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Abstract. Pairwise alignment approaches for time-varying gene expression pro-
files have been recently developed for the detection of co-expressions in time-
series microarray data sets. In this paper, we analyze multiple expression profile
alignment (MEPA) methods for classifying microarray time-course data. We
apply a nearest centroid classification technique, in which the centroid of each
class is computed by means of a MEPA algorithm. MEPA aligns the expression
profiles in such a way to minimize the total area between all aligned profiles.
We propose four MEPA approaches whose effectiveness are demonstrated on
the well-known budding yeast, S. cerevisiae, data set.
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1 Introduction

Finding patterns on genes based on the similarity of their temporal profile expressions
is important for many studies, such as those genes that are functionally related or co-
regulated [7]. Analyzing gene expression data given in terms of time series is different
from a general pattern analysis problem, because exchanging two time points delivers
quite different results, while it may not be biologically meaningful.

Many unsupervised methods for gene pattern analysis based on the similarity (or
dissimilarity) of their microarray temporal profiles have been proposed in the past few
years [1–3, 7, 9, 12–17]. One of the methods for clustering microarray time-series data
is based on a hidden phase model (similar to a hidden Markov model) to define the
parameters of a mixture of normal distributions in a Bayesian-like manner, which are
estimated by using expectation maximization (EM) [3]. Pattern analysis of time-series
data has also been studied using a Bayesian approach in [13], and a hidden Markov
model (HMM) in [14]. A partitional clustering based on k -means and Euclidian distance
has been studied in [17], and in [16], self-organizing maps (SOMs) have been applied
to visualize and interpret gene temporal expression profiles patterns. Other methods
based on correlation measures have been proposed for finding patterns of genes using
microarray time-series data [4, 9]. The method proposed in [4] requires computing the
mean expression levels of some candidate profiles using some pre-identified, arbitrarily
selected profiles. In [9], a method for clustering microarray time-series data employing
a jack-knife correlation coefficient with or without using the seeded candidate profiles
is proposed. Specifying expression levels for the candidate profiles in advance for these
correlation-based procedures requires estimating each candidate profile, which is made
using a small sample of arbitrarily selected genes. This makes it vulnerable to the
possibility of missing important genes, since the resulting clusters depend upon the
initially chosen template genes. Another method is to select and classify genes using
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the ideas of order-restricted inference, where estimation makes use of known inequal-
ities among parameters [12]. In this method, at first, potential candidate profiles of
interest are defined and expressed in terms of inequalities between the expected gene
expression levels at various time points. For a given candidate profile, the estimated
mean expression level of each gene is computed and the best fitting profile for a given
gene is selected using the goodness-of-fit criterion and the bootstrap test procedure.
In this approach, two genes expression profiles x1 and x2 fall into the same cluster
if they show similar profiles in terms of direction of the changes of expression ratios
(e.g. up-up-up-down-down), regardless how big/small the change is. In [1], a minimum-
square-error profile alignment approach to find patterns in microarray time-series data
was proposed. The idea is to pairwisely align two temporal profiles in such a way that
the sum of square errors between two aligned vectors is minimized. The alignment pro-
cedure, however, does not consider the length of the interval between the time points
at which individual measurements are taken. In [18], a pairwise gene expression profile
alignment approach to find patterns in temporal microarray data that minimizes the
area between two aligned profiles has been proposed. The profile alignment proposed
in [18] is different from that of [1] in the sense that: (i) the approach proposed in [18]
considers unequal time intervals, which is usually the case in microarray time-series
experiments, and (ii) the alignment is performed by minimizing the error between two
continuous functions and not the “knot” points. Recently, the authors of [20] proposed a
variation-based co-expression detection algorithm, which finds clusters of co-expressed
genes. Their method is based on calculating the degree of change of the expressions
between adjacent time points and evaluating their trend similarities over time.

The mean of a cluster or class in time-series profiles is called the centroid, which
represents the common features or patterns of the elements in the class. The centroid
is also used by validity indices [6, 11], to evaluate the quality of the result obtained by
a clustering algorithm. It is still an open problem to find the exact number of clusters,
and therefore, determining the correct centroids is also a difficult problem. In this
paper, we propose to compute the centroids of microarray time-series data by means
of multiple expression profile alignment (MEPA) methods. Specifically, we focus on the
problem of classifying the time-series data rather than clustering them. Our motivation
is only to test and evaluate the effectiveness of our MEPA methods (we are currently
working on characterizing the clustering problem by means of MEPA methods), and
hence, our contribution in this paper is a proof of concepts. We assume that we are
given microarray time-course data with well-defined classes. We use the nearest centroid
classifier [8], where each class is represented by a single centroid. During the testing
phase, the distance between a test profile and each class centroid is found and the test
profile is assigned to the label of the nearest centroid.

2 Area Based Profile Alignment

Profile alignment that minimizes the area between two aligned gene expression temporal
profiles was introduced in [1]. In [18], the approach was extended to include the effect
of unequal time intervals between the measurements. The idea of profile alignment
proposed in [18] is discussed in the following. Given a dataset with n samples D =
{x1,x2, ...,xn}, where xi = [xi1 , xi2 , ..., xim ]t is an m-dimensional feature vector that
represents the expression ratio of gene i at m different time points, t = [t1, t2, ..., tm]t.
The approach of [18] aims to partition D into k disjoint subsets D1,D2, ...,Dk, where
D = D1 ∪D2 ∪ ...∪Dk, and Di ∩Dj = ∅, for ∀i, j, i 6= j, in such a way that a similarity
(dissimilarity) cost function φ : {0, 1}n×k → < is maximized (minimized).
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The alignment algorithm proposed in [18] takes two features vectors, and produces
two new vectors in such a way that the area between “aligned” vectors is minimized.
The idea is described in Figure 1. In Figure 1(a) two vectors are shown before alignment.
Figure 1(b) shows the “aligned” vectors such that the area between the profiles is
minimized, i.e. they were aligned in such a way that the total area covered by the
triangle {u, v, z} and the polygon {z, w, q, e, r, k, h, g, s} is minimized.
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Fig. 1. (a) Two unaligned profiles. (b) The two “aligned” profiles obtained after applying the
pairwise alignment, (1)–(4), such that the area between each pair of lines is minimized.

Let, t = [t1, t2, ..., tm]t be the vector representing the time points, and the two
profiles, x = [x1, x2, ..., xm]t and y = [y1, y2, ..., ym]t, be two profiles, whose expression
ratios were measured at time points as given in t, which are to be aligned. The aim is
to find a scalar a that minimizes the total area between the two profiles, e.g., between
the lines that join the expression ratios. To do this, first, profile x is aligned in a
transformed space and a new vector, x′, is obtained as follows:

x′ = [x′1, x
′
2, ..., x

′
m]t ← x− x1 . (1)

Now, let the straight line that joins points
(
ti−1, x

′
i−1

)
and (ti, x′i) be given by

x′i−1+(x′i−x′i−1)
ti−ti−1

u, and for points (ti−1, yi−1) and (ti, yi) is given by yi−1−a+ (yi−yi−1)
ti−ti−1

u,
where u corresponds to the x–axis. Also, let ŷi = yi − yi−1, x̂′i = x′i − x′i−1 and
t̂i = ti − ti−1. A scalar a that minimizes the sum of square errors between x and y
(aligned), for all t1, t2, ..., tm is obtained using the following sum of integrals:

f(a) =
m∑

i=2

∫ ti

ti−1

[
x′i−1 + a− yi−1 +

x̂′i − ŷi

t̂i
u

]2

du , (2)

and by means of the first and second order conditions, resulting in:

a = −
∑m

i=2

[(
x′i−1 − yi−1

)
t̂i + x̂′i−ŷi

t̂i

t̂2i
2

]

m∑

i=2

t̂i

. (3)

Then, a new vector, y′, is computed as follows:

y′ = y − a . (4)
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Let fi be defined as fi = (x′i−x′i−1)−(y′i−y′i−1)

ti−ti−1
. By computing the integrals, the dis-

tance between the two new vectors x′ and y′, d(x′,y′), is obtained as:

d (x′,y′) =
m∑

i=2

(
x′i−1 − y′i−1

)2
t̂i +

(
x′i−1 − y′i−1

)
fit̂

2
i + f2

i

t̂3i
3

. (5)

In this paper, we shall denote this distance d (x′,y′), computed by Equation (5),
which is the distance between two aligned profile vectors, x and y, where the time
points are given in t, as dPA(x,y, t).

3 Multiple Expression Profile Alignment Algorithms

In this section, we present four heuristic algorithms for multiple gene expression profile
alignment. Given a class of gene temporal expression profiles, the goal of each algorithm
is to find the centroid, that is a representative profile, for the class such that all profiles
in the class remain as close as possible to the centroid after alignment. Each algorithm
makes use of the algorithm pairwise expression profile alignment (PEPA), which is
given in Heuristic 1. This algorithm takes two profile vectors x1 = [x11 , x12 , . . . , x1m ]t

and x2 = [x21 , x22 , . . . , x2m ]t, and a vector t = [t1, t2, ..., tm]t, containing m time points
at which the measurements of each gene are taken. Applying equations (1)–(4) on x1,
x2 and t, the algorithm obtain two aligned vectors (x′1, x′2). Finally, the algorithm
computes and returns the mean profile by taking the averages for each of the m time
points of x′1 and x′2.

Heuristic 1 Pairwise Expression Profile Alignment

Input: x1 = [x11 , x12 , . . . , x1m ]t, x2 = [x21 , x22 , . . . , x2m ]t, and t = [t1, t2, ..., tm]t.
Output: Mean profile, µ, of x1 and x2.

(x′1,x
′
2) ← Two aligned vectors obtained after applying equations (1)–(4) on x1, x2 and t.

µ ←− 1
2
(x′1 + x′2)

return µ

3.1 Random MEPA Algorithm

The algorithm, random MEPA (RMEPA) is given in heuristic 2. This algorithm takes
a class of n gene expression temporal profiles, D = {x1,x2, ...,xn}, where each profile
xi, 1 ≤ i ≤ n, is given as an m-feature vector xi = [xi1 , xi2 , . . . , xim ]t. The m features
are the measurements of gene expression ratios at m different time points. The time
points at which the measurements are taken are given in vector t. In the first step, the
algorithm finds a pair of genes, (x0,y0), where x0,y0 ∈ D2,x0 6= y0, among all pairs of
genes in D2 such that the distance dPA(x0,y0, t), computed using equations (1) - (5),
is the minimum among the distances between all pair of profiles in D2. The algorithm
then computes the initial mean, µ, from the profiles x0 and y0, using PEPA (Heuristic
1), and remove the profiles x0 and y0 from D. Then, in every iteration of the repeat
loop, the algorithm randomly selects a profile, x, from D, uses PEPA to obtain a new
mean from µ and x, and assigns the newly computed mean to µ. The process keeps on
repeating as long as D in not empty. The final value of µ is returned as the centroid
of the class D.
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Heuristic 2 Random MEPA
Input: D = {x1,x2, ...,xn}, and t.
Output: Mean profile, µ, of D.

(x0,y0) ← arg min(x,y)∈D2,x6=y dPA(x,y, t).

µ ← PEPA(x0, y0, t).
D ← D r {x0, y0}.
repeat

Randomly select x ∈ D.
µ ← PEPA(µ, x, t).
D ← D r x.

until D = ∅
return µ.

3.2 Nearest-to-Mean MEPA Algorithm

The nearest-to-mean MEPA (NMEPA) algorithm is shown in Heuristic 3. The initial-
ization is same as in RMEPA. However, NMEPA always selects the closest profile,
x ∈ D, to the current mean to obtain a new mean µ. The last mean is the centroid of
D.

Heuristic 3 Nearest-to-Mean MEPA
Input: D = {x1,x2, ...,xn}, and t.
Output: Mean profile, µ, of D.

(x0,y0) ← arg min(x,y)∈D2,x6=y dPA(x,y, t).

µ ← PEPA(x0, y0, t).
D ← D r {x0, y0}.
repeat

x′ ← arg minx∈D, dPA(µ,x, t).
µ ← PEPA(µ, x′, t).
D ← D r x′.

until D = ∅
return µ.

3.3 Tree-Based MEPA Algorithm

The algorithm tree-based MEPA (TMEPA) algorithm, given in Heuristic 4, applies a
tree based approach for the purpose of multiple profile alignment. The entire algorithm
consists of an iterative process, which begins with the input argument D. In every
iteration, the algorithm first finds a pair of genes, (x′,y′), x′,y′ ∈ D2,x′ 6= y′, among
all pairs of genes in D2 such that the distance dPA(x′,y′, t) is minimum among the
distances between all pairs of profiles in D2. The algorithm then computes the mean,
µ′, of the profiles x′ and y′, using PEPA. Afterwards, it removes the profiles x′ and
y′ from D, and adds the newly obtained mean, µ′, to class D. This process continues
with the updated D until there is only one profile left in D. This last profile, µ, is the
centroid of D.
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Heuristic 4 Tree-Based MEPA
Input: D = {x1,x2, ...,xn}, and t.
Output: Mean profile, µ, of D.

repeat
(x′,y′) ← arg min(x,y)∈D2,x6=y dPA(x,y, t).
µ′ ← PEPA(x′, y′, t).
D ← (D ∪ {µ′})r {x′, y′}.

until |D| = 1
µ ← The only profile left in D.

return µ.

3.4 Cover-Based MEPA Algorithm

The cover-based MEPA (CMEPA) algorithm, shown in Heuristic 5, first aligns all pro-
files in D against an arbitrary reference profile, x ∈ D. The resulting aligned profiles
can be viewed as a “compact” profile in such a way that the area enclosed by all profiles
is minimized. Once aligned, the mean is obtained by applying PEPA on the upper-cover
profile and the lower-cover profile of the aligned profiles. The upper-cover, u, (lower-
cover, l) is a profile vector with m features corresponding to t, such that, at each time
point i, 1 ≤ i ≤ m, the value ui (li) is the maximum (minimum) of all aligned profiles
at the same time point i. The algorithm starts by randomly selecting a profile x ∈ D,
as the reference profile, and aligns all profiles in Drx to x. Let D′ contain the aligned
profiles from D. The algorithm computes the upper-cover and lower-cover, u and l, of
D′. Then, the centroid, µ, of D is the mean of u and l using PEPA.

Heuristic 5 Cover-Based MEPA
Input: D = {x1,x2, ...,xn}, and t.
Output: Mean profile, µ, of D.
D′ ← ∅.
Randomly select x ∈ D.
D′ ← D′ ∪ {x}.
D ← D r {x}.
repeat

Randomly select y ∈ D.
y′ ← The aligned profile of y, obtained after aligning y to x, using equations (1)–(4).
D′ ← D′ ∪ {y′}.
D ← D r {y}.

until D = ∅
/* Compute the upper and lower cover, u and l, of D′ */
for i = 1 to m do

ui ← maxx∈D′(xi)
li ← minx∈D′(xi)

end for
µ ← PEPA(u, l, t).

return µ.

In Figure 2, we show the results of applying CMEPA on the budding yeast data set.
The first column shows the aligned profiles in each of the five classes; the upper-cover
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and the lower-cover are shown in the middle column; the two covers are then aligned
by PEPA, in the last column, to obtain the centroid of each class.

0 20 40 60 80 100 120 140 160
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
Aligned profiles − Class 1

Time in minutes

E
xp

re
ss

io
n 

ra
tio

0 20 40 60 80 100 120 140 160
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time in minutes

E
xp

re
ss

io
n 

ra
tio

Upper and Lower cover − Class 1

 

 

Upper cover
Lower cover

0 20 40 60 80 100 120 140 160
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time in minutes

E
xp

re
ss

io
n 

ra
tio

Mean using CMEPA − Class 1

 

 

Aligned upper cover
Aligned lower cover
The mean

0 20 40 60 80 100 120 140 160
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
Aligned profiles − Class 2

Time in minutes

E
xp

re
ss

io
n 

ra
tio

0 20 40 60 80 100 120 140 160
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time in minutes

E
xp

re
ss

io
n 

ra
tio

Upper and Lower cover − Class 2

 

 

Upper cover
Lower cover

0 20 40 60 80 100 120 140 160
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time in minutes

E
xp

re
ss

io
n 

ra
tio

Mean using CMEPA − Class 2

 

 

Aligned upper cover
Aligned lower cover
The mean

0 20 40 60 80 100 120 140 160
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
Aligned profiles − Class 3

Time in minutes

E
xp

re
ss

io
n 

ra
tio

0 20 40 60 80 100 120 140 160
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time in minutes

E
xp

re
ss

io
n 

ra
tio

Upper and Lower cover − Class 3

 

 

Upper cover
Lower cover

0 20 40 60 80 100 120 140 160
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time in minutes

E
xp

re
ss

io
n 

ra
tio

Mean using CMEPA − Class 3

 

 

Aligned upper cover
Aligned lower cover
The mean

0 20 40 60 80 100 120 140 160
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
Aligned profiles − Class 4

Time in minutes

E
xp

re
ss

io
n 

ra
tio

0 20 40 60 80 100 120 140 160
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time in minutes

E
xp

re
ss

io
n 

ra
tio

Upper and Lower cover − Class 4

 

 

Upper cover
Lower cover

0 20 40 60 80 100 120 140 160
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time in minutes

E
xp

re
ss

io
n 

ra
tio

Mean using CMEPA − Class 4

 

 

Aligned upper cover
Aligned lower cover
The mean

0 20 40 60 80 100 120 140 160
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
Aligned profiles − Class 5

Time in minutes

E
xp

re
ss

io
n 

ra
tio

0 20 40 60 80 100 120 140 160
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time in minutes

E
xp

re
ss

io
n 

ra
tio

Upper and Lower cover − Class 5

 

 

Upper cover
Lower cover

0 20 40 60 80 100 120 140 160
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time in minutes

E
xp

re
ss

io
n 

ra
tio

Mean using CMEPA − Class 5

 

 

Aligned upper cover
Aligned lower cover
The mean

(a) (b) (c)

Fig. 2. (a) Aligned profiles in classes 1-5 using CMEPA. (b) The upper and lower covers in
classes 1-5 using CMEPA. (c) The centroids of classes 1-5 using CMEPA.
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Figure 3 shows the centroids obtained by each method on each class of the budding
yeast data set. For AMEPA, in the figure, the centroid is simply the average (arithmetic
mean) of all profiles in a given class; no alignment is performed.

4 Nearest Centroid Classification with MEPA Centroids

A fast and simple algorithm for classification is the nearest centroid (NC) method [8].
This algorithm assumes that the target classes correspond to individual (single) clus-
ters and uses the cluster means (or centroids) to determine the class of an unlabeled
sample point. In other words, in this paper, we take the gene expression profile of a
new sample, x, and compare it to each of the class centroids. The centroids (or, the
prototype patterns) are computed by a MEPA method. The class, Ci, whose centroid,
ci, that x is closest to, according to our integral distance function, dPA, is the pre-
dicted class for x. That is, during classification, the class label of x is determined as
arg min1≤i≤n dPA(x, ci, t), where n is the number of classes.

5 Computational Experiments and Discussions

We performed experiments on the budding yeast, S. cerevisiae [19], data set to com-
pare our different MEPA algorithms. We used the nearest centroid classification (NC)
method to evaluate the effectiveness of a centroid in representing a class accurately.
The effectiveness of a centroid, which determines the quality of its associated MEPA
method, is measured by the classification accuracy of NC on the data set. If a centroid
represents a given class correctly then it should be at minimum distance (after align-
ment) with each member of the class than members of the other classes, assuming that
the classes are well separated (i.e., the centroids are far from each other).

The S. cerevisiae data set contains 221 time-varying gene expression profiles dis-
tributed in 5 classes of size 32 (class 1: G2 phase), 84 (class 2: M phase), 46 (class 3:
Early G1 phase), 28 (class 4: Late G1 phase) and 31 (class 5: S phase), respectively. In
our experiments, however, each class is equally represented in the test set and the train-
ing set. That is, we randomly selected 21 samples from each class to form a training
set of 105 samples, then randomly selected another 7 samples from each class to form
a test set of 35 samples. Therefore, we used 140 distinct samples out of the original set
of 221 samples. Since we have a very small training set, we used 3-fold cross-validation
on the 105 samples from the training set and returned the accuracy on the test set.

The results of all MEPA methods are shown in Table 1. Column “Acc” is the
accuracy on the test set and the remaining columns, afterwards, are the accuracies on
each class. The accuracy is simply the percentage of correctly classified samples.

Table 1. Effectiveness of MEPA methods on S. cerevisiae data

MEPA Methods Acc Class#1 Class#2 Class#3 Class#4 Class#5

NMEPA 54.3% 0% 85.7% 42.9% 71.4% 71.4%
TMEPA 68.6% 42.9% 85.7% 71.4% 71.4% 71.4%
CMEPA 77.1% 28.6% 100% 85.7% 85.7% 85.7%
RMEPA 80.0% 71.4% 71.4% 85.7% 85.7% 85.7%
AMEPA 80.0% 57.1% 100 85.7% 85.7% 71.4%

In Figures 4(a)-(e), we show the unaligned means for all the heuristics and for the
five classes. For class 1, we observe that the means for CMEPA, NMEPA, RMEPA
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Fig. 3. (a) Non-aligned profiles in classes 1-5. (b) Centroids from all MEPA methods. (c)
Aligned centroids from all MEPA methods.
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and TMEPA are quite dissimilar (in an unaligned sense). It is clearly observed, on the
other hand, that the means for these four heuristics are quite similar for the other four
classes, 2, 3, 4, and 5. Also, the mean for NMEPA is quite dissimilar to the others,
and the profiles’ shapes for class 1. That makes the classification task very difficult for
class 1, even worse for NMEPA for which the accuacy is 0%. Additionally, class 1 has
the smallest cardinality, and a visual inspection of class 1 in Figure 3(a) shows many
noisy profiles (outliers). Note also that we randomly selected only 140 profiles from the
original data set of 221 profile; in the case of class 5, the centroids in Figure 3(c) and
Figure 4(e) are quite dissimilar since the outliers may not have been selected for the
training and test set.

Cell cycle is a continuous biological process of G2/M-M/G1 phases rather than
strict G2, M and G1 classes. Therefore, MEPAs were able to perform reasonably well
for classifying G1 and S phases. On the other hand, several S-G2 genes are co-regulated
with rather small shifts of time, which can be attributed to the poor results observed
in class 1.

In general, more variable centroid estimates can be obtained from the NMEPA since
the last profile used would be the one among the most distant profiles from the others,
and hence, add a high degree of random variability to the estimate. The TMEPA
initially forms multiple well separated profiles but the final estimate is produced by
the combination of two highly separated profiles. CMEPA uses both extremes and will
counterbalance each other. The centroid estimates by all methods are highly influenced
by a few profiles, which remains as an open issue that can be investigated. A weighting
function can be utilized to counterbalance the effect of distant profiles. The centroid
profile can be defined as a profile that minimizes the sum of the distance measures
between the centroid and all the other profiles in a class. The effect of using the sum
of absolute distances from the centroid to the profiles can be investigated as well.

6 Conclusions

We have proposed four multiple expression profile alignment (MEPA) methods and
evaluated their effectiveness through the class centroids they generate. We applied the
nearest centroid classification method to evaluate the quality of all MEPA methods. We
plan to use a much larger data set than the S. cerevisiae to truly assess the differences
between the different MEPA methods. Finally, in [1, 18], the authors used pairwise
expression profile alignment algorithms to detect co-expressions in time-varying mi-
croarray data; this was achieved by using the distance function, dPA, to group genes
into clusters of similar profiles. We are investigating clustering approaches that are
based on MEPA methods; in such a case, a characterization of the clustering problem
via MEPA is required. A robust analysis and treatment of noisy profiles by any MEPA
methods is also needed.

We plan to apply our method to predict the temporal order of gene expressions in
the context of gene function, response to signal and gene networks. We also plan to
apply the nearest shrunken centroid method [21], the nearest subspace method, and
the distance weighted nearest centroid method, and to study the resulting effects of
the classification.
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Fig. 4. (a) - (e) Non-aligned centroids of each MEPA method on each class.
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