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Abstract. The task of transcription factor binding sites discovery from
the upstream region of gene, without any prior knowledge of what look
likes, is very challenging. In this paper we propose an algorithm based
on Particle Swarm Optimization (PSO) to identify motif instances in
multiple biological sequences. The experimental results on yeast sac-
choromyces Cerevisae transcription factor binding sites, demonstrate
that the proposed method is working analogous to YMF, MEME and
AlignACE algorithms.
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1 Introduction

Recognition of pattern in a set of DNA sequences is a useful step in under-
standing the regulation of gene expression [1]. Gene expression is the process
whereby a gene is transcribed to form an RNA sequence which is then used
to produce the corresponding protein sequence. In this level of transcription a
protein called transcription Factor (TF) binds to specific sites that are called
Transcription Factor Binding Sites (TFBSs). The TFBSs and other genomic
regulatory elements with specific structure and function are called motifs or sig-
nals. The motifs are usually defined by a subsequence with most occurrence in
a set of unaligned DNA sequences. In the simplest form, motif finding problem
is defined as follows: for a given promoter sequence set S = {s1, . . . , st} find
all the overpresented subsequences of length ` (`-mers) that occur with some
mismatches in the sample set S [2].

In the literature, for this problem many algorithms are proposed [3, 4, 5, 6,
7, 1, 8, 9]. These algorithms can be divided into two major groups: deterministic
and nondeterministic [10]. Most deterministic algorithms use regular expression
based rules to specify some classes of allowable patterns for motifs, and these al-
gorithms are in exhaustive nature, YMF [11], Pratt [12] and TEIRESIAS [13] are
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examples of deterministic algorithms that use regular expression rules to iden-
tify motifs. On the other hand, most nondeterministic motif discovery algorithms
are non-exhaustive and stochastic in nature, and in different runs find different
motifs that may or may not be the optimal one. These stochastic algorithms
are based on position weight matrix (PWM). By allowing different credits for
each nucleotide, PWM contains more information than regular expression. Some
popular stochastic motif discovery tools are MEME [3], CONSENSUS [6], Gibbs
sampling [7], MotifSampler [14], AlignACE [15], and BioProspector [16]. Some
of these algorithms, AlignACE, BioProspector and Motif-Sampler are based on
Gibbs sampling method while MEME is based on expectation maximization
technique.

Recently evolutionary algorithms such as genetic algorithms has been used
for pattern discovery in multiple unaligned DNA sequences [17, 18, 19, 20, 10,
21, 22]. This problem also can be attacked by Particle Swarm Optimization
(PSO). PSO is a population based stochastic optimization technique developed
by Eberhart and Kennedy [23], inspired by social behavior of bird flocking or fish
schooling. In PSO a number of simple entities, particles, are placed in the solution
search space of a problem for finding an optimal solution. Each Particle has a
coordinates x, which records a potential solution of the problem and a velocity
v which determines the direction that the particle will go through the solution
search space for finding optimal solution. Similar to the genetic algorithm, PSO
is initialized with a population composed of random particles (first generation)
and then each particle searches for an optimal solution by updating generations
iteratively. In each iteration, each particle is updated based on the following two
best values. The first one is the best solution obtained so far by the current
particle in the population. Another best is the best solution obtained so far by
any particle in the population. Therefore, the direction of each particle in the
population is adjusted through the search space based on these best solutions.
The process is then iterated for a fixed number of times.

In this paper we present a probabilistic method, PSOMF (Particle Swarm
Optimization for Motif Finding), based on the PSO for motif finding problem.
The main advantage of our proposed method is that it can identify motif in-
stances by a population size and number of generations much less than that is
needed for genetic algorithms. PSOMF usually applies 20 particles in population
and reaches to a unique solution in only 5 generations. We perform experiments
on the real data sets and compare them with three well-known motif finding
tools YMF [11], AlignACE [15] and MEME [3] to demonstrate the effectiveness
of our proposed method. It is noted that the reason for choosing these tools for
comparison is because of the accuracy of their results comparing with the other
existing tools so far.

2 Definitions and Notations

In this section some definitions and notations further used in this paper are intro-
duced. Here, a sequence is a string on a given alphabet Σ thus Σ = {A,C,G, T}
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for DNA. Data set S = {s1, . . . , st} consists of t sequences si = si[1], . . . , si[n]
such that 1 ≤ i ≤ t, and n denotes the length of sequence si. It is desired
to find the motif or common pattern δ of length ` in S = {s1, . . . , st}. Let
si[j1], . . . , si[j1+`−1] is a `-mer or subsequence of si and sk[j2], . . . , sk[j2+`−1]
is a `-mer of sk, the number of matches between these two `-mer is called match
score of these two subsequences. The number of matches between a subsequence
x and y with length ` is defined as:

M(x, y) =
∑̀

j=1

d(x[j], y[j]), (1)

where

d(a, b) =

{
1 if a = b,

0 otherwise.
(2)

The pattern instance of pattern e with length ` in sequence si is a subsequence
si[j], . . . , si[j + ` − 1] with the maximum match score with e. The set U =
{u1, . . . , ut} is called the pattern instance set of pattern e if each ui is a pattern
instance of e in si. The summation of match score of pattern e with each element
ui of pattern instance set U of e is called occurrence score of e and is denoted
by OCC(e). The set P = {p1, . . . , pt} is called the position pattern instance
set of pattern e such that pi is the start position of pattern instance ui in si

i.e. if ui = si[j], . . . , si[j + ` − 1] then pi = j. Clearly each ui has most match
(maximum match score) with e between all n− ` + 1 `-mers in si. The pattern
shared by the pattern instance set U = {u1, . . . , ut} which has position pattern
instance set P = {p1, . . . , pt} is referred to a consensus or a consensus pattern
and shown by δ. In fact, in motif finding problem (without having any pre-given
pattern) we should find in a given data set S = {s1, . . . , st} a pattern instance
set U = {u1, . . . , ut} whose all elements have most match together and consensus
pattern of U is reported as motif.

To find transcription factor binding sites using PSO, the first problem is to
code each particle. In general form, each particle d is composed of four items
which are defined as follow:

– The X-array, xd denotes the current position of the particle in search space.
– The Y-array, yd records the position of the best solution found so far by the

particle.
– The V-array, vd contains a velocity for each particle.
– The Y-fitness, bd contains the fitness of the Y-array.

Now, in motif finding problem the above items ares defined as follows. We
use binary representation because it is seen that an optimizer which operates on
binary value function might be advantageous [24]. Thus to create a binary search
space, each X-array of a particle is considered as a 0, 1 matrix which is created
from a position pattern instance set as follows. Let pi denotes the position of a
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pattern instance ui in the sequence si, then we have

x[i, j] =

{
1 if j = pi,

0 otherwise.
for 1 ≤ j ≤ n

In fact all positions are zero except the position of the occurrence of pattern
instance. It is clear that a position pattern instance set can be created from the
X-array. It should be noted that, for initial population (described in detail in
next section) the position pattern instance sets are selected randomly and the
pattern instance sets are created based on them. In Fig. 1 a few co-regulated
DNA sequences are shown and Fig. 2 shows the X-array of particle corresponding
to these sequences. In this figure TFBSs are declared by underlines. To find the
consensus pattern δ corresponding to each particle d, we construct the position
pattern instance set Pd = {pd,1, . . . , pd,t} based on X-array xd. Each entry of
X-array xd with value 1 in row i (1 ≤ i ≤ t), shows the position of unique
pattern instance pd,i in the sequence si as cited before. By constructing Pd,
corresponding pattern instance set Ud is also created, and all the sequences of
Ud are aligned and the shared pattern is considered as a consensus pattern δ.

The X-array with best fitness found by the each particle, is stored in Y-array.
Thus this array is similar to X-array and is also called best local solution.

A change in particle velocity can be interpreted as a change in the probability
of finding the particle in one position or another. Since this change is a stochastic
value, it is limited to a range of [0, 1]. Thus the V-array is a matrix and each
entry contains a change value for each entry X-array.

The Y-fitness is a variable b whose value is the fitness of the best solution
which is found by particle, i.e. the fitness of best local solution is stored in
Y-array.

Fig. 1. Co-regulated DNA sequences.

Fig. 2. X-array of particle corresponding to the sequences of Fig. 1.
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As mentioned previously, in order to generate new solutions, the best global
solution followed by its fitness are stored in each iteration of PSO algorithm.

3 PSO algorithm for Motif Finding

In the proposed algorithm each particle searches for the optimal solution by
sharing historical information and social information between the particles [23].
The definition of population, fitness function, evaluation and update procedure
are given in below.

3.1 Construction of the Population

As we know, given the set S = {s1, . . . , st} (where the length of si is n for
1 ≤ i ≤ t), inorder to find a motif of length ` in this set, we need to investigate
the search space. In each si, we have n−`+1 number of subsequence of length `,
so in the set S, we have (n−`+1)t number of potential motif instances of length `.
Thus, the search space in this problem is composed of (n−`+1)t elements. Among
them, the element with best score is selected as a motif instance. Therefore, by
assigning m number of these potential motif instances from the search space
in random to the particles, the initial population is constructed. In detail, each
particle is generated as follows: For each sequence si (1 ≤ i ≤ t), a random
number j is selected from [1, n] and assigned to pi. Therefore pi denotes the
start position of a pattern in sequences si and P = {p1, . . . , pt} is the position
pattern instance set. As described in Section 2, the X-array is also created from
P . If the consensus pattern δ corresponding to this X-array is not a random,
we consider it as an X-array of a valid particle in population. For justifying
that our obtained X-array is not a random, we obtain the occurrence score of δ
(as described in Section 2) and if OCC(δ) is greater than α (α is a predefined
threshold), we can deduce that X-array is random and it could not be an X-array
of a particle of initial population. If the X-array is not random, the V-array of
a particle is set to 0.2 and Y-array is set to zero and these arrays are added to
the initial population as a particle.

The above process is repeated until m particles are obtained for the initial
population.

3.2 Fitness Function

The fitness function used for evaluating of a particle is the joint information
content (JIC) of the pattern instance corresponding to that particle. First, the
position pattern instance set P = {p1, . . . , pt} and the pattern instance set U =
{u1, . . . , ut} of a particle d is created from its X-array. Later, the pattern instance
set U is considered as a matrix whose i-th row is ui. The four dimensional array
F4,4,`,` is created from U such that F [i, i′, j, j′] is the joint frequency of the pair
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nucleotides i and i′ (i, i′ ∈ {A,C, G, T}) in column j and j′ (1 ≤ j < j′ ≤ `) of
U . Now, joint position weight array W4,4,`,` is created as:

W [i, i′, j, j′] =
F [i, i′, j, j′]

t
+ pseudocount, (3)

where i, i′ ∈ {A,C, G, T} and 1 ≤ j, j′ ≤ `, and pseudocount is an arbitrary
small number (e.g. 0.0001) for avoiding zero value of W .

Then, JIC fitness of particle d can be computed as:

fitness(d) =
∑

i

∑

i′

∑̀

j=1

∑̀

j′=j+1

W [i, i′, j, j′] log
W [i, i′, j, j′]

w0
, (4)

where i, i′ ∈ {A, C,G, T} and w0 is the background joint frequency of a pair
nucleotides and is considered as 1/16. Thus the Y-fitness of a particle d is cal-
culated as the sum of the joint information contents of nucleotide pairs of each
column of the pattern instance set U .

3.3 Evaluation and Updating

For generating a new population, the particles of the current population are
evaluated and updated. Each particle d is evaluated according to the fitness
function. Let fd denotes the fitness value of particle d, and g is denoted the
best obtained solution, and gbest denotes the fitness of g, then the V-array vd,
X-array xd, Y-array yd, and best local fitness bd are adjusted in the direction of
the particle with the best previous local position and the best previous global
position between all particles in population.

The velocity array of particle d is updated by the following formula:

vd[i, j] = vd[i, j] + c1r1(yd[i, j]− xd[i, j]) + c2r2(g[i, j]− xd[i, j]), (5)

for 1 ≤ i ≤ t and 1 ≤ j ≤ n,

such that factors c1 and c2 are constant values and are known as acceleration
coefficient (Here c1 = c2 = 2), r1 and r2 are random numbers in the range [0, 1].

The position matrix of d is updated by the following equation:

xd[i, j] =

{
1 if r < s(vd[i, j])
0 otherwise,

(6)

where r is a random number selected from a uniform distribution in [0, 1] and
the function s(v) is a sigmoid limiting transformation function which is defined
as:

s(v) =
1

1 + e−v
(7)

Obviously, this method for updating xd may produce more than one value
of 1 in each row of xd which is against to our assumption. In order to solve this
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problem, the following steps can be proceeded. Let xd[i, j1] = 1 in i-th row and
we get another value 1 in the next step for xd[i, j2]. Now, the position pattern in-
stance set and pattern instance set corresponding to the xd with xd[i, j1] = 1 and
xd[i, j2] = 0 is obtained and its corresponding fitness f1 is computed. Similarly,
again the position pattern instance set and pattern instance set corresponding
to the xd with xd[i, j1] = 0 and xd[i, j2] = 1 is obtained and its corresponding
fitness f2 is computed. The maximum value of f1 and f2 determines which el-
ement xd[i, j1] or xd[i, j2] stays 1 and the other changes to 0, respectively. The
above process can be performed for all the other confliction that may occur in
each row of xd and eventually we obtain a matrix with a unique 1 in each row.

The best local position matrix and the best local fitness of d is updated as
follows: if fd > bd then yd[i, j] = xd[i, j] for 1 ≤ i ≤ t, 1 ≤ j ≤ n, and bd = fd.

The best global position matrix and the best global fitness is updated as
follows: if fd > gbest then g[i, j] = xd[i, j] for 1 ≤ i ≤ t, 1 ≤ j ≤ n, and
gbest = fd.

3.4 PSOMF Algorithm

Now with respect to the above discussion, the PSOMF algorithm is demonstrated
in Fig. 3. The input of algorithm is the set S = {s1, . . . , st} where length of each
si is n, and the output of the algorithm is the consensus motif with length `
of the best motif instance set. Preliminarily, the initial parameters of algorithm
such as population size m, maximum generation N , and factors c1 and c2 are set.
The initial population with the m particles is constructed. Later, employing the
fitness function all the initial particle are evaluated and scored. The evaluation
and updating of each particle is performed in each iteration for N times, based on

Algorithm PSOMF
Begin

0 set parameter values.
1 create initial population G0 with m particles.
2 k = 0.
3 while k < N do begin

3.1 evaluate each particle d of population Gk according to fitness function.
3.2 update V-array of each particle d of population Gk.
3.3 update X-array of each particle d of population Gk.
3.4 update Y-array of each particle d of population Gk.
3.5 update Y-fitness of each particle d of populationGk.
3.6 update global solution and global fitness.
3.7 k = k + 1.

4 end
5 select and report the best solutions.

End

Fig. 3. Particle swarm optimization algorithm PSOMF.
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the evaluation process discussed in the previous section. Finally, the 10 particles
with the best local fitness are announced as the result of PSOMF (note that
in biological sequences there might be more than one TFBS). To find the final
motifs the following process are performed. First, pattern instance set U =
{u1, . . . , ut} of each particle d (from 10 selected particle) is obtained according to
the X-array. For each motif instance joint position weight array W is constructed
as mentioned before. This array is aligned with each `-mer (subsequence) of si

(1 ≤ i ≤ t) of data set S = {s1, . . . , st} and the `-mer with maximum match
score is considered as motif. To align array W with each `-mer of si, assume
si[j], . . . , si[j + `− 1] be a `-mer which is started from position j in si, then the
score of this `-mer is computed as:

score(si[j], . . . , si[j + `− 1]) =
j+`−1∑

j1=j

j+`−1∑

j2=j1+1

log(
W [si[j1], si[j2], j1, j2]

w0
),

where w0 is the background joint frequency and is considered as 1/16.
Now, the time complexity of the algorithm is discussed. In Step 1, each

particle is generated in O(tn + `nt), where O(tn) is the time complexity for
values assigning of the array X and O(`nt) is the computation time of the
function OCC. Clearly, the generation of m particles take O(m`nt). Evaluation
of each particle in step 3.1 takes O(tn + 16`2), where O(tn) is the construction
time of the PWM and O(16`2) is the evaluation time of the fitness function.
The Steps 3.2, 3.4, and 3.5 each takes O(tn), and Step 3.3 takes O(`2tn) for
each particle, and for all particles take O(m`2tn). Totally, the time complexity
of the algorithm is O(Nm`2tn), which for small value of N can be considered as
O(m`2tn).

4 Experimental result

We employ data set SCPD to test our algorithm. SCPD is a well-known pro-
moter database of the yeast sacchromyces cerevisiae [25]. We selected 10 tran-
scription factors and its corresponding TFBSs which are kept in their original
genomic sequence, and test PSOMF for finding TFBSs with two test method.
The specification of these test data sets are given in Fig. 4. The obtained results
of PSOMF are compared with the three known programs YMF version 1.0 [11],
MEME version 3.5.4 [3] and AlignACE version 3.0 [15].

The comparison of three algorithms are performed based on the following
measurements: nucleotide Correlation Coefficient (nCC), nucleotide Sensitivity
(nSn), nucleotide Specificity (nSp), nucleotide Performance Coefficient (nPC),
and Accuracy (Acc) [9]. The definition of these measurements are given in Fig. 5.
In this figure, the variable TP, TN,FP and FN denote the number of correctly
predicted positive nucleotides, correctly predicted negative nucleotides, falsely
predicted positive nucleotides and falsely classified negative nucleotide, respec-
tively [26]. All of these measurements are previously defined in [9] as suitable
measurements for comparison of motif finding tools.
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Data set ` t n

CPF1 7 3 850

GCR1 5 6 850

MATA1 25 3 850

PHO2 19 3 850

PHO4 6 5 850

RAP1 7 16 850

ROX1 12 3 850

SFF 10 3 850

STE12 7 4 850

UIS 11 3 850

Fig. 4. Specification of the data sets.

Measurement Formula

nCC (TP×TN)−(FP×FN)√
(TN+FN)×(TN+FP )×(TP+FN)×(TP+FP )

nSn TP
(TP+FN)

nSp TN
(TN+FP )

nPC TP
(TP+FP+FN)

Acc (TP×TN)
(TN+FN+TP+FP )

Fig. 5. Comparison measurement formulas.

For performing PSOM we consider m = 20 and N = 5. In the first test
method, the four data sets GCR1, PHO4, RAP1, and STE12 are selected, and
tools MEME, AlignACE, and PSOM are performed on them. In Fig. 6, the five
measures defined in Fig. 5 are shown for the mentioned 4 regulons predicted
by the MEME, AlignACE, and PSOMF. In this test, YMF is not mentioned,
because of its similar result on the data sets with MEME and AlignACE. In the
second test method, the result obtained by YMF, MEME, and AlignACE on the
6 data sets CPF1, MATA1, PHO2, ROX1, SFF, and UIS are extracted from [11].
In [11], nPC measurement is used for comparsion. PSOM is performed on all of
these 6 data sets and the results of nPC measurement are compared with the
extracted results from [11]. The comparison results are shown in Fig. 7.

As we can see, our algorithm shows a higher score than the other three
algorithms in both test methods.

4.1 Conclusion

In this paper, an algorithm is presented for motif finding in a given set of se-
quences, based on particle swarm optimization. The binary system is used for
motif representation. Particle swarm optimization in binary implementation is
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Fig. 6. Results of the first test method.

data set YMF MEME AlignACE PSOMF

CPF1 0.62 0.49 0.02 0.69

MATA1 0.19 0.20 0.11 0.35

PHO2 0.00 0.00 0.00 0.13

ROX1 0.00 0.03 0.00 0.33

SFF 0.00 0.00 0.05 0.29

UIS 0.01 0.43 0.20 0.44

Fig. 7. Results of the second test method.

capable of solving this problem rapidly. Unlike evolutionary algorithms, PSO has
memory of past successes and has a tendency to converge upon regions of the
search space that have been successful previously. For this reason it converges so
rapidly in comparison with evolutionary algorithm such as genetic algorithms.
The algorithm uses joint information content as a fitness function. The results
are compared with three algorithms YMF, MEME and AlignACE. The effec-
tiveness of our method is shown by the obtained results.
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