the basis of 

this particular data set, to conclude that AVAR is inherently better than LOG. It might 

be more satisfactory if the seed value of the variance recurrence relationship could be 

optimised instead of being chosen by a heuristic. As indicated previously, however, its 

optimisation with the criterion (3.9) and similar criteria seems to be unstable. 

• 	 This example highlights the need to use distinct smoothing parameters in the updating 

equations for the level and variance. 

Insert Table 3 about here 

6. Conclusions and Final Comments 

Methods of forecasting that can be applied to both fast and slow moving inventories have been 

proposed in this paper. Many features of these methods reflect the influence of Croston’s 

approach to forecasting. But there are key differences, these being: 

• 	 smoothing in log-space to avoid negative demands; 

• 	 different smoothing parameters for the level and variance; 

• 	 the use of compatible models and methods; 

• 	 the use of models in a parametric bootstrap approach to generate lead-time demands; 

• 	 reorder level and order-up-to level determination using the fill-rate criterion from 

bootstrapped demands; 

• 	 a constant probability in the Bernoulli process governing the occurrence of active 

months. 

This last point may seem to be a backward step. However, when random walk models of this 

probability were implemented, maximum likelihood estimates of the smoothing parameter 

associated with the resulting exponentially weighted average always turned out to be zero. It is 

not clear why this should be so. One conjecture is that very large samples are required to ensure 

a large enough number of inter-transaction times with which to work. In practice, such samples 

are rarely available. 

A feature of the methods is that they can be applied to both slow and fast moving demand data. 
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For fast moving items, the estimate of the binomial probability inevitably equals one. LOG then 

collapses to the application of simple exponential smoothing, albeit in log-space. AVAR 

collapses to an extension of simple exponential smoothing that allows the variability as well as 

the underlying level to change in response to structural change. 

There remain a number of potential difficulties with the approaches described in this paper. 

First, the parametric bootstrap approach ignores the effects of estimation error. Thus there may 

be a tendency for these methods to underestimate the variability of lead-time demand. 

Estimation error is a second-order effect compared with the prediction error. Its impact, in all 

but small samples, is usually fairly small. In most circumstances, it is probably not worthwhile 

to seek the refinements necessary to allow for estimation error. However, in those cases where it 

is, an adaptation of the methods in Ord, Koehler and Snyder (1997) is a possibility. Anyway, in 

the examples, the OUL’s tended to be on the high side without this type of adjustment. 

Second, the theory presented here is based on the normal distribution. When transactions are 

small, the discrete nature of demand can become important. Furthermore, a skewed distribution 

may be required to properly model demand data. The use of a discrete probability distribution 

defined over the whole numbers, combined with exponential smoothing updates of its mean, is 

problematic because associated simulated data always exhibits bizarre behaviour (Grunwald, 

Hamza and Hyndman, R.J. (1997). Thus, the problem of forecasting demand for slow moving 

items remains a challenging area for further research. 
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Appendix 1 (Likelihood Function and Fitting Criterion) 

The likelihood function for AVAR is derived in this appendix. The entire argument is presented 

in the log-space. It involves normal distributions. The seed variance is designated by σ 2 . The 

variance in period t is represented by σ t 
2 . Furthermore, it is convenient to define 

heteroscedastic-scaling factors vt by 

st 
2 = vtσ

2 . (A1) 

where s2 = 2 | ,t , µ ,α , β . Because s2 = σ 2  it follows that v = 1σ y x	 .t t 1	 0 0 

The joint normal density of the series, conditional on a particular set of active and inactive 

periods specified by 1, ,  xn and the unknown parameters, is denoted by x K


( y x  1 K n σ α β )
p y1,K n | , x , µ ,	 2 , , . Progressively conditioning on earlier series values yields 

1 n 
2 ∏ t 1 

t −1 2 
1

2( ,K y x  , µ , , , ) =
n 

| , x, µ, , , ) (  | , µ ,σ α , βp y  | σ α β p y  y  ( σ α β p y  x  , )  (A2) 
t=2 

where x = [x1, ,  x ]′  and yt−1 = [y , ,  y ] . Given that E y  y  | t −1, x, µ σ α β  , 2 , , m ,K n 1 1 K t −1 ( t 1	 ) = t−1 

this equation simplifies to 

( K y x  , )
n 

( | σ α , β ) . (A3) p y , | , µ ,σ α , β = p e  x  , µ , ,1 n 
2	 ∏ t 

2 

t=1 

The density of the one-step ahead error is 

p e  x  ( | ,  µ σ α β  , 2 , , ) = 
(2π σ  v 

1

2 ) t 

exp  



 − 

2vt

e 

− 

t 

1

2 

σ 2 



 . (A4) t x 

t−1 

Note that when xt = 0 , it reduces to p e  x| ,  µ  α β, , =( t , ∆ ) 1. Thus, the Equation (A3) 

becomes 

p y  x  ( 1 
n | ,  µ σ α β  , 2 , , ) = 1 

exp  


− 1 ∑ 
n et 

2

2 
 

. (A5) 
n 

∏(2 vt 
2 )xt  2 t=1 vt−1σ π σ  −1 

t=1 

Given that the xt follow a Bernoulli distribution, the joint density of the ‘observable’ quantities 

y1 
n  and x is 

p y  x  , | µ σ α β  , =	 exp − t p t 1− p  (A6) , ,  2 ∑  (  )( 1 
n 2 ) 

n 

1 

x 

 
2σ 

1 n e

v 

2  x ( )  1−xt 

∏( vt −1
2 ) t  t=1 t 2π σ  

t=1 
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Viewed as a function of the unknown parameters, the right hand side of (A6) is the formula for 

n 

the likelihood function. The maximum likelihood estimate of p is p̂ = ∑ xt n . The maximum 
t=1 

likelihood estimator of σ 2  is 

n 2 n 

σ̂ 2 = ∑ et ∑ xt . (A7) 
t=1 vt t=1 

The controllable part of the likelihood function, after substituting for p and σ 2  in (A6), is the 

determinant term. Thus, it is clear that the maximum likelihood estimates of the parameters 

n n 
tµ ,α  and β are obtained by minimising the quantity ∏vt

x 
−1σ̂ 2N  where N = ∑ xi . Using 

t=1 t=1 

(A7), dropping the uncontrollable denominator (A7), and finding the Nth-root, an equivalent 

n n n n x xt 2 t 2criterion is N ∏vt ∑et vt . This is the same as N ∏(vtσ 2 ) ∑et vtσ 2  so that the 
t=1 t=1 t =1 t=1 

n n 

criterion becomes N ∏ st 
2 ∑et 

2 st 
2 . In computational work it is normal practice to use the log 

t=1 t=1 

2∑ 
n 

log (st−1 ) n 2 e  
transform t =1 + log ∑ 2 

t  . 
N  t=1 st−1  
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Appendix 2 (Monthly Demand Data for Three Car Parts) 

M
on

th
 

P
ar

t

Y
ea

r

1 2 3 4 5 6 7 8 9 10 11 12 


1 1 3 0 2 0 0 0 0 1 0 0 1 2 

2 0 1 0 0 1 1 2 1 0 2 0 0 

3 0 1 1 2 2 2 1 0 0 2 0 0 

2 1 8 5 1 2 3 4 4 1 1 0 1 5 

2 4 1 5 2 0 1 1 3 1 1 1 1 

3 0 0 1 2 1 0 0 1 0 0 1 1 

3 1 64 59 65 73 74 86 68 40 35 66 97 64 

2 75 54 25 70 48 68 64 35 35 26 51 51 

3 27 48 25 60 26 41 32 37 57 23 39 21 
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Method GAM SES MCROST LOG AVAR 

y 0.78 

$m0 
0.78 1.56 0.37 0.37 

$m36 
0.78 1.56 0.37 0.37 

$α 0 0 0 0 

$β   0.15 

$σ 2 0.79 0.78 0.36 0.14  

0v̂   0.28 

36v̂   0.13 

$p 0.5 0.5 0.5 

Pr yt < 0� �  0.18 0.00 

S 7.2 5.9 6.0 6.2 6.4 

                                          Table 1. Summary of Results for Car Part 1 
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Method GAM SES MCROST LOG AVAR 

y 1.75  

$m0
 4.08 4.01 1.07 1.12 

$m36
 0.66 1.19 0.14 0.11 

$α  0.24 0.22 0.19 0.21 

$β 0.30 

$σ 2 1.85 2.79 2.94 0.43 

0v̂ 0.87 

36v̂ 0.08 

$p 0.78 0.78 0.78 

Pr yt < 0� � 0.35 0.18 

S 15.0 11.8 12.0 10.0 6.1 

                                            Table 2. Summary of Results for Car Part 2 
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Method GAM 

y 50.81 

$m0

$m36

$α 

$β

$σ 2 19.40 

0v̂

36v̂

$p 

Pr yt < 0� �

S 251 

SES MCROST LOG AVAR 

 64.80 64.80 4.15 4.15 

 35.04 35.04 3.50 3.50 

0.20 0.20 0.19 0.19 

  0.00 

292 292 0.14 

  0.08 

  0.08 

1 1 1 

 0.02 0.02 

207 204 189 169 

                                            Table 3. Summary of Results for Car Part 3 
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Figure 1. Demand Series for Car Parts 
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Figure 2. Demand Series (solid line) and AVAR Smoothed Series (dashed line) 
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