
  

  
Abstract— k-word matches, the number of words of length k 

shared between two sequences, also known as the D2 statistic, are 
used in alignment-free sequence comparison statistic.  The 
advantages of the use of this statistic over alignment-based 
methods for nucleotide and amino-acid sequence comparisons 
are firstly that it does not assume that homologous segments are 
contiguous, and secondly that the algorithm is computationally 
extremely fast, the runtime being proportional to the size of the 
sequence under scrutiny.  We summarise our results to date on 
determing the distributional properties of the D2 statistic for a 
range of biologically relevant parameters and outline the 
directions in which the research will proceed.   

 
Index Terms—Genome sequences, protein sequences, sequence 

comparison, word matches.  
 

I. INTRODUCTION 
RGUABLY the most common genomic activity is 
sequence matching, that is, identifying segments of DNA 

or protein amino acid sequences which are related by identity 
up to genetic mutations such as insertions, deletions and point 
mutations.  Frequently, biologists need to locate the ‘closest’ 
matches to given nucleotide or amino acid sequences from 
large databases of known protein sequences. The most 
popular, currently available sequence matching algorithms [1], 
such as the Basic Local Alignment and Search Tool (BLAST), 
rely on local alignment of the sequences being investigated, 
and therefore assume conservation of contiguity between 
homologous segments. This assumption is violated for many 
biologically relevant sequence comparisons. This may occur, 
for example, when spliced transcripts are matched to genomic 
sequences, when expressed sequence tags or cDNAs from 
different splice variants are compared, or when genomic 
sequences are aligned that have undergone genome shuffling.   

The use of k-word matches [2] is an alternative sequence 
comparison method which overcomes these problems. It is 
alignment-free in the sense that it does not assume 
conservation of contiguity. It also has the advantage that 
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algorithms for sequence comparisons are computationally 
extremely fast, being linear in the length of the query 
sequences.  

Alignment-based database search algorithms, such as 
BLAST, have a sound statistical basis and provide 
approximate p-values and E-values (i.e. the number of high 
scoring matches expected under a null hypothesis). By 
contrast, existing implementations of database searches using 
k-word matches, such as the STACK database [3], rely on 
heuristics and lack any statistically rigorous measure of 
significance.  In this paper we report on our progress in 
rectifying this shortcoming by extending current knowledge of 
the k-word count statistic, known as D2, towards biologically 
relevant parameter regimes [4, 5, 6, 7].   

II. DEFINITIONS 
The D2 statistic is defined as the number of matches of words 
of prespecified length k between two given sequences.  Given 
sequences A = (A1, …,Am) and B = (B1, …,Bn), with Ai  and Bj 
belonging to a given alphabet,  

 

! 

D
2

= Y
( i, j )

( i , j )" I

# , 

 
where Y(i,j) is the k-word match indicator variable, equal to 1 if 
the word starting at position i in A matches the word starting 
at position j in B and 0 otherwise.  The index set I is defined 
as I = {(i,j) : 1 ≤ i ≤ m – k + 1, 1 ≤ j ≤  n – k + 1}.   

Also of use is the approximate word match statistic  
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where Y(t)

(i,j), 0 ≤ t ≤ k, is the k-word match indicator variable 
allowing up to t mismatches, i.e. Y(t)

(i,j) = 1 if there are at most t 
mismatches between the words starting at position i in A and j 
in B, and 0 otherwise. Clearly D2 = D2

(0). Examples of exact 
and approximate word match counts are shown in Fig. 1. 
Approximate word matches have potential applications to 
choosing discriminative microarray probes, detection of 
transcription factor binding sites, microRNAs and double-
stranded RNA targets, and to phylogenetics in cases where 
significant substitution has occurred.  

III. EXACT RESULTS AND LIMITING CASES 
To assess the significance of a particular database match, the 
distribution of the statistic D2 is considered under an 
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appropriate null hypothesis.  The usual null hypothesis 
assumption is that sequences are i.i.d. strings, meaning that 
each letter in a sequence is independently and identically 
distributed.  For pairs of i.i.d. strings with non-uniform letter 
distributions, the limiting distributions of D2 and D(t)

2 for large 
sequence lengths n can be determined for certain parameter 
regimes shown in Fig. 2.  

 
Fig. 1: Examples of exact and approximate word match counts. 

 

 
Fig. 2: Limiting distributions of exact and approximate word counts. 

 
In the region k < ½ logb n we have proved that the limiting 

distribution of both D2 and D(t)
2 as n → ∞ is a Normal 

distribution [6]. Here the logarithm base is b = 1/(∑a∈L fa
2) 

with fa the probability of occurrence of letter a in alphabet L.  
This result is an improvement on an the earlier result of 
Lippert et al. [2], who also demonstrated that the distribution 
of  D2 is compound Poisson in the large n limit for k > 2 logbn.   
No exact results are known for the limiting distribution in the 
intervening region between these regimes.   
 We have also derived exact formulae for the mean and 
variance of D2 for any values of the sequence length n and 
word length k [5, 7].  These formulae have also been extended 
from i.i.d. strings to the case of Markovian strings [8], that is, 
sequences for which the probability of a letter occurring at a 
point depends on the letters immediately preceding that point.   

IV. NUMERICAL EXPERIMENTS 
We have carried out numerical simulations to test the accuracy 
with which k-word matches are able to measure the 
relatedness of sequences artificially evolved from an initial 

sequence, and to estimate the optimum word size k for given 
sequence length n [4].  
 The test, using a method similar to that introduced in [9], 
was carried out as follows.  Beginning with an initial mother 
sequence of nucleotides, either randomly generated or chosen 
from a known genome, a family of 100 daughters were 
generated by randomly mutating a fraction γ% of the mother 
sequence, where γ = 1, 2, …, 100.  Only point mutations were 
used: substitution, insertion and deletion of a single letter.  A 
ranking r(γ) of the daughters was produced based on 
decreasing D2 or D(t)

2.  The accuracy of the k-word match 
based sequence comparison was estimated by looking at 
discrepancy between these two rankings by means of the 
Spearman’s rank statistic  
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For each set of parameter values between 100 and 400 such 
families were generated and an average Spearman rank 
statistic determined.  The optimal word size is that for which A 
is minimal.   

Numerical results were carried out to determine the 
optimum word size for a range of sequence lengths n and 
numbers of mismatches t. Sequences with a non-uniform letter 
distribution were used, with nucleotide frequencies fA = fT = 
1/3, fG = fC = 1/6.  Similar compositional biases are observed 
in several sequences genomes, such as the honey bee Apis 
mellifera, the roundworm Caenorhabditis elegans or the zebra 
fish, Danio rerio.  Results are shown in Table 1.  
 

Table 1: Optimal word sizes for various sequence lengths n and numbers of 
mismatches t and a non-uniform letter distribution.   

 
 n = 200 400 800 1600 3200 

t = 0 6 7 7 7 7 
1 8 10 10 10 10 
2 10 12 12 12 12 
3 12 14 14 14 14 
4 14 16 16 16 16 
5 16 18 18 18 18 

 
 Fig. 3 shows the Spearman’s rank statistic for a uniform 
letter distribution fA = fT = fC = fG = 1/4.  Optimum word sizes 
tend to be smaller for the uniform than for the non-uniform 
distribution.  The Spearman’s rank statistic increases slowly 
after the optimum, and the non-uniform estimates given in 
Table 1 might be used for most practical purposes.   

Overall, the D(t)
2 measures provide an accuracy similar to 

the dissimilarity measures computed in [9], with log A ranging 
from 9.3 to 9.6.  This outperforms BLAST for this test, whose 
log A is close to 9.9.  It is noteworthy that, at optimal word 
size, the D(t)

2 statistic gives better results when the number of 
mismatches allowed per word increases. For this biologically 
relevant test we find the optimum word size generally falls 
within the intermediate regime in Fig. 2 for which the limiting 
distribution is unknown.  

In the absence of analytical results in this intermediate 
regime we turn to numerical simulation to investigate further 
the distributions of D2 and D(t)

2.  This involves generating 
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large samples of i.i.d. strings in the computer and comparing 
histograms of k-word counts with hypothesized distribution 
density functions.   

 

 
Fig. 3: The log of the average Spearman’s rank statistic for a range of word 

sizes k and number of mismatches t, sequence size n = 600 and a uniform 
letter distribution.  The dotted line shows the results obtained with BLAST. 

 
We have simulated the distribution of D2 in this way for a 

number of combinations of sequence size n, word size k, 
alphabets L and letter frequencies fa [7]. For nucleic acid 
sequences, word sizes close to the optimal word size of D2 
from Table 1 were chosen.  For protein amino acid sequences, 
the optimal word sizes and a letter composition equal to the 
average of the proteins encoded by the human genome were 
determined by the same method. For protein sequences of 
length up to n = 400 and an alphabet of 20 letters the optimum 
word size was k = 3, and for longer sequences up to n = 3200, 
the optimum word size was k = 4.  In general, optimum word 
sizes decrease with increasing alphabet sizes as word matches 
with large alphabets are less likely.  Sequences were simulated 
with uniform and non-uniform letter distributions, and for 
each combination of parameters, Nsample = 106 pairs of i.i.d. 
strings were generated.   
 For the purposes of estimating null hypothesis p-values, it is 
most important to have an accurate representation of the 
distribution of D2 in the right hand tail of the distribution.  Our 
method for evaluating a hypothesised distribution is illustrated 
in Fig. 4.  For a range of classical significance levels, phyp = 
0.001%, 0.01%, …, we calculate the corresponding  quantile 
qhyp of the hypothesised distribution, shown as the thick 
vertical bar in part (b) of Fig. 4.  In other words, phyp is the 
area under the continuous curve to the right of qhyp.  An 
empirical significance level, pemp is then calculated as the area 
of the empirical histogram (the shaded area) to the right of 
qhyp.  The discrepancy between the hypothesised and empirical 
p-values is then measured by the quantity  
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Fig. 4: The  distribution of D2 for n = 800, k = 7. The histogram shows the 
empirical distribution, and the continuous curve is a hypothesised Gamma 

distribution.  (a) Global view of the distribution. (b) Detail of the right hand 
tail. 

 
Values of δ close to zero indicate that the right hand tail of the 
hypothesised distribution is a close representation of that of 
the empirical distribution.   
 This method was used to evaluate hypothesised Normal and 
Gamma distributions chosen with the analytically known 
means and variances of the true distributions.  The choice of 
Gamma distribution is empirical, based on the asymmetric 
shaped histograms of simulated samples (see Fig. 4a, for 
example).  Tables of δ from samples of simulated DNA i.i.d. 
strings at empirical p-values of 1% and 0.01% are shown for 
the Normal distribution in Fig 5 and the Gamma distribution 
in Fig. 6.  For sequences 1600 base pairs long or larger, the p-
values from hypothesized Normal or Gamma distributions are 
very close to empirical p-values.  For smaller sequences and p-
values < 0.01%, the Normal distribution greatly overestimates 
the significance of D2, while the Gamma distribution generally 
performs better, slightly underestimating the significance of 
D2. Use of a Gamma distribution to estimate the tail of the 
distribution of D2 would therefore result in fewer false 
positives.  Identical trends were observed for amino-acid 
alphabets.   
 For data base searches, a query sequence is compared to 
several sequences, and the p-value of the best score of all 
these comparisons needs to be estimated.  In this case the 
appropriate statistic for gauging significance of a match is the 
extreme value, that is, the largest of a given number of random 
variables.  We have performed numerical estimates of the tail 
of the extreme value distribution of D2, which we have 
compared with the extreme value distributions of the Normal 
and Gamma distributions using the discrepancy test described 
above.  These two extreme value distributions belong to the 
Gumbel family and can be easily computed [10].  In this case 
we find that the Gamma distribution clearly outperforms the 
Normal distribution both for DNA and nucleic acid alphabets.  
Further details can be found in [7].   

V. CONCLUSIONS AND OUTLOOK 
Our investigations of the exact and approximate word match 
statistics indicate that p-values can be efficiently and 
accurately estimated for biologically relevant parameter values 
by assuming a Gamma distribution with mean and variance 
given by exact analytical results.   
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The above methodology has the potential to provide 
efficient software for alignment-free sequence matching 
database searches.  Before this can be fully accomplished a 
number of directions will need to be investigated, including:  
(i) Different degrees of sequence similarity will be 
incorporated into analyses of optimum word sizes. It is well 
known that parameters in alignment algorithms such as 
BLAST must be tuned to account for the expected degree of 
sequence similarity. For instance, in a particular data base 
search, are we seeking homologous genes from closely or 
distantly related species? The optimum parameter values for k-
word matches, such as word size and number of mismatches 
similarly must be tuned. (ii) Numerical experiments to 
determine the distribution of D2 for biologically relevant 
parameter values will be extended from the assumption of 
i.i.d. strings to Markovian strings. (iii) We will evaluate 
whether our rigorous analytical results concerning the 
asymptotic distribution can be generalised to broader 
parameter values and to Markovian strings. (iv) Currently, the 
numerical algorithm for approximate mismatches is not as 
efficient as that for exact word matches. Improvements to the 
speed of this algorithm will be sought so it is also linear in the 
length of the query sequences, at least for the case of small 
numbers of mismatches.  
 

 
 
 
Fig. 5: The  discrepancy δ = log(pemp/phyp) comparing the D2 statistic estimated 
from simulated DNA i.i.d. strings with a Normal distribution at empirical p-
values of 1% and 0.01%.   
 

 
 
 
Fig. 6: The same as Fig. 5 for a Gamma distribution.  
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